devices/e1000e/ich8lan-2.6.35-ethercat.c
branchredundancy
changeset 2359 dce13f854817
equal deleted inserted replaced
2358:6481734cd41d 2359:dce13f854817
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2009 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /*
       
    30  * 82562G 10/100 Network Connection
       
    31  * 82562G-2 10/100 Network Connection
       
    32  * 82562GT 10/100 Network Connection
       
    33  * 82562GT-2 10/100 Network Connection
       
    34  * 82562V 10/100 Network Connection
       
    35  * 82562V-2 10/100 Network Connection
       
    36  * 82566DC-2 Gigabit Network Connection
       
    37  * 82566DC Gigabit Network Connection
       
    38  * 82566DM-2 Gigabit Network Connection
       
    39  * 82566DM Gigabit Network Connection
       
    40  * 82566MC Gigabit Network Connection
       
    41  * 82566MM Gigabit Network Connection
       
    42  * 82567LM Gigabit Network Connection
       
    43  * 82567LF Gigabit Network Connection
       
    44  * 82567V Gigabit Network Connection
       
    45  * 82567LM-2 Gigabit Network Connection
       
    46  * 82567LF-2 Gigabit Network Connection
       
    47  * 82567V-2 Gigabit Network Connection
       
    48  * 82567LF-3 Gigabit Network Connection
       
    49  * 82567LM-3 Gigabit Network Connection
       
    50  * 82567LM-4 Gigabit Network Connection
       
    51  * 82577LM Gigabit Network Connection
       
    52  * 82577LC Gigabit Network Connection
       
    53  * 82578DM Gigabit Network Connection
       
    54  * 82578DC Gigabit Network Connection
       
    55  */
       
    56 
       
    57 #include "e1000-2.6.35-ethercat.h"
       
    58 
       
    59 #define ICH_FLASH_GFPREG		0x0000
       
    60 #define ICH_FLASH_HSFSTS		0x0004
       
    61 #define ICH_FLASH_HSFCTL		0x0006
       
    62 #define ICH_FLASH_FADDR			0x0008
       
    63 #define ICH_FLASH_FDATA0		0x0010
       
    64 #define ICH_FLASH_PR0			0x0074
       
    65 
       
    66 #define ICH_FLASH_READ_COMMAND_TIMEOUT	500
       
    67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
       
    68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
       
    69 #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
       
    70 #define ICH_FLASH_CYCLE_REPEAT_COUNT	10
       
    71 
       
    72 #define ICH_CYCLE_READ			0
       
    73 #define ICH_CYCLE_WRITE			2
       
    74 #define ICH_CYCLE_ERASE			3
       
    75 
       
    76 #define FLASH_GFPREG_BASE_MASK		0x1FFF
       
    77 #define FLASH_SECTOR_ADDR_SHIFT		12
       
    78 
       
    79 #define ICH_FLASH_SEG_SIZE_256		256
       
    80 #define ICH_FLASH_SEG_SIZE_4K		4096
       
    81 #define ICH_FLASH_SEG_SIZE_8K		8192
       
    82 #define ICH_FLASH_SEG_SIZE_64K		65536
       
    83 
       
    84 
       
    85 #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
       
    86 /* FW established a valid mode */
       
    87 #define E1000_ICH_FWSM_FW_VALID		0x00008000
       
    88 
       
    89 #define E1000_ICH_MNG_IAMT_MODE		0x2
       
    90 
       
    91 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
       
    92 				 (ID_LED_DEF1_OFF2 <<  8) | \
       
    93 				 (ID_LED_DEF1_ON2  <<  4) | \
       
    94 				 (ID_LED_DEF1_DEF2))
       
    95 
       
    96 #define E1000_ICH_NVM_SIG_WORD		0x13
       
    97 #define E1000_ICH_NVM_SIG_MASK		0xC000
       
    98 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
       
    99 #define E1000_ICH_NVM_SIG_VALUE         0x80
       
   100 
       
   101 #define E1000_ICH8_LAN_INIT_TIMEOUT	1500
       
   102 
       
   103 #define E1000_FEXTNVM_SW_CONFIG		1
       
   104 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
       
   105 
       
   106 #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
       
   107 
       
   108 #define E1000_ICH_RAR_ENTRIES		7
       
   109 
       
   110 #define PHY_PAGE_SHIFT 5
       
   111 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
       
   112 			   ((reg) & MAX_PHY_REG_ADDRESS))
       
   113 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
       
   114 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
       
   115 
       
   116 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
       
   117 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
       
   118 #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
       
   119 
       
   120 #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
       
   121 
       
   122 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
       
   123 
       
   124 /* SMBus Address Phy Register */
       
   125 #define HV_SMB_ADDR            PHY_REG(768, 26)
       
   126 #define HV_SMB_ADDR_PEC_EN     0x0200
       
   127 #define HV_SMB_ADDR_VALID      0x0080
       
   128 
       
   129 /* Strapping Option Register - RO */
       
   130 #define E1000_STRAP                     0x0000C
       
   131 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
       
   132 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
       
   133 
       
   134 /* OEM Bits Phy Register */
       
   135 #define HV_OEM_BITS            PHY_REG(768, 25)
       
   136 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
       
   137 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
       
   138 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
       
   139 
       
   140 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
       
   141 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
       
   142 
       
   143 /* KMRN Mode Control */
       
   144 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
       
   145 #define HV_KMRN_MDIO_SLOW      0x0400
       
   146 
       
   147 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
       
   148 /* Offset 04h HSFSTS */
       
   149 union ich8_hws_flash_status {
       
   150 	struct ich8_hsfsts {
       
   151 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
       
   152 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
       
   153 		u16 dael       :1; /* bit 2 Direct Access error Log */
       
   154 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
       
   155 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
       
   156 		u16 reserved1  :2; /* bit 13:6 Reserved */
       
   157 		u16 reserved2  :6; /* bit 13:6 Reserved */
       
   158 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
       
   159 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
       
   160 	} hsf_status;
       
   161 	u16 regval;
       
   162 };
       
   163 
       
   164 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
       
   165 /* Offset 06h FLCTL */
       
   166 union ich8_hws_flash_ctrl {
       
   167 	struct ich8_hsflctl {
       
   168 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
       
   169 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
       
   170 		u16 reserved   :5;   /* 7:3 Reserved  */
       
   171 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
       
   172 		u16 flockdn    :6;   /* 15:10 Reserved */
       
   173 	} hsf_ctrl;
       
   174 	u16 regval;
       
   175 };
       
   176 
       
   177 /* ICH Flash Region Access Permissions */
       
   178 union ich8_hws_flash_regacc {
       
   179 	struct ich8_flracc {
       
   180 		u32 grra      :8; /* 0:7 GbE region Read Access */
       
   181 		u32 grwa      :8; /* 8:15 GbE region Write Access */
       
   182 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
       
   183 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
       
   184 	} hsf_flregacc;
       
   185 	u16 regval;
       
   186 };
       
   187 
       
   188 /* ICH Flash Protected Region */
       
   189 union ich8_flash_protected_range {
       
   190 	struct ich8_pr {
       
   191 		u32 base:13;     /* 0:12 Protected Range Base */
       
   192 		u32 reserved1:2; /* 13:14 Reserved */
       
   193 		u32 rpe:1;       /* 15 Read Protection Enable */
       
   194 		u32 limit:13;    /* 16:28 Protected Range Limit */
       
   195 		u32 reserved2:2; /* 29:30 Reserved */
       
   196 		u32 wpe:1;       /* 31 Write Protection Enable */
       
   197 	} range;
       
   198 	u32 regval;
       
   199 };
       
   200 
       
   201 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
       
   202 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
       
   203 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
       
   204 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
       
   205 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
       
   206 						u32 offset, u8 byte);
       
   207 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
   208 					 u8 *data);
       
   209 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
       
   210 					 u16 *data);
       
   211 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
   212 					 u8 size, u16 *data);
       
   213 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
       
   214 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
       
   215 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
       
   216 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
       
   217 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
       
   218 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
       
   219 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
       
   220 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
       
   221 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
       
   222 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
       
   223 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
       
   224 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
       
   225 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
       
   226 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
       
   227 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
       
   228 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
       
   229 
       
   230 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
       
   231 {
       
   232 	return readw(hw->flash_address + reg);
       
   233 }
       
   234 
       
   235 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
       
   236 {
       
   237 	return readl(hw->flash_address + reg);
       
   238 }
       
   239 
       
   240 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
       
   241 {
       
   242 	writew(val, hw->flash_address + reg);
       
   243 }
       
   244 
       
   245 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
       
   246 {
       
   247 	writel(val, hw->flash_address + reg);
       
   248 }
       
   249 
       
   250 #define er16flash(reg)		__er16flash(hw, (reg))
       
   251 #define er32flash(reg)		__er32flash(hw, (reg))
       
   252 #define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
       
   253 #define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))
       
   254 
       
   255 /**
       
   256  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
       
   257  *  @hw: pointer to the HW structure
       
   258  *
       
   259  *  Initialize family-specific PHY parameters and function pointers.
       
   260  **/
       
   261 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
       
   262 {
       
   263 	struct e1000_phy_info *phy = &hw->phy;
       
   264 	u32 ctrl;
       
   265 	s32 ret_val = 0;
       
   266 
       
   267 	phy->addr                     = 1;
       
   268 	phy->reset_delay_us           = 100;
       
   269 
       
   270 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
       
   271 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
       
   272 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
       
   273 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
       
   274 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
       
   275 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
       
   276 	phy->ops.power_up             = e1000_power_up_phy_copper;
       
   277 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
       
   278 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   279 
       
   280 	if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
       
   281 		/*
       
   282 		 * The MAC-PHY interconnect may still be in SMBus mode
       
   283 		 * after Sx->S0.  Toggle the LANPHYPC Value bit to force
       
   284 		 * the interconnect to PCIe mode, but only if there is no
       
   285 		 * firmware present otherwise firmware will have done it.
       
   286 		 */
       
   287 		ctrl = er32(CTRL);
       
   288 		ctrl |=  E1000_CTRL_LANPHYPC_OVERRIDE;
       
   289 		ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
       
   290 		ew32(CTRL, ctrl);
       
   291 		udelay(10);
       
   292 		ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
       
   293 		ew32(CTRL, ctrl);
       
   294 		msleep(50);
       
   295 	}
       
   296 
       
   297 	/*
       
   298 	 * Reset the PHY before any acccess to it.  Doing so, ensures that
       
   299 	 * the PHY is in a known good state before we read/write PHY registers.
       
   300 	 * The generic reset is sufficient here, because we haven't determined
       
   301 	 * the PHY type yet.
       
   302 	 */
       
   303 	ret_val = e1000e_phy_hw_reset_generic(hw);
       
   304 	if (ret_val)
       
   305 		goto out;
       
   306 
       
   307 	phy->id = e1000_phy_unknown;
       
   308 	ret_val = e1000e_get_phy_id(hw);
       
   309 	if (ret_val)
       
   310 		goto out;
       
   311 	if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
       
   312 		/*
       
   313 		 * In case the PHY needs to be in mdio slow mode (eg. 82577),
       
   314 		 * set slow mode and try to get the PHY id again.
       
   315 		 */
       
   316 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
   317 		if (ret_val)
       
   318 			goto out;
       
   319 		ret_val = e1000e_get_phy_id(hw);
       
   320 		if (ret_val)
       
   321 			goto out;
       
   322 	}
       
   323 	phy->type = e1000e_get_phy_type_from_id(phy->id);
       
   324 
       
   325 	switch (phy->type) {
       
   326 	case e1000_phy_82577:
       
   327 		phy->ops.check_polarity = e1000_check_polarity_82577;
       
   328 		phy->ops.force_speed_duplex =
       
   329 			e1000_phy_force_speed_duplex_82577;
       
   330 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
       
   331 		phy->ops.get_info = e1000_get_phy_info_82577;
       
   332 		phy->ops.commit = e1000e_phy_sw_reset;
       
   333 		break;
       
   334 	case e1000_phy_82578:
       
   335 		phy->ops.check_polarity = e1000_check_polarity_m88;
       
   336 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
       
   337 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
       
   338 		phy->ops.get_info = e1000e_get_phy_info_m88;
       
   339 		break;
       
   340 	default:
       
   341 		ret_val = -E1000_ERR_PHY;
       
   342 		break;
       
   343 	}
       
   344 
       
   345 out:
       
   346 	return ret_val;
       
   347 }
       
   348 
       
   349 /**
       
   350  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
       
   351  *  @hw: pointer to the HW structure
       
   352  *
       
   353  *  Initialize family-specific PHY parameters and function pointers.
       
   354  **/
       
   355 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
       
   356 {
       
   357 	struct e1000_phy_info *phy = &hw->phy;
       
   358 	s32 ret_val;
       
   359 	u16 i = 0;
       
   360 
       
   361 	phy->addr			= 1;
       
   362 	phy->reset_delay_us		= 100;
       
   363 
       
   364 	phy->ops.power_up               = e1000_power_up_phy_copper;
       
   365 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
       
   366 
       
   367 	/*
       
   368 	 * We may need to do this twice - once for IGP and if that fails,
       
   369 	 * we'll set BM func pointers and try again
       
   370 	 */
       
   371 	ret_val = e1000e_determine_phy_address(hw);
       
   372 	if (ret_val) {
       
   373 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
       
   374 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
       
   375 		ret_val = e1000e_determine_phy_address(hw);
       
   376 		if (ret_val) {
       
   377 			e_dbg("Cannot determine PHY addr. Erroring out\n");
       
   378 			return ret_val;
       
   379 		}
       
   380 	}
       
   381 
       
   382 	phy->id = 0;
       
   383 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
       
   384 	       (i++ < 100)) {
       
   385 		msleep(1);
       
   386 		ret_val = e1000e_get_phy_id(hw);
       
   387 		if (ret_val)
       
   388 			return ret_val;
       
   389 	}
       
   390 
       
   391 	/* Verify phy id */
       
   392 	switch (phy->id) {
       
   393 	case IGP03E1000_E_PHY_ID:
       
   394 		phy->type = e1000_phy_igp_3;
       
   395 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   396 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
       
   397 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
       
   398 		phy->ops.get_info = e1000e_get_phy_info_igp;
       
   399 		phy->ops.check_polarity = e1000_check_polarity_igp;
       
   400 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
       
   401 		break;
       
   402 	case IFE_E_PHY_ID:
       
   403 	case IFE_PLUS_E_PHY_ID:
       
   404 	case IFE_C_E_PHY_ID:
       
   405 		phy->type = e1000_phy_ife;
       
   406 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
       
   407 		phy->ops.get_info = e1000_get_phy_info_ife;
       
   408 		phy->ops.check_polarity = e1000_check_polarity_ife;
       
   409 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
       
   410 		break;
       
   411 	case BME1000_E_PHY_ID:
       
   412 		phy->type = e1000_phy_bm;
       
   413 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   414 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
       
   415 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
       
   416 		phy->ops.commit = e1000e_phy_sw_reset;
       
   417 		phy->ops.get_info = e1000e_get_phy_info_m88;
       
   418 		phy->ops.check_polarity = e1000_check_polarity_m88;
       
   419 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
       
   420 		break;
       
   421 	default:
       
   422 		return -E1000_ERR_PHY;
       
   423 		break;
       
   424 	}
       
   425 
       
   426 	return 0;
       
   427 }
       
   428 
       
   429 /**
       
   430  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
       
   431  *  @hw: pointer to the HW structure
       
   432  *
       
   433  *  Initialize family-specific NVM parameters and function
       
   434  *  pointers.
       
   435  **/
       
   436 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
       
   437 {
       
   438 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   439 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
   440 	u32 gfpreg, sector_base_addr, sector_end_addr;
       
   441 	u16 i;
       
   442 
       
   443 	/* Can't read flash registers if the register set isn't mapped. */
       
   444 	if (!hw->flash_address) {
       
   445 		e_dbg("ERROR: Flash registers not mapped\n");
       
   446 		return -E1000_ERR_CONFIG;
       
   447 	}
       
   448 
       
   449 	nvm->type = e1000_nvm_flash_sw;
       
   450 
       
   451 	gfpreg = er32flash(ICH_FLASH_GFPREG);
       
   452 
       
   453 	/*
       
   454 	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
       
   455 	 * Add 1 to sector_end_addr since this sector is included in
       
   456 	 * the overall size.
       
