|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 */ |
|
28 |
|
29 /* e1000_hw.c |
|
30 * Shared functions for accessing and configuring the MAC |
|
31 */ |
|
32 |
|
33 #include "e1000.h" |
|
34 |
|
35 static s32 e1000_check_downshift(struct e1000_hw *hw); |
|
36 static s32 e1000_check_polarity(struct e1000_hw *hw, |
|
37 e1000_rev_polarity *polarity); |
|
38 static void e1000_clear_hw_cntrs(struct e1000_hw *hw); |
|
39 static void e1000_clear_vfta(struct e1000_hw *hw); |
|
40 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, |
|
41 bool link_up); |
|
42 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); |
|
43 static s32 e1000_detect_gig_phy(struct e1000_hw *hw); |
|
44 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); |
|
45 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
|
46 u16 *max_length); |
|
47 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); |
|
48 static s32 e1000_id_led_init(struct e1000_hw *hw); |
|
49 static void e1000_init_rx_addrs(struct e1000_hw *hw); |
|
50 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
|
51 struct e1000_phy_info *phy_info); |
|
52 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
|
53 struct e1000_phy_info *phy_info); |
|
54 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); |
|
55 static s32 e1000_wait_autoneg(struct e1000_hw *hw); |
|
56 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); |
|
57 static s32 e1000_set_phy_type(struct e1000_hw *hw); |
|
58 static void e1000_phy_init_script(struct e1000_hw *hw); |
|
59 static s32 e1000_setup_copper_link(struct e1000_hw *hw); |
|
60 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); |
|
61 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); |
|
62 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); |
|
63 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); |
|
64 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
|
65 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
|
66 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); |
|
67 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); |
|
68 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); |
|
69 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, |
|
70 u16 words, u16 *data); |
|
71 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
|
72 u16 words, u16 *data); |
|
73 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); |
|
74 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); |
|
75 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); |
|
76 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); |
|
77 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
|
78 u16 phy_data); |
|
79 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
|
80 u16 *phy_data); |
|
81 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); |
|
82 static s32 e1000_acquire_eeprom(struct e1000_hw *hw); |
|
83 static void e1000_release_eeprom(struct e1000_hw *hw); |
|
84 static void e1000_standby_eeprom(struct e1000_hw *hw); |
|
85 static s32 e1000_set_vco_speed(struct e1000_hw *hw); |
|
86 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
|
87 static s32 e1000_set_phy_mode(struct e1000_hw *hw); |
|
88 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
|
89 u16 *data); |
|
90 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
|
91 u16 *data); |
|
92 |
|
93 /* IGP cable length table */ |
|
94 static const |
|
95 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { |
|
96 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
|
97 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, |
|
98 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, |
|
99 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, |
|
100 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, |
|
101 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, |
|
102 100, |
|
103 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
|
104 110, 110, |
|
105 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, |
|
106 120, 120 |
|
107 }; |
|
108 |
|
109 static DEFINE_SPINLOCK(e1000_eeprom_lock); |
|
110 |
|
111 /** |
|
112 * e1000_set_phy_type - Set the phy type member in the hw struct. |
|
113 * @hw: Struct containing variables accessed by shared code |
|
114 */ |
|
115 static s32 e1000_set_phy_type(struct e1000_hw *hw) |
|
116 { |
|
117 e_dbg("e1000_set_phy_type"); |
|
118 |
|
119 if (hw->mac_type == e1000_undefined) |
|
120 return -E1000_ERR_PHY_TYPE; |
|
121 |
|
122 switch (hw->phy_id) { |
|
123 case M88E1000_E_PHY_ID: |
|
124 case M88E1000_I_PHY_ID: |
|
125 case M88E1011_I_PHY_ID: |
|
126 case M88E1111_I_PHY_ID: |
|
127 case M88E1118_E_PHY_ID: |
|
128 hw->phy_type = e1000_phy_m88; |
|
129 break; |
|
130 case IGP01E1000_I_PHY_ID: |
|
131 if (hw->mac_type == e1000_82541 || |
|
132 hw->mac_type == e1000_82541_rev_2 || |
|
133 hw->mac_type == e1000_82547 || |
|
134 hw->mac_type == e1000_82547_rev_2) |
|
135 hw->phy_type = e1000_phy_igp; |
|
136 break; |
|
137 case RTL8211B_PHY_ID: |
|
138 hw->phy_type = e1000_phy_8211; |
|
139 break; |
|
140 case RTL8201N_PHY_ID: |
|
141 hw->phy_type = e1000_phy_8201; |
|
142 break; |
|
143 default: |
|
144 /* Should never have loaded on this device */ |
|
145 hw->phy_type = e1000_phy_undefined; |
|
146 return -E1000_ERR_PHY_TYPE; |
|
147 } |
|
148 |
|
149 return E1000_SUCCESS; |
|
150 } |
|
151 |
|
152 /** |
|
153 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY |
|
154 * @hw: Struct containing variables accessed by shared code |
|
155 */ |
|
156 static void e1000_phy_init_script(struct e1000_hw *hw) |
|
157 { |
|
158 u32 ret_val; |
|
159 u16 phy_saved_data; |
|
160 |
|
161 e_dbg("e1000_phy_init_script"); |
|
162 |
|
163 if (hw->phy_init_script) { |
|
164 msleep(20); |
|
165 |
|
166 /* Save off the current value of register 0x2F5B to be restored at |
|
167 * the end of this routine. */ |
|
168 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
|
169 |
|
170 /* Disabled the PHY transmitter */ |
|
171 e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
|
172 msleep(20); |
|
173 |
|
174 e1000_write_phy_reg(hw, 0x0000, 0x0140); |
|
175 msleep(5); |
|
176 |
|
177 switch (hw->mac_type) { |
|
178 case e1000_82541: |
|
179 case e1000_82547: |
|
180 e1000_write_phy_reg(hw, 0x1F95, 0x0001); |
|
181 e1000_write_phy_reg(hw, 0x1F71, 0xBD21); |
|
182 e1000_write_phy_reg(hw, 0x1F79, 0x0018); |
|
183 e1000_write_phy_reg(hw, 0x1F30, 0x1600); |
|
184 e1000_write_phy_reg(hw, 0x1F31, 0x0014); |
|
185 e1000_write_phy_reg(hw, 0x1F32, 0x161C); |
|
186 e1000_write_phy_reg(hw, 0x1F94, 0x0003); |
|
187 e1000_write_phy_reg(hw, 0x1F96, 0x003F); |
|
188 e1000_write_phy_reg(hw, 0x2010, 0x0008); |
|
189 break; |
|
190 |
|
191 case e1000_82541_rev_2: |
|
192 case e1000_82547_rev_2: |
|
193 e1000_write_phy_reg(hw, 0x1F73, 0x0099); |
|
194 break; |
|
195 default: |
|
196 break; |
|
197 } |
|
198 |
|
199 e1000_write_phy_reg(hw, 0x0000, 0x3300); |
|
200 msleep(20); |
|
201 |
|
202 /* Now enable the transmitter */ |
|
203 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
|
204 |
|
205 if (hw->mac_type == e1000_82547) { |
|
206 u16 fused, fine, coarse; |
|
207 |
|
208 /* Move to analog registers page */ |
|
209 e1000_read_phy_reg(hw, |
|
210 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, |
|
211 &fused); |
|
212 |
|
213 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { |
|
214 e1000_read_phy_reg(hw, |
|
215 IGP01E1000_ANALOG_FUSE_STATUS, |
|
216 &fused); |
|
217 |
|
218 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; |
|
219 coarse = |
|
220 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; |
|
221 |
|
222 if (coarse > |
|
223 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { |
|
224 coarse -= |
|
225 IGP01E1000_ANALOG_FUSE_COARSE_10; |
|
226 fine -= IGP01E1000_ANALOG_FUSE_FINE_1; |
|
227 } else if (coarse == |
|
228 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) |
|
229 fine -= IGP01E1000_ANALOG_FUSE_FINE_10; |
|
230 |
|
231 fused = |
|
232 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | |
|
233 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | |
|
234 (coarse & |
|
235 IGP01E1000_ANALOG_FUSE_COARSE_MASK); |
|
236 |
|
237 e1000_write_phy_reg(hw, |
|
238 IGP01E1000_ANALOG_FUSE_CONTROL, |
|
239 fused); |
|
240 e1000_write_phy_reg(hw, |
|
241 IGP01E1000_ANALOG_FUSE_BYPASS, |
|
242 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); |
|
243 } |
|
244 } |
|
245 } |
|
246 } |
|
247 |
|
248 /** |
|
249 * e1000_set_mac_type - Set the mac type member in the hw struct. |
|
250 * @hw: Struct containing variables accessed by shared code |
|
251 */ |
|
252 s32 e1000_set_mac_type(struct e1000_hw *hw) |
|
253 { |
|
254 e_dbg("e1000_set_mac_type"); |
|
255 |
|
256 switch (hw->device_id) { |
|
257 case E1000_DEV_ID_82542: |
|
258 switch (hw->revision_id) { |
|
259 case E1000_82542_2_0_REV_ID: |
|
260 hw->mac_type = e1000_82542_rev2_0; |
|
261 break; |
|
262 case E1000_82542_2_1_REV_ID: |
|
263 hw->mac_type = e1000_82542_rev2_1; |
|
264 break; |
|
265 default: |
|
266 /* Invalid 82542 revision ID */ |
|
267 return -E1000_ERR_MAC_TYPE; |
|
268 } |
|
269 break; |
|
270 case E1000_DEV_ID_82543GC_FIBER: |
|
271 case E1000_DEV_ID_82543GC_COPPER: |
|
272 hw->mac_type = e1000_82543; |
|
273 break; |
|
274 case E1000_DEV_ID_82544EI_COPPER: |
|
275 case E1000_DEV_ID_82544EI_FIBER: |
|
276 case E1000_DEV_ID_82544GC_COPPER: |
|
277 case E1000_DEV_ID_82544GC_LOM: |
|
278 hw->mac_type = e1000_82544; |
|
279 break; |
|
280 case E1000_DEV_ID_82540EM: |
|
281 case E1000_DEV_ID_82540EM_LOM: |
|
282 case E1000_DEV_ID_82540EP: |
|
283 case E1000_DEV_ID_82540EP_LOM: |
|
284 case E1000_DEV_ID_82540EP_LP: |
|
285 hw->mac_type = e1000_82540; |
|
286 break; |
|
287 case E1000_DEV_ID_82545EM_COPPER: |
|
288 case E1000_DEV_ID_82545EM_FIBER: |
|
289 hw->mac_type = e1000_82545; |
|
290 break; |
|
291 case E1000_DEV_ID_82545GM_COPPER: |
|
292 case E1000_DEV_ID_82545GM_FIBER: |
|
293 case E1000_DEV_ID_82545GM_SERDES: |
|
294 hw->mac_type = e1000_82545_rev_3; |
|
295 break; |
|
296 case E1000_DEV_ID_82546EB_COPPER: |
|
297 case E1000_DEV_ID_82546EB_FIBER: |
|
298 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
299 hw->mac_type = e1000_82546; |
|
300 break; |
|
301 case E1000_DEV_ID_82546GB_COPPER: |
|
302 case E1000_DEV_ID_82546GB_FIBER: |
|
303 case E1000_DEV_ID_82546GB_SERDES: |
|
304 case E1000_DEV_ID_82546GB_PCIE: |
|
305 case E1000_DEV_ID_82546GB_QUAD_COPPER: |
|
306 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
307 hw->mac_type = e1000_82546_rev_3; |
|
308 break; |
|
309 case E1000_DEV_ID_82541EI: |
|
310 case E1000_DEV_ID_82541EI_MOBILE: |
|
311 case E1000_DEV_ID_82541ER_LOM: |
|
312 hw->mac_type = e1000_82541; |
|
313 break; |
|
314 case E1000_DEV_ID_82541ER: |
|
315 case E1000_DEV_ID_82541GI: |
|
316 case E1000_DEV_ID_82541GI_LF: |
|
317 case E1000_DEV_ID_82541GI_MOBILE: |
|
318 hw->mac_type = e1000_82541_rev_2; |
|
319 break; |
|
320 case E1000_DEV_ID_82547EI: |
|
321 case E1000_DEV_ID_82547EI_MOBILE: |
|
322 hw->mac_type = e1000_82547; |
|
323 break; |
|
324 case E1000_DEV_ID_82547GI: |
|
325 hw->mac_type = e1000_82547_rev_2; |
|
326 break; |
|
327 case E1000_DEV_ID_INTEL_CE4100_GBE: |
|
328 hw->mac_type = e1000_ce4100; |
|
329 break; |
|
330 default: |
|
331 /* Should never have loaded on this device */ |
|
332 return -E1000_ERR_MAC_TYPE; |
|
333 } |
|
334 |
|
335 switch (hw->mac_type) { |
|
336 case e1000_82541: |
|
337 case e1000_82547: |
|
338 case e1000_82541_rev_2: |
|
339 case e1000_82547_rev_2: |
|
340 hw->asf_firmware_present = true; |
|
341 break; |
|
342 default: |
|
343 break; |
|
344 } |
|
345 |
|
346 /* The 82543 chip does not count tx_carrier_errors properly in |
|
347 * FD mode |
|
348 */ |
|
349 if (hw->mac_type == e1000_82543) |
|
350 hw->bad_tx_carr_stats_fd = true; |
|
351 |
|
352 if (hw->mac_type > e1000_82544) |
|
353 hw->has_smbus = true; |
|
354 |
|
355 return E1000_SUCCESS; |
|
356 } |
|
357 |
|
358 /** |
|
359 * e1000_set_media_type - Set media type and TBI compatibility. |
|
360 * @hw: Struct containing variables accessed by shared code |
|
361 */ |
|
362 void e1000_set_media_type(struct e1000_hw *hw) |
|
363 { |
|
364 u32 status; |
|
365 |
|
366 e_dbg("e1000_set_media_type"); |
|
367 |
|
368 if (hw->mac_type != e1000_82543) { |
|
369 /* tbi_compatibility is only valid on 82543 */ |
|
370 hw->tbi_compatibility_en = false; |
|
371 } |
|
372 |
|
373 switch (hw->device_id) { |
|
374 case E1000_DEV_ID_82545GM_SERDES: |
|
375 case E1000_DEV_ID_82546GB_SERDES: |
|
376 hw->media_type = e1000_media_type_internal_serdes; |
|
377 break; |
|
378 default: |
|
379 switch (hw->mac_type) { |
|
380 case e1000_82542_rev2_0: |
|
381 case e1000_82542_rev2_1: |
|
382 hw->media_type = e1000_media_type_fiber; |
|
383 break; |
|
384 case e1000_ce4100: |
|
385 hw->media_type = e1000_media_type_copper; |
|
386 break; |
|
387 default: |
|
388 status = er32(STATUS); |
|
389 if (status & E1000_STATUS_TBIMODE) { |
|
390 hw->media_type = e1000_media_type_fiber; |
|
391 /* tbi_compatibility not valid on fiber */ |
|
392 hw->tbi_compatibility_en = false; |
|
393 } else { |
|
394 hw->media_type = e1000_media_type_copper; |
|
395 } |
|
396 break; |
|
397 } |
|
398 } |
|
399 } |
|
400 |
|
401 /** |
|
402 * e1000_reset_hw - reset the hardware completely |
|
403 * @hw: Struct containing variables accessed by shared code |
|
404 * |
|
405 * Reset the transmit and receive units; mask and clear all interrupts. |
|
406 */ |
|
407 s32 e1000_reset_hw(struct e1000_hw *hw) |
|
408 { |
|
409 u32 ctrl; |
|
410 u32 ctrl_ext; |
|
411 u32 icr; |
|
412 u32 manc; |
|
413 u32 led_ctrl; |
|
414 s32 ret_val; |
|
415 |
|
416 e_dbg("e1000_reset_hw"); |
|
417 |
|
418 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
|
419 if (hw->mac_type == e1000_82542_rev2_0) { |
|
420 e_dbg("Disabling MWI on 82542 rev 2.0\n"); |
|
421 e1000_pci_clear_mwi(hw); |
|
422 } |
|
423 |
|
424 /* Clear interrupt mask to stop board from generating interrupts */ |
|
425 e_dbg("Masking off all interrupts\n"); |
|
426 ew32(IMC, 0xffffffff); |
|
427 |
|
428 /* Disable the Transmit and Receive units. Then delay to allow |
|
429 * any pending transactions to complete before we hit the MAC with |
|
430 * the global reset. |
|
431 */ |
|
432 ew32(RCTL, 0); |
|
433 ew32(TCTL, E1000_TCTL_PSP); |
|
434 E1000_WRITE_FLUSH(); |
|
435 |
|
436 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
|
437 hw->tbi_compatibility_on = false; |
|
438 |
|
439 /* Delay to allow any outstanding PCI transactions to complete before |
|
440 * resetting the device |
|
441 */ |
|
442 msleep(10); |
|
443 |
|
444 ctrl = er32(CTRL); |
|
445 |
|
446 /* Must reset the PHY before resetting the MAC */ |
|
447 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
448 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); |
|
449 E1000_WRITE_FLUSH(); |
|
450 msleep(5); |
|
451 } |
|
452 |
|
453 /* Issue a global reset to the MAC. This will reset the chip's |
|
454 * transmit, receive, DMA, and link units. It will not effect |
|
455 * the current PCI configuration. The global reset bit is self- |
|
456 * clearing, and should clear within a microsecond. |
|
457 */ |
|
458 e_dbg("Issuing a global reset to MAC\n"); |
|
459 |
|
460 switch (hw->mac_type) { |
|
461 case e1000_82544: |
|
462 case e1000_82540: |
|
463 case e1000_82545: |
|
464 case e1000_82546: |
|
465 case e1000_82541: |
|
466 case e1000_82541_rev_2: |
|
467 /* These controllers can't ack the 64-bit write when issuing the |
|
468 * reset, so use IO-mapping as a workaround to issue the reset */ |
|
469 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
|
470 break; |
|
471 case e1000_82545_rev_3: |
|
472 case e1000_82546_rev_3: |
|
473 /* Reset is performed on a shadow of the control register */ |
|
474 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
|
475 break; |
|
476 case e1000_ce4100: |
|
477 default: |
|
478 ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
|
479 break; |
|
480 } |
|
481 |
|
482 /* After MAC reset, force reload of EEPROM to restore power-on settings to |
|
483 * device. Later controllers reload the EEPROM automatically, so just wait |
|
484 * for reload to complete. |
|
485 */ |
|
486 switch (hw->mac_type) { |
|
487 case e1000_82542_rev2_0: |
|
488 case e1000_82542_rev2_1: |
|
489 case e1000_82543: |
|
490 case e1000_82544: |
|
491 /* Wait for reset to complete */ |
|
492 udelay(10); |
|
493 ctrl_ext = er32(CTRL_EXT); |
|
494 ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
|
495 ew32(CTRL_EXT, ctrl_ext); |
|
496 E1000_WRITE_FLUSH(); |
|
497 /* Wait for EEPROM reload */ |
|
498 msleep(2); |
|
499 break; |
|
500 case e1000_82541: |
|
501 case e1000_82541_rev_2: |
|
502 case e1000_82547: |
|
503 case e1000_82547_rev_2: |
|
504 /* Wait for EEPROM reload */ |
|
505 msleep(20); |
|
506 break; |
|
507 default: |
|
508 /* Auto read done will delay 5ms or poll based on mac type */ |
|
509 ret_val = e1000_get_auto_rd_done(hw); |
|
510 if (ret_val) |
|
511 return ret_val; |
|
512 break; |
|
513 } |
|
514 |
|
515 /* Disable HW ARPs on ASF enabled adapters */ |
|
516 if (hw->mac_type >= e1000_82540) { |
|
517 manc = er32(MANC); |
|
518 manc &= ~(E1000_MANC_ARP_EN); |
|
519 ew32(MANC, manc); |
|
520 } |
|
521 |
|
522 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
523 e1000_phy_init_script(hw); |
|
524 |
|
525 /* Configure activity LED after PHY reset */ |
|
526 led_ctrl = er32(LEDCTL); |
|
527 led_ctrl &= IGP_ACTIVITY_LED_MASK; |
|
528 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
|
529 ew32(LEDCTL, led_ctrl); |
|
530 } |
|
531 |
|
532 /* Clear interrupt mask to stop board from generating interrupts */ |
|
533 e_dbg("Masking off all interrupts\n"); |
|
534 ew32(IMC, 0xffffffff); |
|
535 |
|
536 /* Clear any pending interrupt events. */ |
|
537 icr = er32(ICR); |
|
538 |
|
539 /* If MWI was previously enabled, reenable it. */ |
|
540 if (hw->mac_type == e1000_82542_rev2_0) { |
|
541 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
542 e1000_pci_set_mwi(hw); |
|
543 } |
|
544 |
|
545 return E1000_SUCCESS; |
|
546 } |
|
547 |
|
548 /** |
|
549 * e1000_init_hw - Performs basic configuration of the adapter. |
|
550 * @hw: Struct containing variables accessed by shared code |
|
551 * |
|
552 * Assumes that the controller has previously been reset and is in a |
|
553 * post-reset uninitialized state. Initializes the receive address registers, |
|
554 * multicast table, and VLAN filter table. Calls routines to setup link |
|
555 * configuration and flow control settings. Clears all on-chip counters. Leaves |
|
556 * the transmit and receive units disabled and uninitialized. |
|
557 */ |
|
558 s32 e1000_init_hw(struct e1000_hw *hw) |
|
559 { |
|
560 u32 ctrl; |
|
561 u32 i; |
|
562 s32 ret_val; |
|
563 u32 mta_size; |
|
564 u32 ctrl_ext; |
|
565 |
|
566 e_dbg("e1000_init_hw"); |
|
567 |
|
568 /* Initialize Identification LED */ |
|
569 ret_val = e1000_id_led_init(hw); |
|
570 if (ret_val) { |
|
571 e_dbg("Error Initializing Identification LED\n"); |
|
572 return ret_val; |
|
573 } |
|
574 |
|
575 /* Set the media type and TBI compatibility */ |
|
576 e1000_set_media_type(hw); |
|
577 |
|
578 /* Disabling VLAN filtering. */ |
|
579 e_dbg("Initializing the IEEE VLAN\n"); |
|
580 if (hw->mac_type < e1000_82545_rev_3) |
|
581 ew32(VET, 0); |
|
582 e1000_clear_vfta(hw); |
|
583 |
|
584 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
|
585 if (hw->mac_type == e1000_82542_rev2_0) { |
|
586 e_dbg("Disabling MWI on 82542 rev 2.0\n"); |
|
587 e1000_pci_clear_mwi(hw); |
|
588 ew32(RCTL, E1000_RCTL_RST); |
|
589 E1000_WRITE_FLUSH(); |
|
590 msleep(5); |
|
591 } |
|
592 |
|
593 /* Setup the receive address. This involves initializing all of the Receive |
|
594 * Address Registers (RARs 0 - 15). |
|
595 */ |
|
596 e1000_init_rx_addrs(hw); |
|
597 |
|
598 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
|
599 if (hw->mac_type == e1000_82542_rev2_0) { |
|
600 ew32(RCTL, 0); |
|
601 E1000_WRITE_FLUSH(); |
|
602 msleep(1); |
|
603 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
604 e1000_pci_set_mwi(hw); |
|
605 } |
|
606 |
|
607 /* Zero out the Multicast HASH table */ |
|
608 e_dbg("Zeroing the MTA\n"); |
|
609 mta_size = E1000_MC_TBL_SIZE; |
|
610 for (i = 0; i < mta_size; i++) { |
|
611 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
|
612 /* use write flush to prevent Memory Write Block (MWB) from |
|
613 * occurring when accessing our register space */ |
|
614 E1000_WRITE_FLUSH(); |
|
615 } |
|
616 |
|
617 /* Set the PCI priority bit correctly in the CTRL register. This |
|
618 * determines if the adapter gives priority to receives, or if it |
|
619 * gives equal priority to transmits and receives. Valid only on |
|
620 * 82542 and 82543 silicon. |
|
621 */ |
|
622 if (hw->dma_fairness && hw->mac_type <= e1000_82543) { |
|
623 ctrl = er32(CTRL); |
|
624 ew32(CTRL, ctrl | E1000_CTRL_PRIOR); |
|
625 } |
|
626 |
|
627 switch (hw->mac_type) { |
|
628 case e1000_82545_rev_3: |
|
629 case e1000_82546_rev_3: |
|
630 break; |
|
631 default: |
|
632 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
|
633 if (hw->bus_type == e1000_bus_type_pcix |
|
634 && e1000_pcix_get_mmrbc(hw) > 2048) |
|
635 e1000_pcix_set_mmrbc(hw, 2048); |
|
636 break; |
|
637 } |
|
638 |
|
639 /* Call a subroutine to configure the link and setup flow control. */ |
|
640 ret_val = e1000_setup_link(hw); |
|
641 |
|
642 /* Set the transmit descriptor write-back policy */ |
|
643 if (hw->mac_type > e1000_82544) { |
|
644 ctrl = er32(TXDCTL); |
|
645 ctrl = |
|
646 (ctrl & ~E1000_TXDCTL_WTHRESH) | |
|
647 E1000_TXDCTL_FULL_TX_DESC_WB; |
|
648 ew32(TXDCTL, ctrl); |
|
649 } |
|
650 |
|
651 /* Clear all of the statistics registers (clear on read). It is |
|
652 * important that we do this after we have tried to establish link |
|
653 * because the symbol error count will increment wildly if there |
|
654 * is no link. |
|
655 */ |
|
656 e1000_clear_hw_cntrs(hw); |
|
657 |
|
658 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
|
659 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
|
660 ctrl_ext = er32(CTRL_EXT); |
|
661 /* Relaxed ordering must be disabled to avoid a parity |
|
662 * error crash in a PCI slot. */ |
|
663 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
|
664 ew32(CTRL_EXT, ctrl_ext); |
|
665 } |
|
666 |
|
667 return ret_val; |
|
668 } |
|
669 |
|
670 /** |
|
671 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. |
|
672 * @hw: Struct containing variables accessed by shared code. |
|
673 */ |
|
674 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) |
|
675 { |
|
676 u16 eeprom_data; |
|
677 s32 ret_val; |
|
678 |
|
679 e_dbg("e1000_adjust_serdes_amplitude"); |
|
680 |
|
681 if (hw->media_type != e1000_media_type_internal_serdes) |
|
682 return E1000_SUCCESS; |
|
683 |
|
684 switch (hw->mac_type) { |
|
685 case e1000_82545_rev_3: |
|
686 case e1000_82546_rev_3: |
|
687 break; |
|
688 default: |
|
689 return E1000_SUCCESS; |
|
690 } |
|
691 |
|
692 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, |
|
693 &eeprom_data); |
|
694 if (ret_val) { |
|
695 return ret_val; |
|
696 } |
|
697 |
|
698 if (eeprom_data != EEPROM_RESERVED_WORD) { |
|
699 /* Adjust SERDES output amplitude only. */ |
|
700 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; |
|
701 ret_val = |
|
702 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); |
|
703 if (ret_val) |
|
704 return ret_val; |
|
705 } |
|
706 |
|
707 return E1000_SUCCESS; |
|
708 } |
|
709 |
|
710 /** |
|
711 * e1000_setup_link - Configures flow control and link settings. |
|
712 * @hw: Struct containing variables accessed by shared code |
|
713 * |
|
714 * Determines which flow control settings to use. Calls the appropriate media- |
|
715 * specific link configuration function. Configures the flow control settings. |
|
716 * Assuming the adapter has a valid link partner, a valid link should be |
|
717 * established. Assumes the hardware has previously been reset and the |
|
718 * transmitter and receiver are not enabled. |
|
719 */ |
|
720 s32 e1000_setup_link(struct e1000_hw *hw) |
|
721 { |
|
722 u32 ctrl_ext; |
|
723 s32 ret_val; |
|
724 u16 eeprom_data; |
|
725 |
|
726 e_dbg("e1000_setup_link"); |
|
727 |
|
728 /* Read and store word 0x0F of the EEPROM. This word contains bits |
|
729 * that determine the hardware's default PAUSE (flow control) mode, |
|
730 * a bit that determines whether the HW defaults to enabling or |
|
731 * disabling auto-negotiation, and the direction of the |
|
732 * SW defined pins. If there is no SW over-ride of the flow |
|
733 * control setting, then the variable hw->fc will |
|
734 * be initialized based on a value in the EEPROM. |
|
735 */ |
|
736 if (hw->fc == E1000_FC_DEFAULT) { |
|
737 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
|
738 1, &eeprom_data); |
|
739 if (ret_val) { |
|
740 e_dbg("EEPROM Read Error\n"); |
|
741 return -E1000_ERR_EEPROM; |
|
742 } |
|
743 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
|
744 hw->fc = E1000_FC_NONE; |
|
745 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
|
746 EEPROM_WORD0F_ASM_DIR) |
|
747 hw->fc = E1000_FC_TX_PAUSE; |
|
748 else |
|
