devices/e1000/e1000_main-3.4-orig.c
branchstable-1.5
changeset 2494 d1bd39013a32
equal deleted inserted replaced
2493:fcd918d2122f 2494:d1bd39013a32
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000.h"
       
    30 #include <net/ip6_checksum.h>
       
    31 #include <linux/io.h>
       
    32 #include <linux/prefetch.h>
       
    33 #include <linux/bitops.h>
       
    34 #include <linux/if_vlan.h>
       
    35 
       
    36 char e1000_driver_name[] = "e1000";
       
    37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
       
    38 #define DRV_VERSION "7.3.21-k8-NAPI"
       
    39 const char e1000_driver_version[] = DRV_VERSION;
       
    40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
       
    41 
       
    42 /* e1000_pci_tbl - PCI Device ID Table
       
    43  *
       
    44  * Last entry must be all 0s
       
    45  *
       
    46  * Macro expands to...
       
    47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
       
    48  */
       
    49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
       
    50 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
       
    51 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
       
    52 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
       
    53 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
       
    54 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
       
    55 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
       
    56 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
       
    57 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
       
    58 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
       
    59 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
       
    60 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
       
    61 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
       
    62 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
       
    63 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
       
    64 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
       
    65 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
       
    66 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
       
    67 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
       
    68 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
       
    69 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
       
    70 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
       
    71 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
       
    72 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
       
    73 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
       
    74 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
       
    75 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
       
    76 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
       
    77 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
       
    78 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
       
    79 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
       
    80 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
       
    81 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
       
    82 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
       
    83 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
       
    84 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
       
    85 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
       
    86 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
       
    87 	/* required last entry */
       
    88 	{0,}
       
    89 };
       
    90 
       
    91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
    92 
       
    93 int e1000_up(struct e1000_adapter *adapter);
       
    94 void e1000_down(struct e1000_adapter *adapter);
       
    95 void e1000_reinit_locked(struct e1000_adapter *adapter);
       
    96 void e1000_reset(struct e1000_adapter *adapter);
       
    97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
       
    98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
       
    99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
       
   100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
       
   101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
   102                              struct e1000_tx_ring *txdr);
       
   103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
   104                              struct e1000_rx_ring *rxdr);
       
   105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
   106                              struct e1000_tx_ring *tx_ring);
       
   107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
   108                              struct e1000_rx_ring *rx_ring);
       
   109 void e1000_update_stats(struct e1000_adapter *adapter);
       
   110 
       
   111 static int e1000_init_module(void);
       
   112 static void e1000_exit_module(void);
       
   113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
       
   114 static void __devexit e1000_remove(struct pci_dev *pdev);
       
   115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
       
   116 static int e1000_sw_init(struct e1000_adapter *adapter);
       
   117 static int e1000_open(struct net_device *netdev);
       
   118 static int e1000_close(struct net_device *netdev);
       
   119 static void e1000_configure_tx(struct e1000_adapter *adapter);
       
   120 static void e1000_configure_rx(struct e1000_adapter *adapter);
       
   121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
       
   122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
       
   123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
       
   124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
   125                                 struct e1000_tx_ring *tx_ring);
       
   126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
   127                                 struct e1000_rx_ring *rx_ring);
       
   128 static void e1000_set_rx_mode(struct net_device *netdev);
       
   129 static void e1000_update_phy_info_task(struct work_struct *work);
       
   130 static void e1000_watchdog(struct work_struct *work);
       
   131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
       
   132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
       
   133 				    struct net_device *netdev);
       
   134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
       
   135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
       
   136 static int e1000_set_mac(struct net_device *netdev, void *p);
       
   137 static irqreturn_t e1000_intr(int irq, void *data);
       
   138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
   139 			       struct e1000_tx_ring *tx_ring);
       
   140 static int e1000_clean(struct napi_struct *napi, int budget);
       
   141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   142 			       struct e1000_rx_ring *rx_ring,
       
   143 			       int *work_done, int work_to_do);
       
   144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
       
   145 				     struct e1000_rx_ring *rx_ring,
       
   146 				     int *work_done, int work_to_do);
       
   147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
   148 				   struct e1000_rx_ring *rx_ring,
       
   149 				   int cleaned_count);
       
   150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
       
   151 					 struct e1000_rx_ring *rx_ring,
       
   152 					 int cleaned_count);
       
   153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
       
   154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
   155 			   int cmd);
       
   156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
       
   157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
       
   158 static void e1000_tx_timeout(struct net_device *dev);
       
   159 static void e1000_reset_task(struct work_struct *work);
       
   160 static void e1000_smartspeed(struct e1000_adapter *adapter);
       
   161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
   162                                        struct sk_buff *skb);
       
   163 
       
   164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
       
   165 static void e1000_vlan_mode(struct net_device *netdev,
       
   166 			    netdev_features_t features);
       
   167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
       
   168 				     bool filter_on);
       
   169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
       
   170 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
       
   171 static void e1000_restore_vlan(struct e1000_adapter *adapter);
       
   172 
       
   173 #ifdef CONFIG_PM
       
   174 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
       
   175 static int e1000_resume(struct pci_dev *pdev);
       
   176 #endif
       
   177 static void e1000_shutdown(struct pci_dev *pdev);
       
   178 
       
   179 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   180 /* for netdump / net console */
       
   181 static void e1000_netpoll (struct net_device *netdev);
       
   182 #endif
       
   183 
       
   184 #define COPYBREAK_DEFAULT 256
       
   185 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
       
   186 module_param(copybreak, uint, 0644);
       
   187 MODULE_PARM_DESC(copybreak,
       
   188 	"Maximum size of packet that is copied to a new buffer on receive");
       
   189 
       
   190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
   191                      pci_channel_state_t state);
       
   192 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
       
   193 static void e1000_io_resume(struct pci_dev *pdev);
       
   194 
       
   195 static struct pci_error_handlers e1000_err_handler = {
       
   196 	.error_detected = e1000_io_error_detected,
       
   197 	.slot_reset = e1000_io_slot_reset,
       
   198 	.resume = e1000_io_resume,
       
   199 };
       
   200 
       
   201 static struct pci_driver e1000_driver = {
       
   202 	.name     = e1000_driver_name,
       
   203 	.id_table = e1000_pci_tbl,
       
   204 	.probe    = e1000_probe,
       
   205 	.remove   = __devexit_p(e1000_remove),
       
   206 #ifdef CONFIG_PM
       
   207 	/* Power Management Hooks */
       
   208 	.suspend  = e1000_suspend,
       
   209 	.resume   = e1000_resume,
       
   210 #endif
       
   211 	.shutdown = e1000_shutdown,
       
   212 	.err_handler = &e1000_err_handler
       
   213 };
       
   214 
       
   215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
       
   216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
       
   217 MODULE_LICENSE("GPL");
       
   218 MODULE_VERSION(DRV_VERSION);
       
   219 
       
   220 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
       
   221 static int debug = -1;
       
   222 module_param(debug, int, 0);
       
   223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   224 
       
   225 /**
       
   226  * e1000_get_hw_dev - return device
       
   227  * used by hardware layer to print debugging information
       
   228  *
       
   229  **/
       
   230 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
       
   231 {
       
   232 	struct e1000_adapter *adapter = hw->back;
       
   233 	return adapter->netdev;
       
   234 }
       
   235 
       
   236 /**
       
   237  * e1000_init_module - Driver Registration Routine
       
   238  *
       
   239  * e1000_init_module is the first routine called when the driver is
       
   240  * loaded. All it does is register with the PCI subsystem.
       
   241  **/
       
   242 
       
   243 static int __init e1000_init_module(void)
       
   244 {
       
   245 	int ret;
       
   246 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
       
   247 
       
   248 	pr_info("%s\n", e1000_copyright);
       
   249 
       
   250 	ret = pci_register_driver(&e1000_driver);
       
   251 	if (copybreak != COPYBREAK_DEFAULT) {
       
   252 		if (copybreak == 0)
       
   253 			pr_info("copybreak disabled\n");
       
   254 		else
       
   255 			pr_info("copybreak enabled for "
       
   256 				   "packets <= %u bytes\n", copybreak);
       
   257 	}
       
   258 	return ret;
       
   259 }
       
   260 
       
   261 module_init(e1000_init_module);
       
   262 
       
   263 /**
       
   264  * e1000_exit_module - Driver Exit Cleanup Routine
       
   265  *
       
   266  * e1000_exit_module is called just before the driver is removed
       
   267  * from memory.
       
   268  **/
       
   269 
       
   270 static void __exit e1000_exit_module(void)
       
   271 {
       
   272 	pci_unregister_driver(&e1000_driver);
       
   273 }
       
   274 
       
   275 module_exit(e1000_exit_module);
       
   276 
       
   277 static int e1000_request_irq(struct e1000_adapter *adapter)
       
   278 {
       
   279 	struct net_device *netdev = adapter->netdev;
       
   280 	irq_handler_t handler = e1000_intr;
       
   281 	int irq_flags = IRQF_SHARED;
       
   282 	int err;
       
   283 
       
   284 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
       
   285 	                  netdev);
       
   286 	if (err) {
       
   287 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
       
   288 	}
       
   289 
       
   290 	return err;
       
   291 }
       
   292 
       
   293 static void e1000_free_irq(struct e1000_adapter *adapter)
       
   294 {
       
   295 	struct net_device *netdev = adapter->netdev;
       
   296 
       
   297 	free_irq(adapter->pdev->irq, netdev);
       
   298 }
       
   299 
       
   300 /**
       
   301  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
   302  * @adapter: board private structure
       
   303  **/
       
   304 
       
   305 static void e1000_irq_disable(struct e1000_adapter *adapter)
       
   306 {
       
   307 	struct e1000_hw *hw = &adapter->hw;
       
   308 
       
   309 	ew32(IMC, ~0);
       
   310 	E1000_WRITE_FLUSH();
       
   311 	synchronize_irq(adapter->pdev->irq);
       
   312 }
       
   313 
       
   314 /**
       
   315  * e1000_irq_enable - Enable default interrupt generation settings
       
   316  * @adapter: board private structure
       
   317  **/
       
   318 
       
   319 static void e1000_irq_enable(struct e1000_adapter *adapter)
       
   320 {
       
   321 	struct e1000_hw *hw = &adapter->hw;
       
   322 
       
   323 	ew32(IMS, IMS_ENABLE_MASK);
       
   324 	E1000_WRITE_FLUSH();
       
   325 }
       
   326 
       
   327 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
   328 {
       
   329 	struct e1000_hw *hw = &adapter->hw;
       
   330 	struct net_device *netdev = adapter->netdev;
       
   331 	u16 vid = hw->mng_cookie.vlan_id;
       
   332 	u16 old_vid = adapter->mng_vlan_id;
       
   333 
       
   334 	if (!e1000_vlan_used(adapter))
       
   335 		return;
       
   336 
       
   337 	if (!test_bit(vid, adapter->active_vlans)) {
       
   338 		if (hw->mng_cookie.status &
       
   339 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
       
   340 			e1000_vlan_rx_add_vid(netdev, vid);
       
   341 			adapter->mng_vlan_id = vid;
       
   342 		} else {
       
   343 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
   344 		}
       
   345 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
       
   346 		    (vid != old_vid) &&
       
   347 		    !test_bit(old_vid, adapter->active_vlans))
       
   348 			e1000_vlan_rx_kill_vid(netdev, old_vid);
       
   349 	} else {
       
   350 		adapter->mng_vlan_id = vid;
       
   351 	}
       
   352 }
       
   353 
       
   354 static void e1000_init_manageability(struct e1000_adapter *adapter)
       
   355 {
       
   356 	struct e1000_hw *hw = &adapter->hw;
       
   357 
       
   358 	if (adapter->en_mng_pt) {
       
   359 		u32 manc = er32(MANC);
       
   360 
       
   361 		/* disable hardware interception of ARP */
       
   362 		manc &= ~(E1000_MANC_ARP_EN);
       
   363 
       
   364 		ew32(MANC, manc);
       
   365 	}
       
   366 }
       
   367 
       
   368 static void e1000_release_manageability(struct e1000_adapter *adapter)
       
   369 {
       
   370 	struct e1000_hw *hw = &adapter->hw;
       
   371 
       
   372 	if (adapter->en_mng_pt) {
       
   373 		u32 manc = er32(MANC);
       
   374 
       
   375 		/* re-enable hardware interception of ARP */
       
   376 		manc |= E1000_MANC_ARP_EN;
       
   377 
       
   378 		ew32(MANC, manc);
       
   379 	}
       
   380 }
       
   381 
       
   382 /**
       
   383  * e1000_configure - configure the hardware for RX and TX
       
   384  * @adapter = private board structure
       
   385  **/
       
   386 static void e1000_configure(struct e1000_adapter *adapter)
       
   387 {
       
   388 	struct net_device *netdev = adapter->netdev;
       
   389 	int i;
       
   390 
       
   391 	e1000_set_rx_mode(netdev);
       
   392 
       
   393 	e1000_restore_vlan(adapter);
       
   394 	e1000_init_manageability(adapter);
       
   395 
       
   396 	e1000_configure_tx(adapter);
       
   397 	e1000_setup_rctl(adapter);
       
   398 	e1000_configure_rx(adapter);
       
   399 	/* call E1000_DESC_UNUSED which always leaves
       
   400 	 * at least 1 descriptor unused to make sure
       
   401 	 * next_to_use != next_to_clean */
       
   402 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
   403 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
       
   404 		adapter->alloc_rx_buf(adapter, ring,
       
   405 		                      E1000_DESC_UNUSED(ring));
       
   406 	}
       
   407 }
       
   408 
       
   409 int e1000_up(struct e1000_adapter *adapter)
       
   410 {
       
   411 	struct e1000_hw *hw = &adapter->hw;
       
   412 
       
   413 	/* hardware has been reset, we need to reload some things */
       
   414 	e1000_configure(adapter);
       
   415 
       
   416 	clear_bit(__E1000_DOWN, &adapter->flags);
       
   417 
       
   418 	napi_enable(&adapter->napi);
       
   419 
       
   420 	e1000_irq_enable(adapter);
       
   421 
       
   422 	netif_wake_queue(adapter->netdev);
       
   423 
       
   424 	/* fire a link change interrupt to start the watchdog */
       
   425 	ew32(ICS, E1000_ICS_LSC);
       
   426 	return 0;
       
   427 }
       
   428 
       
   429 /**
       
   430  * e1000_power_up_phy - restore link in case the phy was powered down
       
   431  * @adapter: address of board private structure
       
   432  *
       
   433  * The phy may be powered down to save power and turn off link when the
       
   434  * driver is unloaded and wake on lan is not enabled (among others)
       
   435  * *** this routine MUST be followed by a call to e1000_reset ***
       
   436  *
       
   437  **/
       
   438 
       
   439 void e1000_power_up_phy(struct e1000_adapter *adapter)
       
   440 {
       
   441 	struct e1000_hw *hw = &adapter->hw;
       
   442 	u16 mii_reg = 0;
       
   443 
       
   444 	/* Just clear the power down bit to wake the phy back up */
       
   445 	if (hw->media_type == e1000_media_type_copper) {
       
   446 		/* according to the manual, the phy will retain its
       
   447 		 * settings across a power-down/up cycle */
       
   448 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
       
   449 		mii_reg &= ~MII_CR_POWER_DOWN;
       
   450 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
       
   451 	}
       
   452 }
       
   453 
       
   454 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
   455 {
       
   456 	struct e1000_hw *hw = &adapter->hw;
       
   457 
       
   458 	/* Power down the PHY so no link is implied when interface is down *
       
   459 	 * The PHY cannot be powered down if any of the following is true *
       
   460 	 * (a) WoL is enabled
       
   461 	 * (b) AMT is active
       
   462 	 * (c) SoL/IDER session is active */
       
   463 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
       
   464 	   hw->media_type == e1000_media_type_copper) {
       
   465 		u16 mii_reg = 0;
       
   466 
       
   467 		switch (hw->mac_type) {
       
   468 		case e1000_82540:
       
   469 		case e1000_82545:
       
   470 		case e1000_82545_rev_3:
       
   471 		case e1000_82546:
       
   472 		case e1000_ce4100:
       
   473 		case e1000_82546_rev_3:
       
   474 		case e1000_82541:
       
   475 		case e1000_82541_rev_2:
       
   476 		case e1000_82547:
       
   477 		case e1000_82547_rev_2:
       
   478 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
       
   479 				goto out;
       
   480 			break;
       
   481 		default:
       
   482 			goto out;
       
   483 		}
       
   484 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
       
   485 		mii_reg |= MII_CR_POWER_DOWN;
       
   486 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
       
   487 		msleep(1);
       
   488 	}
       
   489 out:
       
   490 	return;
       
   491 }
       
   492 
       
   493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
       
   494 {
       
   495 	set_bit(__E1000_DOWN, &adapter->flags);
       
   496 
       
   497 	/* Only kill reset task if adapter is not resetting */
       
   498 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
       
   499 		cancel_work_sync(&adapter->reset_task);
       
   500 
       
   501 	cancel_delayed_work_sync(&adapter->watchdog_task);
       
   502 	cancel_delayed_work_sync(&adapter->phy_info_task);
       
   503 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
       
   504 }
       
   505 
       
   506 void e1000_down(struct e1000_adapter *adapter)
       
   507 {
       
   508 	struct e1000_hw *hw = &adapter->hw;
       
   509 	struct net_device *netdev = adapter->netdev;
       
   510 	u32 rctl, tctl;
       
   511 
       
   512 
       
   513 	/* disable receives in the hardware */
       
   514 	rctl = er32(RCTL);
       
   515 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
   516 	/* flush and sleep below */
       
   517 
       
   518 	netif_tx_disable(netdev);
       
   519 
       
   520 	/* disable transmits in the hardware */
       
   521 	tctl = er32(TCTL);
       
   522 	tctl &= ~E1000_TCTL_EN;
       
   523 	ew32(TCTL, tctl);
       
   524 	/* flush both disables and wait for them to finish */
       
   525 	E1000_WRITE_FLUSH();
       
   526 	msleep(10);
       
   527 
       
   528 	napi_disable(&adapter->napi);
       
   529 
       
   530 	e1000_irq_disable(adapter);
       
   531 
       
   532 	/*
       
   533 	 * Setting DOWN must be after irq_disable to prevent
       
   534 	 * a screaming interrupt.  Setting DOWN also prevents
       
   535 	 * tasks from rescheduling.
       