   457 	 */
       
   458 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
       
   459 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
       
   460 
       
   461 	/* flash_base_addr is byte-aligned */
       
   462 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
       
   463 
       
   464 	/*
       
   465 	 * find total size of the NVM, then cut in half since the total
       
   466 	 * size represents two separate NVM banks.
       
   467 	 */
       
   468 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
       
   469 				<< FLASH_SECTOR_ADDR_SHIFT;
       
   470 	nvm->flash_bank_size /= 2;
       
   471 	/* Adjust to word count */
       
   472 	nvm->flash_bank_size /= sizeof(u16);
       
   473 
       
   474 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
       
   475 
       
   476 	/* Clear shadow ram */
       
   477 	for (i = 0; i < nvm->word_size; i++) {
       
   478 		dev_spec->shadow_ram[i].modified = false;
       
   479 		dev_spec->shadow_ram[i].value    = 0xFFFF;
       
   480 	}
       
   481 
       
   482 	return 0;
       
   483 }
       
   484 
       
   485 /**
       
   486  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
       
   487  *  @hw: pointer to the HW structure
       
   488  *
       
   489  *  Initialize family-specific MAC parameters and function
       
   490  *  pointers.
       
   491  **/
       
   492 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
       
   493 {
       
   494 	struct e1000_hw *hw = &adapter->hw;
       
   495 	struct e1000_mac_info *mac = &hw->mac;
       
   496 
       
   497 	/* Set media type function pointer */
       
   498 	hw->phy.media_type = e1000_media_type_copper;
       
   499 
       
   500 	/* Set mta register count */
       
   501 	mac->mta_reg_count = 32;
       
   502 	/* Set rar entry count */
       
   503 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
       
   504 	if (mac->type == e1000_ich8lan)
       
   505 		mac->rar_entry_count--;
       
   506 	/* FWSM register */
       
   507 	mac->has_fwsm = true;
       
   508 	/* ARC subsystem not supported */
       
   509 	mac->arc_subsystem_valid = false;
       
   510 	/* Adaptive IFS supported */
       
   511 	mac->adaptive_ifs = true;
       
   512 
       
   513 	/* LED operations */
       
   514 	switch (mac->type) {
       
   515 	case e1000_ich8lan:
       
   516 	case e1000_ich9lan:
       
   517 	case e1000_ich10lan:
       
   518 		/* ID LED init */
       
   519 		mac->ops.id_led_init = e1000e_id_led_init;
       
   520 		/* setup LED */
       
   521 		mac->ops.setup_led = e1000e_setup_led_generic;
       
   522 		/* cleanup LED */
       
   523 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
       
   524 		/* turn on/off LED */
       
   525 		mac->ops.led_on = e1000_led_on_ich8lan;
       
   526 		mac->ops.led_off = e1000_led_off_ich8lan;
       
   527 		break;
       
   528 	case e1000_pchlan:
       
   529 		/* ID LED init */
       
   530 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
       
   531 		/* setup LED */
       
   532 		mac->ops.setup_led = e1000_setup_led_pchlan;
       
   533 		/* cleanup LED */
       
   534 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
       
   535 		/* turn on/off LED */
       
   536 		mac->ops.led_on = e1000_led_on_pchlan;
       
   537 		mac->ops.led_off = e1000_led_off_pchlan;
       
   538 		break;
       
   539 	default:
       
   540 		break;
       
   541 	}
       
   542 
       
   543 	/* Enable PCS Lock-loss workaround for ICH8 */
       
   544 	if (mac->type == e1000_ich8lan)
       
   545 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
       
   546 
       
   547 	return 0;
       
   548 }
       
   549 
       
   550 /**
       
   551  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
       
   552  *  @hw: pointer to the HW structure
       
   553  *
       
   554  *  Checks to see of the link status of the hardware has changed.  If a
       
   555  *  change in link status has been detected, then we read the PHY registers
       
   556  *  to get the current speed/duplex if link exists.
       
   557  **/
       
   558 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
       
   559 {
       
   560 	struct e1000_mac_info *mac = &hw->mac;
       
   561 	s32 ret_val;
       
   562 	bool link;
       
   563 
       
   564 	/*
       
   565 	 * We only want to go out to the PHY registers to see if Auto-Neg
       
   566 	 * has completed and/or if our link status has changed.  The
       
   567 	 * get_link_status flag is set upon receiving a Link Status
       
   568 	 * Change or Rx Sequence Error interrupt.
       
   569 	 */
       
   570 	if (!mac->get_link_status) {
       
   571 		ret_val = 0;
       
   572 		goto out;
       
   573 	}
       
   574 
       
   575 	/*
       
   576 	 * First we want to see if the MII Status Register reports
       
   577 	 * link.  If so, then we want to get the current speed/duplex
       
   578 	 * of the PHY.
       
   579 	 */
       
   580 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
   581 	if (ret_val)
       
   582 		goto out;
       
   583 
       
   584 	if (hw->mac.type == e1000_pchlan) {
       
   585 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
       
   586 		if (ret_val)
       
   587 			goto out;
       
   588 	}
       
   589 
       
   590 	if (!link)
       
   591 		goto out; /* No link detected */
       
   592 
       
   593 	mac->get_link_status = false;
       
   594 
       
   595 	if (hw->phy.type == e1000_phy_82578) {
       
   596 		ret_val = e1000_link_stall_workaround_hv(hw);
       
   597 		if (ret_val)
       
   598 			goto out;
       
   599 	}
       
   600 
       
   601 	/*
       
   602 	 * Check if there was DownShift, must be checked
       
   603 	 * immediately after link-up
       
   604 	 */
       
   605 	e1000e_check_downshift(hw);
       
   606 
       
   607 	/*
       
   608 	 * If we are forcing speed/duplex, then we simply return since
       
   609 	 * we have already determined whether we have link or not.
       
   610 	 */
       
   611 	if (!mac->autoneg) {
       
   612 		ret_val = -E1000_ERR_CONFIG;
       
   613 		goto out;
       
   614 	}
       
   615 
       
   616 	/*
       
   617 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
       
   618 	 * of MAC speed/duplex configuration.  So we only need to
       
   619 	 * configure Collision Distance in the MAC.
       
   620 	 */
       
   621 	e1000e_config_collision_dist(hw);
       
   622 
       
   623 	/*
       
   624 	 * Configure Flow Control now that Auto-Neg has completed.
       
   625 	 * First, we need to restore the desired flow control
       
   626 	 * settings because we may have had to re-autoneg with a
       
   627 	 * different link partner.
       
   628 	 */
       
   629 	ret_val = e1000e_config_fc_after_link_up(hw);
       
   630 	if (ret_val)
       
   631 		e_dbg("Error configuring flow control\n");
       
   632 
       
   633 out:
       
   634 	return ret_val;
       
   635 }
       
   636 
       
   637 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
       
   638 {
       
   639 	struct e1000_hw *hw = &adapter->hw;
       
   640 	s32 rc;
       
   641 
       
   642 	rc = e1000_init_mac_params_ich8lan(adapter);
       
   643 	if (rc)
       
   644 		return rc;
       
   645 
       
   646 	rc = e1000_init_nvm_params_ich8lan(hw);
       
   647 	if (rc)
       
   648 		return rc;
       
   649 
       
   650 	if (hw->mac.type == e1000_pchlan)
       
   651 		rc = e1000_init_phy_params_pchlan(hw);
       
   652 	else
       
   653 		rc = e1000_init_phy_params_ich8lan(hw);
       
   654 	if (rc)
       
   655 		return rc;
       
   656 
       
   657 	if (adapter->hw.phy.type == e1000_phy_ife) {
       
   658 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
       
   659 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
       
   660 	}
       
   661 
       
   662 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
       
   663 	    (adapter->hw.phy.type == e1000_phy_igp_3))
       
   664 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
       
   665 
       
   666 	return 0;
       
   667 }
       
   668 
       
   669 static DEFINE_MUTEX(nvm_mutex);
       
   670 
       
   671 /**
       
   672  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
       
   673  *  @hw: pointer to the HW structure
       
   674  *
       
   675  *  Acquires the mutex for performing NVM operations.
       
   676  **/
       
   677 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
       
   678 {
       
   679 	mutex_lock(&nvm_mutex);
       
   680 
       
   681 	return 0;
       
   682 }
       
   683 
       
   684 /**
       
   685  *  e1000_release_nvm_ich8lan - Release NVM mutex
       
   686  *  @hw: pointer to the HW structure
       
   687  *
       
   688  *  Releases the mutex used while performing NVM operations.
       
   689  **/
       
   690 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
       
   691 {
       
   692 	mutex_unlock(&nvm_mutex);
       
   693 }
       
   694 
       
   695 static DEFINE_MUTEX(swflag_mutex);
       
   696 
       
   697 /**
       
   698  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
       
   699  *  @hw: pointer to the HW structure
       
   700  *
       
   701  *  Acquires the software control flag for performing PHY and select
       
   702  *  MAC CSR accesses.
       
   703  **/
       
   704 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
       
   705 {
       
   706 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
       
   707 	s32 ret_val = 0;
       
   708 
       
   709 	mutex_lock(&swflag_mutex);
       
   710 
       
   711 	while (timeout) {
       
   712 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
   713 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
       
   714 			break;
       
   715 
       
   716 		mdelay(1);
       
   717 		timeout--;
       
   718 	}
       
   719 
       
   720 	if (!timeout) {
       
   721 		e_dbg("SW/FW/HW has locked the resource for too long.\n");
       
   722 		ret_val = -E1000_ERR_CONFIG;
       
   723 		goto out;
       
   724 	}
       
   725 
       
   726 	timeout = SW_FLAG_TIMEOUT;
       
   727 
       
   728 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
       
   729 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   730 
       
   731 	while (timeout) {
       
   732 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
   733 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
       
   734 			break;
       
   735 
       
   736 		mdelay(1);
       
   737 		timeout--;
       
   738 	}
       
   739 
       
   740 	if (!timeout) {
       
   741 		e_dbg("Failed to acquire the semaphore.\n");
       
   742 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
       
   743 		ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   744 		ret_val = -E1000_ERR_CONFIG;
       
   745 		goto out;
       
   746 	}
       
   747 
       
   748 out:
       
   749 	if (ret_val)
       
   750 		mutex_unlock(&swflag_mutex);
       
   751 
       
   752 	return ret_val;
       
   753 }
       
   754 
       
   755 /**
       
   756  *  e1000_release_swflag_ich8lan - Release software control flag
       
   757  *  @hw: pointer to the HW structure
       
   758  *
       
   759  *  Releases the software control flag for performing PHY and select
       
   760  *  MAC CSR accesses.
       
   761  **/
       
   762 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
       
   763 {
       
   764 	u32 extcnf_ctrl;
       
   765 
       
   766 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
   767 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
       
   768 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   769 
       
   770 	mutex_unlock(&swflag_mutex);
       
   771 }
       
   772 
       
   773 /**
       
   774  *  e1000_check_mng_mode_ich8lan - Checks management mode
       
   775  *  @hw: pointer to the HW structure
       
   776  *
       
   777  *  This checks if the adapter has manageability enabled.
       
   778  *  This is a function pointer entry point only called by read/write
       
   779  *  routines for the PHY and NVM parts.
       
   780  **/
       
   781 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
       
   782 {
       
   783 	u32 fwsm;
       
   784 
       
   785 	fwsm = er32(FWSM);
       
   786 
       
   787 	return (fwsm & E1000_FWSM_MODE_MASK) ==
       
   788 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
       
   789 }
       
   790 
       
   791 /**
       
   792  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
       
   793  *  @hw: pointer to the HW structure
       
   794  *
       
   795  *  Checks if firmware is blocking the reset of the PHY.
       
   796  *  This is a function pointer entry point only called by
       
   797  *  reset routines.
       
   798  **/
       
   799 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
       
   800 {
       
   801 	u32 fwsm;
       
   802 
       
   803 	fwsm = er32(FWSM);
       
   804 
       
   805 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
       
   806 }
       
   807 
       
   808 /**
       
   809  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
       
   810  *  @hw:   pointer to the HW structure
       
   811  *
       
   812  *  SW should configure the LCD from the NVM extended configuration region
       
   813  *  as a workaround for certain parts.
       
   814  **/
       
   815 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
       
   816 {
       
   817 	struct e1000_adapter *adapter = hw->adapter;
       
   818 	struct e1000_phy_info *phy = &hw->phy;
       
   819 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
       
   820 	s32 ret_val = 0;
       
   821 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
       
   822 
       
   823 	if (!(hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) &&
       
   824 		!(hw->mac.type == e1000_pchlan))
       
   825 		return ret_val;
       
   826 
       
   827 	ret_val = hw->phy.ops.acquire(hw);
       
   828 	if (ret_val)
       
   829 		return ret_val;
       
   830 
       
   831 	/*
       
   832 	 * Initialize the PHY from the NVM on ICH platforms.  This
       
   833 	 * is needed due to an issue where the NVM configuration is
       
   834 	 * not properly autoloaded after power transitions.
       
   835 	 * Therefore, after each PHY reset, we will load the
       
   836 	 * configuration data out of the NVM manually.
       
   837 	 */
       
   838 	if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
       
   839 	    (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
       
   840 	    (hw->mac.type == e1000_pchlan))
       
   841 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
       
   842 	else
       
   843 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
       
   844 
       
   845 	data = er32(FEXTNVM);
       
   846 	if (!(data & sw_cfg_mask))
       
   847 		goto out;
       
   848 
       
   849 	/*
       
   850 	 * Make sure HW does not configure LCD from PHY
       
   851 	 * extended configuration before SW configuration
       
   852 	 */
       
   853 	data = er32(EXTCNF_CTRL);
       
   854 	if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
       
   855 		goto out;
       
   856 
       
   857 	cnf_size = er32(EXTCNF_SIZE);
       
   858 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
       
   859 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
       
   860 	if (!cnf_size)
       
   861 		goto out;
       
   862 
       
   863 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
       
   864 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
       
   865 
       
   866 	if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
       
   867 	    (hw->mac.type == e1000_pchlan)) {
       
   868 		/*
       
   869 		 * HW configures the SMBus address and LEDs when the
       
   870 		 * OEM and LCD Write Enable bits are set in the NVM.
       
   871 		 * When both NVM bits are cleared, SW will configure
       
   872 		 * them instead.
       
   873 		 */
       
   874 		data = er32(STRAP);
       
   875 		data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
       
   876 		reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
       
   877 		reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
       
   878 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
       
   879 							reg_data);
       
   880 		if (ret_val)
       
   881 			goto out;
       
   882 
       
   883 		data = er32(LEDCTL);
       
   884 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
       
   885 							(u16)data);
       
   886 		if (ret_val)
       
   887 			goto out;
       
   888 	}
       
   889 
       
   890 	/* Configure LCD from extended configuration region. */
       
   891 
       
   892 	/* cnf_base_addr is in DWORD */
       
   893 	word_addr = (u16)(cnf_base_addr << 1);
       
   894 
       
   895 	for (i = 0; i < cnf_size; i++) {
       
   896 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
       
   897 					 &reg_data);
       
   898 		if (ret_val)
       
   899 			goto out;
       
   900 
       
   901 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
       
   902 					 1, &reg_addr);
       
   903 		if (ret_val)
       
   904 			goto out;
       
   905 
       
   906 		/* Save off the PHY page for future writes. */
       
   907 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
       
   908 			phy_page = reg_data;
       
   909 			continue;
       
   910 		}
       
   911 
       
   912 		reg_addr &= PHY_REG_MASK;
       
   913 		reg_addr |= phy_page;
       
   914 
       
   915 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
       
   916 						    reg_data);
       
   917 		if (ret_val)
       
   918 			goto out;
       
   919 	}
       
   920 
       
   921 out:
       
   922 	hw->phy.ops.release(hw);
       
   923 	return ret_val;
       
   924 }
       
   925 
       
   926 /**
       
   927  *  e1000_k1_gig_workaround_hv - K1 Si workaround
       
   928  *  @hw:   pointer to the HW structure
       
   929  *  @link: link up bool flag
       
   930  *
       
   931  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
       
   932  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
       
   933  *  If link is down, the function will restore the default K1 setting located
       
   934  *  in the NVM.
       
