devices/e1000/e1000_ethtool-3.6-ethercat.c
branchstable-1.5
changeset 2562 e842688ccc5e
parent 2545 80177f7aa836
child 2583 fe5687a0a322
equal deleted inserted replaced
2561:4839e81d2bdd 2562:e842688ccc5e
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* ethtool support for e1000 */
       
    30 
       
    31 #include "e1000-3.4-ethercat.h"
       
    32 #include <asm/uaccess.h>
       
    33 
       
    34 enum {NETDEV_STATS, E1000_STATS};
       
    35 
       
    36 struct e1000_stats {
       
    37 	char stat_string[ETH_GSTRING_LEN];
       
    38 	int type;
       
    39 	int sizeof_stat;
       
    40 	int stat_offset;
       
    41 };
       
    42 
       
    43 #define E1000_STAT(m)		E1000_STATS, \
       
    44 				sizeof(((struct e1000_adapter *)0)->m), \
       
    45 		      		offsetof(struct e1000_adapter, m)
       
    46 #define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
       
    47 				sizeof(((struct net_device *)0)->m), \
       
    48 				offsetof(struct net_device, m)
       
    49 
       
    50 static const struct e1000_stats e1000_gstrings_stats[] = {
       
    51 	{ "rx_packets", E1000_STAT(stats.gprc) },
       
    52 	{ "tx_packets", E1000_STAT(stats.gptc) },
       
    53 	{ "rx_bytes", E1000_STAT(stats.gorcl) },
       
    54 	{ "tx_bytes", E1000_STAT(stats.gotcl) },
       
    55 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
       
    56 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
       
    57 	{ "rx_multicast", E1000_STAT(stats.mprc) },
       
    58 	{ "tx_multicast", E1000_STAT(stats.mptc) },
       
    59 	{ "rx_errors", E1000_STAT(stats.rxerrc) },
       
    60 	{ "tx_errors", E1000_STAT(stats.txerrc) },
       
    61 	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
       
    62 	{ "multicast", E1000_STAT(stats.mprc) },
       
    63 	{ "collisions", E1000_STAT(stats.colc) },
       
    64 	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
       
    65 	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
       
    66 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
       
    67 	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
       
    68 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
       
    69 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
       
    70 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
       
    71 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
       
    72 	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
       
    73 	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
       
    74 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
       
    75 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
       
    76 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
       
    77 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
       
    78 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
       
    79 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
       
    80 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
       
    81 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
       
    82 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
       
    83 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
       
    84 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
       
    85 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
       
    86 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
       
    87 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
       
    88 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
       
    89 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
       
    90 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
       
    91 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
       
    92 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
       
    93 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
       
    94 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
       
    95 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
       
    96 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
       
    97 };
       
    98 
       
    99 #define E1000_QUEUE_STATS_LEN 0
       
   100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
       
   101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
       
   102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
       
   103 	"Register test  (offline)", "Eeprom test    (offline)",
       
   104 	"Interrupt test (offline)", "Loopback test  (offline)",
       
   105 	"Link test   (on/offline)"
       
   106 };
       
   107 #define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
       
   108 
       
   109 static int e1000_get_settings(struct net_device *netdev,
       
   110 			      struct ethtool_cmd *ecmd)
       
   111 {
       
   112 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   113 	struct e1000_hw *hw = &adapter->hw;
       
   114 
       
   115 	if (hw->media_type == e1000_media_type_copper) {
       
   116 
       
   117 		ecmd->supported = (SUPPORTED_10baseT_Half |
       
   118 		                   SUPPORTED_10baseT_Full |
       
   119 		                   SUPPORTED_100baseT_Half |
       
   120 		                   SUPPORTED_100baseT_Full |
       
   121 		                   SUPPORTED_1000baseT_Full|
       
   122 		                   SUPPORTED_Autoneg |
       
   123 		                   SUPPORTED_TP);
       
   124 		ecmd->advertising = ADVERTISED_TP;
       
   125 
       
   126 		if (hw->autoneg == 1) {
       
   127 			ecmd->advertising |= ADVERTISED_Autoneg;
       
   128 			/* the e1000 autoneg seems to match ethtool nicely */
       
   129 			ecmd->advertising |= hw->autoneg_advertised;
       
   130 		}
       
   131 
       
   132 		ecmd->port = PORT_TP;
       
   133 		ecmd->phy_address = hw->phy_addr;
       
   134 
       
   135 		if (hw->mac_type == e1000_82543)
       
   136 			ecmd->transceiver = XCVR_EXTERNAL;
       
   137 		else
       
   138 			ecmd->transceiver = XCVR_INTERNAL;
       
   139 
       
   140 	} else {
       
   141 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
       
   142 				     SUPPORTED_FIBRE |
       
   143 				     SUPPORTED_Autoneg);
       
   144 
       
   145 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
       
   146 				     ADVERTISED_FIBRE |
       
   147 				     ADVERTISED_Autoneg);
       
   148 
       
   149 		ecmd->port = PORT_FIBRE;
       
   150 
       
   151 		if (hw->mac_type >= e1000_82545)
       
   152 			ecmd->transceiver = XCVR_INTERNAL;
       
   153 		else
       
   154 			ecmd->transceiver = XCVR_EXTERNAL;
       
   155 	}
       
   156 
       
   157 	if (er32(STATUS) & E1000_STATUS_LU) {
       
   158 
       
   159 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
       
   160 		                                   &adapter->link_duplex);
       
   161 		ethtool_cmd_speed_set(ecmd, adapter->link_speed);
       
   162 
       
   163 		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
       
   164 		 *          and HALF_DUPLEX != DUPLEX_HALF */
       
   165 
       
   166 		if (adapter->link_duplex == FULL_DUPLEX)
       
   167 			ecmd->duplex = DUPLEX_FULL;
       
   168 		else
       
   169 			ecmd->duplex = DUPLEX_HALF;
       
   170 	} else {
       
   171 		ethtool_cmd_speed_set(ecmd, -1);
       
   172 		ecmd->duplex = -1;
       
   173 	}
       
   174 
       
   175 	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
       
   176 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
       
   177 	return 0;
       
   178 }
       
   179 
       
   180 static int e1000_set_settings(struct net_device *netdev,
       
   181 			      struct ethtool_cmd *ecmd)
       
   182 {
       
   183 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   184 	struct e1000_hw *hw = &adapter->hw;
       
   185 
       
   186 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   187 		msleep(1);
       
   188 
       
   189 	if (ecmd->autoneg == AUTONEG_ENABLE) {
       
   190 		hw->autoneg = 1;
       
   191 		if (hw->media_type == e1000_media_type_fiber)
       
   192 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
       
   193 				     ADVERTISED_FIBRE |
       
   194 				     ADVERTISED_Autoneg;
       
   195 		else
       
   196 			hw->autoneg_advertised = ecmd->advertising |
       
   197 			                         ADVERTISED_TP |
       
   198 			                         ADVERTISED_Autoneg;
       
   199 		ecmd->advertising = hw->autoneg_advertised;
       
   200 	} else {
       
   201 		u32 speed = ethtool_cmd_speed(ecmd);
       
   202 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
       
   203 			clear_bit(__E1000_RESETTING, &adapter->flags);
       
   204 			return -EINVAL;
       
   205 		}
       
   206 	}
       
   207 
       
   208 	/* reset the link */
       
   209 
       
   210 	if (netif_running(adapter->netdev)) {
       
   211 		e1000_down(adapter);
       
   212 		e1000_up(adapter);
       
   213 	} else
       
   214 		e1000_reset(adapter);
       
   215 
       
   216 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   217 	return 0;
       
   218 }
       
   219 
       
   220 static u32 e1000_get_link(struct net_device *netdev)
       
   221 {
       
   222 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   223 
       
   224 	/*
       
   225 	 * If the link is not reported up to netdev, interrupts are disabled,
       
   226 	 * and so the physical link state may have changed since we last
       
   227 	 * looked. Set get_link_status to make sure that the true link
       
   228 	 * state is interrogated, rather than pulling a cached and possibly
       
   229 	 * stale link state from the driver.
       