   536 	 */
       
   537 	e1000_down_and_stop(adapter);
       
   538 
       
   539 	adapter->link_speed = 0;
       
   540 	adapter->link_duplex = 0;
       
   541 	netif_carrier_off(netdev);
       
   542 
       
   543 	e1000_reset(adapter);
       
   544 	e1000_clean_all_tx_rings(adapter);
       
   545 	e1000_clean_all_rx_rings(adapter);
       
   546 }
       
   547 
       
   548 static void e1000_reinit_safe(struct e1000_adapter *adapter)
       
   549 {
       
   550 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   551 		msleep(1);
       
   552 	mutex_lock(&adapter->mutex);
       
   553 	e1000_down(adapter);
       
   554 	e1000_up(adapter);
       
   555 	mutex_unlock(&adapter->mutex);
       
   556 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   557 }
       
   558 
       
   559 void e1000_reinit_locked(struct e1000_adapter *adapter)
       
   560 {
       
   561 	/* if rtnl_lock is not held the call path is bogus */
       
   562 	ASSERT_RTNL();
       
   563 	WARN_ON(in_interrupt());
       
   564 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   565 		msleep(1);
       
   566 	e1000_down(adapter);
       
   567 	e1000_up(adapter);
       
   568 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   569 }
       
   570 
       
   571 void e1000_reset(struct e1000_adapter *adapter)
       
   572 {
       
   573 	struct e1000_hw *hw = &adapter->hw;
       
   574 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
       
   575 	bool legacy_pba_adjust = false;
       
   576 	u16 hwm;
       
   577 
       
   578 	/* Repartition Pba for greater than 9k mtu
       
   579 	 * To take effect CTRL.RST is required.
       
   580 	 */
       
   581 
       
   582 	switch (hw->mac_type) {
       
   583 	case e1000_82542_rev2_0:
       
   584 	case e1000_82542_rev2_1:
       
   585 	case e1000_82543:
       
   586 	case e1000_82544:
       
   587 	case e1000_82540:
       
   588 	case e1000_82541:
       
   589 	case e1000_82541_rev_2:
       
   590 		legacy_pba_adjust = true;
       
   591 		pba = E1000_PBA_48K;
       
   592 		break;
       
   593 	case e1000_82545:
       
   594 	case e1000_82545_rev_3:
       
   595 	case e1000_82546:
       
   596 	case e1000_ce4100:
       
   597 	case e1000_82546_rev_3:
       
   598 		pba = E1000_PBA_48K;
       
   599 		break;
       
   600 	case e1000_82547:
       
   601 	case e1000_82547_rev_2:
       
   602 		legacy_pba_adjust = true;
       
   603 		pba = E1000_PBA_30K;
       
   604 		break;
       
   605 	case e1000_undefined:
       
   606 	case e1000_num_macs:
       
   607 		break;
       
   608 	}
       
   609 
       
   610 	if (legacy_pba_adjust) {
       
   611 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
       
   612 			pba -= 8; /* allocate more FIFO for Tx */
       
   613 
       
   614 		if (hw->mac_type == e1000_82547) {
       
   615 			adapter->tx_fifo_head = 0;
       
   616 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
       
   617 			adapter->tx_fifo_size =
       
   618 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
       
   619 			atomic_set(&adapter->tx_fifo_stall, 0);
       
   620 		}
       
   621 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
       
   622 		/* adjust PBA for jumbo frames */
       
   623 		ew32(PBA, pba);
       
   624 
       
   625 		/* To maintain wire speed transmits, the Tx FIFO should be
       
   626 		 * large enough to accommodate two full transmit packets,
       
   627 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
       
   628 		 * the Rx FIFO should be large enough to accommodate at least
       
   629 		 * one full receive packet and is similarly rounded up and
       
   630 		 * expressed in KB. */
       
   631 		pba = er32(PBA);
       
   632 		/* upper 16 bits has Tx packet buffer allocation size in KB */
       
   633 		tx_space = pba >> 16;
       
   634 		/* lower 16 bits has Rx packet buffer allocation size in KB */
       
   635 		pba &= 0xffff;
       
   636 		/*
       
   637 		 * the tx fifo also stores 16 bytes of information about the tx
       
   638 		 * but don't include ethernet FCS because hardware appends it
       
   639 		 */
       
   640 		min_tx_space = (hw->max_frame_size +
       
   641 		                sizeof(struct e1000_tx_desc) -
       
   642 		                ETH_FCS_LEN) * 2;
       
   643 		min_tx_space = ALIGN(min_tx_space, 1024);
       
   644 		min_tx_space >>= 10;
       
   645 		/* software strips receive CRC, so leave room for it */
       
   646 		min_rx_space = hw->max_frame_size;
       
   647 		min_rx_space = ALIGN(min_rx_space, 1024);
       
   648 		min_rx_space >>= 10;
       
   649 
       
   650 		/* If current Tx allocation is less than the min Tx FIFO size,
       
   651 		 * and the min Tx FIFO size is less than the current Rx FIFO
       
   652 		 * allocation, take space away from current Rx allocation */
       
   653 		if (tx_space < min_tx_space &&
       
   654 		    ((min_tx_space - tx_space) < pba)) {
       
   655 			pba = pba - (min_tx_space - tx_space);
       
   656 
       
   657 			/* PCI/PCIx hardware has PBA alignment constraints */
       
   658 			switch (hw->mac_type) {
       
   659 			case e1000_82545 ... e1000_82546_rev_3:
       
   660 				pba &= ~(E1000_PBA_8K - 1);
       
   661 				break;
       
   662 			default:
       
   663 				break;
       
   664 			}
       
   665 
       
   666 			/* if short on rx space, rx wins and must trump tx
       
   667 			 * adjustment or use Early Receive if available */
       
   668 			if (pba < min_rx_space)
       
   669 				pba = min_rx_space;
       
   670 		}
       
   671 	}
       
   672 
       
   673 	ew32(PBA, pba);
       
   674 
       
   675 	/*
       
   676 	 * flow control settings:
       
   677 	 * The high water mark must be low enough to fit one full frame
       
   678 	 * (or the size used for early receive) above it in the Rx FIFO.
       
   679 	 * Set it to the lower of:
       
   680 	 * - 90% of the Rx FIFO size, and
       
   681 	 * - the full Rx FIFO size minus the early receive size (for parts
       
   682 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
       
   683 	 * - the full Rx FIFO size minus one full frame
       
   684 	 */
       
   685 	hwm = min(((pba << 10) * 9 / 10),
       
   686 		  ((pba << 10) - hw->max_frame_size));
       
   687 
       
   688 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
       
   689 	hw->fc_low_water = hw->fc_high_water - 8;
       
   690 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
       
   691 	hw->fc_send_xon = 1;
       
   692 	hw->fc = hw->original_fc;
       
   693 
       
   694 	/* Allow time for pending master requests to run */
       
   695 	e1000_reset_hw(hw);
       
   696 	if (hw->mac_type >= e1000_82544)
       
   697 		ew32(WUC, 0);
       
   698 
       
   699 	if (e1000_init_hw(hw))
       
   700 		e_dev_err("Hardware Error\n");
       
   701 	e1000_update_mng_vlan(adapter);
       
   702 
       
   703 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
       
   704 	if (hw->mac_type >= e1000_82544 &&
       
   705 	    hw->autoneg == 1 &&
       
   706 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
       
   707 		u32 ctrl = er32(CTRL);
       
   708 		/* clear phy power management bit if we are in gig only mode,
       
   709 		 * which if enabled will attempt negotiation to 100Mb, which
       
   710 		 * can cause a loss of link at power off or driver unload */
       
   711 		ctrl &= ~E1000_CTRL_SWDPIN3;
       
   712 		ew32(CTRL, ctrl);
       
   713 	}
       
   714 
       
   715 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
   716 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
       
   717 
       
   718 	e1000_reset_adaptive(hw);
       
   719 	e1000_phy_get_info(hw, &adapter->phy_info);
       
   720 
       
   721 	e1000_release_manageability(adapter);
       
   722 }
       
   723 
       
   724 /**
       
   725  *  Dump the eeprom for users having checksum issues
       
   726  **/
       
   727 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
       
   728 {
       
   729 	struct net_device *netdev = adapter->netdev;
       
   730 	struct ethtool_eeprom eeprom;
       
   731 	const struct ethtool_ops *ops = netdev->ethtool_ops;
       
   732 	u8 *data;
       
   733 	int i;
       
   734 	u16 csum_old, csum_new = 0;
       
   735 
       
   736 	eeprom.len = ops->get_eeprom_len(netdev);
       
   737 	eeprom.offset = 0;
       
   738 
       
   739 	data = kmalloc(eeprom.len, GFP_KERNEL);
       
   740 	if (!data)
       
   741 		return;
       
   742 
       
   743 	ops->get_eeprom(netdev, &eeprom, data);
       
   744 
       
   745 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
       
   746 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
       
   747 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
       
   748 		csum_new += data[i] + (data[i + 1] << 8);
       
   749 	csum_new = EEPROM_SUM - csum_new;
       
   750 
       
   751 	pr_err("/*********************/\n");
       
   752 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
       
   753 	pr_err("Calculated              : 0x%04x\n", csum_new);
       
   754 
       
   755 	pr_err("Offset    Values\n");
       
   756 	pr_err("========  ======\n");
       
   757 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
       
   758 
       
   759 	pr_err("Include this output when contacting your support provider.\n");
       
   760 	pr_err("This is not a software error! Something bad happened to\n");
       
   761 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
       
   762 	pr_err("result in further problems, possibly loss of data,\n");
       
   763 	pr_err("corruption or system hangs!\n");
       
   764 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
       
   765 	pr_err("which is invalid and requires you to set the proper MAC\n");
       
   766 	pr_err("address manually before continuing to enable this network\n");
       
   767 	pr_err("device. Please inspect the EEPROM dump and report the\n");
       
   768 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
       
   769 	pr_err("/*********************/\n");
       
   770 
       
   771 	kfree(data);
       
   772 }
       
   773 
       
   774 /**
       
   775  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
       
   776  * @pdev: PCI device information struct
       
   777  *
       
   778  * Return true if an adapter needs ioport resources
       
   779  **/
       
   780 static int e1000_is_need_ioport(struct pci_dev *pdev)
       
   781 {
       
   782 	switch (pdev->device) {
       
   783 	case E1000_DEV_ID_82540EM:
       
   784 	case E1000_DEV_ID_82540EM_LOM:
       
   785 	case E1000_DEV_ID_82540EP:
       
   786 	case E1000_DEV_ID_82540EP_LOM:
       
   787 	case E1000_DEV_ID_82540EP_LP:
       
   788 	case E1000_DEV_ID_82541EI:
       
   789 	case E1000_DEV_ID_82541EI_MOBILE:
       
   790 	case E1000_DEV_ID_82541ER:
       
   791 	case E1000_DEV_ID_82541ER_LOM:
       
   792 	case E1000_DEV_ID_82541GI:
       
   793 	case E1000_DEV_ID_82541GI_LF:
       
   794 	case E1000_DEV_ID_82541GI_MOBILE:
       
   795 	case E1000_DEV_ID_82544EI_COPPER:
       
   796 	case E1000_DEV_ID_82544EI_FIBER:
       
   797 	case E1000_DEV_ID_82544GC_COPPER:
       
   798 	case E1000_DEV_ID_82544GC_LOM:
       
   799 	case E1000_DEV_ID_82545EM_COPPER:
       
   800 	case E1000_DEV_ID_82545EM_FIBER:
       
   801 	case E1000_DEV_ID_82546EB_COPPER:
       
   802 	case E1000_DEV_ID_82546EB_FIBER:
       
   803 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
       
   804 		return true;
       
   805 	default:
       
   806 		return false;
       
   807 	}
       
   808 }
       
   809 
       
   810 static netdev_features_t e1000_fix_features(struct net_device *netdev,
       
   811 	netdev_features_t features)
       
   812 {
       
   813 	/*
       
   814 	 * Since there is no support for separate rx/tx vlan accel
       
   815 	 * enable/disable make sure tx flag is always in same state as rx.
       
   816 	 */
       
   817 	if (features & NETIF_F_HW_VLAN_RX)
       
   818 		features |= NETIF_F_HW_VLAN_TX;
       
   819 	else
       
   820 		features &= ~NETIF_F_HW_VLAN_TX;
       
   821 
       
   822 	return features;
       
   823 }
       
   824 
       
   825 static int e1000_set_features(struct net_device *netdev,
       
   826 	netdev_features_t features)
       
   827 {
       
   828 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   829 	netdev_features_t changed = features ^ netdev->features;
       
   830 
       
   831 	if (changed & NETIF_F_HW_VLAN_RX)
       
   832 		e1000_vlan_mode(netdev, features);
       
   833 
       
   834 	if (!(changed & NETIF_F_RXCSUM))
       
   835 		return 0;
       
   836 
       
   837 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
       
   838 
       
   839 	if (netif_running(netdev))
       
   840 		e1000_reinit_locked(adapter);
       
   841 	else
       
   842 		e1000_reset(adapter);
       
   843 
       
   844 	return 0;
       
   845 }
       
   846 
       
   847 static const struct net_device_ops e1000_netdev_ops = {
       
   848 	.ndo_open		= e1000_open,
       
   849 	.ndo_stop		= e1000_close,
       
   850 	.ndo_start_xmit		= e1000_xmit_frame,
       
   851 	.ndo_get_stats		= e1000_get_stats,
       
   852 	.ndo_set_rx_mode	= e1000_set_rx_mode,
       
   853 	.ndo_set_mac_address	= e1000_set_mac,
       
   854 	.ndo_tx_timeout		= e1000_tx_timeout,
       
   855 	.ndo_change_mtu		= e1000_change_mtu,
       
   856 	.ndo_do_ioctl		= e1000_ioctl,
       
   857 	.ndo_validate_addr	= eth_validate_addr,
       
   858 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
       
   859 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
       
   860 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   861 	.ndo_poll_controller	= e1000_netpoll,
       
   862 #endif
       
   863 	.ndo_fix_features	= e1000_fix_features,
       
   864 	.ndo_set_features	= e1000_set_features,
       
   865 };
       
   866 
       
   867 /**
       
   868  * e1000_init_hw_struct - initialize members of hw struct
       
   869  * @adapter: board private struct
       
   870  * @hw: structure used by e1000_hw.c
       
   871  *
       
   872  * Factors out initialization of the e1000_hw struct to its own function
       
   873  * that can be called very early at init (just after struct allocation).
       
   874  * Fields are initialized based on PCI device information and
       
   875  * OS network device settings (MTU size).
       
   876  * Returns negative error codes if MAC type setup fails.
       
   877  */
       
   878 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
       
   879 				struct e1000_hw *hw)
       
   880 {
       
   881 	struct pci_dev *pdev = adapter->pdev;
       
   882 
       
   883 	/* PCI config space info */
       
   884 	hw->vendor_id = pdev->vendor;
       
   885 	hw->device_id = pdev->device;
       
   886 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
       
   887 	hw->subsystem_id = pdev->subsystem_device;
       
   888 	hw->revision_id = pdev->revision;
       
   889 
       
   890 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
       
   891 
       
   892 	hw->max_frame_size = adapter->netdev->mtu +
       
   893 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
   894 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
       
   895 
       
   896 	/* identify the MAC */
       
   897 	if (e1000_set_mac_type(hw)) {
       
   898 		e_err(probe, "Unknown MAC Type\n");
       
   899 		return -EIO;
       
   900 	}
       
   901 
       
   902 	switch (hw->mac_type) {
       
   903 	default:
       
   904 		break;
       
   905 	case e1000_82541:
       
   906 	case e1000_82547:
       
   907 	case e1000_82541_rev_2:
       
   908 	case e1000_82547_rev_2:
       
   909 		hw->phy_init_script = 1;
       
   910 		break;
       
   911 	}
       
   912 
       
   913 	e1000_set_media_type(hw);
       
   914 	e1000_get_bus_info(hw);
       
   915 
       
   916 	hw->wait_autoneg_complete = false;
       
   917 	hw->tbi_compatibility_en = true;
       
   918 	hw->adaptive_ifs = true;
       
   919 
       
   920 	/* Copper options */
       
   921 
       
   922 	if (hw->media_type == e1000_media_type_copper) {
       
   923 		hw->mdix = AUTO_ALL_MODES;
       
   924 		hw->disable_polarity_correction = false;
       
   925 		hw->master_slave = E1000_MASTER_SLAVE;
       
   926 	}
       
   927 
       
   928 	return 0;
       
   929 }
       
   930 
       
   931 /**
       
   932  * e1000_probe - Device Initialization Routine
       
   933  * @pdev: PCI device information struct
       
   934  * @ent: entry in e1000_pci_tbl
       
   935  *
       
   936  * Returns 0 on success, negative on failure
       
   937  *
       
   938  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
   939  * The OS initialization, configuring of the adapter private structure,
       
   940  * and a hardware reset occur.
       
