|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2009 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* |
|
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper) |
|
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes) |
|
32 */ |
|
33 |
|
34 #include "e1000-2.6.33-ethercat.h" |
|
35 |
|
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 |
|
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 |
|
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 |
|
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F |
|
40 |
|
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 |
|
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 |
|
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 |
|
44 |
|
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 |
|
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 |
|
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000 |
|
48 |
|
49 #define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C |
|
50 #define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004 |
|
51 |
|
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ |
|
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 |
|
54 |
|
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 |
|
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 |
|
57 |
|
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */ |
|
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */ |
|
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 |
|
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ |
|
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ |
|
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ |
|
64 |
|
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */ |
|
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 |
|
67 /* 1=Reverse Auto-Negotiation */ |
|
68 |
|
69 /* MAC Specific Control Register (Page 2, Register 21) */ |
|
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ |
|
71 #define GG82563_MSCR_TX_CLK_MASK 0x0007 |
|
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 |
|
73 #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 |
|
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 |
|
75 |
|
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ |
|
77 |
|
78 /* DSP Distance Register (Page 5, Register 26) */ |
|
79 #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M |
|
80 1 = 50-80M |
|
81 2 = 80-110M |
|
82 3 = 110-140M |
|
83 4 = >140M */ |
|
84 |
|
85 /* Kumeran Mode Control Register (Page 193, Register 16) */ |
|
86 #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 |
|
87 |
|
88 /* Max number of times Kumeran read/write should be validated */ |
|
89 #define GG82563_MAX_KMRN_RETRY 0x5 |
|
90 |
|
91 /* Power Management Control Register (Page 193, Register 20) */ |
|
92 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 |
|
93 /* 1=Enable SERDES Electrical Idle */ |
|
94 |
|
95 /* In-Band Control Register (Page 194, Register 18) */ |
|
96 #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ |
|
97 |
|
98 /* |
|
99 * A table for the GG82563 cable length where the range is defined |
|
100 * with a lower bound at "index" and the upper bound at |
|
101 * "index + 5". |
|
102 */ |
|
103 static const u16 e1000_gg82563_cable_length_table[] = |
|
104 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; |
|
105 #define GG82563_CABLE_LENGTH_TABLE_SIZE \ |
|
106 ARRAY_SIZE(e1000_gg82563_cable_length_table) |
|
107 |
|
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); |
|
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); |
|
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); |
|
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); |
|
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); |
|
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); |
|
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); |
|
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw); |
|
116 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
117 u16 *data); |
|
118 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
119 u16 data); |
|
120 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw); |
|
121 |
|
122 /** |
|
123 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. |
|
124 * @hw: pointer to the HW structure |
|
125 **/ |
|
126 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) |
|
127 { |
|
128 struct e1000_phy_info *phy = &hw->phy; |
|
129 s32 ret_val; |
|
130 |
|
131 if (hw->phy.media_type != e1000_media_type_copper) { |
|
132 phy->type = e1000_phy_none; |
|
133 return 0; |
|
134 } else { |
|
135 phy->ops.power_up = e1000_power_up_phy_copper; |
|
136 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan; |
|
137 } |
|
138 |
|
139 phy->addr = 1; |
|
140 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
141 phy->reset_delay_us = 100; |
|
142 phy->type = e1000_phy_gg82563; |
|
143 |
|
144 /* This can only be done after all function pointers are setup. */ |
|
145 ret_val = e1000e_get_phy_id(hw); |
|
146 |
|
147 /* Verify phy id */ |
|
148 if (phy->id != GG82563_E_PHY_ID) |
|
149 return -E1000_ERR_PHY; |
|
150 |
|
151 return ret_val; |
|
152 } |
|
153 |
|
154 /** |
|
155 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. |
|
156 * @hw: pointer to the HW structure |
|
157 **/ |
|
158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) |
|
159 { |
|
160 struct e1000_nvm_info *nvm = &hw->nvm; |
|
161 u32 eecd = er32(EECD); |
|
162 u16 size; |
|
163 |
|
164 nvm->opcode_bits = 8; |
|
165 nvm->delay_usec = 1; |
|
166 switch (nvm->override) { |
|
167 case e1000_nvm_override_spi_large: |
|
168 nvm->page_size = 32; |
|
169 nvm->address_bits = 16; |
|
170 break; |
|
171 case e1000_nvm_override_spi_small: |
|
172 nvm->page_size = 8; |
|
173 nvm->address_bits = 8; |
|
174 break; |
|
175 default: |
|
176 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
|
177 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