749 hw->fc = E1000_FC_FULL; |
|
750 } |
|
751 |
|
752 /* We want to save off the original Flow Control configuration just |
|
753 * in case we get disconnected and then reconnected into a different |
|
754 * hub or switch with different Flow Control capabilities. |
|
755 */ |
|
756 if (hw->mac_type == e1000_82542_rev2_0) |
|
757 hw->fc &= (~E1000_FC_TX_PAUSE); |
|
758 |
|
759 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
|
760 hw->fc &= (~E1000_FC_RX_PAUSE); |
|
761 |
|
762 hw->original_fc = hw->fc; |
|
763 |
|
764 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc); |
|
765 |
|
766 /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
|
767 * polarity value for the SW controlled pins, and setup the |
|
768 * Extended Device Control reg with that info. |
|
769 * This is needed because one of the SW controlled pins is used for |
|
770 * signal detection. So this should be done before e1000_setup_pcs_link() |
|
771 * or e1000_phy_setup() is called. |
|
772 */ |
|
773 if (hw->mac_type == e1000_82543) { |
|
774 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
|
775 1, &eeprom_data); |
|
776 if (ret_val) { |
|
777 e_dbg("EEPROM Read Error\n"); |
|
778 return -E1000_ERR_EEPROM; |
|
779 } |
|
780 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
|
781 SWDPIO__EXT_SHIFT); |
|
782 ew32(CTRL_EXT, ctrl_ext); |
|
783 } |
|
784 |
|
785 /* Call the necessary subroutine to configure the link. */ |
|
786 ret_val = (hw->media_type == e1000_media_type_copper) ? |
|
787 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); |
|
788 |
|
789 /* Initialize the flow control address, type, and PAUSE timer |
|
790 * registers to their default values. This is done even if flow |
|
791 * control is disabled, because it does not hurt anything to |
|
792 * initialize these registers. |
|
793 */ |
|
794 e_dbg("Initializing the Flow Control address, type and timer regs\n"); |
|
795 |
|
796 ew32(FCT, FLOW_CONTROL_TYPE); |
|
797 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
|
798 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); |
|
799 |
|
800 ew32(FCTTV, hw->fc_pause_time); |
|
801 |
|
802 /* Set the flow control receive threshold registers. Normally, |
|
803 * these registers will be set to a default threshold that may be |
|
804 * adjusted later by the driver's runtime code. However, if the |
|
805 * ability to transmit pause frames in not enabled, then these |
|
806 * registers will be set to 0. |
|
807 */ |
|
808 if (!(hw->fc & E1000_FC_TX_PAUSE)) { |
|
809 ew32(FCRTL, 0); |
|
810 ew32(FCRTH, 0); |
|
811 } else { |
|
812 /* We need to set up the Receive Threshold high and low water marks |
|
813 * as well as (optionally) enabling the transmission of XON frames. |
|
814 */ |
|
815 if (hw->fc_send_xon) { |
|
816 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); |
|
817 ew32(FCRTH, hw->fc_high_water); |
|
818 } else { |
|
819 ew32(FCRTL, hw->fc_low_water); |
|
820 ew32(FCRTH, hw->fc_high_water); |
|
821 } |
|
822 } |
|
823 return ret_val; |
|
824 } |
|
825 |
|
826 /** |
|
827 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link |
|
828 * @hw: Struct containing variables accessed by shared code |
|
829 * |
|
830 * Manipulates Physical Coding Sublayer functions in order to configure |
|
831 * link. Assumes the hardware has been previously reset and the transmitter |
|
832 * and receiver are not enabled. |
|
833 */ |
|
834 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) |
|
835 { |
|
836 u32 ctrl; |
|
837 u32 status; |
|
838 u32 txcw = 0; |
|
839 u32 i; |
|
840 u32 signal = 0; |
|
841 s32 ret_val; |
|
842 |
|
843 e_dbg("e1000_setup_fiber_serdes_link"); |
|
844 |
|
845 /* On adapters with a MAC newer than 82544, SWDP 1 will be |
|
846 * set when the optics detect a signal. On older adapters, it will be |
|
847 * cleared when there is a signal. This applies to fiber media only. |
|
848 * If we're on serdes media, adjust the output amplitude to value |
|
849 * set in the EEPROM. |
|
850 */ |
|
851 ctrl = er32(CTRL); |
|
852 if (hw->media_type == e1000_media_type_fiber) |
|
853 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
|
854 |
|
855 ret_val = e1000_adjust_serdes_amplitude(hw); |
|
856 if (ret_val) |
|
857 return ret_val; |
|
858 |
|
859 /* Take the link out of reset */ |
|
860 ctrl &= ~(E1000_CTRL_LRST); |
|
861 |
|
862 /* Adjust VCO speed to improve BER performance */ |
|
863 ret_val = e1000_set_vco_speed(hw); |
|
864 if (ret_val) |
|
865 return ret_val; |
|
866 |
|
867 e1000_config_collision_dist(hw); |
|
868 |
|
869 /* Check for a software override of the flow control settings, and setup |
|
870 * the device accordingly. If auto-negotiation is enabled, then software |
|
871 * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
|
872 * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
|
873 * auto-negotiation is disabled, then software will have to manually |
|
874 * configure the two flow control enable bits in the CTRL register. |
|
875 * |
|
876 * The possible values of the "fc" parameter are: |
|
877 * 0: Flow control is completely disabled |
|
878 * 1: Rx flow control is enabled (we can receive pause frames, but |
|
879 * not send pause frames). |
|
880 * 2: Tx flow control is enabled (we can send pause frames but we do |
|
881 * not support receiving pause frames). |
|
882 * 3: Both Rx and TX flow control (symmetric) are enabled. |
|
883 */ |
|
884 switch (hw->fc) { |
|
885 case E1000_FC_NONE: |
|
886 /* Flow control is completely disabled by a software over-ride. */ |
|
887 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
|
888 break; |
|
889 case E1000_FC_RX_PAUSE: |
|
890 /* RX Flow control is enabled and TX Flow control is disabled by a |
|
891 * software over-ride. Since there really isn't a way to advertise |
|
892 * that we are capable of RX Pause ONLY, we will advertise that we |
|
893 * support both symmetric and asymmetric RX PAUSE. Later, we will |
|
894 * disable the adapter's ability to send PAUSE frames. |
|
895 */ |
|
896 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
|
897 break; |
|
898 case E1000_FC_TX_PAUSE: |
|
899 /* TX Flow control is enabled, and RX Flow control is disabled, by a |
|
900 * software over-ride. |
|
901 */ |
|
902 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
|
903 break; |
|
904 case E1000_FC_FULL: |
|
905 /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
|
906 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
|
907 break; |
|
908 default: |
|
909 e_dbg("Flow control param set incorrectly\n"); |
|
910 return -E1000_ERR_CONFIG; |
|
911 break; |
|
912 } |
|
913 |
|
914 /* Since auto-negotiation is enabled, take the link out of reset (the link |
|
915 * will be in reset, because we previously reset the chip). This will |
|
916 * restart auto-negotiation. If auto-negotiation is successful then the |
|
917 * link-up status bit will be set and the flow control enable bits (RFCE |
|
918 * and TFCE) will be set according to their negotiated value. |
|
919 */ |
|
920 e_dbg("Auto-negotiation enabled\n"); |
|
921 |
|
922 ew32(TXCW, txcw); |
|
923 ew32(CTRL, ctrl); |
|
924 E1000_WRITE_FLUSH(); |
|
925 |
|
926 hw->txcw = txcw; |
|
927 msleep(1); |
|
928 |
|
929 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" |
|
930 * indication in the Device Status Register. Time-out if a link isn't |
|
931 * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
|
932 * less than 500 milliseconds even if the other end is doing it in SW). |
|
933 * For internal serdes, we just assume a signal is present, then poll. |
|
934 */ |
|
935 if (hw->media_type == e1000_media_type_internal_serdes || |
|
936 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
|
937 e_dbg("Looking for Link\n"); |
|
938 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
|
939 msleep(10); |
|
940 status = er32(STATUS); |
|
941 if (status & E1000_STATUS_LU) |
|
942 break; |
|
943 } |
|
944 if (i == (LINK_UP_TIMEOUT / 10)) { |
|
945 e_dbg("Never got a valid link from auto-neg!!!\n"); |
|
946 hw->autoneg_failed = 1; |
|
947 /* AutoNeg failed to achieve a link, so we'll call |
|
948 * e1000_check_for_link. This routine will force the link up if |
|
949 * we detect a signal. This will allow us to communicate with |
|
950 * non-autonegotiating link partners. |
|
951 */ |
|
952 ret_val = e1000_check_for_link(hw); |
|
953 if (ret_val) { |
|
954 e_dbg("Error while checking for link\n"); |
|
955 return ret_val; |
|
956 } |
|
957 hw->autoneg_failed = 0; |
|
958 } else { |
|
959 hw->autoneg_failed = 0; |
|
960 e_dbg("Valid Link Found\n"); |
|
961 } |
|
962 } else { |
|
963 e_dbg("No Signal Detected\n"); |
|
964 } |
|
965 return E1000_SUCCESS; |
|
966 } |
|
967 |
|
968 /** |
|
969 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series. |
|
970 * @hw: Struct containing variables accessed by shared code |
|
971 * |
|
972 * Commits changes to PHY configuration by calling e1000_phy_reset(). |
|
973 */ |
|
974 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw) |
|
975 { |
|
976 s32 ret_val; |
|
977 |
|
978 /* SW reset the PHY so all changes take effect */ |
|
979 ret_val = e1000_phy_reset(hw); |
|
980 if (ret_val) { |
|
981 e_dbg("Error Resetting the PHY\n"); |
|
982 return ret_val; |
|
983 } |
|
984 |
|
985 return E1000_SUCCESS; |
|
986 } |
|
987 |
|
988 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw) |
|
989 { |
|
990 s32 ret_val; |
|
991 u32 ctrl_aux; |
|
992 |
|
993 switch (hw->phy_type) { |
|
994 case e1000_phy_8211: |
|
995 ret_val = e1000_copper_link_rtl_setup(hw); |
|
996 if (ret_val) { |
|
997 e_dbg("e1000_copper_link_rtl_setup failed!\n"); |
|
998 return ret_val; |
|
999 } |
|
1000 break; |
|
1001 case e1000_phy_8201: |
|
1002 /* Set RMII mode */ |
|
1003 ctrl_aux = er32(CTL_AUX); |
|
1004 ctrl_aux |= E1000_CTL_AUX_RMII; |
|
1005 ew32(CTL_AUX, ctrl_aux); |
|
1006 E1000_WRITE_FLUSH(); |
|
1007 |
|
1008 /* Disable the J/K bits required for receive */ |
|
1009 ctrl_aux = er32(CTL_AUX); |
|
1010 ctrl_aux |= 0x4; |
|
1011 ctrl_aux &= ~0x2; |
|
1012 ew32(CTL_AUX, ctrl_aux); |
|
1013 E1000_WRITE_FLUSH(); |
|
1014 ret_val = e1000_copper_link_rtl_setup(hw); |
|
1015 |
|
1016 if (ret_val) { |
|
1017 e_dbg("e1000_copper_link_rtl_setup failed!\n"); |
|
1018 return ret_val; |
|
1019 } |
|
1020 break; |
|
1021 default: |
|
1022 e_dbg("Error Resetting the PHY\n"); |
|
1023 return E1000_ERR_PHY_TYPE; |
|
1024 } |
|
1025 |
|
1026 return E1000_SUCCESS; |
|
1027 } |
|
1028 |
|
1029 /** |
|
1030 * e1000_copper_link_preconfig - early configuration for copper |
|
1031 * @hw: Struct containing variables accessed by shared code |
|
1032 * |
|
1033 * Make sure we have a valid PHY and change PHY mode before link setup. |
|
1034 */ |
|
1035 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) |
|
1036 { |
|
1037 u32 ctrl; |
|
1038 s32 ret_val; |
|
1039 u16 phy_data; |
|
1040 |
|
1041 e_dbg("e1000_copper_link_preconfig"); |
|
1042 |
|
1043 ctrl = er32(CTRL); |
|
1044 /* With 82543, we need to force speed and duplex on the MAC equal to what |
|
1045 * the PHY speed and duplex configuration is. In addition, we need to |
|
1046 * perform a hardware reset on the PHY to take it out of reset. |
|
1047 */ |
|
1048 if (hw->mac_type > e1000_82543) { |
|
1049 ctrl |= E1000_CTRL_SLU; |
|
1050 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1051 ew32(CTRL, ctrl); |
|
1052 } else { |
|
1053 ctrl |= |
|
1054 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
|
1055 ew32(CTRL, ctrl); |
|
1056 ret_val = e1000_phy_hw_reset(hw); |
|
1057 if (ret_val) |
|
1058 return ret_val; |
|
1059 } |
|
1060 |
|
1061 /* Make sure we have a valid PHY */ |
|
1062 ret_val = e1000_detect_gig_phy(hw); |
|
1063 if (ret_val) { |
|
1064 e_dbg("Error, did not detect valid phy.\n"); |
|
1065 return ret_val; |
|
1066 } |
|
1067 e_dbg("Phy ID = %x\n", hw->phy_id); |
|
1068 |
|
1069 /* Set PHY to class A mode (if necessary) */ |
|
1070 ret_val = e1000_set_phy_mode(hw); |
|
1071 if (ret_val) |
|
1072 return ret_val; |
|
1073 |
|
1074 if ((hw->mac_type == e1000_82545_rev_3) || |
|
1075 (hw->mac_type == e1000_82546_rev_3)) { |
|
1076 ret_val = |
|
1077 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
1078 phy_data |= 0x00000008; |
|
1079 ret_val = |
|
1080 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
1081 } |
|
1082 |
|
1083 if (hw->mac_type <= e1000_82543 || |
|
1084 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || |
|
1085 hw->mac_type == e1000_82541_rev_2 |
|
1086 || hw->mac_type == e1000_82547_rev_2) |
|
1087 hw->phy_reset_disable = false; |
|
1088 |
|
1089 return E1000_SUCCESS; |
|
1090 } |
|
1091 |
|
1092 /** |
|
1093 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. |
|
1094 * @hw: Struct containing variables accessed by shared code |
|
1095 */ |
|
1096 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) |
|
1097 { |
|
1098 u32 led_ctrl; |
|
1099 s32 ret_val; |
|
1100 u16 phy_data; |
|
1101 |
|
1102 e_dbg("e1000_copper_link_igp_setup"); |
|
1103 |
|
1104 if (hw->phy_reset_disable) |
|
1105 return E1000_SUCCESS; |
|
1106 |
|
1107 ret_val = e1000_phy_reset(hw); |
|
1108 if (ret_val) { |
|
1109 e_dbg("Error Resetting the PHY\n"); |
|
1110 return ret_val; |
|
1111 } |
|
1112 |
|
1113 /* Wait 15ms for MAC to configure PHY from eeprom settings */ |
|
1114 msleep(15); |
|
1115 /* Configure activity LED after PHY reset */ |
|
1116 led_ctrl = er32(LEDCTL); |
|
1117 led_ctrl &= IGP_ACTIVITY_LED_MASK; |
|
1118 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
|
1119 ew32(LEDCTL, led_ctrl); |
|
1120 |
|
1121 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ |
|
1122 if (hw->phy_type == e1000_phy_igp) { |
|
1123 /* disable lplu d3 during driver init */ |
|
1124 ret_val = e1000_set_d3_lplu_state(hw, false); |
|
1125 if (ret_val) { |
|
1126 e_dbg("Error Disabling LPLU D3\n"); |
|
1127 return ret_val; |
|
1128 } |
|
1129 } |
|
1130 |
|
1131 /* Configure mdi-mdix settings */ |
|
1132 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
|
1133 if (ret_val) |
|
1134 return ret_val; |
|
1135 |
|
1136 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
1137 hw->dsp_config_state = e1000_dsp_config_disabled; |
|
1138 /* Force MDI for earlier revs of the IGP PHY */ |
|
1139 phy_data &= |
|
1140 ~(IGP01E1000_PSCR_AUTO_MDIX | |
|
1141 IGP01E1000_PSCR_FORCE_MDI_MDIX); |
|
1142 hw->mdix = 1; |
|
1143 |
|
1144 } else { |
|
1145 hw->dsp_config_state = e1000_dsp_config_enabled; |
|
1146 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
|
1147 |
|
1148 switch (hw->mdix) { |
|
1149 case 1: |
|
1150 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
|
1151 break; |
|
1152 case 2: |
|
1153 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
|
1154 break; |
|
1155 case 0: |
|
1156 default: |
|
1157 phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
|
1158 break; |
|
1159 } |
|
1160 } |
|
1161 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
|
1162 if (ret_val) |
|
1163 return ret_val; |
|
1164 |
|
1165 /* set auto-master slave resolution settings */ |
|
1166 if (hw->autoneg) { |
|
1167 e1000_ms_type phy_ms_setting = hw->master_slave; |
|
1168 |
|
1169 if (hw->ffe_config_state == e1000_ffe_config_active) |
|
1170 hw->ffe_config_state = e1000_ffe_config_enabled; |
|
1171 |
|
1172 if (hw->dsp_config_state == e1000_dsp_config_activated) |
|
1173 hw->dsp_config_state = e1000_dsp_config_enabled; |
|
1174 |
|
1175 /* when autonegotiation advertisement is only 1000Mbps then we |
|
1176 * should disable SmartSpeed and enable Auto MasterSlave |
|
1177 * resolution as hardware default. */ |
|
1178 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
|
1179 /* Disable SmartSpeed */ |
|
1180 ret_val = |
|
1181 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1182 &phy_data); |
|
1183 if (ret_val) |
|
1184 return ret_val; |
|
1185 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
1186 ret_val = |
|
1187 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1188 phy_data); |
|
1189 if (ret_val) |
|
1190 return ret_val; |
|
1191 /* Set auto Master/Slave resolution process */ |
|
1192 ret_val = |
|
1193 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
|
1194 if (ret_val) |
|
1195 return ret_val; |
|
1196 phy_data &= ~CR_1000T_MS_ENABLE; |
|
1197 ret_val = |
|
1198 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
|
1199 if (ret_val) |
|
1200 return ret_val; |
|
1201 } |
|
1202 |
|
1203 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
|
1204 if (ret_val) |
|
1205 return ret_val; |
|
1206 |
|
1207 /* load defaults for future use */ |
|
1208 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
|
1209 ((phy_data & CR_1000T_MS_VALUE) ? |
|
1210 e1000_ms_force_master : |
|
1211 e1000_ms_force_slave) : e1000_ms_auto; |
|
1212 |
|
1213 switch (phy_ms_setting) { |
|
1214 case e1000_ms_force_master: |
|
1215 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
|
1216 break; |
|
1217 case e1000_ms_force_slave: |
|
1218 phy_data |= CR_1000T_MS_ENABLE; |
|
1219 phy_data &= ~(CR_1000T_MS_VALUE); |
|
1220 break; |
|
1221 case e1000_ms_auto: |
|
1222 phy_data &= ~CR_1000T_MS_ENABLE; |
|
1223 default: |
|
1224 break; |
|
1225 } |
|
1226 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
|
1227 if (ret_val) |
|
1228 return ret_val; |
|
1229 } |
|
1230 |
|
1231 return E1000_SUCCESS; |
|
1232 } |
|
1233 |
|
1234 /** |
|
1235 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. |
|
1236 * @hw: Struct containing variables accessed by shared code |
|
1237 */ |
|
1238 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) |
|
1239 { |
|
1240 s32 ret_val; |
|
1241 u16 phy_data; |
|
1242 |
|
1243 e_dbg("e1000_copper_link_mgp_setup"); |
|
1244 |
|
1245 if (hw->phy_reset_disable) |
|
1246 return E1000_SUCCESS; |
|
1247 |
|
1248 /* Enable CRS on TX. This must be set for half-duplex operation. */ |
|
1249 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
1250 if (ret_val) |
|
1251 return ret_val; |
|
1252 |
|
1253 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
|
1254 |
|
1255 /* Options: |
|
1256 * MDI/MDI-X = 0 (default) |
|
1257 * 0 - Auto for all speeds |
|
1258 * 1 - MDI mode |
|
1259 * 2 - MDI-X mode |
|
1260 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
|
1261 */ |
|
1262 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
|
1263 |
|
1264 switch (hw->mdix) { |
|
1265 case 1: |
|
1266 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
|
1267 break; |
|
1268 case 2: |
|
1269 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
|
1270 break; |
|
1271 case 3: |
|
1272 phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
|
1273 break; |
|
1274 case 0: |
|
1275 default: |
|
1276 phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
|
1277 break; |
|
1278 } |
|
1279 |
|
1280 /* Options: |
|
1281 * disable_polarity_correction = 0 (default) |
|
1282 * Automatic Correction for Reversed Cable Polarity |
|
1283 * 0 - Disabled |
|
1284 * 1 - Enabled |
|
1285 */ |
|
1286 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
|
1287 if (hw->disable_polarity_correction == 1) |
|
1288 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
|
1289 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
1290 if (ret_val) |
|
1291 return ret_val; |
|
1292 |
|
1293 if (hw->phy_revision < M88E1011_I_REV_4) { |
|
1294 /* Force TX_CLK in the Extended PHY Specific Control Register |
|
1295 * to 25MHz clock. |
|
1296 */ |
|
1297 ret_val = |
|
1298 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
|
1299 &phy_data); |
|
1300 if (ret_val) |
|
1301 return ret_val; |
|
1302 |
|
1303 phy_data |= M88E1000_EPSCR_TX_CLK_25; |
|
1304 |
|
1305 if ((hw->phy_revision == E1000_REVISION_2) && |
|
1306 (hw->phy_id == M88E1111_I_PHY_ID)) { |
|
1307 /* Vidalia Phy, set the downshift counter to 5x */ |
|
1308 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); |
|
1309 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
|
1310 ret_val = e1000_write_phy_reg(hw, |
|
1311 M88E1000_EXT_PHY_SPEC_CTRL, |
|
1312 phy_data); |
|
1313 if (ret_val) |
|
1314 return ret_val; |
|
1315 } else { |
|
1316 /* Configure Master and Slave downshift values */ |
|
1317 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
|
1318 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
|
1319 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
|
1320 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
|
1321 ret_val = e1000_write_phy_reg(hw, |
|
1322 M88E1000_EXT_PHY_SPEC_CTRL, |
|
1323 phy_data); |
|
1324 if (ret_val) |
|
1325 return ret_val; |
|
1326 } |
|
1327 } |
|
1328 |
|
1329 /* SW Reset the PHY so all changes take effect */ |
|
1330 ret_val = e1000_phy_reset(hw); |
|
1331 if (ret_val) { |
|
1332 e_dbg("Error Resetting the PHY\n"); |
|
1333 return ret_val; |
|
1334 } |
|
1335 |
|
1336 return E1000_SUCCESS; |
|
1337 } |
|
1338 |
|
1339 /** |
|
1340 * e1000_copper_link_autoneg - setup auto-neg |
|
1341 * @hw: Struct containing variables accessed by shared code |
|
1342 * |
|
1343 * Setup auto-negotiation and flow control advertisements, |
|
1344 * and then perform auto-negotiation. |
|
1345 */ |
|
1346 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) |
|
1347 { |
|
1348 s32 ret_val; |
|
1349 u16 phy_data; |
|
1350 |
|
1351 e_dbg("e1000_copper_link_autoneg"); |
|
1352 |
|
1353 /* Perform some bounds checking on the hw->autoneg_advertised |
|
1354 * parameter. If this variable is zero, then set it to the default. |
|
1355 */ |
|
1356 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
1357 |
|
1358 /* If autoneg_advertised is zero, we assume it was not defaulted |
|
1359 * by the calling code so we set to advertise full capability. |
|
1360 */ |
|
1361 if (hw->autoneg_advertised == 0) |
|
1362 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
1363 |
|
1364 /* IFE/RTL8201N PHY only supports 10/100 */ |
|
1365 if (hw->phy_type == e1000_phy_8201) |
|
1366 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; |
|
1367 |
|
1368 e_dbg("Reconfiguring auto-neg advertisement params\n"); |
|
1369 ret_val = e1000_phy_setup_autoneg(hw); |
|
1370 if (ret_val) { |
|
1371 e_dbg("Error Setting up Auto-Negotiation\n"); |
|
1372 return ret_val; |
|
1373 } |
|
1374 e_dbg("Restarting Auto-Neg\n"); |
|
1375 |
|
1376 /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
|
1377 * the Auto Neg Restart bit in the PHY control register. |
|
1378 */ |
|
1379 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
|
1380 if (ret_val) |
|
1381 return ret_val; |
|
1382 |
|
1383 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
|
1384 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
|
1385 if (ret_val) |
|
1386 return ret_val; |
|
1387 |
|
1388 /* Does the user want to wait for Auto-Neg to complete here, or |
|
1389 * check at a later time (for example, callback routine). |
|
1390 */ |
|
1391 if (hw->wait_autoneg_complete) { |
|
1392 ret_val = e1000_wait_autoneg(hw); |
|
1393 if (ret_val) { |
|
1394 e_dbg |
|
1395 ("Error while waiting for autoneg to complete\n"); |
|
1396 return ret_val; |
|
1397 } |
|
1398 } |
|
1399 |
|
1400 hw->get_link_status = true; |
|
1401 |
|
1402 return E1000_SUCCESS; |
|
1403 } |
|
1404 |
|
1405 /** |
|
1406 * e1000_copper_link_postconfig - post link setup |
|
1407 * @hw: Struct containing variables accessed by shared code |
|
1408 * |
|
1409 * Config the MAC and the PHY after link is up. |
|
1410 * 1) Set up the MAC to the current PHY speed/duplex |
|
1411 * if we are on 82543. If we |
|
1412 * are on newer silicon, we only need to configure |
|
1413 * collision distance in the Transmit Control Register. |
|
1414 * 2) Set up flow control on the MAC to that established with |
|
1415 * the link partner. |
|
1416 * 3) Config DSP to improve Gigabit link quality for some PHY revisions. |
|
1417 */ |
|
1418 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) |
|
1419 { |
|
1420 s32 ret_val; |
|
1421 e_dbg("e1000_copper_link_postconfig"); |
|
1422 |
|
1423 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) { |
|
1424 e1000_config_collision_dist(hw); |
|
1425 } else { |
|
1426 ret_val = e1000_config_mac_to_phy(hw); |
|
1427 if (ret_val) { |
|
1428 e_dbg("Error configuring MAC to PHY settings\n"); |
|
1429 return ret_val; |
|
1430 } |
|
1431 } |
|
1432 ret_val = e1000_config_fc_after_link_up(hw); |
|
1433 if (ret_val) { |
|
1434 e_dbg("Error Configuring Flow Control\n"); |
|
1435 return ret_val; |
|
1436 } |
|
1437 |
|
1438 /* Config DSP to improve Giga link quality */ |
|
1439 if (hw->phy_type == e1000_phy_igp) { |
|
1440 ret_val = e1000_config_dsp_after_link_change(hw, true); |
|
1441 if (ret_val) { |
|
1442 e_dbg("Error Configuring DSP after link up\n"); |
|
1443 return ret_val; |
|
1444 } |
|
1445 } |
|
1446 |
|
1447 return E1000_SUCCESS; |
|
1448 } |
|
1449 |
|
1450 /** |
|
1451 * e1000_setup_copper_link - phy/speed/duplex setting |
|
1452 * @hw: Struct containing variables accessed by shared code |
|
1453 * |
|
1454 * Detects which PHY is present and sets up the speed and duplex |
|
1455 */ |
|
1456 static s32 e1000_setup_copper_link(struct e1000_hw *hw) |
|
1457 { |
|
1458 s32 ret_val; |
|
1459 u16 i; |
|
1460 u16 phy_data; |
|
1461 |
|
1462 e_dbg("e1000_setup_copper_link"); |
|
1463 |
|
1464 /* Check if it is a valid PHY and set PHY mode if necessary. */ |