   941  **/
       
   942 static int __devinit e1000_probe(struct pci_dev *pdev,
       
   943 				 const struct pci_device_id *ent)
       
   944 {
       
   945 	struct net_device *netdev;
       
   946 	struct e1000_adapter *adapter;
       
   947 	struct e1000_hw *hw;
       
   948 
       
   949 	static int cards_found = 0;
       
   950 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
       
   951 	int i, err, pci_using_dac;
       
   952 	u16 eeprom_data = 0;
       
   953 	u16 tmp = 0;
       
   954 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
       
   955 	int bars, need_ioport;
       
   956 
       
   957 	/* do not allocate ioport bars when not needed */
       
   958 	need_ioport = e1000_is_need_ioport(pdev);
       
   959 	if (need_ioport) {
       
   960 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
       
   961 		err = pci_enable_device(pdev);
       
   962 	} else {
       
   963 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
       
   964 		err = pci_enable_device_mem(pdev);
       
   965 	}
       
   966 	if (err)
       
   967 		return err;
       
   968 
       
   969 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
       
   970 	if (err)
       
   971 		goto err_pci_reg;
       
   972 
       
   973 	pci_set_master(pdev);
       
   974 	err = pci_save_state(pdev);
       
   975 	if (err)
       
   976 		goto err_alloc_etherdev;
       
   977 
       
   978 	err = -ENOMEM;
       
   979 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
   980 	if (!netdev)
       
   981 		goto err_alloc_etherdev;
       
   982 
       
   983 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
   984 
       
   985 	pci_set_drvdata(pdev, netdev);
       
   986 	adapter = netdev_priv(netdev);
       
   987 	adapter->netdev = netdev;
       
   988 	adapter->pdev = pdev;
       
   989 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
       
   990 	adapter->bars = bars;
       
   991 	adapter->need_ioport = need_ioport;
       
   992 
       
   993 	hw = &adapter->hw;
       
   994 	hw->back = adapter;
       
   995 
       
   996 	err = -EIO;
       
   997 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
       
   998 	if (!hw->hw_addr)
       
   999 		goto err_ioremap;
       
  1000 
       
  1001 	if (adapter->need_ioport) {
       
  1002 		for (i = BAR_1; i <= BAR_5; i++) {
       
  1003 			if (pci_resource_len(pdev, i) == 0)
       
  1004 				continue;
       
  1005 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
       
  1006 				hw->io_base = pci_resource_start(pdev, i);
       
  1007 				break;
       
  1008 			}
       
  1009 		}
       
  1010 	}
       
  1011 
       
  1012 	/* make ready for any if (hw->...) below */
       
  1013 	err = e1000_init_hw_struct(adapter, hw);
       
  1014 	if (err)
       
  1015 		goto err_sw_init;
       
  1016 
       
  1017 	/*
       
  1018 	 * there is a workaround being applied below that limits
       
  1019 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
       
  1020 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
       
  1021 	 */
       
  1022 	pci_using_dac = 0;
       
  1023 	if ((hw->bus_type == e1000_bus_type_pcix) &&
       
  1024 	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
       
  1025 		/*
       
  1026 		 * according to DMA-API-HOWTO, coherent calls will always
       
  1027 		 * succeed if the set call did
       
  1028 		 */
       
  1029 		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
       
  1030 		pci_using_dac = 1;
       
  1031 	} else {
       
  1032 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
       
  1033 		if (err) {
       
  1034 			pr_err("No usable DMA config, aborting\n");
       
  1035 			goto err_dma;
       
  1036 		}
       
  1037 		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
       
  1038 	}
       
  1039 
       
  1040 	netdev->netdev_ops = &e1000_netdev_ops;
       
  1041 	e1000_set_ethtool_ops(netdev);
       
  1042 	netdev->watchdog_timeo = 5 * HZ;
       
  1043 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
       
  1044 
       
  1045 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
  1046 
       
  1047 	adapter->bd_number = cards_found;
       
  1048 
       
  1049 	/* setup the private structure */
       
  1050 
       
  1051 	err = e1000_sw_init(adapter);
       
  1052 	if (err)
       
  1053 		goto err_sw_init;
       
  1054 
       
  1055 	err = -EIO;
       
  1056 	if (hw->mac_type == e1000_ce4100) {
       
  1057 		hw->ce4100_gbe_mdio_base_virt =
       
  1058 					ioremap(pci_resource_start(pdev, BAR_1),
       
  1059 		                                pci_resource_len(pdev, BAR_1));
       
  1060 
       
  1061 		if (!hw->ce4100_gbe_mdio_base_virt)
       
  1062 			goto err_mdio_ioremap;
       
  1063 	}
       
  1064 
       
  1065 	if (hw->mac_type >= e1000_82543) {
       
  1066 		netdev->hw_features = NETIF_F_SG |
       
  1067 				   NETIF_F_HW_CSUM |
       
  1068 				   NETIF_F_HW_VLAN_RX;
       
  1069 		netdev->features = NETIF_F_HW_VLAN_TX |
       
  1070 				   NETIF_F_HW_VLAN_FILTER;
       
  1071 	}
       
  1072 
       
  1073 	if ((hw->mac_type >= e1000_82544) &&
       
  1074 	   (hw->mac_type != e1000_82547))
       
  1075 		netdev->hw_features |= NETIF_F_TSO;
       
  1076 
       
  1077 	netdev->priv_flags |= IFF_SUPP_NOFCS;
       
  1078 
       
  1079 	netdev->features |= netdev->hw_features;
       
  1080 	netdev->hw_features |= NETIF_F_RXCSUM;
       
  1081 	netdev->hw_features |= NETIF_F_RXFCS;
       
  1082 
       
  1083 	if (pci_using_dac) {
       
  1084 		netdev->features |= NETIF_F_HIGHDMA;
       
  1085 		netdev->vlan_features |= NETIF_F_HIGHDMA;
       
  1086 	}
       
  1087 
       
  1088 	netdev->vlan_features |= NETIF_F_TSO;
       
  1089 	netdev->vlan_features |= NETIF_F_HW_CSUM;
       
  1090 	netdev->vlan_features |= NETIF_F_SG;
       
  1091 
       
  1092 	netdev->priv_flags |= IFF_UNICAST_FLT;
       
  1093 
       
  1094 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
       
  1095 
       
  1096 	/* initialize eeprom parameters */
       
  1097 	if (e1000_init_eeprom_params(hw)) {
       
  1098 		e_err(probe, "EEPROM initialization failed\n");
       
  1099 		goto err_eeprom;
       
  1100 	}
       
  1101 
       
  1102 	/* before reading the EEPROM, reset the controller to
       
  1103 	 * put the device in a known good starting state */
       
  1104 
       
  1105 	e1000_reset_hw(hw);
       
  1106 
       
  1107 	/* make sure the EEPROM is good */
       
  1108 	if (e1000_validate_eeprom_checksum(hw) < 0) {
       
  1109 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
       
  1110 		e1000_dump_eeprom(adapter);
       
  1111 		/*
       
  1112 		 * set MAC address to all zeroes to invalidate and temporary
       
  1113 		 * disable this device for the user. This blocks regular
       
  1114 		 * traffic while still permitting ethtool ioctls from reaching
       
  1115 		 * the hardware as well as allowing the user to run the
       
  1116 		 * interface after manually setting a hw addr using
       
  1117 		 * `ip set address`
       
  1118 		 */
       
  1119 		memset(hw->mac_addr, 0, netdev->addr_len);
       
  1120 	} else {
       
  1121 		/* copy the MAC address out of the EEPROM */
       
  1122 		if (e1000_read_mac_addr(hw))
       
  1123 			e_err(probe, "EEPROM Read Error\n");
       
  1124 	}
       
  1125 	/* don't block initalization here due to bad MAC address */
       
  1126 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
       
  1127 	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
       
  1128 
       
  1129 	if (!is_valid_ether_addr(netdev->perm_addr))
       
  1130 		e_err(probe, "Invalid MAC Address\n");
       
  1131 
       
  1132 
       
  1133 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
       
  1134 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
       
  1135 			  e1000_82547_tx_fifo_stall_task);
       
  1136 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
       
  1137 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
       
  1138 
       
  1139 	e1000_check_options(adapter);
       
  1140 
       
  1141 	/* Initial Wake on LAN setting
       
  1142 	 * If APM wake is enabled in the EEPROM,
       
  1143 	 * enable the ACPI Magic Packet filter
       
  1144 	 */
       
  1145 
       
  1146 	switch (hw->mac_type) {
       
  1147 	case e1000_82542_rev2_0:
       
  1148 	case e1000_82542_rev2_1:
       
  1149 	case e1000_82543:
       
  1150 		break;
       
  1151 	case e1000_82544:
       
  1152 		e1000_read_eeprom(hw,
       
  1153 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
       
  1154 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
       
  1155 		break;
       
  1156 	case e1000_82546:
       
  1157 	case e1000_82546_rev_3:
       
  1158 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
       
  1159 			e1000_read_eeprom(hw,
       
  1160 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
  1161 			break;
       
  1162 		}
       
  1163 		/* Fall Through */
       
  1164 	default:
       
  1165 		e1000_read_eeprom(hw,
       
  1166 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
  1167 		break;
       
  1168 	}
       
  1169 	if (eeprom_data & eeprom_apme_mask)
       
  1170 		adapter->eeprom_wol |= E1000_WUFC_MAG;
       
  1171 
       
  1172 	/* now that we have the eeprom settings, apply the special cases
       
  1173 	 * where the eeprom may be wrong or the board simply won't support
       
  1174 	 * wake on lan on a particular port */
       
  1175 	switch (pdev->device) {
       
  1176 	case E1000_DEV_ID_82546GB_PCIE:
       
  1177 		adapter->eeprom_wol = 0;
       
  1178 		break;
       
  1179 	case E1000_DEV_ID_82546EB_FIBER:
       
  1180 	case E1000_DEV_ID_82546GB_FIBER:
       
  1181 		/* Wake events only supported on port A for dual fiber
       
  1182 		 * regardless of eeprom setting */
       
  1183 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
       
  1184 			adapter->eeprom_wol = 0;
       
  1185 		break;
       
  1186 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1187 		/* if quad port adapter, disable WoL on all but port A */
       
  1188 		if (global_quad_port_a != 0)
       
  1189 			adapter->eeprom_wol = 0;
       
  1190 		else
       
  1191 			adapter->quad_port_a = true;
       
  1192 		/* Reset for multiple quad port adapters */
       
  1193 		if (++global_quad_port_a == 4)
       
  1194 			global_quad_port_a = 0;
       
  1195 		break;
       
  1196 	}
       
  1197 
       
  1198 	/* initialize the wol settings based on the eeprom settings */
       
  1199 	adapter->wol = adapter->eeprom_wol;
       
  1200 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  1201 
       
  1202 	/* Auto detect PHY address */
       
  1203 	if (hw->mac_type == e1000_ce4100) {
       
  1204 		for (i = 0; i < 32; i++) {
       
  1205 			hw->phy_addr = i;
       
  1206 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
       
  1207 			if (tmp == 0 || tmp == 0xFF) {
       
  1208 				if (i == 31)
       
  1209 					goto err_eeprom;
       
  1210 				continue;
       
  1211 			} else
       
  1212 				break;
       
  1213 		}
       
  1214 	}
       
  1215 
       
  1216 	/* reset the hardware with the new settings */
       
  1217 	e1000_reset(adapter);
       
  1218 
       
  1219 	strcpy(netdev->name, "eth%d");
       
  1220 	err = register_netdev(netdev);
       
  1221 	if (err)
       
  1222 		goto err_register;
       
  1223 
       
  1224 	e1000_vlan_filter_on_off(adapter, false);
       
  1225 
       
  1226 	/* print bus type/speed/width info */
       
  1227 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
       
  1228 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
       
  1229 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
       
  1230 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
       
  1231 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
       
  1232 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
       
  1233 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
       
  1234 	       netdev->dev_addr);
       
  1235 
       
  1236 	/* carrier off reporting is important to ethtool even BEFORE open */
       
  1237 	netif_carrier_off(netdev);
       
  1238 
       
  1239 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
       
  1240 
       
  1241 	cards_found++;
       
  1242 	return 0;
       
  1243 
       
  1244 err_register:
       
  1245 err_eeprom:
       
  1246 	e1000_phy_hw_reset(hw);
       
  1247 
       
  1248 	if (hw->flash_address)
       
  1249 		iounmap(hw->flash_address);
       
  1250 	kfree(adapter->tx_ring);
       
  1251 	kfree(adapter->rx_ring);
       
  1252 err_dma:
       
  1253 err_sw_init:
       
  1254 err_mdio_ioremap:
       
  1255 	iounmap(hw->ce4100_gbe_mdio_base_virt);
       
  1256 	iounmap(hw->hw_addr);
       
  1257 err_ioremap:
       
  1258 	free_netdev(netdev);
       
  1259 err_alloc_etherdev:
       
  1260 	pci_release_selected_regions(pdev, bars);
       
  1261 err_pci_reg:
       
  1262 	pci_disable_device(pdev);
       
  1263 	return err;
       
  1264 }
       
  1265 
       
  1266 /**
       
  1267  * e1000_remove - Device Removal Routine
       
  1268  * @pdev: PCI device information struct
       
  1269  *
       
  1270  * e1000_remove is called by the PCI subsystem to alert the driver
       
  1271  * that it should release a PCI device.  The could be caused by a
       
  1272  * Hot-Plug event, or because the driver is going to be removed from
       
  1273  * memory.
       
  1274  **/
       
  1275 
       
  1276 static void __devexit e1000_remove(struct pci_dev *pdev)
       
  1277 {
       
  1278 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  1279 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1280 	struct e1000_hw *hw = &adapter->hw;
       
  1281 
       
  1282 	e1000_down_and_stop(adapter);
       
  1283 	e1000_release_manageability(adapter);
       
  1284 
       
  1285 	unregister_netdev(netdev);
       
  1286 
       
  1287 	e1000_phy_hw_reset(hw);
       
  1288 
       
  1289 	kfree(adapter->tx_ring);
       
  1290 	kfree(adapter->rx_ring);
       
  1291 
       
  1292 	if (hw->mac_type == e1000_ce4100)
       
  1293 		iounmap(hw->ce4100_gbe_mdio_base_virt);
       
  1294 	iounmap(hw->hw_addr);
       
  1295 	if (hw->flash_address)
       
  1296 		iounmap(hw->flash_address);
       
  1297 	pci_release_selected_regions(pdev, adapter->bars);
       
  1298 
       
  1299 	free_netdev(netdev);
       
  1300 
       
  1301 	pci_disable_device(pdev);
       
  1302 }
       
  1303 
       
  1304 /**
       
  1305  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  1306  * @adapter: board private structure to initialize
       
  1307  *
       
  1308  * e1000_sw_init initializes the Adapter private data structure.
       
  1309  * e1000_init_hw_struct MUST be called before this function
       
  1310  **/
       
  1311 
       
  1312 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
       
  1313 {
       
  1314 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  1315 
       
  1316 	adapter->num_tx_queues = 1;
       
  1317 	adapter->num_rx_queues = 1;
       
  1318 
       
  1319 	if (e1000_alloc_queues(adapter)) {
       
  1320 		e_err(probe, "Unable to allocate memory for queues\n");
       
  1321 		return -ENOMEM;
       
  1322 	}
       
  1323 
       
  1324 	/* Explicitly disable IRQ since the NIC can be in any state. */
       
  1325 	e1000_irq_disable(adapter);
       
  1326 
       
  1327 	spin_lock_init(&adapter->stats_lock);
       
  1328 	mutex_init(&adapter->mutex);
       
  1329 
       
  1330 	set_bit(__E1000_DOWN, &adapter->flags);
       
  1331 
       
  1332 	return 0;
       
  1333 }
       
  1334 
       
  1335 /**
       
  1336  * e1000_alloc_queues - Allocate memory for all rings
       
  1337  * @adapter: board private structure to initialize
       
  1338  *
       
  1339  * We allocate one ring per queue at run-time since we don't know the
       
  1340  * number of queues at compile-time.
       
  1341  **/
       
  1342 
       
  1343 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
       
  1344 {
       
  1345 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
       
  1346 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
       
  1347 	if (!adapter->tx_ring)
       
  1348 		return -ENOMEM;
       
  1349 
       
  1350 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
       
  1351 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
       
  1352 	if (!adapter->rx_ring) {
       
  1353 		kfree(adapter->tx_ring);
       
  1354 		return -ENOMEM;
       
  1355 	}
       
  1356 
       
  1357 	return E1000_SUCCESS;
       
  1358 }
       
  1359 
       
  1360 /**
       
  1361  * e1000_open - Called when a network interface is made active
       
  1362  * @netdev: network interface device structure
       
  1363  *
       
  1364  * Returns 0 on success, negative value on failure
       
  1365  *
       
  1366  * The open entry point is called when a network interface is made
       
  1367  * active by the system (IFF_UP).  At this point all resources needed
       
  1368  * for transmit and receive operations are allocated, the interrupt
       
  1369  * handler is registered with the OS, the watchdog task is started,
       
  1370  * and the stack is notified that the interface is ready.
       
  1371  **/
       
  1372 
       
  1373 static int e1000_open(struct net_device *netdev)
       
  1374 {
       
  1375 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1376 	struct e1000_hw *hw = &adapter->hw;
       
  1377 	int err;
       
  1378 
       
  1379 	/* disallow open during test */
       
  1380 	if (test_bit(__E1000_TESTING, &adapter->flags))
       
  1381 		return -EBUSY;
       
  1382 
       
  1383 	netif_carrier_off(netdev);
       
  1384 
       
  1385 	/* allocate transmit descriptors */
       
  1386 	err = e1000_setup_all_tx_resources(adapter);
       
  1387 	if (err)
       
  1388 		goto err_setup_tx;
       
  1389 
       
  1390 	/* allocate receive descriptors */
       
  1391 	err = e1000_setup_all_rx_resources(adapter);
       
  1392 	if (err)
       
  1393 		goto err_setup_rx;
       
  1394 
       
  1395 	e1000_power_up_phy(adapter);
       
  1396 
       
  1397 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  1398 	if ((hw->mng_cookie.status &
       
  1399 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
  1400 		e1000_update_mng_vlan(adapter);
       
  1401 	}
       
  1402 
       
  1403 	/* before we allocate an interrupt, we must be ready to handle it.
       
