devices/e1000e/ich8lan-2.6.33-ethercat.c
branchredundancy
changeset 2324 eb87b65d995b
equal deleted inserted replaced
2323:3a4ea6393c7c 2324:eb87b65d995b
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2009 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /*
       
    30  * 82562G 10/100 Network Connection
       
    31  * 82562G-2 10/100 Network Connection
       
    32  * 82562GT 10/100 Network Connection
       
    33  * 82562GT-2 10/100 Network Connection
       
    34  * 82562V 10/100 Network Connection
       
    35  * 82562V-2 10/100 Network Connection
       
    36  * 82566DC-2 Gigabit Network Connection
       
    37  * 82566DC Gigabit Network Connection
       
    38  * 82566DM-2 Gigabit Network Connection
       
    39  * 82566DM Gigabit Network Connection
       
    40  * 82566MC Gigabit Network Connection
       
    41  * 82566MM Gigabit Network Connection
       
    42  * 82567LM Gigabit Network Connection
       
    43  * 82567LF Gigabit Network Connection
       
    44  * 82567V Gigabit Network Connection
       
    45  * 82567LM-2 Gigabit Network Connection
       
    46  * 82567LF-2 Gigabit Network Connection
       
    47  * 82567V-2 Gigabit Network Connection
       
    48  * 82567LF-3 Gigabit Network Connection
       
    49  * 82567LM-3 Gigabit Network Connection
       
    50  * 82567LM-4 Gigabit Network Connection
       
    51  * 82577LM Gigabit Network Connection
       
    52  * 82577LC Gigabit Network Connection
       
    53  * 82578DM Gigabit Network Connection
       
    54  * 82578DC Gigabit Network Connection
       
    55  */
       
    56 
       
    57 #include "e1000-2.6.33-ethercat.h"
       
    58 
       
    59 #define ICH_FLASH_GFPREG		0x0000
       
    60 #define ICH_FLASH_HSFSTS		0x0004
       
    61 #define ICH_FLASH_HSFCTL		0x0006
       
    62 #define ICH_FLASH_FADDR			0x0008
       
    63 #define ICH_FLASH_FDATA0		0x0010
       
    64 #define ICH_FLASH_PR0			0x0074
       
    65 
       
    66 #define ICH_FLASH_READ_COMMAND_TIMEOUT	500
       
    67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
       
    68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
       
    69 #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
       
    70 #define ICH_FLASH_CYCLE_REPEAT_COUNT	10
       
    71 
       
    72 #define ICH_CYCLE_READ			0
       
    73 #define ICH_CYCLE_WRITE			2
       
    74 #define ICH_CYCLE_ERASE			3
       
    75 
       
    76 #define FLASH_GFPREG_BASE_MASK		0x1FFF
       
    77 #define FLASH_SECTOR_ADDR_SHIFT		12
       
    78 
       
    79 #define ICH_FLASH_SEG_SIZE_256		256
       
    80 #define ICH_FLASH_SEG_SIZE_4K		4096
       
    81 #define ICH_FLASH_SEG_SIZE_8K		8192
       
    82 #define ICH_FLASH_SEG_SIZE_64K		65536
       
    83 
       
    84 
       
    85 #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
       
    86 
       
    87 #define E1000_ICH_MNG_IAMT_MODE		0x2
       
    88 
       
    89 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
       
    90 				 (ID_LED_DEF1_OFF2 <<  8) | \
       
    91 				 (ID_LED_DEF1_ON2  <<  4) | \
       
    92 				 (ID_LED_DEF1_DEF2))
       
    93 
       
    94 #define E1000_ICH_NVM_SIG_WORD		0x13
       
    95 #define E1000_ICH_NVM_SIG_MASK		0xC000
       
    96 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
       
    97 #define E1000_ICH_NVM_SIG_VALUE         0x80
       
    98 
       
    99 #define E1000_ICH8_LAN_INIT_TIMEOUT	1500
       
   100 
       
   101 #define E1000_FEXTNVM_SW_CONFIG		1
       
   102 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
       
   103 
       
   104 #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
       
   105 
       
   106 #define E1000_ICH_RAR_ENTRIES		7
       
   107 
       
   108 #define PHY_PAGE_SHIFT 5
       
   109 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
       
   110 			   ((reg) & MAX_PHY_REG_ADDRESS))
       
   111 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
       
   112 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
       
   113 
       
   114 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
       
   115 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
       
   116 #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
       
   117 
       
   118 #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
       
   119 
       
   120 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
       
   121 
       
   122 /* SMBus Address Phy Register */
       
   123 #define HV_SMB_ADDR            PHY_REG(768, 26)
       
   124 #define HV_SMB_ADDR_PEC_EN     0x0200
       
   125 #define HV_SMB_ADDR_VALID      0x0080
       
   126 
       
   127 /* Strapping Option Register - RO */
       
   128 #define E1000_STRAP                     0x0000C
       
   129 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
       
   130 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
       
   131 
       
   132 /* OEM Bits Phy Register */
       
   133 #define HV_OEM_BITS            PHY_REG(768, 25)
       
   134 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
       
   135 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
       
   136 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
       
   137 
       
   138 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
       
   139 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
       
   140 
       
   141 /* KMRN Mode Control */
       
   142 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
       
   143 #define HV_KMRN_MDIO_SLOW      0x0400
       
   144 
       
   145 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
       
   146 /* Offset 04h HSFSTS */
       
   147 union ich8_hws_flash_status {
       
   148 	struct ich8_hsfsts {
       
   149 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
       
   150 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
       
   151 		u16 dael       :1; /* bit 2 Direct Access error Log */
       
   152 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
       
   153 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
       
   154 		u16 reserved1  :2; /* bit 13:6 Reserved */
       
   155 		u16 reserved2  :6; /* bit 13:6 Reserved */
       
   156 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
       
   157 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
       
   158 	} hsf_status;
       
   159 	u16 regval;
       
   160 };
       
   161 
       
   162 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
       
   163 /* Offset 06h FLCTL */
       
   164 union ich8_hws_flash_ctrl {
       
   165 	struct ich8_hsflctl {
       
   166 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
       
   167 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
       
   168 		u16 reserved   :5;   /* 7:3 Reserved  */
       
   169 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
       
   170 		u16 flockdn    :6;   /* 15:10 Reserved */
       
   171 	} hsf_ctrl;
       
   172 	u16 regval;
       
   173 };
       
   174 
       
   175 /* ICH Flash Region Access Permissions */
       
   176 union ich8_hws_flash_regacc {
       
   177 	struct ich8_flracc {
       
   178 		u32 grra      :8; /* 0:7 GbE region Read Access */
       
   179 		u32 grwa      :8; /* 8:15 GbE region Write Access */
       
   180 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
       
   181 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
       
   182 	} hsf_flregacc;
       
   183 	u16 regval;
       
   184 };
       
   185 
       
   186 /* ICH Flash Protected Region */
       
   187 union ich8_flash_protected_range {
       
   188 	struct ich8_pr {
       
   189 		u32 base:13;     /* 0:12 Protected Range Base */
       
   190 		u32 reserved1:2; /* 13:14 Reserved */
       
   191 		u32 rpe:1;       /* 15 Read Protection Enable */
       
   192 		u32 limit:13;    /* 16:28 Protected Range Limit */
       
   193 		u32 reserved2:2; /* 29:30 Reserved */
       
   194 		u32 wpe:1;       /* 31 Write Protection Enable */
       
   195 	} range;
       
   196 	u32 regval;
       
   197 };
       
   198 
       
   199 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
       
   200 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
       
   201 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
       
   202 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
       
   203 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
       
   204 						u32 offset, u8 byte);
       
   205 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
   206 					 u8 *data);
       
   207 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
       
   208 					 u16 *data);
       
   209 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
   210 					 u8 size, u16 *data);
       
   211 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
       
   212 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
       
   213 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
       
   214 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
       
   215 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
       
   216 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
       
   217 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
       
   218 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
       
   219 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
       
   220 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
       
   221 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
       
   222 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
       
   223 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
       
   224 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
       
   225 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
       
   226 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
       
   227 
       
   228 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
       
   229 {
       
   230 	return readw(hw->flash_address + reg);
       
   231 }
       
   232 
       
   233 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
       
   234 {
       
   235 	return readl(hw->flash_address + reg);
       
   236 }
       
   237 
       
   238 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
       
   239 {
       
   240 	writew(val, hw->flash_address + reg);
       
   241 }
       
   242 
       
   243 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
       
   244 {
       
   245 	writel(val, hw->flash_address + reg);
       
   246 }
       
   247 
       
   248 #define er16flash(reg)		__er16flash(hw, (reg))
       
   249 #define er32flash(reg)		__er32flash(hw, (reg))
       
   250 #define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
       
   251 #define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))
       
   252 
       
   253 /**
       
   254  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
       
   255  *  @hw: pointer to the HW structure
       
   256  *
       
   257  *  Initialize family-specific PHY parameters and function pointers.
       
   258  **/
       
   259 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
       
   260 {
       
   261 	struct e1000_phy_info *phy = &hw->phy;
       
   262 	s32 ret_val = 0;
       
   263 
       
   264 	phy->addr                     = 1;
       
   265 	phy->reset_delay_us           = 100;
       
   266 
       
   267 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
       
   268 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
       
   269 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
       
   270 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
       
   271 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
       
   272 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
       
   273 	phy->ops.power_up             = e1000_power_up_phy_copper;
       
   274 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
       
   275 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   276 
       
   277 	phy->id = e1000_phy_unknown;
       
   278 	ret_val = e1000e_get_phy_id(hw);
       
   279 	if (ret_val)
       
   280 		goto out;
       
   281 	if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
       
   282 		/*
       
   283 		 * In case the PHY needs to be in mdio slow mode (eg. 82577),
       
   284 		 * set slow mode and try to get the PHY id again.
       
   285 		 */
       
   286 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
   287 		if (ret_val)
       
   288 			goto out;
       
   289 		ret_val = e1000e_get_phy_id(hw);
       
   290 		if (ret_val)
       
   291 			goto out;
       
   292 	}
       
   293 	phy->type = e1000e_get_phy_type_from_id(phy->id);
       
   294 
       
   295 	switch (phy->type) {
       
   296 	case e1000_phy_82577:
       
   297 		phy->ops.check_polarity = e1000_check_polarity_82577;
       
   298 		phy->ops.force_speed_duplex =
       
   299 			e1000_phy_force_speed_duplex_82577;
       
   300 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
       
   301 		phy->ops.get_info = e1000_get_phy_info_82577;
       
   302 		phy->ops.commit = e1000e_phy_sw_reset;
       
   303 	case e1000_phy_82578:
       
   304 		phy->ops.check_polarity = e1000_check_polarity_m88;
       
   305 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
       
   306 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
       
   307 		phy->ops.get_info = e1000e_get_phy_info_m88;
       
   308 		break;
       
   309 	default:
       
   310 		ret_val = -E1000_ERR_PHY;
       
   311 		break;
       
   312 	}
       
   313 
       
   314 out:
       
   315 	return ret_val;
       
   316 }
       
   317 
       
   318 /**
       
   319  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
       
   320  *  @hw: pointer to the HW structure
       
   321  *
       
   322  *  Initialize family-specific PHY parameters and function pointers.
       
   323  **/
       
   324 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
       
   325 {
       
   326 	struct e1000_phy_info *phy = &hw->phy;
       
   327 	s32 ret_val;
       
   328 	u16 i = 0;
       
   329 
       
   330 	phy->addr			= 1;
       
   331 	phy->reset_delay_us		= 100;
       
   332 
       
   333 	phy->ops.power_up               = e1000_power_up_phy_copper;
       
   334 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
       
   335 
       
   336 	/*
       
   337 	 * We may need to do this twice - once for IGP and if that fails,
       
   338 	 * we'll set BM func pointers and try again
       
   339 	 */
       
   340 	ret_val = e1000e_determine_phy_address(hw);
       
   341 	if (ret_val) {
       
   342 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
       
   343 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
       
   344 		ret_val = e1000e_determine_phy_address(hw);
       
   345 		if (ret_val) {
       
   346 			e_dbg("Cannot determine PHY addr. Erroring out\n");
       
   347 			return ret_val;
       
   348 		}
       
   349 	}
       
   350 
       
   351 	phy->id = 0;
       
   352 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
       
   353 	       (i++ < 100)) {
       
   354 		msleep(1);
       
   355 		ret_val = e1000e_get_phy_id(hw);
       
   356 		if (ret_val)
       
   357 			return ret_val;
       
   358 	}
       
   359 
       
   360 	/* Verify phy id */
       
   361 	switch (phy->id) {
       
   362 	case IGP03E1000_E_PHY_ID:
       
   363 		phy->type = e1000_phy_igp_3;
       
   364 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   365 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
       
   366 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
       
   367 		phy->ops.get_info = e1000e_get_phy_info_igp;
       
   368 		phy->ops.check_polarity = e1000_check_polarity_igp;
       
   369 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
       
   370 		break;
       
   371 	case IFE_E_PHY_ID:
       
   372 	case IFE_PLUS_E_PHY_ID:
       
   373 	case IFE_C_E_PHY_ID:
       
   374 		phy->type = e1000_phy_ife;
       
   375 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
       
   376 		phy->ops.get_info = e1000_get_phy_info_ife;
       
   377 		phy->ops.check_polarity = e1000_check_polarity_ife;
       
   378 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
       
   379 		break;
       
   380 	case BME1000_E_PHY_ID:
       
   381 		phy->type = e1000_phy_bm;
       
   382 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   383 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
       
   384 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
       
   385 		phy->ops.commit = e1000e_phy_sw_reset;
       
   386 		phy->ops.get_info = e1000e_get_phy_info_m88;
       
   387 		phy->ops.check_polarity = e1000_check_polarity_m88;
       
   388 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
       
   389 		break;
       
   390 	default:
       
   391 		return -E1000_ERR_PHY;
       
   392 		break;
       
   393 	}
       
   394 
       
   395 	return 0;
       
   396 }
       
   397 
       
   398 /**
       
   399  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
       
   400  *  @hw: pointer to the HW structure
       
   401  *
       
   402  *  Initialize family-specific NVM parameters and function
       
   403  *  pointers.
       
   404  **/
       
   405 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
       
   406 {
       
   407 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   408 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
   409 	u32 gfpreg, sector_base_addr, sector_end_addr;
       
   410 	u16 i;
       
   411 
       
   412 	/* Can't read flash registers if the register set isn't mapped. */
       
   413 	if (!hw->flash_address) {
       
   414 		e_dbg("ERROR: Flash registers not mapped\n");
       
   415 		return -E1000_ERR_CONFIG;
       
   416 	}
       
   417 
       
   418 	nvm->type = e1000_nvm_flash_sw;
       
   419 
       
   420 	gfpreg = er32flash(ICH_FLASH_GFPREG);
       
   421 
       
   422 	/*
       
   423 	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
       
   424 	 * Add 1 to sector_end_addr since this sector is included in
       
   425 	 * the overall size.
       
   426 	 */
       
   427 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
       
   428 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
       
   429 
       
   430 	/* flash_base_addr is byte-aligned */
       
   431 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
       
   432 
       
   433 	/*
       
   434 	 * find total size of the NVM, then cut in half since the total
       
   435 	 * size represents two separate NVM banks.
       
   436 	 */
       
   437 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
       
   438 				<< FLASH_SECTOR_ADDR_SHIFT;
       
   439 	nvm->flash_bank_size /= 2;
       
   440 	/* Adjust to word count */
       
   441 	nvm->flash_bank_size /= sizeof(u16);
       
   442 
       
   443 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
       
   444 
       
   445 	/* Clear shadow ram */
       
   446 	for (i = 0; i < nvm->word_size; i++) {
       
   447 		dev_spec->shadow_ram[i].modified = false;
       
   448 		dev_spec->shadow_ram[i].value    = 0xFFFF;
       
   449 	}
       
   450 
       
   451 	return 0;
       
   452 }
       
   453 
       
   454 /**
       
   455  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
       
   456  *  @hw: pointer to the HW structure
       
   457  *
       
   458  *  Initialize family-specific MAC parameters and function
       
   459  *  pointers.
       