|
1465 ret_val = e1000_copper_link_preconfig(hw); |
|
1466 if (ret_val) |
|
1467 return ret_val; |
|
1468 |
|
1469 if (hw->phy_type == e1000_phy_igp) { |
|
1470 ret_val = e1000_copper_link_igp_setup(hw); |
|
1471 if (ret_val) |
|
1472 return ret_val; |
|
1473 } else if (hw->phy_type == e1000_phy_m88) { |
|
1474 ret_val = e1000_copper_link_mgp_setup(hw); |
|
1475 if (ret_val) |
|
1476 return ret_val; |
|
1477 } else { |
|
1478 ret_val = gbe_dhg_phy_setup(hw); |
|
1479 if (ret_val) { |
|
1480 e_dbg("gbe_dhg_phy_setup failed!\n"); |
|
1481 return ret_val; |
|
1482 } |
|
1483 } |
|
1484 |
|
1485 if (hw->autoneg) { |
|
1486 /* Setup autoneg and flow control advertisement |
|
1487 * and perform autonegotiation */ |
|
1488 ret_val = e1000_copper_link_autoneg(hw); |
|
1489 if (ret_val) |
|
1490 return ret_val; |
|
1491 } else { |
|
1492 /* PHY will be set to 10H, 10F, 100H,or 100F |
|
1493 * depending on value from forced_speed_duplex. */ |
|
1494 e_dbg("Forcing speed and duplex\n"); |
|
1495 ret_val = e1000_phy_force_speed_duplex(hw); |
|
1496 if (ret_val) { |
|
1497 e_dbg("Error Forcing Speed and Duplex\n"); |
|
1498 return ret_val; |
|
1499 } |
|
1500 } |
|
1501 |
|
1502 /* Check link status. Wait up to 100 microseconds for link to become |
|
1503 * valid. |
|
1504 */ |
|
1505 for (i = 0; i < 10; i++) { |
|
1506 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
1507 if (ret_val) |
|
1508 return ret_val; |
|
1509 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
1510 if (ret_val) |
|
1511 return ret_val; |
|
1512 |
|
1513 if (phy_data & MII_SR_LINK_STATUS) { |
|
1514 /* Config the MAC and PHY after link is up */ |
|
1515 ret_val = e1000_copper_link_postconfig(hw); |
|
1516 if (ret_val) |
|
1517 return ret_val; |
|
1518 |
|
1519 e_dbg("Valid link established!!!\n"); |
|
1520 return E1000_SUCCESS; |
|
1521 } |
|
1522 udelay(10); |
|
1523 } |
|
1524 |
|
1525 e_dbg("Unable to establish link!!!\n"); |
|
1526 return E1000_SUCCESS; |
|
1527 } |
|
1528 |
|
1529 /** |
|
1530 * e1000_phy_setup_autoneg - phy settings |
|
1531 * @hw: Struct containing variables accessed by shared code |
|
1532 * |
|
1533 * Configures PHY autoneg and flow control advertisement settings |
|
1534 */ |
|
1535 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) |
|
1536 { |
|
1537 s32 ret_val; |
|
1538 u16 mii_autoneg_adv_reg; |
|
1539 u16 mii_1000t_ctrl_reg; |
|
1540 |
|
1541 e_dbg("e1000_phy_setup_autoneg"); |
|
1542 |
|
1543 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
|
1544 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
|
1545 if (ret_val) |
|
1546 return ret_val; |
|
1547 |
|
1548 /* Read the MII 1000Base-T Control Register (Address 9). */ |
|
1549 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
|
1550 if (ret_val) |
|
1551 return ret_val; |
|
1552 else if (hw->phy_type == e1000_phy_8201) |
|
1553 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
|
1554 |
|
1555 /* Need to parse both autoneg_advertised and fc and set up |
|
1556 * the appropriate PHY registers. First we will parse for |
|
1557 * autoneg_advertised software override. Since we can advertise |
|
1558 * a plethora of combinations, we need to check each bit |
|
1559 * individually. |
|
1560 */ |
|
1561 |
|
1562 /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
|
1563 * Advertisement Register (Address 4) and the 1000 mb speed bits in |
|
1564 * the 1000Base-T Control Register (Address 9). |
|
1565 */ |
|
1566 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
|
1567 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
|
1568 |
|
1569 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised); |
|
1570 |
|
1571 /* Do we want to advertise 10 Mb Half Duplex? */ |
|
1572 if (hw->autoneg_advertised & ADVERTISE_10_HALF) { |
|
1573 e_dbg("Advertise 10mb Half duplex\n"); |
|
1574 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
|
1575 } |
|
1576 |
|
1577 /* Do we want to advertise 10 Mb Full Duplex? */ |
|
1578 if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
|
1579 e_dbg("Advertise 10mb Full duplex\n"); |
|
1580 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
|
1581 } |
|
1582 |
|
1583 /* Do we want to advertise 100 Mb Half Duplex? */ |
|
1584 if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
|
1585 e_dbg("Advertise 100mb Half duplex\n"); |
|
1586 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
|
1587 } |
|
1588 |
|
1589 /* Do we want to advertise 100 Mb Full Duplex? */ |
|
1590 if (hw->autoneg_advertised & ADVERTISE_100_FULL) { |
|
1591 e_dbg("Advertise 100mb Full duplex\n"); |
|
1592 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
|
1593 } |
|
1594 |
|
1595 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
|
1596 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
|
1597 e_dbg |
|
1598 ("Advertise 1000mb Half duplex requested, request denied!\n"); |
|
1599 } |
|
1600 |
|
1601 /* Do we want to advertise 1000 Mb Full Duplex? */ |
|
1602 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
|
1603 e_dbg("Advertise 1000mb Full duplex\n"); |
|
1604 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
|
1605 } |
|
1606 |
|
1607 /* Check for a software override of the flow control settings, and |
|
1608 * setup the PHY advertisement registers accordingly. If |
|
1609 * auto-negotiation is enabled, then software will have to set the |
|
1610 * "PAUSE" bits to the correct value in the Auto-Negotiation |
|
1611 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. |
|
1612 * |
|
1613 * The possible values of the "fc" parameter are: |
|
1614 * 0: Flow control is completely disabled |
|
1615 * 1: Rx flow control is enabled (we can receive pause frames |
|
1616 * but not send pause frames). |
|
1617 * 2: Tx flow control is enabled (we can send pause frames |
|
1618 * but we do not support receiving pause frames). |
|
1619 * 3: Both Rx and TX flow control (symmetric) are enabled. |
|
1620 * other: No software override. The flow control configuration |
|
1621 * in the EEPROM is used. |
|
1622 */ |
|
1623 switch (hw->fc) { |
|
1624 case E1000_FC_NONE: /* 0 */ |
|
1625 /* Flow control (RX & TX) is completely disabled by a |
|
1626 * software over-ride. |
|
1627 */ |
|
1628 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
|
1629 break; |
|
1630 case E1000_FC_RX_PAUSE: /* 1 */ |
|
1631 /* RX Flow control is enabled, and TX Flow control is |
|
1632 * disabled, by a software over-ride. |
|
1633 */ |
|
1634 /* Since there really isn't a way to advertise that we are |
|
1635 * capable of RX Pause ONLY, we will advertise that we |
|
1636 * support both symmetric and asymmetric RX PAUSE. Later |
|
1637 * (in e1000_config_fc_after_link_up) we will disable the |
|
1638 *hw's ability to send PAUSE frames. |
|
1639 */ |
|
1640 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
|
1641 break; |
|
1642 case E1000_FC_TX_PAUSE: /* 2 */ |
|
1643 /* TX Flow control is enabled, and RX Flow control is |
|
1644 * disabled, by a software over-ride. |
|
1645 */ |
|
1646 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
|
1647 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
|
1648 break; |
|
1649 case E1000_FC_FULL: /* 3 */ |
|
1650 /* Flow control (both RX and TX) is enabled by a software |
|
1651 * over-ride. |
|
1652 */ |
|
1653 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
|
1654 break; |
|
1655 default: |
|
1656 e_dbg("Flow control param set incorrectly\n"); |
|
1657 return -E1000_ERR_CONFIG; |
|
1658 } |
|
1659 |
|
1660 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
|
1661 if (ret_val) |
|
1662 return ret_val; |
|
1663 |
|
1664 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
|
1665 |
|
1666 if (hw->phy_type == e1000_phy_8201) { |
|
1667 mii_1000t_ctrl_reg = 0; |
|
1668 } else { |
|
1669 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
|
1670 mii_1000t_ctrl_reg); |
|
1671 if (ret_val) |
|
1672 return ret_val; |
|
1673 } |
|
1674 |
|
1675 return E1000_SUCCESS; |
|
1676 } |
|
1677 |
|
1678 /** |
|
1679 * e1000_phy_force_speed_duplex - force link settings |
|
1680 * @hw: Struct containing variables accessed by shared code |
|
1681 * |
|
1682 * Force PHY speed and duplex settings to hw->forced_speed_duplex |
|
1683 */ |
|
1684 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) |
|
1685 { |
|
1686 u32 ctrl; |
|
1687 s32 ret_val; |
|
1688 u16 mii_ctrl_reg; |
|
1689 u16 mii_status_reg; |
|
1690 u16 phy_data; |
|
1691 u16 i; |
|
1692 |
|
1693 e_dbg("e1000_phy_force_speed_duplex"); |
|
1694 |
|
1695 /* Turn off Flow control if we are forcing speed and duplex. */ |
|
1696 hw->fc = E1000_FC_NONE; |
|
1697 |
|
1698 e_dbg("hw->fc = %d\n", hw->fc); |
|
1699 |
|
1700 /* Read the Device Control Register. */ |
|
1701 ctrl = er32(CTRL); |
|
1702 |
|
1703 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ |
|
1704 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1705 ctrl &= ~(DEVICE_SPEED_MASK); |
|
1706 |
|
1707 /* Clear the Auto Speed Detect Enable bit. */ |
|
1708 ctrl &= ~E1000_CTRL_ASDE; |
|
1709 |
|
1710 /* Read the MII Control Register. */ |
|
1711 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); |
|
1712 if (ret_val) |
|
1713 return ret_val; |
|
1714 |
|
1715 /* We need to disable autoneg in order to force link and duplex. */ |
|
1716 |
|
1717 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; |
|
1718 |
|
1719 /* Are we forcing Full or Half Duplex? */ |
|
1720 if (hw->forced_speed_duplex == e1000_100_full || |
|
1721 hw->forced_speed_duplex == e1000_10_full) { |
|
1722 /* We want to force full duplex so we SET the full duplex bits in the |
|
1723 * Device and MII Control Registers. |
|
1724 */ |
|
1725 ctrl |= E1000_CTRL_FD; |
|
1726 mii_ctrl_reg |= MII_CR_FULL_DUPLEX; |
|
1727 e_dbg("Full Duplex\n"); |
|
1728 } else { |
|
1729 /* We want to force half duplex so we CLEAR the full duplex bits in |
|
1730 * the Device and MII Control Registers. |
|
1731 */ |
|
1732 ctrl &= ~E1000_CTRL_FD; |
|
1733 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; |
|
1734 e_dbg("Half Duplex\n"); |
|
1735 } |
|
1736 |
|
1737 /* Are we forcing 100Mbps??? */ |
|
1738 if (hw->forced_speed_duplex == e1000_100_full || |
|
1739 hw->forced_speed_duplex == e1000_100_half) { |
|
1740 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ |
|
1741 ctrl |= E1000_CTRL_SPD_100; |
|
1742 mii_ctrl_reg |= MII_CR_SPEED_100; |
|
1743 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); |
|
1744 e_dbg("Forcing 100mb "); |
|
1745 } else { |
|
1746 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ |
|
1747 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
|
1748 mii_ctrl_reg |= MII_CR_SPEED_10; |
|
1749 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); |
|
1750 e_dbg("Forcing 10mb "); |
|
1751 } |
|
1752 |
|
1753 e1000_config_collision_dist(hw); |
|
1754 |
|
1755 /* Write the configured values back to the Device Control Reg. */ |
|
1756 ew32(CTRL, ctrl); |
|
1757 |
|
1758 if (hw->phy_type == e1000_phy_m88) { |
|
1759 ret_val = |
|
1760 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
1761 if (ret_val) |
|
1762 return ret_val; |
|
1763 |
|
1764 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
|
1765 * forced whenever speed are duplex are forced. |
|
1766 */ |
|
1767 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
|
1768 ret_val = |
|
1769 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
1770 if (ret_val) |
|
1771 return ret_val; |
|
1772 |
|
1773 e_dbg("M88E1000 PSCR: %x\n", phy_data); |
|
1774 |
|
1775 /* Need to reset the PHY or these changes will be ignored */ |
|
1776 mii_ctrl_reg |= MII_CR_RESET; |
|
1777 |
|
1778 /* Disable MDI-X support for 10/100 */ |
|
1779 } else { |
|
1780 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
|
1781 * forced whenever speed or duplex are forced. |
|
1782 */ |
|
1783 ret_val = |
|
1784 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
|
1785 if (ret_val) |
|
1786 return ret_val; |
|
1787 |
|
1788 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
|
1789 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
|
1790 |
|
1791 ret_val = |
|
1792 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
|
1793 if (ret_val) |
|
1794 return ret_val; |
|
1795 } |
|
1796 |
|
1797 /* Write back the modified PHY MII control register. */ |
|
1798 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); |
|
1799 if (ret_val) |
|
1800 return ret_val; |
|
1801 |
|
1802 udelay(1); |
|
1803 |
|
1804 /* The wait_autoneg_complete flag may be a little misleading here. |
|
1805 * Since we are forcing speed and duplex, Auto-Neg is not enabled. |
|
1806 * But we do want to delay for a period while forcing only so we |
|
1807 * don't generate false No Link messages. So we will wait here |
|
1808 * only if the user has set wait_autoneg_complete to 1, which is |
|
1809 * the default. |
|
1810 */ |
|
1811 if (hw->wait_autoneg_complete) { |
|
1812 /* We will wait for autoneg to complete. */ |
|
1813 e_dbg("Waiting for forced speed/duplex link.\n"); |
|
1814 mii_status_reg = 0; |
|
1815 |
|
1816 /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
|
1817 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
1818 /* Read the MII Status Register and wait for Auto-Neg Complete bit |
|
1819 * to be set. |
|
1820 */ |
|
1821 ret_val = |
|
1822 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
1823 if (ret_val) |
|
1824 return ret_val; |
|
1825 |
|
1826 ret_val = |
|
1827 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
1828 if (ret_val) |
|
1829 return ret_val; |
|
1830 |
|
1831 if (mii_status_reg & MII_SR_LINK_STATUS) |
|
1832 break; |
|
1833 msleep(100); |
|
1834 } |
|
1835 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { |
|
1836 /* We didn't get link. Reset the DSP and wait again for link. */ |
|
1837 ret_val = e1000_phy_reset_dsp(hw); |
|
1838 if (ret_val) { |
|
1839 e_dbg("Error Resetting PHY DSP\n"); |
|
1840 return ret_val; |
|
1841 } |
|
1842 } |
|
1843 /* This loop will early-out if the link condition has been met. */ |
|
1844 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
1845 if (mii_status_reg & MII_SR_LINK_STATUS) |
|
1846 break; |
|
1847 msleep(100); |
|
1848 /* Read the MII Status Register and wait for Auto-Neg Complete bit |
|
1849 * to be set. |
|
1850 */ |
|
1851 ret_val = |
|
1852 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
1853 if (ret_val) |
|
1854 return ret_val; |
|
1855 |
|
1856 ret_val = |
|
1857 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
1858 if (ret_val) |
|
1859 return ret_val; |
|
1860 } |
|
1861 } |
|
1862 |
|
1863 if (hw->phy_type == e1000_phy_m88) { |
|
1864 /* Because we reset the PHY above, we need to re-force TX_CLK in the |
|
1865 * Extended PHY Specific Control Register to 25MHz clock. This value |
|
1866 * defaults back to a 2.5MHz clock when the PHY is reset. |
|
1867 */ |
|
1868 ret_val = |
|
1869 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
|
1870 &phy_data); |
|
1871 if (ret_val) |
|
1872 return ret_val; |
|
1873 |
|
1874 phy_data |= M88E1000_EPSCR_TX_CLK_25; |
|
1875 ret_val = |
|
1876 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
|
1877 phy_data); |
|
1878 if (ret_val) |
|
1879 return ret_val; |
|
1880 |
|
1881 /* In addition, because of the s/w reset above, we need to enable CRS on |
|
1882 * TX. This must be set for both full and half duplex operation. |
|
1883 */ |
|
1884 ret_val = |
|
1885 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
1886 if (ret_val) |
|
1887 return ret_val; |
|
1888 |
|
1889 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
|
1890 ret_val = |
|
1891 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
1892 if (ret_val) |
|
1893 return ret_val; |
|
1894 |
|
1895 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) |
|
1896 && (!hw->autoneg) |
|
1897 && (hw->forced_speed_duplex == e1000_10_full |
|
1898 || hw->forced_speed_duplex == e1000_10_half)) { |
|
1899 ret_val = e1000_polarity_reversal_workaround(hw); |
|
1900 if (ret_val) |
|
1901 return ret_val; |
|
1902 } |
|
1903 } |
|
1904 return E1000_SUCCESS; |
|
1905 } |
|
1906 |
|
1907 /** |
|
1908 * e1000_config_collision_dist - set collision distance register |
|
1909 * @hw: Struct containing variables accessed by shared code |
|
1910 * |
|
1911 * Sets the collision distance in the Transmit Control register. |
|
1912 * Link should have been established previously. Reads the speed and duplex |
|
1913 * information from the Device Status register. |
|
1914 */ |
|
1915 void e1000_config_collision_dist(struct e1000_hw *hw) |
|
1916 { |
|
1917 u32 tctl, coll_dist; |
|
1918 |
|
1919 e_dbg("e1000_config_collision_dist"); |
|
1920 |
|
1921 if (hw->mac_type < e1000_82543) |
|
1922 coll_dist = E1000_COLLISION_DISTANCE_82542; |
|
1923 else |
|
1924 coll_dist = E1000_COLLISION_DISTANCE; |
|
1925 |
|
1926 tctl = er32(TCTL); |
|
1927 |
|
1928 tctl &= ~E1000_TCTL_COLD; |
|
1929 tctl |= coll_dist << E1000_COLD_SHIFT; |
|
1930 |
|
1931 ew32(TCTL, tctl); |
|
1932 E1000_WRITE_FLUSH(); |
|
1933 } |
|
1934 |
|
1935 /** |
|
1936 * e1000_config_mac_to_phy - sync phy and mac settings |
|
1937 * @hw: Struct containing variables accessed by shared code |
|
1938 * @mii_reg: data to write to the MII control register |
|
1939 * |
|
1940 * Sets MAC speed and duplex settings to reflect the those in the PHY |
|
1941 * The contents of the PHY register containing the needed information need to |
|
1942 * be passed in. |
|
1943 */ |
|
1944 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) |
|
1945 { |
|
1946 u32 ctrl; |
|
1947 s32 ret_val; |
|
1948 u16 phy_data; |
|
1949 |
|
1950 e_dbg("e1000_config_mac_to_phy"); |
|
1951 |
|
1952 /* 82544 or newer MAC, Auto Speed Detection takes care of |
|
1953 * MAC speed/duplex configuration.*/ |
|
1954 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) |
|
1955 return E1000_SUCCESS; |
|
1956 |
|
1957 /* Read the Device Control Register and set the bits to Force Speed |
|
1958 * and Duplex. |
|
1959 */ |
|
1960 ctrl = er32(CTRL); |
|
1961 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1962 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
|
1963 |
|
1964 switch (hw->phy_type) { |
|
1965 case e1000_phy_8201: |
|
1966 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
|
1967 if (ret_val) |
|
1968 return ret_val; |
|
1969 |
|
1970 if (phy_data & RTL_PHY_CTRL_FD) |
|
1971 ctrl |= E1000_CTRL_FD; |
|
1972 else |
|
1973 ctrl &= ~E1000_CTRL_FD; |
|
1974 |
|
1975 if (phy_data & RTL_PHY_CTRL_SPD_100) |
|
1976 ctrl |= E1000_CTRL_SPD_100; |
|
1977 else |
|
1978 ctrl |= E1000_CTRL_SPD_10; |
|
1979 |
|
1980 e1000_config_collision_dist(hw); |
|
1981 break; |
|
1982 default: |
|
1983 /* Set up duplex in the Device Control and Transmit Control |
|
1984 * registers depending on negotiated values. |
|
1985 */ |
|
1986 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
|
1987 &phy_data); |
|
1988 if (ret_val) |
|
1989 return ret_val; |
|
1990 |
|
1991 if (phy_data & M88E1000_PSSR_DPLX) |
|
1992 ctrl |= E1000_CTRL_FD; |
|
1993 else |
|
1994 ctrl &= ~E1000_CTRL_FD; |
|
1995 |
|
1996 e1000_config_collision_dist(hw); |
|
1997 |
|
1998 /* Set up speed in the Device Control register depending on |
|
1999 * negotiated values. |
|
2000 */ |
|
2001 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
|
2002 ctrl |= E1000_CTRL_SPD_1000; |
|
2003 else if ((phy_data & M88E1000_PSSR_SPEED) == |
|
2004 M88E1000_PSSR_100MBS) |
|
2005 ctrl |= E1000_CTRL_SPD_100; |
|
2006 } |
|
2007 |
|
2008 /* Write the configured values back to the Device Control Reg. */ |
|
2009 ew32(CTRL, ctrl); |
|
2010 return E1000_SUCCESS; |
|
2011 } |
|
2012 |
|
2013 /** |
|
2014 * e1000_force_mac_fc - force flow control settings |
|
2015 * @hw: Struct containing variables accessed by shared code |
|
2016 * |
|
2017 * Forces the MAC's flow control settings. |
|
2018 * Sets the TFCE and RFCE bits in the device control register to reflect |
|
2019 * the adapter settings. TFCE and RFCE need to be explicitly set by |
|
2020 * software when a Copper PHY is used because autonegotiation is managed |
|
2021 * by the PHY rather than the MAC. Software must also configure these |
|
2022 * bits when link is forced on a fiber connection. |
|
2023 */ |
|
2024 s32 e1000_force_mac_fc(struct e1000_hw *hw) |
|
2025 { |
|
2026 u32 ctrl; |
|
2027 |
|
2028 e_dbg("e1000_force_mac_fc"); |
|
2029 |
|
2030 /* Get the current configuration of the Device Control Register */ |
|
2031 ctrl = er32(CTRL); |
|
2032 |
|
2033 /* Because we didn't get link via the internal auto-negotiation |
|
2034 * mechanism (we either forced link or we got link via PHY |
|
2035 * auto-neg), we have to manually enable/disable transmit an |
|
2036 * receive flow control. |
|
2037 * |
|
2038 * The "Case" statement below enables/disable flow control |
|
2039 * according to the "hw->fc" parameter. |
|
2040 * |
|
2041 * The possible values of the "fc" parameter are: |
|
2042 * 0: Flow control is completely disabled |
|
2043 * 1: Rx flow control is enabled (we can receive pause |
|
2044 * frames but not send pause frames). |
|
2045 * 2: Tx flow control is enabled (we can send pause frames |
|
2046 * frames but we do not receive pause frames). |
|
2047 * 3: Both Rx and TX flow control (symmetric) is enabled. |
|
2048 * other: No other values should be possible at this point. |
|
2049 */ |
|
2050 |
|
2051 switch (hw->fc) { |
|
2052 case E1000_FC_NONE: |
|
2053 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
|
2054 break; |
|
2055 case E1000_FC_RX_PAUSE: |
|
2056 ctrl &= (~E1000_CTRL_TFCE); |
|
2057 ctrl |= E1000_CTRL_RFCE; |
|
2058 break; |
|
2059 case E1000_FC_TX_PAUSE: |
|
2060 ctrl &= (~E1000_CTRL_RFCE); |
|
2061 ctrl |= E1000_CTRL_TFCE; |
|
2062 break; |
|
2063 case E1000_FC_FULL: |
|
2064 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
|
2065 break; |
|
2066 default: |
|
2067 e_dbg("Flow control param set incorrectly\n"); |
|
2068 return -E1000_ERR_CONFIG; |
|
2069 } |
|
2070 |
|
2071 /* Disable TX Flow Control for 82542 (rev 2.0) */ |
|
2072 if (hw->mac_type == e1000_82542_rev2_0) |
|
2073 ctrl &= (~E1000_CTRL_TFCE); |
|
2074 |
|
2075 ew32(CTRL, ctrl); |
|
2076 return E1000_SUCCESS; |
|
2077 } |
|
2078 |
|
2079 /** |
|
2080 * e1000_config_fc_after_link_up - configure flow control after autoneg |
|
2081 * @hw: Struct containing variables accessed by shared code |
|
2082 * |
|
2083 * Configures flow control settings after link is established |
|
2084 * Should be called immediately after a valid link has been established. |
|
2085 * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
|
2086 * and autonegotiation is enabled, the MAC flow control settings will be set |
|
2087 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
|
2088 * and RFCE bits will be automatically set to the negotiated flow control mode. |
|
2089 */ |
|
2090 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) |
|
2091 { |
|
2092 s32 ret_val; |
|
2093 u16 mii_status_reg; |
|
2094 u16 mii_nway_adv_reg; |
|
2095 u16 mii_nway_lp_ability_reg; |
|
2096 u16 speed; |
|
2097 u16 duplex; |
|
2098 |
|
2099 e_dbg("e1000_config_fc_after_link_up"); |
|
2100 |
|
2101 /* Check for the case where we have fiber media and auto-neg failed |
|
2102 * so we had to force link. In this case, we need to force the |
|
2103 * configuration of the MAC to match the "fc" parameter. |
|
2104 */ |
|
2105 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) |
|
2106 || ((hw->media_type == e1000_media_type_internal_serdes) |
|
2107 && (hw->autoneg_failed)) |
|
2108 || ((hw->media_type == e1000_media_type_copper) |
|
2109 && (!hw->autoneg))) { |
|
2110 ret_val = e1000_force_mac_fc(hw); |
|
2111 if (ret_val) { |
|
2112 e_dbg("Error forcing flow control settings\n"); |
|
2113 return ret_val; |
|
2114 } |
|
2115 } |
|
2116 |
|
2117 /* Check for the case where we have copper media and auto-neg is |
|
2118 * enabled. In this case, we need to check and see if Auto-Neg |
|
2119 * has completed, and if so, how the PHY and link partner has |
|
2120 * flow control configured. |
|
2121 */ |
|
2122 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { |
|
2123 /* Read the MII Status Register and check to see if AutoNeg |
|
2124 * has completed. We read this twice because this reg has |
|
2125 * some "sticky" (latched) bits. |
|
2126 */ |
|
2127 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
2128 if (ret_val) |
|
2129 return ret_val; |
|
2130 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
2131 if (ret_val) |
|
2132 return ret_val; |
|
2133 |
|
2134 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
|
2135 /* The AutoNeg process has completed, so we now need to |
|
2136 * read both the Auto Negotiation Advertisement Register |
|
2137 * (Address 4) and the Auto_Negotiation Base Page Ability |
|
2138 * Register (Address 5) to determine how flow control was |
|
2139 * negotiated. |
|
2140 */ |
|
2141 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, |
|
2142 &mii_nway_adv_reg); |
|
2143 if (ret_val) |
|
2144 return ret_val; |
|
2145 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, |
|
2146 &mii_nway_lp_ability_reg); |
|
2147 if (ret_val) |
|
2148 return ret_val; |
|
2149 |
|