  1404 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
       
  1405 	 * as soon as we call pci_request_irq, so we have to setup our
       
  1406 	 * clean_rx handler before we do so.  */
       
  1407 	e1000_configure(adapter);
       
  1408 
       
  1409 	err = e1000_request_irq(adapter);
       
  1410 	if (err)
       
  1411 		goto err_req_irq;
       
  1412 
       
  1413 	/* From here on the code is the same as e1000_up() */
       
  1414 	clear_bit(__E1000_DOWN, &adapter->flags);
       
  1415 
       
  1416 	napi_enable(&adapter->napi);
       
  1417 
       
  1418 	e1000_irq_enable(adapter);
       
  1419 
       
  1420 	netif_start_queue(netdev);
       
  1421 
       
  1422 	/* fire a link status change interrupt to start the watchdog */
       
  1423 	ew32(ICS, E1000_ICS_LSC);
       
  1424 
       
  1425 	return E1000_SUCCESS;
       
  1426 
       
  1427 err_req_irq:
       
  1428 	e1000_power_down_phy(adapter);
       
  1429 	e1000_free_all_rx_resources(adapter);
       
  1430 err_setup_rx:
       
  1431 	e1000_free_all_tx_resources(adapter);
       
  1432 err_setup_tx:
       
  1433 	e1000_reset(adapter);
       
  1434 
       
  1435 	return err;
       
  1436 }
       
  1437 
       
  1438 /**
       
  1439  * e1000_close - Disables a network interface
       
  1440  * @netdev: network interface device structure
       
  1441  *
       
  1442  * Returns 0, this is not allowed to fail
       
  1443  *
       
  1444  * The close entry point is called when an interface is de-activated
       
  1445  * by the OS.  The hardware is still under the drivers control, but
       
  1446  * needs to be disabled.  A global MAC reset is issued to stop the
       
  1447  * hardware, and all transmit and receive resources are freed.
       
  1448  **/
       
  1449 
       
  1450 static int e1000_close(struct net_device *netdev)
       
  1451 {
       
  1452 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1453 	struct e1000_hw *hw = &adapter->hw;
       
  1454 
       
  1455 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  1456 	e1000_down(adapter);
       
  1457 	e1000_power_down_phy(adapter);
       
  1458 	e1000_free_irq(adapter);
       
  1459 
       
  1460 	e1000_free_all_tx_resources(adapter);
       
  1461 	e1000_free_all_rx_resources(adapter);
       
  1462 
       
  1463 	/* kill manageability vlan ID if supported, but not if a vlan with
       
  1464 	 * the same ID is registered on the host OS (let 8021q kill it) */
       
  1465 	if ((hw->mng_cookie.status &
       
  1466 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  1467 	     !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
       
  1468 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  1469 	}
       
  1470 
       
  1471 	return 0;
       
  1472 }
       
  1473 
       
  1474 /**
       
  1475  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
       
  1476  * @adapter: address of board private structure
       
  1477  * @start: address of beginning of memory
       
  1478  * @len: length of memory
       
  1479  **/
       
  1480 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
       
  1481 				  unsigned long len)
       
  1482 {
       
  1483 	struct e1000_hw *hw = &adapter->hw;
       
  1484 	unsigned long begin = (unsigned long)start;
       
  1485 	unsigned long end = begin + len;
       
  1486 
       
  1487 	/* First rev 82545 and 82546 need to not allow any memory
       
  1488 	 * write location to cross 64k boundary due to errata 23 */
       
  1489 	if (hw->mac_type == e1000_82545 ||
       
  1490 	    hw->mac_type == e1000_ce4100 ||
       
  1491 	    hw->mac_type == e1000_82546) {
       
  1492 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
       
  1493 	}
       
  1494 
       
  1495 	return true;
       
  1496 }
       
  1497 
       
  1498 /**
       
  1499  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
       
  1500  * @adapter: board private structure
       
  1501  * @txdr:    tx descriptor ring (for a specific queue) to setup
       
  1502  *
       
  1503  * Return 0 on success, negative on failure
       
  1504  **/
       
  1505 
       
  1506 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
  1507 				    struct e1000_tx_ring *txdr)
       
  1508 {
       
  1509 	struct pci_dev *pdev = adapter->pdev;
       
  1510 	int size;
       
  1511 
       
  1512 	size = sizeof(struct e1000_buffer) * txdr->count;
       
  1513 	txdr->buffer_info = vzalloc(size);
       
  1514 	if (!txdr->buffer_info) {
       
  1515 		e_err(probe, "Unable to allocate memory for the Tx descriptor "
       
  1516 		      "ring\n");
       
  1517 		return -ENOMEM;
       
  1518 	}
       
  1519 
       
  1520 	/* round up to nearest 4K */
       
  1521 
       
  1522 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
  1523 	txdr->size = ALIGN(txdr->size, 4096);
       
  1524 
       
  1525 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
       
  1526 					GFP_KERNEL);
       
  1527 	if (!txdr->desc) {
       
  1528 setup_tx_desc_die:
       
  1529 		vfree(txdr->buffer_info);
       
  1530 		e_err(probe, "Unable to allocate memory for the Tx descriptor "
       
  1531 		      "ring\n");
       
  1532 		return -ENOMEM;
       
  1533 	}
       
  1534 
       
  1535 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1536 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1537 		void *olddesc = txdr->desc;
       
  1538 		dma_addr_t olddma = txdr->dma;
       
  1539 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
       
  1540 		      txdr->size, txdr->desc);
       
  1541 		/* Try again, without freeing the previous */
       
  1542 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
       
  1543 						&txdr->dma, GFP_KERNEL);
       
  1544 		/* Failed allocation, critical failure */
       
  1545 		if (!txdr->desc) {
       
  1546 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
       
  1547 					  olddma);
       
  1548 			goto setup_tx_desc_die;
       
  1549 		}
       
  1550 
       
  1551 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1552 			/* give up */
       
  1553 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
       
  1554 					  txdr->dma);
       
  1555 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
       
  1556 					  olddma);
       
  1557 			e_err(probe, "Unable to allocate aligned memory "
       
  1558 			      "for the transmit descriptor ring\n");
       
  1559 			vfree(txdr->buffer_info);
       
  1560 			return -ENOMEM;
       
  1561 		} else {
       
  1562 			/* Free old allocation, new allocation was successful */
       
  1563 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
       
  1564 					  olddma);
       
  1565 		}
       
  1566 	}
       
  1567 	memset(txdr->desc, 0, txdr->size);
       
  1568 
       
  1569 	txdr->next_to_use = 0;
       
  1570 	txdr->next_to_clean = 0;
       
  1571 
       
  1572 	return 0;
       
  1573 }
       
  1574 
       
  1575 /**
       
  1576  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
       
  1577  * 				  (Descriptors) for all queues
       
  1578  * @adapter: board private structure
       
  1579  *
       
  1580  * Return 0 on success, negative on failure
       
  1581  **/
       
  1582 
       
  1583 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
       
  1584 {
       
  1585 	int i, err = 0;
       
  1586 
       
  1587 	for (i = 0; i < adapter->num_tx_queues; i++) {
       
  1588 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1589 		if (err) {
       
  1590 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
       
  1591 			for (i-- ; i >= 0; i--)
       
  1592 				e1000_free_tx_resources(adapter,
       
  1593 							&adapter->tx_ring[i]);
       
  1594 			break;
       
  1595 		}
       
  1596 	}
       
  1597 
       
  1598 	return err;
       
  1599 }
       
  1600 
       
  1601 /**
       
  1602  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  1603  * @adapter: board private structure
       
  1604  *
       
  1605  * Configure the Tx unit of the MAC after a reset.
       
  1606  **/
       
  1607 
       
  1608 static void e1000_configure_tx(struct e1000_adapter *adapter)
       
  1609 {
       
  1610 	u64 tdba;
       
  1611 	struct e1000_hw *hw = &adapter->hw;
       
  1612 	u32 tdlen, tctl, tipg;
       
  1613 	u32 ipgr1, ipgr2;
       
  1614 
       
  1615 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  1616 
       
  1617 	switch (adapter->num_tx_queues) {
       
  1618 	case 1:
       
  1619 	default:
       
  1620 		tdba = adapter->tx_ring[0].dma;
       
  1621 		tdlen = adapter->tx_ring[0].count *
       
  1622 			sizeof(struct e1000_tx_desc);
       
  1623 		ew32(TDLEN, tdlen);
       
  1624 		ew32(TDBAH, (tdba >> 32));
       
  1625 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
       
  1626 		ew32(TDT, 0);
       
  1627 		ew32(TDH, 0);
       
  1628 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
       
  1629 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
       
  1630 		break;
       
  1631 	}
       
  1632 
       
  1633 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  1634 	if ((hw->media_type == e1000_media_type_fiber ||
       
  1635 	     hw->media_type == e1000_media_type_internal_serdes))
       
  1636 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
       
  1637 	else
       
  1638 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
       
  1639 
       
  1640 	switch (hw->mac_type) {
       
  1641 	case e1000_82542_rev2_0:
       
  1642 	case e1000_82542_rev2_1:
       
  1643 		tipg = DEFAULT_82542_TIPG_IPGT;
       
  1644 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
       
  1645 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
       
  1646 		break;
       
  1647 	default:
       
  1648 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1649 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
       
  1650 		break;
       
  1651 	}
       
  1652 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
       
  1653 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
       
  1654 	ew32(TIPG, tipg);
       
  1655 
       
  1656 	/* Set the Tx Interrupt Delay register */
       
  1657 
       
  1658 	ew32(TIDV, adapter->tx_int_delay);
       
  1659 	if (hw->mac_type >= e1000_82540)
       
  1660 		ew32(TADV, adapter->tx_abs_int_delay);
       
  1661 
       
  1662 	/* Program the Transmit Control Register */
       
  1663 
       
  1664 	tctl = er32(TCTL);
       
  1665 	tctl &= ~E1000_TCTL_CT;
       
  1666 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  1667 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  1668 
       
  1669 	e1000_config_collision_dist(hw);
       
  1670 
       
  1671 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  1672 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
       
  1673 
       
  1674 	/* only set IDE if we are delaying interrupts using the timers */
       
  1675 	if (adapter->tx_int_delay)
       
  1676 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
       
  1677 
       
  1678 	if (hw->mac_type < e1000_82543)
       
  1679 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
       
  1680 	else
       
  1681 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  1682 
       
  1683 	/* Cache if we're 82544 running in PCI-X because we'll
       
  1684 	 * need this to apply a workaround later in the send path. */
       
  1685 	if (hw->mac_type == e1000_82544 &&
       
  1686 	    hw->bus_type == e1000_bus_type_pcix)
       
  1687 		adapter->pcix_82544 = true;
       
  1688 
       
  1689 	ew32(TCTL, tctl);
       
  1690 
       
  1691 }
       
  1692 
       
  1693 /**
       
  1694  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
       
  1695  * @adapter: board private structure
       
  1696  * @rxdr:    rx descriptor ring (for a specific queue) to setup
       
  1697  *
       
  1698  * Returns 0 on success, negative on failure
       
  1699  **/
       
  1700 
       
  1701 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
  1702 				    struct e1000_rx_ring *rxdr)
       
  1703 {
       
  1704 	struct pci_dev *pdev = adapter->pdev;
       
  1705 	int size, desc_len;
       
  1706 
       
  1707 	size = sizeof(struct e1000_buffer) * rxdr->count;
       
  1708 	rxdr->buffer_info = vzalloc(size);
       
  1709 	if (!rxdr->buffer_info) {
       
  1710 		e_err(probe, "Unable to allocate memory for the Rx descriptor "
       
  1711 		      "ring\n");
       
  1712 		return -ENOMEM;
       
  1713 	}
       
  1714 
       
  1715 	desc_len = sizeof(struct e1000_rx_desc);
       
  1716 
       
  1717 	/* Round up to nearest 4K */
       
  1718 
       
  1719 	rxdr->size = rxdr->count * desc_len;
       
  1720 	rxdr->size = ALIGN(rxdr->size, 4096);
       
  1721 
       
  1722 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
       
  1723 					GFP_KERNEL);
       
  1724 
       
  1725 	if (!rxdr->desc) {
       
  1726 		e_err(probe, "Unable to allocate memory for the Rx descriptor "
       
  1727 		      "ring\n");
       
  1728 setup_rx_desc_die:
       
  1729 		vfree(rxdr->buffer_info);
       
  1730 		return -ENOMEM;
       
  1731 	}
       
  1732 
       
  1733 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1734 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1735 		void *olddesc = rxdr->desc;
       
  1736 		dma_addr_t olddma = rxdr->dma;
       
  1737 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
       
  1738 		      rxdr->size, rxdr->desc);
       
  1739 		/* Try again, without freeing the previous */
       
  1740 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
       
  1741 						&rxdr->dma, GFP_KERNEL);
       
  1742 		/* Failed allocation, critical failure */
       
  1743 		if (!rxdr->desc) {
       
  1744 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
       
  1745 					  olddma);
       
  1746 			e_err(probe, "Unable to allocate memory for the Rx "
       
  1747 			      "descriptor ring\n");
       
  1748 			goto setup_rx_desc_die;
       
  1749 		}
       
  1750 
       
  1751 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1752 			/* give up */
       
  1753 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
       
  1754 					  rxdr->dma);
       
  1755 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
       
  1756 					  olddma);
       
  1757 			e_err(probe, "Unable to allocate aligned memory for "
       
  1758 			      "the Rx descriptor ring\n");
       
  1759 			goto setup_rx_desc_die;
       
  1760 		} else {
       
  1761 			/* Free old allocation, new allocation was successful */
       
  1762 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
       
  1763 					  olddma);
       
  1764 		}
       
  1765 	}
       
  1766 	memset(rxdr->desc, 0, rxdr->size);
       
  1767 
       
  1768 	rxdr->next_to_clean = 0;
       
  1769 	rxdr->next_to_use = 0;
       
  1770 	rxdr->rx_skb_top = NULL;
       
  1771 
       
  1772 	return 0;
       
  1773 }
       
  1774 
       
  1775 /**
       
  1776  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
       
  1777  * 				  (Descriptors) for all queues
       
  1778  * @adapter: board private structure
       
  1779  *
       
  1780  * Return 0 on success, negative on failure
       
  1781  **/
       
  1782 
       
  1783 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
       
  1784 {
       
  1785 	int i, err = 0;
       
  1786 
       
  1787 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1788 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
       
  1789 		if (err) {
       
  1790 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
       
  1791 			for (i-- ; i >= 0; i--)
       
  1792 				e1000_free_rx_resources(adapter,
       
  1793 							&adapter->rx_ring[i]);
       
  1794 			break;
       
  1795 		}
       
  1796 	}
       
  1797 
       
  1798 	return err;
       
  1799 }
       
  1800 
       
  1801 /**
       
  1802  * e1000_setup_rctl - configure the receive control registers
       
  1803  * @adapter: Board private structure
       
  1804  **/
       
  1805 static void e1000_setup_rctl(struct e1000_adapter *adapter)
       
  1806 {
       
  1807 	struct e1000_hw *hw = &adapter->hw;
       
  1808 	u32 rctl;
       
  1809 
       
  1810 	rctl = er32(RCTL);
       
  1811 
       
  1812 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  1813 
       
  1814 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
       
  1815 		E1000_RCTL_RDMTS_HALF |
       
  1816 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1817 
       
  1818 	if (hw->tbi_compatibility_on == 1)
       
  1819 		rctl |= E1000_RCTL_SBP;
       
  1820 	else
       
  1821 		rctl &= ~E1000_RCTL_SBP;
       
  1822 
       
  1823 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  1824 		rctl &= ~E1000_RCTL_LPE;
       
  1825 	else
       
  1826 		rctl |= E1000_RCTL_LPE;
       
  1827 
       
  1828 	/* Setup buffer sizes */
       
  1829 	rctl &= ~E1000_RCTL_SZ_4096;
       
  1830 	rctl |= E1000_RCTL_BSEX;
       
  1831 	switch (adapter->rx_buffer_len) {
       
  1832 		case E1000_RXBUFFER_2048:
       
  1833 		default:
       
  1834 			rctl |= E1000_RCTL_SZ_2048;
       
  1835 			rctl &= ~E1000_RCTL_BSEX;
       
  1836 			break;
       
  1837 		case E1000_RXBUFFER_4096:
       
  1838 			rctl |= E1000_RCTL_SZ_4096;
       
  1839 			break;
       
  1840 		case E1000_RXBUFFER_8192:
       
  1841 			rctl |= E1000_RCTL_SZ_8192;
       
  1842 			break;
       
  1843 		case E1000_RXBUFFER_16384:
       
  1844 			rctl |= E1000_RCTL_SZ_16384;
       
  1845 			break;
       
  1846 	}
       
  1847 
       
  1848 	ew32(RCTL, rctl);
       
  1849 }
       
  1850 
       
  1851 /**
       
  1852  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
       
  1853  * @adapter: board private structure
       
  1854  *
       
  1855  * Configure the Rx unit of the MAC after a reset.
       