   460  **/
       
   461 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
       
   462 {
       
   463 	struct e1000_hw *hw = &adapter->hw;
       
   464 	struct e1000_mac_info *mac = &hw->mac;
       
   465 
       
   466 	/* Set media type function pointer */
       
   467 	hw->phy.media_type = e1000_media_type_copper;
       
   468 
       
   469 	/* Set mta register count */
       
   470 	mac->mta_reg_count = 32;
       
   471 	/* Set rar entry count */
       
   472 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
       
   473 	if (mac->type == e1000_ich8lan)
       
   474 		mac->rar_entry_count--;
       
   475 	/* Set if manageability features are enabled. */
       
   476 	mac->arc_subsystem_valid = true;
       
   477 	/* Adaptive IFS supported */
       
   478 	mac->adaptive_ifs = true;
       
   479 
       
   480 	/* LED operations */
       
   481 	switch (mac->type) {
       
   482 	case e1000_ich8lan:
       
   483 	case e1000_ich9lan:
       
   484 	case e1000_ich10lan:
       
   485 		/* ID LED init */
       
   486 		mac->ops.id_led_init = e1000e_id_led_init;
       
   487 		/* setup LED */
       
   488 		mac->ops.setup_led = e1000e_setup_led_generic;
       
   489 		/* cleanup LED */
       
   490 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
       
   491 		/* turn on/off LED */
       
   492 		mac->ops.led_on = e1000_led_on_ich8lan;
       
   493 		mac->ops.led_off = e1000_led_off_ich8lan;
       
   494 		break;
       
   495 	case e1000_pchlan:
       
   496 		/* ID LED init */
       
   497 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
       
   498 		/* setup LED */
       
   499 		mac->ops.setup_led = e1000_setup_led_pchlan;
       
   500 		/* cleanup LED */
       
   501 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
       
   502 		/* turn on/off LED */
       
   503 		mac->ops.led_on = e1000_led_on_pchlan;
       
   504 		mac->ops.led_off = e1000_led_off_pchlan;
       
   505 		break;
       
   506 	default:
       
   507 		break;
       
   508 	}
       
   509 
       
   510 	/* Enable PCS Lock-loss workaround for ICH8 */
       
   511 	if (mac->type == e1000_ich8lan)
       
   512 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
       
   513 
       
   514 	return 0;
       
   515 }
       
   516 
       
   517 /**
       
   518  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
       
   519  *  @hw: pointer to the HW structure
       
   520  *
       
   521  *  Checks to see of the link status of the hardware has changed.  If a
       
   522  *  change in link status has been detected, then we read the PHY registers
       
   523  *  to get the current speed/duplex if link exists.
       
   524  **/
       
   525 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
       
   526 {
       
   527 	struct e1000_mac_info *mac = &hw->mac;
       
   528 	s32 ret_val;
       
   529 	bool link;
       
   530 
       
   531 	/*
       
   532 	 * We only want to go out to the PHY registers to see if Auto-Neg
       
   533 	 * has completed and/or if our link status has changed.  The
       
   534 	 * get_link_status flag is set upon receiving a Link Status
       
   535 	 * Change or Rx Sequence Error interrupt.
       
   536 	 */
       
   537 	if (!mac->get_link_status) {
       
   538 		ret_val = 0;
       
   539 		goto out;
       
   540 	}
       
   541 
       
   542 	/*
       
   543 	 * First we want to see if the MII Status Register reports
       
   544 	 * link.  If so, then we want to get the current speed/duplex
       
   545 	 * of the PHY.
       
   546 	 */
       
   547 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
   548 	if (ret_val)
       
   549 		goto out;
       
   550 
       
   551 	if (hw->mac.type == e1000_pchlan) {
       
   552 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
       
   553 		if (ret_val)
       
   554 			goto out;
       
   555 	}
       
   556 
       
   557 	if (!link)
       
   558 		goto out; /* No link detected */
       
   559 
       
   560 	mac->get_link_status = false;
       
   561 
       
   562 	if (hw->phy.type == e1000_phy_82578) {
       
   563 		ret_val = e1000_link_stall_workaround_hv(hw);
       
   564 		if (ret_val)
       
   565 			goto out;
       
   566 	}
       
   567 
       
   568 	/*
       
   569 	 * Check if there was DownShift, must be checked
       
   570 	 * immediately after link-up
       
   571 	 */
       
   572 	e1000e_check_downshift(hw);
       
   573 
       
   574 	/*
       
   575 	 * If we are forcing speed/duplex, then we simply return since
       
   576 	 * we have already determined whether we have link or not.
       
   577 	 */
       
   578 	if (!mac->autoneg) {
       
   579 		ret_val = -E1000_ERR_CONFIG;
       
   580 		goto out;
       
   581 	}
       
   582 
       
   583 	/*
       
   584 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
       
   585 	 * of MAC speed/duplex configuration.  So we only need to
       
   586 	 * configure Collision Distance in the MAC.
       
   587 	 */
       
   588 	e1000e_config_collision_dist(hw);
       
   589 
       
   590 	/*
       
   591 	 * Configure Flow Control now that Auto-Neg has completed.
       
   592 	 * First, we need to restore the desired flow control
       
   593 	 * settings because we may have had to re-autoneg with a
       
   594 	 * different link partner.
       
   595 	 */
       
   596 	ret_val = e1000e_config_fc_after_link_up(hw);
       
   597 	if (ret_val)
       
   598 		e_dbg("Error configuring flow control\n");
       
   599 
       
   600 out:
       
   601 	return ret_val;
       
   602 }
       
   603 
       
   604 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
       
   605 {
       
   606 	struct e1000_hw *hw = &adapter->hw;
       
   607 	s32 rc;
       
   608 
       
   609 	rc = e1000_init_mac_params_ich8lan(adapter);
       
   610 	if (rc)
       
   611 		return rc;
       
   612 
       
   613 	rc = e1000_init_nvm_params_ich8lan(hw);
       
   614 	if (rc)
       
   615 		return rc;
       
   616 
       
   617 	if (hw->mac.type == e1000_pchlan)
       
   618 		rc = e1000_init_phy_params_pchlan(hw);
       
   619 	else
       
   620 		rc = e1000_init_phy_params_ich8lan(hw);
       
   621 	if (rc)
       
   622 		return rc;
       
   623 
       
   624 	if (adapter->hw.phy.type == e1000_phy_ife) {
       
   625 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
       
   626 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
       
   627 	}
       
   628 
       
   629 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
       
   630 	    (adapter->hw.phy.type == e1000_phy_igp_3))
       
   631 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
       
   632 
       
   633 	return 0;
       
   634 }
       
   635 
       
   636 static DEFINE_MUTEX(nvm_mutex);
       
   637 
       
   638 /**
       
   639  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
       
   640  *  @hw: pointer to the HW structure
       
   641  *
       
   642  *  Acquires the mutex for performing NVM operations.
       
   643  **/
       
   644 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
       
   645 {
       
   646 	mutex_lock(&nvm_mutex);
       
   647 
       
   648 	return 0;
       
   649 }
       
   650 
       
   651 /**
       
   652  *  e1000_release_nvm_ich8lan - Release NVM mutex
       
   653  *  @hw: pointer to the HW structure
       
   654  *
       
   655  *  Releases the mutex used while performing NVM operations.
       
   656  **/
       
   657 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
       
   658 {
       
   659 	mutex_unlock(&nvm_mutex);
       
   660 
       
   661 	return;
       
   662 }
       
   663 
       
   664 static DEFINE_MUTEX(swflag_mutex);
       
   665 
       
   666 /**
       
   667  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
       
   668  *  @hw: pointer to the HW structure
       
   669  *
       
   670  *  Acquires the software control flag for performing PHY and select
       
   671  *  MAC CSR accesses.
       
   672  **/
       
   673 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
       
   674 {
       
   675 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
       
   676 	s32 ret_val = 0;
       
   677 
       
   678 	mutex_lock(&swflag_mutex);
       
   679 
       
   680 	while (timeout) {
       
   681 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
   682 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
       
   683 			break;
       
   684 
       
   685 		mdelay(1);
       
   686 		timeout--;
       
   687 	}
       
   688 
       
   689 	if (!timeout) {
       
   690 		e_dbg("SW/FW/HW has locked the resource for too long.\n");
       
   691 		ret_val = -E1000_ERR_CONFIG;
       
   692 		goto out;
       
   693 	}
       
   694 
       
   695 	timeout = SW_FLAG_TIMEOUT;
       
   696 
       
   697 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
       
   698 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   699 
       
   700 	while (timeout) {
       
   701 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
   702 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
       
   703 			break;
       
   704 
       
   705 		mdelay(1);
       
   706 		timeout--;
       
   707 	}
       
   708 
       
   709 	if (!timeout) {
       
   710 		e_dbg("Failed to acquire the semaphore.\n");
       
   711 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
       
   712 		ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   713 		ret_val = -E1000_ERR_CONFIG;
       
   714 		goto out;
       
   715 	}
       
   716 
       
   717 out:
       
   718 	if (ret_val)
       
   719 		mutex_unlock(&swflag_mutex);
       
   720 
       
   721 	return ret_val;
       
   722 }
       
   723 
       
   724 /**
       
   725  *  e1000_release_swflag_ich8lan - Release software control flag
       
   726  *  @hw: pointer to the HW structure
       
   727  *
       
   728  *  Releases the software control flag for performing PHY and select
       
   729  *  MAC CSR accesses.
       
   730  **/
       
   731 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
       
   732 {
       
   733 	u32 extcnf_ctrl;
       
   734 
       
   735 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
   736 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
       
   737 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   738 
       
   739 	mutex_unlock(&swflag_mutex);
       
   740 
       
   741 	return;
       
   742 }
       
   743 
       
   744 /**
       
   745  *  e1000_check_mng_mode_ich8lan - Checks management mode
       
   746  *  @hw: pointer to the HW structure
       
   747  *
       
   748  *  This checks if the adapter has manageability enabled.
       
   749  *  This is a function pointer entry point only called by read/write
       
   750  *  routines for the PHY and NVM parts.
       
   751  **/
       
   752 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
       
   753 {
       
   754 	u32 fwsm;
       
   755 
       
   756 	fwsm = er32(FWSM);
       
   757 
       
   758 	return (fwsm & E1000_FWSM_MODE_MASK) ==
       
   759 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
       
   760 }
       
   761 
       
   762 /**
       
   763  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
       
   764  *  @hw: pointer to the HW structure
       
   765  *
       
   766  *  Checks if firmware is blocking the reset of the PHY.
       
   767  *  This is a function pointer entry point only called by
       
   768  *  reset routines.
       
   769  **/
       
   770 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
       
   771 {
       
   772 	u32 fwsm;
       
   773 
       
   774 	fwsm = er32(FWSM);
       
   775 
       
   776 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
       
   777 }
       
   778 
       
   779 /**
       
   780  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
       
   781  *  @hw:   pointer to the HW structure
       
   782  *
       
   783  *  SW should configure the LCD from the NVM extended configuration region
       
   784  *  as a workaround for certain parts.
       
   785  **/
       
   786 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
       
   787 {
       
   788 	struct e1000_phy_info *phy = &hw->phy;
       
   789 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
       
   790 	s32 ret_val;
       
   791 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
       
   792 
       
   793 	ret_val = hw->phy.ops.acquire(hw);
       
   794 	if (ret_val)
       
   795 		return ret_val;
       
   796 
       
   797 	/*
       
   798 	 * Initialize the PHY from the NVM on ICH platforms.  This
       
   799 	 * is needed due to an issue where the NVM configuration is
       
   800 	 * not properly autoloaded after power transitions.
       
   801 	 * Therefore, after each PHY reset, we will load the
       
   802 	 * configuration data out of the NVM manually.
       
   803 	 */
       
   804 	if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
       
   805 		(hw->mac.type == e1000_pchlan)) {
       
   806 		struct e1000_adapter *adapter = hw->adapter;
       
   807 
       
   808 		/* Check if SW needs to configure the PHY */
       
   809 		if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
       
   810 		    (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
       
   811 		    (hw->mac.type == e1000_pchlan))
       
   812 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
       
   813 		else
       
   814 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
       
   815 
       
   816 		data = er32(FEXTNVM);
       
   817 		if (!(data & sw_cfg_mask))
       
   818 			goto out;
       
   819 
       
   820 		/* Wait for basic configuration completes before proceeding */
       
   821 		e1000_lan_init_done_ich8lan(hw);
       
   822 
       
   823 		/*
       
   824 		 * Make sure HW does not configure LCD from PHY
       
   825 		 * extended configuration before SW configuration
       
   826 		 */
       
   827 		data = er32(EXTCNF_CTRL);
       
   828 		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
       
   829 			goto out;
       
   830 
       
   831 		cnf_size = er32(EXTCNF_SIZE);
       
   832 		cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
       
   833 		cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
       
   834 		if (!cnf_size)
       
   835 			goto out;
       
   836 
       
   837 		cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
       
   838 		cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
       
   839 
       
   840 		if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
       
   841 		    (hw->mac.type == e1000_pchlan)) {
       
   842 			/*
       
   843 			 * HW configures the SMBus address and LEDs when the
       
   844 			 * OEM and LCD Write Enable bits are set in the NVM.
       
   845 			 * When both NVM bits are cleared, SW will configure
       
   846 			 * them instead.
       
   847 			 */
       
   848 			data = er32(STRAP);
       
   849 			data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
       
   850 			reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
       
   851 			reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
       
   852 			ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
       
   853 			                                        reg_data);
       
   854 			if (ret_val)
       
   855 				goto out;
       
   856 
       
   857 			data = er32(LEDCTL);
       
   858 			ret_val = e1000_write_phy_reg_hv_locked(hw,
       
   859 			                                        HV_LED_CONFIG,
       
   860 			                                        (u16)data);
       
   861 			if (ret_val)
       
   862 				goto out;
       
   863 		}
       
   864 		/* Configure LCD from extended configuration region. */
       
   865 
       
   866 		/* cnf_base_addr is in DWORD */
       
   867 		word_addr = (u16)(cnf_base_addr << 1);
       
   868 
       
   869 		for (i = 0; i < cnf_size; i++) {
       
   870 			ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
       
   871 			                           &reg_data);
       
   872 			if (ret_val)
       
   873 				goto out;
       
   874 
       
   875 			ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
       
   876 			                           1, &reg_addr);
       
   877 			if (ret_val)
       
   878 				goto out;
       
   879 
       
   880 			/* Save off the PHY page for future writes. */
       
   881 			if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
       
   882 				phy_page = reg_data;
       
   883 				continue;
       
   884 			}
       
   885 
       
   886 			reg_addr &= PHY_REG_MASK;
       
   887 			reg_addr |= phy_page;
       
   888 
       
   889 			ret_val = phy->ops.write_reg_locked(hw,
       
   890 			                                    (u32)reg_addr,
       
   891 			                                    reg_data);
       
   892 			if (ret_val)
       
   893 				goto out;
       
   894 		}
       
   895 	}
       
   896 
       
   897 out:
       
   898 	hw->phy.ops.release(hw);
       
   899 	return ret_val;
       
   900 }
       
   901 
       
   902 /**
       
   903  *  e1000_k1_gig_workaround_hv - K1 Si workaround
       
   904  *  @hw:   pointer to the HW structure
       
   905  *  @link: link up bool flag
       
   906  *
       
   907  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
       
   908  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
       
   909  *  If link is down, the function will restore the default K1 setting located
       
   910  *  in the NVM.
       