|
178 break; |
|
179 } |
|
180 |
|
181 nvm->type = e1000_nvm_eeprom_spi; |
|
182 |
|
183 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
|
184 E1000_EECD_SIZE_EX_SHIFT); |
|
185 |
|
186 /* |
|
187 * Added to a constant, "size" becomes the left-shift value |
|
188 * for setting word_size. |
|
189 */ |
|
190 size += NVM_WORD_SIZE_BASE_SHIFT; |
|
191 |
|
192 /* EEPROM access above 16k is unsupported */ |
|
193 if (size > 14) |
|
194 size = 14; |
|
195 nvm->word_size = 1 << size; |
|
196 |
|
197 return 0; |
|
198 } |
|
199 |
|
200 /** |
|
201 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. |
|
202 * @hw: pointer to the HW structure |
|
203 **/ |
|
204 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter) |
|
205 { |
|
206 struct e1000_hw *hw = &adapter->hw; |
|
207 struct e1000_mac_info *mac = &hw->mac; |
|
208 struct e1000_mac_operations *func = &mac->ops; |
|
209 |
|
210 /* Set media type */ |
|
211 switch (adapter->pdev->device) { |
|
212 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
|
213 hw->phy.media_type = e1000_media_type_internal_serdes; |
|
214 break; |
|
215 default: |
|
216 hw->phy.media_type = e1000_media_type_copper; |
|
217 break; |
|
218 } |
|
219 |
|
220 /* Set mta register count */ |
|
221 mac->mta_reg_count = 128; |
|
222 /* Set rar entry count */ |
|
223 mac->rar_entry_count = E1000_RAR_ENTRIES; |
|
224 /* Set if manageability features are enabled. */ |
|
225 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) |
|
226 ? true : false; |
|
227 /* Adaptive IFS not supported */ |
|
228 mac->adaptive_ifs = false; |
|
229 |
|
230 /* check for link */ |
|
231 switch (hw->phy.media_type) { |
|
232 case e1000_media_type_copper: |
|
233 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan; |
|
234 func->check_for_link = e1000e_check_for_copper_link; |
|
235 break; |
|
236 case e1000_media_type_fiber: |
|
237 func->setup_physical_interface = e1000e_setup_fiber_serdes_link; |
|
238 func->check_for_link = e1000e_check_for_fiber_link; |
|
239 break; |
|
240 case e1000_media_type_internal_serdes: |
|
241 func->setup_physical_interface = e1000e_setup_fiber_serdes_link; |
|
242 func->check_for_link = e1000e_check_for_serdes_link; |
|
243 break; |
|
244 default: |
|
245 return -E1000_ERR_CONFIG; |
|
246 break; |
|
247 } |
|
248 |
|
249 return 0; |
|
250 } |
|
251 |
|
252 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter) |
|
253 { |
|
254 struct e1000_hw *hw = &adapter->hw; |
|
255 s32 rc; |
|
256 |
|
257 rc = e1000_init_mac_params_80003es2lan(adapter); |
|
258 if (rc) |
|
259 return rc; |
|
260 |
|
261 rc = e1000_init_nvm_params_80003es2lan(hw); |
|
262 if (rc) |
|
263 return rc; |
|
264 |
|
265 rc = e1000_init_phy_params_80003es2lan(hw); |
|
266 if (rc) |
|
267 return rc; |
|
268 |
|
269 return 0; |
|
270 } |
|
271 |
|
272 /** |
|
273 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY |
|
274 * @hw: pointer to the HW structure |
|
275 * |
|
276 * A wrapper to acquire access rights to the correct PHY. |
|
277 **/ |
|
278 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) |
|
279 { |
|
280 u16 mask; |
|
281 |
|
282 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
|
283 return e1000_acquire_swfw_sync_80003es2lan(hw, mask); |
|
284 } |
|
285 |
|
286 /** |
|
287 * e1000_release_phy_80003es2lan - Release rights to access PHY |
|
288 * @hw: pointer to the HW structure |
|
289 * |
|
290 * A wrapper to release access rights to the correct PHY. |
|
291 **/ |
|
292 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) |
|
293 { |
|
294 u16 mask; |
|
295 |
|
296 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
|
297 e1000_release_swfw_sync_80003es2lan(hw, mask); |
|
298 } |
|
299 |
|
300 /** |
|
301 * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register |
|
302 * @hw: pointer to the HW structure |
|
303 * |
|
304 * Acquire the semaphore to access the Kumeran interface. |
|
305 * |
|
306 **/ |
|
307 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) |
|
308 { |
|
309 u16 mask; |
|
310 |
|
311 mask = E1000_SWFW_CSR_SM; |
|
312 |
|
313 return e1000_acquire_swfw_sync_80003es2lan(hw, mask); |
|
314 } |
|
315 |
|
316 /** |
|
317 * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register |
|
318 * @hw: pointer to the HW structure |
|
319 * |
|
320 * Release the semaphore used to access the Kumeran interface |
|
321 **/ |
|
322 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) |
|
323 { |
|
324 u16 mask; |
|
325 |
|
326 mask = E1000_SWFW_CSR_SM; |
|
327 |
|
328 e1000_release_swfw_sync_80003es2lan(hw, mask); |
|
329 } |
|
330 |
|
331 /** |
|
332 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM |
|
333 * @hw: pointer to the HW structure |
|
334 * |
|
335 * Acquire the semaphore to access the EEPROM. |
|
336 **/ |
|
337 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) |
|
338 { |
|
339 s32 ret_val; |
|
340 |
|
341 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
|
342 if (ret_val) |
|
343 return ret_val; |
|
344 |
|
345 ret_val = e1000e_acquire_nvm(hw); |
|
346 |
|
347 if (ret_val) |
|
348 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
|
349 |
|
350 return ret_val; |
|
351 } |
|
352 |
|
353 /** |
|
354 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM |
|
355 * @hw: pointer to the HW structure |
|
356 * |
|
357 * Release the semaphore used to access the EEPROM. |
|
358 **/ |
|
359 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) |
|
360 { |
|
361 e1000e_release_nvm(hw); |
|
362 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
|
363 } |
|
364 |
|
365 /** |
|
366 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore |
|
367 * @hw: pointer to the HW structure |
|
368 * @mask: specifies which semaphore to acquire |
|
369 * |
|
370 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
|
371 * will also specify which port we're acquiring the lock for. |
|
372 **/ |
|
373 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) |