  1856  **/
       
  1857 
       
  1858 static void e1000_configure_rx(struct e1000_adapter *adapter)
       
  1859 {
       
  1860 	u64 rdba;
       
  1861 	struct e1000_hw *hw = &adapter->hw;
       
  1862 	u32 rdlen, rctl, rxcsum;
       
  1863 
       
  1864 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  1865 		rdlen = adapter->rx_ring[0].count *
       
  1866 		        sizeof(struct e1000_rx_desc);
       
  1867 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
       
  1868 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
       
  1869 	} else {
       
  1870 		rdlen = adapter->rx_ring[0].count *
       
  1871 		        sizeof(struct e1000_rx_desc);
       
  1872 		adapter->clean_rx = e1000_clean_rx_irq;
       
  1873 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  1874 	}
       
  1875 
       
  1876 	/* disable receives while setting up the descriptors */
       
  1877 	rctl = er32(RCTL);
       
  1878 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1879 
       
  1880 	/* set the Receive Delay Timer Register */
       
  1881 	ew32(RDTR, adapter->rx_int_delay);
       
  1882 
       
  1883 	if (hw->mac_type >= e1000_82540) {
       
  1884 		ew32(RADV, adapter->rx_abs_int_delay);
       
  1885 		if (adapter->itr_setting != 0)
       
  1886 			ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  1887 	}
       
  1888 
       
  1889 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
       
  1890 	 * the Base and Length of the Rx Descriptor Ring */
       
  1891 	switch (adapter->num_rx_queues) {
       
  1892 	case 1:
       
  1893 	default:
       
  1894 		rdba = adapter->rx_ring[0].dma;
       
  1895 		ew32(RDLEN, rdlen);
       
  1896 		ew32(RDBAH, (rdba >> 32));
       
  1897 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
       
  1898 		ew32(RDT, 0);
       
  1899 		ew32(RDH, 0);
       
  1900 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
       
  1901 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
       
  1902 		break;
       
  1903 	}
       
  1904 
       
  1905 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
       
  1906 	if (hw->mac_type >= e1000_82543) {
       
  1907 		rxcsum = er32(RXCSUM);
       
  1908 		if (adapter->rx_csum)
       
  1909 			rxcsum |= E1000_RXCSUM_TUOFL;
       
  1910 		else
       
  1911 			/* don't need to clear IPPCSE as it defaults to 0 */
       
  1912 			rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  1913 		ew32(RXCSUM, rxcsum);
       
  1914 	}
       
  1915 
       
  1916 	/* Enable Receives */
       
  1917 	ew32(RCTL, rctl | E1000_RCTL_EN);
       
  1918 }
       
  1919 
       
  1920 /**
       
  1921  * e1000_free_tx_resources - Free Tx Resources per Queue
       
  1922  * @adapter: board private structure
       
  1923  * @tx_ring: Tx descriptor ring for a specific queue
       
  1924  *
       
  1925  * Free all transmit software resources
       
  1926  **/
       
  1927 
       
  1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
  1929 				    struct e1000_tx_ring *tx_ring)
       
  1930 {
       
  1931 	struct pci_dev *pdev = adapter->pdev;
       
  1932 
       
  1933 	e1000_clean_tx_ring(adapter, tx_ring);
       
  1934 
       
  1935 	vfree(tx_ring->buffer_info);
       
  1936 	tx_ring->buffer_info = NULL;
       
  1937 
       
  1938 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
       
  1939 			  tx_ring->dma);
       
  1940 
       
  1941 	tx_ring->desc = NULL;
       
  1942 }
       
  1943 
       
  1944 /**
       
  1945  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
       
  1946  * @adapter: board private structure
       
  1947  *
       
  1948  * Free all transmit software resources
       
  1949  **/
       
  1950 
       
  1951 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
       
  1952 {
       
  1953 	int i;
       
  1954 
       
  1955 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  1956 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1957 }
       
  1958 
       
  1959 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
       
  1960 					     struct e1000_buffer *buffer_info)
       
  1961 {
       
  1962 	if (buffer_info->dma) {
       
  1963 		if (buffer_info->mapped_as_page)
       
  1964 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
       
  1965 				       buffer_info->length, DMA_TO_DEVICE);
       
  1966 		else
       
  1967 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
       
  1968 					 buffer_info->length,
       
  1969 					 DMA_TO_DEVICE);
       
  1970 		buffer_info->dma = 0;
       
  1971 	}
       
  1972 	if (buffer_info->skb) {
       
  1973 		dev_kfree_skb_any(buffer_info->skb);
       
  1974 		buffer_info->skb = NULL;
       
  1975 	}
       
  1976 	buffer_info->time_stamp = 0;
       
  1977 	/* buffer_info must be completely set up in the transmit path */
       
  1978 }
       
  1979 
       
  1980 /**
       
  1981  * e1000_clean_tx_ring - Free Tx Buffers
       
  1982  * @adapter: board private structure
       
  1983  * @tx_ring: ring to be cleaned
       
  1984  **/
       
  1985 
       
  1986 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
  1987 				struct e1000_tx_ring *tx_ring)
       
  1988 {
       
  1989 	struct e1000_hw *hw = &adapter->hw;
       
  1990 	struct e1000_buffer *buffer_info;
       
  1991 	unsigned long size;
       
  1992 	unsigned int i;
       
  1993 
       
  1994 	/* Free all the Tx ring sk_buffs */
       
  1995 
       
  1996 	for (i = 0; i < tx_ring->count; i++) {
       
  1997 		buffer_info = &tx_ring->buffer_info[i];
       
  1998 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  1999 	}
       
  2000 
       
  2001 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  2002 	memset(tx_ring->buffer_info, 0, size);
       
  2003 
       
  2004 	/* Zero out the descriptor ring */
       
  2005 
       
  2006 	memset(tx_ring->desc, 0, tx_ring->size);
       
  2007 
       
  2008 	tx_ring->next_to_use = 0;
       
  2009 	tx_ring->next_to_clean = 0;
       
  2010 	tx_ring->last_tx_tso = false;
       
  2011 
       
  2012 	writel(0, hw->hw_addr + tx_ring->tdh);
       
  2013 	writel(0, hw->hw_addr + tx_ring->tdt);
       
  2014 }
       
  2015 
       
  2016 /**
       
  2017  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
       
  2018  * @adapter: board private structure
       
  2019  **/
       
  2020 
       
  2021 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
       
  2022 {
       
  2023 	int i;
       
  2024 
       
  2025 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  2026 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
       
  2027 }
       
  2028 
       
  2029 /**
       
  2030  * e1000_free_rx_resources - Free Rx Resources
       
  2031  * @adapter: board private structure
       
  2032  * @rx_ring: ring to clean the resources from
       
  2033  *
       
  2034  * Free all receive software resources
       
  2035  **/
       
  2036 
       
  2037 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
  2038 				    struct e1000_rx_ring *rx_ring)
       
  2039 {
       
  2040 	struct pci_dev *pdev = adapter->pdev;
       
  2041 
       
  2042 	e1000_clean_rx_ring(adapter, rx_ring);
       
  2043 
       
  2044 	vfree(rx_ring->buffer_info);
       
  2045 	rx_ring->buffer_info = NULL;
       
  2046 
       
  2047 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
       
  2048 			  rx_ring->dma);
       
  2049 
       
  2050 	rx_ring->desc = NULL;
       
  2051 }
       
  2052 
       
  2053 /**
       
  2054  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
       
  2055  * @adapter: board private structure
       
  2056  *
       
  2057  * Free all receive software resources
       
  2058  **/
       
  2059 
       
  2060 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
       
  2061 {
       
  2062 	int i;
       
  2063 
       
  2064 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2065 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
       
  2066 }
       
  2067 
       
  2068 /**
       
  2069  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  2070  * @adapter: board private structure
       
  2071  * @rx_ring: ring to free buffers from
       
  2072  **/
       
  2073 
       
  2074 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
  2075 				struct e1000_rx_ring *rx_ring)
       
  2076 {
       
  2077 	struct e1000_hw *hw = &adapter->hw;
       
  2078 	struct e1000_buffer *buffer_info;
       
  2079 	struct pci_dev *pdev = adapter->pdev;
       
  2080 	unsigned long size;
       
  2081 	unsigned int i;
       
  2082 
       
  2083 	/* Free all the Rx ring sk_buffs */
       
  2084 	for (i = 0; i < rx_ring->count; i++) {
       
  2085 		buffer_info = &rx_ring->buffer_info[i];
       
  2086 		if (buffer_info->dma &&
       
  2087 		    adapter->clean_rx == e1000_clean_rx_irq) {
       
  2088 			dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  2089 			                 buffer_info->length,
       
  2090 					 DMA_FROM_DEVICE);
       
  2091 		} else if (buffer_info->dma &&
       
  2092 		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
       
  2093 			dma_unmap_page(&pdev->dev, buffer_info->dma,
       
  2094 				       buffer_info->length,
       
  2095 				       DMA_FROM_DEVICE);
       
  2096 		}
       
  2097 
       
  2098 		buffer_info->dma = 0;
       
  2099 		if (buffer_info->page) {
       
  2100 			put_page(buffer_info->page);
       
  2101 			buffer_info->page = NULL;
       
  2102 		}
       
  2103 		if (buffer_info->skb) {
       
  2104 			dev_kfree_skb(buffer_info->skb);
       
  2105 			buffer_info->skb = NULL;
       
  2106 		}
       
  2107 	}
       
  2108 
       
  2109 	/* there also may be some cached data from a chained receive */
       
  2110 	if (rx_ring->rx_skb_top) {
       
  2111 		dev_kfree_skb(rx_ring->rx_skb_top);
       
  2112 		rx_ring->rx_skb_top = NULL;
       
  2113 	}
       
  2114 
       
  2115 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  2116 	memset(rx_ring->buffer_info, 0, size);
       
  2117 
       
  2118 	/* Zero out the descriptor ring */
       
  2119 	memset(rx_ring->desc, 0, rx_ring->size);
       
  2120 
       
  2121 	rx_ring->next_to_clean = 0;
       
  2122 	rx_ring->next_to_use = 0;
       
  2123 
       
  2124 	writel(0, hw->hw_addr + rx_ring->rdh);
       
  2125 	writel(0, hw->hw_addr + rx_ring->rdt);
       
  2126 }
       
  2127 
       
  2128 /**
       
  2129  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
       
  2130  * @adapter: board private structure
       
  2131  **/
       
  2132 
       
  2133 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
       
  2134 {
       
  2135 	int i;
       
  2136 
       
  2137 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2138 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
       
  2139 }
       
  2140 
       
  2141 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
       
  2142  * and memory write and invalidate disabled for certain operations
       
  2143  */
       
  2144 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
       
  2145 {
       
  2146 	struct e1000_hw *hw = &adapter->hw;
       
  2147 	struct net_device *netdev = adapter->netdev;
       
  2148 	u32 rctl;
       
  2149 
       
  2150 	e1000_pci_clear_mwi(hw);
       
  2151 
       
  2152 	rctl = er32(RCTL);
       
  2153 	rctl |= E1000_RCTL_RST;
       
  2154 	ew32(RCTL, rctl);
       
  2155 	E1000_WRITE_FLUSH();
       
  2156 	mdelay(5);
       
  2157 
       
  2158 	if (netif_running(netdev))
       
  2159 		e1000_clean_all_rx_rings(adapter);
       
  2160 }
       
  2161 
       
  2162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
       
  2163 {
       
  2164 	struct e1000_hw *hw = &adapter->hw;
       
  2165 	struct net_device *netdev = adapter->netdev;
       
  2166 	u32 rctl;
       
  2167 
       
  2168 	rctl = er32(RCTL);
       
  2169 	rctl &= ~E1000_RCTL_RST;
       
  2170 	ew32(RCTL, rctl);
       
  2171 	E1000_WRITE_FLUSH();
       
  2172 	mdelay(5);
       
  2173 
       
  2174 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
  2175 		e1000_pci_set_mwi(hw);
       
  2176 
       
  2177 	if (netif_running(netdev)) {
       
  2178 		/* No need to loop, because 82542 supports only 1 queue */
       
  2179 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
       
  2180 		e1000_configure_rx(adapter);
       
  2181 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
       
  2182 	}
       
  2183 }
       
  2184 
       
  2185 /**
       
  2186  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  2187  * @netdev: network interface device structure
       
  2188  * @p: pointer to an address structure
       
  2189  *
       
  2190  * Returns 0 on success, negative on failure
       
  2191  **/
       
  2192 
       
  2193 static int e1000_set_mac(struct net_device *netdev, void *p)
       
  2194 {
       
  2195 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2196 	struct e1000_hw *hw = &adapter->hw;
       
  2197 	struct sockaddr *addr = p;
       
  2198 
       
  2199 	if (!is_valid_ether_addr(addr->sa_data))
       
  2200 		return -EADDRNOTAVAIL;
       
  2201 
       
  2202 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2203 
       
  2204 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2205 		e1000_enter_82542_rst(adapter);
       
  2206 
       
  2207 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  2208 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
       
  2209 
       
  2210 	e1000_rar_set(hw, hw->mac_addr, 0);
       
  2211 
       
  2212 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2213 		e1000_leave_82542_rst(adapter);
       
  2214 
       
  2215 	return 0;
       
  2216 }
       
  2217 
       
  2218 /**
       
  2219  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
       
  2220  * @netdev: network interface device structure
       
  2221  *
       
  2222  * The set_rx_mode entry point is called whenever the unicast or multicast
       
  2223  * address lists or the network interface flags are updated. This routine is
       
  2224  * responsible for configuring the hardware for proper unicast, multicast,
       
  2225  * promiscuous mode, and all-multi behavior.
       
  2226  **/
       
  2227 
       
  2228 static void e1000_set_rx_mode(struct net_device *netdev)
       
  2229 {
       
  2230 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2231 	struct e1000_hw *hw = &adapter->hw;
       
  2232 	struct netdev_hw_addr *ha;
       
  2233 	bool use_uc = false;
       
  2234 	u32 rctl;
       
  2235 	u32 hash_value;
       
  2236 	int i, rar_entries = E1000_RAR_ENTRIES;
       
  2237 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
       
  2238 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
       
  2239 
       
  2240 	if (!mcarray) {
       
  2241 		e_err(probe, "memory allocation failed\n");
       
  2242 		return;
       
  2243 	}
       
  2244 
       
  2245 	/* Check for Promiscuous and All Multicast modes */
       
  2246 
       
  2247 	rctl = er32(RCTL);
       
  2248 
       
  2249 	if (netdev->flags & IFF_PROMISC) {
       
  2250 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2251 		rctl &= ~E1000_RCTL_VFE;
       
  2252 	} else {
       
  2253 		if (netdev->flags & IFF_ALLMULTI)
       
  2254 			rctl |= E1000_RCTL_MPE;
       
  2255 		else
       
  2256 			rctl &= ~E1000_RCTL_MPE;
       
  2257 		/* Enable VLAN filter if there is a VLAN */
       
  2258 		if (e1000_vlan_used(adapter))
       
  2259 			rctl |= E1000_RCTL_VFE;
       
  2260 	}
       
  2261 
       
  2262 	if (netdev_uc_count(netdev) > rar_entries - 1) {
       
  2263 		rctl |= E1000_RCTL_UPE;
       
  2264 	} else if (!(netdev->flags & IFF_PROMISC)) {
       
  2265 		rctl &= ~E1000_RCTL_UPE;
       
  2266 		use_uc = true;
       
  2267 	}
       
  2268 
       
  2269 	ew32(RCTL, rctl);
       
  2270 
       
  2271 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2272 
       
  2273 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2274 		e1000_enter_82542_rst(adapter);
       
  2275 
       
  2276 	/* load the first 14 addresses into the exact filters 1-14. Unicast
       
  2277 	 * addresses take precedence to avoid disabling unicast filtering
       
  2278 	 * when possible.
       