   911  **/
       
   912 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
       
   913 {
       
   914 	s32 ret_val = 0;
       
   915 	u16 status_reg = 0;
       
   916 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
       
   917 
       
   918 	if (hw->mac.type != e1000_pchlan)
       
   919 		goto out;
       
   920 
       
   921 	/* Wrap the whole flow with the sw flag */
       
   922 	ret_val = hw->phy.ops.acquire(hw);
       
   923 	if (ret_val)
       
   924 		goto out;
       
   925 
       
   926 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
       
   927 	if (link) {
       
   928 		if (hw->phy.type == e1000_phy_82578) {
       
   929 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
       
   930 			                                          &status_reg);
       
   931 			if (ret_val)
       
   932 				goto release;
       
   933 
       
   934 			status_reg &= BM_CS_STATUS_LINK_UP |
       
   935 			              BM_CS_STATUS_RESOLVED |
       
   936 			              BM_CS_STATUS_SPEED_MASK;
       
   937 
       
   938 			if (status_reg == (BM_CS_STATUS_LINK_UP |
       
   939 			                   BM_CS_STATUS_RESOLVED |
       
   940 			                   BM_CS_STATUS_SPEED_1000))
       
   941 				k1_enable = false;
       
   942 		}
       
   943 
       
   944 		if (hw->phy.type == e1000_phy_82577) {
       
   945 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
       
   946 			                                          &status_reg);
       
   947 			if (ret_val)
       
   948 				goto release;
       
   949 
       
   950 			status_reg &= HV_M_STATUS_LINK_UP |
       
   951 			              HV_M_STATUS_AUTONEG_COMPLETE |
       
   952 			              HV_M_STATUS_SPEED_MASK;
       
   953 
       
   954 			if (status_reg == (HV_M_STATUS_LINK_UP |
       
   955 			                   HV_M_STATUS_AUTONEG_COMPLETE |
       
   956 			                   HV_M_STATUS_SPEED_1000))
       
   957 				k1_enable = false;
       
   958 		}
       
   959 
       
   960 		/* Link stall fix for link up */
       
   961 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
       
   962 		                                           0x0100);
       
   963 		if (ret_val)
       
   964 			goto release;
       
   965 
       
   966 	} else {
       
   967 		/* Link stall fix for link down */
       
   968 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
       
   969 		                                           0x4100);
       
   970 		if (ret_val)
       
   971 			goto release;
       
   972 	}
       
   973 
       
   974 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
       
   975 
       
   976 release:
       
   977 	hw->phy.ops.release(hw);
       
   978 out:
       
   979 	return ret_val;
       
   980 }
       
   981 
       
   982 /**
       
   983  *  e1000_configure_k1_ich8lan - Configure K1 power state
       
   984  *  @hw: pointer to the HW structure
       
   985  *  @enable: K1 state to configure
       
   986  *
       
   987  *  Configure the K1 power state based on the provided parameter.
       
   988  *  Assumes semaphore already acquired.
       
   989  *
       
   990  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
   991  **/
       
   992 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
       
   993 {
       
   994 	s32 ret_val = 0;
       
   995 	u32 ctrl_reg = 0;
       
   996 	u32 ctrl_ext = 0;
       
   997 	u32 reg = 0;
       
   998 	u16 kmrn_reg = 0;
       
   999 
       
  1000 	ret_val = e1000e_read_kmrn_reg_locked(hw,
       
  1001 	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
       
  1002 	                                     &kmrn_reg);
       
  1003 	if (ret_val)
       
  1004 		goto out;
       
  1005 
       
  1006 	if (k1_enable)
       
  1007 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
       
  1008 	else
       
  1009 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
       
  1010 
       
  1011 	ret_val = e1000e_write_kmrn_reg_locked(hw,
       
  1012 	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
       
  1013 	                                      kmrn_reg);
       
  1014 	if (ret_val)
       
  1015 		goto out;
       
  1016 
       
  1017 	udelay(20);
       
  1018 	ctrl_ext = er32(CTRL_EXT);
       
  1019 	ctrl_reg = er32(CTRL);
       
  1020 
       
  1021 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1022 	reg |= E1000_CTRL_FRCSPD;
       
  1023 	ew32(CTRL, reg);
       
  1024 
       
  1025 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
       
  1026 	udelay(20);
       
  1027 	ew32(CTRL, ctrl_reg);
       
  1028 	ew32(CTRL_EXT, ctrl_ext);
       
  1029 	udelay(20);
       
  1030 
       
  1031 out:
       
  1032 	return ret_val;
       
  1033 }
       
  1034 
       
  1035 /**
       
  1036  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
       
  1037  *  @hw:       pointer to the HW structure
       
  1038  *  @d0_state: boolean if entering d0 or d3 device state
       
  1039  *
       
  1040  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
       
  1041  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
       
  1042  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
       
  1043  **/
       
  1044 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
       
  1045 {
       
  1046 	s32 ret_val = 0;
       
  1047 	u32 mac_reg;
       
  1048 	u16 oem_reg;
       
  1049 
       
  1050 	if (hw->mac.type != e1000_pchlan)
       
  1051 		return ret_val;
       
  1052 
       
  1053 	ret_val = hw->phy.ops.acquire(hw);
       
  1054 	if (ret_val)
       
  1055 		return ret_val;
       
  1056 
       
  1057 	mac_reg = er32(EXTCNF_CTRL);
       
  1058 	if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
       
  1059 		goto out;
       
  1060 
       
  1061 	mac_reg = er32(FEXTNVM);
       
  1062 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
       
  1063 		goto out;
       
  1064 
       
  1065 	mac_reg = er32(PHY_CTRL);
       
  1066 
       
  1067 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
       
  1068 	if (ret_val)
       
  1069 		goto out;
       
  1070 
       
  1071 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
       
  1072 
       
  1073 	if (d0_state) {
       
  1074 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
       
  1075 			oem_reg |= HV_OEM_BITS_GBE_DIS;
       
  1076 
       
  1077 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
       
  1078 			oem_reg |= HV_OEM_BITS_LPLU;
       
  1079 	} else {
       
  1080 		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
       
  1081 			oem_reg |= HV_OEM_BITS_GBE_DIS;
       
  1082 
       
  1083 		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
       
  1084 			oem_reg |= HV_OEM_BITS_LPLU;
       
  1085 	}
       
  1086 	/* Restart auto-neg to activate the bits */
       
  1087 	if (!e1000_check_reset_block(hw))
       
  1088 		oem_reg |= HV_OEM_BITS_RESTART_AN;
       
  1089 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
       
  1090 
       
  1091 out:
       
  1092 	hw->phy.ops.release(hw);
       
  1093 
       
  1094 	return ret_val;
       
  1095 }
       
  1096 
       
  1097 
       
  1098 /**
       
  1099  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
       
  1100  *  @hw:   pointer to the HW structure
       
  1101  **/
       
  1102 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
       
  1103 {
       
  1104 	s32 ret_val;
       
  1105 	u16 data;
       
  1106 
       
  1107 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
       
  1108 	if (ret_val)
       
  1109 		return ret_val;
       
  1110 
       
  1111 	data |= HV_KMRN_MDIO_SLOW;
       
  1112 
       
  1113 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
       
  1114 
       
  1115 	return ret_val;
       
  1116 }
       
  1117 
       
  1118 /**
       
  1119  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
       
  1120  *  done after every PHY reset.
       
  1121  **/
       
  1122 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
       
  1123 {
       
  1124 	s32 ret_val = 0;
       
  1125 	u16 phy_data;
       
  1126 
       
  1127 	if (hw->mac.type != e1000_pchlan)
       
  1128 		return ret_val;
       
  1129 
       
  1130 	/* Set MDIO slow mode before any other MDIO access */
       
  1131 	if (hw->phy.type == e1000_phy_82577) {
       
  1132 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
  1133 		if (ret_val)
       
  1134 			goto out;
       
  1135 	}
       
  1136 
       
  1137 	if (((hw->phy.type == e1000_phy_82577) &&
       
  1138 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
       
  1139 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
       
  1140 		/* Disable generation of early preamble */
       
  1141 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
       
  1142 		if (ret_val)
       
  1143 			return ret_val;
       
  1144 
       
  1145 		/* Preamble tuning for SSC */
       
  1146 		ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
       
  1147 		if (ret_val)
       
  1148 			return ret_val;
       
  1149 	}
       
  1150 
       
  1151 	if (hw->phy.type == e1000_phy_82578) {
       
  1152 		/*
       
  1153 		 * Return registers to default by doing a soft reset then
       
  1154 		 * writing 0x3140 to the control register.
       
  1155 		 */
       
  1156 		if (hw->phy.revision < 2) {
       
  1157 			e1000e_phy_sw_reset(hw);
       
  1158 			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
       
  1159 		}
       
  1160 	}
       
  1161 
       
  1162 	/* Select page 0 */
       
  1163 	ret_val = hw->phy.ops.acquire(hw);
       
  1164 	if (ret_val)
       
  1165 		return ret_val;
       
  1166 
       
  1167 	hw->phy.addr = 1;
       
  1168 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
       
  1169 	hw->phy.ops.release(hw);
       
  1170 	if (ret_val)
       
  1171 		goto out;
       
  1172 
       
  1173 	/*
       
  1174 	 * Configure the K1 Si workaround during phy reset assuming there is
       
  1175 	 * link so that it disables K1 if link is in 1Gbps.
       
  1176 	 */
       
  1177 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
       
  1178 	if (ret_val)
       
  1179 		goto out;
       
  1180 
       
  1181 	/* Workaround for link disconnects on a busy hub in half duplex */
       
  1182 	ret_val = hw->phy.ops.acquire(hw);
       
  1183 	if (ret_val)
       
  1184 		goto out;
       
  1185 	ret_val = hw->phy.ops.read_reg_locked(hw,
       
  1186 	                                      PHY_REG(BM_PORT_CTRL_PAGE, 17),
       
  1187 	                                      &phy_data);
       
  1188 	if (ret_val)
       
  1189 		goto release;
       
  1190 	ret_val = hw->phy.ops.write_reg_locked(hw,
       
  1191 	                                       PHY_REG(BM_PORT_CTRL_PAGE, 17),
       
  1192 	                                       phy_data & 0x00FF);
       
  1193 release:
       
  1194 	hw->phy.ops.release(hw);
       
  1195 out:
       
  1196 	return ret_val;
       
  1197 }
       
  1198 
       
  1199 /**
       
  1200  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
       
  1201  *  @hw: pointer to the HW structure
       
  1202  *
       
  1203  *  Check the appropriate indication the MAC has finished configuring the
       
  1204  *  PHY after a software reset.
       
  1205  **/
       
  1206 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
       
  1207 {
       
  1208 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
       
  1209 
       
  1210 	/* Wait for basic configuration completes before proceeding */
       
  1211 	do {
       
  1212 		data = er32(STATUS);
       
  1213 		data &= E1000_STATUS_LAN_INIT_DONE;
       
  1214 		udelay(100);
       
  1215 	} while ((!data) && --loop);
       
  1216 
       
  1217 	/*
       
  1218 	 * If basic configuration is incomplete before the above loop
       
  1219 	 * count reaches 0, loading the configuration from NVM will
       
  1220 	 * leave the PHY in a bad state possibly resulting in no link.
       
  1221 	 */
       
  1222 	if (loop == 0)
       
  1223 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
       
  1224 
       
  1225 	/* Clear the Init Done bit for the next init event */
       
  1226 	data = er32(STATUS);
       
  1227 	data &= ~E1000_STATUS_LAN_INIT_DONE;
       
  1228 	ew32(STATUS, data);
       
  1229 }
       
  1230 
       
  1231 /**
       
  1232  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
       
  1233  *  @hw: pointer to the HW structure
       
  1234  *
       
  1235  *  Resets the PHY
       
  1236  *  This is a function pointer entry point called by drivers
       
  1237  *  or other shared routines.
       
  1238  **/
       
  1239 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
       
  1240 {
       
  1241 	s32 ret_val = 0;
       
  1242 	u16 reg;
       
  1243 
       
  1244 	ret_val = e1000e_phy_hw_reset_generic(hw);
       
  1245 	if (ret_val)
       
  1246 		return ret_val;
       
  1247 
       
  1248 	/* Allow time for h/w to get to a quiescent state after reset */
       
  1249 	mdelay(10);
       
  1250 
       
  1251 	/* Perform any necessary post-reset workarounds */
       
  1252 	if (hw->mac.type == e1000_pchlan) {
       
  1253 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
       
  1254 		if (ret_val)
       
  1255 			return ret_val;
       
  1256 	}
       
  1257 
       
  1258 	/* Dummy read to clear the phy wakeup bit after lcd reset */
       
  1259 	if (hw->mac.type == e1000_pchlan)
       
  1260 		e1e_rphy(hw, BM_WUC, &reg);
       
  1261 
       
  1262 	/* Configure the LCD with the extended configuration region in NVM */
       
  1263 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
       
  1264 	if (ret_val)
       
  1265 		goto out;
       
  1266 
       
  1267 	/* Configure the LCD with the OEM bits in NVM */
       
  1268 	if (hw->mac.type == e1000_pchlan)
       
  1269 		ret_val = e1000_oem_bits_config_ich8lan(hw, true);
       
  1270 
       
  1271 out:
       
  1272 	return 0;
       
  1273 }
       
  1274 
       
  1275 /**
       
  1276  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
       
  1277  *  @hw: pointer to the HW structure
       
  1278  *  @active: true to enable LPLU, false to disable
       
  1279  *
       
  1280  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
       
  1281  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
       
  1282  *  the phy speed. This function will manually set the LPLU bit and restart
       
  1283  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
       
  1284  *  since it configures the same bit.
       
  1285  **/
       
  1286 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
       
  1287 {
       
  1288 	s32 ret_val = 0;
       
  1289 	u16 oem_reg;
       
  1290 
       
  1291 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
       
  1292 	if (ret_val)
       
  1293 		goto out;
       
  1294 
       
  1295 	if (active)
       
  1296 		oem_reg |= HV_OEM_BITS_LPLU;
       
  1297 	else
       
  1298 		oem_reg &= ~HV_OEM_BITS_LPLU;
       
  1299 
       
  1300 	oem_reg |= HV_OEM_BITS_RESTART_AN;
       
  1301 	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
       
  1302 
       
  1303 out:
       
  1304 	return ret_val;
       
  1305 }
       
  1306 
       
  1307 /**
       
  1308  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
       
  1309  *  @hw: pointer to the HW structure
       
  1310  *  @active: true to enable LPLU, false to disable
       
  1311  *
       
  1312  *  Sets the LPLU D0 state according to the active flag.  When
       
  1313  *  activating LPLU this function also disables smart speed
       
  1314  *  and vice versa.  LPLU will not be activated unless the
       
  1315  *  device autonegotiation advertisement meets standards of
       
  1316  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  1317  *  This is a function pointer entry point only called by
       
  1318  *  PHY setup routines.
       
  1319  **/
       
  1320 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
       
  1321 {
       
  1322 	struct e1000_phy_info *phy = &hw->phy;
       
  1323 	u32 phy_ctrl;
       
  1324 	s32 ret_val = 0;
       
  1325 	u16 data;
       
  1326 
       
  1327 	if (phy->type == e1000_phy_ife)
       
  1328 		return ret_val;
       
  1329 
       
  1330 	phy_ctrl = er32(PHY_CTRL);
       
  1331 
       
  1332 	if (active) {
       
  1333 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
       
  1334 		ew32(PHY_CTRL, phy_ctrl);
       
  1335 
       
  1336 		if (phy->type != e1000_phy_igp_3)
       
  1337 			return 0;
       
  1338 
       
  1339 		/*
       
  1340 		 * Call gig speed drop workaround on LPLU before accessing
       
  1341 		 * any PHY registers
       
  1342 		 */
       
  1343 		if (hw->mac.type == e1000_ich8lan)
       
  1344 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  1345 
       
  1346 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  1347 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  1348 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1349 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  1350 		if (ret_val)
       
  1351 			return ret_val;
       
  1352 	} else {
       
  1353 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
       
  1354 		ew32(PHY_CTRL, phy_ctrl);
       
  1355 
       
  1356 		if (phy->type != e1000_phy_igp_3)
       
  1357 			return 0;
       
  1358 
       
  1359 		/*
       
  1360 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  1361 		 * during Dx states where the power conservation is most
       
  1362 		 * important.  During driver activity we should enable
       
  1363 		 * SmartSpeed, so performance is maintained.
       
  1364 		 */
       
  1365 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  1366 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1367 					   &data);
       
  1368 			if (ret_val)
       
  1369 				return ret_val;
       
  1370 
       
  1371 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  1372 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1373 					   data);
       
  1374 			if (ret_val)
       
  1375 				return ret_val;
       
  1376 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  1377 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1378 					   &data);
       
  1379 			if (ret_val)
       
  1380 				return ret_val;
       
  1381 
       
  1382 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1383 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1384 					   data);
       
  1385 			if (ret_val)
       
  1386 				return ret_val;
       
  1387 		}
       
  1388 	}
       
  1389 
       
  1390 	return 0;
       
  1391 }
       
  1392 
       
  1393 /**
       
  1394  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
       
  1395  *  @hw: pointer to the HW structure
       
  1396  *  @active: true to enable LPLU, false to disable
       
  1397  *
       
  1398  *  Sets the LPLU D3 state according to the active flag.  When
       
  1399  *  activating LPLU this function also disables smart speed
       
  1400  *  and vice versa.  LPLU will not be activated unless the
       
  1401  *  device autonegotiation advertisement meets standards of
       
  1402  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  1403  *  This is a function pointer entry point only called by
       
  1404  *  PHY setup routines.
       