|
374 { |
|
375 u32 swfw_sync; |
|
376 u32 swmask = mask; |
|
377 u32 fwmask = mask << 16; |
|
378 s32 i = 0; |
|
379 s32 timeout = 50; |
|
380 |
|
381 while (i < timeout) { |
|
382 if (e1000e_get_hw_semaphore(hw)) |
|
383 return -E1000_ERR_SWFW_SYNC; |
|
384 |
|
385 swfw_sync = er32(SW_FW_SYNC); |
|
386 if (!(swfw_sync & (fwmask | swmask))) |
|
387 break; |
|
388 |
|
389 /* |
|
390 * Firmware currently using resource (fwmask) |
|
391 * or other software thread using resource (swmask) |
|
392 */ |
|
393 e1000e_put_hw_semaphore(hw); |
|
394 mdelay(5); |
|
395 i++; |
|
396 } |
|
397 |
|
398 if (i == timeout) { |
|
399 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
|
400 return -E1000_ERR_SWFW_SYNC; |
|
401 } |
|
402 |
|
403 swfw_sync |= swmask; |
|
404 ew32(SW_FW_SYNC, swfw_sync); |
|
405 |
|
406 e1000e_put_hw_semaphore(hw); |
|
407 |
|
408 return 0; |
|
409 } |
|
410 |
|
411 /** |
|
412 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore |
|
413 * @hw: pointer to the HW structure |
|
414 * @mask: specifies which semaphore to acquire |
|
415 * |
|
416 * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
|
417 * will also specify which port we're releasing the lock for. |
|
418 **/ |
|
419 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) |
|
420 { |
|
421 u32 swfw_sync; |
|
422 |
|
423 while (e1000e_get_hw_semaphore(hw) != 0); |
|
424 /* Empty */ |
|
425 |
|
426 swfw_sync = er32(SW_FW_SYNC); |
|
427 swfw_sync &= ~mask; |
|
428 ew32(SW_FW_SYNC, swfw_sync); |
|
429 |
|
430 e1000e_put_hw_semaphore(hw); |
|
431 } |
|
432 |
|
433 /** |
|
434 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register |
|
435 * @hw: pointer to the HW structure |
|
436 * @offset: offset of the register to read |
|
437 * @data: pointer to the data returned from the operation |
|
438 * |
|
439 * Read the GG82563 PHY register. |
|
440 **/ |
|
441 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
|
442 u32 offset, u16 *data) |
|
443 { |
|
444 s32 ret_val; |
|
445 u32 page_select; |
|
446 u16 temp; |
|
447 |
|
448 ret_val = e1000_acquire_phy_80003es2lan(hw); |
|
449 if (ret_val) |
|
450 return ret_val; |
|
451 |
|
452 /* Select Configuration Page */ |
|
453 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
|
454 page_select = GG82563_PHY_PAGE_SELECT; |
|
455 } else { |
|
456 /* |
|
457 * Use Alternative Page Select register to access |
|
458 * registers 30 and 31 |
|
459 */ |
|
460 page_select = GG82563_PHY_PAGE_SELECT_ALT; |
|
461 } |
|
462 |
|
463 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
|
464 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); |
|
465 if (ret_val) { |
|
466 e1000_release_phy_80003es2lan(hw); |
|
467 return ret_val; |
|
468 } |
|
469 |
|
470 if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) { |
|
471 /* |
|
472 * The "ready" bit in the MDIC register may be incorrectly set |
|
473 * before the device has completed the "Page Select" MDI |
|
474 * transaction. So we wait 200us after each MDI command... |
|
475 */ |
|
476 udelay(200); |
|
477 |
|
478 /* ...and verify the command was successful. */ |
|
479 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); |
|
480 |
|
481 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { |
|
482 ret_val = -E1000_ERR_PHY; |
|
483 e1000_release_phy_80003es2lan(hw); |
|
484 return ret_val; |
|
485 } |
|
486 |
|
487 udelay(200); |
|
488 |
|
489 ret_val = e1000e_read_phy_reg_mdic(hw, |
|
490 MAX_PHY_REG_ADDRESS & offset, |
|
491 data); |
|
492 |
|
493 udelay(200); |
|
494 } else { |
|
495 ret_val = e1000e_read_phy_reg_mdic(hw, |
|
496 MAX_PHY_REG_ADDRESS & offset, |
|
497 data); |
|
498 } |
|
499 |
|
500 e1000_release_phy_80003es2lan(hw); |
|
501 |
|
502 return ret_val; |
|
503 } |
|
504 |
|
505 /** |
|
506 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register |
|
507 * @hw: pointer to the HW structure |
|
508 * @offset: offset of the register to read |
|
509 * @data: value to write to the register |
|
510 * |
|
511 * Write to the GG82563 PHY register. |
|
512 **/ |
|
513 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
|
514 u32 offset, u16 data) |
|
515 { |
|
516 s32 ret_val; |
|
517 u32 page_select; |
|
518 u16 temp; |
|
519 |
|
520 ret_val = e1000_acquire_phy_80003es2lan(hw); |
|
521 if (ret_val) |
|
522 return ret_val; |
|
523 |
|
524 /* Select Configuration Page */ |
|
525 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
|
526 page_select = GG82563_PHY_PAGE_SELECT; |
|
527 } else { |
|
528 /* |
|
529 * Use Alternative Page Select register to access |
|
530 * registers 30 and 31 |
|
531 */ |
|
532 page_select = GG82563_PHY_PAGE_SELECT_ALT; |
|
533 } |
|
534 |
|
535 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
|
536 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); |
|
537 if (ret_val) { |
|
538 e1000_release_phy_80003es2lan(hw); |
|
539 return ret_val; |
|
540 } |
|
541 |
|
542 if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) { |
|
543 /* |
|
544 * The "ready" bit in the MDIC register may be incorrectly set |
|
545 * before the device has completed the "Page Select" MDI |
|
546 * transaction. So we wait 200us after each MDI command... |
|
547 */ |
|
548 udelay(200); |
|
549 |
|
550 /* ...and verify the command was successful. */ |
|
551 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); |
|
552 |
|
553 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { |
|
554 e1000_release_phy_80003es2lan(hw); |
|
555 return -E1000_ERR_PHY; |
|
556 } |
|
557 |
|
558 udelay(200); |
|
559 |
|
560 ret_val = e1000e_write_phy_reg_mdic(hw, |
|
561 MAX_PHY_REG_ADDRESS & offset, |
|
562 data); |
|
563 |
|
564 udelay(200); |
|
565 } else { |
|
566 ret_val = e1000e_write_phy_reg_mdic(hw, |
|
567 MAX_PHY_REG_ADDRESS & offset, |
|
568 data); |
|
569 } |
|
570 |
|
571 e1000_release_phy_80003es2lan(hw); |
|
572 |
|
573 return ret_val; |
|
574 } |
|
575 |
|
576 /** |