   230 	 */
       
   231 	if (!netif_carrier_ok(netdev))
       
   232 		adapter->hw.get_link_status = 1;
       
   233 
       
   234 	return e1000_has_link(adapter);
       
   235 }
       
   236 
       
   237 static void e1000_get_pauseparam(struct net_device *netdev,
       
   238 				 struct ethtool_pauseparam *pause)
       
   239 {
       
   240 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   241 	struct e1000_hw *hw = &adapter->hw;
       
   242 
       
   243 	pause->autoneg =
       
   244 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
       
   245 
       
   246 	if (hw->fc == E1000_FC_RX_PAUSE)
       
   247 		pause->rx_pause = 1;
       
   248 	else if (hw->fc == E1000_FC_TX_PAUSE)
       
   249 		pause->tx_pause = 1;
       
   250 	else if (hw->fc == E1000_FC_FULL) {
       
   251 		pause->rx_pause = 1;
       
   252 		pause->tx_pause = 1;
       
   253 	}
       
   254 }
       
   255 
       
   256 static int e1000_set_pauseparam(struct net_device *netdev,
       
   257 				struct ethtool_pauseparam *pause)
       
   258 {
       
   259 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   260 	struct e1000_hw *hw = &adapter->hw;
       
   261 	int retval = 0;
       
   262 
       
   263 	adapter->fc_autoneg = pause->autoneg;
       
   264 
       
   265 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   266 		msleep(1);
       
   267 
       
   268 	if (pause->rx_pause && pause->tx_pause)
       
   269 		hw->fc = E1000_FC_FULL;
       
   270 	else if (pause->rx_pause && !pause->tx_pause)
       
   271 		hw->fc = E1000_FC_RX_PAUSE;
       
   272 	else if (!pause->rx_pause && pause->tx_pause)
       
   273 		hw->fc = E1000_FC_TX_PAUSE;
       
   274 	else if (!pause->rx_pause && !pause->tx_pause)
       
   275 		hw->fc = E1000_FC_NONE;
       
   276 
       
   277 	hw->original_fc = hw->fc;
       
   278 
       
   279 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
       
   280 		if (netif_running(adapter->netdev)) {
       
   281 			e1000_down(adapter);
       
   282 			e1000_up(adapter);
       
   283 		} else
       
   284 			e1000_reset(adapter);
       
   285 	} else
       
   286 		retval = ((hw->media_type == e1000_media_type_fiber) ?
       
   287 			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
       
   288 
       
   289 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   290 	return retval;
       
   291 }
       
   292 
       
   293 static u32 e1000_get_msglevel(struct net_device *netdev)
       
   294 {
       
   295 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   296 	return adapter->msg_enable;
       
   297 }
       
   298 
       
   299 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
       
   300 {
       
   301 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   302 	adapter->msg_enable = data;
       
   303 }
       
   304 
       
   305 static int e1000_get_regs_len(struct net_device *netdev)
       
   306 {
       
   307 #define E1000_REGS_LEN 32
       
   308 	return E1000_REGS_LEN * sizeof(u32);
       
   309 }
       
   310 
       
   311 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
       
   312 			   void *p)
       
   313 {
       
   314 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   315 	struct e1000_hw *hw = &adapter->hw;
       
   316 	u32 *regs_buff = p;
       
   317 	u16 phy_data;
       
   318 
       
   319 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
       
   320 
       
   321 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
       
   322 
       
   323 	regs_buff[0]  = er32(CTRL);
       
   324 	regs_buff[1]  = er32(STATUS);
       
   325 
       
   326 	regs_buff[2]  = er32(RCTL);
       
   327 	regs_buff[3]  = er32(RDLEN);
       
   328 	regs_buff[4]  = er32(RDH);
       
   329 	regs_buff[5]  = er32(RDT);
       
   330 	regs_buff[6]  = er32(RDTR);
       
   331 
       
   332 	regs_buff[7]  = er32(TCTL);
       
   333 	regs_buff[8]  = er32(TDLEN);
       
   334 	regs_buff[9]  = er32(TDH);
       
   335 	regs_buff[10] = er32(TDT);
       
   336 	regs_buff[11] = er32(TIDV);
       
   337 
       
   338 	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
       
   339 	if (hw->phy_type == e1000_phy_igp) {
       
   340 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   341 				    IGP01E1000_PHY_AGC_A);
       
   342 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
       
   343 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   344 		regs_buff[13] = (u32)phy_data; /* cable length */
       
   345 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   346 				    IGP01E1000_PHY_AGC_B);
       
   347 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
       
   348 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   349 		regs_buff[14] = (u32)phy_data; /* cable length */
       
   350 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   351 				    IGP01E1000_PHY_AGC_C);
       
   352 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
       
   353 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   354 		regs_buff[15] = (u32)phy_data; /* cable length */
       
   355 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   356 				    IGP01E1000_PHY_AGC_D);
       
   357 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
       
   358 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   359 		regs_buff[16] = (u32)phy_data; /* cable length */
       
   360 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
       
   361 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
       
   362 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
       
   363 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   364 		regs_buff[18] = (u32)phy_data; /* cable polarity */
       
   365 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   366 				    IGP01E1000_PHY_PCS_INIT_REG);
       
   367 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
       
   368 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   369 		regs_buff[19] = (u32)phy_data; /* cable polarity */
       
   370 		regs_buff[20] = 0; /* polarity correction enabled (always) */
       
   371 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
       
   372 		regs_buff[23] = regs_buff[18]; /* mdix mode */
       
   373 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
       
   374 	} else {
       
   375 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
   376 		regs_buff[13] = (u32)phy_data; /* cable length */
       
   377 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   378 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   379 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   380 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   381 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
       
   382 		regs_buff[18] = regs_buff[13]; /* cable polarity */
       
   383 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   384 		regs_buff[20] = regs_buff[17]; /* polarity correction */
       
   385 		/* phy receive errors */
       
   386 		regs_buff[22] = adapter->phy_stats.receive_errors;
       
   387 		regs_buff[23] = regs_buff[13]; /* mdix mode */
       
   388 	}
       
   389 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
       
   390 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
       
   391 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
       
   392 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
       
   393 	if (hw->mac_type >= e1000_82540 &&
       
   394 	    hw->media_type == e1000_media_type_copper) {
       
   395 		regs_buff[26] = er32(MANC);
       
   396 	}
       
   397 }
       
   398 
       
   399 static int e1000_get_eeprom_len(struct net_device *netdev)
       
   400 {
       
   401 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   402 	struct e1000_hw *hw = &adapter->hw;
       
   403 
       
   404 	return hw->eeprom.word_size * 2;
       
   405 }
       
   406 
       
   407 static int e1000_get_eeprom(struct net_device *netdev,
       
   408 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   409 {
       
   410 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   411 	struct e1000_hw *hw = &adapter->hw;
       
   412 	u16 *eeprom_buff;
       
   413 	int first_word, last_word;
       
   414 	int ret_val = 0;
       
   415 	u16 i;
       
   416 
       
   417 	if (eeprom->len == 0)
       
   418 		return -EINVAL;
       
   419 
       
   420 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
       
   421 
       
   422 	first_word = eeprom->offset >> 1;
       
   423 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   424 
       
   425 	eeprom_buff = kmalloc(sizeof(u16) *
       
   426 			(last_word - first_word + 1), GFP_KERNEL);
       
   427 	if (!eeprom_buff)
       
   428 		return -ENOMEM;
       
   429 
       
   430 	if (hw->eeprom.type == e1000_eeprom_spi)
       
   431 		ret_val = e1000_read_eeprom(hw, first_word,
       
   432 					    last_word - first_word + 1,
       
   433 					    eeprom_buff);
       
   434 	else {
       
   435 		for (i = 0; i < last_word - first_word + 1; i++) {
       
   436 			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
       
   437 						    &eeprom_buff[i]);
       
   438 			if (ret_val)
       
   439 				break;
       
   440 		}
       
   441 	}
       
   442 
       
   443 	/* Device's eeprom is always little-endian, word addressable */
       
   444 	for (i = 0; i < last_word - first_word + 1; i++)
       
   445 		le16_to_cpus(&eeprom_buff[i]);
       
   446 
       
   447 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
       
   448 			eeprom->len);
       
   449 	kfree(eeprom_buff);
       
   450 
       
   451 	return ret_val;
       
   452 }
       
   453 
       
   454 static int e1000_set_eeprom(struct net_device *netdev,
       
   455 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   456 {
       
   457 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   458 	struct e1000_hw *hw = &adapter->hw;
       
   459 	u16 *eeprom_buff;
       
   460 	void *ptr;
       
   461 	int max_len, first_word, last_word, ret_val = 0;
       
   462 	u16 i;
       
   463 
       
   464 	if (eeprom->len == 0)
       
   465 		return -EOPNOTSUPP;
       
   466 
       
   467 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
       
   468 		return -EFAULT;
       
   469 
       
   470 	max_len = hw->eeprom.word_size * 2;
       
   471 
       
   472 	first_word = eeprom->offset >> 1;
       
   473 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   474 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
       
   475 	if (!eeprom_buff)
       
   476 		return -ENOMEM;
       
   477 
       
   478 	ptr = (void *)eeprom_buff;
       
   479 
       
   480 	if (eeprom->offset & 1) {
       
   481 		/* need read/modify/write of first changed EEPROM word */
       
   482 		/* only the second byte of the word is being modified */
       
   483 		ret_val = e1000_read_eeprom(hw, first_word, 1,
       
   484 					    &eeprom_buff[0]);
       
   485 		ptr++;
       
   486 	}
       
   487 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
       
   488 		/* need read/modify/write of last changed EEPROM word */
       
   489 		/* only the first byte of the word is being modified */
       
   490 		ret_val = e1000_read_eeprom(hw, last_word, 1,
       
   491 		                  &eeprom_buff[last_word - first_word]);
       
   492 	}
       
   493 
       
   494 	/* Device's eeprom is always little-endian, word addressable */
       
   495 	for (i = 0; i < last_word - first_word + 1; i++)
       