  1405  **/
       
  1406 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
       
  1407 {
       
  1408 	struct e1000_phy_info *phy = &hw->phy;
       
  1409 	u32 phy_ctrl;
       
  1410 	s32 ret_val;
       
  1411 	u16 data;
       
  1412 
       
  1413 	phy_ctrl = er32(PHY_CTRL);
       
  1414 
       
  1415 	if (!active) {
       
  1416 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
       
  1417 		ew32(PHY_CTRL, phy_ctrl);
       
  1418 
       
  1419 		if (phy->type != e1000_phy_igp_3)
       
  1420 			return 0;
       
  1421 
       
  1422 		/*
       
  1423 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  1424 		 * during Dx states where the power conservation is most
       
  1425 		 * important.  During driver activity we should enable
       
  1426 		 * SmartSpeed, so performance is maintained.
       
  1427 		 */
       
  1428 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  1429 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1430 					   &data);
       
  1431 			if (ret_val)
       
  1432 				return ret_val;
       
  1433 
       
  1434 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  1435 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1436 					   data);
       
  1437 			if (ret_val)
       
  1438 				return ret_val;
       
  1439 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  1440 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1441 					   &data);
       
  1442 			if (ret_val)
       
  1443 				return ret_val;
       
  1444 
       
  1445 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1446 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1447 					   data);
       
  1448 			if (ret_val)
       
  1449 				return ret_val;
       
  1450 		}
       
  1451 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
  1452 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
  1453 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
       
  1454 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
       
  1455 		ew32(PHY_CTRL, phy_ctrl);
       
  1456 
       
  1457 		if (phy->type != e1000_phy_igp_3)
       
  1458 			return 0;
       
  1459 
       
  1460 		/*
       
  1461 		 * Call gig speed drop workaround on LPLU before accessing
       
  1462 		 * any PHY registers
       
  1463 		 */
       
  1464 		if (hw->mac.type == e1000_ich8lan)
       
  1465 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  1466 
       
  1467 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  1468 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  1469 		if (ret_val)
       
  1470 			return ret_val;
       
  1471 
       
  1472 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1473 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  1474 	}
       
  1475 
       
  1476 	return 0;
       
  1477 }
       
  1478 
       
  1479 /**
       
  1480  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
       
  1481  *  @hw: pointer to the HW structure
       
  1482  *  @bank:  pointer to the variable that returns the active bank
       
  1483  *
       
  1484  *  Reads signature byte from the NVM using the flash access registers.
       
  1485  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
       
  1486  **/
       
  1487 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
       
  1488 {
       
  1489 	u32 eecd;
       
  1490 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1491 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
       
  1492 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
       
  1493 	u8 sig_byte = 0;
       
  1494 	s32 ret_val = 0;
       
  1495 
       
  1496 	switch (hw->mac.type) {
       
  1497 	case e1000_ich8lan:
       
  1498 	case e1000_ich9lan:
       
  1499 		eecd = er32(EECD);
       
  1500 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
       
  1501 		    E1000_EECD_SEC1VAL_VALID_MASK) {
       
  1502 			if (eecd & E1000_EECD_SEC1VAL)
       
  1503 				*bank = 1;
       
  1504 			else
       
  1505 				*bank = 0;
       
  1506 
       
  1507 			return 0;
       
  1508 		}
       
  1509 		e_dbg("Unable to determine valid NVM bank via EEC - "
       
  1510 		       "reading flash signature\n");
       
  1511 		/* fall-thru */
       
  1512 	default:
       
  1513 		/* set bank to 0 in case flash read fails */
       
  1514 		*bank = 0;
       
  1515 
       
  1516 		/* Check bank 0 */
       
  1517 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
       
  1518 		                                        &sig_byte);
       
  1519 		if (ret_val)
       
  1520 			return ret_val;
       
  1521 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
       
  1522 		    E1000_ICH_NVM_SIG_VALUE) {
       
  1523 			*bank = 0;
       
  1524 			return 0;
       
  1525 		}
       
  1526 
       
  1527 		/* Check bank 1 */
       
  1528 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
       
  1529 		                                        bank1_offset,
       
  1530 		                                        &sig_byte);
       
  1531 		if (ret_val)
       
  1532 			return ret_val;
       
  1533 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
       
  1534 		    E1000_ICH_NVM_SIG_VALUE) {
       
  1535 			*bank = 1;
       
  1536 			return 0;
       
  1537 		}
       
  1538 
       
  1539 		e_dbg("ERROR: No valid NVM bank present\n");
       
  1540 		return -E1000_ERR_NVM;
       
  1541 	}
       
  1542 
       
  1543 	return 0;
       
  1544 }
       
  1545 
       
  1546 /**
       
  1547  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
       
  1548  *  @hw: pointer to the HW structure
       
  1549  *  @offset: The offset (in bytes) of the word(s) to read.
       
  1550  *  @words: Size of data to read in words
       
  1551  *  @data: Pointer to the word(s) to read at offset.
       
  1552  *
       
  1553  *  Reads a word(s) from the NVM using the flash access registers.
       
  1554  **/
       
  1555 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
       
  1556 				  u16 *data)
       
  1557 {
       
  1558 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1559 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  1560 	u32 act_offset;
       
  1561 	s32 ret_val = 0;
       
  1562 	u32 bank = 0;
       
  1563 	u16 i, word;
       
  1564 
       
  1565 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
       
  1566 	    (words == 0)) {
       
  1567 		e_dbg("nvm parameter(s) out of bounds\n");
       
  1568 		ret_val = -E1000_ERR_NVM;
       
  1569 		goto out;
       
  1570 	}
       
  1571 
       
  1572 	nvm->ops.acquire(hw);
       
  1573 
       
  1574 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
       
  1575 	if (ret_val) {
       
  1576 		e_dbg("Could not detect valid bank, assuming bank 0\n");
       
  1577 		bank = 0;
       
  1578 	}
       
  1579 
       
  1580 	act_offset = (bank) ? nvm->flash_bank_size : 0;
       
  1581 	act_offset += offset;
       
  1582 
       
  1583 	ret_val = 0;
       
  1584 	for (i = 0; i < words; i++) {
       
  1585 		if ((dev_spec->shadow_ram) &&
       
  1586 		    (dev_spec->shadow_ram[offset+i].modified)) {
       
  1587 			data[i] = dev_spec->shadow_ram[offset+i].value;
       
  1588 		} else {
       
  1589 			ret_val = e1000_read_flash_word_ich8lan(hw,
       
  1590 								act_offset + i,
       
  1591 								&word);
       
  1592 			if (ret_val)
       
  1593 				break;
       
  1594 			data[i] = word;
       
  1595 		}
       
  1596 	}
       
  1597 
       
  1598 	nvm->ops.release(hw);
       
  1599 
       
  1600 out:
       
  1601 	if (ret_val)
       
  1602 		e_dbg("NVM read error: %d\n", ret_val);
       
  1603 
       
  1604 	return ret_val;
       
  1605 }
       
  1606 
       
  1607 /**
       
  1608  *  e1000_flash_cycle_init_ich8lan - Initialize flash
       
  1609  *  @hw: pointer to the HW structure
       
  1610  *
       
  1611  *  This function does initial flash setup so that a new read/write/erase cycle
       
  1612  *  can be started.
       
  1613  **/
       
  1614 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
       
  1615 {
       
  1616 	union ich8_hws_flash_status hsfsts;
       
  1617 	s32 ret_val = -E1000_ERR_NVM;
       
  1618 	s32 i = 0;
       
  1619 
       
  1620 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  1621 
       
  1622 	/* Check if the flash descriptor is valid */
       
  1623 	if (hsfsts.hsf_status.fldesvalid == 0) {
       
  1624 		e_dbg("Flash descriptor invalid.  "
       
  1625 			 "SW Sequencing must be used.");
       
  1626 		return -E1000_ERR_NVM;
       
  1627 	}
       
  1628 
       
  1629 	/* Clear FCERR and DAEL in hw status by writing 1 */
       
  1630 	hsfsts.hsf_status.flcerr = 1;
       
  1631 	hsfsts.hsf_status.dael = 1;
       
  1632 
       
  1633 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  1634 
       
  1635 	/*
       
  1636 	 * Either we should have a hardware SPI cycle in progress
       
  1637 	 * bit to check against, in order to start a new cycle or
       
  1638 	 * FDONE bit should be changed in the hardware so that it
       
  1639 	 * is 1 after hardware reset, which can then be used as an
       
  1640 	 * indication whether a cycle is in progress or has been
       
  1641 	 * completed.
       
  1642 	 */
       
  1643 
       
  1644 	if (hsfsts.hsf_status.flcinprog == 0) {
       
  1645 		/*
       
  1646 		 * There is no cycle running at present,
       
  1647 		 * so we can start a cycle.
       
  1648 		 * Begin by setting Flash Cycle Done.
       
  1649 		 */
       
  1650 		hsfsts.hsf_status.flcdone = 1;
       
  1651 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  1652 		ret_val = 0;
       
  1653 	} else {
       
  1654 		/*
       
  1655 		 * Otherwise poll for sometime so the current
       
  1656 		 * cycle has a chance to end before giving up.
       
  1657 		 */
       
  1658 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
       
  1659 			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
       
  1660 			if (hsfsts.hsf_status.flcinprog == 0) {
       
  1661 				ret_val = 0;
       
  1662 				break;
       
  1663 			}
       
  1664 			udelay(1);
       
  1665 		}
       
  1666 		if (ret_val == 0) {
       
  1667 			/*
       
  1668 			 * Successful in waiting for previous cycle to timeout,
       
  1669 			 * now set the Flash Cycle Done.
       
  1670 			 */
       
  1671 			hsfsts.hsf_status.flcdone = 1;
       
  1672 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  1673 		} else {
       
  1674 			e_dbg("Flash controller busy, cannot get access");
       
  1675 		}
       
  1676 	}
       
  1677 
       
  1678 	return ret_val;
       
  1679 }
       
  1680 
       
  1681 /**
       
  1682  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
       
  1683  *  @hw: pointer to the HW structure
       
  1684  *  @timeout: maximum time to wait for completion
       
  1685  *
       
  1686  *  This function starts a flash cycle and waits for its completion.
       
  1687  **/
       
  1688 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
       
  1689 {
       
  1690 	union ich8_hws_flash_ctrl hsflctl;
       
  1691 	union ich8_hws_flash_status hsfsts;
       
  1692 	s32 ret_val = -E1000_ERR_NVM;
       
  1693 	u32 i = 0;
       
  1694 
       
  1695 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
       
  1696 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  1697 	hsflctl.hsf_ctrl.flcgo = 1;
       
  1698 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  1699 
       
  1700 	/* wait till FDONE bit is set to 1 */
       
  1701 	do {
       
  1702 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  1703 		if (hsfsts.hsf_status.flcdone == 1)
       
  1704 			break;
       
  1705 		udelay(1);
       
  1706 	} while (i++ < timeout);
       
  1707 
       
  1708 	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
       
  1709 		return 0;
       
  1710 
       
  1711 	return ret_val;
       
  1712 }
       
  1713 
       
  1714 /**
       
  1715  *  e1000_read_flash_word_ich8lan - Read word from flash
       
  1716  *  @hw: pointer to the HW structure
       
  1717  *  @offset: offset to data location
       
  1718  *  @data: pointer to the location for storing the data
       
  1719  *
       
  1720  *  Reads the flash word at offset into data.  Offset is converted
       
  1721  *  to bytes before read.
       
  1722  **/
       
  1723 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
       
  1724 					 u16 *data)
       
  1725 {
       
  1726 	/* Must convert offset into bytes. */
       
  1727 	offset <<= 1;
       
  1728 
       
  1729 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
       
  1730 }
       
  1731 
       
  1732 /**
       
  1733  *  e1000_read_flash_byte_ich8lan - Read byte from flash
       
  1734  *  @hw: pointer to the HW structure
       
  1735  *  @offset: The offset of the byte to read.
       
  1736  *  @data: Pointer to a byte to store the value read.
       
  1737  *
       
  1738  *  Reads a single byte from the NVM using the flash access registers.
       
  1739  **/
       
  1740 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
  1741 					 u8 *data)
       
  1742 {
       
  1743 	s32 ret_val;
       
  1744 	u16 word = 0;
       
  1745 
       
  1746 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
       
  1747 	if (ret_val)
       
  1748 		return ret_val;
       
  1749 
       
  1750 	*data = (u8)word;
       
  1751 
       
  1752 	return 0;
       
  1753 }
       
  1754 
       
  1755 /**
       
  1756  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
       
  1757  *  @hw: pointer to the HW structure
       
  1758  *  @offset: The offset (in bytes) of the byte or word to read.
       
  1759  *  @size: Size of data to read, 1=byte 2=word
       
  1760  *  @data: Pointer to the word to store the value read.
       
  1761  *
       
  1762  *  Reads a byte or word from the NVM using the flash access registers.
       
  1763  **/
       
  1764 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
  1765 					 u8 size, u16 *data)
       
  1766 {
       
  1767 	union ich8_hws_flash_status hsfsts;
       
  1768 	union ich8_hws_flash_ctrl hsflctl;
       
  1769 	u32 flash_linear_addr;
       
  1770 	u32 flash_data = 0;
       
  1771 	s32 ret_val = -E1000_ERR_NVM;
       
  1772 	u8 count = 0;
       
  1773 
       
  1774 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
       
  1775 		return -E1000_ERR_NVM;
       
  1776 
       
  1777 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
       
  1778 			    hw->nvm.flash_base_addr;
       
  1779 
       
  1780 	do {
       
  1781 		udelay(1);
       
  1782 		/* Steps */
       
  1783 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  1784 		if (ret_val != 0)
       
  1785 			break;
       
  1786 
       
  1787 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  1788 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  1789 		hsflctl.hsf_ctrl.fldbcount = size - 1;
       
  1790 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
       
  1791 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  1792 
       
  1793 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  1794 
       
  1795 		ret_val = e1000_flash_cycle_ich8lan(hw,
       
  1796 						ICH_FLASH_READ_COMMAND_TIMEOUT);
       
  1797 
       
  1798 		/*
       
  1799 		 * Check if FCERR is set to 1, if set to 1, clear it
       
  1800 		 * and try the whole sequence a few more times, else
       
  1801 		 * read in (shift in) the Flash Data0, the order is
       
  1802 		 * least significant byte first msb to lsb
       
  1803 		 */
       
  1804 		if (ret_val == 0) {
       
  1805 			flash_data = er32flash(ICH_FLASH_FDATA0);
       
  1806 			if (size == 1) {
       
  1807 				*data = (u8)(flash_data & 0x000000FF);
       
  1808 			} else if (size == 2) {
       
  1809 				*data = (u16)(flash_data & 0x0000FFFF);
       
  1810 			}
       
  1811 			break;
       
  1812 		} else {
       
  1813 			/*
       
  1814 			 * If we've gotten here, then things are probably
       
  1815 			 * completely hosed, but if the error condition is
       
  1816 			 * detected, it won't hurt to give it another try...
       
  1817 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  1818 			 */
       
  1819 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  1820 			if (hsfsts.hsf_status.flcerr == 1) {
       
  1821 				/* Repeat for some time before giving up. */
       
  1822 				continue;
       
  1823 			} else if (hsfsts.hsf_status.flcdone == 0) {
       
  1824 				e_dbg("Timeout error - flash cycle "
       
  1825 					 "did not complete.");
       
  1826 				break;
       
  1827 			}
       
  1828 		}
       
  1829 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  1830 
       
  1831 	return ret_val;
       
  1832 }
       
  1833 
       
  1834 /**
       
  1835  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
       
  1836  *  @hw: pointer to the HW structure
       
  1837  *  @offset: The offset (in bytes) of the word(s) to write.
       