|
577 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM |
|
578 * @hw: pointer to the HW structure |
|
579 * @offset: offset of the register to read |
|
580 * @words: number of words to write |
|
581 * @data: buffer of data to write to the NVM |
|
582 * |
|
583 * Write "words" of data to the ESB2 NVM. |
|
584 **/ |
|
585 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, |
|
586 u16 words, u16 *data) |
|
587 { |
|
588 return e1000e_write_nvm_spi(hw, offset, words, data); |
|
589 } |
|
590 |
|
591 /** |
|
592 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete |
|
593 * @hw: pointer to the HW structure |
|
594 * |
|
595 * Wait a specific amount of time for manageability processes to complete. |
|
596 * This is a function pointer entry point called by the phy module. |
|
597 **/ |
|
598 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) |
|
599 { |
|
600 s32 timeout = PHY_CFG_TIMEOUT; |
|
601 u32 mask = E1000_NVM_CFG_DONE_PORT_0; |
|
602 |
|
603 if (hw->bus.func == 1) |
|
604 mask = E1000_NVM_CFG_DONE_PORT_1; |
|
605 |
|
606 while (timeout) { |
|
607 if (er32(EEMNGCTL) & mask) |
|
608 break; |
|
609 msleep(1); |
|
610 timeout--; |
|
611 } |
|
612 if (!timeout) { |
|
613 e_dbg("MNG configuration cycle has not completed.\n"); |
|
614 return -E1000_ERR_RESET; |
|
615 } |
|
616 |
|
617 return 0; |
|
618 } |
|
619 |
|
620 /** |
|
621 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex |
|
622 * @hw: pointer to the HW structure |
|
623 * |
|
624 * Force the speed and duplex settings onto the PHY. This is a |
|
625 * function pointer entry point called by the phy module. |
|
626 **/ |
|
627 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) |
|
628 { |
|
629 s32 ret_val; |
|
630 u16 phy_data; |
|
631 bool link; |
|
632 |
|
633 /* |
|
634 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
|
635 * forced whenever speed and duplex are forced. |
|
636 */ |
|
637 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
638 if (ret_val) |
|
639 return ret_val; |
|
640 |
|
641 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; |
|
642 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data); |
|
643 if (ret_val) |
|
644 return ret_val; |
|
645 |
|
646 e_dbg("GG82563 PSCR: %X\n", phy_data); |
|
647 |
|
648 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); |
|
649 if (ret_val) |
|
650 return ret_val; |
|
651 |
|
652 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); |
|
653 |
|
654 /* Reset the phy to commit changes. */ |
|
655 phy_data |= MII_CR_RESET; |
|
656 |
|
657 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); |
|
658 if (ret_val) |
|
659 return ret_val; |
|
660 |
|
661 udelay(1); |
|
662 |
|
663 if (hw->phy.autoneg_wait_to_complete) { |
|
664 e_dbg("Waiting for forced speed/duplex link " |
|
665 "on GG82563 phy.\n"); |
|
666 |
|
667 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
|
668 100000, &link); |
|
669 if (ret_val) |
|
670 return ret_val; |
|
671 |
|
672 if (!link) { |
|
673 /* |
|
674 * We didn't get link. |
|
675 * Reset the DSP and cross our fingers. |
|
676 */ |
|
677 ret_val = e1000e_phy_reset_dsp(hw); |
|
678 if (ret_val) |
|
679 return ret_val; |
|
680 } |
|
681 |
|
682 /* Try once more */ |
|
683 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
|
684 100000, &link); |
|
685 if (ret_val) |
|
686 return ret_val; |
|
687 } |
|
688 |
|
689 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); |
|
690 if (ret_val) |
|
691 return ret_val; |
|
692 |
|
693 /* |
|
694 * Resetting the phy means we need to verify the TX_CLK corresponds |
|
695 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. |
|
696 */ |
|
697 phy_data &= ~GG82563_MSCR_TX_CLK_MASK; |
|
698 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) |
|
699 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; |
|
700 else |
|
701 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; |
|
702 |
|
703 /* |
|
704 * In addition, we must re-enable CRS on Tx for both half and full |
|
705 * duplex. |
|
706 */ |
|
707 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
|
708 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); |
|
709 |
|
710 return ret_val; |
|
711 } |
|
712 |
|
713 /** |
|
714 * e1000_get_cable_length_80003es2lan - Set approximate cable length |
|
715 * @hw: pointer to the HW structure |
|
716 * |
|
717 * Find the approximate cable length as measured by the GG82563 PHY. |
|
718 * This is a function pointer entry point called by the phy module. |
|
719 **/ |
|
720 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) |
|
721 { |
|
722 struct e1000_phy_info *phy = &hw->phy; |
|
723 s32 ret_val = 0; |
|
724 u16 phy_data, index; |
|
725 |
|
726 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); |
|
727 if (ret_val) |
|
728 goto out; |
|
729 |
|
730 index = phy_data & GG82563_DSPD_CABLE_LENGTH; |
|
731 |
|
732 if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) { |
|
733 ret_val = -E1000_ERR_PHY; |
|
734 goto out; |
|
735 } |
|
736 |
|
737 phy->min_cable_length = e1000_gg82563_cable_length_table[index]; |
|
738 phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5]; |
|
739 |
|
740 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
|
741 |
|
742 out: |
|
743 return ret_val; |
|
744 } |
|
745 |
|
746 /** |
|
747 * e1000_get_link_up_info_80003es2lan - Report speed and duplex |
|
748 * @hw: pointer to the HW structure |
|
749 * @speed: pointer to speed buffer |
|
750 * @duplex: pointer to duplex buffer |
|
751 * |
|
752 * Retrieve the current speed and duplex configuration. |
|
753 **/ |
|
754 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, |
|
755 u16 *duplex) |
|
756 { |
|
757 s32 ret_val; |
|
758 |
|
759 if (hw->phy.media_type == e1000_media_type_copper) { |
|
760 ret_val = e1000e_get_speed_and_duplex_copper(hw, |
|
761 speed, |
|
762 duplex); |
|
763 hw->phy.ops.cfg_on_link_up(hw); |
|
764 } else { |
|