   496 		le16_to_cpus(&eeprom_buff[i]);
       
   497 
       
   498 	memcpy(ptr, bytes, eeprom->len);
       
   499 
       
   500 	for (i = 0; i < last_word - first_word + 1; i++)
       
   501 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
       
   502 
       
   503 	ret_val = e1000_write_eeprom(hw, first_word,
       
   504 				     last_word - first_word + 1, eeprom_buff);
       
   505 
       
   506 	/* Update the checksum over the first part of the EEPROM if needed */
       
   507 	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
       
   508 		e1000_update_eeprom_checksum(hw);
       
   509 
       
   510 	kfree(eeprom_buff);
       
   511 	return ret_val;
       
   512 }
       
   513 
       
   514 static void e1000_get_drvinfo(struct net_device *netdev,
       
   515 			      struct ethtool_drvinfo *drvinfo)
       
   516 {
       
   517 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   518 
       
   519 	strlcpy(drvinfo->driver,  e1000_driver_name,
       
   520 		sizeof(drvinfo->driver));
       
   521 	strlcpy(drvinfo->version, e1000_driver_version,
       
   522 		sizeof(drvinfo->version));
       
   523 
       
   524 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
       
   525 		sizeof(drvinfo->bus_info));
       
   526 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
       
   527 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
       
   528 }
       
   529 
       
   530 static void e1000_get_ringparam(struct net_device *netdev,
       
   531 				struct ethtool_ringparam *ring)
       
   532 {
       
   533 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   534 	struct e1000_hw *hw = &adapter->hw;
       
   535 	e1000_mac_type mac_type = hw->mac_type;
       
   536 	struct e1000_tx_ring *txdr = adapter->tx_ring;
       
   537 	struct e1000_rx_ring *rxdr = adapter->rx_ring;
       
   538 
       
   539 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
       
   540 		E1000_MAX_82544_RXD;
       
   541 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
       
   542 		E1000_MAX_82544_TXD;
       
   543 	ring->rx_pending = rxdr->count;
       
   544 	ring->tx_pending = txdr->count;
       
   545 }
       
   546 
       
   547 static int e1000_set_ringparam(struct net_device *netdev,
       
   548 			       struct ethtool_ringparam *ring)
       
   549 {
       
   550 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   551 	struct e1000_hw *hw = &adapter->hw;
       
   552 	e1000_mac_type mac_type = hw->mac_type;
       
   553 	struct e1000_tx_ring *txdr, *tx_old;
       
   554 	struct e1000_rx_ring *rxdr, *rx_old;
       
   555 	int i, err;
       
   556 
       
   557 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
   558 		return -EINVAL;
       
   559 
       
   560 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   561 		msleep(1);
       
   562 
       
   563 	if (netif_running(adapter->netdev))
       
   564 		e1000_down(adapter);
       
   565 
       
   566 	tx_old = adapter->tx_ring;
       
   567 	rx_old = adapter->rx_ring;
       
   568 
       
   569 	err = -ENOMEM;
       
   570 	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
       
   571 	if (!txdr)
       
   572 		goto err_alloc_tx;
       
   573 
       
   574 	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
       
   575 	if (!rxdr)
       
   576 		goto err_alloc_rx;
       
   577 
       
   578 	adapter->tx_ring = txdr;
       
   579 	adapter->rx_ring = rxdr;
       
   580 
       
   581 	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
       
   582 	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
       
   583 		E1000_MAX_RXD : E1000_MAX_82544_RXD));
       
   584 	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
       
   585 
       
   586 	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
       
   587 	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
       
   588 		E1000_MAX_TXD : E1000_MAX_82544_TXD));
       
   589 	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
       
   590 
       
   591 	for (i = 0; i < adapter->num_tx_queues; i++)
       
   592 		txdr[i].count = txdr->count;
       
   593 	for (i = 0; i < adapter->num_rx_queues; i++)
       
   594 		rxdr[i].count = rxdr->count;
       
   595 
       
   596 	if (netif_running(adapter->netdev)) {
       
   597 		/* Try to get new resources before deleting old */
       
   598 		err = e1000_setup_all_rx_resources(adapter);
       
   599 		if (err)
       
   600 			goto err_setup_rx;
       
   601 		err = e1000_setup_all_tx_resources(adapter);
       
   602 		if (err)
       
   603 			goto err_setup_tx;
       
   604 
       
   605 		/* save the new, restore the old in order to free it,
       
   606 		 * then restore the new back again */
       
   607 
       
   608 		adapter->rx_ring = rx_old;
       
   609 		adapter->tx_ring = tx_old;
       
   610 		e1000_free_all_rx_resources(adapter);
       
   611 		e1000_free_all_tx_resources(adapter);
       
   612 		kfree(tx_old);
       
   613 		kfree(rx_old);
       
   614 		adapter->rx_ring = rxdr;
       
   615 		adapter->tx_ring = txdr;
       
   616 		err = e1000_up(adapter);
       
   617 		if (err)
       
   618 			goto err_setup;
       
   619 	}
       
   620 
       
   621 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   622 	return 0;
       
   623 err_setup_tx:
       
   624 	e1000_free_all_rx_resources(adapter);
       
   625 err_setup_rx:
       
   626 	adapter->rx_ring = rx_old;
       
   627 	adapter->tx_ring = tx_old;
       
   628 	kfree(rxdr);
       
   629 err_alloc_rx:
       
   630 	kfree(txdr);
       
   631 err_alloc_tx:
       
   632 	e1000_up(adapter);
       
   633 err_setup:
       
   634 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   635 	return err;
       
   636 }
       
   637 
       
   638 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
       
   639 			     u32 mask, u32 write)
       
   640 {
       
   641 	struct e1000_hw *hw = &adapter->hw;
       
   642 	static const u32 test[] =
       
   643 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
       
   644 	u8 __iomem *address = hw->hw_addr + reg;
       
   645 	u32 read;
       
   646 	int i;
       
   647 
       
   648 	for (i = 0; i < ARRAY_SIZE(test); i++) {
       
   649 		writel(write & test[i], address);
       
   650 		read = readl(address);
       
   651 		if (read != (write & test[i] & mask)) {
       
   652 			e_err(drv, "pattern test reg %04X failed: "
       
   653 			      "got 0x%08X expected 0x%08X\n",
       
   654 			      reg, read, (write & test[i] & mask));
       
   655 			*data = reg;
       
   656 			return true;
       
   657 		}
       
   658 	}
       
   659 	return false;
       
   660 }
       
   661 
       
   662 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
       
   663 			      u32 mask, u32 write)
       
   664 {
       
   665 	struct e1000_hw *hw = &adapter->hw;
       
   666 	u8 __iomem *address = hw->hw_addr + reg;
       
   667 	u32 read;
       
   668 
       
   669 	writel(write & mask, address);
       
   670 	read = readl(address);
       
   671 	if ((read & mask) != (write & mask)) {
       
   672 		e_err(drv, "set/check reg %04X test failed: "
       
   673 		      "got 0x%08X expected 0x%08X\n",
       
   674 		      reg, (read & mask), (write & mask));
       
   675 		*data = reg;
       
   676 		return true;
       
   677 	}
       
   678 	return false;
       
   679 }
       
   680 
       
   681 #define REG_PATTERN_TEST(reg, mask, write)			     \
       
   682 	do {							     \
       
   683 		if (reg_pattern_test(adapter, data,		     \
       
   684 			     (hw->mac_type >= e1000_82543)   \
       
   685 			     ? E1000_##reg : E1000_82542_##reg,	     \
       
   686 			     mask, write))			     \
       
   687 			return 1;				     \
       
   688 	} while (0)
       
   689 
       
   690 #define REG_SET_AND_CHECK(reg, mask, write)			     \
       
   691 	do {							     \
       
   692 		if (reg_set_and_check(adapter, data,		     \
       
   693 			      (hw->mac_type >= e1000_82543)  \
       
   694 			      ? E1000_##reg : E1000_82542_##reg,     \
       
   695 			      mask, write))			     \
       
   696 			return 1;				     \
       
   697 	} while (0)
       
   698 
       
   699 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
       
   700 {
       
   701 	u32 value, before, after;
       
   702 	u32 i, toggle;
       
   703 	struct e1000_hw *hw = &adapter->hw;
       
   704 
       
   705 	/* The status register is Read Only, so a write should fail.
       
   706 	 * Some bits that get toggled are ignored.
       