2150 /* Two bits in the Auto Negotiation Advertisement Register |
|
2151 * (Address 4) and two bits in the Auto Negotiation Base |
|
2152 * Page Ability Register (Address 5) determine flow control |
|
2153 * for both the PHY and the link partner. The following |
|
2154 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
|
2155 * 1999, describes these PAUSE resolution bits and how flow |
|
2156 * control is determined based upon these settings. |
|
2157 * NOTE: DC = Don't Care |
|
2158 * |
|
2159 * LOCAL DEVICE | LINK PARTNER |
|
2160 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
|
2161 *-------|---------|-------|---------|-------------------- |
|
2162 * 0 | 0 | DC | DC | E1000_FC_NONE |
|
2163 * 0 | 1 | 0 | DC | E1000_FC_NONE |
|
2164 * 0 | 1 | 1 | 0 | E1000_FC_NONE |
|
2165 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
|
2166 * 1 | 0 | 0 | DC | E1000_FC_NONE |
|
2167 * 1 | DC | 1 | DC | E1000_FC_FULL |
|
2168 * 1 | 1 | 0 | 0 | E1000_FC_NONE |
|
2169 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
|
2170 * |
|
2171 */ |
|
2172 /* Are both PAUSE bits set to 1? If so, this implies |
|
2173 * Symmetric Flow Control is enabled at both ends. The |
|
2174 * ASM_DIR bits are irrelevant per the spec. |
|
2175 * |
|
2176 * For Symmetric Flow Control: |
|
2177 * |
|
2178 * LOCAL DEVICE | LINK PARTNER |
|
2179 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
2180 *-------|---------|-------|---------|-------------------- |
|
2181 * 1 | DC | 1 | DC | E1000_FC_FULL |
|
2182 * |
|
2183 */ |
|
2184 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
2185 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
|
2186 /* Now we need to check if the user selected RX ONLY |
|
2187 * of pause frames. In this case, we had to advertise |
|
2188 * FULL flow control because we could not advertise RX |
|
2189 * ONLY. Hence, we must now check to see if we need to |
|
2190 * turn OFF the TRANSMISSION of PAUSE frames. |
|
2191 */ |
|
2192 if (hw->original_fc == E1000_FC_FULL) { |
|
2193 hw->fc = E1000_FC_FULL; |
|
2194 e_dbg("Flow Control = FULL.\n"); |
|
2195 } else { |
|
2196 hw->fc = E1000_FC_RX_PAUSE; |
|
2197 e_dbg |
|
2198 ("Flow Control = RX PAUSE frames only.\n"); |
|
2199 } |
|
2200 } |
|
2201 /* For receiving PAUSE frames ONLY. |
|
2202 * |
|
2203 * LOCAL DEVICE | LINK PARTNER |
|
2204 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
2205 *-------|---------|-------|---------|-------------------- |
|
2206 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
|
2207 * |
|
2208 */ |
|
2209 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
2210 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
|
2211 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
|
2212 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
|
2213 { |
|
2214 hw->fc = E1000_FC_TX_PAUSE; |
|
2215 e_dbg |
|
2216 ("Flow Control = TX PAUSE frames only.\n"); |
|
2217 } |
|
2218 /* For transmitting PAUSE frames ONLY. |
|
2219 * |
|
2220 * LOCAL DEVICE | LINK PARTNER |
|
2221 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
2222 *-------|---------|-------|---------|-------------------- |
|
2223 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
|
2224 * |
|
2225 */ |
|
2226 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
2227 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
|
2228 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
|
2229 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
|
2230 { |
|
2231 hw->fc = E1000_FC_RX_PAUSE; |
|
2232 e_dbg |
|
2233 ("Flow Control = RX PAUSE frames only.\n"); |
|
2234 } |
|
2235 /* Per the IEEE spec, at this point flow control should be |
|
2236 * disabled. However, we want to consider that we could |
|
2237 * be connected to a legacy switch that doesn't advertise |
|
2238 * desired flow control, but can be forced on the link |
|
2239 * partner. So if we advertised no flow control, that is |
|
2240 * what we will resolve to. If we advertised some kind of |
|
2241 * receive capability (Rx Pause Only or Full Flow Control) |
|
2242 * and the link partner advertised none, we will configure |
|
2243 * ourselves to enable Rx Flow Control only. We can do |
|
2244 * this safely for two reasons: If the link partner really |
|
2245 * didn't want flow control enabled, and we enable Rx, no |
|
2246 * harm done since we won't be receiving any PAUSE frames |
|
2247 * anyway. If the intent on the link partner was to have |
|
2248 * flow control enabled, then by us enabling RX only, we |
|
2249 * can at least receive pause frames and process them. |
|
2250 * This is a good idea because in most cases, since we are |
|
2251 * predominantly a server NIC, more times than not we will |
|
2252 * be asked to delay transmission of packets than asking |
|
2253 * our link partner to pause transmission of frames. |
|
2254 */ |
|
2255 else if ((hw->original_fc == E1000_FC_NONE || |
|
2256 hw->original_fc == E1000_FC_TX_PAUSE) || |
|
2257 hw->fc_strict_ieee) { |
|
2258 hw->fc = E1000_FC_NONE; |
|
2259 e_dbg("Flow Control = NONE.\n"); |
|
2260 } else { |
|
2261 hw->fc = E1000_FC_RX_PAUSE; |
|
2262 e_dbg |
|
2263 ("Flow Control = RX PAUSE frames only.\n"); |
|
2264 } |
|
2265 |
|
2266 /* Now we need to do one last check... If we auto- |
|
2267 * negotiated to HALF DUPLEX, flow control should not be |
|
2268 * enabled per IEEE 802.3 spec. |
|
2269 */ |
|
2270 ret_val = |
|
2271 e1000_get_speed_and_duplex(hw, &speed, &duplex); |
|
2272 if (ret_val) { |
|
2273 e_dbg |
|
2274 ("Error getting link speed and duplex\n"); |
|
2275 return ret_val; |
|
2276 } |
|
2277 |
|
2278 if (duplex == HALF_DUPLEX) |
|
2279 hw->fc = E1000_FC_NONE; |
|
2280 |
|
2281 /* Now we call a subroutine to actually force the MAC |
|
2282 * controller to use the correct flow control settings. |
|
2283 */ |
|
2284 ret_val = e1000_force_mac_fc(hw); |
|
2285 if (ret_val) { |
|
2286 e_dbg |
|
2287 ("Error forcing flow control settings\n"); |
|
2288 return ret_val; |
|
2289 } |
|
2290 } else { |
|
2291 e_dbg |
|
2292 ("Copper PHY and Auto Neg has not completed.\n"); |
|
2293 } |
|
2294 } |
|
2295 return E1000_SUCCESS; |
|
2296 } |
|
2297 |
|
2298 /** |
|
2299 * e1000_check_for_serdes_link_generic - Check for link (Serdes) |
|
2300 * @hw: pointer to the HW structure |
|
2301 * |
|
2302 * Checks for link up on the hardware. If link is not up and we have |
|
2303 * a signal, then we need to force link up. |
|
2304 */ |
|
2305 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) |
|
2306 { |
|
2307 u32 rxcw; |
|
2308 u32 ctrl; |
|
2309 u32 status; |
|
2310 s32 ret_val = E1000_SUCCESS; |
|
2311 |
|
2312 e_dbg("e1000_check_for_serdes_link_generic"); |
|
2313 |
|
2314 ctrl = er32(CTRL); |
|
2315 status = er32(STATUS); |
|
2316 rxcw = er32(RXCW); |
|
2317 |
|
2318 /* |
|
2319 * If we don't have link (auto-negotiation failed or link partner |
|
2320 * cannot auto-negotiate), and our link partner is not trying to |
|
2321 * auto-negotiate with us (we are receiving idles or data), |
|
2322 * we need to force link up. We also need to give auto-negotiation |
|
2323 * time to complete. |
|
2324 */ |
|
2325 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ |
|
2326 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { |
|
2327 if (hw->autoneg_failed == 0) { |
|
2328 hw->autoneg_failed = 1; |
|
2329 goto out; |
|
2330 } |
|
2331 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n"); |
|
2332 |
|
2333 /* Disable auto-negotiation in the TXCW register */ |
|
2334 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); |
|
2335 |
|
2336 /* Force link-up and also force full-duplex. */ |
|
2337 ctrl = er32(CTRL); |
|
2338 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
|
2339 ew32(CTRL, ctrl); |
|
2340 |
|
2341 /* Configure Flow Control after forcing link up. */ |
|
2342 ret_val = e1000_config_fc_after_link_up(hw); |
|
2343 if (ret_val) { |
|
2344 e_dbg("Error configuring flow control\n"); |
|
2345 goto out; |
|
2346 } |
|
2347 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
|
2348 /* |
|
2349 * If we are forcing link and we are receiving /C/ ordered |
|
2350 * sets, re-enable auto-negotiation in the TXCW register |
|
2351 * and disable forced link in the Device Control register |
|
2352 * in an attempt to auto-negotiate with our link partner. |
|
2353 */ |
|
2354 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n"); |
|
2355 ew32(TXCW, hw->txcw); |
|
2356 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
|
2357 |
|
2358 hw->serdes_has_link = true; |
|
2359 } else if (!(E1000_TXCW_ANE & er32(TXCW))) { |
|
2360 /* |
|
2361 * If we force link for non-auto-negotiation switch, check |
|
2362 * link status based on MAC synchronization for internal |
|
2363 * serdes media type. |
|
2364 */ |
|
2365 /* SYNCH bit and IV bit are sticky. */ |
|
2366 udelay(10); |
|
2367 rxcw = er32(RXCW); |
|
2368 if (rxcw & E1000_RXCW_SYNCH) { |
|
2369 if (!(rxcw & E1000_RXCW_IV)) { |
|
2370 hw->serdes_has_link = true; |
|
2371 e_dbg("SERDES: Link up - forced.\n"); |
|
2372 } |
|
2373 } else { |
|
2374 hw->serdes_has_link = false; |
|
2375 e_dbg("SERDES: Link down - force failed.\n"); |
|
2376 } |
|
2377 } |
|
2378 |
|
2379 if (E1000_TXCW_ANE & er32(TXCW)) { |
|
2380 status = er32(STATUS); |
|
2381 if (status & E1000_STATUS_LU) { |
|
2382 /* SYNCH bit and IV bit are sticky, so reread rxcw. */ |
|
2383 udelay(10); |
|
2384 rxcw = er32(RXCW); |
|
2385 if (rxcw & E1000_RXCW_SYNCH) { |
|
2386 if (!(rxcw & E1000_RXCW_IV)) { |
|
2387 hw->serdes_has_link = true; |
|
2388 e_dbg("SERDES: Link up - autoneg " |
|
2389 "completed successfully.\n"); |
|
2390 } else { |
|
2391 hw->serdes_has_link = false; |
|
2392 e_dbg("SERDES: Link down - invalid" |
|
2393 "codewords detected in autoneg.\n"); |
|
2394 } |
|
2395 } else { |
|
2396 hw->serdes_has_link = false; |
|
2397 e_dbg("SERDES: Link down - no sync.\n"); |
|
2398 } |
|
2399 } else { |
|
2400 hw->serdes_has_link = false; |
|
2401 e_dbg("SERDES: Link down - autoneg failed\n"); |
|
2402 } |
|
2403 } |
|
2404 |
|
2405 out: |
|
2406 return ret_val; |
|
2407 } |
|
2408 |
|
2409 /** |
|
2410 * e1000_check_for_link |
|
2411 * @hw: Struct containing variables accessed by shared code |
|
2412 * |
|
2413 * Checks to see if the link status of the hardware has changed. |
|
2414 * Called by any function that needs to check the link status of the adapter. |
|
2415 */ |
|
2416 s32 e1000_check_for_link(struct e1000_hw *hw) |
|
2417 { |
|
2418 u32 rxcw = 0; |
|
2419 u32 ctrl; |
|
2420 u32 status; |
|
2421 u32 rctl; |
|
2422 u32 icr; |
|
2423 u32 signal = 0; |
|
2424 s32 ret_val; |
|
2425 u16 phy_data; |
|
2426 |
|
2427 e_dbg("e1000_check_for_link"); |
|
2428 |
|
2429 ctrl = er32(CTRL); |
|
2430 status = er32(STATUS); |
|
2431 |
|
2432 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be |
|
2433 * set when the optics detect a signal. On older adapters, it will be |
|
2434 * cleared when there is a signal. This applies to fiber media only. |
|
2435 */ |
|
2436 if ((hw->media_type == e1000_media_type_fiber) || |
|
2437 (hw->media_type == e1000_media_type_internal_serdes)) { |
|
2438 rxcw = er32(RXCW); |
|
2439 |
|
2440 if (hw->media_type == e1000_media_type_fiber) { |
|
2441 signal = |
|
2442 (hw->mac_type > |
|
2443 e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
|
2444 if (status & E1000_STATUS_LU) |
|
2445 hw->get_link_status = false; |
|
2446 } |
|
2447 } |
|
2448 |
|
2449 /* If we have a copper PHY then we only want to go out to the PHY |
|
2450 * registers to see if Auto-Neg has completed and/or if our link |
|
2451 * status has changed. The get_link_status flag will be set if we |
|
2452 * receive a Link Status Change interrupt or we have Rx Sequence |
|
2453 * Errors. |
|
2454 */ |
|
2455 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
|
2456 /* First we want to see if the MII Status Register reports |
|
2457 * link. If so, then we want to get the current speed/duplex |
|
2458 * of the PHY. |
|
2459 * Read the register twice since the link bit is sticky. |
|
2460 */ |
|
2461 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2462 if (ret_val) |
|
2463 return ret_val; |
|
2464 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2465 if (ret_val) |
|
2466 return ret_val; |
|
2467 |
|
2468 if (phy_data & MII_SR_LINK_STATUS) { |
|
2469 hw->get_link_status = false; |
|
2470 /* Check if there was DownShift, must be checked immediately after |
|
2471 * link-up */ |
|
2472 e1000_check_downshift(hw); |
|
2473 |
|
2474 /* If we are on 82544 or 82543 silicon and speed/duplex |
|
2475 * are forced to 10H or 10F, then we will implement the polarity |
|
2476 * reversal workaround. We disable interrupts first, and upon |
|
2477 * returning, place the devices interrupt state to its previous |
|
2478 * value except for the link status change interrupt which will |
|
2479 * happen due to the execution of this workaround. |
|
2480 */ |
|
2481 |
|
2482 if ((hw->mac_type == e1000_82544 |
|
2483 || hw->mac_type == e1000_82543) && (!hw->autoneg) |
|
2484 && (hw->forced_speed_duplex == e1000_10_full |
|
2485 || hw->forced_speed_duplex == e1000_10_half)) { |
|
2486 ew32(IMC, 0xffffffff); |
|
2487 ret_val = |
|
2488 e1000_polarity_reversal_workaround(hw); |
|
2489 icr = er32(ICR); |
|
2490 ew32(ICS, (icr & ~E1000_ICS_LSC)); |
|
2491 ew32(IMS, IMS_ENABLE_MASK); |
|
2492 } |
|
2493 |
|
2494 } else { |
|
2495 /* No link detected */ |
|
2496 e1000_config_dsp_after_link_change(hw, false); |
|
2497 return 0; |
|
2498 } |
|
2499 |
|
2500 /* If we are forcing speed/duplex, then we simply return since |
|
2501 * we have already determined whether we have link or not. |
|
2502 */ |
|
2503 if (!hw->autoneg) |
|
2504 return -E1000_ERR_CONFIG; |
|
2505 |
|
2506 /* optimize the dsp settings for the igp phy */ |
|
2507 e1000_config_dsp_after_link_change(hw, true); |
|
2508 |
|
2509 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
|
2510 * have Si on board that is 82544 or newer, Auto |
|
2511 * Speed Detection takes care of MAC speed/duplex |
|
2512 * configuration. So we only need to configure Collision |
|
2513 * Distance in the MAC. Otherwise, we need to force |
|
2514 * speed/duplex on the MAC to the current PHY speed/duplex |
|
2515 * settings. |
|
2516 */ |
|
2517 if ((hw->mac_type >= e1000_82544) && |
|
2518 (hw->mac_type != e1000_ce4100)) |
|
2519 e1000_config_collision_dist(hw); |
|
2520 else { |
|
2521 ret_val = e1000_config_mac_to_phy(hw); |
|
2522 if (ret_val) { |
|
2523 e_dbg |
|
2524 ("Error configuring MAC to PHY settings\n"); |
|
2525 return ret_val; |
|
2526 } |
|
2527 } |
|
2528 |
|
2529 /* Configure Flow Control now that Auto-Neg has completed. First, we |
|
2530 * need to restore the desired flow control settings because we may |
|
2531 * have had to re-autoneg with a different link partner. |
|
2532 */ |
|
2533 ret_val = e1000_config_fc_after_link_up(hw); |
|
2534 if (ret_val) { |
|
2535 e_dbg("Error configuring flow control\n"); |
|
2536 return ret_val; |
|
2537 } |
|
2538 |
|
2539 /* At this point we know that we are on copper and we have |
|
2540 * auto-negotiated link. These are conditions for checking the link |
|
2541 * partner capability register. We use the link speed to determine if |
|
2542 * TBI compatibility needs to be turned on or off. If the link is not |
|
2543 * at gigabit speed, then TBI compatibility is not needed. If we are |
|
2544 * at gigabit speed, we turn on TBI compatibility. |
|
2545 */ |
|
2546 if (hw->tbi_compatibility_en) { |
|
2547 u16 speed, duplex; |
|
2548 ret_val = |
|
2549 e1000_get_speed_and_duplex(hw, &speed, &duplex); |
|
2550 if (ret_val) { |
|
2551 e_dbg |
|
2552 ("Error getting link speed and duplex\n"); |
|
2553 return ret_val; |
|
2554 } |
|
2555 if (speed != SPEED_1000) { |
|
2556 /* If link speed is not set to gigabit speed, we do not need |
|
2557 * to enable TBI compatibility. |
|
2558 */ |
|
2559 if (hw->tbi_compatibility_on) { |
|
2560 /* If we previously were in the mode, turn it off. */ |
|
2561 rctl = er32(RCTL); |
|
2562 rctl &= ~E1000_RCTL_SBP; |
|
2563 ew32(RCTL, rctl); |
|
2564 hw->tbi_compatibility_on = false; |
|
2565 } |
|
2566 } else { |
|
2567 /* If TBI compatibility is was previously off, turn it on. For |
|
2568 * compatibility with a TBI link partner, we will store bad |
|
2569 * packets. Some frames have an additional byte on the end and |
|
2570 * will look like CRC errors to to the hardware. |
|
2571 */ |
|
2572 if (!hw->tbi_compatibility_on) { |
|
2573 hw->tbi_compatibility_on = true; |
|
2574 rctl = er32(RCTL); |
|
2575 rctl |= E1000_RCTL_SBP; |
|
2576 ew32(RCTL, rctl); |
|
2577 } |
|
2578 } |
|
2579 } |
|
2580 } |
|
2581 |
|
2582 if ((hw->media_type == e1000_media_type_fiber) || |
|
2583 (hw->media_type == e1000_media_type_internal_serdes)) |
|
2584 e1000_check_for_serdes_link_generic(hw); |
|
2585 |
|
2586 return E1000_SUCCESS; |
|
2587 } |
|
2588 |
|
2589 /** |
|
2590 * e1000_get_speed_and_duplex |
|
2591 * @hw: Struct containing variables accessed by shared code |
|
2592 * @speed: Speed of the connection |
|
2593 * @duplex: Duplex setting of the connection |
|
2594 * |
|
2595 * Detects the current speed and duplex settings of the hardware. |
|
2596 */ |
|
2597 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) |
|
2598 { |
|
2599 u32 status; |
|
2600 s32 ret_val; |
|
2601 u16 phy_data; |
|
2602 |
|
2603 e_dbg("e1000_get_speed_and_duplex"); |
|
2604 |
|
2605 if (hw->mac_type >= e1000_82543) { |
|
2606 status = er32(STATUS); |
|
2607 if (status & E1000_STATUS_SPEED_1000) { |
|
2608 *speed = SPEED_1000; |
|
2609 e_dbg("1000 Mbs, "); |
|
2610 } else if (status & E1000_STATUS_SPEED_100) { |
|
2611 *speed = SPEED_100; |
|
2612 e_dbg("100 Mbs, "); |
|
2613 } else { |
|
2614 *speed = SPEED_10; |
|
2615 e_dbg("10 Mbs, "); |
|
2616 } |
|
2617 |
|
2618 if (status & E1000_STATUS_FD) { |
|
2619 *duplex = FULL_DUPLEX; |
|
2620 e_dbg("Full Duplex\n"); |
|
2621 } else { |
|
2622 *duplex = HALF_DUPLEX; |
|
2623 e_dbg(" Half Duplex\n"); |
|
2624 } |
|
2625 } else { |
|
2626 e_dbg("1000 Mbs, Full Duplex\n"); |
|
2627 *speed = SPEED_1000; |
|
2628 *duplex = FULL_DUPLEX; |
|
2629 } |
|
2630 |
|
2631 /* IGP01 PHY may advertise full duplex operation after speed downgrade even |
|
2632 * if it is operating at half duplex. Here we set the duplex settings to |
|
2633 * match the duplex in the link partner's capabilities. |
|
2634 */ |
|
2635 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { |
|
2636 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); |
|
2637 if (ret_val) |
|
2638 return ret_val; |
|
2639 |
|
2640 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) |
|
2641 *duplex = HALF_DUPLEX; |
|
2642 else { |
|
2643 ret_val = |
|
2644 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); |
|
2645 if (ret_val) |
|
2646 return ret_val; |
|
2647 if ((*speed == SPEED_100 |
|
2648 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) |
|
2649 || (*speed == SPEED_10 |
|
2650 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) |
|
2651 *duplex = HALF_DUPLEX; |
|
2652 } |
|
2653 } |
|
2654 |
|
2655 return E1000_SUCCESS; |
|
2656 } |
|
2657 |
|
2658 /** |
|
2659 * e1000_wait_autoneg |
|
2660 * @hw: Struct containing variables accessed by shared code |
|
2661 * |
|
2662 * Blocks until autoneg completes or times out (~4.5 seconds) |
|
2663 */ |
|
2664 static s32 e1000_wait_autoneg(struct e1000_hw *hw) |
|
2665 { |
|
2666 s32 ret_val; |
|
2667 u16 i; |
|
2668 u16 phy_data; |
|
2669 |
|
2670 e_dbg("e1000_wait_autoneg"); |
|
2671 e_dbg("Waiting for Auto-Neg to complete.\n"); |
|
2672 |
|
2673 /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
|
2674 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
|
2675 /* Read the MII Status Register and wait for Auto-Neg |
|
2676 * Complete bit to be set. |
|
2677 */ |
|
2678 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2679 if (ret_val) |
|
2680 return ret_val; |
|
2681 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2682 if (ret_val) |
|
2683 return ret_val; |
|
2684 if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
|
2685 return E1000_SUCCESS; |
|
2686 } |
|
2687 msleep(100); |
|
2688 } |
|
2689 return E1000_SUCCESS; |
|
2690 } |
|
2691 |
|
2692 /** |
|
2693 * e1000_raise_mdi_clk - Raises the Management Data Clock |
|
2694 * @hw: Struct containing variables accessed by shared code |
|
2695 * @ctrl: Device control register's current value |
|
2696 */ |
|
2697 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
|
2698 { |
|
2699 /* Raise the clock input to the Management Data Clock (by setting the MDC |
|
2700 * bit), and then delay 10 microseconds. |
|
2701 */ |
|
2702 ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); |
|
2703 E1000_WRITE_FLUSH(); |
|
2704 udelay(10); |
|
2705 } |
|
2706 |
|
2707 /** |
|
2708 * e1000_lower_mdi_clk - Lowers the Management Data Clock |
|
2709 * @hw: Struct containing variables accessed by shared code |
|
2710 * @ctrl: Device control register's current value |
|
2711 */ |
|
2712 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
|
2713 { |
|
2714 /* Lower the clock input to the Management Data Clock (by clearing the MDC |
|
2715 * bit), and then delay 10 microseconds. |
|
2716 */ |
|
2717 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
|
2718 E1000_WRITE_FLUSH(); |
|
2719 udelay(10); |
|
2720 } |
|
2721 |
|
2722 /** |
|
2723 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY |
|
2724 * @hw: Struct containing variables accessed by shared code |
|
2725 * @data: Data to send out to the PHY |
|
2726 * @count: Number of bits to shift out |
|
2727 * |
|
2728 * Bits are shifted out in MSB to LSB order. |
|
2729 */ |
|
2730 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) |
|
2731 { |
|
2732 u32 ctrl; |
|
2733 u32 mask; |
|
2734 |
|
2735 /* We need to shift "count" number of bits out to the PHY. So, the value |
|
2736 * in the "data" parameter will be shifted out to the PHY one bit at a |
|
2737 * time. In order to do this, "data" must be broken down into bits. |
|
2738 */ |
|
2739 mask = 0x01; |
|
2740 mask <<= (count - 1); |
|
2741 |
|
2742 ctrl = er32(CTRL); |
|
2743 |
|
2744 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
|
2745 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
|
2746 |
|
2747 while (mask) { |
|
2748 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
|
2749 * then raising and lowering the Management Data Clock. A "0" is |
|
2750 * shifted out to the PHY by setting the MDIO bit to "0" and then |
|
2751 * raising and lowering the clock. |
|
2752 */ |
|
2753 if (data & mask) |
|
2754 ctrl |= E1000_CTRL_MDIO; |
|
2755 else |
|
2756 ctrl &= ~E1000_CTRL_MDIO; |
|
2757 |
|
2758 ew32(CTRL, ctrl); |
|
2759 E1000_WRITE_FLUSH(); |
|
2760 |
|
2761 udelay(10); |
|
2762 |
|
2763 e1000_raise_mdi_clk(hw, &ctrl); |
|
2764 e1000_lower_mdi_clk(hw, &ctrl); |
|
2765 |
|
2766 mask = mask >> 1; |
|
2767 } |
|
2768 } |
|
2769 |
|
2770 /** |
|
2771 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY |
|
2772 * @hw: Struct containing variables accessed by shared code |
|
2773 * |
|
2774 * Bits are shifted in in MSB to LSB order. |
|
2775 */ |
|
2776 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
|
2777 { |
|
2778 u32 ctrl; |
|
2779 u16 data = 0; |
|
2780 u8 i; |
|
2781 |
|
2782 /* In order to read a register from the PHY, we need to shift in a total |
|
2783 * of 18 bits from the PHY. The first two bit (turnaround) times are used |
|
2784 * to avoid contention on the MDIO pin when a read operation is performed. |
|
2785 * These two bits are ignored by us and thrown away. Bits are "shifted in" |
|
2786 * by raising the input to the Management Data Clock (setting the MDC bit), |
|
2787 * and then reading the value of the MDIO bit. |
|
2788 */ |
|
2789 ctrl = er32(CTRL); |
|
2790 |
|
2791 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
|
2792 ctrl &= ~E1000_CTRL_MDIO_DIR; |
|
2793 ctrl &= ~E1000_CTRL_MDIO; |
|
2794 |
|
2795 ew32(CTRL, ctrl); |
|
2796 E1000_WRITE_FLUSH(); |
|
2797 |
|
2798 /* Raise and Lower the clock before reading in the data. This accounts for |
|
2799 * the turnaround bits. The first clock occurred when we clocked out the |
|
2800 * last bit of the Register Address. |
|
2801 */ |
|
2802 e1000_raise_mdi_clk(hw, &ctrl); |
|
2803 e1000_lower_mdi_clk(hw, &ctrl); |
|
2804 |
|
2805 for (data = 0, i = 0; i < 16; i++) { |
|
2806 data = data << 1; |
|
2807 e1000_raise_mdi_clk(hw, &ctrl); |
|
2808 ctrl = er32(CTRL); |
|
2809 /* Check to see if we shifted in a "1". */ |
|
2810 if (ctrl & E1000_CTRL_MDIO) |
|
2811 data |= 1; |
|
2812 e1000_lower_mdi_clk(hw, &ctrl); |
|
2813 } |
|
2814 |
|
2815 e1000_raise_mdi_clk(hw, &ctrl); |
|
2816 e1000_lower_mdi_clk(hw, &ctrl); |
|
2817 |
|
2818 return data; |
|
2819 } |
|
2820 |
|
2821 |
|
2822 /** |
|
2823 * e1000_read_phy_reg - read a phy register |
|
2824 * @hw: Struct containing variables accessed by shared code |
|
2825 * @reg_addr: address of the PHY register to read |
|
2826 * |
|
2827 * Reads the value from a PHY register, if the value is on a specific non zero |
|
2828 * page, sets the page first. |
|
2829 */ |
|
2830 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) |
|
2831 { |
|
2832 u32 ret_val; |
|
2833 |
|