   935  **/
       
   936 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
       
   937 {
       
   938 	s32 ret_val = 0;
       
   939 	u16 status_reg = 0;
       
   940 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
       
   941 
       
   942 	if (hw->mac.type != e1000_pchlan)
       
   943 		goto out;
       
   944 
       
   945 	/* Wrap the whole flow with the sw flag */
       
   946 	ret_val = hw->phy.ops.acquire(hw);
       
   947 	if (ret_val)
       
   948 		goto out;
       
   949 
       
   950 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
       
   951 	if (link) {
       
   952 		if (hw->phy.type == e1000_phy_82578) {
       
   953 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
       
   954 			                                          &status_reg);
       
   955 			if (ret_val)
       
   956 				goto release;
       
   957 
       
   958 			status_reg &= BM_CS_STATUS_LINK_UP |
       
   959 			              BM_CS_STATUS_RESOLVED |
       
   960 			              BM_CS_STATUS_SPEED_MASK;
       
   961 
       
   962 			if (status_reg == (BM_CS_STATUS_LINK_UP |
       
   963 			                   BM_CS_STATUS_RESOLVED |
       
   964 			                   BM_CS_STATUS_SPEED_1000))
       
   965 				k1_enable = false;
       
   966 		}
       
   967 
       
   968 		if (hw->phy.type == e1000_phy_82577) {
       
   969 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
       
   970 			                                          &status_reg);
       
   971 			if (ret_val)
       
   972 				goto release;
       
   973 
       
   974 			status_reg &= HV_M_STATUS_LINK_UP |
       
   975 			              HV_M_STATUS_AUTONEG_COMPLETE |
       
   976 			              HV_M_STATUS_SPEED_MASK;
       
   977 
       
   978 			if (status_reg == (HV_M_STATUS_LINK_UP |
       
   979 			                   HV_M_STATUS_AUTONEG_COMPLETE |
       
   980 			                   HV_M_STATUS_SPEED_1000))
       
   981 				k1_enable = false;
       
   982 		}
       
   983 
       
   984 		/* Link stall fix for link up */
       
   985 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
       
   986 		                                           0x0100);
       
   987 		if (ret_val)
       
   988 			goto release;
       
   989 
       
   990 	} else {
       
   991 		/* Link stall fix for link down */
       
   992 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
       
   993 		                                           0x4100);
       
   994 		if (ret_val)
       
   995 			goto release;
       
   996 	}
       
   997 
       
   998 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
       
   999 
       
  1000 release:
       
  1001 	hw->phy.ops.release(hw);
       
  1002 out:
       
  1003 	return ret_val;
       
  1004 }
       
  1005 
       
  1006 /**
       
  1007  *  e1000_configure_k1_ich8lan - Configure K1 power state
       
  1008  *  @hw: pointer to the HW structure
       
  1009  *  @enable: K1 state to configure
       
  1010  *
       
  1011  *  Configure the K1 power state based on the provided parameter.
       
  1012  *  Assumes semaphore already acquired.
       
  1013  *
       
  1014  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1015  **/
       
  1016 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
       
  1017 {
       
  1018 	s32 ret_val = 0;
       
  1019 	u32 ctrl_reg = 0;
       
  1020 	u32 ctrl_ext = 0;
       
  1021 	u32 reg = 0;
       
  1022 	u16 kmrn_reg = 0;
       
  1023 
       
  1024 	ret_val = e1000e_read_kmrn_reg_locked(hw,
       
  1025 	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
       
  1026 	                                     &kmrn_reg);
       
  1027 	if (ret_val)
       
  1028 		goto out;
       
  1029 
       
  1030 	if (k1_enable)
       
  1031 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
       
  1032 	else
       
  1033 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
       
  1034 
       
  1035 	ret_val = e1000e_write_kmrn_reg_locked(hw,
       
  1036 	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
       
  1037 	                                      kmrn_reg);
       
  1038 	if (ret_val)
       
  1039 		goto out;
       
  1040 
       
  1041 	udelay(20);
       
  1042 	ctrl_ext = er32(CTRL_EXT);
       
  1043 	ctrl_reg = er32(CTRL);
       
  1044 
       
  1045 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1046 	reg |= E1000_CTRL_FRCSPD;
       
  1047 	ew32(CTRL, reg);
       
  1048 
       
  1049 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
       
  1050 	udelay(20);
       
  1051 	ew32(CTRL, ctrl_reg);
       
  1052 	ew32(CTRL_EXT, ctrl_ext);
       
  1053 	udelay(20);
       
  1054 
       
  1055 out:
       
  1056 	return ret_val;
       
  1057 }
       
  1058 
       
  1059 /**
       
  1060  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
       
  1061  *  @hw:       pointer to the HW structure
       
  1062  *  @d0_state: boolean if entering d0 or d3 device state
       
  1063  *
       
  1064  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
       
  1065  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
       
  1066  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
       
  1067  **/
       
  1068 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
       
  1069 {
       
  1070 	s32 ret_val = 0;
       
  1071 	u32 mac_reg;
       
  1072 	u16 oem_reg;
       
  1073 
       
  1074 	if (hw->mac.type != e1000_pchlan)
       
  1075 		return ret_val;
       
  1076 
       
  1077 	ret_val = hw->phy.ops.acquire(hw);
       
  1078 	if (ret_val)
       
  1079 		return ret_val;
       
  1080 
       
  1081 	mac_reg = er32(EXTCNF_CTRL);
       
  1082 	if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
       
  1083 		goto out;
       
  1084 
       
  1085 	mac_reg = er32(FEXTNVM);
       
  1086 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
       
  1087 		goto out;
       
  1088 
       
  1089 	mac_reg = er32(PHY_CTRL);
       
  1090 
       
  1091 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
       
  1092 	if (ret_val)
       
  1093 		goto out;
       
  1094 
       
  1095 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
       
  1096 
       
  1097 	if (d0_state) {
       
  1098 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
       
  1099 			oem_reg |= HV_OEM_BITS_GBE_DIS;
       
  1100 
       
  1101 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
       
  1102 			oem_reg |= HV_OEM_BITS_LPLU;
       
  1103 	} else {
       
  1104 		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
       
  1105 			oem_reg |= HV_OEM_BITS_GBE_DIS;
       
  1106 
       
  1107 		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
       
  1108 			oem_reg |= HV_OEM_BITS_LPLU;
       
  1109 	}
       
  1110 	/* Restart auto-neg to activate the bits */
       
  1111 	if (!e1000_check_reset_block(hw))
       
  1112 		oem_reg |= HV_OEM_BITS_RESTART_AN;
       
  1113 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
       
  1114 
       
  1115 out:
       
  1116 	hw->phy.ops.release(hw);
       
  1117 
       
  1118 	return ret_val;
       
  1119 }
       
  1120 
       
  1121 
       
  1122 /**
       
  1123  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
       
  1124  *  @hw:   pointer to the HW structure
       
  1125  **/
       
  1126 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
       
  1127 {
       
  1128 	s32 ret_val;
       
  1129 	u16 data;
       
  1130 
       
  1131 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
       
  1132 	if (ret_val)
       
  1133 		return ret_val;
       
  1134 
       
  1135 	data |= HV_KMRN_MDIO_SLOW;
       
  1136 
       
  1137 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
       
  1138 
       
  1139 	return ret_val;
       
  1140 }
       
  1141 
       
  1142 /**
       
  1143  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
       
  1144  *  done after every PHY reset.
       
  1145  **/
       
  1146 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
       
  1147 {
       
  1148 	s32 ret_val = 0;
       
  1149 	u16 phy_data;
       
  1150 
       
  1151 	if (hw->mac.type != e1000_pchlan)
       
  1152 		return ret_val;
       
  1153 
       
  1154 	/* Set MDIO slow mode before any other MDIO access */
       
  1155 	if (hw->phy.type == e1000_phy_82577) {
       
  1156 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
  1157 		if (ret_val)
       
  1158 			goto out;
       
  1159 	}
       
  1160 
       
  1161 	if (((hw->phy.type == e1000_phy_82577) &&
       
  1162 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
       
  1163 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
       
  1164 		/* Disable generation of early preamble */
       
  1165 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
       
  1166 		if (ret_val)
       
  1167 			return ret_val;
       
  1168 
       
  1169 		/* Preamble tuning for SSC */
       
  1170 		ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
       
  1171 		if (ret_val)
       
  1172 			return ret_val;
       
  1173 	}
       
  1174 
       
  1175 	if (hw->phy.type == e1000_phy_82578) {
       
  1176 		/*
       
  1177 		 * Return registers to default by doing a soft reset then
       
  1178 		 * writing 0x3140 to the control register.
       
  1179 		 */
       
  1180 		if (hw->phy.revision < 2) {
       
  1181 			e1000e_phy_sw_reset(hw);
       
  1182 			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
       
  1183 		}
       
  1184 	}
       
  1185 
       
  1186 	/* Select page 0 */
       
  1187 	ret_val = hw->phy.ops.acquire(hw);
       
  1188 	if (ret_val)
       
  1189 		return ret_val;
       
  1190 
       
  1191 	hw->phy.addr = 1;
       
  1192 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
       
  1193 	hw->phy.ops.release(hw);
       
  1194 	if (ret_val)
       
  1195 		goto out;
       
  1196 
       
  1197 	/*
       
  1198 	 * Configure the K1 Si workaround during phy reset assuming there is
       
  1199 	 * link so that it disables K1 if link is in 1Gbps.
       
  1200 	 */
       
  1201 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
       
  1202 	if (ret_val)
       
  1203 		goto out;
       
  1204 
       
  1205 	/* Workaround for link disconnects on a busy hub in half duplex */
       
  1206 	ret_val = hw->phy.ops.acquire(hw);
       
  1207 	if (ret_val)
       
  1208 		goto out;
       
  1209 	ret_val = hw->phy.ops.read_reg_locked(hw,
       
  1210 	                                      PHY_REG(BM_PORT_CTRL_PAGE, 17),
       
  1211 	                                      &phy_data);
       
  1212 	if (ret_val)
       
  1213 		goto release;
       
  1214 	ret_val = hw->phy.ops.write_reg_locked(hw,
       
  1215 	                                       PHY_REG(BM_PORT_CTRL_PAGE, 17),
       
  1216 	                                       phy_data & 0x00FF);
       
  1217 release:
       
  1218 	hw->phy.ops.release(hw);
       
  1219 out:
       
  1220 	return ret_val;
       
  1221 }
       
  1222 
       
  1223 /**
       
  1224  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
       
  1225  *  @hw: pointer to the HW structure
       
  1226  *
       
  1227  *  Check the appropriate indication the MAC has finished configuring the
       
  1228  *  PHY after a software reset.
       
  1229  **/
       
  1230 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
       
  1231 {
       
  1232 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
       
  1233 
       
  1234 	/* Wait for basic configuration completes before proceeding */
       
  1235 	do {
       
  1236 		data = er32(STATUS);
       
  1237 		data &= E1000_STATUS_LAN_INIT_DONE;
       
  1238 		udelay(100);
       
  1239 	} while ((!data) && --loop);
       
  1240 
       
  1241 	/*
       
  1242 	 * If basic configuration is incomplete before the above loop
       
  1243 	 * count reaches 0, loading the configuration from NVM will
       
  1244 	 * leave the PHY in a bad state possibly resulting in no link.
       
  1245 	 */
       
  1246 	if (loop == 0)
       
  1247 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
       
  1248 
       
  1249 	/* Clear the Init Done bit for the next init event */
       
  1250 	data = er32(STATUS);
       
  1251 	data &= ~E1000_STATUS_LAN_INIT_DONE;
       
  1252 	ew32(STATUS, data);
       
  1253 }
       
  1254 
       
  1255 /**
       
  1256  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
       
  1257  *  @hw: pointer to the HW structure
       
  1258  **/
       
  1259 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
       
  1260 {
       
  1261 	s32 ret_val = 0;
       
  1262 	u16 reg;
       
  1263 
       
  1264 	if (e1000_check_reset_block(hw))
       
  1265 		goto out;
       
  1266 
       
  1267 	/* Perform any necessary post-reset workarounds */
       
  1268 	switch (hw->mac.type) {
       
  1269 	case e1000_pchlan:
       
  1270 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
       
  1271 		if (ret_val)
       
  1272 			goto out;
       
  1273 		break;
       
  1274 	default:
       
  1275 		break;
       
  1276 	}
       
  1277 
       
  1278 	/* Dummy read to clear the phy wakeup bit after lcd reset */
       
  1279 	if (hw->mac.type == e1000_pchlan)
       
  1280 		e1e_rphy(hw, BM_WUC, &reg);
       
  1281 
       
  1282 	/* Configure the LCD with the extended configuration region in NVM */
       
  1283 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
       
  1284 	if (ret_val)
       
  1285 		goto out;
       
  1286 
       
  1287 	/* Configure the LCD with the OEM bits in NVM */
       
  1288 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
       
  1289 
       
  1290 out:
       
  1291 	return ret_val;
       
  1292 }
       
  1293 
       
  1294 /**
       
  1295  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
       
  1296  *  @hw: pointer to the HW structure
       
  1297  *
       
  1298  *  Resets the PHY
       
  1299  *  This is a function pointer entry point called by drivers
       
  1300  *  or other shared routines.
       
  1301  **/
       
  1302 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
       
  1303 {
       
  1304 	s32 ret_val = 0;
       
  1305 
       
  1306 	ret_val = e1000e_phy_hw_reset_generic(hw);
       
  1307 	if (ret_val)
       
  1308 		goto out;
       
  1309 
       
  1310 	ret_val = e1000_post_phy_reset_ich8lan(hw);
       
  1311 
       
  1312 out:
       
  1313 	return ret_val;
       
  1314 }
       
  1315 
       
  1316 /**
       
  1317  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
       
  1318  *  @hw: pointer to the HW structure
       
  1319  *  @active: true to enable LPLU, false to disable
       
  1320  *
       
  1321  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
       
  1322  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
       
  1323  *  the phy speed. This function will manually set the LPLU bit and restart
       
  1324  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
       
  1325  *  since it configures the same bit.
       
  1326  **/
       
  1327 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
       
  1328 {
       
  1329 	s32 ret_val = 0;
       
  1330 	u16 oem_reg;
       
  1331 
       
  1332 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
       
  1333 	if (ret_val)
       
  1334 		goto out;
       
  1335 
       
  1336 	if (active)
       
  1337 		oem_reg |= HV_OEM_BITS_LPLU;
       
  1338 	else
       
  1339 		oem_reg &= ~HV_OEM_BITS_LPLU;
       
  1340 
       
  1341 	oem_reg |= HV_OEM_BITS_RESTART_AN;
       
  1342 	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
       
  1343 
       
  1344 out:
       
  1345 	return ret_val;
       
  1346 }
       
  1347 
       
  1348 /**
       
  1349  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
       
  1350  *  @hw: pointer to the HW structure
       
  1351  *  @active: true to enable LPLU, false to disable
       
  1352  *
       
  1353  *  Sets the LPLU D0 state according to the active flag.  When
       
  1354  *  activating LPLU this function also disables smart speed
       
  1355  *  and vice versa.  LPLU will not be activated unless the
       
  1356  *  device autonegotiation advertisement meets standards of
       
  1357  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  1358  *  This is a function pointer entry point only called by
       
  1359  *  PHY setup routines.
       
  1360  **/
       
  1361 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
       
  1362 {
       
  1363 	struct e1000_phy_info *phy = &hw->phy;
       
  1364 	u32 phy_ctrl;
       
  1365 	s32 ret_val = 0;
       
  1366 	u16 data;
       
  1367 
       
  1368 	if (phy->type == e1000_phy_ife)
       
  1369 		return ret_val;
       
  1370 
       
  1371 	phy_ctrl = er32(PHY_CTRL);
       
  1372 
       
  1373 	if (active) {
       
  1374 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
       
  1375 		ew32(PHY_CTRL, phy_ctrl);
       
  1376 
       
  1377 		if (phy->type != e1000_phy_igp_3)
       
  1378 			return 0;
       
  1379 
       
  1380 		/*
       
  1381 		 * Call gig speed drop workaround on LPLU before accessing
       
  1382 		 * any PHY registers
       
  1383 		 */
       
  1384 		if (hw->mac.type == e1000_ich8lan)
       
  1385 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  1386 
       
  1387 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  1388 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  1389 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1390 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  1391 		if (ret_val)
       
  1392 			return ret_val;
       
  1393 	} else {
       
  1394 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
       
  1395 		ew32(PHY_CTRL, phy_ctrl);
       
  1396 
       
  1397 		if (phy->type != e1000_phy_igp_3)
       
  1398 			return 0;
       
  1399 
       
  1400 		/*
       
  1401 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  1402 		 * during Dx states where the power conservation is most
       
  1403 		 * important.  During driver activity we should enable
       
  1404 		 * SmartSpeed, so performance is maintained.
       