   707 	 */
       
   708 
       
   709 	/* there are several bits on newer hardware that are r/w */
       
   710 	toggle = 0xFFFFF833;
       
   711 
       
   712 	before = er32(STATUS);
       
   713 	value = (er32(STATUS) & toggle);
       
   714 	ew32(STATUS, toggle);
       
   715 	after = er32(STATUS) & toggle;
       
   716 	if (value != after) {
       
   717 		e_err(drv, "failed STATUS register test got: "
       
   718 		      "0x%08X expected: 0x%08X\n", after, value);
       
   719 		*data = 1;
       
   720 		return 1;
       
   721 	}
       
   722 	/* restore previous status */
       
   723 	ew32(STATUS, before);
       
   724 
       
   725 	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
       
   726 	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
       
   727 	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
       
   728 	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
       
   729 
       
   730 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
       
   731 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   732 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
       
   733 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
       
   734 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
       
   735 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
       
   736 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
       
   737 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
       
   738 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   739 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
       
   740 
       
   741 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
       
   742 
       
   743 	before = 0x06DFB3FE;
       
   744 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
       
   745 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
       
   746 
       
   747 	if (hw->mac_type >= e1000_82543) {
       
   748 
       
   749 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
       
   750 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   751 		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
       
   752 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   753 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
       
   754 		value = E1000_RAR_ENTRIES;
       
   755 		for (i = 0; i < value; i++) {
       
   756 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
       
   757 			                 0xFFFFFFFF);
       
   758 		}
       
   759 
       
   760 	} else {
       
   761 
       
   762 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
       
   763 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
       
   764 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
       
   765 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
       
   766 
       
   767 	}
       
   768 
       
   769 	value = E1000_MC_TBL_SIZE;
       
   770 	for (i = 0; i < value; i++)
       
   771 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
       
   772 
       
   773 	*data = 0;
       
   774 	return 0;
       
   775 }
       
   776 
       
   777 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
       
   778 {
       
   779 	struct e1000_hw *hw = &adapter->hw;
       
   780 	u16 temp;
       
   781 	u16 checksum = 0;
       
   782 	u16 i;
       
   783 
       
   784 	*data = 0;
       
   785 	/* Read and add up the contents of the EEPROM */
       
   786 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
       
   787 		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
       
   788 			*data = 1;
       
   789 			break;
       
   790 		}
       
   791 		checksum += temp;
       
   792 	}
       
   793 
       
   794 	/* If Checksum is not Correct return error else test passed */
       
   795 	if ((checksum != (u16)EEPROM_SUM) && !(*data))
       
   796 		*data = 2;
       
   797 
       
   798 	return *data;
       
   799 }
       
   800 
       
   801 static irqreturn_t e1000_test_intr(int irq, void *data)
       
   802 {
       
   803 	struct net_device *netdev = (struct net_device *)data;
       
   804 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   805 	struct e1000_hw *hw = &adapter->hw;
       
   806 
       
   807 	adapter->test_icr |= er32(ICR);
       
   808 
       
   809 	return IRQ_HANDLED;
       
   810 }
       
   811 
       
   812 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
       
   813 {
       
   814 	struct net_device *netdev = adapter->netdev;
       
   815 	u32 mask, i = 0;
       
   816 	bool shared_int = true;
       
   817 	u32 irq = adapter->pdev->irq;
       
   818 	struct e1000_hw *hw = &adapter->hw;
       
   819 
       
   820 	*data = 0;
       
   821 
       
   822 	/* NOTE: we don't test MSI interrupts here, yet */
       
   823 	/* Hook up test interrupt handler just for this test */
       
   824 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
       
   825 	                 netdev))
       
   826 		shared_int = false;
       
   827 	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
       
   828 	         netdev->name, netdev)) {
       
   829 		*data = 1;
       
   830 		return -1;
       
   831 	}
       
   832 	e_info(hw, "testing %s interrupt\n", (shared_int ?
       
   833 	       "shared" : "unshared"));
       
   834 
       
   835 	/* Disable all the interrupts */
       
   836 	ew32(IMC, 0xFFFFFFFF);
       
   837 	E1000_WRITE_FLUSH();
       
   838 	msleep(10);
       
   839 
       
   840 	/* Test each interrupt */
       
   841 	for (; i < 10; i++) {
       
   842 
       
   843 		/* Interrupt to test */
       
   844 		mask = 1 << i;
       
   845 
       
   846 		if (!shared_int) {
       
   847 			/* Disable the interrupt to be reported in
       
   848 			 * the cause register and then force the same
       
   849 			 * interrupt and see if one gets posted.  If
       
   850 			 * an interrupt was posted to the bus, the
       
   851 			 * test failed.
       
   852 			 */
       
   853 			adapter->test_icr = 0;
       
   854 			ew32(IMC, mask);
       
   855 			ew32(ICS, mask);
       
   856 			E1000_WRITE_FLUSH();
       
   857 			msleep(10);
       
   858 
       
   859 			if (adapter->test_icr & mask) {
       
   860 				*data = 3;
       
   861 				break;
       
   862 			}
       
   863 		}
       
   864 
       
   865 		/* Enable the interrupt to be reported in
       
   866 		 * the cause register and then force the same
       
   867 		 * interrupt and see if one gets posted.  If
       
   868 		 * an interrupt was not posted to the bus, the
       
   869 		 * test failed.
       
   870 		 */
       
   871 		adapter->test_icr = 0;
       
   872 		ew32(IMS, mask);
       
   873 		ew32(ICS, mask);
       
   874 		E1000_WRITE_FLUSH();
       
   875 		msleep(10);
       
   876 
       
   877 		if (!(adapter->test_icr & mask)) {
       
   878 			*data = 4;
       
   879 			break;
       
   880 		}
       
   881 
       
   882 		if (!shared_int) {
       
   883 			/* Disable the other interrupts to be reported in
       
   884 			 * the cause register and then force the other
       
   885 			 * interrupts and see if any get posted.  If
       
   886 			 * an interrupt was posted to the bus, the
       
   887 			 * test failed.
       
   888 			 */
       
   889 			adapter->test_icr = 0;
       
   890 			ew32(IMC, ~mask & 0x00007FFF);
       
   891 			ew32(ICS, ~mask & 0x00007FFF);
       
   892 			E1000_WRITE_FLUSH();
       
   893 			msleep(10);
       
   894 
       
   895 			if (adapter->test_icr) {
       
   896 				*data = 5;
       
   897 				break;
       
   898 			}
       
   899 		}
       
   900 	}
       
   901 
       
   902 	/* Disable all the interrupts */
       
   903 	ew32(IMC, 0xFFFFFFFF);
       
   904 	E1000_WRITE_FLUSH();
       
   905 	msleep(10);
       
   906 
       
   907 	/* Unhook test interrupt handler */
       
   908 	free_irq(irq, netdev);
       
   909 
       
   910 	return *data;
       
   911 }
       
   912 
       
   913 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
       
   914 {
       
   915 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
       
   916 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
       
   917 	struct pci_dev *pdev = adapter->pdev;
       
   918 	int i;
       
   919 
       
   920 	if (txdr->desc && txdr->buffer_info) {
       
   921 		for (i = 0; i < txdr->count; i++) {
       
   922 			if (txdr->buffer_info[i].dma)
       
   923 				dma_unmap_single(&pdev->dev,
       
   924 						 txdr->buffer_info[i].dma,
       
   925 						 txdr->buffer_info[i].length,
       
   926 						 DMA_TO_DEVICE);
       
   927 			if (txdr->buffer_info[i].skb)
       
   928 				dev_kfree_skb(txdr->buffer_info[i].skb);
       
   929 		}
       
   930 	}
       
   931 
       
   932 	if (rxdr->desc && rxdr->buffer_info) {
       
   933 		for (i = 0; i < rxdr->count; i++) {
       
   934 			if (rxdr->buffer_info[i].dma)
       
   935 				dma_unmap_single(&pdev->dev,
       
   936 						 rxdr->buffer_info[i].dma,
       
   937 						 rxdr->buffer_info[i].length,
       
   938 						 DMA_FROM_DEVICE);
       
   939 			if (rxdr->buffer_info[i].skb)
       
   940 				dev_kfree_skb(rxdr->buffer_info[i].skb);
       
   941 		}
       
   942 	}
       
   943 
       
   944 	if (txdr->desc) {
       
   945 		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
       
   946 				  txdr->dma);
       
   947 		txdr->desc = NULL;
       
   948 	}
       
   949 	if (rxdr->desc) {
       
   950 		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
       
   951 				  rxdr->dma);
       
   952 		rxdr->desc = NULL;
       
   953 	}
       
   954 
       
   955 	kfree(txdr->buffer_info);
       
   956 	txdr->buffer_info = NULL;
       
   957 	kfree(rxdr->buffer_info);
       
   958 	rxdr->buffer_info = NULL;
       
   959 }
       
   960 
       
   961 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
       
   962 {
       
   963 	struct e1000_hw *hw = &adapter->hw;
       
   964 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
       
   965 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
       
   966 	struct pci_dev *pdev = adapter->pdev;
       
   967 	u32 rctl;
       
   968 	int i, ret_val;
       
   969 
       
   970 	/* Setup Tx descriptor ring and Tx buffers */
       
   971 
       
   972 	if (!txdr->count)
       
   973 		txdr->count = E1000_DEFAULT_TXD;
       
   974 
       
   975 	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
       
   976 				    GFP_KERNEL);
       
   977 	if (!txdr->buffer_info) {
       
   978 		ret_val = 1;
       
   979 		goto err_nomem;
       
   980 	}
       
   981 
       
   982 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
   983 	txdr->size = ALIGN(txdr->size, 4096);
       