  2279 	 *
       
  2280 	 * RAR 0 is used for the station MAC address
       
  2281 	 * if there are not 14 addresses, go ahead and clear the filters
       
  2282 	 */
       
  2283 	i = 1;
       
  2284 	if (use_uc)
       
  2285 		netdev_for_each_uc_addr(ha, netdev) {
       
  2286 			if (i == rar_entries)
       
  2287 				break;
       
  2288 			e1000_rar_set(hw, ha->addr, i++);
       
  2289 		}
       
  2290 
       
  2291 	netdev_for_each_mc_addr(ha, netdev) {
       
  2292 		if (i == rar_entries) {
       
  2293 			/* load any remaining addresses into the hash table */
       
  2294 			u32 hash_reg, hash_bit, mta;
       
  2295 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
       
  2296 			hash_reg = (hash_value >> 5) & 0x7F;
       
  2297 			hash_bit = hash_value & 0x1F;
       
  2298 			mta = (1 << hash_bit);
       
  2299 			mcarray[hash_reg] |= mta;
       
  2300 		} else {
       
  2301 			e1000_rar_set(hw, ha->addr, i++);
       
  2302 		}
       
  2303 	}
       
  2304 
       
  2305 	for (; i < rar_entries; i++) {
       
  2306 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
       
  2307 		E1000_WRITE_FLUSH();
       
  2308 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
       
  2309 		E1000_WRITE_FLUSH();
       
  2310 	}
       
  2311 
       
  2312 	/* write the hash table completely, write from bottom to avoid
       
  2313 	 * both stupid write combining chipsets, and flushing each write */
       
  2314 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
       
  2315 		/*
       
  2316 		 * If we are on an 82544 has an errata where writing odd
       
  2317 		 * offsets overwrites the previous even offset, but writing
       
  2318 		 * backwards over the range solves the issue by always
       
  2319 		 * writing the odd offset first
       
  2320 		 */
       
  2321 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
       
  2322 	}
       
  2323 	E1000_WRITE_FLUSH();
       
  2324 
       
  2325 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2326 		e1000_leave_82542_rst(adapter);
       
  2327 
       
  2328 	kfree(mcarray);
       
  2329 }
       
  2330 
       
  2331 /**
       
  2332  * e1000_update_phy_info_task - get phy info
       
  2333  * @work: work struct contained inside adapter struct
       
  2334  *
       
  2335  * Need to wait a few seconds after link up to get diagnostic information from
       
  2336  * the phy
       
  2337  */
       
  2338 static void e1000_update_phy_info_task(struct work_struct *work)
       
  2339 {
       
  2340 	struct e1000_adapter *adapter = container_of(work,
       
  2341 						     struct e1000_adapter,
       
  2342 						     phy_info_task.work);
       
  2343 	if (test_bit(__E1000_DOWN, &adapter->flags))
       
  2344 		return;
       
  2345 	mutex_lock(&adapter->mutex);
       
  2346 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
       
  2347 	mutex_unlock(&adapter->mutex);
       
  2348 }
       
  2349 
       
  2350 /**
       
  2351  * e1000_82547_tx_fifo_stall_task - task to complete work
       
  2352  * @work: work struct contained inside adapter struct
       
  2353  **/
       
  2354 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
       
  2355 {
       
  2356 	struct e1000_adapter *adapter = container_of(work,
       
  2357 						     struct e1000_adapter,
       
  2358 						     fifo_stall_task.work);
       
  2359 	struct e1000_hw *hw = &adapter->hw;
       
  2360 	struct net_device *netdev = adapter->netdev;
       
  2361 	u32 tctl;
       
  2362 
       
  2363 	if (test_bit(__E1000_DOWN, &adapter->flags))
       
  2364 		return;
       
  2365 	mutex_lock(&adapter->mutex);
       
  2366 	if (atomic_read(&adapter->tx_fifo_stall)) {
       
  2367 		if ((er32(TDT) == er32(TDH)) &&
       
  2368 		   (er32(TDFT) == er32(TDFH)) &&
       
  2369 		   (er32(TDFTS) == er32(TDFHS))) {
       
  2370 			tctl = er32(TCTL);
       
  2371 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
       
  2372 			ew32(TDFT, adapter->tx_head_addr);
       
  2373 			ew32(TDFH, adapter->tx_head_addr);
       
  2374 			ew32(TDFTS, adapter->tx_head_addr);
       
  2375 			ew32(TDFHS, adapter->tx_head_addr);
       
  2376 			ew32(TCTL, tctl);
       
  2377 			E1000_WRITE_FLUSH();
       
  2378 
       
  2379 			adapter->tx_fifo_head = 0;
       
  2380 			atomic_set(&adapter->tx_fifo_stall, 0);
       
  2381 			netif_wake_queue(netdev);
       
  2382 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
       
  2383 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
       
  2384 		}
       
  2385 	}
       
  2386 	mutex_unlock(&adapter->mutex);
       
  2387 }
       
  2388 
       
  2389 bool e1000_has_link(struct e1000_adapter *adapter)
       
  2390 {
       
  2391 	struct e1000_hw *hw = &adapter->hw;
       
  2392 	bool link_active = false;
       
  2393 
       
  2394 	/* get_link_status is set on LSC (link status) interrupt or rx
       
  2395 	 * sequence error interrupt (except on intel ce4100).
       
  2396 	 * get_link_status will stay false until the
       
  2397 	 * e1000_check_for_link establishes link for copper adapters
       
  2398 	 * ONLY
       
  2399 	 */
       
  2400 	switch (hw->media_type) {
       
  2401 	case e1000_media_type_copper:
       
  2402 		if (hw->mac_type == e1000_ce4100)
       
  2403 			hw->get_link_status = 1;
       
  2404 		if (hw->get_link_status) {
       
  2405 			e1000_check_for_link(hw);
       
  2406 			link_active = !hw->get_link_status;
       
  2407 		} else {
       
  2408 			link_active = true;
       
  2409 		}
       
  2410 		break;
       
  2411 	case e1000_media_type_fiber:
       
  2412 		e1000_check_for_link(hw);
       
  2413 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
       
  2414 		break;
       
  2415 	case e1000_media_type_internal_serdes:
       
  2416 		e1000_check_for_link(hw);
       
  2417 		link_active = hw->serdes_has_link;
       
  2418 		break;
       
  2419 	default:
       
  2420 		break;
       
  2421 	}
       
  2422 
       
  2423 	return link_active;
       
  2424 }
       
  2425 
       
  2426 /**
       
  2427  * e1000_watchdog - work function
       
  2428  * @work: work struct contained inside adapter struct
       
  2429  **/
       
  2430 static void e1000_watchdog(struct work_struct *work)
       
  2431 {
       
  2432 	struct e1000_adapter *adapter = container_of(work,
       
  2433 						     struct e1000_adapter,
       
  2434 						     watchdog_task.work);
       
  2435 	struct e1000_hw *hw = &adapter->hw;
       
  2436 	struct net_device *netdev = adapter->netdev;
       
  2437 	struct e1000_tx_ring *txdr = adapter->tx_ring;
       
  2438 	u32 link, tctl;
       
  2439 
       
  2440 	if (test_bit(__E1000_DOWN, &adapter->flags))
       
  2441 		return;
       
  2442 
       
  2443 	mutex_lock(&adapter->mutex);
       
  2444 	link = e1000_has_link(adapter);
       
  2445 	if ((netif_carrier_ok(netdev)) && link)
       
  2446 		goto link_up;
       
  2447 
       
  2448 	if (link) {
       
  2449 		if (!netif_carrier_ok(netdev)) {
       
  2450 			u32 ctrl;
       
  2451 			bool txb2b = true;
       
  2452 			/* update snapshot of PHY registers on LSC */
       
  2453 			e1000_get_speed_and_duplex(hw,
       
  2454 			                           &adapter->link_speed,
       
  2455 			                           &adapter->link_duplex);
       
  2456 
       
  2457 			ctrl = er32(CTRL);
       
  2458 			pr_info("%s NIC Link is Up %d Mbps %s, "
       
  2459 				"Flow Control: %s\n",
       
  2460 				netdev->name,
       
  2461 				adapter->link_speed,
       
  2462 				adapter->link_duplex == FULL_DUPLEX ?
       
  2463 				"Full Duplex" : "Half Duplex",
       
  2464 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
       
  2465 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
       
  2466 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
       
  2467 				E1000_CTRL_TFCE) ? "TX" : "None")));
       
  2468 
       
  2469 			/* adjust timeout factor according to speed/duplex */
       
  2470 			adapter->tx_timeout_factor = 1;
       
  2471 			switch (adapter->link_speed) {
       
  2472 			case SPEED_10:
       
  2473 				txb2b = false;
       
  2474 				adapter->tx_timeout_factor = 16;
       
  2475 				break;
       
  2476 			case SPEED_100:
       
  2477 				txb2b = false;
       
  2478 				/* maybe add some timeout factor ? */
       
  2479 				break;
       
  2480 			}
       
  2481 
       
  2482 			/* enable transmits in the hardware */
       
  2483 			tctl = er32(TCTL);
       
  2484 			tctl |= E1000_TCTL_EN;
       
  2485 			ew32(TCTL, tctl);
       
  2486 
       
  2487 			netif_carrier_on(netdev);
       
  2488 			if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  2489 				schedule_delayed_work(&adapter->phy_info_task,
       
  2490 						      2 * HZ);
       
  2491 			adapter->smartspeed = 0;
       
  2492 		}
       
  2493 	} else {
       
  2494 		if (netif_carrier_ok(netdev)) {
       
  2495 			adapter->link_speed = 0;
       
  2496 			adapter->link_duplex = 0;
       
  2497 			pr_info("%s NIC Link is Down\n",
       
  2498 				netdev->name);
       
  2499 			netif_carrier_off(netdev);
       
  2500 
       
  2501 			if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  2502 				schedule_delayed_work(&adapter->phy_info_task,
       
  2503 						      2 * HZ);
       
  2504 		}
       
  2505 
       
  2506 		e1000_smartspeed(adapter);
       
  2507 	}
       
  2508 
       
  2509 link_up:
       
  2510 	e1000_update_stats(adapter);
       
  2511 
       
  2512 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  2513 	adapter->tpt_old = adapter->stats.tpt;
       
  2514 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
       
  2515 	adapter->colc_old = adapter->stats.colc;
       
  2516 
       
  2517 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
       
  2518 	adapter->gorcl_old = adapter->stats.gorcl;
       
  2519 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
       
  2520 	adapter->gotcl_old = adapter->stats.gotcl;
       
  2521 
       
  2522 	e1000_update_adaptive(hw);
       
  2523 
       
  2524 	if (!netif_carrier_ok(netdev)) {
       
  2525 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
       
  2526 			/* We've lost link, so the controller stops DMA,
       
  2527 			 * but we've got queued Tx work that's never going
       
  2528 			 * to get done, so reset controller to flush Tx.
       
  2529 			 * (Do the reset outside of interrupt context). */
       
  2530 			adapter->tx_timeout_count++;
       
  2531 			schedule_work(&adapter->reset_task);
       
  2532 			/* exit immediately since reset is imminent */
       
  2533 			goto unlock;
       
  2534 		}
       
  2535 	}
       
  2536 
       
  2537 	/* Simple mode for Interrupt Throttle Rate (ITR) */
       
  2538 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
       
  2539 		/*
       
  2540 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
       
  2541 		 * Total asymmetrical Tx or Rx gets ITR=8000;
       
  2542 		 * everyone else is between 2000-8000.
       
  2543 		 */
       
  2544 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
       
  2545 		u32 dif = (adapter->gotcl > adapter->gorcl ?
       
  2546 			    adapter->gotcl - adapter->gorcl :
       
  2547 			    adapter->gorcl - adapter->gotcl) / 10000;
       
  2548 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
       
  2549 
       
  2550 		ew32(ITR, 1000000000 / (itr * 256));
       
  2551 	}
       
  2552 
       
  2553 	/* Cause software interrupt to ensure rx ring is cleaned */
       
  2554 	ew32(ICS, E1000_ICS_RXDMT0);
       
  2555 
       
  2556 	/* Force detection of hung controller every watchdog period */
       
  2557 	adapter->detect_tx_hung = true;
       
  2558 
       
  2559 	/* Reschedule the task */
       
  2560 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  2561 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
       
  2562 
       
  2563 unlock:
       
  2564 	mutex_unlock(&adapter->mutex);
       
  2565 }
       
  2566 
       
  2567 enum latency_range {
       
  2568 	lowest_latency = 0,
       
  2569 	low_latency = 1,
       
  2570 	bulk_latency = 2,
       
  2571 	latency_invalid = 255
       
  2572 };
       
  2573 
       
  2574 /**
       
  2575  * e1000_update_itr - update the dynamic ITR value based on statistics
       
  2576  * @adapter: pointer to adapter
       
  2577  * @itr_setting: current adapter->itr
       
  2578  * @packets: the number of packets during this measurement interval
       
  2579  * @bytes: the number of bytes during this measurement interval
       
  2580  *
       
  2581  *      Stores a new ITR value based on packets and byte
       
  2582  *      counts during the last interrupt.  The advantage of per interrupt
       
  2583  *      computation is faster updates and more accurate ITR for the current
       
  2584  *      traffic pattern.  Constants in this function were computed
       
  2585  *      based on theoretical maximum wire speed and thresholds were set based
       
  2586  *      on testing data as well as attempting to minimize response time
       
  2587  *      while increasing bulk throughput.
       
  2588  *      this functionality is controlled by the InterruptThrottleRate module
       
  2589  *      parameter (see e1000_param.c)
       
  2590  **/
       
  2591 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
       
  2592 				     u16 itr_setting, int packets, int bytes)
       
  2593 {
       
  2594 	unsigned int retval = itr_setting;
       
  2595 	struct e1000_hw *hw = &adapter->hw;
       
  2596 
       
  2597 	if (unlikely(hw->mac_type < e1000_82540))
       
  2598 		goto update_itr_done;
       
  2599 
       
  2600 	if (packets == 0)
       
  2601 		goto update_itr_done;
       
  2602 
       
  2603 	switch (itr_setting) {
       
  2604 	case lowest_latency:
       
  2605 		/* jumbo frames get bulk treatment*/
       
  2606 		if (bytes/packets > 8000)
       
  2607 			retval = bulk_latency;
       
  2608 		else if ((packets < 5) && (bytes > 512))
       
  2609 			retval = low_latency;
       
  2610 		break;
       
  2611 	case low_latency:  /* 50 usec aka 20000 ints/s */
       
  2612 		if (bytes > 10000) {
       
  2613 			/* jumbo frames need bulk latency setting */
       
  2614 			if (bytes/packets > 8000)
       
  2615 				retval = bulk_latency;
       
  2616 			else if ((packets < 10) || ((bytes/packets) > 1200))
       
  2617 				retval = bulk_latency;
       
  2618 			else if ((packets > 35))
       
  2619 				retval = lowest_latency;
       
  2620 		} else if (bytes/packets > 2000)
       
  2621 			retval = bulk_latency;
       
  2622 		else if (packets <= 2 && bytes < 512)
       
  2623 			retval = lowest_latency;
       
  2624 		break;
       
  2625 	case bulk_latency: /* 250 usec aka 4000 ints/s */
       
  2626 		if (bytes > 25000) {
       
  2627 			if (packets > 35)
       
  2628 				retval = low_latency;
       
  2629 		} else if (bytes < 6000) {
       
  2630 			retval = low_latency;
       
  2631 		}
       
  2632 		break;
       
  2633 	}
       
  2634 
       
  2635 update_itr_done:
       
  2636 	return retval;
       
  2637 }
       
  2638 
       
  2639 static void e1000_set_itr(struct e1000_adapter *adapter)
       
  2640 {
       
  2641 	struct e1000_hw *hw = &adapter->hw;
       
  2642 	u16 current_itr;
       
  2643 	u32 new_itr = adapter->itr;
       
  2644 
       
  2645 	if (unlikely(hw->mac_type < e1000_82540))
       
  2646 		return;
       
  2647 
       
  2648 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
       
  2649 	if (unlikely(adapter->link_speed != SPEED_1000)) {
       
  2650 		current_itr = 0;
       
  2651 		new_itr = 4000;
       
  2652 		goto set_itr_now;
       
  2653 	}
       
  2654 
       
  2655 	adapter->tx_itr = e1000_update_itr(adapter,
       
  2656 	                            adapter->tx_itr,
       
  2657 	                            adapter->total_tx_packets,
       
  2658 	                            adapter->total_tx_bytes);
       
  2659 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2660 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
       
  2661 		adapter->tx_itr = low_latency;
       
  2662 
       
  2663 	adapter->rx_itr = e1000_update_itr(adapter,
       
  2664 	                            adapter->rx_itr,
       
  2665 	                            adapter->total_rx_packets,
       
  2666 	                            adapter->total_rx_bytes);
       
  2667 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2668 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
       
  2669 		adapter->rx_itr = low_latency;
       
  2670 
       
  2671 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
       
  2672 
       
  2673 	switch (current_itr) {
       
  2674 	/* counts and packets in update_itr are dependent on these numbers */
       
  2675 	case lowest_latency:
       
  2676 		new_itr = 70000;
       
  2677 		break;
       
  2678 	case low_latency:
       
  2679 		new_itr = 20000; /* aka hwitr = ~200 */
       
  2680 		break;
       
  2681 	case bulk_latency:
       
  2682 		new_itr = 4000;
       
  2683 		break;
       
  2684 	default:
       
  2685 		break;
       
  2686 	}
       
  2687 
       
  2688 set_itr_now:
       
  2689 	if (new_itr != adapter->itr) {
       
  2690 		/* this attempts to bias the interrupt rate towards Bulk
       
  2691 		 * by adding intermediate steps when interrupt rate is
       
  2692 		 * increasing */
       
  2693 		new_itr = new_itr > adapter->itr ?
       