  1405 		 */
       
  1406 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  1407 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1408 					   &data);
       
  1409 			if (ret_val)
       
  1410 				return ret_val;
       
  1411 
       
  1412 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  1413 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1414 					   data);
       
  1415 			if (ret_val)
       
  1416 				return ret_val;
       
  1417 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  1418 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1419 					   &data);
       
  1420 			if (ret_val)
       
  1421 				return ret_val;
       
  1422 
       
  1423 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1424 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1425 					   data);
       
  1426 			if (ret_val)
       
  1427 				return ret_val;
       
  1428 		}
       
  1429 	}
       
  1430 
       
  1431 	return 0;
       
  1432 }
       
  1433 
       
  1434 /**
       
  1435  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
       
  1436  *  @hw: pointer to the HW structure
       
  1437  *  @active: true to enable LPLU, false to disable
       
  1438  *
       
  1439  *  Sets the LPLU D3 state according to the active flag.  When
       
  1440  *  activating LPLU this function also disables smart speed
       
  1441  *  and vice versa.  LPLU will not be activated unless the
       
  1442  *  device autonegotiation advertisement meets standards of
       
  1443  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  1444  *  This is a function pointer entry point only called by
       
  1445  *  PHY setup routines.
       
  1446  **/
       
  1447 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
       
  1448 {
       
  1449 	struct e1000_phy_info *phy = &hw->phy;
       
  1450 	u32 phy_ctrl;
       
  1451 	s32 ret_val;
       
  1452 	u16 data;
       
  1453 
       
  1454 	phy_ctrl = er32(PHY_CTRL);
       
  1455 
       
  1456 	if (!active) {
       
  1457 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
       
  1458 		ew32(PHY_CTRL, phy_ctrl);
       
  1459 
       
  1460 		if (phy->type != e1000_phy_igp_3)
       
  1461 			return 0;
       
  1462 
       
  1463 		/*
       
  1464 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  1465 		 * during Dx states where the power conservation is most
       
  1466 		 * important.  During driver activity we should enable
       
  1467 		 * SmartSpeed, so performance is maintained.
       
  1468 		 */
       
  1469 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  1470 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1471 					   &data);
       
  1472 			if (ret_val)
       
  1473 				return ret_val;
       
  1474 
       
  1475 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  1476 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1477 					   data);
       
  1478 			if (ret_val)
       
  1479 				return ret_val;
       
  1480 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  1481 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1482 					   &data);
       
  1483 			if (ret_val)
       
  1484 				return ret_val;
       
  1485 
       
  1486 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1487 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1488 					   data);
       
  1489 			if (ret_val)
       
  1490 				return ret_val;
       
  1491 		}
       
  1492 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
  1493 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
  1494 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
       
  1495 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
       
  1496 		ew32(PHY_CTRL, phy_ctrl);
       
  1497 
       
  1498 		if (phy->type != e1000_phy_igp_3)
       
  1499 			return 0;
       
  1500 
       
  1501 		/*
       
  1502 		 * Call gig speed drop workaround on LPLU before accessing
       
  1503 		 * any PHY registers
       
  1504 		 */
       
  1505 		if (hw->mac.type == e1000_ich8lan)
       
  1506 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  1507 
       
  1508 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  1509 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  1510 		if (ret_val)
       
  1511 			return ret_val;
       
  1512 
       
  1513 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1514 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  1515 	}
       
  1516 
       
  1517 	return 0;
       
  1518 }
       
  1519 
       
  1520 /**
       
  1521  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
       
  1522  *  @hw: pointer to the HW structure
       
  1523  *  @bank:  pointer to the variable that returns the active bank
       
  1524  *
       
  1525  *  Reads signature byte from the NVM using the flash access registers.
       
  1526  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
       
  1527  **/
       
  1528 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
       
  1529 {
       
  1530 	u32 eecd;
       
  1531 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1532 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
       
  1533 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
       
  1534 	u8 sig_byte = 0;
       
  1535 	s32 ret_val = 0;
       
  1536 
       
  1537 	switch (hw->mac.type) {
       
  1538 	case e1000_ich8lan:
       
  1539 	case e1000_ich9lan:
       
  1540 		eecd = er32(EECD);
       
  1541 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
       
  1542 		    E1000_EECD_SEC1VAL_VALID_MASK) {
       
  1543 			if (eecd & E1000_EECD_SEC1VAL)
       
  1544 				*bank = 1;
       
  1545 			else
       
  1546 				*bank = 0;
       
  1547 
       
  1548 			return 0;
       
  1549 		}
       
  1550 		e_dbg("Unable to determine valid NVM bank via EEC - "
       
  1551 		       "reading flash signature\n");
       
  1552 		/* fall-thru */
       
  1553 	default:
       
  1554 		/* set bank to 0 in case flash read fails */
       
  1555 		*bank = 0;
       
  1556 
       
  1557 		/* Check bank 0 */
       
  1558 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
       
  1559 		                                        &sig_byte);
       
  1560 		if (ret_val)
       
  1561 			return ret_val;
       
  1562 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
       
  1563 		    E1000_ICH_NVM_SIG_VALUE) {
       
  1564 			*bank = 0;
       
  1565 			return 0;
       
  1566 		}
       
  1567 
       
  1568 		/* Check bank 1 */
       
  1569 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
       
  1570 		                                        bank1_offset,
       
  1571 		                                        &sig_byte);
       
  1572 		if (ret_val)
       
  1573 			return ret_val;
       
  1574 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
       
  1575 		    E1000_ICH_NVM_SIG_VALUE) {
       
  1576 			*bank = 1;
       
  1577 			return 0;
       
  1578 		}
       
  1579 
       
  1580 		e_dbg("ERROR: No valid NVM bank present\n");
       
  1581 		return -E1000_ERR_NVM;
       
  1582 	}
       
  1583 
       
  1584 	return 0;
       
  1585 }
       
  1586 
       
  1587 /**
       
  1588  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
       
  1589  *  @hw: pointer to the HW structure
       
  1590  *  @offset: The offset (in bytes) of the word(s) to read.
       
  1591  *  @words: Size of data to read in words
       
  1592  *  @data: Pointer to the word(s) to read at offset.
       
  1593  *
       
  1594  *  Reads a word(s) from the NVM using the flash access registers.
       
  1595  **/
       
  1596 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
       
  1597 				  u16 *data)
       
  1598 {
       
  1599 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1600 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  1601 	u32 act_offset;
       
  1602 	s32 ret_val = 0;
       
  1603 	u32 bank = 0;
       
  1604 	u16 i, word;
       
  1605 
       
  1606 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
       
  1607 	    (words == 0)) {
       
  1608 		e_dbg("nvm parameter(s) out of bounds\n");
       
  1609 		ret_val = -E1000_ERR_NVM;
       
  1610 		goto out;
       
  1611 	}
       
  1612 
       
  1613 	nvm->ops.acquire(hw);
       
  1614 
       
  1615 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
       
  1616 	if (ret_val) {
       
  1617 		e_dbg("Could not detect valid bank, assuming bank 0\n");
       
  1618 		bank = 0;
       
  1619 	}
       
  1620 
       
  1621 	act_offset = (bank) ? nvm->flash_bank_size : 0;
       
  1622 	act_offset += offset;
       
  1623 
       
  1624 	ret_val = 0;
       
  1625 	for (i = 0; i < words; i++) {
       
  1626 		if ((dev_spec->shadow_ram) &&
       
  1627 		    (dev_spec->shadow_ram[offset+i].modified)) {
       
  1628 			data[i] = dev_spec->shadow_ram[offset+i].value;
       
  1629 		} else {
       
  1630 			ret_val = e1000_read_flash_word_ich8lan(hw,
       
  1631 								act_offset + i,
       
  1632 								&word);
       
  1633 			if (ret_val)
       
  1634 				break;
       
  1635 			data[i] = word;
       
  1636 		}
       
  1637 	}
       
  1638 
       
  1639 	nvm->ops.release(hw);
       
  1640 
       
  1641 out:
       
  1642 	if (ret_val)
       
  1643 		e_dbg("NVM read error: %d\n", ret_val);
       
  1644 
       
  1645 	return ret_val;
       
  1646 }
       
  1647 
       
  1648 /**
       
  1649  *  e1000_flash_cycle_init_ich8lan - Initialize flash
       
  1650  *  @hw: pointer to the HW structure
       
  1651  *
       
  1652  *  This function does initial flash setup so that a new read/write/erase cycle
       
  1653  *  can be started.
       
  1654  **/
       
  1655 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
       
  1656 {
       
  1657 	union ich8_hws_flash_status hsfsts;
       
  1658 	s32 ret_val = -E1000_ERR_NVM;
       
  1659 	s32 i = 0;
       
  1660 
       
  1661 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  1662 
       
  1663 	/* Check if the flash descriptor is valid */
       
  1664 	if (hsfsts.hsf_status.fldesvalid == 0) {
       
  1665 		e_dbg("Flash descriptor invalid.  "
       
  1666 			 "SW Sequencing must be used.\n");
       
  1667 		return -E1000_ERR_NVM;
       
  1668 	}
       
  1669 
       
  1670 	/* Clear FCERR and DAEL in hw status by writing 1 */
       
  1671 	hsfsts.hsf_status.flcerr = 1;
       
  1672 	hsfsts.hsf_status.dael = 1;
       
  1673 
       
  1674 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  1675 
       
  1676 	/*
       
  1677 	 * Either we should have a hardware SPI cycle in progress
       
  1678 	 * bit to check against, in order to start a new cycle or
       
  1679 	 * FDONE bit should be changed in the hardware so that it
       
  1680 	 * is 1 after hardware reset, which can then be used as an
       
  1681 	 * indication whether a cycle is in progress or has been
       
  1682 	 * completed.
       
  1683 	 */
       
  1684 
       
  1685 	if (hsfsts.hsf_status.flcinprog == 0) {
       
  1686 		/*
       
  1687 		 * There is no cycle running at present,
       
  1688 		 * so we can start a cycle.
       
  1689 		 * Begin by setting Flash Cycle Done.
       
  1690 		 */
       
  1691 		hsfsts.hsf_status.flcdone = 1;
       
  1692 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  1693 		ret_val = 0;
       
  1694 	} else {
       
  1695 		/*
       
  1696 		 * Otherwise poll for sometime so the current
       
  1697 		 * cycle has a chance to end before giving up.
       
  1698 		 */
       
  1699 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
       
  1700 			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
       
  1701 			if (hsfsts.hsf_status.flcinprog == 0) {
       
  1702 				ret_val = 0;
       
  1703 				break;
       
  1704 			}
       
  1705 			udelay(1);
       
  1706 		}
       
  1707 		if (ret_val == 0) {
       
  1708 			/*
       
  1709 			 * Successful in waiting for previous cycle to timeout,
       
  1710 			 * now set the Flash Cycle Done.
       
  1711 			 */
       
  1712 			hsfsts.hsf_status.flcdone = 1;
       
  1713 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  1714 		} else {
       
  1715 			e_dbg("Flash controller busy, cannot get access\n");
       
  1716 		}
       
  1717 	}
       
  1718 
       
  1719 	return ret_val;
       
  1720 }
       
  1721 
       
  1722 /**
       
  1723  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
       
  1724  *  @hw: pointer to the HW structure
       
  1725  *  @timeout: maximum time to wait for completion
       
  1726  *
       
  1727  *  This function starts a flash cycle and waits for its completion.
       
  1728  **/
       
  1729 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
       
  1730 {
       
  1731 	union ich8_hws_flash_ctrl hsflctl;
       
  1732 	union ich8_hws_flash_status hsfsts;
       
  1733 	s32 ret_val = -E1000_ERR_NVM;
       
  1734 	u32 i = 0;
       
  1735 
       
  1736 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
       
  1737 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  1738 	hsflctl.hsf_ctrl.flcgo = 1;
       
  1739 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  1740 
       
  1741 	/* wait till FDONE bit is set to 1 */
       
  1742 	do {
       
  1743 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  1744 		if (hsfsts.hsf_status.flcdone == 1)
       
  1745 			break;
       
  1746 		udelay(1);
       
  1747 	} while (i++ < timeout);
       
  1748 
       
  1749 	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
       
  1750 		return 0;
       
  1751 
       
  1752 	return ret_val;
       
  1753 }
       
  1754 
       
  1755 /**
       
  1756  *  e1000_read_flash_word_ich8lan - Read word from flash
       
  1757  *  @hw: pointer to the HW structure
       
  1758  *  @offset: offset to data location
       
  1759  *  @data: pointer to the location for storing the data
       
  1760  *
       
  1761  *  Reads the flash word at offset into data.  Offset is converted
       
  1762  *  to bytes before read.
       
  1763  **/
       
  1764 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
       
  1765 					 u16 *data)
       
  1766 {
       
  1767 	/* Must convert offset into bytes. */
       
  1768 	offset <<= 1;
       
  1769 
       
  1770 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
       
  1771 }
       
  1772 
       
  1773 /**
       
  1774  *  e1000_read_flash_byte_ich8lan - Read byte from flash
       
  1775  *  @hw: pointer to the HW structure
       
  1776  *  @offset: The offset of the byte to read.
       
  1777  *  @data: Pointer to a byte to store the value read.
       
  1778  *
       
  1779  *  Reads a single byte from the NVM using the flash access registers.
       
  1780  **/
       
  1781 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
  1782 					 u8 *data)
       
  1783 {
       
  1784 	s32 ret_val;
       
  1785 	u16 word = 0;
       
  1786 
       
  1787 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
       
  1788 	if (ret_val)
       
  1789 		return ret_val;
       
  1790 
       
  1791 	*data = (u8)word;
       
  1792 
       
  1793 	return 0;
       
  1794 }
       
  1795 
       
  1796 /**
       
  1797  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
       
  1798  *  @hw: pointer to the HW structure
       
  1799  *  @offset: The offset (in bytes) of the byte or word to read.
       
  1800  *  @size: Size of data to read, 1=byte 2=word
       
  1801  *  @data: Pointer to the word to store the value read.
       
  1802  *
       
  1803  *  Reads a byte or word from the NVM using the flash access registers.
       
  1804  **/
       
  1805 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
  1806 					 u8 size, u16 *data)
       
  1807 {
       
  1808 	union ich8_hws_flash_status hsfsts;
       
  1809 	union ich8_hws_flash_ctrl hsflctl;
       
  1810 	u32 flash_linear_addr;
       
  1811 	u32 flash_data = 0;
       
  1812 	s32 ret_val = -E1000_ERR_NVM;
       
  1813 	u8 count = 0;
       
  1814 
       
  1815 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
       
  1816 		return -E1000_ERR_NVM;
       
  1817 
       
  1818 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
       
  1819 			    hw->nvm.flash_base_addr;
       
  1820 
       
  1821 	do {
       
  1822 		udelay(1);
       
  1823 		/* Steps */
       
  1824 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  1825 		if (ret_val != 0)
       
  1826 			break;
       
  1827 
       
  1828 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  1829 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  1830 		hsflctl.hsf_ctrl.fldbcount = size - 1;
       
  1831 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
       
  1832 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  1833 
       
  1834 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  1835 
       
  1836 		ret_val = e1000_flash_cycle_ich8lan(hw,
       
  1837 						ICH_FLASH_READ_COMMAND_TIMEOUT);
       
  1838 
       
  1839 		/*
       
  1840 		 * Check if FCERR is set to 1, if set to 1, clear it
       
  1841 		 * and try the whole sequence a few more times, else
       
  1842 		 * read in (shift in) the Flash Data0, the order is
       
  1843 		 * least significant byte first msb to lsb
       
  1844 		 */
       
  1845 		if (ret_val == 0) {
       
  1846 			flash_data = er32flash(ICH_FLASH_FDATA0);
       
  1847 			if (size == 1) {
       
  1848 				*data = (u8)(flash_data & 0x000000FF);
       
  1849 			} else if (size == 2) {
       
  1850 				*data = (u16)(flash_data & 0x0000FFFF);
       
  1851 			}
       
  1852 			break;
       
  1853 		} else {
       
  1854 			/*
       
  1855 			 * If we've gotten here, then things are probably
       
  1856 			 * completely hosed, but if the error condition is
       
  1857 			 * detected, it won't hurt to give it another try...
       