   984 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
       
   985 					GFP_KERNEL);
       
   986 	if (!txdr->desc) {
       
   987 		ret_val = 2;
       
   988 		goto err_nomem;
       
   989 	}
       
   990 	memset(txdr->desc, 0, txdr->size);
       
   991 	txdr->next_to_use = txdr->next_to_clean = 0;
       
   992 
       
   993 	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
       
   994 	ew32(TDBAH, ((u64)txdr->dma >> 32));
       
   995 	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
       
   996 	ew32(TDH, 0);
       
   997 	ew32(TDT, 0);
       
   998 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
       
   999 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
       
  1000 	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
       
  1001 
       
  1002 	for (i = 0; i < txdr->count; i++) {
       
  1003 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
       
  1004 		struct sk_buff *skb;
       
  1005 		unsigned int size = 1024;
       
  1006 
       
  1007 		skb = alloc_skb(size, GFP_KERNEL);
       
  1008 		if (!skb) {
       
  1009 			ret_val = 3;
       
  1010 			goto err_nomem;
       
  1011 		}
       
  1012 		skb_put(skb, size);
       
  1013 		txdr->buffer_info[i].skb = skb;
       
  1014 		txdr->buffer_info[i].length = skb->len;
       
  1015 		txdr->buffer_info[i].dma =
       
  1016 			dma_map_single(&pdev->dev, skb->data, skb->len,
       
  1017 				       DMA_TO_DEVICE);
       
  1018 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
       
  1019 		tx_desc->lower.data = cpu_to_le32(skb->len);
       
  1020 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
       
  1021 						   E1000_TXD_CMD_IFCS |
       
  1022 						   E1000_TXD_CMD_RPS);
       
  1023 		tx_desc->upper.data = 0;
       
  1024 	}
       
  1025 
       
  1026 	/* Setup Rx descriptor ring and Rx buffers */
       
  1027 
       
  1028 	if (!rxdr->count)
       
  1029 		rxdr->count = E1000_DEFAULT_RXD;
       
  1030 
       
  1031 	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
       
  1032 				    GFP_KERNEL);
       
  1033 	if (!rxdr->buffer_info) {
       
  1034 		ret_val = 4;
       
  1035 		goto err_nomem;
       
  1036 	}
       
  1037 
       
  1038 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
       
  1039 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
       
  1040 					GFP_KERNEL);
       
  1041 	if (!rxdr->desc) {
       
  1042 		ret_val = 5;
       
  1043 		goto err_nomem;
       
  1044 	}
       
  1045 	memset(rxdr->desc, 0, rxdr->size);
       
  1046 	rxdr->next_to_use = rxdr->next_to_clean = 0;
       
  1047 
       
  1048 	rctl = er32(RCTL);
       
  1049 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1050 	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
       
  1051 	ew32(RDBAH, ((u64)rxdr->dma >> 32));
       
  1052 	ew32(RDLEN, rxdr->size);
       
  1053 	ew32(RDH, 0);
       
  1054 	ew32(RDT, 0);
       
  1055 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
       
  1056 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1057 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1058 	ew32(RCTL, rctl);
       
  1059 
       
  1060 	for (i = 0; i < rxdr->count; i++) {
       
  1061 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
       
  1062 		struct sk_buff *skb;
       
  1063 
       
  1064 		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
       
  1065 		if (!skb) {
       
  1066 			ret_val = 6;
       
  1067 			goto err_nomem;
       
  1068 		}
       
  1069 		skb_reserve(skb, NET_IP_ALIGN);
       
  1070 		rxdr->buffer_info[i].skb = skb;
       
  1071 		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
       
  1072 		rxdr->buffer_info[i].dma =
       
  1073 			dma_map_single(&pdev->dev, skb->data,
       
  1074 				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
       
  1075 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
       
  1076 		memset(skb->data, 0x00, skb->len);
       
  1077 	}
       
  1078 
       
  1079 	return 0;
       
  1080 
       
  1081 err_nomem:
       
  1082 	e1000_free_desc_rings(adapter);
       
  1083 	return ret_val;
       
  1084 }
       
  1085 
       
  1086 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
       
  1087 {
       
  1088 	struct e1000_hw *hw = &adapter->hw;
       
  1089 
       
  1090 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1091 	e1000_write_phy_reg(hw, 29, 0x001F);
       
  1092 	e1000_write_phy_reg(hw, 30, 0x8FFC);
       
  1093 	e1000_write_phy_reg(hw, 29, 0x001A);
       
  1094 	e1000_write_phy_reg(hw, 30, 0x8FF0);
       
  1095 }
       
  1096 
       
  1097 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
       
  1098 {
       
  1099 	struct e1000_hw *hw = &adapter->hw;
       
  1100 	u16 phy_reg;
       
  1101 
       
  1102 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
       
  1103 	 * Extended PHY Specific Control Register to 25MHz clock.  This
       
  1104 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
       
  1105 	 */
       
  1106 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
       
  1107 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
       
  1108 	e1000_write_phy_reg(hw,
       
  1109 		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
       
  1110 
       
  1111 	/* In addition, because of the s/w reset above, we need to enable
       
  1112 	 * CRS on TX.  This must be set for both full and half duplex
       
  1113 	 * operation.
       
  1114 	 */
       
  1115 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
       
  1116 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1117 	e1000_write_phy_reg(hw,
       
  1118 		M88E1000_PHY_SPEC_CTRL, phy_reg);
       
  1119 }
       
  1120 
       
  1121 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
       
  1122 {
       
  1123 	struct e1000_hw *hw = &adapter->hw;
       
  1124 	u32 ctrl_reg;
       
  1125 	u16 phy_reg;
       
  1126 
       
  1127 	/* Setup the Device Control Register for PHY loopback test. */
       
  1128 
       
  1129 	ctrl_reg = er32(CTRL);
       
  1130 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
       
  1131 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
       
  1132 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
       
  1133 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
       
  1134 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
       
  1135 
       
  1136 	ew32(CTRL, ctrl_reg);
       
  1137 
       
  1138 	/* Read the PHY Specific Control Register (0x10) */
       
  1139 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
       
  1140 
       
  1141 	/* Clear Auto-Crossover bits in PHY Specific Control Register
       
  1142 	 * (bits 6:5).
       
  1143 	 */
       
  1144 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1145 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
       
  1146 
       
  1147 	/* Perform software reset on the PHY */
       
  1148 	e1000_phy_reset(hw);
       
  1149 
       
  1150 	/* Have to setup TX_CLK and TX_CRS after software reset */
       
  1151 	e1000_phy_reset_clk_and_crs(adapter);
       
  1152 
       
  1153 	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
       
  1154 
       
  1155 	/* Wait for reset to complete. */
       
  1156 	udelay(500);
       
  1157 
       
  1158 	/* Have to setup TX_CLK and TX_CRS after software reset */
       
  1159 	e1000_phy_reset_clk_and_crs(adapter);
       
  1160 
       
  1161 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1162 	e1000_phy_disable_receiver(adapter);
       
  1163 
       
  1164 	/* Set the loopback bit in the PHY control register. */
       
  1165 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
       
  1166 	phy_reg |= MII_CR_LOOPBACK;
       
  1167 	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
       
  1168 
       
  1169 	/* Setup TX_CLK and TX_CRS one more time. */
       
  1170 	e1000_phy_reset_clk_and_crs(adapter);
       
  1171 
       
  1172 	/* Check Phy Configuration */
       
  1173 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
       
  1174 	if (phy_reg != 0x4100)
       
  1175 		 return 9;
       
  1176 
       
  1177 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
       
  1178 	if (phy_reg != 0x0070)
       
  1179 		return 10;
       
  1180 
       
  1181 	e1000_read_phy_reg(hw, 29, &phy_reg);
       
  1182 	if (phy_reg != 0x001A)
       
  1183 		return 11;
       
  1184 
       
  1185 	return 0;
       
  1186 }
       
  1187 
       
  1188 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
       
  1189 {
       
  1190 	struct e1000_hw *hw = &adapter->hw;
       
  1191 	u32 ctrl_reg = 0;
       
  1192 	u32 stat_reg = 0;
       
  1193 
       
  1194 	hw->autoneg = false;
       
  1195 
       
  1196 	if (hw->phy_type == e1000_phy_m88) {
       
  1197 		/* Auto-MDI/MDIX Off */
       
  1198 		e1000_write_phy_reg(hw,
       
  1199 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
       
  1200 		/* reset to update Auto-MDI/MDIX */
       
  1201 		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
       
  1202 		/* autoneg off */
       
  1203 		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
       
  1204 	}
       
  1205 
       
  1206 	ctrl_reg = er32(CTRL);
       
  1207 
       
  1208 	/* force 1000, set loopback */
       
  1209 	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
       
  1210 
       
  1211 	/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1212 	ctrl_reg = er32(CTRL);
       
  1213 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1214 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1215 			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1216 			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
       
  1217 			E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1218 
       
  1219 	if (hw->media_type == e1000_media_type_copper &&
       
  1220 	   hw->phy_type == e1000_phy_m88)
       