  1838  *  @words: Size of data to write in words
       
  1839  *  @data: Pointer to the word(s) to write at offset.
       
  1840  *
       
  1841  *  Writes a byte or word to the NVM using the flash access registers.
       
  1842  **/
       
  1843 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
       
  1844 				   u16 *data)
       
  1845 {
       
  1846 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1847 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  1848 	u16 i;
       
  1849 
       
  1850 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
       
  1851 	    (words == 0)) {
       
  1852 		e_dbg("nvm parameter(s) out of bounds\n");
       
  1853 		return -E1000_ERR_NVM;
       
  1854 	}
       
  1855 
       
  1856 	nvm->ops.acquire(hw);
       
  1857 
       
  1858 	for (i = 0; i < words; i++) {
       
  1859 		dev_spec->shadow_ram[offset+i].modified = true;
       
  1860 		dev_spec->shadow_ram[offset+i].value = data[i];
       
  1861 	}
       
  1862 
       
  1863 	nvm->ops.release(hw);
       
  1864 
       
  1865 	return 0;
       
  1866 }
       
  1867 
       
  1868 /**
       
  1869  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
       
  1870  *  @hw: pointer to the HW structure
       
  1871  *
       
  1872  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
       
  1873  *  which writes the checksum to the shadow ram.  The changes in the shadow
       
  1874  *  ram are then committed to the EEPROM by processing each bank at a time
       
  1875  *  checking for the modified bit and writing only the pending changes.
       
  1876  *  After a successful commit, the shadow ram is cleared and is ready for
       
  1877  *  future writes.
       
  1878  **/
       
  1879 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
       
  1880 {
       
  1881 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1882 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  1883 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
       
  1884 	s32 ret_val;
       
  1885 	u16 data;
       
  1886 
       
  1887 	ret_val = e1000e_update_nvm_checksum_generic(hw);
       
  1888 	if (ret_val)
       
  1889 		goto out;
       
  1890 
       
  1891 	if (nvm->type != e1000_nvm_flash_sw)
       
  1892 		goto out;
       
  1893 
       
  1894 	nvm->ops.acquire(hw);
       
  1895 
       
  1896 	/*
       
  1897 	 * We're writing to the opposite bank so if we're on bank 1,
       
  1898 	 * write to bank 0 etc.  We also need to erase the segment that
       
  1899 	 * is going to be written
       
  1900 	 */
       
  1901 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
       
  1902 	if (ret_val) {
       
  1903 		e_dbg("Could not detect valid bank, assuming bank 0\n");
       
  1904 		bank = 0;
       
  1905 	}
       
  1906 
       
  1907 	if (bank == 0) {
       
  1908 		new_bank_offset = nvm->flash_bank_size;
       
  1909 		old_bank_offset = 0;
       
  1910 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
       
  1911 		if (ret_val) {
       
  1912 			nvm->ops.release(hw);
       
  1913 			goto out;
       
  1914 		}
       
  1915 	} else {
       
  1916 		old_bank_offset = nvm->flash_bank_size;
       
  1917 		new_bank_offset = 0;
       
  1918 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
       
  1919 		if (ret_val) {
       
  1920 			nvm->ops.release(hw);
       
  1921 			goto out;
       
  1922 		}
       
  1923 	}
       
  1924 
       
  1925 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
       
  1926 		/*
       
  1927 		 * Determine whether to write the value stored
       
  1928 		 * in the other NVM bank or a modified value stored
       
  1929 		 * in the shadow RAM
       
  1930 		 */
       
  1931 		if (dev_spec->shadow_ram[i].modified) {
       
  1932 			data = dev_spec->shadow_ram[i].value;
       
  1933 		} else {
       
  1934 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
       
  1935 			                                        old_bank_offset,
       
  1936 			                                        &data);
       
  1937 			if (ret_val)
       
  1938 				break;
       
  1939 		}
       
  1940 
       
  1941 		/*
       
  1942 		 * If the word is 0x13, then make sure the signature bits
       
  1943 		 * (15:14) are 11b until the commit has completed.
       
  1944 		 * This will allow us to write 10b which indicates the
       
  1945 		 * signature is valid.  We want to do this after the write
       
  1946 		 * has completed so that we don't mark the segment valid
       
  1947 		 * while the write is still in progress
       
  1948 		 */
       
  1949 		if (i == E1000_ICH_NVM_SIG_WORD)
       
  1950 			data |= E1000_ICH_NVM_SIG_MASK;
       
  1951 
       
  1952 		/* Convert offset to bytes. */
       
  1953 		act_offset = (i + new_bank_offset) << 1;
       
  1954 
       
  1955 		udelay(100);
       
  1956 		/* Write the bytes to the new bank. */
       
  1957 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  1958 							       act_offset,
       
  1959 							       (u8)data);
       
  1960 		if (ret_val)
       
  1961 			break;
       
  1962 
       
  1963 		udelay(100);
       
  1964 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  1965 							  act_offset + 1,
       
  1966 							  (u8)(data >> 8));
       
  1967 		if (ret_val)
       
  1968 			break;
       
  1969 	}
       
  1970 
       
  1971 	/*
       
  1972 	 * Don't bother writing the segment valid bits if sector
       
  1973 	 * programming failed.
       
  1974 	 */
       
  1975 	if (ret_val) {
       
  1976 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
       
  1977 		e_dbg("Flash commit failed.\n");
       
  1978 		nvm->ops.release(hw);
       
  1979 		goto out;
       
  1980 	}
       
  1981 
       
  1982 	/*
       
  1983 	 * Finally validate the new segment by setting bit 15:14
       
  1984 	 * to 10b in word 0x13 , this can be done without an
       
  1985 	 * erase as well since these bits are 11 to start with
       
  1986 	 * and we need to change bit 14 to 0b
       
  1987 	 */
       
  1988 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
       
  1989 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
       
  1990 	if (ret_val) {
       
  1991 		nvm->ops.release(hw);
       
  1992 		goto out;
       
  1993 	}
       
  1994 	data &= 0xBFFF;
       
  1995 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  1996 						       act_offset * 2 + 1,
       
  1997 						       (u8)(data >> 8));
       
  1998 	if (ret_val) {
       
  1999 		nvm->ops.release(hw);
       
  2000 		goto out;
       
  2001 	}
       
  2002 
       
  2003 	/*
       
  2004 	 * And invalidate the previously valid segment by setting
       
  2005 	 * its signature word (0x13) high_byte to 0b. This can be
       
  2006 	 * done without an erase because flash erase sets all bits
       
  2007 	 * to 1's. We can write 1's to 0's without an erase
       
  2008 	 */
       
  2009 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
       
  2010 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
       
  2011 	if (ret_val) {
       
  2012 		nvm->ops.release(hw);
       
  2013 		goto out;
       
  2014 	}
       
  2015 
       
  2016 	/* Great!  Everything worked, we can now clear the cached entries. */
       
  2017 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
       
  2018 		dev_spec->shadow_ram[i].modified = false;
       
  2019 		dev_spec->shadow_ram[i].value = 0xFFFF;
       
  2020 	}
       
  2021 
       
  2022 	nvm->ops.release(hw);
       
  2023 
       
  2024 	/*
       
  2025 	 * Reload the EEPROM, or else modifications will not appear
       
  2026 	 * until after the next adapter reset.
       
  2027 	 */
       
  2028 	e1000e_reload_nvm(hw);
       
  2029 	msleep(10);
       
  2030 
       
  2031 out:
       
  2032 	if (ret_val)
       
  2033 		e_dbg("NVM update error: %d\n", ret_val);
       
  2034 
       
  2035 	return ret_val;
       
  2036 }
       
  2037 
       
  2038 /**
       
  2039  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
       
  2040  *  @hw: pointer to the HW structure
       
  2041  *
       
  2042  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
       
  2043  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
       
  2044  *  calculated, in which case we need to calculate the checksum and set bit 6.
       
  2045  **/
       
  2046 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
       
  2047 {
       
  2048 	s32 ret_val;
       
  2049 	u16 data;
       
  2050 
       
  2051 	/*
       
  2052 	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
       
  2053 	 * needs to be fixed.  This bit is an indication that the NVM
       
  2054 	 * was prepared by OEM software and did not calculate the
       
  2055 	 * checksum...a likely scenario.
       
  2056 	 */
       
  2057 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
       
  2058 	if (ret_val)
       
  2059 		return ret_val;
       
  2060 
       
  2061 	if ((data & 0x40) == 0) {
       
  2062 		data |= 0x40;
       
  2063 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
       
  2064 		if (ret_val)
       
  2065 			return ret_val;
       
  2066 		ret_val = e1000e_update_nvm_checksum(hw);
       
  2067 		if (ret_val)
       
  2068 			return ret_val;
       
  2069 	}
       
  2070 
       
  2071 	return e1000e_validate_nvm_checksum_generic(hw);
       
  2072 }
       
  2073 
       
  2074 /**
       
  2075  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
       
  2076  *  @hw: pointer to the HW structure
       
  2077  *
       
  2078  *  To prevent malicious write/erase of the NVM, set it to be read-only
       
  2079  *  so that the hardware ignores all write/erase cycles of the NVM via
       
  2080  *  the flash control registers.  The shadow-ram copy of the NVM will
       
  2081  *  still be updated, however any updates to this copy will not stick
       
  2082  *  across driver reloads.
       
  2083  **/
       
  2084 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
       
  2085 {
       
  2086 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2087 	union ich8_flash_protected_range pr0;
       
  2088 	union ich8_hws_flash_status hsfsts;
       
  2089 	u32 gfpreg;
       
  2090 
       
  2091 	nvm->ops.acquire(hw);
       
  2092 
       
  2093 	gfpreg = er32flash(ICH_FLASH_GFPREG);
       
  2094 
       
  2095 	/* Write-protect GbE Sector of NVM */
       
  2096 	pr0.regval = er32flash(ICH_FLASH_PR0);
       
  2097 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
       
  2098 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
       
  2099 	pr0.range.wpe = true;
       
  2100 	ew32flash(ICH_FLASH_PR0, pr0.regval);
       
  2101 
       
  2102 	/*
       
  2103 	 * Lock down a subset of GbE Flash Control Registers, e.g.
       
  2104 	 * PR0 to prevent the write-protection from being lifted.
       
  2105 	 * Once FLOCKDN is set, the registers protected by it cannot
       
  2106 	 * be written until FLOCKDN is cleared by a hardware reset.
       
  2107 	 */
       
  2108 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2109 	hsfsts.hsf_status.flockdn = true;
       
  2110 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2111 
       
  2112 	nvm->ops.release(hw);
       
  2113 }
       
  2114 
       
  2115 /**
       
  2116  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
       
  2117  *  @hw: pointer to the HW structure
       
  2118  *  @offset: The offset (in bytes) of the byte/word to read.
       
  2119  *  @size: Size of data to read, 1=byte 2=word
       
  2120  *  @data: The byte(s) to write to the NVM.
       
  2121  *
       
  2122  *  Writes one/two bytes to the NVM using the flash access registers.
       
  2123  **/
       
  2124 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2125 					  u8 size, u16 data)
       
  2126 {
       
  2127 	union ich8_hws_flash_status hsfsts;
       
  2128 	union ich8_hws_flash_ctrl hsflctl;
       
  2129 	u32 flash_linear_addr;
       
  2130 	u32 flash_data = 0;
       
  2131 	s32 ret_val;
       
  2132 	u8 count = 0;
       
  2133 
       
  2134 	if (size < 1 || size > 2 || data > size * 0xff ||
       
  2135 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
       
  2136 		return -E1000_ERR_NVM;
       
  2137 
       
  2138 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
       
  2139 			    hw->nvm.flash_base_addr;
       
  2140 
       
  2141 	do {
       
  2142 		udelay(1);
       
  2143 		/* Steps */
       
  2144 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  2145 		if (ret_val)
       
  2146 			break;
       
  2147 
       
  2148 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2149 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  2150 		hsflctl.hsf_ctrl.fldbcount = size -1;
       
  2151 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
       
  2152 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2153 
       
  2154 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  2155 
       
  2156 		if (size == 1)
       
  2157 			flash_data = (u32)data & 0x00FF;
       
  2158 		else
       
  2159 			flash_data = (u32)data;
       
  2160 
       
  2161 		ew32flash(ICH_FLASH_FDATA0, flash_data);
       
  2162 
       
  2163 		/*
       
  2164 		 * check if FCERR is set to 1 , if set to 1, clear it
       
  2165 		 * and try the whole sequence a few more times else done
       
  2166 		 */
       
  2167 		ret_val = e1000_flash_cycle_ich8lan(hw,
       
  2168 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
       
  2169 		if (!ret_val)
       
  2170 			break;
       
  2171 
       
  2172 		/*
       
  2173 		 * If we're here, then things are most likely
       
  2174 		 * completely hosed, but if the error condition
       
  2175 		 * is detected, it won't hurt to give it another
       
  2176 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  2177 		 */
       
  2178 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2179 		if (hsfsts.hsf_status.flcerr == 1)
       
  2180 			/* Repeat for some time before giving up. */
       
  2181 			continue;
       
  2182 		if (hsfsts.hsf_status.flcdone == 0) {
       
  2183 			e_dbg("Timeout error - flash cycle "
       
  2184 				 "did not complete.");
       
  2185 			break;
       
  2186 		}
       
  2187 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  2188 
       
  2189 	return ret_val;
       
  2190 }
       
  2191 
       
  2192 /**
       
  2193  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
       
  2194  *  @hw: pointer to the HW structure
       
  2195  *  @offset: The index of the byte to read.
       
  2196  *  @data: The byte to write to the NVM.
       
  2197  *
       
  2198  *  Writes a single byte to the NVM using the flash access registers.
       
  2199  **/
       
  2200 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2201 					  u8 data)
       
  2202 {
       
  2203 	u16 word = (u16)data;
       
  2204 
       
  2205 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
       
  2206 }
       
  2207 
       
  2208 /**
       
  2209  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
       
  2210  *  @hw: pointer to the HW structure
       
  2211  *  @offset: The offset of the byte to write.
       
  2212  *  @byte: The byte to write to the NVM.
       
  2213  *
       
  2214  *  Writes a single byte to the NVM using the flash access registers.
       
  2215  *  Goes through a retry algorithm before giving up.
       
  2216  **/
       
  2217 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
       
  2218 						u32 offset, u8 byte)
       
  2219 {
       
  2220 	s32 ret_val;
       
  2221 	u16 program_retries;
       
  2222 
       
  2223 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
       
  2224 	if (!ret_val)
       
  2225 		return ret_val;
       
  2226 
       
  2227 	for (program_retries = 0; program_retries < 100; program_retries++) {
       
  2228 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
       
  2229 		udelay(100);
       
  2230 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
       
  2231 		if (!ret_val)
       
  2232 			break;
       
  2233 	}
       
  2234 	if (program_retries == 100)
       
  2235 		return -E1000_ERR_NVM;
       
  2236 
       
  2237 	return 0;
       
  2238 }
       
  2239 
       
  2240 /**
       
  2241  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
       
  2242  *  @hw: pointer to the HW structure
       
  2243  *  @bank: 0 for first bank, 1 for second bank, etc.
       
  2244  *
       
  2245  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
       
  2246  *  bank N is 4096 * N + flash_reg_addr.
       