  1858 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  1859 			 */
       
  1860 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  1861 			if (hsfsts.hsf_status.flcerr == 1) {
       
  1862 				/* Repeat for some time before giving up. */
       
  1863 				continue;
       
  1864 			} else if (hsfsts.hsf_status.flcdone == 0) {
       
  1865 				e_dbg("Timeout error - flash cycle "
       
  1866 					 "did not complete.\n");
       
  1867 				break;
       
  1868 			}
       
  1869 		}
       
  1870 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  1871 
       
  1872 	return ret_val;
       
  1873 }
       
  1874 
       
  1875 /**
       
  1876  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
       
  1877  *  @hw: pointer to the HW structure
       
  1878  *  @offset: The offset (in bytes) of the word(s) to write.
       
  1879  *  @words: Size of data to write in words
       
  1880  *  @data: Pointer to the word(s) to write at offset.
       
  1881  *
       
  1882  *  Writes a byte or word to the NVM using the flash access registers.
       
  1883  **/
       
  1884 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
       
  1885 				   u16 *data)
       
  1886 {
       
  1887 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1888 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  1889 	u16 i;
       
  1890 
       
  1891 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
       
  1892 	    (words == 0)) {
       
  1893 		e_dbg("nvm parameter(s) out of bounds\n");
       
  1894 		return -E1000_ERR_NVM;
       
  1895 	}
       
  1896 
       
  1897 	nvm->ops.acquire(hw);
       
  1898 
       
  1899 	for (i = 0; i < words; i++) {
       
  1900 		dev_spec->shadow_ram[offset+i].modified = true;
       
  1901 		dev_spec->shadow_ram[offset+i].value = data[i];
       
  1902 	}
       
  1903 
       
  1904 	nvm->ops.release(hw);
       
  1905 
       
  1906 	return 0;
       
  1907 }
       
  1908 
       
  1909 /**
       
  1910  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
       
  1911  *  @hw: pointer to the HW structure
       
  1912  *
       
  1913  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
       
  1914  *  which writes the checksum to the shadow ram.  The changes in the shadow
       
  1915  *  ram are then committed to the EEPROM by processing each bank at a time
       
  1916  *  checking for the modified bit and writing only the pending changes.
       
  1917  *  After a successful commit, the shadow ram is cleared and is ready for
       
  1918  *  future writes.
       
  1919  **/
       
  1920 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
       
  1921 {
       
  1922 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1923 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  1924 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
       
  1925 	s32 ret_val;
       
  1926 	u16 data;
       
  1927 
       
  1928 	ret_val = e1000e_update_nvm_checksum_generic(hw);
       
  1929 	if (ret_val)
       
  1930 		goto out;
       
  1931 
       
  1932 	if (nvm->type != e1000_nvm_flash_sw)
       
  1933 		goto out;
       
  1934 
       
  1935 	nvm->ops.acquire(hw);
       
  1936 
       
  1937 	/*
       
  1938 	 * We're writing to the opposite bank so if we're on bank 1,
       
  1939 	 * write to bank 0 etc.  We also need to erase the segment that
       
  1940 	 * is going to be written
       
  1941 	 */
       
  1942 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
       
  1943 	if (ret_val) {
       
  1944 		e_dbg("Could not detect valid bank, assuming bank 0\n");
       
  1945 		bank = 0;
       
  1946 	}
       
  1947 
       
  1948 	if (bank == 0) {
       
  1949 		new_bank_offset = nvm->flash_bank_size;
       
  1950 		old_bank_offset = 0;
       
  1951 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
       
  1952 		if (ret_val)
       
  1953 			goto release;
       
  1954 	} else {
       
  1955 		old_bank_offset = nvm->flash_bank_size;
       
  1956 		new_bank_offset = 0;
       
  1957 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
       
  1958 		if (ret_val)
       
  1959 			goto release;
       
  1960 	}
       
  1961 
       
  1962 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
       
  1963 		/*
       
  1964 		 * Determine whether to write the value stored
       
  1965 		 * in the other NVM bank or a modified value stored
       
  1966 		 * in the shadow RAM
       
  1967 		 */
       
  1968 		if (dev_spec->shadow_ram[i].modified) {
       
  1969 			data = dev_spec->shadow_ram[i].value;
       
  1970 		} else {
       
  1971 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
       
  1972 			                                        old_bank_offset,
       
  1973 			                                        &data);
       
  1974 			if (ret_val)
       
  1975 				break;
       
  1976 		}
       
  1977 
       
  1978 		/*
       
  1979 		 * If the word is 0x13, then make sure the signature bits
       
  1980 		 * (15:14) are 11b until the commit has completed.
       
  1981 		 * This will allow us to write 10b which indicates the
       
  1982 		 * signature is valid.  We want to do this after the write
       
  1983 		 * has completed so that we don't mark the segment valid
       
  1984 		 * while the write is still in progress
       
  1985 		 */
       
  1986 		if (i == E1000_ICH_NVM_SIG_WORD)
       
  1987 			data |= E1000_ICH_NVM_SIG_MASK;
       
  1988 
       
  1989 		/* Convert offset to bytes. */
       
  1990 		act_offset = (i + new_bank_offset) << 1;
       
  1991 
       
  1992 		udelay(100);
       
  1993 		/* Write the bytes to the new bank. */
       
  1994 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  1995 							       act_offset,
       
  1996 							       (u8)data);
       
  1997 		if (ret_val)
       
  1998 			break;
       
  1999 
       
  2000 		udelay(100);
       
  2001 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  2002 							  act_offset + 1,
       
  2003 							  (u8)(data >> 8));
       
  2004 		if (ret_val)
       
  2005 			break;
       
  2006 	}
       
  2007 
       
  2008 	/*
       
  2009 	 * Don't bother writing the segment valid bits if sector
       
  2010 	 * programming failed.
       
  2011 	 */
       
  2012 	if (ret_val) {
       
  2013 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
       
  2014 		e_dbg("Flash commit failed.\n");
       
  2015 		goto release;
       
  2016 	}
       
  2017 
       
  2018 	/*
       
  2019 	 * Finally validate the new segment by setting bit 15:14
       
  2020 	 * to 10b in word 0x13 , this can be done without an
       
  2021 	 * erase as well since these bits are 11 to start with
       
  2022 	 * and we need to change bit 14 to 0b
       
  2023 	 */
       
  2024 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
       
  2025 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
       
  2026 	if (ret_val)
       
  2027 		goto release;
       
  2028 
       
  2029 	data &= 0xBFFF;
       
  2030 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  2031 						       act_offset * 2 + 1,
       
  2032 						       (u8)(data >> 8));
       
  2033 	if (ret_val)
       
  2034 		goto release;
       
  2035 
       
  2036 	/*
       
  2037 	 * And invalidate the previously valid segment by setting
       
  2038 	 * its signature word (0x13) high_byte to 0b. This can be
       
  2039 	 * done without an erase because flash erase sets all bits
       
  2040 	 * to 1's. We can write 1's to 0's without an erase
       
  2041 	 */
       
  2042 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
       
  2043 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
       
  2044 	if (ret_val)
       
  2045 		goto release;
       
  2046 
       
  2047 	/* Great!  Everything worked, we can now clear the cached entries. */
       
  2048 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
       
  2049 		dev_spec->shadow_ram[i].modified = false;
       
  2050 		dev_spec->shadow_ram[i].value = 0xFFFF;
       
  2051 	}
       
  2052 
       
  2053 release:
       
  2054 	nvm->ops.release(hw);
       
  2055 
       
  2056 	/*
       
  2057 	 * Reload the EEPROM, or else modifications will not appear
       
  2058 	 * until after the next adapter reset.
       
  2059 	 */
       
  2060 	if (!ret_val) {
       
  2061 		e1000e_reload_nvm(hw);
       
  2062 		msleep(10);
       
  2063 	}
       
  2064 
       
  2065 out:
       
  2066 	if (ret_val)
       
  2067 		e_dbg("NVM update error: %d\n", ret_val);
       
  2068 
       
  2069 	return ret_val;
       
  2070 }
       
  2071 
       
  2072 /**
       
  2073  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
       
  2074  *  @hw: pointer to the HW structure
       
  2075  *
       
  2076  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
       
  2077  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
       
  2078  *  calculated, in which case we need to calculate the checksum and set bit 6.
       
  2079  **/
       
  2080 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
       
  2081 {
       
  2082 	s32 ret_val;
       
  2083 	u16 data;
       
  2084 
       
  2085 	/*
       
  2086 	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
       
  2087 	 * needs to be fixed.  This bit is an indication that the NVM
       
  2088 	 * was prepared by OEM software and did not calculate the
       
  2089 	 * checksum...a likely scenario.
       
  2090 	 */
       
  2091 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
       
  2092 	if (ret_val)
       
  2093 		return ret_val;
       
  2094 
       
  2095 	if ((data & 0x40) == 0) {
       
  2096 		data |= 0x40;
       
  2097 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
       
  2098 		if (ret_val)
       
  2099 			return ret_val;
       
  2100 		ret_val = e1000e_update_nvm_checksum(hw);
       
  2101 		if (ret_val)
       
  2102 			return ret_val;
       
  2103 	}
       
  2104 
       
  2105 	return e1000e_validate_nvm_checksum_generic(hw);
       
  2106 }
       
  2107 
       
  2108 /**
       
  2109  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
       
  2110  *  @hw: pointer to the HW structure
       
  2111  *
       
  2112  *  To prevent malicious write/erase of the NVM, set it to be read-only
       
  2113  *  so that the hardware ignores all write/erase cycles of the NVM via
       
  2114  *  the flash control registers.  The shadow-ram copy of the NVM will
       
  2115  *  still be updated, however any updates to this copy will not stick
       
  2116  *  across driver reloads.
       
  2117  **/
       
  2118 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
       
  2119 {
       
  2120 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2121 	union ich8_flash_protected_range pr0;
       
  2122 	union ich8_hws_flash_status hsfsts;
       
  2123 	u32 gfpreg;
       
  2124 
       
  2125 	nvm->ops.acquire(hw);
       
  2126 
       
  2127 	gfpreg = er32flash(ICH_FLASH_GFPREG);
       
  2128 
       
  2129 	/* Write-protect GbE Sector of NVM */
       
  2130 	pr0.regval = er32flash(ICH_FLASH_PR0);
       
  2131 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
       
  2132 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
       
  2133 	pr0.range.wpe = true;
       
  2134 	ew32flash(ICH_FLASH_PR0, pr0.regval);
       
  2135 
       
  2136 	/*
       
  2137 	 * Lock down a subset of GbE Flash Control Registers, e.g.
       
  2138 	 * PR0 to prevent the write-protection from being lifted.
       
  2139 	 * Once FLOCKDN is set, the registers protected by it cannot
       
  2140 	 * be written until FLOCKDN is cleared by a hardware reset.
       
  2141 	 */
       
  2142 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2143 	hsfsts.hsf_status.flockdn = true;
       
  2144 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2145 
       
  2146 	nvm->ops.release(hw);
       
  2147 }
       
  2148 
       
  2149 /**
       
  2150  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
       
  2151  *  @hw: pointer to the HW structure
       
  2152  *  @offset: The offset (in bytes) of the byte/word to read.
       
  2153  *  @size: Size of data to read, 1=byte 2=word
       
  2154  *  @data: The byte(s) to write to the NVM.
       
  2155  *
       
  2156  *  Writes one/two bytes to the NVM using the flash access registers.
       
  2157  **/
       
  2158 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2159 					  u8 size, u16 data)
       
  2160 {
       
  2161 	union ich8_hws_flash_status hsfsts;
       
  2162 	union ich8_hws_flash_ctrl hsflctl;
       
  2163 	u32 flash_linear_addr;
       
  2164 	u32 flash_data = 0;
       
  2165 	s32 ret_val;
       
  2166 	u8 count = 0;
       
  2167 
       
  2168 	if (size < 1 || size > 2 || data > size * 0xff ||
       
  2169 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
       
  2170 		return -E1000_ERR_NVM;
       
  2171 
       
  2172 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
       
  2173 			    hw->nvm.flash_base_addr;
       
  2174 
       
  2175 	do {
       
  2176 		udelay(1);
       
  2177 		/* Steps */
       
  2178 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  2179 		if (ret_val)
       
  2180 			break;
       
  2181 
       
  2182 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2183 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  2184 		hsflctl.hsf_ctrl.fldbcount = size -1;
       
  2185 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
       
  2186 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2187 
       
  2188 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  2189 
       
  2190 		if (size == 1)
       
  2191 			flash_data = (u32)data & 0x00FF;
       
  2192 		else
       
  2193 			flash_data = (u32)data;
       
  2194 
       
  2195 		ew32flash(ICH_FLASH_FDATA0, flash_data);
       
  2196 
       
  2197 		/*
       
  2198 		 * check if FCERR is set to 1 , if set to 1, clear it
       
  2199 		 * and try the whole sequence a few more times else done
       
  2200 		 */
       
  2201 		ret_val = e1000_flash_cycle_ich8lan(hw,
       
  2202 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
       
  2203 		if (!ret_val)
       
  2204 			break;
       
  2205 
       
  2206 		/*
       
  2207 		 * If we're here, then things are most likely
       
  2208 		 * completely hosed, but if the error condition
       
  2209 		 * is detected, it won't hurt to give it another
       
  2210 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  2211 		 */
       
  2212 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2213 		if (hsfsts.hsf_status.flcerr == 1)
       
  2214 			/* Repeat for some time before giving up. */
       
  2215 			continue;
       
  2216 		if (hsfsts.hsf_status.flcdone == 0) {
       
  2217 			e_dbg("Timeout error - flash cycle "
       
  2218 				 "did not complete.");
       
  2219 			break;
       
  2220 		}
       
  2221 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  2222 
       
  2223 	return ret_val;
       
  2224 }
       
  2225 
       
  2226 /**
       
  2227  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
       
  2228  *  @hw: pointer to the HW structure
       
  2229  *  @offset: The index of the byte to read.
       
  2230  *  @data: The byte to write to the NVM.
       
  2231  *
       
  2232  *  Writes a single byte to the NVM using the flash access registers.
       
  2233  **/
       
  2234 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2235 					  u8 data)
       
  2236 {
       
  2237 	u16 word = (u16)data;
       
  2238 
       
  2239 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
       
  2240 }
       
  2241 
       
  2242 /**
       
  2243  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
       
  2244  *  @hw: pointer to the HW structure
       
  2245  *  @offset: The offset of the byte to write.
       
  2246  *  @byte: The byte to write to the NVM.
       
  2247  *
       
  2248  *  Writes a single byte to the NVM using the flash access registers.
       
  2249  *  Goes through a retry algorithm before giving up.
       
  2250  **/
       
  2251 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
       
  2252 						u32 offset, u8 byte)
       
  2253 {
       
  2254 	s32 ret_val;
       
  2255 	u16 program_retries;
       
  2256 
       
  2257 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
       
  2258 	if (!ret_val)
       
  2259 		return ret_val;
       
  2260 
       
  2261 	for (program_retries = 0; program_retries < 100; program_retries++) {
       
  2262 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
       
  2263 		udelay(100);
       
  2264 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
       
  2265 		if (!ret_val)
       
  2266 			break;
       
  2267 	}
       
  2268 	if (program_retries == 100)
       
  2269 		return -E1000_ERR_NVM;
       
  2270 
       
  2271 	return 0;
       
  2272 }
       
  2273 
       
  2274 /**
       
  2275  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
       
  2276  *  @hw: pointer to the HW structure
       
  2277  *  @bank: 0 for first bank, 1 for second bank, etc.
       
  2278  *
       
  2279  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
       
  2280  *  bank N is 4096 * N + flash_reg_addr.
       