2834 e_dbg("e1000_read_phy_reg"); |
|
2835 |
|
2836 if ((hw->phy_type == e1000_phy_igp) && |
|
2837 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
|
2838 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
2839 (u16) reg_addr); |
|
2840 if (ret_val) |
|
2841 return ret_val; |
|
2842 } |
|
2843 |
|
2844 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
|
2845 phy_data); |
|
2846 |
|
2847 return ret_val; |
|
2848 } |
|
2849 |
|
2850 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
|
2851 u16 *phy_data) |
|
2852 { |
|
2853 u32 i; |
|
2854 u32 mdic = 0; |
|
2855 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; |
|
2856 |
|
2857 e_dbg("e1000_read_phy_reg_ex"); |
|
2858 |
|
2859 if (reg_addr > MAX_PHY_REG_ADDRESS) { |
|
2860 e_dbg("PHY Address %d is out of range\n", reg_addr); |
|
2861 return -E1000_ERR_PARAM; |
|
2862 } |
|
2863 |
|
2864 if (hw->mac_type > e1000_82543) { |
|
2865 /* Set up Op-code, Phy Address, and register address in the MDI |
|
2866 * Control register. The MAC will take care of interfacing with the |
|
2867 * PHY to retrieve the desired data. |
|
2868 */ |
|
2869 if (hw->mac_type == e1000_ce4100) { |
|
2870 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
|
2871 (phy_addr << E1000_MDIC_PHY_SHIFT) | |
|
2872 (INTEL_CE_GBE_MDIC_OP_READ) | |
|
2873 (INTEL_CE_GBE_MDIC_GO)); |
|
2874 |
|
2875 writel(mdic, E1000_MDIO_CMD); |
|
2876 |
|
2877 /* Poll the ready bit to see if the MDI read |
|
2878 * completed |
|
2879 */ |
|
2880 for (i = 0; i < 64; i++) { |
|
2881 udelay(50); |
|
2882 mdic = readl(E1000_MDIO_CMD); |
|
2883 if (!(mdic & INTEL_CE_GBE_MDIC_GO)) |
|
2884 break; |
|
2885 } |
|
2886 |
|
2887 if (mdic & INTEL_CE_GBE_MDIC_GO) { |
|
2888 e_dbg("MDI Read did not complete\n"); |
|
2889 return -E1000_ERR_PHY; |
|
2890 } |
|
2891 |
|
2892 mdic = readl(E1000_MDIO_STS); |
|
2893 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) { |
|
2894 e_dbg("MDI Read Error\n"); |
|
2895 return -E1000_ERR_PHY; |
|
2896 } |
|
2897 *phy_data = (u16) mdic; |
|
2898 } else { |
|
2899 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
|
2900 (phy_addr << E1000_MDIC_PHY_SHIFT) | |
|
2901 (E1000_MDIC_OP_READ)); |
|
2902 |
|
2903 ew32(MDIC, mdic); |
|
2904 |
|
2905 /* Poll the ready bit to see if the MDI read |
|
2906 * completed |
|
2907 */ |
|
2908 for (i = 0; i < 64; i++) { |
|
2909 udelay(50); |
|
2910 mdic = er32(MDIC); |
|
2911 if (mdic & E1000_MDIC_READY) |
|
2912 break; |
|
2913 } |
|
2914 if (!(mdic & E1000_MDIC_READY)) { |
|
2915 e_dbg("MDI Read did not complete\n"); |
|
2916 return -E1000_ERR_PHY; |
|
2917 } |
|
2918 if (mdic & E1000_MDIC_ERROR) { |
|
2919 e_dbg("MDI Error\n"); |
|
2920 return -E1000_ERR_PHY; |
|
2921 } |
|
2922 *phy_data = (u16) mdic; |
|
2923 } |
|
2924 } else { |
|
2925 /* We must first send a preamble through the MDIO pin to signal the |
|
2926 * beginning of an MII instruction. This is done by sending 32 |
|
2927 * consecutive "1" bits. |
|
2928 */ |
|
2929 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
|
2930 |
|
2931 /* Now combine the next few fields that are required for a read |
|
2932 * operation. We use this method instead of calling the |
|
2933 * e1000_shift_out_mdi_bits routine five different times. The format of |
|
2934 * a MII read instruction consists of a shift out of 14 bits and is |
|
2935 * defined as follows: |
|
2936 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
|
2937 * followed by a shift in of 18 bits. This first two bits shifted in |
|
2938 * are TurnAround bits used to avoid contention on the MDIO pin when a |
|
2939 * READ operation is performed. These two bits are thrown away |
|
2940 * followed by a shift in of 16 bits which contains the desired data. |
|
2941 */ |
|
2942 mdic = ((reg_addr) | (phy_addr << 5) | |
|
2943 (PHY_OP_READ << 10) | (PHY_SOF << 12)); |
|
2944 |
|
2945 e1000_shift_out_mdi_bits(hw, mdic, 14); |
|
2946 |
|
2947 /* Now that we've shifted out the read command to the MII, we need to |
|
2948 * "shift in" the 16-bit value (18 total bits) of the requested PHY |
|
2949 * register address. |
|
2950 */ |
|
2951 *phy_data = e1000_shift_in_mdi_bits(hw); |
|
2952 } |
|
2953 return E1000_SUCCESS; |
|
2954 } |
|
2955 |
|
2956 /** |
|
2957 * e1000_write_phy_reg - write a phy register |
|
2958 * |
|
2959 * @hw: Struct containing variables accessed by shared code |
|
2960 * @reg_addr: address of the PHY register to write |
|
2961 * @data: data to write to the PHY |
|
2962 * |
|
2963 * Writes a value to a PHY register |
|
2964 */ |
|
2965 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) |
|
2966 { |
|
2967 u32 ret_val; |
|
2968 |
|
2969 e_dbg("e1000_write_phy_reg"); |
|
2970 |
|
2971 if ((hw->phy_type == e1000_phy_igp) && |
|
2972 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
|
2973 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
2974 (u16) reg_addr); |
|
2975 if (ret_val) |
|
2976 return ret_val; |
|
2977 } |
|
2978 |
|
2979 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
|
2980 phy_data); |
|
2981 |
|
2982 return ret_val; |
|
2983 } |
|
2984 |
|
2985 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
|
2986 u16 phy_data) |
|
2987 { |
|
2988 u32 i; |
|
2989 u32 mdic = 0; |
|
2990 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; |
|
2991 |
|
2992 e_dbg("e1000_write_phy_reg_ex"); |
|
2993 |
|
2994 if (reg_addr > MAX_PHY_REG_ADDRESS) { |
|
2995 e_dbg("PHY Address %d is out of range\n", reg_addr); |
|
2996 return -E1000_ERR_PARAM; |
|
2997 } |
|
2998 |
|
2999 if (hw->mac_type > e1000_82543) { |
|
3000 /* Set up Op-code, Phy Address, register address, and data |
|
3001 * intended for the PHY register in the MDI Control register. |
|
3002 * The MAC will take care of interfacing with the PHY to send |
|
3003 * the desired data. |
|
3004 */ |
|
3005 if (hw->mac_type == e1000_ce4100) { |
|
3006 mdic = (((u32) phy_data) | |
|
3007 (reg_addr << E1000_MDIC_REG_SHIFT) | |
|
3008 (phy_addr << E1000_MDIC_PHY_SHIFT) | |
|
3009 (INTEL_CE_GBE_MDIC_OP_WRITE) | |
|
3010 (INTEL_CE_GBE_MDIC_GO)); |
|
3011 |
|
3012 writel(mdic, E1000_MDIO_CMD); |
|
3013 |
|
3014 /* Poll the ready bit to see if the MDI read |
|
3015 * completed |
|
3016 */ |
|
3017 for (i = 0; i < 640; i++) { |
|
3018 udelay(5); |
|
3019 mdic = readl(E1000_MDIO_CMD); |
|
3020 if (!(mdic & INTEL_CE_GBE_MDIC_GO)) |
|
3021 break; |
|
3022 } |
|
3023 if (mdic & INTEL_CE_GBE_MDIC_GO) { |
|
3024 e_dbg("MDI Write did not complete\n"); |
|
3025 return -E1000_ERR_PHY; |
|
3026 } |
|
3027 } else { |
|
3028 mdic = (((u32) phy_data) | |
|
3029 (reg_addr << E1000_MDIC_REG_SHIFT) | |
|
3030 (phy_addr << E1000_MDIC_PHY_SHIFT) | |
|
3031 (E1000_MDIC_OP_WRITE)); |
|
3032 |
|
3033 ew32(MDIC, mdic); |
|
3034 |
|
3035 /* Poll the ready bit to see if the MDI read |
|
3036 * completed |
|
3037 */ |
|
3038 for (i = 0; i < 641; i++) { |
|
3039 udelay(5); |
|
3040 mdic = er32(MDIC); |
|
3041 if (mdic & E1000_MDIC_READY) |
|
3042 break; |
|
3043 } |
|
3044 if (!(mdic & E1000_MDIC_READY)) { |
|
3045 e_dbg("MDI Write did not complete\n"); |
|
3046 return -E1000_ERR_PHY; |
|
3047 } |
|
3048 } |
|
3049 } else { |
|
3050 /* We'll need to use the SW defined pins to shift the write command |
|
3051 * out to the PHY. We first send a preamble to the PHY to signal the |
|
3052 * beginning of the MII instruction. This is done by sending 32 |
|
3053 * consecutive "1" bits. |
|
3054 */ |
|
3055 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
|
3056 |
|
3057 /* Now combine the remaining required fields that will indicate a |
|
3058 * write operation. We use this method instead of calling the |
|
3059 * e1000_shift_out_mdi_bits routine for each field in the command. The |
|
3060 * format of a MII write instruction is as follows: |
|
3061 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. |
|
3062 */ |
|
3063 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
|
3064 (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
|
3065 mdic <<= 16; |
|
3066 mdic |= (u32) phy_data; |
|
3067 |
|
3068 e1000_shift_out_mdi_bits(hw, mdic, 32); |
|
3069 } |
|
3070 |
|
3071 return E1000_SUCCESS; |
|
3072 } |
|
3073 |
|
3074 /** |
|
3075 * e1000_phy_hw_reset - reset the phy, hardware style |
|
3076 * @hw: Struct containing variables accessed by shared code |
|
3077 * |
|
3078 * Returns the PHY to the power-on reset state |
|
3079 */ |
|
3080 s32 e1000_phy_hw_reset(struct e1000_hw *hw) |
|
3081 { |
|
3082 u32 ctrl, ctrl_ext; |
|
3083 u32 led_ctrl; |
|
3084 |
|
3085 e_dbg("e1000_phy_hw_reset"); |
|
3086 |
|
3087 e_dbg("Resetting Phy...\n"); |
|
3088 |
|
3089 if (hw->mac_type > e1000_82543) { |
|
3090 /* Read the device control register and assert the E1000_CTRL_PHY_RST |
|
3091 * bit. Then, take it out of reset. |
|
3092 * For e1000 hardware, we delay for 10ms between the assert |
|
3093 * and deassert. |
|
3094 */ |
|
3095 ctrl = er32(CTRL); |
|
3096 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); |
|
3097 E1000_WRITE_FLUSH(); |
|
3098 |
|
3099 msleep(10); |
|
3100 |
|
3101 ew32(CTRL, ctrl); |
|
3102 E1000_WRITE_FLUSH(); |
|
3103 |
|
3104 } else { |
|
3105 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
|
3106 * bit to put the PHY into reset. Then, take it out of reset. |
|
3107 */ |
|
3108 ctrl_ext = er32(CTRL_EXT); |
|
3109 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
|
3110 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
|
3111 ew32(CTRL_EXT, ctrl_ext); |
|
3112 E1000_WRITE_FLUSH(); |
|
3113 msleep(10); |
|
3114 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
|
3115 ew32(CTRL_EXT, ctrl_ext); |
|
3116 E1000_WRITE_FLUSH(); |
|
3117 } |
|
3118 udelay(150); |
|
3119 |
|
3120 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
3121 /* Configure activity LED after PHY reset */ |
|
3122 led_ctrl = er32(LEDCTL); |
|
3123 led_ctrl &= IGP_ACTIVITY_LED_MASK; |
|
3124 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
|
3125 ew32(LEDCTL, led_ctrl); |
|
3126 } |
|
3127 |
|
3128 /* Wait for FW to finish PHY configuration. */ |
|
3129 return e1000_get_phy_cfg_done(hw); |
|
3130 } |
|
3131 |
|
3132 /** |
|
3133 * e1000_phy_reset - reset the phy to commit settings |
|
3134 * @hw: Struct containing variables accessed by shared code |
|
3135 * |
|
3136 * Resets the PHY |
|
3137 * Sets bit 15 of the MII Control register |
|
3138 */ |
|
3139 s32 e1000_phy_reset(struct e1000_hw *hw) |
|
3140 { |
|
3141 s32 ret_val; |
|
3142 u16 phy_data; |
|
3143 |
|
3144 e_dbg("e1000_phy_reset"); |
|
3145 |
|
3146 switch (hw->phy_type) { |
|
3147 case e1000_phy_igp: |
|
3148 ret_val = e1000_phy_hw_reset(hw); |
|
3149 if (ret_val) |
|
3150 return ret_val; |
|
3151 break; |
|
3152 default: |
|
3153 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
|
3154 if (ret_val) |
|
3155 return ret_val; |
|
3156 |
|
3157 phy_data |= MII_CR_RESET; |
|
3158 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
|
3159 if (ret_val) |
|
3160 return ret_val; |
|
3161 |
|
3162 udelay(1); |
|
3163 break; |
|
3164 } |
|
3165 |
|
3166 if (hw->phy_type == e1000_phy_igp) |
|
3167 e1000_phy_init_script(hw); |
|
3168 |
|
3169 return E1000_SUCCESS; |
|
3170 } |
|
3171 |
|
3172 /** |
|
3173 * e1000_detect_gig_phy - check the phy type |
|
3174 * @hw: Struct containing variables accessed by shared code |
|
3175 * |
|
3176 * Probes the expected PHY address for known PHY IDs |
|
3177 */ |
|
3178 static s32 e1000_detect_gig_phy(struct e1000_hw *hw) |
|
3179 { |
|
3180 s32 phy_init_status, ret_val; |
|
3181 u16 phy_id_high, phy_id_low; |
|
3182 bool match = false; |
|
3183 |
|
3184 e_dbg("e1000_detect_gig_phy"); |
|
3185 |
|
3186 if (hw->phy_id != 0) |
|
3187 return E1000_SUCCESS; |
|
3188 |
|
3189 /* Read the PHY ID Registers to identify which PHY is onboard. */ |
|
3190 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
|
3191 if (ret_val) |
|
3192 return ret_val; |
|
3193 |
|
3194 hw->phy_id = (u32) (phy_id_high << 16); |
|
3195 udelay(20); |
|
3196 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); |
|
3197 if (ret_val) |
|
3198 return ret_val; |
|
3199 |
|
3200 hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK); |
|
3201 hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK; |
|
3202 |
|
3203 switch (hw->mac_type) { |
|
3204 case e1000_82543: |
|
3205 if (hw->phy_id == M88E1000_E_PHY_ID) |
|
3206 match = true; |
|
3207 break; |
|
3208 case e1000_82544: |
|
3209 if (hw->phy_id == M88E1000_I_PHY_ID) |
|
3210 match = true; |
|
3211 break; |
|
3212 case e1000_82540: |
|
3213 case e1000_82545: |
|
3214 case e1000_82545_rev_3: |
|
3215 case e1000_82546: |
|
3216 case e1000_82546_rev_3: |
|
3217 if (hw->phy_id == M88E1011_I_PHY_ID) |
|
3218 match = true; |
|
3219 break; |
|
3220 case e1000_ce4100: |
|
3221 if ((hw->phy_id == RTL8211B_PHY_ID) || |
|
3222 (hw->phy_id == RTL8201N_PHY_ID) || |
|
3223 (hw->phy_id == M88E1118_E_PHY_ID)) |
|
3224 match = true; |
|
3225 break; |
|
3226 case e1000_82541: |
|
3227 case e1000_82541_rev_2: |
|
3228 case e1000_82547: |
|
3229 case e1000_82547_rev_2: |
|
3230 if (hw->phy_id == IGP01E1000_I_PHY_ID) |
|
3231 match = true; |
|
3232 break; |
|
3233 default: |
|
3234 e_dbg("Invalid MAC type %d\n", hw->mac_type); |
|
3235 return -E1000_ERR_CONFIG; |
|
3236 } |
|
3237 phy_init_status = e1000_set_phy_type(hw); |
|
3238 |
|
3239 if ((match) && (phy_init_status == E1000_SUCCESS)) { |
|
3240 e_dbg("PHY ID 0x%X detected\n", hw->phy_id); |
|
3241 return E1000_SUCCESS; |
|
3242 } |
|
3243 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id); |
|
3244 return -E1000_ERR_PHY; |
|
3245 } |
|
3246 |
|
3247 /** |
|
3248 * e1000_phy_reset_dsp - reset DSP |
|
3249 * @hw: Struct containing variables accessed by shared code |
|
3250 * |
|
3251 * Resets the PHY's DSP |
|
3252 */ |
|
3253 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) |
|
3254 { |
|
3255 s32 ret_val; |
|
3256 e_dbg("e1000_phy_reset_dsp"); |
|
3257 |
|
3258 do { |
|
3259 ret_val = e1000_write_phy_reg(hw, 29, 0x001d); |
|
3260 if (ret_val) |
|
3261 break; |
|
3262 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); |
|
3263 if (ret_val) |
|
3264 break; |
|
3265 ret_val = e1000_write_phy_reg(hw, 30, 0x0000); |
|
3266 if (ret_val) |
|
3267 break; |
|
3268 ret_val = E1000_SUCCESS; |
|
3269 } while (0); |
|
3270 |
|
3271 return ret_val; |
|
3272 } |
|
3273 |
|
3274 /** |
|
3275 * e1000_phy_igp_get_info - get igp specific registers |
|
3276 * @hw: Struct containing variables accessed by shared code |
|
3277 * @phy_info: PHY information structure |
|
3278 * |
|
3279 * Get PHY information from various PHY registers for igp PHY only. |
|
3280 */ |
|
3281 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
|
3282 struct e1000_phy_info *phy_info) |
|
3283 { |
|
3284 s32 ret_val; |
|
3285 u16 phy_data, min_length, max_length, average; |
|
3286 e1000_rev_polarity polarity; |
|
3287 |
|
3288 e_dbg("e1000_phy_igp_get_info"); |
|
3289 |
|
3290 /* The downshift status is checked only once, after link is established, |
|
3291 * and it stored in the hw->speed_downgraded parameter. */ |
|
3292 phy_info->downshift = (e1000_downshift) hw->speed_downgraded; |
|
3293 |
|
3294 /* IGP01E1000 does not need to support it. */ |
|
3295 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
|
3296 |
|
3297 /* IGP01E1000 always correct polarity reversal */ |
|
3298 phy_info->polarity_correction = e1000_polarity_reversal_enabled; |
|
3299 |
|
3300 /* Check polarity status */ |
|
3301 ret_val = e1000_check_polarity(hw, &polarity); |
|
3302 if (ret_val) |
|
3303 return ret_val; |
|
3304 |
|
3305 phy_info->cable_polarity = polarity; |
|
3306 |
|
3307 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); |
|
3308 if (ret_val) |
|
3309 return ret_val; |
|
3310 |
|
3311 phy_info->mdix_mode = |
|
3312 (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> |
|
3313 IGP01E1000_PSSR_MDIX_SHIFT); |
|
3314 |
|
3315 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
|
3316 IGP01E1000_PSSR_SPEED_1000MBPS) { |
|
3317 /* Local/Remote Receiver Information are only valid at 1000 Mbps */ |
|
3318 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
|
3319 if (ret_val) |
|
3320 return ret_val; |
|
3321 |
|
3322 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
|
3323 SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
|
3324 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
3325 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
|
3326 SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
|
3327 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
3328 |
|
3329 /* Get cable length */ |
|
3330 ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
|
3331 if (ret_val) |
|
3332 return ret_val; |
|
3333 |
|
3334 /* Translate to old method */ |
|
3335 average = (max_length + min_length) / 2; |
|
3336 |
|
3337 if (average <= e1000_igp_cable_length_50) |
|
3338 phy_info->cable_length = e1000_cable_length_50; |
|
3339 else if (average <= e1000_igp_cable_length_80) |
|
3340 phy_info->cable_length = e1000_cable_length_50_80; |
|
3341 else if (average <= e1000_igp_cable_length_110) |
|
3342 phy_info->cable_length = e1000_cable_length_80_110; |
|
3343 else if (average <= e1000_igp_cable_length_140) |
|
3344 phy_info->cable_length = e1000_cable_length_110_140; |
|
3345 else |
|
3346 phy_info->cable_length = e1000_cable_length_140; |
|
3347 } |
|
3348 |
|
3349 return E1000_SUCCESS; |
|
3350 } |
|
3351 |
|
3352 /** |
|
3353 * e1000_phy_m88_get_info - get m88 specific registers |
|
3354 * @hw: Struct containing variables accessed by shared code |
|
3355 * @phy_info: PHY information structure |
|
3356 * |
|
3357 * Get PHY information from various PHY registers for m88 PHY only. |
|
3358 */ |
|
3359 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
|
3360 struct e1000_phy_info *phy_info) |
|
3361 { |
|
3362 s32 ret_val; |
|
3363 u16 phy_data; |
|
3364 e1000_rev_polarity polarity; |
|
3365 |
|
3366 e_dbg("e1000_phy_m88_get_info"); |
|
3367 |
|
3368 /* The downshift status is checked only once, after link is established, |
|
3369 * and it stored in the hw->speed_downgraded parameter. */ |
|
3370 phy_info->downshift = (e1000_downshift) hw->speed_downgraded; |
|
3371 |
|
3372 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
3373 if (ret_val) |
|
3374 return ret_val; |
|
3375 |
|
3376 phy_info->extended_10bt_distance = |
|
3377 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> |
|
3378 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? |
|
3379 e1000_10bt_ext_dist_enable_lower : |
|
3380 e1000_10bt_ext_dist_enable_normal; |
|
3381 |
|
3382 phy_info->polarity_correction = |
|
3383 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> |
|
3384 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? |
|
3385 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; |
|
3386 |
|
3387 /* Check polarity status */ |
|
3388 ret_val = e1000_check_polarity(hw, &polarity); |
|
3389 if (ret_val) |
|
3390 return ret_val; |
|
3391 phy_info->cable_polarity = polarity; |
|
3392 |
|
3393 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
|
3394 if (ret_val) |
|
3395 return ret_val; |
|
3396 |
|
3397 phy_info->mdix_mode = |
|
3398 (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> |
|
3399 M88E1000_PSSR_MDIX_SHIFT); |
|
3400 |
|
3401 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { |
|
3402 /* Cable Length Estimation and Local/Remote Receiver Information |
|
3403 * are only valid at 1000 Mbps. |
|
3404 */ |
|
3405 phy_info->cable_length = |
|
3406 (e1000_cable_length) ((phy_data & |
|
3407 M88E1000_PSSR_CABLE_LENGTH) >> |
|
3408 M88E1000_PSSR_CABLE_LENGTH_SHIFT); |
|
3409 |
|
3410 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
|
3411 if (ret_val) |
|
3412 return ret_val; |
|
3413 |
|
3414 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
|
3415 SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
|
3416 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
3417 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
|
3418 SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
|
3419 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
3420 |
|
3421 } |
|
3422 |
|
3423 return E1000_SUCCESS; |
|
3424 } |
|
3425 |
|
3426 /** |
|
3427 * e1000_phy_get_info - request phy info |
|
3428 * @hw: Struct containing variables accessed by shared code |
|
3429 * @phy_info: PHY information structure |
|
3430 * |
|
3431 * Get PHY information from various PHY registers |
|
3432 */ |
|
3433 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) |
|
3434 { |
|
3435 s32 ret_val; |
|
3436 u16 phy_data; |
|
3437 |
|
3438 e_dbg("e1000_phy_get_info"); |
|
3439 |
|
3440 phy_info->cable_length = e1000_cable_length_undefined; |
|
3441 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; |
|
3442 phy_info->cable_polarity = e1000_rev_polarity_undefined; |
|
3443 phy_info->downshift = e1000_downshift_undefined; |
|
3444 phy_info->polarity_correction = e1000_polarity_reversal_undefined; |
|
3445 phy_info->mdix_mode = e1000_auto_x_mode_undefined; |
|
3446 phy_info->local_rx = e1000_1000t_rx_status_undefined; |
|
3447 phy_info->remote_rx = e1000_1000t_rx_status_undefined; |
|
3448 |
|
3449 if (hw->media_type != e1000_media_type_copper) { |
|
3450 e_dbg("PHY info is only valid for copper media\n"); |
|
3451 return -E1000_ERR_CONFIG; |
|
3452 } |
|
3453 |
|
3454 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
3455 if (ret_val) |
|
3456 return ret_val; |
|
3457 |
|
3458 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
3459 if (ret_val) |
|
3460 return ret_val; |
|
3461 |
|
3462 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { |
|
3463 e_dbg("PHY info is only valid if link is up\n"); |
|
3464 return -E1000_ERR_CONFIG; |
|
3465 } |
|
3466 |
|
3467 if (hw->phy_type == e1000_phy_igp) |
|
3468 return e1000_phy_igp_get_info(hw, phy_info); |
|
3469 else if ((hw->phy_type == e1000_phy_8211) || |
|
3470 (hw->phy_type == e1000_phy_8201)) |
|
3471 return E1000_SUCCESS; |
|
3472 else |
|
3473 return e1000_phy_m88_get_info(hw, phy_info); |
|
3474 } |
|
3475 |
|
3476 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) |
|
3477 { |
|
3478 e_dbg("e1000_validate_mdi_settings"); |
|
3479 |
|
3480 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { |
|
3481 e_dbg("Invalid MDI setting detected\n"); |
|
3482 hw->mdix = 1; |
|
3483 return -E1000_ERR_CONFIG; |
|
3484 } |
|
3485 return E1000_SUCCESS; |
|
3486 } |
|
3487 |
|
3488 /** |
|
3489 * e1000_init_eeprom_params - initialize sw eeprom vars |
|
3490 * @hw: Struct containing variables accessed by shared code |
|
3491 * |
|
3492 * Sets up eeprom variables in the hw struct. Must be called after mac_type |
|
3493 * is configured. |
|
3494 */ |
|
3495 s32 e1000_init_eeprom_params(struct e1000_hw *hw) |
|
3496 { |
|
3497 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
3498 u32 eecd = er32(EECD); |
|
3499 s32 ret_val = E1000_SUCCESS; |
|
3500 u16 eeprom_size; |
|
3501 |
|
3502 e_dbg("e1000_init_eeprom_params"); |
|
3503 |
|
3504 switch (hw->mac_type) { |
|
3505 case e1000_82542_rev2_0: |
|
3506 case e1000_82542_rev2_1: |
|
3507 case e1000_82543: |
|
3508 case e1000_82544: |
|
3509 eeprom->type = e1000_eeprom_microwire; |
|
3510 eeprom->word_size = 64; |
|
3511 eeprom->opcode_bits = 3; |
|
3512 eeprom->address_bits = 6; |
|
3513 eeprom->delay_usec = 50; |
|
3514 break; |
|
3515 case e1000_82540: |
|
3516 case e1000_82545: |
|
3517 case e1000_82545_rev_3: |
|
3518 case e1000_82546: |
|
3519 case e1000_82546_rev_3: |
|
3520 eeprom->type = e1000_eeprom_microwire; |
|
3521 eeprom->opcode_bits = 3; |
|
3522 eeprom->delay_usec = 50; |
|
3523 if (eecd & E1000_EECD_SIZE) { |
|
3524 eeprom->word_size = 256; |
|
3525 eeprom->address_bits = 8; |
|
3526 } else { |
|
3527 eeprom->word_size = 64; |
|
3528 eeprom->address_bits = 6; |
|
3529 } |
|
3530 break; |
|
3531 case e1000_82541: |
|
3532 case e1000_82541_rev_2: |
|
3533 case e1000_82547: |
|
3534 case e1000_82547_rev_2: |
|
3535 if (eecd & E1000_EECD_TYPE) { |
|
3536 eeprom->type = e1000_eeprom_spi; |
|
3537 eeprom->opcode_bits = 8; |
|
3538 eeprom->delay_usec = 1; |
|
3539 if (eecd & E1000_EECD_ADDR_BITS) { |
|
3540 eeprom->page_size = 32; |
|
3541 eeprom->address_bits = 16; |
|
3542 } else { |
|
3543 eeprom->page_size = 8; |
|
3544 eeprom->address_bits = 8; |
|
3545 } |
|
3546 } else { |
|
3547 eeprom->type = e1000_eeprom_microwire; |
|
3548 eeprom->opcode_bits = 3; |
|
3549 eeprom->delay_usec = 50; |
|
3550 if (eecd & E1000_EECD_ADDR_BITS) { |
|
3551 eeprom->word_size = 256; |
|
3552 eeprom->address_bits = 8; |
|
3553 } else { |
|
3554 eeprom->word_size = 64; |
|
3555 eeprom->address_bits = 6; |
|
3556 } |
|
3557 } |
|
3558 break; |
|
3559 default: |
|
3560 break; |
|
3561 } |
|
3562 |
|
3563 if (eeprom->type == e1000_eeprom_spi) { |
|
3564 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to |
|
3565 * 32KB (incremented by powers of 2). |
|
3566 */ |
|
3567 /* Set to default value for initial eeprom read. */ |
|
3568 eeprom->word_size = 64; |
|
3569 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
|
3570 if (ret_val) |
|
3571 return ret_val; |
|
3572 eeprom_size = |
|
3573 (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
|
3574 /* 256B eeprom size was not supported in earlier hardware, so we |