765 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw, |
|
766 speed, |
|
767 duplex); |
|
768 } |
|
769 |
|
770 return ret_val; |
|
771 } |
|
772 |
|
773 /** |
|
774 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller |
|
775 * @hw: pointer to the HW structure |
|
776 * |
|
777 * Perform a global reset to the ESB2 controller. |
|
778 **/ |
|
779 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) |
|
780 { |
|
781 u32 ctrl, icr; |
|
782 s32 ret_val; |
|
783 |
|
784 /* |
|
785 * Prevent the PCI-E bus from sticking if there is no TLP connection |
|
786 * on the last TLP read/write transaction when MAC is reset. |
|
787 */ |
|
788 ret_val = e1000e_disable_pcie_master(hw); |
|
789 if (ret_val) |
|
790 e_dbg("PCI-E Master disable polling has failed.\n"); |
|
791 |
|
792 e_dbg("Masking off all interrupts\n"); |
|
793 ew32(IMC, 0xffffffff); |
|
794 |
|
795 ew32(RCTL, 0); |
|
796 ew32(TCTL, E1000_TCTL_PSP); |
|
797 e1e_flush(); |
|
798 |
|
799 msleep(10); |
|
800 |
|
801 ctrl = er32(CTRL); |
|
802 |
|
803 ret_val = e1000_acquire_phy_80003es2lan(hw); |
|
804 e_dbg("Issuing a global reset to MAC\n"); |
|
805 ew32(CTRL, ctrl | E1000_CTRL_RST); |
|
806 e1000_release_phy_80003es2lan(hw); |
|
807 |
|
808 ret_val = e1000e_get_auto_rd_done(hw); |
|
809 if (ret_val) |
|
810 /* We don't want to continue accessing MAC registers. */ |
|
811 return ret_val; |
|
812 |
|
813 /* Clear any pending interrupt events. */ |
|
814 ew32(IMC, 0xffffffff); |
|
815 icr = er32(ICR); |
|
816 |
|
817 return 0; |
|
818 } |
|
819 |
|
820 /** |
|
821 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller |
|
822 * @hw: pointer to the HW structure |
|
823 * |
|
824 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. |
|
825 **/ |
|
826 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) |
|
827 { |
|
828 struct e1000_mac_info *mac = &hw->mac; |
|
829 u32 reg_data; |
|
830 s32 ret_val; |
|
831 u16 i; |
|
832 |
|
833 e1000_initialize_hw_bits_80003es2lan(hw); |
|
834 |
|
835 /* Initialize identification LED */ |
|
836 ret_val = e1000e_id_led_init(hw); |
|
837 if (ret_val) |
|
838 e_dbg("Error initializing identification LED\n"); |
|
839 /* This is not fatal and we should not stop init due to this */ |
|
840 |
|
841 /* Disabling VLAN filtering */ |
|
842 e_dbg("Initializing the IEEE VLAN\n"); |
|
843 mac->ops.clear_vfta(hw); |
|
844 |
|
845 /* Setup the receive address. */ |
|
846 e1000e_init_rx_addrs(hw, mac->rar_entry_count); |
|
847 |
|
848 /* Zero out the Multicast HASH table */ |
|
849 e_dbg("Zeroing the MTA\n"); |
|
850 for (i = 0; i < mac->mta_reg_count; i++) |
|
851 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
|
852 |
|
853 /* Setup link and flow control */ |
|
854 ret_val = e1000e_setup_link(hw); |
|
855 |
|
856 /* Set the transmit descriptor write-back policy */ |
|
857 reg_data = er32(TXDCTL(0)); |
|
858 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
859 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; |
|
860 ew32(TXDCTL(0), reg_data); |
|
861 |
|
862 /* ...for both queues. */ |
|
863 reg_data = er32(TXDCTL(1)); |
|
864 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
865 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; |
|
866 ew32(TXDCTL(1), reg_data); |
|
867 |
|
868 /* Enable retransmit on late collisions */ |
|
869 reg_data = er32(TCTL); |
|
870 reg_data |= E1000_TCTL_RTLC; |
|
871 ew32(TCTL, reg_data); |
|
872 |
|
873 /* Configure Gigabit Carry Extend Padding */ |
|
874 reg_data = er32(TCTL_EXT); |
|
875 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; |
|
876 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; |
|
877 ew32(TCTL_EXT, reg_data); |
|
878 |
|
879 /* Configure Transmit Inter-Packet Gap */ |
|
880 reg_data = er32(TIPG); |
|
881 reg_data &= ~E1000_TIPG_IPGT_MASK; |
|
882 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
|
883 ew32(TIPG, reg_data); |
|
884 |
|
885 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); |
|
886 reg_data &= ~0x00100000; |
|
887 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); |
|
888 |
|
889 /* default to true to enable the MDIC W/A */ |
|
890 hw->dev_spec.e80003es2lan.mdic_wa_enable = true; |
|
891 |
|
892 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, |
|
893 E1000_KMRNCTRLSTA_OFFSET >> |
|
894 E1000_KMRNCTRLSTA_OFFSET_SHIFT, |
|
895 &i); |
|
896 if (!ret_val) { |
|
897 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) == |
|
898 E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO) |
|
899 hw->dev_spec.e80003es2lan.mdic_wa_enable = false; |
|
900 } |
|
901 |
|
902 /* |
|
903 * Clear all of the statistics registers (clear on read). It is |
|
904 * important that we do this after we have tried to establish link |
|
905 * because the symbol error count will increment wildly if there |
|
906 * is no link. |
|
907 */ |
|
908 e1000_clear_hw_cntrs_80003es2lan(hw); |
|
909 |
|
910 return ret_val; |
|
911 } |
|
912 |
|
913 /** |
|
914 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 |
|
915 * @hw: pointer to the HW structure |
|
916 * |
|
917 * Initializes required hardware-dependent bits needed for normal operation. |
|
918 **/ |
|
919 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) |
|
920 { |
|
921 u32 reg; |
|
922 |
|
923 /* Transmit Descriptor Control 0 */ |
|
924 reg = er32(TXDCTL(0)); |
|
925 reg |= (1 << 22); |
|
926 ew32(TXDCTL(0), reg); |
|
927 |
|
928 /* Transmit Descriptor Control 1 */ |
|
929 reg = er32(TXDCTL(1)); |
|
930 reg |= (1 << 22); |
|
931 ew32(TXDCTL(1), reg); |
|
932 |
|
933 /* Transmit Arbitration Control 0 */ |
|
934 reg = er32(TARC(0)); |
|
935 reg &= ~(0xF << 27); /* 30:27 */ |
|
936 if (hw->phy.media_type != e1000_media_type_copper) |
|
937 reg &= ~(1 << 20); |
|
938 ew32(TARC(0), reg); |
|
939 |
|
940 /* Transmit Arbitration Control 1 */ |
|
941 reg = er32(TARC(1)); |
|
942 if (er32(TCTL) & E1000_TCTL_MULR) |
|
943 reg &= ~(1 << 28); |
|
944 else |
|
945 reg |= (1 << 28); |