  2281  **/
       
  2282 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
       
  2283 {
       
  2284 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2285 	union ich8_hws_flash_status hsfsts;
       
  2286 	union ich8_hws_flash_ctrl hsflctl;
       
  2287 	u32 flash_linear_addr;
       
  2288 	/* bank size is in 16bit words - adjust to bytes */
       
  2289 	u32 flash_bank_size = nvm->flash_bank_size * 2;
       
  2290 	s32 ret_val;
       
  2291 	s32 count = 0;
       
  2292 	s32 j, iteration, sector_size;
       
  2293 
       
  2294 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2295 
       
  2296 	/*
       
  2297 	 * Determine HW Sector size: Read BERASE bits of hw flash status
       
  2298 	 * register
       
  2299 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
       
  2300 	 *     consecutive sectors.  The start index for the nth Hw sector
       
  2301 	 *     can be calculated as = bank * 4096 + n * 256
       
  2302 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
       
  2303 	 *     The start index for the nth Hw sector can be calculated
       
  2304 	 *     as = bank * 4096
       
  2305 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
       
  2306 	 *     (ich9 only, otherwise error condition)
       
  2307 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
       
  2308 	 */
       
  2309 	switch (hsfsts.hsf_status.berasesz) {
       
  2310 	case 0:
       
  2311 		/* Hw sector size 256 */
       
  2312 		sector_size = ICH_FLASH_SEG_SIZE_256;
       
  2313 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
       
  2314 		break;
       
  2315 	case 1:
       
  2316 		sector_size = ICH_FLASH_SEG_SIZE_4K;
       
  2317 		iteration = 1;
       
  2318 		break;
       
  2319 	case 2:
       
  2320 		sector_size = ICH_FLASH_SEG_SIZE_8K;
       
  2321 		iteration = 1;
       
  2322 		break;
       
  2323 	case 3:
       
  2324 		sector_size = ICH_FLASH_SEG_SIZE_64K;
       
  2325 		iteration = 1;
       
  2326 		break;
       
  2327 	default:
       
  2328 		return -E1000_ERR_NVM;
       
  2329 	}
       
  2330 
       
  2331 	/* Start with the base address, then add the sector offset. */
       
  2332 	flash_linear_addr = hw->nvm.flash_base_addr;
       
  2333 	flash_linear_addr += (bank) ? flash_bank_size : 0;
       
  2334 
       
  2335 	for (j = 0; j < iteration ; j++) {
       
  2336 		do {
       
  2337 			/* Steps */
       
  2338 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  2339 			if (ret_val)
       
  2340 				return ret_val;
       
  2341 
       
  2342 			/*
       
  2343 			 * Write a value 11 (block Erase) in Flash
       
  2344 			 * Cycle field in hw flash control
       
  2345 			 */
       
  2346 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2347 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
       
  2348 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2349 
       
  2350 			/*
       
  2351 			 * Write the last 24 bits of an index within the
       
  2352 			 * block into Flash Linear address field in Flash
       
  2353 			 * Address.
       
  2354 			 */
       
  2355 			flash_linear_addr += (j * sector_size);
       
  2356 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  2357 
       
  2358 			ret_val = e1000_flash_cycle_ich8lan(hw,
       
  2359 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
       
  2360 			if (ret_val == 0)
       
  2361 				break;
       
  2362 
       
  2363 			/*
       
  2364 			 * Check if FCERR is set to 1.  If 1,
       
  2365 			 * clear it and try the whole sequence
       
  2366 			 * a few more times else Done
       
  2367 			 */
       
  2368 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2369 			if (hsfsts.hsf_status.flcerr == 1)
       
  2370 				/* repeat for some time before giving up */
       
  2371 				continue;
       
  2372 			else if (hsfsts.hsf_status.flcdone == 0)
       
  2373 				return ret_val;
       
  2374 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  2375 	}
       
  2376 
       
  2377 	return 0;
       
  2378 }
       
  2379 
       
  2380 /**
       
  2381  *  e1000_valid_led_default_ich8lan - Set the default LED settings
       
  2382  *  @hw: pointer to the HW structure
       
  2383  *  @data: Pointer to the LED settings
       
  2384  *
       
  2385  *  Reads the LED default settings from the NVM to data.  If the NVM LED
       
  2386  *  settings is all 0's or F's, set the LED default to a valid LED default
       
  2387  *  setting.
       
  2388  **/
       
  2389 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
       
  2390 {
       
  2391 	s32 ret_val;
       
  2392 
       
  2393 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  2394 	if (ret_val) {
       
  2395 		e_dbg("NVM Read Error\n");
       
  2396 		return ret_val;
       
  2397 	}
       
  2398 
       
  2399 	if (*data == ID_LED_RESERVED_0000 ||
       
  2400 	    *data == ID_LED_RESERVED_FFFF)
       
  2401 		*data = ID_LED_DEFAULT_ICH8LAN;
       
  2402 
       
  2403 	return 0;
       
  2404 }
       
  2405 
       
  2406 /**
       
  2407  *  e1000_id_led_init_pchlan - store LED configurations
       
  2408  *  @hw: pointer to the HW structure
       
  2409  *
       
  2410  *  PCH does not control LEDs via the LEDCTL register, rather it uses
       
  2411  *  the PHY LED configuration register.
       
  2412  *
       
  2413  *  PCH also does not have an "always on" or "always off" mode which
       
  2414  *  complicates the ID feature.  Instead of using the "on" mode to indicate
       
  2415  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
       
  2416  *  use "link_up" mode.  The LEDs will still ID on request if there is no
       
  2417  *  link based on logic in e1000_led_[on|off]_pchlan().
       
  2418  **/
       
  2419 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
       
  2420 {
       
  2421 	struct e1000_mac_info *mac = &hw->mac;
       
  2422 	s32 ret_val;
       
  2423 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
       
  2424 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
       
  2425 	u16 data, i, temp, shift;
       
  2426 
       
  2427 	/* Get default ID LED modes */
       
  2428 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
       
  2429 	if (ret_val)
       
  2430 		goto out;
       
  2431 
       
  2432 	mac->ledctl_default = er32(LEDCTL);
       
  2433 	mac->ledctl_mode1 = mac->ledctl_default;
       
  2434 	mac->ledctl_mode2 = mac->ledctl_default;
       
  2435 
       
  2436 	for (i = 0; i < 4; i++) {
       
  2437 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
       
  2438 		shift = (i * 5);
       
  2439 		switch (temp) {
       
  2440 		case ID_LED_ON1_DEF2:
       
  2441 		case ID_LED_ON1_ON2:
       
  2442 		case ID_LED_ON1_OFF2:
       
  2443 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
       
  2444 			mac->ledctl_mode1 |= (ledctl_on << shift);
       
  2445 			break;
       
  2446 		case ID_LED_OFF1_DEF2:
       
  2447 		case ID_LED_OFF1_ON2:
       
  2448 		case ID_LED_OFF1_OFF2:
       
  2449 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
       
  2450 			mac->ledctl_mode1 |= (ledctl_off << shift);
       
  2451 			break;
       
  2452 		default:
       
  2453 			/* Do nothing */
       
  2454 			break;
       
  2455 		}
       
  2456 		switch (temp) {
       
  2457 		case ID_LED_DEF1_ON2:
       
  2458 		case ID_LED_ON1_ON2:
       
  2459 		case ID_LED_OFF1_ON2:
       
  2460 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
       
  2461 			mac->ledctl_mode2 |= (ledctl_on << shift);
       
  2462 			break;
       
  2463 		case ID_LED_DEF1_OFF2:
       
  2464 		case ID_LED_ON1_OFF2:
       
  2465 		case ID_LED_OFF1_OFF2:
       
  2466 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
       
  2467 			mac->ledctl_mode2 |= (ledctl_off << shift);
       
  2468 			break;
       
  2469 		default:
       
  2470 			/* Do nothing */
       
  2471 			break;
       
  2472 		}
       
  2473 	}
       
  2474 
       
  2475 out:
       
  2476 	return ret_val;
       
  2477 }
       
  2478 
       
  2479 /**
       
  2480  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
       
  2481  *  @hw: pointer to the HW structure
       
  2482  *
       
  2483  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
       
  2484  *  register, so the the bus width is hard coded.
       
  2485  **/
       
  2486 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
       
  2487 {
       
  2488 	struct e1000_bus_info *bus = &hw->bus;
       
  2489 	s32 ret_val;
       
  2490 
       
  2491 	ret_val = e1000e_get_bus_info_pcie(hw);
       
  2492 
       
  2493 	/*
       
  2494 	 * ICH devices are "PCI Express"-ish.  They have
       
  2495 	 * a configuration space, but do not contain
       
  2496 	 * PCI Express Capability registers, so bus width
       
  2497 	 * must be hardcoded.
       
  2498 	 */
       
  2499 	if (bus->width == e1000_bus_width_unknown)
       
  2500 		bus->width = e1000_bus_width_pcie_x1;
       
  2501 
       
  2502 	return ret_val;
       
  2503 }
       
  2504 
       
  2505 /**
       
  2506  *  e1000_reset_hw_ich8lan - Reset the hardware
       
  2507  *  @hw: pointer to the HW structure
       
  2508  *
       
  2509  *  Does a full reset of the hardware which includes a reset of the PHY and
       
  2510  *  MAC.
       
  2511  **/
       
  2512 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
       
  2513 {
       
  2514 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2515 	u16 reg;
       
  2516 	u32 ctrl, icr, kab;
       
  2517 	s32 ret_val;
       
  2518 
       
  2519 	/*
       
  2520 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
       
  2521 	 * on the last TLP read/write transaction when MAC is reset.
       
  2522 	 */
       
  2523 	ret_val = e1000e_disable_pcie_master(hw);
       
  2524 	if (ret_val)
       
  2525 		e_dbg("PCI-E Master disable polling has failed.\n");
       
  2526 
       
  2527 	e_dbg("Masking off all interrupts\n");
       
  2528 	ew32(IMC, 0xffffffff);
       
  2529 
       
  2530 	/*
       
  2531 	 * Disable the Transmit and Receive units.  Then delay to allow
       
  2532 	 * any pending transactions to complete before we hit the MAC
       
  2533 	 * with the global reset.
       
  2534 	 */
       
  2535 	ew32(RCTL, 0);
       
  2536 	ew32(TCTL, E1000_TCTL_PSP);
       
  2537 	e1e_flush();
       
  2538 
       
  2539 	msleep(10);
       
  2540 
       
  2541 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
       
  2542 	if (hw->mac.type == e1000_ich8lan) {
       
  2543 		/* Set Tx and Rx buffer allocation to 8k apiece. */
       
  2544 		ew32(PBA, E1000_PBA_8K);
       
  2545 		/* Set Packet Buffer Size to 16k. */
       
  2546 		ew32(PBS, E1000_PBS_16K);
       
  2547 	}
       
  2548 
       
  2549 	if (hw->mac.type == e1000_pchlan) {
       
  2550 		/* Save the NVM K1 bit setting*/
       
  2551 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
       
  2552 		if (ret_val)
       
  2553 			return ret_val;
       
  2554 
       
  2555 		if (reg & E1000_NVM_K1_ENABLE)
       
  2556 			dev_spec->nvm_k1_enabled = true;
       
  2557 		else
       
  2558 			dev_spec->nvm_k1_enabled = false;
       
  2559 	}
       
  2560 
       
  2561 	ctrl = er32(CTRL);
       
  2562 
       
  2563 	if (!e1000_check_reset_block(hw)) {
       
  2564 		/*
       
  2565 		 * Full-chip reset requires MAC and PHY reset at the same
       
  2566 		 * time to make sure the interface between MAC and the
       
  2567 		 * external PHY is reset.
       
  2568 		 */
       
  2569 		ctrl |= E1000_CTRL_PHY_RST;
       
  2570 	}
       
  2571 	ret_val = e1000_acquire_swflag_ich8lan(hw);
       
  2572 	e_dbg("Issuing a global reset to ich8lan\n");
       
  2573 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
       
  2574 	msleep(20);
       
  2575 
       
  2576 	if (!ret_val)
       
  2577 		e1000_release_swflag_ich8lan(hw);
       
  2578 
       
  2579 	if (ctrl & E1000_CTRL_PHY_RST) {
       
  2580 		ret_val = hw->phy.ops.get_cfg_done(hw);
       
  2581 		if (ret_val)
       
  2582 			goto out;
       
  2583 
       
  2584 		ret_val = e1000_post_phy_reset_ich8lan(hw);
       
  2585 		if (ret_val)
       
  2586 			goto out;
       
  2587 	}
       
  2588 
       
  2589 	/*
       
  2590 	 * For PCH, this write will make sure that any noise
       
  2591 	 * will be detected as a CRC error and be dropped rather than show up
       
  2592 	 * as a bad packet to the DMA engine.
       
  2593 	 */
       
  2594 	if (hw->mac.type == e1000_pchlan)
       
  2595 		ew32(CRC_OFFSET, 0x65656565);
       
  2596 
       
  2597 	ew32(IMC, 0xffffffff);
       
  2598 	icr = er32(ICR);
       
  2599 
       
  2600 	kab = er32(KABGTXD);
       
  2601 	kab |= E1000_KABGTXD_BGSQLBIAS;
       
  2602 	ew32(KABGTXD, kab);
       
  2603 
       
  2604 out:
       
  2605 	return ret_val;
       
  2606 }
       
  2607 
       
  2608 /**
       
  2609  *  e1000_init_hw_ich8lan - Initialize the hardware
       
  2610  *  @hw: pointer to the HW structure
       
  2611  *
       
  2612  *  Prepares the hardware for transmit and receive by doing the following:
       
  2613  *   - initialize hardware bits
       
  2614  *   - initialize LED identification
       
  2615  *   - setup receive address registers
       
  2616  *   - setup flow control
       
  2617  *   - setup transmit descriptors
       
  2618  *   - clear statistics
       
  2619  **/
       
  2620 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
       
  2621 {
       
  2622 	struct e1000_mac_info *mac = &hw->mac;
       
  2623 	u32 ctrl_ext, txdctl, snoop;
       
  2624 	s32 ret_val;
       
  2625 	u16 i;
       
  2626 
       
  2627 	e1000_initialize_hw_bits_ich8lan(hw);
       
  2628 
       
  2629 	/* Initialize identification LED */
       
  2630 	ret_val = mac->ops.id_led_init(hw);
       
  2631 	if (ret_val)
       
  2632 		e_dbg("Error initializing identification LED\n");
       
  2633 		/* This is not fatal and we should not stop init due to this */
       
  2634 
       
  2635 	/* Setup the receive address. */
       
  2636 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
       
  2637 
       
  2638 	/* Zero out the Multicast HASH table */
       
  2639 	e_dbg("Zeroing the MTA\n");
       
  2640 	for (i = 0; i < mac->mta_reg_count; i++)
       
  2641 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
       
  2642 
       
  2643 	/*
       
  2644 	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
       
  2645 	 * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
       
  2646 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
       
  2647 	 */
       
  2648 	if (hw->phy.type == e1000_phy_82578) {
       
  2649 		hw->phy.ops.read_reg(hw, BM_WUC, &i);
       
  2650 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
       
  2651 		if (ret_val)
       
  2652 			return ret_val;
       
  2653 	}
       
  2654 
       
  2655 	/* Setup link and flow control */
       
  2656 	ret_val = e1000_setup_link_ich8lan(hw);
       
  2657 
       
  2658 	/* Set the transmit descriptor write-back policy for both queues */
       
  2659 	txdctl = er32(TXDCTL(0));
       
  2660 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
       
  2661 		 E1000_TXDCTL_FULL_TX_DESC_WB;
       
  2662 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
       
  2663 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
       
  2664 	ew32(TXDCTL(0), txdctl);
       
  2665 	txdctl = er32(TXDCTL(1));
       
  2666 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
       
  2667 		 E1000_TXDCTL_FULL_TX_DESC_WB;
       
  2668 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
       
  2669 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
       
  2670 	ew32(TXDCTL(1), txdctl);
       
  2671 
       
  2672 	/*
       
  2673 	 * ICH8 has opposite polarity of no_snoop bits.
       
  2674 	 * By default, we should use snoop behavior.
       
  2675 	 */
       
  2676 	if (mac->type == e1000_ich8lan)
       
  2677 		snoop = PCIE_ICH8_SNOOP_ALL;
       
  2678 	else
       
  2679 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
       
  2680 	e1000e_set_pcie_no_snoop(hw, snoop);
       
  2681 
       
  2682 	ctrl_ext = er32(CTRL_EXT);
       
  2683 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
       
  2684 	ew32(CTRL_EXT, ctrl_ext);
       
  2685 
       
  2686 	/*
       
  2687 	 * Clear all of the statistics registers (clear on read).  It is
       
  2688 	 * important that we do this after we have tried to establish link
       
  2689 	 * because the symbol error count will increment wildly if there
       
  2690 	 * is no link.
       