|
3575 * bump eeprom_size up one to ensure that "1" (which maps to 256B) |
|
3576 * is never the result used in the shifting logic below. */ |
|
3577 if (eeprom_size) |
|
3578 eeprom_size++; |
|
3579 |
|
3580 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); |
|
3581 } |
|
3582 return ret_val; |
|
3583 } |
|
3584 |
|
3585 /** |
|
3586 * e1000_raise_ee_clk - Raises the EEPROM's clock input. |
|
3587 * @hw: Struct containing variables accessed by shared code |
|
3588 * @eecd: EECD's current value |
|
3589 */ |
|
3590 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) |
|
3591 { |
|
3592 /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
|
3593 * wait <delay> microseconds. |
|
3594 */ |
|
3595 *eecd = *eecd | E1000_EECD_SK; |
|
3596 ew32(EECD, *eecd); |
|
3597 E1000_WRITE_FLUSH(); |
|
3598 udelay(hw->eeprom.delay_usec); |
|
3599 } |
|
3600 |
|
3601 /** |
|
3602 * e1000_lower_ee_clk - Lowers the EEPROM's clock input. |
|
3603 * @hw: Struct containing variables accessed by shared code |
|
3604 * @eecd: EECD's current value |
|
3605 */ |
|
3606 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) |
|
3607 { |
|
3608 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
|
3609 * wait 50 microseconds. |
|
3610 */ |
|
3611 *eecd = *eecd & ~E1000_EECD_SK; |
|
3612 ew32(EECD, *eecd); |
|
3613 E1000_WRITE_FLUSH(); |
|
3614 udelay(hw->eeprom.delay_usec); |
|
3615 } |
|
3616 |
|
3617 /** |
|
3618 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. |
|
3619 * @hw: Struct containing variables accessed by shared code |
|
3620 * @data: data to send to the EEPROM |
|
3621 * @count: number of bits to shift out |
|
3622 */ |
|
3623 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) |
|
3624 { |
|
3625 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
3626 u32 eecd; |
|
3627 u32 mask; |
|
3628 |
|
3629 /* We need to shift "count" bits out to the EEPROM. So, value in the |
|
3630 * "data" parameter will be shifted out to the EEPROM one bit at a time. |
|
3631 * In order to do this, "data" must be broken down into bits. |
|
3632 */ |
|
3633 mask = 0x01 << (count - 1); |
|
3634 eecd = er32(EECD); |
|
3635 if (eeprom->type == e1000_eeprom_microwire) { |
|
3636 eecd &= ~E1000_EECD_DO; |
|
3637 } else if (eeprom->type == e1000_eeprom_spi) { |
|
3638 eecd |= E1000_EECD_DO; |
|
3639 } |
|
3640 do { |
|
3641 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
|
3642 * and then raising and then lowering the clock (the SK bit controls |
|
3643 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
|
3644 * by setting "DI" to "0" and then raising and then lowering the clock. |
|
3645 */ |
|
3646 eecd &= ~E1000_EECD_DI; |
|
3647 |
|
3648 if (data & mask) |
|
3649 eecd |= E1000_EECD_DI; |
|
3650 |
|
3651 ew32(EECD, eecd); |
|
3652 E1000_WRITE_FLUSH(); |
|
3653 |
|
3654 udelay(eeprom->delay_usec); |
|
3655 |
|
3656 e1000_raise_ee_clk(hw, &eecd); |
|
3657 e1000_lower_ee_clk(hw, &eecd); |
|
3658 |
|
3659 mask = mask >> 1; |
|
3660 |
|
3661 } while (mask); |
|
3662 |
|
3663 /* We leave the "DI" bit set to "0" when we leave this routine. */ |
|
3664 eecd &= ~E1000_EECD_DI; |
|
3665 ew32(EECD, eecd); |
|
3666 } |
|
3667 |
|
3668 /** |
|
3669 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM |
|
3670 * @hw: Struct containing variables accessed by shared code |
|
3671 * @count: number of bits to shift in |
|
3672 */ |
|
3673 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) |
|
3674 { |
|
3675 u32 eecd; |
|
3676 u32 i; |
|
3677 u16 data; |
|
3678 |
|
3679 /* In order to read a register from the EEPROM, we need to shift 'count' |
|
3680 * bits in from the EEPROM. Bits are "shifted in" by raising the clock |
|
3681 * input to the EEPROM (setting the SK bit), and then reading the value of |
|
3682 * the "DO" bit. During this "shifting in" process the "DI" bit should |
|
3683 * always be clear. |
|
3684 */ |
|
3685 |
|
3686 eecd = er32(EECD); |
|
3687 |
|
3688 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
|
3689 data = 0; |
|
3690 |
|
3691 for (i = 0; i < count; i++) { |
|
3692 data = data << 1; |
|
3693 e1000_raise_ee_clk(hw, &eecd); |
|
3694 |
|
3695 eecd = er32(EECD); |
|
3696 |
|
3697 eecd &= ~(E1000_EECD_DI); |
|
3698 if (eecd & E1000_EECD_DO) |
|
3699 data |= 1; |
|
3700 |
|
3701 e1000_lower_ee_clk(hw, &eecd); |
|
3702 } |
|
3703 |
|
3704 return data; |
|
3705 } |
|
3706 |
|
3707 /** |
|
3708 * e1000_acquire_eeprom - Prepares EEPROM for access |
|
3709 * @hw: Struct containing variables accessed by shared code |
|
3710 * |
|
3711 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
|
3712 * function should be called before issuing a command to the EEPROM. |
|
3713 */ |
|
3714 static s32 e1000_acquire_eeprom(struct e1000_hw *hw) |
|
3715 { |
|
3716 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
3717 u32 eecd, i = 0; |
|
3718 |
|
3719 e_dbg("e1000_acquire_eeprom"); |
|
3720 |
|
3721 eecd = er32(EECD); |
|
3722 |
|
3723 /* Request EEPROM Access */ |
|
3724 if (hw->mac_type > e1000_82544) { |
|
3725 eecd |= E1000_EECD_REQ; |
|
3726 ew32(EECD, eecd); |
|
3727 eecd = er32(EECD); |
|
3728 while ((!(eecd & E1000_EECD_GNT)) && |
|
3729 (i < E1000_EEPROM_GRANT_ATTEMPTS)) { |
|
3730 i++; |
|
3731 udelay(5); |
|
3732 eecd = er32(EECD); |
|
3733 } |
|
3734 if (!(eecd & E1000_EECD_GNT)) { |
|
3735 eecd &= ~E1000_EECD_REQ; |
|
3736 ew32(EECD, eecd); |
|
3737 e_dbg("Could not acquire EEPROM grant\n"); |
|
3738 return -E1000_ERR_EEPROM; |
|
3739 } |
|
3740 } |
|
3741 |
|
3742 /* Setup EEPROM for Read/Write */ |
|
3743 |
|
3744 if (eeprom->type == e1000_eeprom_microwire) { |
|
3745 /* Clear SK and DI */ |
|
3746 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); |
|
3747 ew32(EECD, eecd); |
|
3748 |
|
3749 /* Set CS */ |
|
3750 eecd |= E1000_EECD_CS; |
|
3751 ew32(EECD, eecd); |
|
3752 } else if (eeprom->type == e1000_eeprom_spi) { |
|
3753 /* Clear SK and CS */ |
|
3754 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
|
3755 ew32(EECD, eecd); |
|
3756 E1000_WRITE_FLUSH(); |
|
3757 udelay(1); |
|
3758 } |
|
3759 |
|
3760 return E1000_SUCCESS; |
|
3761 } |
|
3762 |
|
3763 /** |
|
3764 * e1000_standby_eeprom - Returns EEPROM to a "standby" state |
|
3765 * @hw: Struct containing variables accessed by shared code |
|
3766 */ |
|
3767 static void e1000_standby_eeprom(struct e1000_hw *hw) |
|
3768 { |
|
3769 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
3770 u32 eecd; |
|
3771 |
|
3772 eecd = er32(EECD); |
|
3773 |
|
3774 if (eeprom->type == e1000_eeprom_microwire) { |
|
3775 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
|
3776 ew32(EECD, eecd); |
|
3777 E1000_WRITE_FLUSH(); |
|
3778 udelay(eeprom->delay_usec); |
|
3779 |
|
3780 /* Clock high */ |
|
3781 eecd |= E1000_EECD_SK; |
|
3782 ew32(EECD, eecd); |
|
3783 E1000_WRITE_FLUSH(); |
|
3784 udelay(eeprom->delay_usec); |
|
3785 |
|
3786 /* Select EEPROM */ |
|
3787 eecd |= E1000_EECD_CS; |
|
3788 ew32(EECD, eecd); |
|
3789 E1000_WRITE_FLUSH(); |
|
3790 udelay(eeprom->delay_usec); |
|
3791 |
|
3792 /* Clock low */ |
|
3793 eecd &= ~E1000_EECD_SK; |
|
3794 ew32(EECD, eecd); |
|
3795 E1000_WRITE_FLUSH(); |
|
3796 udelay(eeprom->delay_usec); |
|
3797 } else if (eeprom->type == e1000_eeprom_spi) { |
|
3798 /* Toggle CS to flush commands */ |
|
3799 eecd |= E1000_EECD_CS; |
|
3800 ew32(EECD, eecd); |
|
3801 E1000_WRITE_FLUSH(); |
|
3802 udelay(eeprom->delay_usec); |
|
3803 eecd &= ~E1000_EECD_CS; |
|
3804 ew32(EECD, eecd); |
|
3805 E1000_WRITE_FLUSH(); |
|
3806 udelay(eeprom->delay_usec); |
|
3807 } |
|
3808 } |
|
3809 |
|
3810 /** |
|
3811 * e1000_release_eeprom - drop chip select |
|
3812 * @hw: Struct containing variables accessed by shared code |
|
3813 * |
|
3814 * Terminates a command by inverting the EEPROM's chip select pin |
|
3815 */ |
|
3816 static void e1000_release_eeprom(struct e1000_hw *hw) |
|
3817 { |
|
3818 u32 eecd; |
|
3819 |
|
3820 e_dbg("e1000_release_eeprom"); |
|
3821 |
|
3822 eecd = er32(EECD); |
|
3823 |
|
3824 if (hw->eeprom.type == e1000_eeprom_spi) { |
|
3825 eecd |= E1000_EECD_CS; /* Pull CS high */ |
|
3826 eecd &= ~E1000_EECD_SK; /* Lower SCK */ |
|
3827 |
|
3828 ew32(EECD, eecd); |
|
3829 E1000_WRITE_FLUSH(); |
|
3830 |
|
3831 udelay(hw->eeprom.delay_usec); |
|
3832 } else if (hw->eeprom.type == e1000_eeprom_microwire) { |
|
3833 /* cleanup eeprom */ |
|
3834 |
|
3835 /* CS on Microwire is active-high */ |
|
3836 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
|
3837 |
|
3838 ew32(EECD, eecd); |
|
3839 |
|
3840 /* Rising edge of clock */ |
|
3841 eecd |= E1000_EECD_SK; |
|
3842 ew32(EECD, eecd); |
|
3843 E1000_WRITE_FLUSH(); |
|
3844 udelay(hw->eeprom.delay_usec); |
|
3845 |
|
3846 /* Falling edge of clock */ |
|
3847 eecd &= ~E1000_EECD_SK; |
|
3848 ew32(EECD, eecd); |
|
3849 E1000_WRITE_FLUSH(); |
|
3850 udelay(hw->eeprom.delay_usec); |
|
3851 } |
|
3852 |
|
3853 /* Stop requesting EEPROM access */ |
|
3854 if (hw->mac_type > e1000_82544) { |
|
3855 eecd &= ~E1000_EECD_REQ; |
|
3856 ew32(EECD, eecd); |
|
3857 } |
|
3858 } |
|
3859 |
|
3860 /** |
|
3861 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. |
|
3862 * @hw: Struct containing variables accessed by shared code |
|
3863 */ |
|
3864 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) |
|
3865 { |
|
3866 u16 retry_count = 0; |
|
3867 u8 spi_stat_reg; |
|
3868 |
|
3869 e_dbg("e1000_spi_eeprom_ready"); |
|
3870 |
|
3871 /* Read "Status Register" repeatedly until the LSB is cleared. The |
|
3872 * EEPROM will signal that the command has been completed by clearing |
|
3873 * bit 0 of the internal status register. If it's not cleared within |
|
3874 * 5 milliseconds, then error out. |
|
3875 */ |
|
3876 retry_count = 0; |
|
3877 do { |
|
3878 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, |
|
3879 hw->eeprom.opcode_bits); |
|
3880 spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8); |
|
3881 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) |
|
3882 break; |
|
3883 |
|
3884 udelay(5); |
|
3885 retry_count += 5; |
|
3886 |
|
3887 e1000_standby_eeprom(hw); |
|
3888 } while (retry_count < EEPROM_MAX_RETRY_SPI); |
|
3889 |
|
3890 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and |
|
3891 * only 0-5mSec on 5V devices) |
|
3892 */ |
|
3893 if (retry_count >= EEPROM_MAX_RETRY_SPI) { |
|
3894 e_dbg("SPI EEPROM Status error\n"); |
|
3895 return -E1000_ERR_EEPROM; |
|
3896 } |
|
3897 |
|
3898 return E1000_SUCCESS; |
|
3899 } |
|
3900 |
|
3901 /** |
|
3902 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. |
|
3903 * @hw: Struct containing variables accessed by shared code |
|
3904 * @offset: offset of word in the EEPROM to read |
|
3905 * @data: word read from the EEPROM |
|
3906 * @words: number of words to read |
|
3907 */ |
|
3908 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
3909 { |
|
3910 s32 ret; |
|
3911 spin_lock(&e1000_eeprom_lock); |
|
3912 ret = e1000_do_read_eeprom(hw, offset, words, data); |
|
3913 spin_unlock(&e1000_eeprom_lock); |
|
3914 return ret; |
|
3915 } |
|
3916 |
|
3917 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
|
3918 u16 *data) |
|
3919 { |
|
3920 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
3921 u32 i = 0; |
|
3922 |
|
3923 e_dbg("e1000_read_eeprom"); |
|
3924 |
|
3925 if (hw->mac_type == e1000_ce4100) { |
|
3926 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words, |
|
3927 data); |
|
3928 return E1000_SUCCESS; |
|
3929 } |
|
3930 |
|
3931 /* If eeprom is not yet detected, do so now */ |
|
3932 if (eeprom->word_size == 0) |
|
3933 e1000_init_eeprom_params(hw); |
|
3934 |
|
3935 /* A check for invalid values: offset too large, too many words, and not |
|
3936 * enough words. |
|
3937 */ |
|
3938 if ((offset >= eeprom->word_size) |
|
3939 || (words > eeprom->word_size - offset) || (words == 0)) { |
|
3940 e_dbg("\"words\" parameter out of bounds. Words = %d," |
|
3941 "size = %d\n", offset, eeprom->word_size); |
|
3942 return -E1000_ERR_EEPROM; |
|
3943 } |
|
3944 |
|
3945 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI |
|
3946 * directly. In this case, we need to acquire the EEPROM so that |
|
3947 * FW or other port software does not interrupt. |
|
3948 */ |
|
3949 /* Prepare the EEPROM for bit-bang reading */ |
|
3950 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
|
3951 return -E1000_ERR_EEPROM; |
|
3952 |
|
3953 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have |
|
3954 * acquired the EEPROM at this point, so any returns should release it */ |
|
3955 if (eeprom->type == e1000_eeprom_spi) { |
|
3956 u16 word_in; |
|
3957 u8 read_opcode = EEPROM_READ_OPCODE_SPI; |
|
3958 |
|
3959 if (e1000_spi_eeprom_ready(hw)) { |
|
3960 e1000_release_eeprom(hw); |
|
3961 return -E1000_ERR_EEPROM; |
|
3962 } |
|
3963 |
|
3964 e1000_standby_eeprom(hw); |
|
3965 |
|
3966 /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
|
3967 if ((eeprom->address_bits == 8) && (offset >= 128)) |
|
3968 read_opcode |= EEPROM_A8_OPCODE_SPI; |
|
3969 |
|
3970 /* Send the READ command (opcode + addr) */ |
|
3971 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); |
|
3972 e1000_shift_out_ee_bits(hw, (u16) (offset * 2), |
|
3973 eeprom->address_bits); |
|
3974 |
|
3975 /* Read the data. The address of the eeprom internally increments with |
|
3976 * each byte (spi) being read, saving on the overhead of eeprom setup |
|
3977 * and tear-down. The address counter will roll over if reading beyond |
|
3978 * the size of the eeprom, thus allowing the entire memory to be read |
|
3979 * starting from any offset. */ |
|
3980 for (i = 0; i < words; i++) { |
|
3981 word_in = e1000_shift_in_ee_bits(hw, 16); |
|
3982 data[i] = (word_in >> 8) | (word_in << 8); |
|
3983 } |
|
3984 } else if (eeprom->type == e1000_eeprom_microwire) { |
|
3985 for (i = 0; i < words; i++) { |
|
3986 /* Send the READ command (opcode + addr) */ |
|
3987 e1000_shift_out_ee_bits(hw, |
|
3988 EEPROM_READ_OPCODE_MICROWIRE, |
|
3989 eeprom->opcode_bits); |
|
3990 e1000_shift_out_ee_bits(hw, (u16) (offset + i), |
|
3991 eeprom->address_bits); |
|
3992 |
|
3993 /* Read the data. For microwire, each word requires the overhead |
|
3994 * of eeprom setup and tear-down. */ |
|
3995 data[i] = e1000_shift_in_ee_bits(hw, 16); |
|
3996 e1000_standby_eeprom(hw); |
|
3997 } |
|
3998 } |
|
3999 |
|
4000 /* End this read operation */ |
|
4001 e1000_release_eeprom(hw); |
|
4002 |
|
4003 return E1000_SUCCESS; |
|
4004 } |
|
4005 |
|
4006 /** |
|
4007 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum |
|
4008 * @hw: Struct containing variables accessed by shared code |
|
4009 * |
|
4010 * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
|
4011 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
|
4012 * valid. |
|
4013 */ |
|
4014 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) |
|
4015 { |
|
4016 u16 checksum = 0; |
|
4017 u16 i, eeprom_data; |
|
4018 |
|
4019 e_dbg("e1000_validate_eeprom_checksum"); |
|
4020 |
|
4021 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
|
4022 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
|
4023 e_dbg("EEPROM Read Error\n"); |
|
4024 return -E1000_ERR_EEPROM; |
|
4025 } |
|
4026 checksum += eeprom_data; |
|
4027 } |
|
4028 |
|
4029 #ifdef CONFIG_PARISC |
|
4030 /* This is a signature and not a checksum on HP c8000 */ |
|
4031 if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6)) |
|
4032 return E1000_SUCCESS; |
|
4033 |
|
4034 #endif |
|
4035 if (checksum == (u16) EEPROM_SUM) |
|
4036 return E1000_SUCCESS; |
|
4037 else { |
|
4038 e_dbg("EEPROM Checksum Invalid\n"); |
|
4039 return -E1000_ERR_EEPROM; |
|
4040 } |
|
4041 } |
|
4042 |
|
4043 /** |
|
4044 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum |
|
4045 * @hw: Struct containing variables accessed by shared code |
|
4046 * |
|
4047 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. |
|
4048 * Writes the difference to word offset 63 of the EEPROM. |
|
4049 */ |
|
4050 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) |
|
4051 { |
|
4052 u16 checksum = 0; |
|
4053 u16 i, eeprom_data; |
|
4054 |
|
4055 e_dbg("e1000_update_eeprom_checksum"); |
|
4056 |
|
4057 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { |
|
4058 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
|
4059 e_dbg("EEPROM Read Error\n"); |
|
4060 return -E1000_ERR_EEPROM; |
|
4061 } |
|
4062 checksum += eeprom_data; |
|
4063 } |
|
4064 checksum = (u16) EEPROM_SUM - checksum; |
|
4065 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
|
4066 e_dbg("EEPROM Write Error\n"); |
|
4067 return -E1000_ERR_EEPROM; |
|
4068 } |
|
4069 return E1000_SUCCESS; |
|
4070 } |
|
4071 |
|
4072 /** |
|
4073 * e1000_write_eeprom - write words to the different EEPROM types. |
|
4074 * @hw: Struct containing variables accessed by shared code |
|
4075 * @offset: offset within the EEPROM to be written to |
|
4076 * @words: number of words to write |
|
4077 * @data: 16 bit word to be written to the EEPROM |
|
4078 * |
|
4079 * If e1000_update_eeprom_checksum is not called after this function, the |
|
4080 * EEPROM will most likely contain an invalid checksum. |
|
4081 */ |
|
4082 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
4083 { |
|
4084 s32 ret; |
|
4085 spin_lock(&e1000_eeprom_lock); |
|
4086 ret = e1000_do_write_eeprom(hw, offset, words, data); |
|
4087 spin_unlock(&e1000_eeprom_lock); |
|
4088 return ret; |
|
4089 } |
|
4090 |
|
4091 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
|
4092 u16 *data) |
|
4093 { |
|
4094 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
4095 s32 status = 0; |
|
4096 |
|
4097 e_dbg("e1000_write_eeprom"); |
|
4098 |
|
4099 if (hw->mac_type == e1000_ce4100) { |
|
4100 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words, |
|
4101 data); |
|
4102 return E1000_SUCCESS; |
|
4103 } |
|
4104 |
|
4105 /* If eeprom is not yet detected, do so now */ |
|
4106 if (eeprom->word_size == 0) |
|
4107 e1000_init_eeprom_params(hw); |
|
4108 |
|
4109 /* A check for invalid values: offset too large, too many words, and not |
|
4110 * enough words. |
|
4111 */ |
|
4112 if ((offset >= eeprom->word_size) |
|
4113 || (words > eeprom->word_size - offset) || (words == 0)) { |
|
4114 e_dbg("\"words\" parameter out of bounds\n"); |
|
4115 return -E1000_ERR_EEPROM; |
|
4116 } |
|
4117 |
|
4118 /* Prepare the EEPROM for writing */ |
|
4119 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
|
4120 return -E1000_ERR_EEPROM; |
|
4121 |
|
4122 if (eeprom->type == e1000_eeprom_microwire) { |
|
4123 status = e1000_write_eeprom_microwire(hw, offset, words, data); |
|
4124 } else { |
|
4125 status = e1000_write_eeprom_spi(hw, offset, words, data); |
|
4126 msleep(10); |
|
4127 } |
|
4128 |
|
4129 /* Done with writing */ |
|
4130 e1000_release_eeprom(hw); |
|
4131 |
|
4132 return status; |
|
4133 } |
|
4134 |
|
4135 /** |
|
4136 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. |
|
4137 * @hw: Struct containing variables accessed by shared code |
|
4138 * @offset: offset within the EEPROM to be written to |
|
4139 * @words: number of words to write |
|
4140 * @data: pointer to array of 8 bit words to be written to the EEPROM |
|
4141 */ |
|
4142 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, |
|
4143 u16 *data) |
|
4144 { |
|
4145 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
4146 u16 widx = 0; |
|
4147 |
|
4148 e_dbg("e1000_write_eeprom_spi"); |
|
4149 |
|
4150 while (widx < words) { |
|
4151 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; |
|
4152 |
|
4153 if (e1000_spi_eeprom_ready(hw)) |
|
4154 return -E1000_ERR_EEPROM; |
|
4155 |
|
4156 e1000_standby_eeprom(hw); |
|
4157 |
|
4158 /* Send the WRITE ENABLE command (8 bit opcode ) */ |
|
4159 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, |
|
4160 eeprom->opcode_bits); |
|
4161 |
|
4162 e1000_standby_eeprom(hw); |
|
4163 |
|
4164 /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
|
4165 if ((eeprom->address_bits == 8) && (offset >= 128)) |
|
4166 write_opcode |= EEPROM_A8_OPCODE_SPI; |
|
4167 |
|
4168 /* Send the Write command (8-bit opcode + addr) */ |
|
4169 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); |
|
4170 |
|
4171 e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2), |
|
4172 eeprom->address_bits); |
|
4173 |
|
4174 /* Send the data */ |
|
4175 |
|
4176 /* Loop to allow for up to whole page write (32 bytes) of eeprom */ |
|
4177 while (widx < words) { |
|
4178 u16 word_out = data[widx]; |
|
4179 word_out = (word_out >> 8) | (word_out << 8); |
|
4180 e1000_shift_out_ee_bits(hw, word_out, 16); |
|
4181 widx++; |
|
4182 |
|
4183 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE |
|
4184 * operation, while the smaller eeproms are capable of an 8-byte |
|
4185 * PAGE WRITE operation. Break the inner loop to pass new address |
|
4186 */ |
|
4187 if ((((offset + widx) * 2) % eeprom->page_size) == 0) { |
|
4188 e1000_standby_eeprom(hw); |
|
4189 break; |
|
4190 } |
|
4191 } |
|
4192 } |
|
4193 |
|
4194 return E1000_SUCCESS; |
|
4195 } |
|
4196 |
|
4197 /** |
|
4198 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. |
|
4199 * @hw: Struct containing variables accessed by shared code |
|
4200 * @offset: offset within the EEPROM to be written to |
|
4201 * @words: number of words to write |
|
4202 * @data: pointer to array of 8 bit words to be written to the EEPROM |
|
4203 */ |
|
4204 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
|
4205 u16 words, u16 *data) |
|
4206 { |
|
4207 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
4208 u32 eecd; |
|
4209 u16 words_written = 0; |
|
4210 u16 i = 0; |
|
4211 |
|
4212 e_dbg("e1000_write_eeprom_microwire"); |
|
4213 |
|
4214 /* Send the write enable command to the EEPROM (3-bit opcode plus |
|
4215 * 6/8-bit dummy address beginning with 11). It's less work to include |
|
4216 * the 11 of the dummy address as part of the opcode than it is to shift |
|
4217 * it over the correct number of bits for the address. This puts the |
|
4218 * EEPROM into write/erase mode. |
|
4219 */ |
|
4220 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, |
|
4221 (u16) (eeprom->opcode_bits + 2)); |
|
4222 |
|
4223 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); |
|
4224 |
|
4225 /* Prepare the EEPROM */ |
|
4226 e1000_standby_eeprom(hw); |
|
4227 |
|
4228 while (words_written < words) { |
|
4229 /* Send the Write command (3-bit opcode + addr) */ |
|
4230 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, |
|
4231 eeprom->opcode_bits); |
|
4232 |
|
4233 e1000_shift_out_ee_bits(hw, (u16) (offset + words_written), |
|
4234 eeprom->address_bits); |
|
4235 |
|
4236 /* Send the data */ |
|
4237 e1000_shift_out_ee_bits(hw, data[words_written], 16); |
|
4238 |
|
4239 /* Toggle the CS line. This in effect tells the EEPROM to execute |
|
4240 * the previous command. |
|
4241 */ |
|
4242 e1000_standby_eeprom(hw); |
|
4243 |
|
4244 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will |
|
4245 * signal that the command has been completed by raising the DO signal. |
|
4246 * If DO does not go high in 10 milliseconds, then error out. |
|
4247 */ |
|
4248 for (i = 0; i < 200; i++) { |
|
4249 eecd = er32(EECD); |
|
4250 if (eecd & E1000_EECD_DO) |
|
4251 break; |
|
4252 udelay(50); |
|
4253 } |
|
4254 if (i == 200) { |
|
4255 e_dbg("EEPROM Write did not complete\n"); |
|
4256 return -E1000_ERR_EEPROM; |
|
4257 } |
|
4258 |
|
4259 /* Recover from write */ |
|
4260 e1000_standby_eeprom(hw); |
|
4261 |
|
4262 words_written++; |
|
4263 } |
|
4264 |
|
4265 /* Send the write disable command to the EEPROM (3-bit opcode plus |
|
4266 * 6/8-bit dummy address beginning with 10). It's less work to include |
|
4267 * the 10 of the dummy address as part of the opcode than it is to shift |
|
4268 * it over the correct number of bits for the address. This takes the |
|
4269 * EEPROM out of write/erase mode. |
|
4270 */ |
|
4271 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, |
|
4272 (u16) (eeprom->opcode_bits + 2)); |
|
4273 |
|
4274 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); |
|
4275 |
|
4276 return E1000_SUCCESS; |
|
4277 } |
|
4278 |
|
4279 /** |
|
4280 * e1000_read_mac_addr - read the adapters MAC from eeprom |
|
4281 * @hw: Struct containing variables accessed by shared code |
|
4282 * |
|
4283 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
|
4284 * second function of dual function devices |
|
4285 */ |
|
4286 s32 e1000_read_mac_addr(struct e1000_hw *hw) |
|
4287 { |
|
4288 u16 offset; |
|
4289 u16 eeprom_data, i; |
|
4290 |
|
4291 e_dbg("e1000_read_mac_addr"); |
|
4292 |
|
4293 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
|
4294 offset = i >> 1; |
|
4295 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
|
4296 e_dbg("EEPROM Read Error\n"); |
|
4297 return -E1000_ERR_EEPROM; |
|
4298 } |
|
4299 hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF); |
|
4300 hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8); |
|
4301 } |
|
4302 |
|
4303 switch (hw->mac_type) { |
|
4304 default: |
|
4305 break; |
|
4306 case e1000_82546: |
|
4307 case e1000_82546_rev_3: |
|
4308 if (er32(STATUS) & E1000_STATUS_FUNC_1) |
|
4309 hw->perm_mac_addr[5] ^= 0x01; |
|
4310 break; |
|
4311 } |