  1221 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
       
  1222 	else {
       
  1223 		/* Set the ILOS bit on the fiber Nic is half
       
  1224 		 * duplex link is detected. */
       
  1225 		stat_reg = er32(STATUS);
       
  1226 		if ((stat_reg & E1000_STATUS_FD) == 0)
       
  1227 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
       
  1228 	}
       
  1229 
       
  1230 	ew32(CTRL, ctrl_reg);
       
  1231 
       
  1232 	/* Disable the receiver on the PHY so when a cable is plugged in, the
       
  1233 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
       
  1234 	 */
       
  1235 	if (hw->phy_type == e1000_phy_m88)
       
  1236 		e1000_phy_disable_receiver(adapter);
       
  1237 
       
  1238 	udelay(500);
       
  1239 
       
  1240 	return 0;
       
  1241 }
       
  1242 
       
  1243 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
       
  1244 {
       
  1245 	struct e1000_hw *hw = &adapter->hw;
       
  1246 	u16 phy_reg = 0;
       
  1247 	u16 count = 0;
       
  1248 
       
  1249 	switch (hw->mac_type) {
       
  1250 	case e1000_82543:
       
  1251 		if (hw->media_type == e1000_media_type_copper) {
       
  1252 			/* Attempt to setup Loopback mode on Non-integrated PHY.
       
  1253 			 * Some PHY registers get corrupted at random, so
       
  1254 			 * attempt this 10 times.
       
  1255 			 */
       
  1256 			while (e1000_nonintegrated_phy_loopback(adapter) &&
       
  1257 			      count++ < 10);
       
  1258 			if (count < 11)
       
  1259 				return 0;
       
  1260 		}
       
  1261 		break;
       
  1262 
       
  1263 	case e1000_82544:
       
  1264 	case e1000_82540:
       
  1265 	case e1000_82545:
       
  1266 	case e1000_82545_rev_3:
       
  1267 	case e1000_82546:
       
  1268 	case e1000_82546_rev_3:
       
  1269 	case e1000_82541:
       
  1270 	case e1000_82541_rev_2:
       
  1271 	case e1000_82547:
       
  1272 	case e1000_82547_rev_2:
       
  1273 		return e1000_integrated_phy_loopback(adapter);
       
  1274 		break;
       
  1275 	default:
       
  1276 		/* Default PHY loopback work is to read the MII
       
  1277 		 * control register and assert bit 14 (loopback mode).
       
  1278 		 */
       
  1279 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
       
  1280 		phy_reg |= MII_CR_LOOPBACK;
       
  1281 		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
       
  1282 		return 0;
       
  1283 		break;
       
  1284 	}
       
  1285 
       
  1286 	return 8;
       
  1287 }
       
  1288 
       
  1289 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
       
  1290 {
       
  1291 	struct e1000_hw *hw = &adapter->hw;
       
  1292 	u32 rctl;
       
  1293 
       
  1294 	if (hw->media_type == e1000_media_type_fiber ||
       
  1295 	    hw->media_type == e1000_media_type_internal_serdes) {
       
  1296 		switch (hw->mac_type) {
       
  1297 		case e1000_82545:
       
  1298 		case e1000_82546:
       
  1299 		case e1000_82545_rev_3:
       
  1300 		case e1000_82546_rev_3:
       
  1301 			return e1000_set_phy_loopback(adapter);
       
  1302 			break;
       
  1303 		default:
       
  1304 			rctl = er32(RCTL);
       
  1305 			rctl |= E1000_RCTL_LBM_TCVR;
       
  1306 			ew32(RCTL, rctl);
       
  1307 			return 0;
       
  1308 		}
       
  1309 	} else if (hw->media_type == e1000_media_type_copper)
       
  1310 		return e1000_set_phy_loopback(adapter);
       
  1311 
       
  1312 	return 7;
       
  1313 }
       
  1314 
       
  1315 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
       
  1316 {
       
  1317 	struct e1000_hw *hw = &adapter->hw;
       
  1318 	u32 rctl;
       
  1319 	u16 phy_reg;
       
  1320 
       
  1321 	rctl = er32(RCTL);
       
  1322 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
       
  1323 	ew32(RCTL, rctl);
       
  1324 
       
  1325 	switch (hw->mac_type) {
       
  1326 	case e1000_82545:
       
  1327 	case e1000_82546:
       
  1328 	case e1000_82545_rev_3:
       
  1329 	case e1000_82546_rev_3:
       
  1330 	default:
       
  1331 		hw->autoneg = true;
       
  1332 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
       
  1333 		if (phy_reg & MII_CR_LOOPBACK) {
       
  1334 			phy_reg &= ~MII_CR_LOOPBACK;
       
  1335 			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
       
  1336 			e1000_phy_reset(hw);
       
  1337 		}
       
  1338 		break;
       
  1339 	}
       
  1340 }
       
  1341 
       
  1342 static void e1000_create_lbtest_frame(struct sk_buff *skb,
       
  1343 				      unsigned int frame_size)
       
  1344 {
       
  1345 	memset(skb->data, 0xFF, frame_size);
       
  1346 	frame_size &= ~1;
       
  1347 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
       
  1348 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
       
  1349 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
       
  1350 }
       
  1351 
       
  1352 static int e1000_check_lbtest_frame(struct sk_buff *skb,
       
  1353 				    unsigned int frame_size)
       
  1354 {
       
  1355 	frame_size &= ~1;
       
  1356 	if (*(skb->data + 3) == 0xFF) {
       
  1357 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
       
  1358 		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
       
  1359 			return 0;
       
  1360 		}
       
  1361 	}
       
  1362 	return 13;
       
  1363 }
       
  1364 
       
  1365 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
       
  1366 {
       
  1367 	struct e1000_hw *hw = &adapter->hw;
       
  1368 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
       
  1369 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
       
  1370 	struct pci_dev *pdev = adapter->pdev;
       
  1371 	int i, j, k, l, lc, good_cnt, ret_val=0;
       
  1372 	unsigned long time;
       
  1373 
       
  1374 	ew32(RDT, rxdr->count - 1);
       
  1375 
       
  1376 	/* Calculate the loop count based on the largest descriptor ring
       
  1377 	 * The idea is to wrap the largest ring a number of times using 64
       
  1378 	 * send/receive pairs during each loop
       
  1379 	 */
       
  1380 
       
  1381 	if (rxdr->count <= txdr->count)
       
  1382 		lc = ((txdr->count / 64) * 2) + 1;
       
  1383 	else
       
  1384 		lc = ((rxdr->count / 64) * 2) + 1;
       
  1385 
       
  1386 	k = l = 0;
       
  1387 	for (j = 0; j <= lc; j++) { /* loop count loop */
       
  1388 		for (i = 0; i < 64; i++) { /* send the packets */
       
  1389 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
       
  1390 					1024);
       
  1391 			dma_sync_single_for_device(&pdev->dev,
       
  1392 						   txdr->buffer_info[k].dma,
       
  1393 						   txdr->buffer_info[k].length,
       
  1394 						   DMA_TO_DEVICE);
       
  1395 			if (unlikely(++k == txdr->count)) k = 0;
       
  1396 		}
       
  1397 		ew32(TDT, k);
       
  1398 		E1000_WRITE_FLUSH();
       
  1399 		msleep(200);
       
  1400 		time = jiffies; /* set the start time for the receive */
       
  1401 		good_cnt = 0;
       
  1402 		do { /* receive the sent packets */
       
  1403 			dma_sync_single_for_cpu(&pdev->dev,
       
  1404 						rxdr->buffer_info[l].dma,
       
  1405 						rxdr->buffer_info[l].length,
       
  1406 						DMA_FROM_DEVICE);
       
  1407 
       
  1408 			ret_val = e1000_check_lbtest_frame(
       
  1409 					rxdr->buffer_info[l].skb,
       
  1410 				   	1024);
       
  1411 			if (!ret_val)
       
  1412 				good_cnt++;
       
  1413 			if (unlikely(++l == rxdr->count)) l = 0;
       
  1414 			/* time + 20 msecs (200 msecs on 2.4) is more than
       
  1415 			 * enough time to complete the receives, if it's
       
  1416 			 * exceeded, break and error off
       
  1417 			 */
       
  1418 		} while (good_cnt < 64 && jiffies < (time + 20));
       
  1419 		if (good_cnt != 64) {
       
  1420 			ret_val = 13; /* ret_val is the same as mis-compare */
       
  1421 			break;
       
  1422 		}
       
  1423 		if (jiffies >= (time + 2)) {
       
  1424 			ret_val = 14; /* error code for time out error */
       
  1425 			break;
       
  1426 		}
       
  1427 	} /* end loop count loop */
       
  1428 	return ret_val;
       
  1429 }
       
  1430 
       
  1431 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
       
  1432 {
       
  1433 	*data = e1000_setup_desc_rings(adapter);
       
  1434 	if (*data)
       
  1435 		goto out;
       
  1436 	*data = e1000_setup_loopback_test(adapter);
       