  2691 	 */
       
  2692 	e1000_clear_hw_cntrs_ich8lan(hw);
       
  2693 
       
  2694 	return 0;
       
  2695 }
       
  2696 /**
       
  2697  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
       
  2698  *  @hw: pointer to the HW structure
       
  2699  *
       
  2700  *  Sets/Clears required hardware bits necessary for correctly setting up the
       
  2701  *  hardware for transmit and receive.
       
  2702  **/
       
  2703 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
       
  2704 {
       
  2705 	u32 reg;
       
  2706 
       
  2707 	/* Extended Device Control */
       
  2708 	reg = er32(CTRL_EXT);
       
  2709 	reg |= (1 << 22);
       
  2710 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
       
  2711 	if (hw->mac.type >= e1000_pchlan)
       
  2712 		reg |= E1000_CTRL_EXT_PHYPDEN;
       
  2713 	ew32(CTRL_EXT, reg);
       
  2714 
       
  2715 	/* Transmit Descriptor Control 0 */
       
  2716 	reg = er32(TXDCTL(0));
       
  2717 	reg |= (1 << 22);
       
  2718 	ew32(TXDCTL(0), reg);
       
  2719 
       
  2720 	/* Transmit Descriptor Control 1 */
       
  2721 	reg = er32(TXDCTL(1));
       
  2722 	reg |= (1 << 22);
       
  2723 	ew32(TXDCTL(1), reg);
       
  2724 
       
  2725 	/* Transmit Arbitration Control 0 */
       
  2726 	reg = er32(TARC(0));
       
  2727 	if (hw->mac.type == e1000_ich8lan)
       
  2728 		reg |= (1 << 28) | (1 << 29);
       
  2729 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
       
  2730 	ew32(TARC(0), reg);
       
  2731 
       
  2732 	/* Transmit Arbitration Control 1 */
       
  2733 	reg = er32(TARC(1));
       
  2734 	if (er32(TCTL) & E1000_TCTL_MULR)
       
  2735 		reg &= ~(1 << 28);
       
  2736 	else
       
  2737 		reg |= (1 << 28);
       
  2738 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
       
  2739 	ew32(TARC(1), reg);
       
  2740 
       
  2741 	/* Device Status */
       
  2742 	if (hw->mac.type == e1000_ich8lan) {
       
  2743 		reg = er32(STATUS);
       
  2744 		reg &= ~(1 << 31);
       
  2745 		ew32(STATUS, reg);
       
  2746 	}
       
  2747 
       
  2748 	/*
       
  2749 	 * work-around descriptor data corruption issue during nfs v2 udp
       
  2750 	 * traffic, just disable the nfs filtering capability
       
  2751 	 */
       
  2752 	reg = er32(RFCTL);
       
  2753 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
       
  2754 	ew32(RFCTL, reg);
       
  2755 }
       
  2756 
       
  2757 /**
       
  2758  *  e1000_setup_link_ich8lan - Setup flow control and link settings
       
  2759  *  @hw: pointer to the HW structure
       
  2760  *
       
  2761  *  Determines which flow control settings to use, then configures flow
       
  2762  *  control.  Calls the appropriate media-specific link configuration
       
  2763  *  function.  Assuming the adapter has a valid link partner, a valid link
       
  2764  *  should be established.  Assumes the hardware has previously been reset
       
  2765  *  and the transmitter and receiver are not enabled.
       
  2766  **/
       
  2767 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
       
  2768 {
       
  2769 	s32 ret_val;
       
  2770 
       
  2771 	if (e1000_check_reset_block(hw))
       
  2772 		return 0;
       
  2773 
       
  2774 	/*
       
  2775 	 * ICH parts do not have a word in the NVM to determine
       
  2776 	 * the default flow control setting, so we explicitly
       
  2777 	 * set it to full.
       
  2778 	 */
       
  2779 	if (hw->fc.requested_mode == e1000_fc_default) {
       
  2780 		/* Workaround h/w hang when Tx flow control enabled */
       
  2781 		if (hw->mac.type == e1000_pchlan)
       
  2782 			hw->fc.requested_mode = e1000_fc_rx_pause;
       
  2783 		else
       
  2784 			hw->fc.requested_mode = e1000_fc_full;
       
  2785 	}
       
  2786 
       
  2787 	/*
       
  2788 	 * Save off the requested flow control mode for use later.  Depending
       
  2789 	 * on the link partner's capabilities, we may or may not use this mode.
       
  2790 	 */
       
  2791 	hw->fc.current_mode = hw->fc.requested_mode;
       
  2792 
       
  2793 	e_dbg("After fix-ups FlowControl is now = %x\n",
       
  2794 		hw->fc.current_mode);
       
  2795 
       
  2796 	/* Continue to configure the copper link. */
       
  2797 	ret_val = e1000_setup_copper_link_ich8lan(hw);
       
  2798 	if (ret_val)
       
  2799 		return ret_val;
       
  2800 
       
  2801 	ew32(FCTTV, hw->fc.pause_time);
       
  2802 	if ((hw->phy.type == e1000_phy_82578) ||
       
  2803 	    (hw->phy.type == e1000_phy_82577)) {
       
  2804 		ew32(FCRTV_PCH, hw->fc.refresh_time);
       
  2805 
       
  2806 		ret_val = hw->phy.ops.write_reg(hw,
       
  2807 		                             PHY_REG(BM_PORT_CTRL_PAGE, 27),
       
  2808 		                             hw->fc.pause_time);
       
  2809 		if (ret_val)
       
  2810 			return ret_val;
       
  2811 	}
       
  2812 
       
  2813 	return e1000e_set_fc_watermarks(hw);
       
  2814 }
       
  2815 
       
  2816 /**
       
  2817  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
       
  2818  *  @hw: pointer to the HW structure
       
  2819  *
       
  2820  *  Configures the kumeran interface to the PHY to wait the appropriate time
       
  2821  *  when polling the PHY, then call the generic setup_copper_link to finish
       
  2822  *  configuring the copper link.
       
  2823  **/
       
  2824 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
       
  2825 {
       
  2826 	u32 ctrl;
       
  2827 	s32 ret_val;
       
  2828 	u16 reg_data;
       
  2829 
       
  2830 	ctrl = er32(CTRL);
       
  2831 	ctrl |= E1000_CTRL_SLU;
       
  2832 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  2833 	ew32(CTRL, ctrl);
       
  2834 
       
  2835 	/*
       
  2836 	 * Set the mac to wait the maximum time between each iteration
       
  2837 	 * and increase the max iterations when polling the phy;
       
  2838 	 * this fixes erroneous timeouts at 10Mbps.
       
  2839 	 */
       
  2840 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
       
  2841 	if (ret_val)
       
  2842 		return ret_val;
       
  2843 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
  2844 	                               &reg_data);
       
  2845 	if (ret_val)
       
  2846 		return ret_val;
       
  2847 	reg_data |= 0x3F;
       
  2848 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
  2849 	                                reg_data);
       
  2850 	if (ret_val)
       
  2851 		return ret_val;
       
  2852 
       
  2853 	switch (hw->phy.type) {
       
  2854 	case e1000_phy_igp_3:
       
  2855 		ret_val = e1000e_copper_link_setup_igp(hw);
       
  2856 		if (ret_val)
       
  2857 			return ret_val;
       
  2858 		break;
       
  2859 	case e1000_phy_bm:
       
  2860 	case e1000_phy_82578:
       
  2861 		ret_val = e1000e_copper_link_setup_m88(hw);
       
  2862 		if (ret_val)
       
  2863 			return ret_val;
       
  2864 		break;
       
  2865 	case e1000_phy_82577:
       
  2866 		ret_val = e1000_copper_link_setup_82577(hw);
       
  2867 		if (ret_val)
       
  2868 			return ret_val;
       
  2869 		break;
       
  2870 	case e1000_phy_ife:
       
  2871 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
       
  2872 		                               &reg_data);
       
  2873 		if (ret_val)
       
  2874 			return ret_val;
       
  2875 
       
  2876 		reg_data &= ~IFE_PMC_AUTO_MDIX;
       
  2877 
       
  2878 		switch (hw->phy.mdix) {
       
  2879 		case 1:
       
  2880 			reg_data &= ~IFE_PMC_FORCE_MDIX;
       
  2881 			break;
       
  2882 		case 2:
       
  2883 			reg_data |= IFE_PMC_FORCE_MDIX;
       
  2884 			break;
       
  2885 		case 0:
       
  2886 		default:
       
  2887 			reg_data |= IFE_PMC_AUTO_MDIX;
       
  2888 			break;
       
  2889 		}
       
  2890 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
       
  2891 		                                reg_data);
       
  2892 		if (ret_val)
       
  2893 			return ret_val;
       
  2894 		break;
       
  2895 	default:
       
  2896 		break;
       
  2897 	}
       
  2898 	return e1000e_setup_copper_link(hw);
       
  2899 }
       
  2900 
       
  2901 /**
       
  2902  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
       
  2903  *  @hw: pointer to the HW structure
       
  2904  *  @speed: pointer to store current link speed
       
  2905  *  @duplex: pointer to store the current link duplex
       
  2906  *
       
  2907  *  Calls the generic get_speed_and_duplex to retrieve the current link
       
  2908  *  information and then calls the Kumeran lock loss workaround for links at
       
  2909  *  gigabit speeds.
       
  2910  **/
       
  2911 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
       
  2912 					  u16 *duplex)
       
  2913 {
       
  2914 	s32 ret_val;
       
  2915 
       
  2916 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
       
  2917 	if (ret_val)
       
  2918 		return ret_val;
       
  2919 
       
  2920 	if ((hw->mac.type == e1000_ich8lan) &&
       
  2921 	    (hw->phy.type == e1000_phy_igp_3) &&
       
  2922 	    (*speed == SPEED_1000)) {
       
  2923 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
       
  2924 	}
       
  2925 
       
  2926 	return ret_val;
       
  2927 }
       
  2928 
       
  2929 /**
       
  2930  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
       
  2931  *  @hw: pointer to the HW structure
       
  2932  *
       
  2933  *  Work-around for 82566 Kumeran PCS lock loss:
       
  2934  *  On link status change (i.e. PCI reset, speed change) and link is up and
       
  2935  *  speed is gigabit-
       
  2936  *    0) if workaround is optionally disabled do nothing
       
  2937  *    1) wait 1ms for Kumeran link to come up
       
  2938  *    2) check Kumeran Diagnostic register PCS lock loss bit
       
  2939  *    3) if not set the link is locked (all is good), otherwise...
       
  2940  *    4) reset the PHY
       
  2941  *    5) repeat up to 10 times
       
  2942  *  Note: this is only called for IGP3 copper when speed is 1gb.
       
  2943  **/
       
  2944 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
       
  2945 {
       
  2946 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2947 	u32 phy_ctrl;
       
  2948 	s32 ret_val;
       
  2949 	u16 i, data;
       
  2950 	bool link;
       
  2951 
       
  2952 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
       
  2953 		return 0;
       
  2954 
       
  2955 	/*
       
  2956 	 * Make sure link is up before proceeding.  If not just return.
       
  2957 	 * Attempting this while link is negotiating fouled up link
       
  2958 	 * stability
       
  2959 	 */
       
  2960 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  2961 	if (!link)
       
  2962 		return 0;
       
  2963 
       
  2964 	for (i = 0; i < 10; i++) {
       
  2965 		/* read once to clear */
       
  2966 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
       
  2967 		if (ret_val)
       
  2968 			return ret_val;
       
  2969 		/* and again to get new status */
       
  2970 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
       
  2971 		if (ret_val)
       
  2972 			return ret_val;
       
  2973 
       
  2974 		/* check for PCS lock */
       
  2975 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
       
  2976 			return 0;
       
  2977 
       
  2978 		/* Issue PHY reset */
       
  2979 		e1000_phy_hw_reset(hw);
       
  2980 		mdelay(5);
       
  2981 	}
       
  2982 	/* Disable GigE link negotiation */
       
  2983 	phy_ctrl = er32(PHY_CTRL);
       
  2984 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
       
  2985 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  2986 	ew32(PHY_CTRL, phy_ctrl);
       
  2987 
       
  2988 	/*
       
  2989 	 * Call gig speed drop workaround on Gig disable before accessing
       
  2990 	 * any PHY registers
       
  2991 	 */
       
  2992 	e1000e_gig_downshift_workaround_ich8lan(hw);
       
  2993 
       
  2994 	/* unable to acquire PCS lock */
       
  2995 	return -E1000_ERR_PHY;
       
  2996 }
       
  2997 
       
  2998 /**
       
  2999  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
       
  3000  *  @hw: pointer to the HW structure
       
  3001  *  @state: boolean value used to set the current Kumeran workaround state
       
  3002  *
       
  3003  *  If ICH8, set the current Kumeran workaround state (enabled - true
       
  3004  *  /disabled - false).
       
  3005  **/
       
  3006 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
       
  3007 						 bool state)
       
  3008 {
       
  3009 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  3010 
       
  3011 	if (hw->mac.type != e1000_ich8lan) {
       
  3012 		e_dbg("Workaround applies to ICH8 only.\n");
       
  3013 		return;
       
  3014 	}
       
  3015 
       
  3016 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
       
  3017 }
       
  3018 
       
  3019 /**
       
  3020  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
       
  3021  *  @hw: pointer to the HW structure
       
  3022  *
       
  3023  *  Workaround for 82566 power-down on D3 entry:
       
  3024  *    1) disable gigabit link
       
  3025  *    2) write VR power-down enable
       
  3026  *    3) read it back
       
  3027  *  Continue if successful, else issue LCD reset and repeat
       
  3028  **/
       
  3029 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
       
  3030 {
       
  3031 	u32 reg;
       
  3032 	u16 data;
       
  3033 	u8  retry = 0;
       
  3034 
       
  3035 	if (hw->phy.type != e1000_phy_igp_3)
       
  3036 		return;
       
  3037 
       
  3038 	/* Try the workaround twice (if needed) */
       
  3039 	do {
       
  3040 		/* Disable link */
       
  3041 		reg = er32(PHY_CTRL);
       
  3042 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
       
  3043 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  3044 		ew32(PHY_CTRL, reg);
       
  3045 
       
  3046 		/*
       
  3047 		 * Call gig speed drop workaround on Gig disable before
       
  3048 		 * accessing any PHY registers
       
  3049 		 */
       
  3050 		if (hw->mac.type == e1000_ich8lan)
       
  3051 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  3052 
       
  3053 		/* Write VR power-down enable */
       
  3054 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
       
  3055 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
       
  3056 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
       
  3057 
       
  3058 		/* Read it back and test */
       
  3059 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
       
  3060 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
       
  3061 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
       
  3062 			break;
       
  3063 
       
  3064 		/* Issue PHY reset and repeat at most one more time */
       
  3065 		reg = er32(CTRL);
       
  3066 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
       
  3067 		retry++;
       
  3068 	} while (retry);
       
  3069 }
       
  3070 
       
  3071 /**
       
  3072  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
       
  3073  *  @hw: pointer to the HW structure
       
  3074  *
       
  3075  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
       
  3076  *  LPLU, Gig disable, MDIC PHY reset):
       
  3077  *    1) Set Kumeran Near-end loopback
       
  3078  *    2) Clear Kumeran Near-end loopback
       
  3079  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
       
  3080  **/
       
  3081 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
       
  3082 {
       
  3083 	s32 ret_val;
       
  3084 	u16 reg_data;
       
  3085 
       
  3086 	if ((hw->mac.type != e1000_ich8lan) ||
       
  3087 	    (hw->phy.type != e1000_phy_igp_3))
       
  3088 		return;
       
  3089 
       
  3090 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  3091 				      &reg_data);
       
  3092 	if (ret_val)
       
  3093 		return;
       
  3094 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
       
  3095 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  3096 				       reg_data);
       
  3097 	if (ret_val)
       
  3098 		return;
       
  3099 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
       
  3100 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  3101 				       reg_data);
       
  3102 }
       
  3103 
       
  3104 /**
       
  3105  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
       
  3106  *  @hw: pointer to the HW structure
       
  3107  *
       
  3108  *  During S0 to Sx transition, it is possible the link remains at gig
       
  3109  *  instead of negotiating to a lower speed.  Before going to Sx, set
       
  3110  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
       
  3111  *  to a lower speed.
       