  2247  **/
       
  2248 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
       
  2249 {
       
  2250 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2251 	union ich8_hws_flash_status hsfsts;
       
  2252 	union ich8_hws_flash_ctrl hsflctl;
       
  2253 	u32 flash_linear_addr;
       
  2254 	/* bank size is in 16bit words - adjust to bytes */
       
  2255 	u32 flash_bank_size = nvm->flash_bank_size * 2;
       
  2256 	s32 ret_val;
       
  2257 	s32 count = 0;
       
  2258 	s32 j, iteration, sector_size;
       
  2259 
       
  2260 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2261 
       
  2262 	/*
       
  2263 	 * Determine HW Sector size: Read BERASE bits of hw flash status
       
  2264 	 * register
       
  2265 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
       
  2266 	 *     consecutive sectors.  The start index for the nth Hw sector
       
  2267 	 *     can be calculated as = bank * 4096 + n * 256
       
  2268 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
       
  2269 	 *     The start index for the nth Hw sector can be calculated
       
  2270 	 *     as = bank * 4096
       
  2271 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
       
  2272 	 *     (ich9 only, otherwise error condition)
       
  2273 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
       
  2274 	 */
       
  2275 	switch (hsfsts.hsf_status.berasesz) {
       
  2276 	case 0:
       
  2277 		/* Hw sector size 256 */
       
  2278 		sector_size = ICH_FLASH_SEG_SIZE_256;
       
  2279 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
       
  2280 		break;
       
  2281 	case 1:
       
  2282 		sector_size = ICH_FLASH_SEG_SIZE_4K;
       
  2283 		iteration = 1;
       
  2284 		break;
       
  2285 	case 2:
       
  2286 		sector_size = ICH_FLASH_SEG_SIZE_8K;
       
  2287 		iteration = 1;
       
  2288 		break;
       
  2289 	case 3:
       
  2290 		sector_size = ICH_FLASH_SEG_SIZE_64K;
       
  2291 		iteration = 1;
       
  2292 		break;
       
  2293 	default:
       
  2294 		return -E1000_ERR_NVM;
       
  2295 	}
       
  2296 
       
  2297 	/* Start with the base address, then add the sector offset. */
       
  2298 	flash_linear_addr = hw->nvm.flash_base_addr;
       
  2299 	flash_linear_addr += (bank) ? flash_bank_size : 0;
       
  2300 
       
  2301 	for (j = 0; j < iteration ; j++) {
       
  2302 		do {
       
  2303 			/* Steps */
       
  2304 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  2305 			if (ret_val)
       
  2306 				return ret_val;
       
  2307 
       
  2308 			/*
       
  2309 			 * Write a value 11 (block Erase) in Flash
       
  2310 			 * Cycle field in hw flash control
       
  2311 			 */
       
  2312 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2313 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
       
  2314 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2315 
       
  2316 			/*
       
  2317 			 * Write the last 24 bits of an index within the
       
  2318 			 * block into Flash Linear address field in Flash
       
  2319 			 * Address.
       
  2320 			 */
       
  2321 			flash_linear_addr += (j * sector_size);
       
  2322 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  2323 
       
  2324 			ret_val = e1000_flash_cycle_ich8lan(hw,
       
  2325 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
       
  2326 			if (ret_val == 0)
       
  2327 				break;
       
  2328 
       
  2329 			/*
       
  2330 			 * Check if FCERR is set to 1.  If 1,
       
  2331 			 * clear it and try the whole sequence
       
  2332 			 * a few more times else Done
       
  2333 			 */
       
  2334 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2335 			if (hsfsts.hsf_status.flcerr == 1)
       
  2336 				/* repeat for some time before giving up */
       
  2337 				continue;
       
  2338 			else if (hsfsts.hsf_status.flcdone == 0)
       
  2339 				return ret_val;
       
  2340 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  2341 	}
       
  2342 
       
  2343 	return 0;
       
  2344 }
       
  2345 
       
  2346 /**
       
  2347  *  e1000_valid_led_default_ich8lan - Set the default LED settings
       
  2348  *  @hw: pointer to the HW structure
       
  2349  *  @data: Pointer to the LED settings
       
  2350  *
       
  2351  *  Reads the LED default settings from the NVM to data.  If the NVM LED
       
  2352  *  settings is all 0's or F's, set the LED default to a valid LED default
       
  2353  *  setting.
       
  2354  **/
       
  2355 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
       
  2356 {
       
  2357 	s32 ret_val;
       
  2358 
       
  2359 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  2360 	if (ret_val) {
       
  2361 		e_dbg("NVM Read Error\n");
       
  2362 		return ret_val;
       
  2363 	}
       
  2364 
       
  2365 	if (*data == ID_LED_RESERVED_0000 ||
       
  2366 	    *data == ID_LED_RESERVED_FFFF)
       
  2367 		*data = ID_LED_DEFAULT_ICH8LAN;
       
  2368 
       
  2369 	return 0;
       
  2370 }
       
  2371 
       
  2372 /**
       
  2373  *  e1000_id_led_init_pchlan - store LED configurations
       
  2374  *  @hw: pointer to the HW structure
       
  2375  *
       
  2376  *  PCH does not control LEDs via the LEDCTL register, rather it uses
       
  2377  *  the PHY LED configuration register.
       
  2378  *
       
  2379  *  PCH also does not have an "always on" or "always off" mode which
       
  2380  *  complicates the ID feature.  Instead of using the "on" mode to indicate
       
  2381  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
       
  2382  *  use "link_up" mode.  The LEDs will still ID on request if there is no
       
  2383  *  link based on logic in e1000_led_[on|off]_pchlan().
       
  2384  **/
       
  2385 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
       
  2386 {
       
  2387 	struct e1000_mac_info *mac = &hw->mac;
       
  2388 	s32 ret_val;
       
  2389 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
       
  2390 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
       
  2391 	u16 data, i, temp, shift;
       
  2392 
       
  2393 	/* Get default ID LED modes */
       
  2394 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
       
  2395 	if (ret_val)
       
  2396 		goto out;
       
  2397 
       
  2398 	mac->ledctl_default = er32(LEDCTL);
       
  2399 	mac->ledctl_mode1 = mac->ledctl_default;
       
  2400 	mac->ledctl_mode2 = mac->ledctl_default;
       
  2401 
       
  2402 	for (i = 0; i < 4; i++) {
       
  2403 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
       
  2404 		shift = (i * 5);
       
  2405 		switch (temp) {
       
  2406 		case ID_LED_ON1_DEF2:
       
  2407 		case ID_LED_ON1_ON2:
       
  2408 		case ID_LED_ON1_OFF2:
       
  2409 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
       
  2410 			mac->ledctl_mode1 |= (ledctl_on << shift);
       
  2411 			break;
       
  2412 		case ID_LED_OFF1_DEF2:
       
  2413 		case ID_LED_OFF1_ON2:
       
  2414 		case ID_LED_OFF1_OFF2:
       
  2415 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
       
  2416 			mac->ledctl_mode1 |= (ledctl_off << shift);
       
  2417 			break;
       
  2418 		default:
       
  2419 			/* Do nothing */
       
  2420 			break;
       
  2421 		}
       
  2422 		switch (temp) {
       
  2423 		case ID_LED_DEF1_ON2:
       
  2424 		case ID_LED_ON1_ON2:
       
  2425 		case ID_LED_OFF1_ON2:
       
  2426 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
       
  2427 			mac->ledctl_mode2 |= (ledctl_on << shift);
       
  2428 			break;
       
  2429 		case ID_LED_DEF1_OFF2:
       
  2430 		case ID_LED_ON1_OFF2:
       
  2431 		case ID_LED_OFF1_OFF2:
       
  2432 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
       
  2433 			mac->ledctl_mode2 |= (ledctl_off << shift);
       
  2434 			break;
       
  2435 		default:
       
  2436 			/* Do nothing */
       
  2437 			break;
       
  2438 		}
       
  2439 	}
       
  2440 
       
  2441 out:
       
  2442 	return ret_val;
       
  2443 }
       
  2444 
       
  2445 /**
       
  2446  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
       
  2447  *  @hw: pointer to the HW structure
       
  2448  *
       
  2449  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
       
  2450  *  register, so the the bus width is hard coded.
       
  2451  **/
       
  2452 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
       
  2453 {
       
  2454 	struct e1000_bus_info *bus = &hw->bus;
       
  2455 	s32 ret_val;
       
  2456 
       
  2457 	ret_val = e1000e_get_bus_info_pcie(hw);
       
  2458 
       
  2459 	/*
       
  2460 	 * ICH devices are "PCI Express"-ish.  They have
       
  2461 	 * a configuration space, but do not contain
       
  2462 	 * PCI Express Capability registers, so bus width
       
  2463 	 * must be hardcoded.
       
  2464 	 */
       
  2465 	if (bus->width == e1000_bus_width_unknown)
       
  2466 		bus->width = e1000_bus_width_pcie_x1;
       
  2467 
       
  2468 	return ret_val;
       
  2469 }
       
  2470 
       
  2471 /**
       
  2472  *  e1000_reset_hw_ich8lan - Reset the hardware
       
  2473  *  @hw: pointer to the HW structure
       
  2474  *
       
  2475  *  Does a full reset of the hardware which includes a reset of the PHY and
       
  2476  *  MAC.
       
  2477  **/
       
  2478 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
       
  2479 {
       
  2480 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2481 	u16 reg;
       
  2482 	u32 ctrl, icr, kab;
       
  2483 	s32 ret_val;
       
  2484 
       
  2485 	/*
       
  2486 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
       
  2487 	 * on the last TLP read/write transaction when MAC is reset.
       
  2488 	 */
       
  2489 	ret_val = e1000e_disable_pcie_master(hw);
       
  2490 	if (ret_val) {
       
  2491 		e_dbg("PCI-E Master disable polling has failed.\n");
       
  2492 	}
       
  2493 
       
  2494 	e_dbg("Masking off all interrupts\n");
       
  2495 	ew32(IMC, 0xffffffff);
       
  2496 
       
  2497 	/*
       
  2498 	 * Disable the Transmit and Receive units.  Then delay to allow
       
  2499 	 * any pending transactions to complete before we hit the MAC
       
  2500 	 * with the global reset.
       
  2501 	 */
       
  2502 	ew32(RCTL, 0);
       
  2503 	ew32(TCTL, E1000_TCTL_PSP);
       
  2504 	e1e_flush();
       
  2505 
       
  2506 	msleep(10);
       
  2507 
       
  2508 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
       
  2509 	if (hw->mac.type == e1000_ich8lan) {
       
  2510 		/* Set Tx and Rx buffer allocation to 8k apiece. */
       
  2511 		ew32(PBA, E1000_PBA_8K);
       
  2512 		/* Set Packet Buffer Size to 16k. */
       
  2513 		ew32(PBS, E1000_PBS_16K);
       
  2514 	}
       
  2515 
       
  2516 	if (hw->mac.type == e1000_pchlan) {
       
  2517 		/* Save the NVM K1 bit setting*/
       
  2518 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
       
  2519 		if (ret_val)
       
  2520 			return ret_val;
       
  2521 
       
  2522 		if (reg & E1000_NVM_K1_ENABLE)
       
  2523 			dev_spec->nvm_k1_enabled = true;
       
  2524 		else
       
  2525 			dev_spec->nvm_k1_enabled = false;
       
  2526 	}
       
  2527 
       
  2528 	ctrl = er32(CTRL);
       
  2529 
       
  2530 	if (!e1000_check_reset_block(hw)) {
       
  2531 		/* Clear PHY Reset Asserted bit */
       
  2532 		if (hw->mac.type >= e1000_pchlan) {
       
  2533 			u32 status = er32(STATUS);
       
  2534 			ew32(STATUS, status & ~E1000_STATUS_PHYRA);
       
  2535 		}
       
  2536 
       
  2537 		/*
       
  2538 		 * PHY HW reset requires MAC CORE reset at the same
       
  2539 		 * time to make sure the interface between MAC and the
       
  2540 		 * external PHY is reset.
       
  2541 		 */
       
  2542 		ctrl |= E1000_CTRL_PHY_RST;
       
  2543 	}
       
  2544 	ret_val = e1000_acquire_swflag_ich8lan(hw);
       
  2545 	e_dbg("Issuing a global reset to ich8lan\n");
       
  2546 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
       
  2547 	msleep(20);
       
  2548 
       
  2549 	if (!ret_val)
       
  2550 		e1000_release_swflag_ich8lan(hw);
       
  2551 
       
  2552 	/* Perform any necessary post-reset workarounds */
       
  2553 	if (hw->mac.type == e1000_pchlan)
       
  2554 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
       
  2555 
       
  2556 	if (ctrl & E1000_CTRL_PHY_RST)
       
  2557 		ret_val = hw->phy.ops.get_cfg_done(hw);
       
  2558 
       
  2559 	if (hw->mac.type >= e1000_ich10lan) {
       
  2560 		e1000_lan_init_done_ich8lan(hw);
       
  2561 	} else {
       
  2562 		ret_val = e1000e_get_auto_rd_done(hw);
       
  2563 		if (ret_val) {
       
  2564 			/*
       
  2565 			 * When auto config read does not complete, do not
       
  2566 			 * return with an error. This can happen in situations
       
  2567 			 * where there is no eeprom and prevents getting link.
       
  2568 			 */
       
  2569 			e_dbg("Auto Read Done did not complete\n");
       
  2570 		}
       
  2571 	}
       
  2572 	/* Dummy read to clear the phy wakeup bit after lcd reset */
       
  2573 	if (hw->mac.type == e1000_pchlan)
       
  2574 		e1e_rphy(hw, BM_WUC, &reg);
       
  2575 
       
  2576 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
       
  2577 	if (ret_val)
       
  2578 		goto out;
       
  2579 
       
  2580 	if (hw->mac.type == e1000_pchlan) {
       
  2581 		ret_val = e1000_oem_bits_config_ich8lan(hw, true);
       
  2582 		if (ret_val)
       
  2583 			goto out;
       
  2584 	}
       
  2585 	/*
       
  2586 	 * For PCH, this write will make sure that any noise
       
  2587 	 * will be detected as a CRC error and be dropped rather than show up
       
  2588 	 * as a bad packet to the DMA engine.
       
  2589 	 */
       
  2590 	if (hw->mac.type == e1000_pchlan)
       
  2591 		ew32(CRC_OFFSET, 0x65656565);
       
  2592 
       
  2593 	ew32(IMC, 0xffffffff);
       
  2594 	icr = er32(ICR);
       
  2595 
       
  2596 	kab = er32(KABGTXD);
       
  2597 	kab |= E1000_KABGTXD_BGSQLBIAS;
       
  2598 	ew32(KABGTXD, kab);
       
  2599 
       
  2600 out:
       
  2601 	return ret_val;
       
  2602 }
       
  2603 
       
  2604 /**
       
  2605  *  e1000_init_hw_ich8lan - Initialize the hardware
       
  2606  *  @hw: pointer to the HW structure
       
  2607  *
       
  2608  *  Prepares the hardware for transmit and receive by doing the following:
       
  2609  *   - initialize hardware bits
       
  2610  *   - initialize LED identification
       
  2611  *   - setup receive address registers
       
  2612  *   - setup flow control
       
  2613  *   - setup transmit descriptors
       
  2614  *   - clear statistics
       
  2615  **/
       
  2616 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
       
  2617 {
       
  2618 	struct e1000_mac_info *mac = &hw->mac;
       
  2619 	u32 ctrl_ext, txdctl, snoop;
       
  2620 	s32 ret_val;
       
  2621 	u16 i;
       
  2622 
       
  2623 	e1000_initialize_hw_bits_ich8lan(hw);
       
  2624 
       
  2625 	/* Initialize identification LED */
       
  2626 	ret_val = mac->ops.id_led_init(hw);
       
  2627 	if (ret_val)
       
  2628 		e_dbg("Error initializing identification LED\n");
       
  2629 		/* This is not fatal and we should not stop init due to this */
       
  2630 
       
  2631 	/* Setup the receive address. */
       
  2632 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
       
  2633 
       
  2634 	/* Zero out the Multicast HASH table */
       
  2635 	e_dbg("Zeroing the MTA\n");
       
  2636 	for (i = 0; i < mac->mta_reg_count; i++)
       
  2637 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
       
  2638 
       
  2639 	/*
       
  2640 	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
       
  2641 	 * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
       
  2642 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
       
  2643 	 */
       
  2644 	if (hw->phy.type == e1000_phy_82578) {
       
  2645 		hw->phy.ops.read_reg(hw, BM_WUC, &i);
       
  2646 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
       
  2647 		if (ret_val)
       
  2648 			return ret_val;
       
  2649 	}
       
  2650 
       
  2651 	/* Setup link and flow control */
       
  2652 	ret_val = e1000_setup_link_ich8lan(hw);
       
  2653 
       
  2654 	/* Set the transmit descriptor write-back policy for both queues */
       
  2655 	txdctl = er32(TXDCTL(0));
       
  2656 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
       
  2657 		 E1000_TXDCTL_FULL_TX_DESC_WB;
       
  2658 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
       
  2659 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
       
  2660 	ew32(TXDCTL(0), txdctl);
       
  2661 	txdctl = er32(TXDCTL(1));
       
  2662 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
       
  2663 		 E1000_TXDCTL_FULL_TX_DESC_WB;
       
  2664 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
       
  2665 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
       
  2666 	ew32(TXDCTL(1), txdctl);
       
  2667 
       
  2668 	/*
       
  2669 	 * ICH8 has opposite polarity of no_snoop bits.
       