  1437 	if (*data)
       
  1438 		goto err_loopback;
       
  1439 	*data = e1000_run_loopback_test(adapter);
       
  1440 	e1000_loopback_cleanup(adapter);
       
  1441 
       
  1442 err_loopback:
       
  1443 	e1000_free_desc_rings(adapter);
       
  1444 out:
       
  1445 	return *data;
       
  1446 }
       
  1447 
       
  1448 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
       
  1449 {
       
  1450 	struct e1000_hw *hw = &adapter->hw;
       
  1451 	*data = 0;
       
  1452 	if (hw->media_type == e1000_media_type_internal_serdes) {
       
  1453 		int i = 0;
       
  1454 		hw->serdes_has_link = false;
       
  1455 
       
  1456 		/* On some blade server designs, link establishment
       
  1457 		 * could take as long as 2-3 minutes */
       
  1458 		do {
       
  1459 			e1000_check_for_link(hw);
       
  1460 			if (hw->serdes_has_link)
       
  1461 				return *data;
       
  1462 			msleep(20);
       
  1463 		} while (i++ < 3750);
       
  1464 
       
  1465 		*data = 1;
       
  1466 	} else {
       
  1467 		e1000_check_for_link(hw);
       
  1468 		if (hw->autoneg)  /* if auto_neg is set wait for it */
       
  1469 			msleep(4000);
       
  1470 
       
  1471 		if (!(er32(STATUS) & E1000_STATUS_LU)) {
       
  1472 			*data = 1;
       
  1473 		}
       
  1474 	}
       
  1475 	return *data;
       
  1476 }
       
  1477 
       
  1478 static int e1000_get_sset_count(struct net_device *netdev, int sset)
       
  1479 {
       
  1480 	switch (sset) {
       
  1481 	case ETH_SS_TEST:
       
  1482 		return E1000_TEST_LEN;
       
  1483 	case ETH_SS_STATS:
       
  1484 		return E1000_STATS_LEN;
       
  1485 	default:
       
  1486 		return -EOPNOTSUPP;
       
  1487 	}
       
  1488 }
       
  1489 
       
  1490 static void e1000_diag_test(struct net_device *netdev,
       
  1491 			    struct ethtool_test *eth_test, u64 *data)
       
  1492 {
       
  1493 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1494 	struct e1000_hw *hw = &adapter->hw;
       
  1495 	bool if_running = netif_running(netdev);
       
  1496 
       
  1497 	set_bit(__E1000_TESTING, &adapter->flags);
       
  1498 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
       
  1499 		/* Offline tests */
       
  1500 
       
  1501 		/* save speed, duplex, autoneg settings */
       
  1502 		u16 autoneg_advertised = hw->autoneg_advertised;
       
  1503 		u8 forced_speed_duplex = hw->forced_speed_duplex;
       
  1504 		u8 autoneg = hw->autoneg;
       
  1505 
       
  1506 		e_info(hw, "offline testing starting\n");
       
  1507 
       
  1508 		/* Link test performed before hardware reset so autoneg doesn't
       
  1509 		 * interfere with test result */
       
  1510 		if (e1000_link_test(adapter, &data[4]))
       
  1511 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1512 
       
  1513 		if (if_running)
       
  1514 			/* indicate we're in test mode */
       
  1515 			dev_close(netdev);
       
  1516 		else
       
  1517 			e1000_reset(adapter);
       
  1518 
       
  1519 		if (e1000_reg_test(adapter, &data[0]))
       
  1520 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1521 
       
  1522 		e1000_reset(adapter);
       
  1523 		if (e1000_eeprom_test(adapter, &data[1]))
       
  1524 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1525 
       
  1526 		e1000_reset(adapter);
       
  1527 		if (e1000_intr_test(adapter, &data[2]))
       
  1528 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1529 
       
  1530 		e1000_reset(adapter);
       
  1531 		/* make sure the phy is powered up */
       
  1532 		e1000_power_up_phy(adapter);
       
  1533 		if (e1000_loopback_test(adapter, &data[3]))
       
  1534 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1535 
       
  1536 		/* restore speed, duplex, autoneg settings */
       
  1537 		hw->autoneg_advertised = autoneg_advertised;
       
  1538 		hw->forced_speed_duplex = forced_speed_duplex;
       
  1539 		hw->autoneg = autoneg;
       
  1540 
       
  1541 		e1000_reset(adapter);
       
  1542 		clear_bit(__E1000_TESTING, &adapter->flags);
       
  1543 		if (if_running)
       
  1544 			dev_open(netdev);
       
  1545 	} else {
       
  1546 		e_info(hw, "online testing starting\n");
       
  1547 		/* Online tests */
       
  1548 		if (e1000_link_test(adapter, &data[4]))
       
  1549 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1550 
       
  1551 		/* Online tests aren't run; pass by default */
       
  1552 		data[0] = 0;
       
  1553 		data[1] = 0;
       
  1554 		data[2] = 0;
       
  1555 		data[3] = 0;
       
  1556 
       
  1557 		clear_bit(__E1000_TESTING, &adapter->flags);
       
  1558 	}
       
  1559 	msleep_interruptible(4 * 1000);
       
  1560 }
       
  1561 
       
  1562 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
       
  1563 			       struct ethtool_wolinfo *wol)
       
  1564 {
       
  1565 	struct e1000_hw *hw = &adapter->hw;
       
  1566 	int retval = 1; /* fail by default */
       
  1567 
       
  1568 	switch (hw->device_id) {
       
  1569 	case E1000_DEV_ID_82542:
       
  1570 	case E1000_DEV_ID_82543GC_FIBER:
       
  1571 	case E1000_DEV_ID_82543GC_COPPER:
       
  1572 	case E1000_DEV_ID_82544EI_FIBER:
       
  1573 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
       
  1574 	case E1000_DEV_ID_82545EM_FIBER:
       
  1575 	case E1000_DEV_ID_82545EM_COPPER:
       
  1576 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
       
  1577 	case E1000_DEV_ID_82546GB_PCIE:
       
  1578 		/* these don't support WoL at all */
       
  1579 		wol->supported = 0;
       
  1580 		break;
       
  1581 	case E1000_DEV_ID_82546EB_FIBER:
       
  1582 	case E1000_DEV_ID_82546GB_FIBER:
       
  1583 		/* Wake events not supported on port B */
       
  1584 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
       
  1585 			wol->supported = 0;
       
  1586 			break;
       
  1587 		}
       
  1588 		/* return success for non excluded adapter ports */
       
  1589 		retval = 0;
       
  1590 		break;
       
  1591 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1592 		/* quad port adapters only support WoL on port A */
       
  1593 		if (!adapter->quad_port_a) {
       
  1594 			wol->supported = 0;
       
  1595 			break;
       
  1596 		}
       
  1597 		/* return success for non excluded adapter ports */
       
  1598 		retval = 0;
       
  1599 		break;
       
  1600 	default:
       
  1601 		/* dual port cards only support WoL on port A from now on
       
  1602 		 * unless it was enabled in the eeprom for port B
       
  1603 		 * so exclude FUNC_1 ports from having WoL enabled */
       
  1604 		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
       
  1605 		    !adapter->eeprom_wol) {
       
  1606 			wol->supported = 0;
       
  1607 			break;
       
  1608 		}
       
  1609 
       
  1610 		retval = 0;
       
  1611 	}
       
  1612 
       
  1613 	return retval;
       
  1614 }
       
  1615 
       
  1616 static void e1000_get_wol(struct net_device *netdev,
       
  1617 			  struct ethtool_wolinfo *wol)
       
  1618 {
       
  1619 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1620 	struct e1000_hw *hw = &adapter->hw;
       
  1621 
       
  1622 	wol->supported = WAKE_UCAST | WAKE_MCAST |
       
  1623 	                 WAKE_BCAST | WAKE_MAGIC;
       
  1624 	wol->wolopts = 0;
       
  1625 
       
  1626 	/* this function will set ->supported = 0 and return 1 if wol is not
       
  1627 	 * supported by this hardware */
       
  1628 	if (e1000_wol_exclusion(adapter, wol) ||
       
  1629 	    !device_can_wakeup(&adapter->pdev->dev))
       
  1630 		return;
       
  1631 
       
  1632 	/* apply any specific unsupported masks here */
       
  1633 	switch (hw->device_id) {
       
  1634 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1635 		/* KSP3 does not suppport UCAST wake-ups */
       
  1636 		wol->supported &= ~WAKE_UCAST;
       
  1637 
       
  1638 		if (adapter->wol & E1000_WUFC_EX)
       
  1639 			e_err(drv, "Interface does not support directed "
       
  1640 			      "(unicast) frame wake-up packets\n");
       
  1641 		break;
       
  1642 	default:
       
  1643 		break;
       
  1644 	}
       
  1645 
       
  1646 	if (adapter->wol & E1000_WUFC_EX)
       
  1647 		wol->wolopts |= WAKE_UCAST;
       
  1648 	if (adapter->wol & E1000_WUFC_MC)
       