  3112  *
       
  3113  *  Should only be called for applicable parts.
       
  3114  **/
       
  3115 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
       
  3116 {
       
  3117 	u32 phy_ctrl;
       
  3118 
       
  3119 	switch (hw->mac.type) {
       
  3120 	case e1000_ich8lan:
       
  3121 	case e1000_ich9lan:
       
  3122 	case e1000_ich10lan:
       
  3123 	case e1000_pchlan:
       
  3124 		phy_ctrl = er32(PHY_CTRL);
       
  3125 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
       
  3126 		            E1000_PHY_CTRL_GBE_DISABLE;
       
  3127 		ew32(PHY_CTRL, phy_ctrl);
       
  3128 
       
  3129 		if (hw->mac.type == e1000_pchlan)
       
  3130 			e1000_phy_hw_reset_ich8lan(hw);
       
  3131 	default:
       
  3132 		break;
       
  3133 	}
       
  3134 }
       
  3135 
       
  3136 /**
       
  3137  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
       
  3138  *  @hw: pointer to the HW structure
       
  3139  *
       
  3140  *  Return the LED back to the default configuration.
       
  3141  **/
       
  3142 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
       
  3143 {
       
  3144 	if (hw->phy.type == e1000_phy_ife)
       
  3145 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  3146 
       
  3147 	ew32(LEDCTL, hw->mac.ledctl_default);
       
  3148 	return 0;
       
  3149 }
       
  3150 
       
  3151 /**
       
  3152  *  e1000_led_on_ich8lan - Turn LEDs on
       
  3153  *  @hw: pointer to the HW structure
       
  3154  *
       
  3155  *  Turn on the LEDs.
       
  3156  **/
       
  3157 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
       
  3158 {
       
  3159 	if (hw->phy.type == e1000_phy_ife)
       
  3160 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  3161 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
       
  3162 
       
  3163 	ew32(LEDCTL, hw->mac.ledctl_mode2);
       
  3164 	return 0;
       
  3165 }
       
  3166 
       
  3167 /**
       
  3168  *  e1000_led_off_ich8lan - Turn LEDs off
       
  3169  *  @hw: pointer to the HW structure
       
  3170  *
       
  3171  *  Turn off the LEDs.
       
  3172  **/
       
  3173 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
       
  3174 {
       
  3175 	if (hw->phy.type == e1000_phy_ife)
       
  3176 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  3177 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
       
  3178 
       
  3179 	ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  3180 	return 0;
       
  3181 }
       
  3182 
       
  3183 /**
       
  3184  *  e1000_setup_led_pchlan - Configures SW controllable LED
       
  3185  *  @hw: pointer to the HW structure
       
  3186  *
       
  3187  *  This prepares the SW controllable LED for use.
       
  3188  **/
       
  3189 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
       
  3190 {
       
  3191 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
       
  3192 					(u16)hw->mac.ledctl_mode1);
       
  3193 }
       
  3194 
       
  3195 /**
       
  3196  *  e1000_cleanup_led_pchlan - Restore the default LED operation
       
  3197  *  @hw: pointer to the HW structure
       
  3198  *
       
  3199  *  Return the LED back to the default configuration.
       
  3200  **/
       
  3201 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
       
  3202 {
       
  3203 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
       
  3204 					(u16)hw->mac.ledctl_default);
       
  3205 }
       
  3206 
       
  3207 /**
       
  3208  *  e1000_led_on_pchlan - Turn LEDs on
       
  3209  *  @hw: pointer to the HW structure
       
  3210  *
       
  3211  *  Turn on the LEDs.
       
  3212  **/
       
  3213 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
       
  3214 {
       
  3215 	u16 data = (u16)hw->mac.ledctl_mode2;
       
  3216 	u32 i, led;
       
  3217 
       
  3218 	/*
       
  3219 	 * If no link, then turn LED on by setting the invert bit
       
  3220 	 * for each LED that's mode is "link_up" in ledctl_mode2.
       
  3221 	 */
       
  3222 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
       
  3223 		for (i = 0; i < 3; i++) {
       
  3224 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
       
  3225 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
       
  3226 			    E1000_LEDCTL_MODE_LINK_UP)
       
  3227 				continue;
       
  3228 			if (led & E1000_PHY_LED0_IVRT)
       
  3229 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
       
  3230 			else
       
  3231 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
       
  3232 		}
       
  3233 	}
       
  3234 
       
  3235 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
       
  3236 }
       
  3237 
       
  3238 /**
       
  3239  *  e1000_led_off_pchlan - Turn LEDs off
       
  3240  *  @hw: pointer to the HW structure
       
  3241  *
       
  3242  *  Turn off the LEDs.
       
  3243  **/
       
  3244 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
       
  3245 {
       
  3246 	u16 data = (u16)hw->mac.ledctl_mode1;
       
  3247 	u32 i, led;
       
  3248 
       
  3249 	/*
       
  3250 	 * If no link, then turn LED off by clearing the invert bit
       
  3251 	 * for each LED that's mode is "link_up" in ledctl_mode1.
       
  3252 	 */
       
  3253 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
       
  3254 		for (i = 0; i < 3; i++) {
       
  3255 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
       
  3256 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
       
  3257 			    E1000_LEDCTL_MODE_LINK_UP)
       
  3258 				continue;
       
  3259 			if (led & E1000_PHY_LED0_IVRT)
       
  3260 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
       
  3261 			else
       
  3262 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
       
  3263 		}
       
  3264 	}
       
  3265 
       
  3266 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
       
  3267 }
       
  3268 
       
  3269 /**
       
  3270  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
       
  3271  *  @hw: pointer to the HW structure
       
  3272  *
       
  3273  *  Read appropriate register for the config done bit for completion status
       
  3274  *  and configure the PHY through s/w for EEPROM-less parts.
       
  3275  *
       
  3276  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
       
  3277  *  config done bit, so only an error is logged and continues.  If we were
       
  3278  *  to return with error, EEPROM-less silicon would not be able to be reset
       
  3279  *  or change link.
       
  3280  **/
       
  3281 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
       
  3282 {
       
  3283 	s32 ret_val = 0;
       
  3284 	u32 bank = 0;
       
  3285 	u32 status;
       
  3286 
       
  3287 	e1000e_get_cfg_done(hw);
       
  3288 
       
  3289 	/* Wait for indication from h/w that it has completed basic config */
       
  3290 	if (hw->mac.type >= e1000_ich10lan) {
       
  3291 		e1000_lan_init_done_ich8lan(hw);
       
  3292 	} else {
       
  3293 		ret_val = e1000e_get_auto_rd_done(hw);
       
  3294 		if (ret_val) {
       
  3295 			/*
       
  3296 			 * When auto config read does not complete, do not
       
  3297 			 * return with an error. This can happen in situations
       
  3298 			 * where there is no eeprom and prevents getting link.
       
  3299 			 */
       
  3300 			e_dbg("Auto Read Done did not complete\n");
       
  3301 			ret_val = 0;
       
  3302 		}
       
  3303 	}
       
  3304 
       
  3305 	/* Clear PHY Reset Asserted bit */
       
  3306 	status = er32(STATUS);
       
  3307 	if (status & E1000_STATUS_PHYRA)
       
  3308 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
       
  3309 	else
       
  3310 		e_dbg("PHY Reset Asserted not set - needs delay\n");
       
  3311 
       
  3312 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
       
  3313 	if (hw->mac.type <= e1000_ich9lan) {
       
  3314 		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
       
  3315 		    (hw->phy.type == e1000_phy_igp_3)) {
       
  3316 			e1000e_phy_init_script_igp3(hw);
       
  3317 		}
       
  3318 	} else {
       
  3319 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
       
  3320 			/* Maybe we should do a basic PHY config */
       
  3321 			e_dbg("EEPROM not present\n");
       
  3322 			ret_val = -E1000_ERR_CONFIG;
       
  3323 		}
       
  3324 	}
       
  3325 
       
  3326 	return ret_val;
       
  3327 }
       
  3328 
       
  3329 /**
       
  3330  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
       
  3331  * @hw: pointer to the HW structure
       
  3332  *
       
  3333  * In the case of a PHY power down to save power, or to turn off link during a
       
  3334  * driver unload, or wake on lan is not enabled, remove the link.
       
  3335  **/
       
  3336 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
       
  3337 {
       
  3338 	/* If the management interface is not enabled, then power down */
       
  3339 	if (!(hw->mac.ops.check_mng_mode(hw) ||
       
  3340 	      hw->phy.ops.check_reset_block(hw)))
       
  3341 		e1000_power_down_phy_copper(hw);
       
  3342 }
       
  3343 
       
  3344 /**
       
  3345  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
       
  3346  *  @hw: pointer to the HW structure
       
  3347  *
       
  3348  *  Clears hardware counters specific to the silicon family and calls
       
  3349  *  clear_hw_cntrs_generic to clear all general purpose counters.
       
  3350  **/
       
  3351 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
       
  3352 {
       
  3353 	u16 phy_data;
       
  3354 
       
  3355 	e1000e_clear_hw_cntrs_base(hw);
       
  3356 
       
  3357 	er32(ALGNERRC);
       
  3358 	er32(RXERRC);
       
  3359 	er32(TNCRS);
       
  3360 	er32(CEXTERR);
       
  3361 	er32(TSCTC);
       
  3362 	er32(TSCTFC);
       
  3363 
       
  3364 	er32(MGTPRC);
       
  3365 	er32(MGTPDC);
       
  3366 	er32(MGTPTC);
       
  3367 
       
  3368 	er32(IAC);
       
  3369 	er32(ICRXOC);
       
  3370 
       
  3371 	/* Clear PHY statistics registers */
       
  3372 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3373 	    (hw->phy.type == e1000_phy_82577)) {
       
  3374 		hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
       
  3375 		hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
       
  3376 		hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
       
  3377 		hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
       
  3378 		hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
       
  3379 		hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
       
  3380 		hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
       
  3381 		hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
       
  3382 		hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
       
  3383 		hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
       
  3384 		hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
       
  3385 		hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
       
  3386 		hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
       
  3387 		hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
       
  3388 	}
       
  3389 }
       
  3390 
       
  3391 static struct e1000_mac_operations ich8_mac_ops = {
       
  3392 	.id_led_init		= e1000e_id_led_init,
       
  3393 	.check_mng_mode		= e1000_check_mng_mode_ich8lan,
       
  3394 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
       
  3395 	/* cleanup_led dependent on mac type */
       
  3396 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
       
  3397 	.get_bus_info		= e1000_get_bus_info_ich8lan,
       
  3398 	.set_lan_id		= e1000_set_lan_id_single_port,
       
  3399 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
       
  3400 	/* led_on dependent on mac type */
       
  3401 	/* led_off dependent on mac type */
       
  3402 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
       
  3403 	.reset_hw		= e1000_reset_hw_ich8lan,
       
  3404 	.init_hw		= e1000_init_hw_ich8lan,
       
  3405 	.setup_link		= e1000_setup_link_ich8lan,
       
  3406 	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
       
  3407 	/* id_led_init dependent on mac type */
       
  3408 };
       
  3409 
       
  3410 static struct e1000_phy_operations ich8_phy_ops = {
       
  3411 	.acquire		= e1000_acquire_swflag_ich8lan,
       
  3412 	.check_reset_block	= e1000_check_reset_block_ich8lan,
       
  3413 	.commit			= NULL,
       
  3414 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
       
  3415 	.get_cable_length	= e1000e_get_cable_length_igp_2,
       
  3416 	.read_reg		= e1000e_read_phy_reg_igp,
       
  3417 	.release		= e1000_release_swflag_ich8lan,
       
  3418 	.reset			= e1000_phy_hw_reset_ich8lan,
       
  3419 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
       
  3420 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
       
  3421 	.write_reg		= e1000e_write_phy_reg_igp,
       
  3422 };
       
  3423 
       
  3424 static struct e1000_nvm_operations ich8_nvm_ops = {
       
  3425 	.acquire		= e1000_acquire_nvm_ich8lan,
       
  3426 	.read		 	= e1000_read_nvm_ich8lan,
       
  3427 	.release		= e1000_release_nvm_ich8lan,
       
  3428 	.update			= e1000_update_nvm_checksum_ich8lan,
       
  3429 	.valid_led_default	= e1000_valid_led_default_ich8lan,
       
  3430 	.validate		= e1000_validate_nvm_checksum_ich8lan,
       
  3431 	.write			= e1000_write_nvm_ich8lan,
       
  3432 };
       
  3433 
       
  3434 struct e1000_info e1000_ich8_info = {
       
  3435 	.mac			= e1000_ich8lan,
       
  3436 	.flags			= FLAG_HAS_WOL
       
  3437 				  | FLAG_IS_ICH
       
  3438 				  | FLAG_RX_CSUM_ENABLED
       
  3439 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  3440 				  | FLAG_HAS_AMT
       
  3441 				  | FLAG_HAS_FLASH
       
  3442 				  | FLAG_APME_IN_WUC,
       
  3443 	.pba			= 8,
       
  3444 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
       
  3445 	.get_variants		= e1000_get_variants_ich8lan,
       
  3446 	.mac_ops		= &ich8_mac_ops,
       
  3447 	.phy_ops		= &ich8_phy_ops,
       
  3448 	.nvm_ops		= &ich8_nvm_ops,
       
  3449 };
       
  3450 
       
  3451 struct e1000_info e1000_ich9_info = {
       
  3452 	.mac			= e1000_ich9lan,
       
  3453 	.flags			= FLAG_HAS_JUMBO_FRAMES
       
  3454 				  | FLAG_IS_ICH
       
  3455 				  | FLAG_HAS_WOL
       
  3456 				  | FLAG_RX_CSUM_ENABLED
       
  3457 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  3458 				  | FLAG_HAS_AMT
       
  3459 				  | FLAG_HAS_ERT
       
  3460 				  | FLAG_HAS_FLASH
       
  3461 				  | FLAG_APME_IN_WUC,
       
  3462 	.pba			= 10,
       
  3463 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  3464 	.get_variants		= e1000_get_variants_ich8lan,
       
  3465 	.mac_ops		= &ich8_mac_ops,
       
  3466 	.phy_ops		= &ich8_phy_ops,
       
  3467 	.nvm_ops		= &ich8_nvm_ops,
       
  3468 };
       
  3469 
       
  3470 struct e1000_info e1000_ich10_info = {
       
  3471 	.mac			= e1000_ich10lan,
       
  3472 	.flags			= FLAG_HAS_JUMBO_FRAMES
       
  3473 				  | FLAG_IS_ICH
       
  3474 				  | FLAG_HAS_WOL
       
  3475 				  | FLAG_RX_CSUM_ENABLED
       
  3476 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  3477 				  | FLAG_HAS_AMT
       
  3478 				  | FLAG_HAS_ERT
       
  3479 				  | FLAG_HAS_FLASH
       
  3480 				  | FLAG_APME_IN_WUC,
       
  3481 	.pba			= 10,
       
  3482 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  3483 	.get_variants		= e1000_get_variants_ich8lan,
       
  3484 	.mac_ops		= &ich8_mac_ops,
       
  3485 	.phy_ops		= &ich8_phy_ops,
       
  3486 	.nvm_ops		= &ich8_nvm_ops,
       
  3487 };
       
  3488 
       
  3489 struct e1000_info e1000_pch_info = {
       
  3490 	.mac			= e1000_pchlan,
       
  3491 	.flags			= FLAG_IS_ICH
       
  3492 				  | FLAG_HAS_WOL
       
  3493 				  | FLAG_RX_CSUM_ENABLED
       
  3494 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  3495 				  | FLAG_HAS_AMT
       
  3496 				  | FLAG_HAS_FLASH
       
  3497 				  | FLAG_HAS_JUMBO_FRAMES
       
  3498 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
       
  3499 				  | FLAG_APME_IN_WUC,
       
  3500 	.pba			= 26,
       
  3501 	.max_hw_frame_size	= 4096,
       
  3502 	.get_variants		= e1000_get_variants_ich8lan,
       
  3503 	.mac_ops		= &ich8_mac_ops,
       
  3504 	.phy_ops		= &ich8_phy_ops,
       
  3505 	.nvm_ops		= &ich8_nvm_ops,
       
  3506 };