|
946 ew32(TARC(1), reg); |
|
947 } |
|
948 |
|
949 /** |
|
950 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link |
|
951 * @hw: pointer to the HW structure |
|
952 * |
|
953 * Setup some GG82563 PHY registers for obtaining link |
|
954 **/ |
|
955 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) |
|
956 { |
|
957 struct e1000_phy_info *phy = &hw->phy; |
|
958 s32 ret_val; |
|
959 u32 ctrl_ext; |
|
960 u16 data; |
|
961 |
|
962 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); |
|
963 if (ret_val) |
|
964 return ret_val; |
|
965 |
|
966 data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
|
967 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ |
|
968 data |= GG82563_MSCR_TX_CLK_1000MBPS_25; |
|
969 |
|
970 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data); |
|
971 if (ret_val) |
|
972 return ret_val; |
|
973 |
|
974 /* |
|
975 * Options: |
|
976 * MDI/MDI-X = 0 (default) |
|
977 * 0 - Auto for all speeds |
|
978 * 1 - MDI mode |
|
979 * 2 - MDI-X mode |
|
980 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
|
981 */ |
|
982 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data); |
|
983 if (ret_val) |
|
984 return ret_val; |
|
985 |
|
986 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; |
|
987 |
|
988 switch (phy->mdix) { |
|
989 case 1: |
|
990 data |= GG82563_PSCR_CROSSOVER_MODE_MDI; |
|
991 break; |
|
992 case 2: |
|
993 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; |
|
994 break; |
|
995 case 0: |
|
996 default: |
|
997 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; |
|
998 break; |
|
999 } |
|
1000 |
|
1001 /* |
|
1002 * Options: |
|
1003 * disable_polarity_correction = 0 (default) |
|
1004 * Automatic Correction for Reversed Cable Polarity |
|
1005 * 0 - Disabled |
|
1006 * 1 - Enabled |
|
1007 */ |
|
1008 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
|
1009 if (phy->disable_polarity_correction) |
|
1010 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
|
1011 |
|
1012 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data); |
|
1013 if (ret_val) |
|
1014 return ret_val; |
|
1015 |
|
1016 /* SW Reset the PHY so all changes take effect */ |
|
1017 ret_val = e1000e_commit_phy(hw); |
|
1018 if (ret_val) { |
|
1019 e_dbg("Error Resetting the PHY\n"); |
|
1020 return ret_val; |
|
1021 } |
|
1022 |
|
1023 /* Bypass Rx and Tx FIFO's */ |
|
1024 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1025 E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, |
|
1026 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | |
|
1027 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); |
|
1028 if (ret_val) |
|
1029 return ret_val; |
|
1030 |
|
1031 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, |
|
1032 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, |
|
1033 &data); |
|
1034 if (ret_val) |
|
1035 return ret_val; |
|
1036 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; |
|
1037 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1038 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, |
|
1039 data); |
|
1040 if (ret_val) |
|
1041 return ret_val; |
|
1042 |
|
1043 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data); |
|
1044 if (ret_val) |
|
1045 return ret_val; |
|
1046 |
|
1047 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; |
|
1048 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data); |
|
1049 if (ret_val) |
|
1050 return ret_val; |
|
1051 |
|
1052 ctrl_ext = er32(CTRL_EXT); |
|
1053 ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); |
|
1054 ew32(CTRL_EXT, ctrl_ext); |
|
1055 |
|
1056 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); |
|
1057 if (ret_val) |
|
1058 return ret_val; |
|
1059 |
|
1060 /* |
|
1061 * Do not init these registers when the HW is in IAMT mode, since the |
|
1062 * firmware will have already initialized them. We only initialize |
|
1063 * them if the HW is not in IAMT mode. |
|
1064 */ |
|
1065 if (!e1000e_check_mng_mode(hw)) { |
|
1066 /* Enable Electrical Idle on the PHY */ |
|
1067 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; |
|
1068 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data); |
|
1069 if (ret_val) |
|
1070 return ret_val; |
|
1071 |
|
1072 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data); |
|
1073 if (ret_val) |
|
1074 return ret_val; |
|
1075 |
|
1076 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1077 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data); |
|
1078 if (ret_val) |
|
1079 return ret_val; |
|
1080 } |
|
1081 |
|
1082 /* |
|
1083 * Workaround: Disable padding in Kumeran interface in the MAC |
|
1084 * and in the PHY to avoid CRC errors. |
|
1085 */ |
|
1086 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data); |
|
1087 if (ret_val) |
|
1088 return ret_val; |
|
1089 |
|
1090 data |= GG82563_ICR_DIS_PADDING; |
|
1091 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data); |
|
1092 if (ret_val) |
|
1093 return ret_val; |
|
1094 |
|
1095 return 0; |
|
1096 } |
|
1097 |
|
1098 /** |
|
1099 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 |
|
1100 * @hw: pointer to the HW structure |
|
1101 * |
|
1102 * Essentially a wrapper for setting up all things "copper" related. |
|
1103 * This is a function pointer entry point called by the mac module. |
|
1104 **/ |
|
1105 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) |
|
1106 { |
|
1107 u32 ctrl; |
|
1108 s32 ret_val; |
|
1109 u16 reg_data; |
|
1110 |
|
1111 ctrl = er32(CTRL); |
|
1112 ctrl |= E1000_CTRL_SLU; |
|
1113 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1114 ew32(CTRL, ctrl); |
|
1115 |
|
1116 /* |
|
1117 * Set the mac to wait the maximum time between each |
|
1118 * iteration and increase the max iterations when |
|
1119 * polling the phy; this fixes erroneous timeouts at 10Mbps. |
|
1120 */ |
|
1121 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4), |
|
1122 0xFFFF); |
|