  1649 		wol->wolopts |= WAKE_MCAST;
       
  1650 	if (adapter->wol & E1000_WUFC_BC)
       
  1651 		wol->wolopts |= WAKE_BCAST;
       
  1652 	if (adapter->wol & E1000_WUFC_MAG)
       
  1653 		wol->wolopts |= WAKE_MAGIC;
       
  1654 }
       
  1655 
       
  1656 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  1657 {
       
  1658 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1659 	struct e1000_hw *hw = &adapter->hw;
       
  1660 
       
  1661 	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
       
  1662 		return -EOPNOTSUPP;
       
  1663 
       
  1664 	if (e1000_wol_exclusion(adapter, wol) ||
       
  1665 	    !device_can_wakeup(&adapter->pdev->dev))
       
  1666 		return wol->wolopts ? -EOPNOTSUPP : 0;
       
  1667 
       
  1668 	switch (hw->device_id) {
       
  1669 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1670 		if (wol->wolopts & WAKE_UCAST) {
       
  1671 			e_err(drv, "Interface does not support directed "
       
  1672 			      "(unicast) frame wake-up packets\n");
       
  1673 			return -EOPNOTSUPP;
       
  1674 		}
       
  1675 		break;
       
  1676 	default:
       
  1677 		break;
       
  1678 	}
       
  1679 
       
  1680 	/* these settings will always override what we currently have */
       
  1681 	adapter->wol = 0;
       
  1682 
       
  1683 	if (wol->wolopts & WAKE_UCAST)
       
  1684 		adapter->wol |= E1000_WUFC_EX;
       
  1685 	if (wol->wolopts & WAKE_MCAST)
       
  1686 		adapter->wol |= E1000_WUFC_MC;
       
  1687 	if (wol->wolopts & WAKE_BCAST)
       
  1688 		adapter->wol |= E1000_WUFC_BC;
       
  1689 	if (wol->wolopts & WAKE_MAGIC)
       
  1690 		adapter->wol |= E1000_WUFC_MAG;
       
  1691 
       
  1692 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  1693 
       
  1694 	return 0;
       
  1695 }
       
  1696 
       
  1697 static int e1000_set_phys_id(struct net_device *netdev,
       
  1698 			     enum ethtool_phys_id_state state)
       
  1699 {
       
  1700 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1701 	struct e1000_hw *hw = &adapter->hw;
       
  1702 
       
  1703 	switch (state) {
       
  1704 	case ETHTOOL_ID_ACTIVE:
       
  1705 		e1000_setup_led(hw);
       
  1706 		return 2;
       
  1707 
       
  1708 	case ETHTOOL_ID_ON:
       
  1709 		e1000_led_on(hw);
       
  1710 		break;
       
  1711 
       
  1712 	case ETHTOOL_ID_OFF:
       
  1713 		e1000_led_off(hw);
       
  1714 		break;
       
  1715 
       
  1716 	case ETHTOOL_ID_INACTIVE:
       
  1717 		e1000_cleanup_led(hw);
       
  1718 	}
       
  1719 
       
  1720 	return 0;
       
  1721 }
       
  1722 
       
  1723 static int e1000_get_coalesce(struct net_device *netdev,
       
  1724 			      struct ethtool_coalesce *ec)
       
  1725 {
       
  1726 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1727 
       
  1728 	if (adapter->hw.mac_type < e1000_82545)
       
  1729 		return -EOPNOTSUPP;
       
  1730 
       
  1731 	if (adapter->itr_setting <= 4)
       
  1732 		ec->rx_coalesce_usecs = adapter->itr_setting;
       
  1733 	else
       
  1734 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
       
  1735 
       
  1736 	return 0;
       
  1737 }
       
  1738 
       
  1739 static int e1000_set_coalesce(struct net_device *netdev,
       
  1740 			      struct ethtool_coalesce *ec)
       
  1741 {
       
  1742 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1743 	struct e1000_hw *hw = &adapter->hw;
       
  1744 
       
  1745 	if (hw->mac_type < e1000_82545)
       
  1746 		return -EOPNOTSUPP;
       
  1747 
       
  1748 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
       
  1749 	    ((ec->rx_coalesce_usecs > 4) &&
       
  1750 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
       
  1751 	    (ec->rx_coalesce_usecs == 2))
       
  1752 		return -EINVAL;
       
  1753 
       
  1754 	if (ec->rx_coalesce_usecs == 4) {
       
  1755 		adapter->itr = adapter->itr_setting = 4;
       
  1756 	} else if (ec->rx_coalesce_usecs <= 3) {
       
  1757 		adapter->itr = 20000;
       
  1758 		adapter->itr_setting = ec->rx_coalesce_usecs;
       
  1759 	} else {
       
  1760 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
       
  1761 		adapter->itr_setting = adapter->itr & ~3;
       
  1762 	}
       
  1763 
       
  1764 	if (adapter->itr_setting != 0)
       
  1765 		ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  1766 	else
       
  1767 		ew32(ITR, 0);
       
  1768 
       
  1769 	return 0;
       
  1770 }
       
  1771 
       
  1772 static int e1000_nway_reset(struct net_device *netdev)
       
  1773 {
       
  1774 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1775 	if (netif_running(netdev))
       
  1776 		e1000_reinit_locked(adapter);
       
  1777 	return 0;
       
  1778 }
       
  1779 
       
  1780 static void e1000_get_ethtool_stats(struct net_device *netdev,
       
  1781 				    struct ethtool_stats *stats, u64 *data)
       
  1782 {
       
  1783 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1784 	int i;
       
  1785 	char *p = NULL;
       
  1786 
       
  1787 	e1000_update_stats(adapter);
       
  1788 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1789 		switch (e1000_gstrings_stats[i].type) {
       
  1790 		case NETDEV_STATS:
       
  1791 			p = (char *) netdev +
       
  1792 					e1000_gstrings_stats[i].stat_offset;
       
  1793 			break;
       
  1794 		case E1000_STATS:
       
  1795 			p = (char *) adapter +
       
  1796 					e1000_gstrings_stats[i].stat_offset;
       
  1797 			break;
       
  1798 		}
       
  1799 
       
  1800 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
       
  1801 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
       
  1802 	}
       
  1803 /*	BUG_ON(i != E1000_STATS_LEN); */
       
  1804 }
       
  1805 
       
  1806 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
       
  1807 			      u8 *data)
       
  1808 {
       
  1809 	u8 *p = data;
       
  1810 	int i;
       
  1811 
       
  1812 	switch (stringset) {
       
  1813 	case ETH_SS_TEST:
       
  1814 		memcpy(data, *e1000_gstrings_test,
       
  1815 			sizeof(e1000_gstrings_test));
       
  1816 		break;
       
  1817 	case ETH_SS_STATS:
       
  1818 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1819 			memcpy(p, e1000_gstrings_stats[i].stat_string,
       
  1820 			       ETH_GSTRING_LEN);
       
  1821 			p += ETH_GSTRING_LEN;
       
  1822 		}
       
  1823 /*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
       
  1824 		break;
       
  1825 	}
       
  1826 }
       
  1827 
       
  1828 static const struct ethtool_ops e1000_ethtool_ops = {
       
  1829 	.get_settings           = e1000_get_settings,
       
  1830 	.set_settings           = e1000_set_settings,
       
  1831 	.get_drvinfo            = e1000_get_drvinfo,
       
  1832 	.get_regs_len           = e1000_get_regs_len,
       
  1833 	.get_regs               = e1000_get_regs,
       
  1834 	.get_wol                = e1000_get_wol,
       
  1835 	.set_wol                = e1000_set_wol,
       
  1836 	.get_msglevel           = e1000_get_msglevel,
       
  1837 	.set_msglevel           = e1000_set_msglevel,
       
  1838 	.nway_reset             = e1000_nway_reset,
       
  1839 	.get_link               = e1000_get_link,
       
  1840 	.get_eeprom_len         = e1000_get_eeprom_len,
       
  1841 	.get_eeprom             = e1000_get_eeprom,
       
  1842 	.set_eeprom             = e1000_set_eeprom,
       
  1843 	.get_ringparam          = e1000_get_ringparam,
       
  1844 	.set_ringparam          = e1000_set_ringparam,
       
  1845 	.get_pauseparam         = e1000_get_pauseparam,
       
  1846 	.set_pauseparam         = e1000_set_pauseparam,
       
  1847 	.self_test              = e1000_diag_test,
       
  1848 	.get_strings            = e1000_get_strings,
       
  1849 	.set_phys_id            = e1000_set_phys_id,
       
  1850 	.get_ethtool_stats      = e1000_get_ethtool_stats,
       
  1851 	.get_sset_count         = e1000_get_sset_count,
       
  1852 	.get_coalesce           = e1000_get_coalesce,
       
  1853 	.set_coalesce           = e1000_set_coalesce,
       
  1854 	.get_ts_info		= ethtool_op_get_ts_info,
       
  1855 };
       
  1856 
       
  1857 void e1000_set_ethtool_ops(struct net_device *netdev)
       
  1858 {
       
  1859 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
       
  1860 }