|
4312 |
|
4313 for (i = 0; i < NODE_ADDRESS_SIZE; i++) |
|
4314 hw->mac_addr[i] = hw->perm_mac_addr[i]; |
|
4315 return E1000_SUCCESS; |
|
4316 } |
|
4317 |
|
4318 /** |
|
4319 * e1000_init_rx_addrs - Initializes receive address filters. |
|
4320 * @hw: Struct containing variables accessed by shared code |
|
4321 * |
|
4322 * Places the MAC address in receive address register 0 and clears the rest |
|
4323 * of the receive address registers. Clears the multicast table. Assumes |
|
4324 * the receiver is in reset when the routine is called. |
|
4325 */ |
|
4326 static void e1000_init_rx_addrs(struct e1000_hw *hw) |
|
4327 { |
|
4328 u32 i; |
|
4329 u32 rar_num; |
|
4330 |
|
4331 e_dbg("e1000_init_rx_addrs"); |
|
4332 |
|
4333 /* Setup the receive address. */ |
|
4334 e_dbg("Programming MAC Address into RAR[0]\n"); |
|
4335 |
|
4336 e1000_rar_set(hw, hw->mac_addr, 0); |
|
4337 |
|
4338 rar_num = E1000_RAR_ENTRIES; |
|
4339 |
|
4340 /* Zero out the other 15 receive addresses. */ |
|
4341 e_dbg("Clearing RAR[1-15]\n"); |
|
4342 for (i = 1; i < rar_num; i++) { |
|
4343 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
|
4344 E1000_WRITE_FLUSH(); |
|
4345 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
|
4346 E1000_WRITE_FLUSH(); |
|
4347 } |
|
4348 } |
|
4349 |
|
4350 /** |
|
4351 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table |
|
4352 * @hw: Struct containing variables accessed by shared code |
|
4353 * @mc_addr: the multicast address to hash |
|
4354 */ |
|
4355 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) |
|
4356 { |
|
4357 u32 hash_value = 0; |
|
4358 |
|
4359 /* The portion of the address that is used for the hash table is |
|
4360 * determined by the mc_filter_type setting. |
|
4361 */ |
|
4362 switch (hw->mc_filter_type) { |
|
4363 /* [0] [1] [2] [3] [4] [5] |
|
4364 * 01 AA 00 12 34 56 |
|
4365 * LSB MSB |
|
4366 */ |
|
4367 case 0: |
|
4368 /* [47:36] i.e. 0x563 for above example address */ |
|
4369 hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); |
|
4370 break; |
|
4371 case 1: |
|
4372 /* [46:35] i.e. 0xAC6 for above example address */ |
|
4373 hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); |
|
4374 break; |
|
4375 case 2: |
|
4376 /* [45:34] i.e. 0x5D8 for above example address */ |
|
4377 hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); |
|
4378 break; |
|
4379 case 3: |
|
4380 /* [43:32] i.e. 0x634 for above example address */ |
|
4381 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); |
|
4382 break; |
|
4383 } |
|
4384 |
|
4385 hash_value &= 0xFFF; |
|
4386 return hash_value; |
|
4387 } |
|
4388 |
|
4389 /** |
|
4390 * e1000_rar_set - Puts an ethernet address into a receive address register. |
|
4391 * @hw: Struct containing variables accessed by shared code |
|
4392 * @addr: Address to put into receive address register |
|
4393 * @index: Receive address register to write |
|
4394 */ |
|
4395 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) |
|
4396 { |
|
4397 u32 rar_low, rar_high; |
|
4398 |
|
4399 /* HW expects these in little endian so we reverse the byte order |
|
4400 * from network order (big endian) to little endian |
|
4401 */ |
|
4402 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | |
|
4403 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); |
|
4404 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); |
|
4405 |
|
4406 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx |
|
4407 * unit hang. |
|
4408 * |
|
4409 * Description: |
|
4410 * If there are any Rx frames queued up or otherwise present in the HW |
|
4411 * before RSS is enabled, and then we enable RSS, the HW Rx unit will |
|
4412 * hang. To work around this issue, we have to disable receives and |
|
4413 * flush out all Rx frames before we enable RSS. To do so, we modify we |
|
4414 * redirect all Rx traffic to manageability and then reset the HW. |
|
4415 * This flushes away Rx frames, and (since the redirections to |
|
4416 * manageability persists across resets) keeps new ones from coming in |
|
4417 * while we work. Then, we clear the Address Valid AV bit for all MAC |
|
4418 * addresses and undo the re-direction to manageability. |
|
4419 * Now, frames are coming in again, but the MAC won't accept them, so |
|
4420 * far so good. We now proceed to initialize RSS (if necessary) and |
|
4421 * configure the Rx unit. Last, we re-enable the AV bits and continue |
|
4422 * on our merry way. |
|
4423 */ |
|
4424 switch (hw->mac_type) { |
|
4425 default: |
|
4426 /* Indicate to hardware the Address is Valid. */ |
|
4427 rar_high |= E1000_RAH_AV; |
|
4428 break; |
|
4429 } |
|
4430 |
|
4431 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
|
4432 E1000_WRITE_FLUSH(); |
|
4433 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
|
4434 E1000_WRITE_FLUSH(); |
|
4435 } |
|
4436 |
|
4437 /** |
|
4438 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. |
|
4439 * @hw: Struct containing variables accessed by shared code |
|
4440 * @offset: Offset in VLAN filer table to write |
|
4441 * @value: Value to write into VLAN filter table |
|
4442 */ |
|
4443 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) |
|
4444 { |
|
4445 u32 temp; |
|
4446 |
|
4447 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { |
|
4448 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
|
4449 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
|
4450 E1000_WRITE_FLUSH(); |
|
4451 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); |
|
4452 E1000_WRITE_FLUSH(); |
|
4453 } else { |
|
4454 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
|
4455 E1000_WRITE_FLUSH(); |
|
4456 } |
|
4457 } |
|
4458 |
|
4459 /** |
|
4460 * e1000_clear_vfta - Clears the VLAN filer table |
|
4461 * @hw: Struct containing variables accessed by shared code |
|
4462 */ |
|
4463 static void e1000_clear_vfta(struct e1000_hw *hw) |
|
4464 { |
|
4465 u32 offset; |
|
4466 u32 vfta_value = 0; |
|
4467 u32 vfta_offset = 0; |
|
4468 u32 vfta_bit_in_reg = 0; |
|
4469 |
|
4470 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
|
4471 /* If the offset we want to clear is the same offset of the |
|
4472 * manageability VLAN ID, then clear all bits except that of the |
|
4473 * manageability unit */ |
|
4474 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
|
4475 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); |
|
4476 E1000_WRITE_FLUSH(); |
|
4477 } |
|
4478 } |
|
4479 |
|
4480 static s32 e1000_id_led_init(struct e1000_hw *hw) |
|
4481 { |
|
4482 u32 ledctl; |
|
4483 const u32 ledctl_mask = 0x000000FF; |
|
4484 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
|
4485 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
|
4486 u16 eeprom_data, i, temp; |
|
4487 const u16 led_mask = 0x0F; |
|
4488 |
|
4489 e_dbg("e1000_id_led_init"); |
|
4490 |
|
4491 if (hw->mac_type < e1000_82540) { |
|
4492 /* Nothing to do */ |
|
4493 return E1000_SUCCESS; |
|
4494 } |
|
4495 |
|
4496 ledctl = er32(LEDCTL); |
|
4497 hw->ledctl_default = ledctl; |
|
4498 hw->ledctl_mode1 = hw->ledctl_default; |
|
4499 hw->ledctl_mode2 = hw->ledctl_default; |
|
4500 |
|
4501 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { |
|
4502 e_dbg("EEPROM Read Error\n"); |
|
4503 return -E1000_ERR_EEPROM; |
|
4504 } |
|
4505 |
|
4506 if ((eeprom_data == ID_LED_RESERVED_0000) || |
|
4507 (eeprom_data == ID_LED_RESERVED_FFFF)) { |
|
4508 eeprom_data = ID_LED_DEFAULT; |
|
4509 } |
|
4510 |
|
4511 for (i = 0; i < 4; i++) { |
|
4512 temp = (eeprom_data >> (i << 2)) & led_mask; |
|
4513 switch (temp) { |
|
4514 case ID_LED_ON1_DEF2: |
|
4515 case ID_LED_ON1_ON2: |
|
4516 case ID_LED_ON1_OFF2: |
|
4517 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
|
4518 hw->ledctl_mode1 |= ledctl_on << (i << 3); |
|
4519 break; |
|
4520 case ID_LED_OFF1_DEF2: |
|
4521 case ID_LED_OFF1_ON2: |
|
4522 case ID_LED_OFF1_OFF2: |
|
4523 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
|
4524 hw->ledctl_mode1 |= ledctl_off << (i << 3); |
|
4525 break; |
|
4526 default: |
|
4527 /* Do nothing */ |
|
4528 break; |
|
4529 } |
|
4530 switch (temp) { |
|
4531 case ID_LED_DEF1_ON2: |
|
4532 case ID_LED_ON1_ON2: |
|
4533 case ID_LED_OFF1_ON2: |
|
4534 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
|
4535 hw->ledctl_mode2 |= ledctl_on << (i << 3); |
|
4536 break; |
|
4537 case ID_LED_DEF1_OFF2: |
|
4538 case ID_LED_ON1_OFF2: |
|
4539 case ID_LED_OFF1_OFF2: |
|
4540 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
|
4541 hw->ledctl_mode2 |= ledctl_off << (i << 3); |
|
4542 break; |
|
4543 default: |
|
4544 /* Do nothing */ |
|
4545 break; |
|
4546 } |
|
4547 } |
|
4548 return E1000_SUCCESS; |
|
4549 } |
|
4550 |
|
4551 /** |
|
4552 * e1000_setup_led |
|
4553 * @hw: Struct containing variables accessed by shared code |
|
4554 * |
|
4555 * Prepares SW controlable LED for use and saves the current state of the LED. |
|
4556 */ |
|
4557 s32 e1000_setup_led(struct e1000_hw *hw) |
|
4558 { |
|
4559 u32 ledctl; |
|
4560 s32 ret_val = E1000_SUCCESS; |
|
4561 |
|
4562 e_dbg("e1000_setup_led"); |
|
4563 |
|
4564 switch (hw->mac_type) { |
|
4565 case e1000_82542_rev2_0: |
|
4566 case e1000_82542_rev2_1: |
|
4567 case e1000_82543: |
|
4568 case e1000_82544: |
|
4569 /* No setup necessary */ |
|
4570 break; |
|
4571 case e1000_82541: |
|
4572 case e1000_82547: |
|
4573 case e1000_82541_rev_2: |
|
4574 case e1000_82547_rev_2: |
|
4575 /* Turn off PHY Smart Power Down (if enabled) */ |
|
4576 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
4577 &hw->phy_spd_default); |
|
4578 if (ret_val) |
|
4579 return ret_val; |
|
4580 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
4581 (u16) (hw->phy_spd_default & |
|
4582 ~IGP01E1000_GMII_SPD)); |
|
4583 if (ret_val) |
|
4584 return ret_val; |
|
4585 /* Fall Through */ |
|
4586 default: |
|
4587 if (hw->media_type == e1000_media_type_fiber) { |
|
4588 ledctl = er32(LEDCTL); |
|
4589 /* Save current LEDCTL settings */ |
|
4590 hw->ledctl_default = ledctl; |
|
4591 /* Turn off LED0 */ |
|
4592 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | |
|
4593 E1000_LEDCTL_LED0_BLINK | |
|
4594 E1000_LEDCTL_LED0_MODE_MASK); |
|
4595 ledctl |= (E1000_LEDCTL_MODE_LED_OFF << |
|
4596 E1000_LEDCTL_LED0_MODE_SHIFT); |
|
4597 ew32(LEDCTL, ledctl); |
|
4598 } else if (hw->media_type == e1000_media_type_copper) |
|
4599 ew32(LEDCTL, hw->ledctl_mode1); |
|
4600 break; |
|
4601 } |
|
4602 |
|
4603 return E1000_SUCCESS; |
|
4604 } |
|
4605 |
|
4606 /** |
|
4607 * e1000_cleanup_led - Restores the saved state of the SW controlable LED. |
|
4608 * @hw: Struct containing variables accessed by shared code |
|
4609 */ |
|
4610 s32 e1000_cleanup_led(struct e1000_hw *hw) |
|
4611 { |
|
4612 s32 ret_val = E1000_SUCCESS; |
|
4613 |
|
4614 e_dbg("e1000_cleanup_led"); |
|
4615 |
|
4616 switch (hw->mac_type) { |
|
4617 case e1000_82542_rev2_0: |
|
4618 case e1000_82542_rev2_1: |
|
4619 case e1000_82543: |
|
4620 case e1000_82544: |
|
4621 /* No cleanup necessary */ |
|
4622 break; |
|
4623 case e1000_82541: |
|
4624 case e1000_82547: |
|
4625 case e1000_82541_rev_2: |
|
4626 case e1000_82547_rev_2: |
|
4627 /* Turn on PHY Smart Power Down (if previously enabled) */ |
|
4628 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
4629 hw->phy_spd_default); |
|
4630 if (ret_val) |
|
4631 return ret_val; |
|
4632 /* Fall Through */ |
|
4633 default: |
|
4634 /* Restore LEDCTL settings */ |
|
4635 ew32(LEDCTL, hw->ledctl_default); |
|
4636 break; |
|
4637 } |
|
4638 |
|
4639 return E1000_SUCCESS; |
|
4640 } |
|
4641 |
|
4642 /** |
|
4643 * e1000_led_on - Turns on the software controllable LED |
|
4644 * @hw: Struct containing variables accessed by shared code |
|
4645 */ |
|
4646 s32 e1000_led_on(struct e1000_hw *hw) |
|
4647 { |
|
4648 u32 ctrl = er32(CTRL); |
|
4649 |
|
4650 e_dbg("e1000_led_on"); |
|
4651 |
|
4652 switch (hw->mac_type) { |
|
4653 case e1000_82542_rev2_0: |
|
4654 case e1000_82542_rev2_1: |
|
4655 case e1000_82543: |
|
4656 /* Set SW Defineable Pin 0 to turn on the LED */ |
|
4657 ctrl |= E1000_CTRL_SWDPIN0; |
|
4658 ctrl |= E1000_CTRL_SWDPIO0; |
|
4659 break; |
|
4660 case e1000_82544: |
|
4661 if (hw->media_type == e1000_media_type_fiber) { |
|
4662 /* Set SW Defineable Pin 0 to turn on the LED */ |
|
4663 ctrl |= E1000_CTRL_SWDPIN0; |
|
4664 ctrl |= E1000_CTRL_SWDPIO0; |
|
4665 } else { |
|
4666 /* Clear SW Defineable Pin 0 to turn on the LED */ |
|
4667 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
4668 ctrl |= E1000_CTRL_SWDPIO0; |
|
4669 } |
|
4670 break; |
|
4671 default: |
|
4672 if (hw->media_type == e1000_media_type_fiber) { |
|
4673 /* Clear SW Defineable Pin 0 to turn on the LED */ |
|
4674 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
4675 ctrl |= E1000_CTRL_SWDPIO0; |
|
4676 } else if (hw->media_type == e1000_media_type_copper) { |
|
4677 ew32(LEDCTL, hw->ledctl_mode2); |
|
4678 return E1000_SUCCESS; |
|
4679 } |
|
4680 break; |
|
4681 } |
|
4682 |
|
4683 ew32(CTRL, ctrl); |
|
4684 |
|
4685 return E1000_SUCCESS; |
|
4686 } |
|
4687 |
|
4688 /** |
|
4689 * e1000_led_off - Turns off the software controllable LED |
|
4690 * @hw: Struct containing variables accessed by shared code |
|
4691 */ |
|
4692 s32 e1000_led_off(struct e1000_hw *hw) |
|
4693 { |
|
4694 u32 ctrl = er32(CTRL); |
|
4695 |
|
4696 e_dbg("e1000_led_off"); |
|
4697 |
|
4698 switch (hw->mac_type) { |
|
4699 case e1000_82542_rev2_0: |
|
4700 case e1000_82542_rev2_1: |
|
4701 case e1000_82543: |
|
4702 /* Clear SW Defineable Pin 0 to turn off the LED */ |
|
4703 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
4704 ctrl |= E1000_CTRL_SWDPIO0; |
|
4705 break; |
|
4706 case e1000_82544: |
|
4707 if (hw->media_type == e1000_media_type_fiber) { |
|
4708 /* Clear SW Defineable Pin 0 to turn off the LED */ |
|
4709 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
4710 ctrl |= E1000_CTRL_SWDPIO0; |
|
4711 } else { |
|
4712 /* Set SW Defineable Pin 0 to turn off the LED */ |
|
4713 ctrl |= E1000_CTRL_SWDPIN0; |
|
4714 ctrl |= E1000_CTRL_SWDPIO0; |
|
4715 } |
|
4716 break; |
|
4717 default: |
|
4718 if (hw->media_type == e1000_media_type_fiber) { |
|
4719 /* Set SW Defineable Pin 0 to turn off the LED */ |
|
4720 ctrl |= E1000_CTRL_SWDPIN0; |
|
4721 ctrl |= E1000_CTRL_SWDPIO0; |
|
4722 } else if (hw->media_type == e1000_media_type_copper) { |
|
4723 ew32(LEDCTL, hw->ledctl_mode1); |
|
4724 return E1000_SUCCESS; |
|
4725 } |
|
4726 break; |
|
4727 } |
|
4728 |
|
4729 ew32(CTRL, ctrl); |
|
4730 |
|
4731 return E1000_SUCCESS; |
|
4732 } |
|
4733 |
|
4734 /** |
|
4735 * e1000_clear_hw_cntrs - Clears all hardware statistics counters. |
|
4736 * @hw: Struct containing variables accessed by shared code |
|
4737 */ |
|
4738 static void e1000_clear_hw_cntrs(struct e1000_hw *hw) |
|
4739 { |
|
4740 volatile u32 temp; |
|
4741 |
|
4742 temp = er32(CRCERRS); |
|
4743 temp = er32(SYMERRS); |
|
4744 temp = er32(MPC); |
|
4745 temp = er32(SCC); |
|
4746 temp = er32(ECOL); |
|
4747 temp = er32(MCC); |
|
4748 temp = er32(LATECOL); |
|
4749 temp = er32(COLC); |
|
4750 temp = er32(DC); |
|
4751 temp = er32(SEC); |
|
4752 temp = er32(RLEC); |
|
4753 temp = er32(XONRXC); |
|
4754 temp = er32(XONTXC); |
|
4755 temp = er32(XOFFRXC); |
|
4756 temp = er32(XOFFTXC); |
|
4757 temp = er32(FCRUC); |
|
4758 |
|
4759 temp = er32(PRC64); |
|
4760 temp = er32(PRC127); |
|
4761 temp = er32(PRC255); |
|
4762 temp = er32(PRC511); |
|
4763 temp = er32(PRC1023); |
|
4764 temp = er32(PRC1522); |
|
4765 |
|
4766 temp = er32(GPRC); |
|
4767 temp = er32(BPRC); |
|
4768 temp = er32(MPRC); |
|
4769 temp = er32(GPTC); |
|
4770 temp = er32(GORCL); |
|
4771 temp = er32(GORCH); |
|
4772 temp = er32(GOTCL); |
|
4773 temp = er32(GOTCH); |
|
4774 temp = er32(RNBC); |
|
4775 temp = er32(RUC); |
|
4776 temp = er32(RFC); |
|
4777 temp = er32(ROC); |
|
4778 temp = er32(RJC); |
|
4779 temp = er32(TORL); |
|
4780 temp = er32(TORH); |
|
4781 temp = er32(TOTL); |
|
4782 temp = er32(TOTH); |
|
4783 temp = er32(TPR); |
|
4784 temp = er32(TPT); |
|
4785 |
|
4786 temp = er32(PTC64); |
|
4787 temp = er32(PTC127); |
|
4788 temp = er32(PTC255); |
|
4789 temp = er32(PTC511); |
|
4790 temp = er32(PTC1023); |
|
4791 temp = er32(PTC1522); |
|
4792 |
|
4793 temp = er32(MPTC); |
|
4794 temp = er32(BPTC); |
|
4795 |
|
4796 if (hw->mac_type < e1000_82543) |
|
4797 return; |
|
4798 |
|
4799 temp = er32(ALGNERRC); |
|
4800 temp = er32(RXERRC); |
|
4801 temp = er32(TNCRS); |
|
4802 temp = er32(CEXTERR); |
|
4803 temp = er32(TSCTC); |
|
4804 temp = er32(TSCTFC); |
|
4805 |
|
4806 if (hw->mac_type <= e1000_82544) |
|
4807 return; |
|
4808 |
|
4809 temp = er32(MGTPRC); |
|
4810 temp = er32(MGTPDC); |
|
4811 temp = er32(MGTPTC); |
|
4812 } |
|
4813 |
|
4814 /** |
|
4815 * e1000_reset_adaptive - Resets Adaptive IFS to its default state. |
|
4816 * @hw: Struct containing variables accessed by shared code |
|
4817 * |
|
4818 * Call this after e1000_init_hw. You may override the IFS defaults by setting |
|
4819 * hw->ifs_params_forced to true. However, you must initialize hw-> |
|
4820 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio |
|
4821 * before calling this function. |
|
4822 */ |
|
4823 void e1000_reset_adaptive(struct e1000_hw *hw) |
|
4824 { |
|
4825 e_dbg("e1000_reset_adaptive"); |
|
4826 |
|
4827 if (hw->adaptive_ifs) { |
|
4828 if (!hw->ifs_params_forced) { |
|
4829 hw->current_ifs_val = 0; |
|
4830 hw->ifs_min_val = IFS_MIN; |
|
4831 hw->ifs_max_val = IFS_MAX; |
|
4832 hw->ifs_step_size = IFS_STEP; |
|
4833 hw->ifs_ratio = IFS_RATIO; |
|
4834 } |
|
4835 hw->in_ifs_mode = false; |
|
4836 ew32(AIT, 0); |
|
4837 } else { |
|
4838 e_dbg("Not in Adaptive IFS mode!\n"); |
|
4839 } |
|
4840 } |
|
4841 |
|
4842 /** |
|
4843 * e1000_update_adaptive - update adaptive IFS |
|
4844 * @hw: Struct containing variables accessed by shared code |
|
4845 * @tx_packets: Number of transmits since last callback |
|
4846 * @total_collisions: Number of collisions since last callback |
|
4847 * |
|
4848 * Called during the callback/watchdog routine to update IFS value based on |
|
4849 * the ratio of transmits to collisions. |
|
4850 */ |
|
4851 void e1000_update_adaptive(struct e1000_hw *hw) |
|
4852 { |
|
4853 e_dbg("e1000_update_adaptive"); |
|
4854 |
|
4855 if (hw->adaptive_ifs) { |
|
4856 if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) { |
|
4857 if (hw->tx_packet_delta > MIN_NUM_XMITS) { |
|
4858 hw->in_ifs_mode = true; |
|
4859 if (hw->current_ifs_val < hw->ifs_max_val) { |
|
4860 if (hw->current_ifs_val == 0) |
|
4861 hw->current_ifs_val = |
|
4862 hw->ifs_min_val; |
|
4863 else |
|
4864 hw->current_ifs_val += |
|
4865 hw->ifs_step_size; |
|
4866 ew32(AIT, hw->current_ifs_val); |
|
4867 } |
|
4868 } |
|
4869 } else { |
|
4870 if (hw->in_ifs_mode |
|
4871 && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { |
|
4872 hw->current_ifs_val = 0; |
|
4873 hw->in_ifs_mode = false; |
|
4874 ew32(AIT, 0); |
|
4875 } |
|
4876 } |
|
4877 } else { |
|
4878 e_dbg("Not in Adaptive IFS mode!\n"); |
|
4879 } |
|
4880 } |
|
4881 |
|
4882 /** |
|
4883 * e1000_tbi_adjust_stats |
|
4884 * @hw: Struct containing variables accessed by shared code |
|
4885 * @frame_len: The length of the frame in question |
|
4886 * @mac_addr: The Ethernet destination address of the frame in question |
|
4887 * |
|
4888 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT |
|
4889 */ |
|
4890 void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, |
|
4891 u32 frame_len, u8 *mac_addr) |
|
4892 { |
|
4893 u64 carry_bit; |
|
4894 |
|
4895 /* First adjust the frame length. */ |
|
4896 frame_len--; |
|
4897 /* We need to adjust the statistics counters, since the hardware |
|
4898 * counters overcount this packet as a CRC error and undercount |
|
4899 * the packet as a good packet |
|
4900 */ |
|
4901 /* This packet should not be counted as a CRC error. */ |
|
4902 stats->crcerrs--; |
|
4903 /* This packet does count as a Good Packet Received. */ |
|
4904 stats->gprc++; |
|
4905 |
|
4906 /* Adjust the Good Octets received counters */ |
|
4907 carry_bit = 0x80000000 & stats->gorcl; |
|
4908 stats->gorcl += frame_len; |
|
4909 /* If the high bit of Gorcl (the low 32 bits of the Good Octets |
|
4910 * Received Count) was one before the addition, |
|
4911 * AND it is zero after, then we lost the carry out, |
|
4912 * need to add one to Gorch (Good Octets Received Count High). |
|
4913 * This could be simplified if all environments supported |
|
4914 * 64-bit integers. |
|
4915 */ |
|
4916 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) |
|
4917 stats->gorch++; |
|
4918 /* Is this a broadcast or multicast? Check broadcast first, |
|
4919 * since the test for a multicast frame will test positive on |
|
4920 * a broadcast frame. |
|
4921 */ |
|
4922 if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff)) |
|
4923 /* Broadcast packet */ |
|
4924 stats->bprc++; |
|
4925 else if (*mac_addr & 0x01) |
|
4926 /* Multicast packet */ |
|
4927 stats->mprc++; |
|
4928 |
|
4929 if (frame_len == hw->max_frame_size) { |
|
4930 /* In this case, the hardware has overcounted the number of |
|
4931 * oversize frames. |
|
4932 */ |
|
4933 if (stats->roc > 0) |
|
4934 stats->roc--; |
|
4935 } |
|
4936 |
|
4937 /* Adjust the bin counters when the extra byte put the frame in the |
|
4938 * wrong bin. Remember that the frame_len was adjusted above. |
|
4939 */ |
|
4940 if (frame_len == 64) { |
|
4941 stats->prc64++; |
|
4942 stats->prc127--; |
|
4943 } else if (frame_len == 127) { |
|
4944 stats->prc127++; |
|
4945 stats->prc255--; |
|
4946 } else if (frame_len == 255) { |
|
4947 stats->prc255++; |
|
4948 stats->prc511--; |
|
4949 } else if (frame_len == 511) { |
|
4950 stats->prc511++; |
|
4951 stats->prc1023--; |
|
4952 } else if (frame_len == 1023) { |
|
4953 stats->prc1023++; |
|
4954 stats->prc1522--; |
|
4955 } else if (frame_len == 1522) { |
|
4956 stats->prc1522++; |
|
4957 } |
|
4958 } |
|
4959 |
|
4960 /** |
|
4961 * e1000_get_bus_info |
|
4962 * @hw: Struct containing variables accessed by shared code |
|
4963 * |
|
4964 * Gets the current PCI bus type, speed, and width of the hardware |
|
4965 */ |
|
4966 void e1000_get_bus_info(struct e1000_hw *hw) |
|
4967 { |
|
4968 u32 status; |
|
4969 |
|
4970 switch (hw->mac_type) { |
|
4971 case e1000_82542_rev2_0: |
|
4972 case e1000_82542_rev2_1: |
|
4973 hw->bus_type = e1000_bus_type_pci; |
|
4974 hw->bus_speed = e1000_bus_speed_unknown; |
|
4975 hw->bus_width = e1000_bus_width_unknown; |
|
4976 break; |
|
4977 default: |
|
4978 status = er32(STATUS); |
|
4979 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
|
4980 e1000_bus_type_pcix : e1000_bus_type_pci; |
|
4981 |
|
4982 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { |
|
4983 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? |
|
4984 e1000_bus_speed_66 : e1000_bus_speed_120; |
|
4985 } else if (hw->bus_type == e1000_bus_type_pci) { |
|
4986 hw->bus_speed = (status & E1000_STATUS_PCI66) ? |
|
4987 e1000_bus_speed_66 : e1000_bus_speed_33; |
|
4988 } else { |
|
4989 switch (status & E1000_STATUS_PCIX_SPEED) { |
|
4990 case E1000_STATUS_PCIX_SPEED_66: |
|
4991 hw->bus_speed = e1000_bus_speed_66; |
|
4992 break; |
|
4993 case E1000_STATUS_PCIX_SPEED_100: |
|
4994 hw->bus_speed = e1000_bus_speed_100; |
|
4995 break; |
|
4996 case E1000_STATUS_PCIX_SPEED_133: |
|
4997 hw->bus_speed = e1000_bus_speed_133; |
|
4998 break; |
|
4999 default: |
|
5000 hw->bus_speed = e1000_bus_speed_reserved; |
|
5001 break; |
|
5002 } |
|
5003 } |
|
5004 hw->bus_width = (status & E1000_STATUS_BUS64) ? |
|
5005 e1000_bus_width_64 : e1000_bus_width_32; |
|
5006 break; |
|
5007 } |
|
5008 } |
|
5009 |
|
5010 /** |
|
5011 * e1000_write_reg_io |
|
5012 * @hw: Struct containing variables accessed by shared code |
|
5013 * @offset: offset to write to |
|
5014 * @value: value to write |
|
5015 * |
|
5016 * Writes a value to one of the devices registers using port I/O (as opposed to |
|
5017 * memory mapped I/O). Only 82544 and newer devices support port I/O. |
|
5018 */ |
|
5019 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) |
|
5020 { |
|
5021 unsigned long io_addr = hw->io_base; |
|
5022 unsigned long io_data = hw->io_base + 4; |
|
5023 |
|
5024 e1000_io_write(hw, io_addr, offset); |
|
5025 e1000_io_write(hw, io_data, value); |
|
5026 } |
|
5027 |
|
5028 /** |
|
5029 * e1000_get_cable_length - Estimates the cable length. |
|
5030 * @hw: Struct containing variables accessed by shared code |
|
5031 * @min_length: The estimated minimum length |
|
5032 * @max_length: The estimated maximum length |
|
5033 * |
|
5034 * returns: - E1000_ERR_XXX |
|
5035 * E1000_SUCCESS |
|
5036 * |
|
5037 * This function always returns a ranged length (minimum & maximum). |
|
5038 * So for M88 phy's, this function interprets the one value returned from the |
|
5039 * register to the minimum and maximum range. |
|
5040 * For IGP phy's, the function calculates the range by the AGC registers. |
|
5041 */ |
|
5042 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
|
5043 u16 *max_length) |
|
5044 { |
|
5045 s32 ret_val; |
|
5046 u16 agc_value = 0; |
|
5047 u16 i, phy_data; |
|