  2694 		             min(adapter->itr + (new_itr >> 2), new_itr) :
       
  2695 		             new_itr;
       
  2696 		adapter->itr = new_itr;
       
  2697 		ew32(ITR, 1000000000 / (new_itr * 256));
       
  2698 	}
       
  2699 }
       
  2700 
       
  2701 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  2702 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  2703 #define E1000_TX_FLAGS_TSO		0x00000004
       
  2704 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  2705 #define E1000_TX_FLAGS_NO_FCS		0x00000010
       
  2706 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  2707 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  2708 
       
  2709 static int e1000_tso(struct e1000_adapter *adapter,
       
  2710 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
       
  2711 {
       
  2712 	struct e1000_context_desc *context_desc;
       
  2713 	struct e1000_buffer *buffer_info;
       
  2714 	unsigned int i;
       
  2715 	u32 cmd_length = 0;
       
  2716 	u16 ipcse = 0, tucse, mss;
       
  2717 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
       
  2718 	int err;
       
  2719 
       
  2720 	if (skb_is_gso(skb)) {
       
  2721 		if (skb_header_cloned(skb)) {
       
  2722 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  2723 			if (err)
       
  2724 				return err;
       
  2725 		}
       
  2726 
       
  2727 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  2728 		mss = skb_shinfo(skb)->gso_size;
       
  2729 		if (skb->protocol == htons(ETH_P_IP)) {
       
  2730 			struct iphdr *iph = ip_hdr(skb);
       
  2731 			iph->tot_len = 0;
       
  2732 			iph->check = 0;
       
  2733 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
       
  2734 								 iph->daddr, 0,
       
  2735 								 IPPROTO_TCP,
       
  2736 								 0);
       
  2737 			cmd_length = E1000_TXD_CMD_IP;
       
  2738 			ipcse = skb_transport_offset(skb) - 1;
       
  2739 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
       
  2740 			ipv6_hdr(skb)->payload_len = 0;
       
  2741 			tcp_hdr(skb)->check =
       
  2742 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
       
  2743 						 &ipv6_hdr(skb)->daddr,
       
  2744 						 0, IPPROTO_TCP, 0);
       
  2745 			ipcse = 0;
       
  2746 		}
       
  2747 		ipcss = skb_network_offset(skb);
       
  2748 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
       
  2749 		tucss = skb_transport_offset(skb);
       
  2750 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
       
  2751 		tucse = 0;
       
  2752 
       
  2753 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  2754 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  2755 
       
  2756 		i = tx_ring->next_to_use;
       
  2757 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2758 		buffer_info = &tx_ring->buffer_info[i];
       
  2759 
       
  2760 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  2761 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  2762 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  2763 		context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  2764 		context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  2765 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  2766 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  2767 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  2768 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  2769 
       
  2770 		buffer_info->time_stamp = jiffies;
       
  2771 		buffer_info->next_to_watch = i;
       
  2772 
       
  2773 		if (++i == tx_ring->count) i = 0;
       
  2774 		tx_ring->next_to_use = i;
       
  2775 
       
  2776 		return true;
       
  2777 	}
       
  2778 	return false;
       
  2779 }
       
  2780 
       
  2781 static bool e1000_tx_csum(struct e1000_adapter *adapter,
       
  2782 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
       
  2783 {
       
  2784 	struct e1000_context_desc *context_desc;
       
  2785 	struct e1000_buffer *buffer_info;
       
  2786 	unsigned int i;
       
  2787 	u8 css;
       
  2788 	u32 cmd_len = E1000_TXD_CMD_DEXT;
       
  2789 
       
  2790 	if (skb->ip_summed != CHECKSUM_PARTIAL)
       
  2791 		return false;
       
  2792 
       
  2793 	switch (skb->protocol) {
       
  2794 	case cpu_to_be16(ETH_P_IP):
       
  2795 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
       
  2796 			cmd_len |= E1000_TXD_CMD_TCP;
       
  2797 		break;
       
  2798 	case cpu_to_be16(ETH_P_IPV6):
       
  2799 		/* XXX not handling all IPV6 headers */
       
  2800 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
       
  2801 			cmd_len |= E1000_TXD_CMD_TCP;
       
  2802 		break;
       
  2803 	default:
       
  2804 		if (unlikely(net_ratelimit()))
       
  2805 			e_warn(drv, "checksum_partial proto=%x!\n",
       
  2806 			       skb->protocol);
       
  2807 		break;
       
  2808 	}
       
  2809 
       
  2810 	css = skb_checksum_start_offset(skb);
       
  2811 
       
  2812 	i = tx_ring->next_to_use;
       
  2813 	buffer_info = &tx_ring->buffer_info[i];
       
  2814 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2815 
       
  2816 	context_desc->lower_setup.ip_config = 0;
       
  2817 	context_desc->upper_setup.tcp_fields.tucss = css;
       
  2818 	context_desc->upper_setup.tcp_fields.tucso =
       
  2819 		css + skb->csum_offset;
       
  2820 	context_desc->upper_setup.tcp_fields.tucse = 0;
       
  2821 	context_desc->tcp_seg_setup.data = 0;
       
  2822 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
       
  2823 
       
  2824 	buffer_info->time_stamp = jiffies;
       
  2825 	buffer_info->next_to_watch = i;
       
  2826 
       
  2827 	if (unlikely(++i == tx_ring->count)) i = 0;
       
  2828 	tx_ring->next_to_use = i;
       
  2829 
       
  2830 	return true;
       
  2831 }
       
  2832 
       
  2833 #define E1000_MAX_TXD_PWR	12
       
  2834 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
       
  2835 
       
  2836 static int e1000_tx_map(struct e1000_adapter *adapter,
       
  2837 			struct e1000_tx_ring *tx_ring,
       
  2838 			struct sk_buff *skb, unsigned int first,
       
  2839 			unsigned int max_per_txd, unsigned int nr_frags,
       
  2840 			unsigned int mss)
       
  2841 {
       
  2842 	struct e1000_hw *hw = &adapter->hw;
       
  2843 	struct pci_dev *pdev = adapter->pdev;
       
  2844 	struct e1000_buffer *buffer_info;
       
  2845 	unsigned int len = skb_headlen(skb);
       
  2846 	unsigned int offset = 0, size, count = 0, i;
       
  2847 	unsigned int f, bytecount, segs;
       
  2848 
       
  2849 	i = tx_ring->next_to_use;
       
  2850 
       
  2851 	while (len) {
       
  2852 		buffer_info = &tx_ring->buffer_info[i];
       
  2853 		size = min(len, max_per_txd);
       
  2854 		/* Workaround for Controller erratum --
       
  2855 		 * descriptor for non-tso packet in a linear SKB that follows a
       
  2856 		 * tso gets written back prematurely before the data is fully
       
  2857 		 * DMA'd to the controller */
       
  2858 		if (!skb->data_len && tx_ring->last_tx_tso &&
       
  2859 		    !skb_is_gso(skb)) {
       
  2860 			tx_ring->last_tx_tso = false;
       
  2861 			size -= 4;
       
  2862 		}
       
  2863 
       
  2864 		/* Workaround for premature desc write-backs
       
  2865 		 * in TSO mode.  Append 4-byte sentinel desc */
       
  2866 		if (unlikely(mss && !nr_frags && size == len && size > 8))
       
  2867 			size -= 4;
       
  2868 		/* work-around for errata 10 and it applies
       
  2869 		 * to all controllers in PCI-X mode
       
  2870 		 * The fix is to make sure that the first descriptor of a
       
  2871 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
       
  2872 		 */
       
  2873 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
       
  2874 		                (size > 2015) && count == 0))
       
  2875 		        size = 2015;
       
  2876 
       
  2877 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
       
  2878 		 * terminating buffers within evenly-aligned dwords. */
       
  2879 		if (unlikely(adapter->pcix_82544 &&
       
  2880 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
       
  2881 		   size > 4))
       
  2882 			size -= 4;
       
  2883 
       
  2884 		buffer_info->length = size;
       
  2885 		/* set time_stamp *before* dma to help avoid a possible race */
       
  2886 		buffer_info->time_stamp = jiffies;
       
  2887 		buffer_info->mapped_as_page = false;
       
  2888 		buffer_info->dma = dma_map_single(&pdev->dev,
       
  2889 						  skb->data + offset,
       
  2890 						  size,	DMA_TO_DEVICE);
       
  2891 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
       
  2892 			goto dma_error;
       
  2893 		buffer_info->next_to_watch = i;
       
  2894 
       
  2895 		len -= size;
       
  2896 		offset += size;
       
  2897 		count++;
       
  2898 		if (len) {
       
  2899 			i++;
       
  2900 			if (unlikely(i == tx_ring->count))
       
  2901 				i = 0;
       
  2902 		}
       
  2903 	}
       
  2904 
       
  2905 	for (f = 0; f < nr_frags; f++) {
       
  2906 		const struct skb_frag_struct *frag;
       
  2907 
       
  2908 		frag = &skb_shinfo(skb)->frags[f];
       
  2909 		len = skb_frag_size(frag);
       
  2910 		offset = 0;
       
  2911 
       
  2912 		while (len) {
       
  2913 			unsigned long bufend;
       
  2914 			i++;
       
  2915 			if (unlikely(i == tx_ring->count))
       
  2916 				i = 0;
       
  2917 
       
  2918 			buffer_info = &tx_ring->buffer_info[i];
       
  2919 			size = min(len, max_per_txd);
       
  2920 			/* Workaround for premature desc write-backs
       
  2921 			 * in TSO mode.  Append 4-byte sentinel desc */
       
  2922 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
       
  2923 				size -= 4;
       
  2924 			/* Workaround for potential 82544 hang in PCI-X.
       
  2925 			 * Avoid terminating buffers within evenly-aligned
       
  2926 			 * dwords. */
       
  2927 			bufend = (unsigned long)
       
  2928 				page_to_phys(skb_frag_page(frag));
       
  2929 			bufend += offset + size - 1;
       
  2930 			if (unlikely(adapter->pcix_82544 &&
       
  2931 				     !(bufend & 4) &&
       
  2932 				     size > 4))
       
  2933 				size -= 4;
       
  2934 
       
  2935 			buffer_info->length = size;
       
  2936 			buffer_info->time_stamp = jiffies;
       
  2937 			buffer_info->mapped_as_page = true;
       
  2938 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
       
  2939 						offset, size, DMA_TO_DEVICE);
       
  2940 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
       
  2941 				goto dma_error;
       
  2942 			buffer_info->next_to_watch = i;
       
  2943 
       
  2944 			len -= size;
       
  2945 			offset += size;
       
  2946 			count++;
       
  2947 		}
       
  2948 	}
       
  2949 
       
  2950 	segs = skb_shinfo(skb)->gso_segs ?: 1;
       
  2951 	/* multiply data chunks by size of headers */
       
  2952 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
       
  2953 
       
  2954 	tx_ring->buffer_info[i].skb = skb;
       
  2955 	tx_ring->buffer_info[i].segs = segs;
       
  2956 	tx_ring->buffer_info[i].bytecount = bytecount;
       
  2957 	tx_ring->buffer_info[first].next_to_watch = i;
       
  2958 
       
  2959 	return count;
       
  2960 
       
  2961 dma_error:
       
  2962 	dev_err(&pdev->dev, "TX DMA map failed\n");
       
  2963 	buffer_info->dma = 0;
       
  2964 	if (count)
       
  2965 		count--;
       
  2966 
       
  2967 	while (count--) {
       
  2968 		if (i==0)
       
  2969 			i += tx_ring->count;
       
  2970 		i--;
       
  2971 		buffer_info = &tx_ring->buffer_info[i];
       
  2972 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  2973 	}
       
  2974 
       
  2975 	return 0;
       
  2976 }
       
  2977 
       
  2978 static void e1000_tx_queue(struct e1000_adapter *adapter,
       
  2979 			   struct e1000_tx_ring *tx_ring, int tx_flags,
       
  2980 			   int count)
       
  2981 {
       
  2982 	struct e1000_hw *hw = &adapter->hw;
       
  2983 	struct e1000_tx_desc *tx_desc = NULL;
       
  2984 	struct e1000_buffer *buffer_info;
       
  2985 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  2986 	unsigned int i;
       
  2987 
       
  2988 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
       
  2989 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  2990 		             E1000_TXD_CMD_TSE;
       
  2991 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  2992 
       
  2993 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
       
  2994 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  2995 	}
       
  2996 
       
  2997 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
       
  2998 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  2999 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  3000 	}
       
  3001 
       
  3002 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
       
  3003 		txd_lower |= E1000_TXD_CMD_VLE;
       
  3004 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  3005 	}
       
  3006 
       
  3007 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
       
  3008 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
       
  3009 
       
  3010 	i = tx_ring->next_to_use;
       
  3011 
       
  3012 	while (count--) {
       
  3013 		buffer_info = &tx_ring->buffer_info[i];
       
  3014 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3015 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  3016 		tx_desc->lower.data =
       
  3017 			cpu_to_le32(txd_lower | buffer_info->length);
       
  3018 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  3019 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  3020 	}
       
  3021 
       
  3022 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  3023 
       
  3024 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
       
  3025 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
       
  3026 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
       
  3027 
       
  3028 	/* Force memory writes to complete before letting h/w
       
  3029 	 * know there are new descriptors to fetch.  (Only
       
  3030 	 * applicable for weak-ordered memory model archs,
       
  3031 	 * such as IA-64). */
       
  3032 	wmb();
       
  3033 
       
  3034 	tx_ring->next_to_use = i;
       
  3035 	writel(i, hw->hw_addr + tx_ring->tdt);
       
  3036 	/* we need this if more than one processor can write to our tail
       
  3037 	 * at a time, it syncronizes IO on IA64/Altix systems */
       
  3038 	mmiowb();
       
  3039 }
       
  3040 
       
  3041 /**
       
  3042  * 82547 workaround to avoid controller hang in half-duplex environment.
       
  3043  * The workaround is to avoid queuing a large packet that would span
       
  3044  * the internal Tx FIFO ring boundary by notifying the stack to resend
       
  3045  * the packet at a later time.  This gives the Tx FIFO an opportunity to
       
  3046  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
       
  3047  * to the beginning of the Tx FIFO.
       
  3048  **/
       
  3049 
       
  3050 #define E1000_FIFO_HDR			0x10
       
  3051 #define E1000_82547_PAD_LEN		0x3E0
       
  3052 
       
  3053 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
  3054 				       struct sk_buff *skb)
       
  3055 {
       
  3056 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
       
  3057 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
       
  3058 
       
  3059 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
       
  3060 
       
  3061 	if (adapter->link_duplex != HALF_DUPLEX)
       
  3062 		goto no_fifo_stall_required;
       
  3063 
       
  3064 	if (atomic_read(&adapter->tx_fifo_stall))
       
  3065 		return 1;
       
  3066 
       
  3067 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
       
  3068 		atomic_set(&adapter->tx_fifo_stall, 1);
       
  3069 		return 1;
       
  3070 	}
       
  3071 
       
  3072 no_fifo_stall_required:
       
  3073 	adapter->tx_fifo_head += skb_fifo_len;
       
  3074 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
       
  3075 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
       
  3076 	return 0;
       
  3077 }
       
  3078 
       
  3079 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  3080 {
       
  3081 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3082 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
       
  3083 
       
  3084 	netif_stop_queue(netdev);
       
  3085 	/* Herbert's original patch had:
       
  3086 	 *  smp_mb__after_netif_stop_queue();
       
  3087 	 * but since that doesn't exist yet, just open code it. */
       
  3088 	smp_mb();
       
  3089 
       
  3090 	/* We need to check again in a case another CPU has just
       
  3091 	 * made room available. */
       
  3092 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
       
  3093 		return -EBUSY;
       
  3094 
       
  3095 	/* A reprieve! */
       
  3096 	netif_start_queue(netdev);
       
  3097 	++adapter->restart_queue;
       
  3098 	return 0;
       
  3099 }
       
  3100 
       
  3101 static int e1000_maybe_stop_tx(struct net_device *netdev,
       
  3102                                struct e1000_tx_ring *tx_ring, int size)
       
  3103 {
       
  3104 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
       
  3105 		return 0;
       
  3106 	return __e1000_maybe_stop_tx(netdev, size);
       
  3107 }
       
  3108 
       
  3109 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  3110 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
       
  3111 				    struct net_device *netdev)
       
  3112 {
       
  3113 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3114 	struct e1000_hw *hw = &adapter->hw;
       
  3115 	struct e1000_tx_ring *tx_ring;
       
  3116 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
       
  3117 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  3118 	unsigned int tx_flags = 0;
       
  3119 	unsigned int len = skb_headlen(skb);
       
  3120 	unsigned int nr_frags;
       
  3121 	unsigned int mss;
       
  3122 	int count = 0;
       
  3123 	int tso;
       
  3124 	unsigned int f;
       
  3125 
       
  3126 	/* This goes back to the question of how to logically map a tx queue
       
  3127 	 * to a flow.  Right now, performance is impacted slightly negatively
       
  3128 	 * if using multiple tx queues.  If the stack breaks away from a
       
  3129 	 * single qdisc implementation, we can look at this again. */
       
  3130 	tx_ring = adapter->tx_ring;
       
  3131 
       
  3132 	if (unlikely(skb->len <= 0)) {
       
  3133 		dev_kfree_skb_any(skb);
       
  3134 		return NETDEV_TX_OK;
       
  3135 	}
       
  3136 
       
  3137 	mss = skb_shinfo(skb)->gso_size;
       
  3138 	/* The controller does a simple calculation to
       
  3139 	 * make sure there is enough room in the FIFO before
       
  3140 	 * initiating the DMA for each buffer.  The calc is:
       
  3141 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  3142 	 * overrun the FIFO, adjust the max buffer len if mss
       
  3143 	 * drops. */
       
  3144 	if (mss) {
       
  3145 		u8 hdr_len;
       
  3146 		max_per_txd = min(mss << 2, max_per_txd);
       
  3147 		max_txd_pwr = fls(max_per_txd) - 1;
       
  3148 
       
  3149 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  3150 		if (skb->data_len && hdr_len == len) {
       
  3151 			switch (hw->mac_type) {
       
  3152 				unsigned int pull_size;
       
  3153 			case e1000_82544:
       
  3154 				/* Make sure we have room to chop off 4 bytes,
       
  3155 				 * and that the end alignment will work out to
       
  3156 				 * this hardware's requirements
       
  3157 				 * NOTE: this is a TSO only workaround
       
  3158 				 * if end byte alignment not correct move us
       
  3159 				 * into the next dword */
       
  3160 				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
       
  3161 					break;
       
  3162 				/* fall through */
       
  3163 				pull_size = min((unsigned int)4, skb->data_len);
       
  3164 				if (!__pskb_pull_tail(skb, pull_size)) {
       
  3165 					e_err(drv, "__pskb_pull_tail "
       
  3166 					      "failed.\n");
       
  3167 					dev_kfree_skb_any(skb);
       
  3168 					return NETDEV_TX_OK;
       
  3169 				}
       
  3170 				len = skb_headlen(skb);
       
  3171 				break;
       
  3172 			default:
       
  3173 				/* do nothing */
       
  3174 				break;
       
  3175 			}
       
  3176 		}
       
  3177 	}
       
  3178 
       
  3179 	/* reserve a descriptor for the offload context */
       
  3180 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
       
  3181 		count++;
       
  3182 	count++;
       
  3183 
       
  3184 	/* Controller Erratum workaround */
       
  3185 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
       
  3186 		count++;
       
  3187 
       
  3188 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  3189 
       
  3190 	if (adapter->pcix_82544)
       
  3191 		count++;
       
  3192 
       
  3193 	/* work-around for errata 10 and it applies to all controllers
       
  3194 	 * in PCI-X mode, so add one more descriptor to the count
       
  3195 	 */
       
  3196 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
       
  3197 			(len > 2015)))
       
  3198 		count++;
       
  3199 
       
  3200 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  3201 	for (f = 0; f < nr_frags; f++)
       