  2670 	 * By default, we should use snoop behavior.
       
  2671 	 */
       
  2672 	if (mac->type == e1000_ich8lan)
       
  2673 		snoop = PCIE_ICH8_SNOOP_ALL;
       
  2674 	else
       
  2675 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
       
  2676 	e1000e_set_pcie_no_snoop(hw, snoop);
       
  2677 
       
  2678 	ctrl_ext = er32(CTRL_EXT);
       
  2679 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
       
  2680 	ew32(CTRL_EXT, ctrl_ext);
       
  2681 
       
  2682 	/*
       
  2683 	 * Clear all of the statistics registers (clear on read).  It is
       
  2684 	 * important that we do this after we have tried to establish link
       
  2685 	 * because the symbol error count will increment wildly if there
       
  2686 	 * is no link.
       
  2687 	 */
       
  2688 	e1000_clear_hw_cntrs_ich8lan(hw);
       
  2689 
       
  2690 	return 0;
       
  2691 }
       
  2692 /**
       
  2693  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
       
  2694  *  @hw: pointer to the HW structure
       
  2695  *
       
  2696  *  Sets/Clears required hardware bits necessary for correctly setting up the
       
  2697  *  hardware for transmit and receive.
       
  2698  **/
       
  2699 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
       
  2700 {
       
  2701 	u32 reg;
       
  2702 
       
  2703 	/* Extended Device Control */
       
  2704 	reg = er32(CTRL_EXT);
       
  2705 	reg |= (1 << 22);
       
  2706 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
       
  2707 	if (hw->mac.type >= e1000_pchlan)
       
  2708 		reg |= E1000_CTRL_EXT_PHYPDEN;
       
  2709 	ew32(CTRL_EXT, reg);
       
  2710 
       
  2711 	/* Transmit Descriptor Control 0 */
       
  2712 	reg = er32(TXDCTL(0));
       
  2713 	reg |= (1 << 22);
       
  2714 	ew32(TXDCTL(0), reg);
       
  2715 
       
  2716 	/* Transmit Descriptor Control 1 */
       
  2717 	reg = er32(TXDCTL(1));
       
  2718 	reg |= (1 << 22);
       
  2719 	ew32(TXDCTL(1), reg);
       
  2720 
       
  2721 	/* Transmit Arbitration Control 0 */
       
  2722 	reg = er32(TARC(0));
       
  2723 	if (hw->mac.type == e1000_ich8lan)
       
  2724 		reg |= (1 << 28) | (1 << 29);
       
  2725 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
       
  2726 	ew32(TARC(0), reg);
       
  2727 
       
  2728 	/* Transmit Arbitration Control 1 */
       
  2729 	reg = er32(TARC(1));
       
  2730 	if (er32(TCTL) & E1000_TCTL_MULR)
       
  2731 		reg &= ~(1 << 28);
       
  2732 	else
       
  2733 		reg |= (1 << 28);
       
  2734 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
       
  2735 	ew32(TARC(1), reg);
       
  2736 
       
  2737 	/* Device Status */
       
  2738 	if (hw->mac.type == e1000_ich8lan) {
       
  2739 		reg = er32(STATUS);
       
  2740 		reg &= ~(1 << 31);
       
  2741 		ew32(STATUS, reg);
       
  2742 	}
       
  2743 }
       
  2744 
       
  2745 /**
       
  2746  *  e1000_setup_link_ich8lan - Setup flow control and link settings
       
  2747  *  @hw: pointer to the HW structure
       
  2748  *
       
  2749  *  Determines which flow control settings to use, then configures flow
       
  2750  *  control.  Calls the appropriate media-specific link configuration
       
  2751  *  function.  Assuming the adapter has a valid link partner, a valid link
       
  2752  *  should be established.  Assumes the hardware has previously been reset
       
  2753  *  and the transmitter and receiver are not enabled.
       
  2754  **/
       
  2755 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
       
  2756 {
       
  2757 	s32 ret_val;
       
  2758 
       
  2759 	if (e1000_check_reset_block(hw))
       
  2760 		return 0;
       
  2761 
       
  2762 	/*
       
  2763 	 * ICH parts do not have a word in the NVM to determine
       
  2764 	 * the default flow control setting, so we explicitly
       
  2765 	 * set it to full.
       
  2766 	 */
       
  2767 	if (hw->fc.requested_mode == e1000_fc_default) {
       
  2768 		/* Workaround h/w hang when Tx flow control enabled */
       
  2769 		if (hw->mac.type == e1000_pchlan)
       
  2770 			hw->fc.requested_mode = e1000_fc_rx_pause;
       
  2771 		else
       
  2772 			hw->fc.requested_mode = e1000_fc_full;
       
  2773 	}
       
  2774 
       
  2775 	/*
       
  2776 	 * Save off the requested flow control mode for use later.  Depending
       
  2777 	 * on the link partner's capabilities, we may or may not use this mode.
       
  2778 	 */
       
  2779 	hw->fc.current_mode = hw->fc.requested_mode;
       
  2780 
       
  2781 	e_dbg("After fix-ups FlowControl is now = %x\n",
       
  2782 		hw->fc.current_mode);
       
  2783 
       
  2784 	/* Continue to configure the copper link. */
       
  2785 	ret_val = e1000_setup_copper_link_ich8lan(hw);
       
  2786 	if (ret_val)
       
  2787 		return ret_val;
       
  2788 
       
  2789 	ew32(FCTTV, hw->fc.pause_time);
       
  2790 	if ((hw->phy.type == e1000_phy_82578) ||
       
  2791 	    (hw->phy.type == e1000_phy_82577)) {
       
  2792 		ret_val = hw->phy.ops.write_reg(hw,
       
  2793 		                             PHY_REG(BM_PORT_CTRL_PAGE, 27),
       
  2794 		                             hw->fc.pause_time);
       
  2795 		if (ret_val)
       
  2796 			return ret_val;
       
  2797 	}
       
  2798 
       
  2799 	return e1000e_set_fc_watermarks(hw);
       
  2800 }
       
  2801 
       
  2802 /**
       
  2803  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
       
  2804  *  @hw: pointer to the HW structure
       
  2805  *
       
  2806  *  Configures the kumeran interface to the PHY to wait the appropriate time
       
  2807  *  when polling the PHY, then call the generic setup_copper_link to finish
       
  2808  *  configuring the copper link.
       
  2809  **/
       
  2810 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
       
  2811 {
       
  2812 	u32 ctrl;
       
  2813 	s32 ret_val;
       
  2814 	u16 reg_data;
       
  2815 
       
  2816 	ctrl = er32(CTRL);
       
  2817 	ctrl |= E1000_CTRL_SLU;
       
  2818 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  2819 	ew32(CTRL, ctrl);
       
  2820 
       
  2821 	/*
       
  2822 	 * Set the mac to wait the maximum time between each iteration
       
  2823 	 * and increase the max iterations when polling the phy;
       
  2824 	 * this fixes erroneous timeouts at 10Mbps.
       
  2825 	 */
       
  2826 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
       
  2827 	if (ret_val)
       
  2828 		return ret_val;
       
  2829 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
  2830 	                               &reg_data);
       
  2831 	if (ret_val)
       
  2832 		return ret_val;
       
  2833 	reg_data |= 0x3F;
       
  2834 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
  2835 	                                reg_data);
       
  2836 	if (ret_val)
       
  2837 		return ret_val;
       
  2838 
       
  2839 	switch (hw->phy.type) {
       
  2840 	case e1000_phy_igp_3:
       
  2841 		ret_val = e1000e_copper_link_setup_igp(hw);
       
  2842 		if (ret_val)
       
  2843 			return ret_val;
       
  2844 		break;
       
  2845 	case e1000_phy_bm:
       
  2846 	case e1000_phy_82578:
       
  2847 		ret_val = e1000e_copper_link_setup_m88(hw);
       
  2848 		if (ret_val)
       
  2849 			return ret_val;
       
  2850 		break;
       
  2851 	case e1000_phy_82577:
       
  2852 		ret_val = e1000_copper_link_setup_82577(hw);
       
  2853 		if (ret_val)
       
  2854 			return ret_val;
       
  2855 		break;
       
  2856 	case e1000_phy_ife:
       
  2857 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
       
  2858 		                               &reg_data);
       
  2859 		if (ret_val)
       
  2860 			return ret_val;
       
  2861 
       
  2862 		reg_data &= ~IFE_PMC_AUTO_MDIX;
       
  2863 
       
  2864 		switch (hw->phy.mdix) {
       
  2865 		case 1:
       
  2866 			reg_data &= ~IFE_PMC_FORCE_MDIX;
       
  2867 			break;
       
  2868 		case 2:
       
  2869 			reg_data |= IFE_PMC_FORCE_MDIX;
       
  2870 			break;
       
  2871 		case 0:
       
  2872 		default:
       
  2873 			reg_data |= IFE_PMC_AUTO_MDIX;
       
  2874 			break;
       
  2875 		}
       
  2876 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
       
  2877 		                                reg_data);
       
  2878 		if (ret_val)
       
  2879 			return ret_val;
       
  2880 		break;
       
  2881 	default:
       
  2882 		break;
       
  2883 	}
       
  2884 	return e1000e_setup_copper_link(hw);
       
  2885 }
       
  2886 
       
  2887 /**
       
  2888  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
       
  2889  *  @hw: pointer to the HW structure
       
  2890  *  @speed: pointer to store current link speed
       
  2891  *  @duplex: pointer to store the current link duplex
       
  2892  *
       
  2893  *  Calls the generic get_speed_and_duplex to retrieve the current link
       
  2894  *  information and then calls the Kumeran lock loss workaround for links at
       
  2895  *  gigabit speeds.
       
  2896  **/
       
  2897 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
       
  2898 					  u16 *duplex)
       
  2899 {
       
  2900 	s32 ret_val;
       
  2901 
       
  2902 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
       
  2903 	if (ret_val)
       
  2904 		return ret_val;
       
  2905 
       
  2906 	if ((hw->mac.type == e1000_ich8lan) &&
       
  2907 	    (hw->phy.type == e1000_phy_igp_3) &&
       
  2908 	    (*speed == SPEED_1000)) {
       
  2909 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
       
  2910 	}
       
  2911 
       
  2912 	return ret_val;
       
  2913 }
       
  2914 
       
  2915 /**
       
  2916  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
       
  2917  *  @hw: pointer to the HW structure
       
  2918  *
       
  2919  *  Work-around for 82566 Kumeran PCS lock loss:
       
  2920  *  On link status change (i.e. PCI reset, speed change) and link is up and
       
  2921  *  speed is gigabit-
       
  2922  *    0) if workaround is optionally disabled do nothing
       
  2923  *    1) wait 1ms for Kumeran link to come up
       
  2924  *    2) check Kumeran Diagnostic register PCS lock loss bit
       
  2925  *    3) if not set the link is locked (all is good), otherwise...
       
  2926  *    4) reset the PHY
       
  2927  *    5) repeat up to 10 times
       
  2928  *  Note: this is only called for IGP3 copper when speed is 1gb.
       
  2929  **/
       
  2930 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
       
  2931 {
       
  2932 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2933 	u32 phy_ctrl;
       
  2934 	s32 ret_val;
       
  2935 	u16 i, data;
       
  2936 	bool link;
       
  2937 
       
  2938 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
       
  2939 		return 0;
       
  2940 
       
  2941 	/*
       
  2942 	 * Make sure link is up before proceeding.  If not just return.
       
  2943 	 * Attempting this while link is negotiating fouled up link
       
  2944 	 * stability
       
  2945 	 */
       
  2946 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  2947 	if (!link)
       
  2948 		return 0;
       
  2949 
       
  2950 	for (i = 0; i < 10; i++) {
       
  2951 		/* read once to clear */
       
  2952 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
       
  2953 		if (ret_val)
       
  2954 			return ret_val;
       
  2955 		/* and again to get new status */
       
  2956 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
       
  2957 		if (ret_val)
       
  2958 			return ret_val;
       
  2959 
       
  2960 		/* check for PCS lock */
       
  2961 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
       
  2962 			return 0;
       
  2963 
       
  2964 		/* Issue PHY reset */
       
  2965 		e1000_phy_hw_reset(hw);
       
  2966 		mdelay(5);
       
  2967 	}
       
  2968 	/* Disable GigE link negotiation */
       
  2969 	phy_ctrl = er32(PHY_CTRL);
       
  2970 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
       
  2971 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  2972 	ew32(PHY_CTRL, phy_ctrl);
       
  2973 
       
  2974 	/*
       
  2975 	 * Call gig speed drop workaround on Gig disable before accessing
       
  2976 	 * any PHY registers
       
  2977 	 */
       
  2978 	e1000e_gig_downshift_workaround_ich8lan(hw);
       
  2979 
       
  2980 	/* unable to acquire PCS lock */
       
  2981 	return -E1000_ERR_PHY;
       
  2982 }
       
  2983 
       
  2984 /**
       
  2985  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
       
  2986  *  @hw: pointer to the HW structure
       
  2987  *  @state: boolean value used to set the current Kumeran workaround state
       
  2988  *
       
  2989  *  If ICH8, set the current Kumeran workaround state (enabled - true
       
  2990  *  /disabled - false).
       
  2991  **/
       
  2992 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
       
  2993 						 bool state)
       
  2994 {
       
  2995 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2996 
       
  2997 	if (hw->mac.type != e1000_ich8lan) {
       
  2998 		e_dbg("Workaround applies to ICH8 only.\n");
       
  2999 		return;
       
  3000 	}
       
  3001 
       
  3002 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
       
  3003 }
       
  3004 
       
  3005 /**
       
  3006  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
       
  3007  *  @hw: pointer to the HW structure
       
  3008  *
       
  3009  *  Workaround for 82566 power-down on D3 entry:
       
  3010  *    1) disable gigabit link
       
  3011  *    2) write VR power-down enable
       
  3012  *    3) read it back
       
  3013  *  Continue if successful, else issue LCD reset and repeat
       
  3014  **/
       
  3015 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
       
  3016 {
       
  3017 	u32 reg;
       
  3018 	u16 data;
       
  3019 	u8  retry = 0;
       
  3020 
       
  3021 	if (hw->phy.type != e1000_phy_igp_3)
       
  3022 		return;
       
  3023 
       
  3024 	/* Try the workaround twice (if needed) */
       
  3025 	do {
       
  3026 		/* Disable link */
       
  3027 		reg = er32(PHY_CTRL);
       
  3028 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
       
  3029 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  3030 		ew32(PHY_CTRL, reg);
       
  3031 
       
  3032 		/*
       
  3033 		 * Call gig speed drop workaround on Gig disable before
       
  3034 		 * accessing any PHY registers
       
  3035 		 */
       
  3036 		if (hw->mac.type == e1000_ich8lan)
       
  3037 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  3038 
       
  3039 		/* Write VR power-down enable */
       
  3040 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
       
  3041 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
       
  3042 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
       
  3043 
       
  3044 		/* Read it back and test */
       
  3045 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
       
  3046 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
       
  3047 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
       
  3048 			break;
       
  3049 
       
  3050 		/* Issue PHY reset and repeat at most one more time */
       
  3051 		reg = er32(CTRL);
       
  3052 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
       
  3053 		retry++;
       
  3054 	} while (retry);
       
  3055 }
       
  3056 
       
  3057 /**
       
  3058  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
       
  3059  *  @hw: pointer to the HW structure
       
  3060  *
       
  3061  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
       
  3062  *  LPLU, Gig disable, MDIC PHY reset):
       
  3063  *    1) Set Kumeran Near-end loopback
       
  3064  *    2) Clear Kumeran Near-end loopback
       
  3065  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
       
  3066  **/
       
  3067 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
       
  3068 {
       
  3069 	s32 ret_val;
       
  3070 	u16 reg_data;
       
  3071 
       
  3072 	if ((hw->mac.type != e1000_ich8lan) ||
       
  3073 	    (hw->phy.type != e1000_phy_igp_3))
       
  3074 		return;
       
  3075 
       
  3076 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  3077 				      &reg_data);
       
  3078 	if (ret_val)
       
  3079 		return;
       
  3080 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
       
  3081 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  3082 				       reg_data);
       
  3083 	if (ret_val)
       
  3084 		return;
       
  3085 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
       
  3086 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  3087 				       reg_data);
       
  3088 }
       
  3089 
       
  3090 /**
       
  3091  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
       
  3092  *  @hw: pointer to the HW structure
       
  3093  *
       
  3094  *  During S0 to Sx transition, it is possible the link remains at gig
       
  3095  *  instead of negotiating to a lower speed.  Before going to Sx, set
       
  3096  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
       
  3097  *  to a lower speed.
       