5048 u16 cable_length; |
|
5049 |
|
5050 e_dbg("e1000_get_cable_length"); |
|
5051 |
|
5052 *min_length = *max_length = 0; |
|
5053 |
|
5054 /* Use old method for Phy older than IGP */ |
|
5055 if (hw->phy_type == e1000_phy_m88) { |
|
5056 |
|
5057 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
|
5058 &phy_data); |
|
5059 if (ret_val) |
|
5060 return ret_val; |
|
5061 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
|
5062 M88E1000_PSSR_CABLE_LENGTH_SHIFT; |
|
5063 |
|
5064 /* Convert the enum value to ranged values */ |
|
5065 switch (cable_length) { |
|
5066 case e1000_cable_length_50: |
|
5067 *min_length = 0; |
|
5068 *max_length = e1000_igp_cable_length_50; |
|
5069 break; |
|
5070 case e1000_cable_length_50_80: |
|
5071 *min_length = e1000_igp_cable_length_50; |
|
5072 *max_length = e1000_igp_cable_length_80; |
|
5073 break; |
|
5074 case e1000_cable_length_80_110: |
|
5075 *min_length = e1000_igp_cable_length_80; |
|
5076 *max_length = e1000_igp_cable_length_110; |
|
5077 break; |
|
5078 case e1000_cable_length_110_140: |
|
5079 *min_length = e1000_igp_cable_length_110; |
|
5080 *max_length = e1000_igp_cable_length_140; |
|
5081 break; |
|
5082 case e1000_cable_length_140: |
|
5083 *min_length = e1000_igp_cable_length_140; |
|
5084 *max_length = e1000_igp_cable_length_170; |
|
5085 break; |
|
5086 default: |
|
5087 return -E1000_ERR_PHY; |
|
5088 break; |
|
5089 } |
|
5090 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
|
5091 u16 cur_agc_value; |
|
5092 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; |
|
5093 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { |
|
5094 IGP01E1000_PHY_AGC_A, |
|
5095 IGP01E1000_PHY_AGC_B, |
|
5096 IGP01E1000_PHY_AGC_C, |
|
5097 IGP01E1000_PHY_AGC_D |
|
5098 }; |
|
5099 /* Read the AGC registers for all channels */ |
|
5100 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
|
5101 |
|
5102 ret_val = |
|
5103 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); |
|
5104 if (ret_val) |
|
5105 return ret_val; |
|
5106 |
|
5107 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; |
|
5108 |
|
5109 /* Value bound check. */ |
|
5110 if ((cur_agc_value >= |
|
5111 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) |
|
5112 || (cur_agc_value == 0)) |
|
5113 return -E1000_ERR_PHY; |
|
5114 |
|
5115 agc_value += cur_agc_value; |
|
5116 |
|
5117 /* Update minimal AGC value. */ |
|
5118 if (min_agc_value > cur_agc_value) |
|
5119 min_agc_value = cur_agc_value; |
|
5120 } |
|
5121 |
|
5122 /* Remove the minimal AGC result for length < 50m */ |
|
5123 if (agc_value < |
|
5124 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { |
|
5125 agc_value -= min_agc_value; |
|
5126 |
|
5127 /* Get the average length of the remaining 3 channels */ |
|
5128 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); |
|
5129 } else { |
|
5130 /* Get the average length of all the 4 channels. */ |
|
5131 agc_value /= IGP01E1000_PHY_CHANNEL_NUM; |
|
5132 } |
|
5133 |
|
5134 /* Set the range of the calculated length. */ |
|
5135 *min_length = ((e1000_igp_cable_length_table[agc_value] - |
|
5136 IGP01E1000_AGC_RANGE) > 0) ? |
|
5137 (e1000_igp_cable_length_table[agc_value] - |
|
5138 IGP01E1000_AGC_RANGE) : 0; |
|
5139 *max_length = e1000_igp_cable_length_table[agc_value] + |
|
5140 IGP01E1000_AGC_RANGE; |
|
5141 } |
|
5142 |
|
5143 return E1000_SUCCESS; |
|
5144 } |
|
5145 |
|
5146 /** |
|
5147 * e1000_check_polarity - Check the cable polarity |
|
5148 * @hw: Struct containing variables accessed by shared code |
|
5149 * @polarity: output parameter : 0 - Polarity is not reversed |
|
5150 * 1 - Polarity is reversed. |
|
5151 * |
|
5152 * returns: - E1000_ERR_XXX |
|
5153 * E1000_SUCCESS |
|
5154 * |
|
5155 * For phy's older than IGP, this function simply reads the polarity bit in the |
|
5156 * Phy Status register. For IGP phy's, this bit is valid only if link speed is |
|
5157 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will |
|
5158 * return 0. If the link speed is 1000 Mbps the polarity status is in the |
|
5159 * IGP01E1000_PHY_PCS_INIT_REG. |
|
5160 */ |
|
5161 static s32 e1000_check_polarity(struct e1000_hw *hw, |
|
5162 e1000_rev_polarity *polarity) |
|
5163 { |
|
5164 s32 ret_val; |
|
5165 u16 phy_data; |
|
5166 |
|
5167 e_dbg("e1000_check_polarity"); |
|
5168 |
|
5169 if (hw->phy_type == e1000_phy_m88) { |
|
5170 /* return the Polarity bit in the Status register. */ |
|
5171 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
|
5172 &phy_data); |
|
5173 if (ret_val) |
|
5174 return ret_val; |
|
5175 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> |
|
5176 M88E1000_PSSR_REV_POLARITY_SHIFT) ? |
|
5177 e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
|
5178 |
|
5179 } else if (hw->phy_type == e1000_phy_igp) { |
|
5180 /* Read the Status register to check the speed */ |
|
5181 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
|
5182 &phy_data); |
|
5183 if (ret_val) |
|
5184 return ret_val; |
|
5185 |
|
5186 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to |
|
5187 * find the polarity status */ |
|
5188 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
|
5189 IGP01E1000_PSSR_SPEED_1000MBPS) { |
|
5190 |
|
5191 /* Read the GIG initialization PCS register (0x00B4) */ |
|
5192 ret_val = |
|
5193 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, |
|
5194 &phy_data); |
|
5195 if (ret_val) |
|
5196 return ret_val; |
|
5197 |
|
5198 /* Check the polarity bits */ |
|
5199 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? |
|
5200 e1000_rev_polarity_reversed : |
|
5201 e1000_rev_polarity_normal; |
|
5202 } else { |
|
5203 /* For 10 Mbps, read the polarity bit in the status register. (for |
|
5204 * 100 Mbps this bit is always 0) */ |
|
5205 *polarity = |
|
5206 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? |
|
5207 e1000_rev_polarity_reversed : |
|
5208 e1000_rev_polarity_normal; |
|
5209 } |
|
5210 } |
|
5211 return E1000_SUCCESS; |
|
5212 } |
|
5213 |
|
5214 /** |
|
5215 * e1000_check_downshift - Check if Downshift occurred |
|
5216 * @hw: Struct containing variables accessed by shared code |
|
5217 * @downshift: output parameter : 0 - No Downshift occurred. |
|
5218 * 1 - Downshift occurred. |
|
5219 * |
|
5220 * returns: - E1000_ERR_XXX |
|
5221 * E1000_SUCCESS |
|
5222 * |
|
5223 * For phy's older than IGP, this function reads the Downshift bit in the Phy |
|
5224 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the |
|
5225 * Link Health register. In IGP this bit is latched high, so the driver must |
|
5226 * read it immediately after link is established. |
|
5227 */ |
|
5228 static s32 e1000_check_downshift(struct e1000_hw *hw) |
|
5229 { |
|
5230 s32 ret_val; |
|
5231 u16 phy_data; |
|
5232 |
|
5233 e_dbg("e1000_check_downshift"); |
|
5234 |
|
5235 if (hw->phy_type == e1000_phy_igp) { |
|
5236 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
|
5237 &phy_data); |
|
5238 if (ret_val) |
|
5239 return ret_val; |
|
5240 |
|
5241 hw->speed_downgraded = |
|
5242 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; |
|
5243 } else if (hw->phy_type == e1000_phy_m88) { |
|
5244 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
|
5245 &phy_data); |
|
5246 if (ret_val) |
|
5247 return ret_val; |
|
5248 |
|
5249 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
|
5250 M88E1000_PSSR_DOWNSHIFT_SHIFT; |
|
5251 } |
|
5252 |
|
5253 return E1000_SUCCESS; |
|
5254 } |
|
5255 |
|
5256 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { |
|
5257 IGP01E1000_PHY_AGC_PARAM_A, |
|
5258 IGP01E1000_PHY_AGC_PARAM_B, |
|
5259 IGP01E1000_PHY_AGC_PARAM_C, |
|
5260 IGP01E1000_PHY_AGC_PARAM_D |
|
5261 }; |
|
5262 |
|
5263 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw) |
|
5264 { |
|
5265 u16 min_length, max_length; |
|
5266 u16 phy_data, i; |
|
5267 s32 ret_val; |
|
5268 |
|
5269 ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
|
5270 if (ret_val) |
|
5271 return ret_val; |
|
5272 |
|
5273 if (hw->dsp_config_state != e1000_dsp_config_enabled) |
|
5274 return 0; |
|
5275 |
|
5276 if (min_length >= e1000_igp_cable_length_50) { |
|
5277 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
|
5278 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], |
|
5279 &phy_data); |
|
5280 if (ret_val) |
|
5281 return ret_val; |
|
5282 |
|
5283 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; |
|
5284 |
|
5285 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], |
|
5286 phy_data); |
|
5287 if (ret_val) |
|
5288 return ret_val; |
|
5289 } |
|
5290 hw->dsp_config_state = e1000_dsp_config_activated; |
|
5291 } else { |
|
5292 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; |
|
5293 u32 idle_errs = 0; |
|
5294 |
|
5295 /* clear previous idle error counts */ |
|
5296 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
|
5297 if (ret_val) |
|
5298 return ret_val; |
|
5299 |
|
5300 for (i = 0; i < ffe_idle_err_timeout; i++) { |
|
5301 udelay(1000); |
|
5302 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, |
|
5303 &phy_data); |
|
5304 if (ret_val) |
|
5305 return ret_val; |
|
5306 |
|
5307 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); |
|
5308 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { |
|
5309 hw->ffe_config_state = e1000_ffe_config_active; |
|
5310 |
|
5311 ret_val = e1000_write_phy_reg(hw, |
|
5312 IGP01E1000_PHY_DSP_FFE, |
|
5313 IGP01E1000_PHY_DSP_FFE_CM_CP); |
|
5314 if (ret_val) |
|
5315 return ret_val; |
|
5316 break; |
|
5317 } |
|
5318 |
|
5319 if (idle_errs) |
|
5320 ffe_idle_err_timeout = |
|
5321 FFE_IDLE_ERR_COUNT_TIMEOUT_100; |
|
5322 } |
|
5323 } |
|
5324 |
|
5325 return 0; |
|
5326 } |
|
5327 |
|
5328 /** |
|
5329 * e1000_config_dsp_after_link_change |
|
5330 * @hw: Struct containing variables accessed by shared code |
|
5331 * @link_up: was link up at the time this was called |
|
5332 * |
|
5333 * returns: - E1000_ERR_PHY if fail to read/write the PHY |
|
5334 * E1000_SUCCESS at any other case. |
|
5335 * |
|
5336 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a |
|
5337 * gigabit link is achieved to improve link quality. |
|
5338 */ |
|
5339 |
|
5340 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) |
|
5341 { |
|
5342 s32 ret_val; |
|
5343 u16 phy_data, phy_saved_data, speed, duplex, i; |
|
5344 |
|
5345 e_dbg("e1000_config_dsp_after_link_change"); |
|
5346 |
|
5347 if (hw->phy_type != e1000_phy_igp) |
|
5348 return E1000_SUCCESS; |
|
5349 |
|
5350 if (link_up) { |
|
5351 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
|
5352 if (ret_val) { |
|
5353 e_dbg("Error getting link speed and duplex\n"); |
|
5354 return ret_val; |
|
5355 } |
|
5356 |
|
5357 if (speed == SPEED_1000) { |
|
5358 ret_val = e1000_1000Mb_check_cable_length(hw); |
|
5359 if (ret_val) |
|
5360 return ret_val; |
|
5361 } |
|
5362 } else { |
|
5363 if (hw->dsp_config_state == e1000_dsp_config_activated) { |
|
5364 /* Save off the current value of register 0x2F5B to be restored at |
|
5365 * the end of the routines. */ |
|
5366 ret_val = |
|
5367 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
|
5368 |
|
5369 if (ret_val) |
|
5370 return ret_val; |
|
5371 |
|
5372 /* Disable the PHY transmitter */ |
|
5373 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
|
5374 |
|
5375 if (ret_val) |
|
5376 return ret_val; |
|
5377 |
|
5378 msleep(20); |
|
5379 |
|
5380 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
5381 IGP01E1000_IEEE_FORCE_GIGA); |
|
5382 if (ret_val) |
|
5383 return ret_val; |
|
5384 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
|
5385 ret_val = |
|
5386 e1000_read_phy_reg(hw, dsp_reg_array[i], |
|
5387 &phy_data); |
|
5388 if (ret_val) |
|
5389 return ret_val; |
|
5390 |
|
5391 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; |
|
5392 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; |
|
5393 |
|
5394 ret_val = |
|
5395 e1000_write_phy_reg(hw, dsp_reg_array[i], |
|
5396 phy_data); |
|
5397 if (ret_val) |
|
5398 return ret_val; |
|
5399 } |
|
5400 |
|
5401 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
5402 IGP01E1000_IEEE_RESTART_AUTONEG); |
|
5403 if (ret_val) |
|
5404 return ret_val; |
|
5405 |
|
5406 msleep(20); |
|
5407 |
|
5408 /* Now enable the transmitter */ |
|
5409 ret_val = |
|
5410 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
|
5411 |
|
5412 if (ret_val) |
|
5413 return ret_val; |
|
5414 |
|
5415 hw->dsp_config_state = e1000_dsp_config_enabled; |
|
5416 } |
|
5417 |
|
5418 if (hw->ffe_config_state == e1000_ffe_config_active) { |
|
5419 /* Save off the current value of register 0x2F5B to be restored at |
|
5420 * the end of the routines. */ |
|
5421 ret_val = |
|
5422 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
|
5423 |
|
5424 if (ret_val) |
|
5425 return ret_val; |
|
5426 |
|
5427 /* Disable the PHY transmitter */ |
|
5428 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
|
5429 |
|
5430 if (ret_val) |
|
5431 return ret_val; |
|
5432 |
|
5433 msleep(20); |
|
5434 |
|
5435 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
5436 IGP01E1000_IEEE_FORCE_GIGA); |
|
5437 if (ret_val) |
|
5438 return ret_val; |
|
5439 ret_val = |
|
5440 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, |
|
5441 IGP01E1000_PHY_DSP_FFE_DEFAULT); |
|
5442 if (ret_val) |
|
5443 return ret_val; |
|
5444 |
|
5445 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
5446 IGP01E1000_IEEE_RESTART_AUTONEG); |
|
5447 if (ret_val) |
|
5448 return ret_val; |
|
5449 |
|
5450 msleep(20); |
|
5451 |
|
5452 /* Now enable the transmitter */ |
|
5453 ret_val = |
|
5454 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
|
5455 |
|
5456 if (ret_val) |
|
5457 return ret_val; |
|
5458 |
|
5459 hw->ffe_config_state = e1000_ffe_config_enabled; |
|
5460 } |
|
5461 } |
|
5462 return E1000_SUCCESS; |
|
5463 } |
|
5464 |
|
5465 /** |
|
5466 * e1000_set_phy_mode - Set PHY to class A mode |
|
5467 * @hw: Struct containing variables accessed by shared code |
|
5468 * |
|
5469 * Assumes the following operations will follow to enable the new class mode. |
|
5470 * 1. Do a PHY soft reset |
|
5471 * 2. Restart auto-negotiation or force link. |
|
5472 */ |
|
5473 static s32 e1000_set_phy_mode(struct e1000_hw *hw) |
|
5474 { |
|
5475 s32 ret_val; |
|
5476 u16 eeprom_data; |
|
5477 |
|
5478 e_dbg("e1000_set_phy_mode"); |
|
5479 |
|
5480 if ((hw->mac_type == e1000_82545_rev_3) && |
|
5481 (hw->media_type == e1000_media_type_copper)) { |
|
5482 ret_val = |
|
5483 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, |
|
5484 &eeprom_data); |
|
5485 if (ret_val) { |
|
5486 return ret_val; |
|
5487 } |
|
5488 |
|
5489 if ((eeprom_data != EEPROM_RESERVED_WORD) && |
|
5490 (eeprom_data & EEPROM_PHY_CLASS_A)) { |
|
5491 ret_val = |
|
5492 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, |
|
5493 0x000B); |
|
5494 if (ret_val) |
|
5495 return ret_val; |
|
5496 ret_val = |
|
5497 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, |
|
5498 0x8104); |
|
5499 if (ret_val) |
|
5500 return ret_val; |
|
5501 |
|
5502 hw->phy_reset_disable = false; |
|
5503 } |
|
5504 } |
|
5505 |
|
5506 return E1000_SUCCESS; |
|
5507 } |
|
5508 |
|
5509 /** |
|
5510 * e1000_set_d3_lplu_state - set d3 link power state |
|
5511 * @hw: Struct containing variables accessed by shared code |
|
5512 * @active: true to enable lplu false to disable lplu. |
|
5513 * |
|
5514 * This function sets the lplu state according to the active flag. When |
|
5515 * activating lplu this function also disables smart speed and vise versa. |
|
5516 * lplu will not be activated unless the device autonegotiation advertisement |
|
5517 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
|
5518 * |
|
5519 * returns: - E1000_ERR_PHY if fail to read/write the PHY |
|
5520 * E1000_SUCCESS at any other case. |
|
5521 */ |
|
5522 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) |
|
5523 { |
|
5524 s32 ret_val; |
|
5525 u16 phy_data; |
|
5526 e_dbg("e1000_set_d3_lplu_state"); |
|
5527 |
|
5528 if (hw->phy_type != e1000_phy_igp) |
|
5529 return E1000_SUCCESS; |
|
5530 |
|
5531 /* During driver activity LPLU should not be used or it will attain link |
|
5532 * from the lowest speeds starting from 10Mbps. The capability is used for |
|
5533 * Dx transitions and states */ |
|
5534 if (hw->mac_type == e1000_82541_rev_2 |
|
5535 || hw->mac_type == e1000_82547_rev_2) { |
|
5536 ret_val = |
|
5537 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
|
5538 if (ret_val) |
|
5539 return ret_val; |
|
5540 } |
|
5541 |
|
5542 if (!active) { |
|
5543 if (hw->mac_type == e1000_82541_rev_2 || |
|
5544 hw->mac_type == e1000_82547_rev_2) { |
|
5545 phy_data &= ~IGP01E1000_GMII_FLEX_SPD; |
|
5546 ret_val = |
|
5547 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
5548 phy_data); |
|
5549 if (ret_val) |
|
5550 return ret_val; |
|
5551 } |
|
5552 |
|
5553 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
|
5554 * Dx states where the power conservation is most important. During |
|
5555 * driver activity we should enable SmartSpeed, so performance is |
|
5556 * maintained. */ |
|
5557 if (hw->smart_speed == e1000_smart_speed_on) { |
|
5558 ret_val = |
|
5559 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5560 &phy_data); |
|
5561 if (ret_val) |
|
5562 return ret_val; |
|
5563 |
|
5564 phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
5565 ret_val = |
|
5566 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5567 phy_data); |
|
5568 if (ret_val) |
|
5569 return ret_val; |
|
5570 } else if (hw->smart_speed == e1000_smart_speed_off) { |
|
5571 ret_val = |
|
5572 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5573 &phy_data); |
|
5574 if (ret_val) |
|
5575 return ret_val; |
|
5576 |
|
5577 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
5578 ret_val = |
|
5579 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5580 phy_data); |
|
5581 if (ret_val) |
|
5582 return ret_val; |
|
5583 } |
|
5584 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) |
|
5585 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) |
|
5586 || (hw->autoneg_advertised == |
|
5587 AUTONEG_ADVERTISE_10_100_ALL)) { |
|
5588 |
|
5589 if (hw->mac_type == e1000_82541_rev_2 || |
|
5590 hw->mac_type == e1000_82547_rev_2) { |
|
5591 phy_data |= IGP01E1000_GMII_FLEX_SPD; |
|
5592 ret_val = |
|
5593 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
5594 phy_data); |
|
5595 if (ret_val) |
|
5596 return ret_val; |
|
5597 } |
|
5598 |
|
5599 /* When LPLU is enabled we should disable SmartSpeed */ |
|
5600 ret_val = |
|
5601 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5602 &phy_data); |
|
5603 if (ret_val) |
|
5604 return ret_val; |
|
5605 |
|
5606 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
5607 ret_val = |
|
5608 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5609 phy_data); |
|
5610 if (ret_val) |
|
5611 return ret_val; |
|
5612 |
|
5613 } |
|
5614 return E1000_SUCCESS; |
|
5615 } |
|
5616 |
|
5617 /** |
|
5618 * e1000_set_vco_speed |
|
5619 * @hw: Struct containing variables accessed by shared code |
|
5620 * |
|
5621 * Change VCO speed register to improve Bit Error Rate performance of SERDES. |
|
5622 */ |
|
5623 static s32 e1000_set_vco_speed(struct e1000_hw *hw) |
|
5624 { |
|
5625 s32 ret_val; |
|
5626 u16 default_page = 0; |
|
5627 u16 phy_data; |
|
5628 |
|
5629 e_dbg("e1000_set_vco_speed"); |
|
5630 |
|
5631 switch (hw->mac_type) { |
|
5632 case e1000_82545_rev_3: |
|
5633 case e1000_82546_rev_3: |
|
5634 break; |
|
5635 default: |
|
5636 return E1000_SUCCESS; |
|
5637 } |
|
5638 |
|
5639 /* Set PHY register 30, page 5, bit 8 to 0 */ |
|
5640 |
|
5641 ret_val = |
|
5642 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); |
|
5643 if (ret_val) |
|
5644 return ret_val; |
|
5645 |
|
5646 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); |
|
5647 if (ret_val) |
|
5648 return ret_val; |
|
5649 |
|
5650 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
|
5651 if (ret_val) |
|
5652 return ret_val; |
|
5653 |
|
5654 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; |
|
5655 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
|
5656 if (ret_val) |
|
5657 return ret_val; |
|
5658 |
|
5659 /* Set PHY register 30, page 4, bit 11 to 1 */ |
|
5660 |
|
5661 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); |
|
5662 if (ret_val) |
|
5663 return ret_val; |
|
5664 |
|
5665 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
|
5666 if (ret_val) |
|
5667 return ret_val; |
|
5668 |
|
5669 phy_data |= M88E1000_PHY_VCO_REG_BIT11; |
|
5670 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
|
5671 if (ret_val) |
|
5672 return ret_val; |
|
5673 |
|
5674 ret_val = |
|
5675 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); |
|
5676 if (ret_val) |
|
5677 return ret_val; |
|
5678 |
|
5679 return E1000_SUCCESS; |
|
5680 } |
|
5681 |
|
5682 |
|
5683 /** |
|
5684 * e1000_enable_mng_pass_thru - check for bmc pass through |
|
5685 * @hw: Struct containing variables accessed by shared code |
|
5686 * |
|
5687 * Verifies the hardware needs to allow ARPs to be processed by the host |
|
5688 * returns: - true/false |
|
5689 */ |
|
5690 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) |
|
5691 { |
|
5692 u32 manc; |
|
5693 |
|
5694 if (hw->asf_firmware_present) { |
|
5695 manc = er32(MANC); |
|
5696 |
|
5697 if (!(manc & E1000_MANC_RCV_TCO_EN) || |
|
5698 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
|
5699 return false; |
|
5700 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) |
|
5701 return true; |
|
5702 } |
|
5703 return false; |
|
5704 } |
|
5705 |
|
5706 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) |
|
5707 { |
|
5708 s32 ret_val; |
|
5709 u16 mii_status_reg; |
|
5710 u16 i; |
|
5711 |
|
5712 /* Polarity reversal workaround for forced 10F/10H links. */ |
|
5713 |
|
5714 /* Disable the transmitter on the PHY */ |
|
5715 |
|
5716 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
|
5717 if (ret_val) |
|
5718 return ret_val; |
|
5719 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); |
|
5720 if (ret_val) |
|
5721 return ret_val; |
|
5722 |
|
5723 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
|
5724 if (ret_val) |
|
5725 return ret_val; |
|
5726 |
|
5727 /* This loop will early-out if the NO link condition has been met. */ |
|
5728 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
5729 /* Read the MII Status Register and wait for Link Status bit |
|
5730 * to be clear. |
|
5731 */ |
|
5732 |
|
5733 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
5734 if (ret_val) |
|
5735 return ret_val; |
|
5736 |
|
5737 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
5738 if (ret_val) |
|
5739 return ret_val; |
|
5740 |
|
5741 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) |
|
5742 break; |
|
5743 msleep(100); |
|
5744 } |
|
5745 |
|
5746 /* Recommended delay time after link has been lost */ |
|
5747 msleep(1000); |
|
5748 |
|
5749 /* Now we will re-enable th transmitter on the PHY */ |
|
5750 |
|
5751 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
|
5752 if (ret_val) |
|
5753 return ret_val; |
|
5754 msleep(50); |
|
5755 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); |
|
5756 if (ret_val) |
|
5757 return ret_val; |
|
5758 msleep(50); |
|
5759 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); |
|
5760 if (ret_val) |
|
5761 return ret_val; |
|
5762 msleep(50); |
|
5763 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); |
|
5764 if (ret_val) |
|
5765 return ret_val; |
|
5766 |
|
5767 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
|
5768 if (ret_val) |
|
5769 return ret_val; |
|
5770 |
|
5771 /* This loop will early-out if the link condition has been met. */ |
|
5772 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
5773 /* Read the MII Status Register and wait for Link Status bit |
|
5774 * to be set. |
|
5775 */ |
|
5776 |
|
5777 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
5778 if (ret_val) |
|
5779 return ret_val; |
|
5780 |
|
5781 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
5782 if (ret_val) |
|
5783 return ret_val; |
|
5784 |
|
5785 if (mii_status_reg & MII_SR_LINK_STATUS) |
|
5786 break; |
|
5787 msleep(100); |
|
5788 } |
|
5789 return E1000_SUCCESS; |
|
5790 } |
|
5791 |
|
5792 /** |
|
5793 * e1000_get_auto_rd_done |
|
5794 * @hw: Struct containing variables accessed by shared code |
|
5795 * |
|
5796 * Check for EEPROM Auto Read bit done. |
|
5797 * returns: - E1000_ERR_RESET if fail to reset MAC |
|
5798 * E1000_SUCCESS at any other case. |
|
5799 */ |
|
5800 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) |
|
5801 { |
|
5802 e_dbg("e1000_get_auto_rd_done"); |
|
5803 msleep(5); |
|
5804 return E1000_SUCCESS; |
|
5805 } |
|
5806 |
|
5807 /** |
|
5808 * e1000_get_phy_cfg_done |
|
5809 * @hw: Struct containing variables accessed by shared code |
|
5810 * |
|
5811 * Checks if the PHY configuration is done |
|
5812 * returns: - E1000_ERR_RESET if fail to reset MAC |
|
5813 * E1000_SUCCESS at any other case. |
|
5814 */ |
|
5815 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) |
|
5816 { |
|
5817 e_dbg("e1000_get_phy_cfg_done"); |
|
5818 msleep(10); |
|
5819 return E1000_SUCCESS; |
|
5820 } |