1123 if (ret_val) |
|
1124 return ret_val; |
|
1125 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), |
|
1126 ®_data); |
|
1127 if (ret_val) |
|
1128 return ret_val; |
|
1129 reg_data |= 0x3F; |
|
1130 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), |
|
1131 reg_data); |
|
1132 if (ret_val) |
|
1133 return ret_val; |
|
1134 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, |
|
1135 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
|
1136 ®_data); |
|
1137 if (ret_val) |
|
1138 return ret_val; |
|
1139 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; |
|
1140 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1141 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
|
1142 reg_data); |
|
1143 if (ret_val) |
|
1144 return ret_val; |
|
1145 |
|
1146 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); |
|
1147 if (ret_val) |
|
1148 return ret_val; |
|
1149 |
|
1150 ret_val = e1000e_setup_copper_link(hw); |
|
1151 |
|
1152 return 0; |
|
1153 } |
|
1154 |
|
1155 /** |
|
1156 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up |
|
1157 * @hw: pointer to the HW structure |
|
1158 * @duplex: current duplex setting |
|
1159 * |
|
1160 * Configure the KMRN interface by applying last minute quirks for |
|
1161 * 10/100 operation. |
|
1162 **/ |
|
1163 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) |
|
1164 { |
|
1165 s32 ret_val = 0; |
|
1166 u16 speed; |
|
1167 u16 duplex; |
|
1168 |
|
1169 if (hw->phy.media_type == e1000_media_type_copper) { |
|
1170 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed, |
|
1171 &duplex); |
|
1172 if (ret_val) |
|
1173 return ret_val; |
|
1174 |
|
1175 if (speed == SPEED_1000) |
|
1176 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); |
|
1177 else |
|
1178 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex); |
|
1179 } |
|
1180 |
|
1181 return ret_val; |
|
1182 } |
|
1183 |
|
1184 /** |
|
1185 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation |
|
1186 * @hw: pointer to the HW structure |
|
1187 * @duplex: current duplex setting |
|
1188 * |
|
1189 * Configure the KMRN interface by applying last minute quirks for |
|
1190 * 10/100 operation. |
|
1191 **/ |
|
1192 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) |
|
1193 { |
|
1194 s32 ret_val; |
|
1195 u32 tipg; |
|
1196 u32 i = 0; |
|
1197 u16 reg_data, reg_data2; |
|
1198 |
|
1199 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; |
|
1200 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1201 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
|
1202 reg_data); |
|
1203 if (ret_val) |
|
1204 return ret_val; |
|
1205 |
|
1206 /* Configure Transmit Inter-Packet Gap */ |
|
1207 tipg = er32(TIPG); |
|
1208 tipg &= ~E1000_TIPG_IPGT_MASK; |
|
1209 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; |
|
1210 ew32(TIPG, tipg); |
|
1211 |
|
1212 do { |
|
1213 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
|
1214 if (ret_val) |
|
1215 return ret_val; |
|
1216 |
|
1217 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); |
|
1218 if (ret_val) |
|
1219 return ret_val; |
|
1220 i++; |
|
1221 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); |
|
1222 |
|
1223 if (duplex == HALF_DUPLEX) |
|
1224 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1225 else |
|
1226 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1227 |
|
1228 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
|
1229 |
|
1230 return 0; |
|
1231 } |
|
1232 |
|
1233 /** |
|
1234 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation |
|
1235 * @hw: pointer to the HW structure |
|
1236 * |
|
1237 * Configure the KMRN interface by applying last minute quirks for |
|
1238 * gigabit operation. |
|
1239 **/ |
|
1240 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) |
|
1241 { |
|
1242 s32 ret_val; |
|
1243 u16 reg_data, reg_data2; |
|
1244 u32 tipg; |
|
1245 u32 i = 0; |
|
1246 |
|
1247 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; |
|
1248 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1249 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
|
1250 reg_data); |
|
1251 if (ret_val) |
|
1252 return ret_val; |
|
1253 |
|
1254 /* Configure Transmit Inter-Packet Gap */ |
|
1255 tipg = er32(TIPG); |
|
1256 tipg &= ~E1000_TIPG_IPGT_MASK; |
|
1257 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
|
1258 ew32(TIPG, tipg); |
|
1259 |
|
1260 do { |
|
1261 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
|
1262 if (ret_val) |
|
1263 return ret_val; |
|
1264 |
|
1265 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); |
|
1266 if (ret_val) |
|
1267 return ret_val; |
|
1268 i++; |
|
1269 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); |
|
1270 |
|
1271 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1272 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
|
1273 |
|
1274 return ret_val; |
|
1275 } |
|
1276 |
|
1277 /** |
|
1278 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register |
|
1279 * @hw: pointer to the HW structure |
|
1280 * @offset: register offset to be read |
|
1281 * @data: pointer to the read data |
|
1282 * |
|
1283 * Acquire semaphore, then read the PHY register at offset |
|
1284 * using the kumeran interface. The information retrieved is stored in data. |
|
1285 * Release the semaphore before exiting. |
|
1286 **/ |
|
1287 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
1288 u16 *data) |
|
1289 { |
|
1290 u32 kmrnctrlsta; |
|
1291 s32 ret_val = 0; |
|
1292 |
|
1293 ret_val = e1000_acquire_mac_csr_80003es2lan(hw); |
|
1294 if (ret_val) |
|
1295 return ret_val; |
|
1296 |
|
1297 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
|
1298 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; |
|
1299 ew32(KMRNCTRLSTA, kmrnctrlsta); |
|
1300 |
|
1301 udelay(2); |
|
1302 |
|
1303 kmrnctrlsta = er32(KMRNCTRLSTA); |
|
1304 *data = (u16)kmrnctrlsta; |
|
1305 |
|
1306 e1000_release_mac_csr_80003es2lan(hw); |