  3098  *
       
  3099  *  Should only be called for applicable parts.
       
  3100  **/
       
  3101 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
       
  3102 {
       
  3103 	u32 phy_ctrl;
       
  3104 
       
  3105 	switch (hw->mac.type) {
       
  3106 	case e1000_ich8lan:
       
  3107 	case e1000_ich9lan:
       
  3108 	case e1000_ich10lan:
       
  3109 	case e1000_pchlan:
       
  3110 		phy_ctrl = er32(PHY_CTRL);
       
  3111 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
       
  3112 		            E1000_PHY_CTRL_GBE_DISABLE;
       
  3113 		ew32(PHY_CTRL, phy_ctrl);
       
  3114 
       
  3115 		if (hw->mac.type == e1000_pchlan)
       
  3116 			e1000_phy_hw_reset_ich8lan(hw);
       
  3117 	default:
       
  3118 		break;
       
  3119 	}
       
  3120 
       
  3121 	return;
       
  3122 }
       
  3123 
       
  3124 /**
       
  3125  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
       
  3126  *  @hw: pointer to the HW structure
       
  3127  *
       
  3128  *  Return the LED back to the default configuration.
       
  3129  **/
       
  3130 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
       
  3131 {
       
  3132 	if (hw->phy.type == e1000_phy_ife)
       
  3133 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  3134 
       
  3135 	ew32(LEDCTL, hw->mac.ledctl_default);
       
  3136 	return 0;
       
  3137 }
       
  3138 
       
  3139 /**
       
  3140  *  e1000_led_on_ich8lan - Turn LEDs on
       
  3141  *  @hw: pointer to the HW structure
       
  3142  *
       
  3143  *  Turn on the LEDs.
       
  3144  **/
       
  3145 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
       
  3146 {
       
  3147 	if (hw->phy.type == e1000_phy_ife)
       
  3148 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  3149 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
       
  3150 
       
  3151 	ew32(LEDCTL, hw->mac.ledctl_mode2);
       
  3152 	return 0;
       
  3153 }
       
  3154 
       
  3155 /**
       
  3156  *  e1000_led_off_ich8lan - Turn LEDs off
       
  3157  *  @hw: pointer to the HW structure
       
  3158  *
       
  3159  *  Turn off the LEDs.
       
  3160  **/
       
  3161 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
       
  3162 {
       
  3163 	if (hw->phy.type == e1000_phy_ife)
       
  3164 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  3165 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
       
  3166 
       
  3167 	ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  3168 	return 0;
       
  3169 }
       
  3170 
       
  3171 /**
       
  3172  *  e1000_setup_led_pchlan - Configures SW controllable LED
       
  3173  *  @hw: pointer to the HW structure
       
  3174  *
       
  3175  *  This prepares the SW controllable LED for use.
       
  3176  **/
       
  3177 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
       
  3178 {
       
  3179 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
       
  3180 					(u16)hw->mac.ledctl_mode1);
       
  3181 }
       
  3182 
       
  3183 /**
       
  3184  *  e1000_cleanup_led_pchlan - Restore the default LED operation
       
  3185  *  @hw: pointer to the HW structure
       
  3186  *
       
  3187  *  Return the LED back to the default configuration.
       
  3188  **/
       
  3189 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
       
  3190 {
       
  3191 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
       
  3192 					(u16)hw->mac.ledctl_default);
       
  3193 }
       
  3194 
       
  3195 /**
       
  3196  *  e1000_led_on_pchlan - Turn LEDs on
       
  3197  *  @hw: pointer to the HW structure
       
  3198  *
       
  3199  *  Turn on the LEDs.
       
  3200  **/
       
  3201 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
       
  3202 {
       
  3203 	u16 data = (u16)hw->mac.ledctl_mode2;
       
  3204 	u32 i, led;
       
  3205 
       
  3206 	/*
       
  3207 	 * If no link, then turn LED on by setting the invert bit
       
  3208 	 * for each LED that's mode is "link_up" in ledctl_mode2.
       
  3209 	 */
       
  3210 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
       
  3211 		for (i = 0; i < 3; i++) {
       
  3212 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
       
  3213 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
       
  3214 			    E1000_LEDCTL_MODE_LINK_UP)
       
  3215 				continue;
       
  3216 			if (led & E1000_PHY_LED0_IVRT)
       
  3217 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
       
  3218 			else
       
  3219 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
       
  3220 		}
       
  3221 	}
       
  3222 
       
  3223 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
       
  3224 }
       
  3225 
       
  3226 /**
       
  3227  *  e1000_led_off_pchlan - Turn LEDs off
       
  3228  *  @hw: pointer to the HW structure
       
  3229  *
       
  3230  *  Turn off the LEDs.
       
  3231  **/
       
  3232 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
       
  3233 {
       
  3234 	u16 data = (u16)hw->mac.ledctl_mode1;
       
  3235 	u32 i, led;
       
  3236 
       
  3237 	/*
       
  3238 	 * If no link, then turn LED off by clearing the invert bit
       
  3239 	 * for each LED that's mode is "link_up" in ledctl_mode1.
       
  3240 	 */
       
  3241 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
       
  3242 		for (i = 0; i < 3; i++) {
       
  3243 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
       
  3244 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
       
  3245 			    E1000_LEDCTL_MODE_LINK_UP)
       
  3246 				continue;
       
  3247 			if (led & E1000_PHY_LED0_IVRT)
       
  3248 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
       
  3249 			else
       
  3250 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
       
  3251 		}
       
  3252 	}
       
  3253 
       
  3254 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
       
  3255 }
       
  3256 
       
  3257 /**
       
  3258  *  e1000_get_cfg_done_ich8lan - Read config done bit
       
  3259  *  @hw: pointer to the HW structure
       
  3260  *
       
  3261  *  Read the management control register for the config done bit for
       
  3262  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
       
  3263  *  to read the config done bit, so an error is *ONLY* logged and returns
       
  3264  *  0.  If we were to return with error, EEPROM-less silicon
       
  3265  *  would not be able to be reset or change link.
       
  3266  **/
       
  3267 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
       
  3268 {
       
  3269 	u32 bank = 0;
       
  3270 
       
  3271 	if (hw->mac.type >= e1000_pchlan) {
       
  3272 		u32 status = er32(STATUS);
       
  3273 
       
  3274 		if (status & E1000_STATUS_PHYRA)
       
  3275 			ew32(STATUS, status & ~E1000_STATUS_PHYRA);
       
  3276 		else
       
  3277 			e_dbg("PHY Reset Asserted not set - needs delay\n");
       
  3278 	}
       
  3279 
       
  3280 	e1000e_get_cfg_done(hw);
       
  3281 
       
  3282 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
       
  3283 	if ((hw->mac.type != e1000_ich10lan) &&
       
  3284 	    (hw->mac.type != e1000_pchlan)) {
       
  3285 		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
       
  3286 		    (hw->phy.type == e1000_phy_igp_3)) {
       
  3287 			e1000e_phy_init_script_igp3(hw);
       
  3288 		}
       
  3289 	} else {
       
  3290 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
       
  3291 			/* Maybe we should do a basic PHY config */
       
  3292 			e_dbg("EEPROM not present\n");
       
  3293 			return -E1000_ERR_CONFIG;
       
  3294 		}
       
  3295 	}
       
  3296 
       
  3297 	return 0;
       
  3298 }
       
  3299 
       
  3300 /**
       
  3301  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
       
  3302  * @hw: pointer to the HW structure
       
  3303  *
       
  3304  * In the case of a PHY power down to save power, or to turn off link during a
       
  3305  * driver unload, or wake on lan is not enabled, remove the link.
       
  3306  **/
       
  3307 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
       
  3308 {
       
  3309 	/* If the management interface is not enabled, then power down */
       
  3310 	if (!(hw->mac.ops.check_mng_mode(hw) ||
       
  3311 	      hw->phy.ops.check_reset_block(hw)))
       
  3312 		e1000_power_down_phy_copper(hw);
       
  3313 
       
  3314 	return;
       
  3315 }
       
  3316 
       
  3317 /**
       
  3318  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
       
  3319  *  @hw: pointer to the HW structure
       
  3320  *
       
  3321  *  Clears hardware counters specific to the silicon family and calls
       
  3322  *  clear_hw_cntrs_generic to clear all general purpose counters.
       
  3323  **/
       
  3324 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
       
  3325 {
       
  3326 	u16 phy_data;
       
  3327 
       
  3328 	e1000e_clear_hw_cntrs_base(hw);
       
  3329 
       
  3330 	er32(ALGNERRC);
       
  3331 	er32(RXERRC);
       
  3332 	er32(TNCRS);
       
  3333 	er32(CEXTERR);
       
  3334 	er32(TSCTC);
       
  3335 	er32(TSCTFC);
       
  3336 
       
  3337 	er32(MGTPRC);
       
  3338 	er32(MGTPDC);
       
  3339 	er32(MGTPTC);
       
  3340 
       
  3341 	er32(IAC);
       
  3342 	er32(ICRXOC);
       
  3343 
       
  3344 	/* Clear PHY statistics registers */
       
  3345 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3346 	    (hw->phy.type == e1000_phy_82577)) {
       
  3347 		hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
       
  3348 		hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
       
  3349 		hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
       
  3350 		hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
       
  3351 		hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
       
  3352 		hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
       
  3353 		hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
       
  3354 		hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
       
  3355 		hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
       
  3356 		hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
       
  3357 		hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
       
  3358 		hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
       
  3359 		hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
       
  3360 		hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
       
  3361 	}
       
  3362 }
       
  3363 
       
  3364 static struct e1000_mac_operations ich8_mac_ops = {
       
  3365 	.id_led_init		= e1000e_id_led_init,
       
  3366 	.check_mng_mode		= e1000_check_mng_mode_ich8lan,
       
  3367 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
       
  3368 	/* cleanup_led dependent on mac type */
       
  3369 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
       
  3370 	.get_bus_info		= e1000_get_bus_info_ich8lan,
       
  3371 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
       
  3372 	/* led_on dependent on mac type */
       
  3373 	/* led_off dependent on mac type */
       
  3374 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
       
  3375 	.reset_hw		= e1000_reset_hw_ich8lan,
       
  3376 	.init_hw		= e1000_init_hw_ich8lan,
       
  3377 	.setup_link		= e1000_setup_link_ich8lan,
       
  3378 	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
       
  3379 	/* id_led_init dependent on mac type */
       
  3380 };
       
  3381 
       
  3382 static struct e1000_phy_operations ich8_phy_ops = {
       
  3383 	.acquire		= e1000_acquire_swflag_ich8lan,
       
  3384 	.check_reset_block	= e1000_check_reset_block_ich8lan,
       
  3385 	.commit			= NULL,
       
  3386 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
       
  3387 	.get_cable_length	= e1000e_get_cable_length_igp_2,
       
  3388 	.read_reg		= e1000e_read_phy_reg_igp,
       
  3389 	.release		= e1000_release_swflag_ich8lan,
       
  3390 	.reset			= e1000_phy_hw_reset_ich8lan,
       
  3391 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
       
  3392 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
       
  3393 	.write_reg		= e1000e_write_phy_reg_igp,
       
  3394 };
       
  3395 
       
  3396 static struct e1000_nvm_operations ich8_nvm_ops = {
       
  3397 	.acquire		= e1000_acquire_nvm_ich8lan,
       
  3398 	.read		 	= e1000_read_nvm_ich8lan,
       
  3399 	.release		= e1000_release_nvm_ich8lan,
       
  3400 	.update			= e1000_update_nvm_checksum_ich8lan,
       
  3401 	.valid_led_default	= e1000_valid_led_default_ich8lan,
       
  3402 	.validate		= e1000_validate_nvm_checksum_ich8lan,
       
  3403 	.write			= e1000_write_nvm_ich8lan,
       
  3404 };
       
  3405 
       
  3406 struct e1000_info e1000_ich8_info = {
       
  3407 	.mac			= e1000_ich8lan,
       
  3408 	.flags			= FLAG_HAS_WOL
       
  3409 				  | FLAG_IS_ICH
       
  3410 				  | FLAG_RX_CSUM_ENABLED
       
  3411 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  3412 				  | FLAG_HAS_AMT
       
  3413 				  | FLAG_HAS_FLASH
       
  3414 				  | FLAG_APME_IN_WUC,
       
  3415 	.pba			= 8,
       
  3416 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
       
  3417 	.get_variants		= e1000_get_variants_ich8lan,
       
  3418 	.mac_ops		= &ich8_mac_ops,
       
  3419 	.phy_ops		= &ich8_phy_ops,
       
  3420 	.nvm_ops		= &ich8_nvm_ops,
       
  3421 };
       
  3422 
       
  3423 struct e1000_info e1000_ich9_info = {
       
  3424 	.mac			= e1000_ich9lan,
       
  3425 	.flags			= FLAG_HAS_JUMBO_FRAMES
       
  3426 				  | FLAG_IS_ICH
       
  3427 				  | FLAG_HAS_WOL
       
  3428 				  | FLAG_RX_CSUM_ENABLED
       
  3429 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  3430 				  | FLAG_HAS_AMT
       
  3431 				  | FLAG_HAS_ERT
       
  3432 				  | FLAG_HAS_FLASH
       
  3433 				  | FLAG_APME_IN_WUC,
       
  3434 	.pba			= 10,
       
  3435 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  3436 	.get_variants		= e1000_get_variants_ich8lan,
       
  3437 	.mac_ops		= &ich8_mac_ops,
       
  3438 	.phy_ops		= &ich8_phy_ops,
       
  3439 	.nvm_ops		= &ich8_nvm_ops,
       
  3440 };
       
  3441 
       
  3442 struct e1000_info e1000_ich10_info = {
       
  3443 	.mac			= e1000_ich10lan,
       
  3444 	.flags			= FLAG_HAS_JUMBO_FRAMES
       
  3445 				  | FLAG_IS_ICH
       
  3446 				  | FLAG_HAS_WOL
       
  3447 				  | FLAG_RX_CSUM_ENABLED
       
  3448 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  3449 				  | FLAG_HAS_AMT
       
  3450 				  | FLAG_HAS_ERT
       
  3451 				  | FLAG_HAS_FLASH
       
  3452 				  | FLAG_APME_IN_WUC,
       
  3453 	.pba			= 10,
       
  3454 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  3455 	.get_variants		= e1000_get_variants_ich8lan,
       
  3456 	.mac_ops		= &ich8_mac_ops,
       
  3457 	.phy_ops		= &ich8_phy_ops,
       
  3458 	.nvm_ops		= &ich8_nvm_ops,
       
  3459 };
       
  3460 
       
  3461 struct e1000_info e1000_pch_info = {
       
  3462 	.mac			= e1000_pchlan,
       
  3463 	.flags			= FLAG_IS_ICH
       
  3464 				  | FLAG_HAS_WOL
       
  3465 				  | FLAG_RX_CSUM_ENABLED
       
  3466 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  3467 				  | FLAG_HAS_AMT
       
  3468 				  | FLAG_HAS_FLASH
       
  3469 				  | FLAG_HAS_JUMBO_FRAMES
       
  3470 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
       
  3471 				  | FLAG_APME_IN_WUC,
       
  3472 	.pba			= 26,
       
  3473 	.max_hw_frame_size	= 4096,
       
  3474 	.get_variants		= e1000_get_variants_ich8lan,
       
  3475 	.mac_ops		= &ich8_mac_ops,
       
  3476 	.phy_ops		= &ich8_phy_ops,
       
  3477 	.nvm_ops		= &ich8_nvm_ops,
       
  3478 };