|
1307 |
|
1308 return ret_val; |
|
1309 } |
|
1310 |
|
1311 /** |
|
1312 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register |
|
1313 * @hw: pointer to the HW structure |
|
1314 * @offset: register offset to write to |
|
1315 * @data: data to write at register offset |
|
1316 * |
|
1317 * Acquire semaphore, then write the data to PHY register |
|
1318 * at the offset using the kumeran interface. Release semaphore |
|
1319 * before exiting. |
|
1320 **/ |
|
1321 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
1322 u16 data) |
|
1323 { |
|
1324 u32 kmrnctrlsta; |
|
1325 s32 ret_val = 0; |
|
1326 |
|
1327 ret_val = e1000_acquire_mac_csr_80003es2lan(hw); |
|
1328 if (ret_val) |
|
1329 return ret_val; |
|
1330 |
|
1331 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
|
1332 E1000_KMRNCTRLSTA_OFFSET) | data; |
|
1333 ew32(KMRNCTRLSTA, kmrnctrlsta); |
|
1334 |
|
1335 udelay(2); |
|
1336 |
|
1337 e1000_release_mac_csr_80003es2lan(hw); |
|
1338 |
|
1339 return ret_val; |
|
1340 } |
|
1341 |
|
1342 /** |
|
1343 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down |
|
1344 * @hw: pointer to the HW structure |
|
1345 * |
|
1346 * In the case of a PHY power down to save power, or to turn off link during a |
|
1347 * driver unload, or wake on lan is not enabled, remove the link. |
|
1348 **/ |
|
1349 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) |
|
1350 { |
|
1351 /* If the management interface is not enabled, then power down */ |
|
1352 if (!(hw->mac.ops.check_mng_mode(hw) || |
|
1353 hw->phy.ops.check_reset_block(hw))) |
|
1354 e1000_power_down_phy_copper(hw); |
|
1355 |
|
1356 return; |
|
1357 } |
|
1358 |
|
1359 /** |
|
1360 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters |
|
1361 * @hw: pointer to the HW structure |
|
1362 * |
|
1363 * Clears the hardware counters by reading the counter registers. |
|
1364 **/ |
|
1365 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) |
|
1366 { |
|
1367 e1000e_clear_hw_cntrs_base(hw); |
|
1368 |
|
1369 er32(PRC64); |
|
1370 er32(PRC127); |
|
1371 er32(PRC255); |
|
1372 er32(PRC511); |
|
1373 er32(PRC1023); |
|
1374 er32(PRC1522); |
|
1375 er32(PTC64); |
|
1376 er32(PTC127); |
|
1377 er32(PTC255); |
|
1378 er32(PTC511); |
|
1379 er32(PTC1023); |
|
1380 er32(PTC1522); |
|
1381 |
|
1382 er32(ALGNERRC); |
|
1383 er32(RXERRC); |
|
1384 er32(TNCRS); |
|
1385 er32(CEXTERR); |
|
1386 er32(TSCTC); |
|
1387 er32(TSCTFC); |
|
1388 |
|
1389 er32(MGTPRC); |
|
1390 er32(MGTPDC); |
|
1391 er32(MGTPTC); |
|
1392 |
|
1393 er32(IAC); |
|
1394 er32(ICRXOC); |
|
1395 |
|
1396 er32(ICRXPTC); |
|
1397 er32(ICRXATC); |
|
1398 er32(ICTXPTC); |
|
1399 er32(ICTXATC); |
|
1400 er32(ICTXQEC); |
|
1401 er32(ICTXQMTC); |
|
1402 er32(ICRXDMTC); |
|
1403 } |
|
1404 |
|
1405 static struct e1000_mac_operations es2_mac_ops = { |
|
1406 .id_led_init = e1000e_id_led_init, |
|
1407 .check_mng_mode = e1000e_check_mng_mode_generic, |
|
1408 /* check_for_link dependent on media type */ |
|
1409 .cleanup_led = e1000e_cleanup_led_generic, |
|
1410 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan, |
|
1411 .get_bus_info = e1000e_get_bus_info_pcie, |
|
1412 .get_link_up_info = e1000_get_link_up_info_80003es2lan, |
|
1413 .led_on = e1000e_led_on_generic, |
|
1414 .led_off = e1000e_led_off_generic, |
|
1415 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, |
|
1416 .write_vfta = e1000_write_vfta_generic, |
|
1417 .clear_vfta = e1000_clear_vfta_generic, |
|
1418 .reset_hw = e1000_reset_hw_80003es2lan, |
|
1419 .init_hw = e1000_init_hw_80003es2lan, |
|
1420 .setup_link = e1000e_setup_link, |
|
1421 /* setup_physical_interface dependent on media type */ |
|
1422 .setup_led = e1000e_setup_led_generic, |
|
1423 }; |
|
1424 |
|
1425 static struct e1000_phy_operations es2_phy_ops = { |
|
1426 .acquire = e1000_acquire_phy_80003es2lan, |
|
1427 .check_polarity = e1000_check_polarity_m88, |
|
1428 .check_reset_block = e1000e_check_reset_block_generic, |
|
1429 .commit = e1000e_phy_sw_reset, |
|
1430 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan, |
|
1431 .get_cfg_done = e1000_get_cfg_done_80003es2lan, |
|
1432 .get_cable_length = e1000_get_cable_length_80003es2lan, |
|
1433 .get_info = e1000e_get_phy_info_m88, |
|
1434 .read_reg = e1000_read_phy_reg_gg82563_80003es2lan, |
|
1435 .release = e1000_release_phy_80003es2lan, |
|
1436 .reset = e1000e_phy_hw_reset_generic, |
|
1437 .set_d0_lplu_state = NULL, |
|
1438 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1439 .write_reg = e1000_write_phy_reg_gg82563_80003es2lan, |
|
1440 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan, |
|
1441 }; |
|
1442 |
|
1443 static struct e1000_nvm_operations es2_nvm_ops = { |
|
1444 .acquire = e1000_acquire_nvm_80003es2lan, |
|
1445 .read = e1000e_read_nvm_eerd, |
|
1446 .release = e1000_release_nvm_80003es2lan, |
|
1447 .update = e1000e_update_nvm_checksum_generic, |
|
1448 .valid_led_default = e1000e_valid_led_default, |
|
1449 .validate = e1000e_validate_nvm_checksum_generic, |
|
1450 .write = e1000_write_nvm_80003es2lan, |
|
1451 }; |
|
1452 |
|
1453 struct e1000_info e1000_es2_info = { |
|
1454 .mac = e1000_80003es2lan, |
|
1455 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1456 | FLAG_HAS_JUMBO_FRAMES |
|
1457 | FLAG_HAS_WOL |
|
1458 | FLAG_APME_IN_CTRL3 |
|
1459 | FLAG_RX_CSUM_ENABLED |
|
1460 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
1461 | FLAG_RX_NEEDS_RESTART /* errata */ |
|
1462 | FLAG_TARC_SET_BIT_ZERO /* errata */ |
|
1463 | FLAG_APME_CHECK_PORT_B |
|
1464 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ |
|
1465 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN, |
|
1466 .pba = 38, |
|
1467 .max_hw_frame_size = DEFAULT_JUMBO, |
|
1468 .get_variants = e1000_get_variants_80003es2lan, |
|
1469 .mac_ops = &es2_mac_ops, |
|
1470 .phy_ops = &es2_phy_ops, |
|
1471 .nvm_ops = &es2_nvm_ops, |
|
1472 }; |
|
1473 |