  3202 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
       
  3203 				       max_txd_pwr);
       
  3204 	if (adapter->pcix_82544)
       
  3205 		count += nr_frags;
       
  3206 
       
  3207 	/* need: count + 2 desc gap to keep tail from touching
       
  3208 	 * head, otherwise try next time */
       
  3209 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
       
  3210 		return NETDEV_TX_BUSY;
       
  3211 
       
  3212 	if (unlikely((hw->mac_type == e1000_82547) &&
       
  3213 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
       
  3214 		netif_stop_queue(netdev);
       
  3215 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3216 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
       
  3217 		return NETDEV_TX_BUSY;
       
  3218 	}
       
  3219 
       
  3220 	if (vlan_tx_tag_present(skb)) {
       
  3221 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  3222 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  3223 	}
       
  3224 
       
  3225 	first = tx_ring->next_to_use;
       
  3226 
       
  3227 	tso = e1000_tso(adapter, tx_ring, skb);
       
  3228 	if (tso < 0) {
       
  3229 		dev_kfree_skb_any(skb);
       
  3230 		return NETDEV_TX_OK;
       
  3231 	}
       
  3232 
       
  3233 	if (likely(tso)) {
       
  3234 		if (likely(hw->mac_type != e1000_82544))
       
  3235 			tx_ring->last_tx_tso = true;
       
  3236 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  3237 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
       
  3238 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  3239 
       
  3240 	if (likely(skb->protocol == htons(ETH_P_IP)))
       
  3241 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  3242 
       
  3243 	if (unlikely(skb->no_fcs))
       
  3244 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
       
  3245 
       
  3246 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
       
  3247 	                     nr_frags, mss);
       
  3248 
       
  3249 	if (count) {
       
  3250 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
       
  3251 		/* Make sure there is space in the ring for the next send. */
       
  3252 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
       
  3253 
       
  3254 	} else {
       
  3255 		dev_kfree_skb_any(skb);
       
  3256 		tx_ring->buffer_info[first].time_stamp = 0;
       
  3257 		tx_ring->next_to_use = first;
       
  3258 	}
       
  3259 
       
  3260 	return NETDEV_TX_OK;
       
  3261 }
       
  3262 
       
  3263 #define NUM_REGS 38 /* 1 based count */
       
  3264 static void e1000_regdump(struct e1000_adapter *adapter)
       
  3265 {
       
  3266 	struct e1000_hw *hw = &adapter->hw;
       
  3267 	u32 regs[NUM_REGS];
       
  3268 	u32 *regs_buff = regs;
       
  3269 	int i = 0;
       
  3270 
       
  3271 	static const char * const reg_name[] = {
       
  3272 		"CTRL",  "STATUS",
       
  3273 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
       
  3274 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
       
  3275 		"TIDV", "TXDCTL", "TADV", "TARC0",
       
  3276 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
       
  3277 		"TXDCTL1", "TARC1",
       
  3278 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
       
  3279 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
       
  3280 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
       
  3281 	};
       
  3282 
       
  3283 	regs_buff[0]  = er32(CTRL);
       
  3284 	regs_buff[1]  = er32(STATUS);
       
  3285 
       
  3286 	regs_buff[2]  = er32(RCTL);
       
  3287 	regs_buff[3]  = er32(RDLEN);
       
  3288 	regs_buff[4]  = er32(RDH);
       
  3289 	regs_buff[5]  = er32(RDT);
       
  3290 	regs_buff[6]  = er32(RDTR);
       
  3291 
       
  3292 	regs_buff[7]  = er32(TCTL);
       
  3293 	regs_buff[8]  = er32(TDBAL);
       
  3294 	regs_buff[9]  = er32(TDBAH);
       
  3295 	regs_buff[10] = er32(TDLEN);
       
  3296 	regs_buff[11] = er32(TDH);
       
  3297 	regs_buff[12] = er32(TDT);
       
  3298 	regs_buff[13] = er32(TIDV);
       
  3299 	regs_buff[14] = er32(TXDCTL);
       
  3300 	regs_buff[15] = er32(TADV);
       
  3301 	regs_buff[16] = er32(TARC0);
       
  3302 
       
  3303 	regs_buff[17] = er32(TDBAL1);
       
  3304 	regs_buff[18] = er32(TDBAH1);
       
  3305 	regs_buff[19] = er32(TDLEN1);
       
  3306 	regs_buff[20] = er32(TDH1);
       
  3307 	regs_buff[21] = er32(TDT1);
       
  3308 	regs_buff[22] = er32(TXDCTL1);
       
  3309 	regs_buff[23] = er32(TARC1);
       
  3310 	regs_buff[24] = er32(CTRL_EXT);
       
  3311 	regs_buff[25] = er32(ERT);
       
  3312 	regs_buff[26] = er32(RDBAL0);
       
  3313 	regs_buff[27] = er32(RDBAH0);
       
  3314 	regs_buff[28] = er32(TDFH);
       
  3315 	regs_buff[29] = er32(TDFT);
       
  3316 	regs_buff[30] = er32(TDFHS);
       
  3317 	regs_buff[31] = er32(TDFTS);
       
  3318 	regs_buff[32] = er32(TDFPC);
       
  3319 	regs_buff[33] = er32(RDFH);
       
  3320 	regs_buff[34] = er32(RDFT);
       
  3321 	regs_buff[35] = er32(RDFHS);
       
  3322 	regs_buff[36] = er32(RDFTS);
       
  3323 	regs_buff[37] = er32(RDFPC);
       
  3324 
       
  3325 	pr_info("Register dump\n");
       
  3326 	for (i = 0; i < NUM_REGS; i++)
       
  3327 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
       
  3328 }
       
  3329 
       
  3330 /*
       
  3331  * e1000_dump: Print registers, tx ring and rx ring
       
  3332  */
       
  3333 static void e1000_dump(struct e1000_adapter *adapter)
       
  3334 {
       
  3335 	/* this code doesn't handle multiple rings */
       
  3336 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
       
  3337 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
       
  3338 	int i;
       
  3339 
       
  3340 	if (!netif_msg_hw(adapter))
       
  3341 		return;
       
  3342 
       
  3343 	/* Print Registers */
       
  3344 	e1000_regdump(adapter);
       
  3345 
       
  3346 	/*
       
  3347 	 * transmit dump
       
  3348 	 */
       
  3349 	pr_info("TX Desc ring0 dump\n");
       
  3350 
       
  3351 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
       
  3352 	 *
       
  3353 	 * Legacy Transmit Descriptor
       
  3354 	 *   +--------------------------------------------------------------+
       
  3355 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
       
  3356 	 *   +--------------------------------------------------------------+
       
  3357 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
       
  3358 	 *   +--------------------------------------------------------------+
       
  3359 	 *   63       48 47        36 35    32 31     24 23    16 15        0
       
  3360 	 *
       
  3361 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
       
  3362 	 *   63      48 47    40 39       32 31             16 15    8 7      0
       
  3363 	 *   +----------------------------------------------------------------+
       
  3364 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
       
  3365 	 *   +----------------------------------------------------------------+
       
  3366 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
       
  3367 	 *   +----------------------------------------------------------------+
       
  3368 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
       
  3369 	 *
       
  3370 	 * Extended Data Descriptor (DTYP=0x1)
       
  3371 	 *   +----------------------------------------------------------------+
       
  3372 	 * 0 |                     Buffer Address [63:0]                      |
       
  3373 	 *   +----------------------------------------------------------------+
       
  3374 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
       
  3375 	 *   +----------------------------------------------------------------+
       
  3376 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
       
  3377 	 */
       
  3378 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
       
  3379 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
       
  3380 
       
  3381 	if (!netif_msg_tx_done(adapter))
       
  3382 		goto rx_ring_summary;
       
  3383 
       
  3384 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
       
  3385 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3386 		struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
       
  3387 		struct my_u { __le64 a; __le64 b; };
       
  3388 		struct my_u *u = (struct my_u *)tx_desc;
       
  3389 		const char *type;
       
  3390 
       
  3391 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
       
  3392 			type = "NTC/U";
       
  3393 		else if (i == tx_ring->next_to_use)
       
  3394 			type = "NTU";
       
  3395 		else if (i == tx_ring->next_to_clean)
       
  3396 			type = "NTC";
       
  3397 		else
       
  3398 			type = "";
       
  3399 
       
  3400 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
       
  3401 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
       
  3402 			le64_to_cpu(u->a), le64_to_cpu(u->b),
       
  3403 			(u64)buffer_info->dma, buffer_info->length,
       
  3404 			buffer_info->next_to_watch,
       
  3405 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
       
  3406 	}
       
  3407 
       
  3408 rx_ring_summary:
       
  3409 	/*
       
  3410 	 * receive dump
       
  3411 	 */
       
  3412 	pr_info("\nRX Desc ring dump\n");
       
  3413 
       
  3414 	/* Legacy Receive Descriptor Format
       
  3415 	 *
       
  3416 	 * +-----------------------------------------------------+
       
  3417 	 * |                Buffer Address [63:0]                |
       
  3418 	 * +-----------------------------------------------------+
       
  3419 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
       
  3420 	 * +-----------------------------------------------------+
       
  3421 	 * 63       48 47    40 39      32 31         16 15      0
       
  3422 	 */
       
  3423 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
       
  3424 
       
  3425 	if (!netif_msg_rx_status(adapter))
       
  3426 		goto exit;
       
  3427 
       
  3428 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
       
  3429 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  3430 		struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
       
  3431 		struct my_u { __le64 a; __le64 b; };
       
  3432 		struct my_u *u = (struct my_u *)rx_desc;
       
  3433 		const char *type;
       
  3434 
       
  3435 		if (i == rx_ring->next_to_use)
       
  3436 			type = "NTU";
       
  3437 		else if (i == rx_ring->next_to_clean)
       
  3438 			type = "NTC";
       
  3439 		else
       
  3440 			type = "";
       
  3441 
       
  3442 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
       
  3443 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
       
  3444 			(u64)buffer_info->dma, buffer_info->skb, type);
       
  3445 	} /* for */
       
  3446 
       
  3447 	/* dump the descriptor caches */
       
  3448 	/* rx */
       
  3449 	pr_info("Rx descriptor cache in 64bit format\n");
       
  3450 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
       
  3451 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
       
  3452 			i,
       
  3453 			readl(adapter->hw.hw_addr + i+4),
       
  3454 			readl(adapter->hw.hw_addr + i),
       
  3455 			readl(adapter->hw.hw_addr + i+12),
       
  3456 			readl(adapter->hw.hw_addr + i+8));
       
  3457 	}
       
  3458 	/* tx */
       
  3459 	pr_info("Tx descriptor cache in 64bit format\n");
       
  3460 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
       
  3461 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
       
  3462 			i,
       
  3463 			readl(adapter->hw.hw_addr + i+4),
       
  3464 			readl(adapter->hw.hw_addr + i),
       
  3465 			readl(adapter->hw.hw_addr + i+12),
       
  3466 			readl(adapter->hw.hw_addr + i+8));
       
  3467 	}
       
  3468 exit:
       
  3469 	return;
       
  3470 }
       
  3471 
       
  3472 /**
       
  3473  * e1000_tx_timeout - Respond to a Tx Hang
       
  3474  * @netdev: network interface device structure
       
  3475  **/
       
  3476 
       
  3477 static void e1000_tx_timeout(struct net_device *netdev)
       
  3478 {
       
  3479 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3480 
       
  3481 	/* Do the reset outside of interrupt context */
       
  3482 	adapter->tx_timeout_count++;
       
  3483 	schedule_work(&adapter->reset_task);
       
  3484 }
       
  3485 
       
  3486 static void e1000_reset_task(struct work_struct *work)
       
  3487 {
       
  3488 	struct e1000_adapter *adapter =
       
  3489 		container_of(work, struct e1000_adapter, reset_task);
       
  3490 
       
  3491 	if (test_bit(__E1000_DOWN, &adapter->flags))
       
  3492 		return;
       
  3493 	e_err(drv, "Reset adapter\n");
       
  3494 	e1000_reinit_safe(adapter);
       
  3495 }
       
  3496 
       
  3497 /**
       
  3498  * e1000_get_stats - Get System Network Statistics
       
  3499  * @netdev: network interface device structure
       
  3500  *
       
  3501  * Returns the address of the device statistics structure.
       
  3502  * The statistics are actually updated from the watchdog.
       
  3503  **/
       
  3504 
       
  3505 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
       
  3506 {
       
  3507 	/* only return the current stats */
       
  3508 	return &netdev->stats;
       
  3509 }
       
  3510 
       
  3511 /**
       
  3512  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  3513  * @netdev: network interface device structure
       
  3514  * @new_mtu: new value for maximum frame size
       
  3515  *
       
  3516  * Returns 0 on success, negative on failure
       
  3517  **/
       
  3518 
       
  3519 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  3520 {
       
  3521 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3522 	struct e1000_hw *hw = &adapter->hw;
       
  3523 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  3524 
       
  3525 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
       
  3526 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
       
  3527 		e_err(probe, "Invalid MTU setting\n");
       
  3528 		return -EINVAL;
       
  3529 	}
       
  3530 
       
  3531 	/* Adapter-specific max frame size limits. */
       
  3532 	switch (hw->mac_type) {
       
  3533 	case e1000_undefined ... e1000_82542_rev2_1:
       
  3534 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
       
  3535 			e_err(probe, "Jumbo Frames not supported.\n");
       
  3536 			return -EINVAL;
       
  3537 		}
       
  3538 		break;
       
  3539 	default:
       
  3540 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
       
  3541 		break;
       
  3542 	}
       
  3543 
       
  3544 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
  3545 		msleep(1);
       
  3546 	/* e1000_down has a dependency on max_frame_size */
       
  3547 	hw->max_frame_size = max_frame;
       
  3548 	if (netif_running(netdev))
       
  3549 		e1000_down(adapter);
       
  3550 
       
  3551 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  3552 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  3553 	 * larger slab size.
       
  3554 	 * i.e. RXBUFFER_2048 --> size-4096 slab
       
  3555 	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
       
  3556 	 *  fragmented skbs */
       
  3557 
       
  3558 	if (max_frame <= E1000_RXBUFFER_2048)
       
  3559 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
       
  3560 	else
       
  3561 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
       
  3562 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
       
  3563 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
       
  3564 		adapter->rx_buffer_len = PAGE_SIZE;
       
  3565 #endif
       
  3566 
       
  3567 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  3568 	if (!hw->tbi_compatibility_on &&
       
  3569 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
       
  3570 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
       
  3571 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  3572 
       
  3573 	pr_info("%s changing MTU from %d to %d\n",
       
  3574 		netdev->name, netdev->mtu, new_mtu);
       
  3575 	netdev->mtu = new_mtu;
       
  3576 
       
  3577 	if (netif_running(netdev))
       
  3578 		e1000_up(adapter);
       
  3579 	else
       
  3580 		e1000_reset(adapter);
       
  3581 
       
  3582 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
  3583 
       
  3584 	return 0;
       
  3585 }
       
  3586 
       
  3587 /**
       
  3588  * e1000_update_stats - Update the board statistics counters
       
  3589  * @adapter: board private structure
       
  3590  **/
       
  3591 
       
  3592 void e1000_update_stats(struct e1000_adapter *adapter)
       
  3593 {
       
  3594 	struct net_device *netdev = adapter->netdev;
       
  3595 	struct e1000_hw *hw = &adapter->hw;
       
  3596 	struct pci_dev *pdev = adapter->pdev;
       
  3597 	unsigned long flags;
       
  3598 	u16 phy_tmp;
       
  3599 
       
  3600 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
       
  3601 
       
  3602 	/*
       
  3603 	 * Prevent stats update while adapter is being reset, or if the pci
       
  3604 	 * connection is down.
       
  3605 	 */
       
  3606 	if (adapter->link_speed == 0)
       
  3607 		return;
       
  3608 	if (pci_channel_offline(pdev))
       
  3609 		return;
       
  3610 
       
  3611 	spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3612 
       
  3613 	/* these counters are modified from e1000_tbi_adjust_stats,
       
  3614 	 * called from the interrupt context, so they must only
       
  3615 	 * be written while holding adapter->stats_lock
       
  3616 	 */
       
  3617 
       
  3618 	adapter->stats.crcerrs += er32(CRCERRS);
       
  3619 	adapter->stats.gprc += er32(GPRC);
       
  3620 	adapter->stats.gorcl += er32(GORCL);
       
  3621 	adapter->stats.gorch += er32(GORCH);
       
  3622 	adapter->stats.bprc += er32(BPRC);
       
  3623 	adapter->stats.mprc += er32(MPRC);
       
  3624 	adapter->stats.roc += er32(ROC);
       
  3625 
       
  3626 	adapter->stats.prc64 += er32(PRC64);
       
  3627 	adapter->stats.prc127 += er32(PRC127);
       
  3628 	adapter->stats.prc255 += er32(PRC255);
       
  3629 	adapter->stats.prc511 += er32(PRC511);
       
  3630 	adapter->stats.prc1023 += er32(PRC1023);
       
  3631 	adapter->stats.prc1522 += er32(PRC1522);
       
  3632 
       
  3633 	adapter->stats.symerrs += er32(SYMERRS);
       
  3634 	adapter->stats.mpc += er32(MPC);
       
  3635 	adapter->stats.scc += er32(SCC);
       
  3636 	adapter->stats.ecol += er32(ECOL);
       
  3637 	adapter->stats.mcc += er32(MCC);
       
  3638 	adapter->stats.latecol += er32(LATECOL);
       
  3639 	adapter->stats.dc += er32(DC);
       
  3640 	adapter->stats.sec += er32(SEC);
       
  3641 	adapter->stats.rlec += er32(RLEC);
       
  3642 	adapter->stats.xonrxc += er32(XONRXC);
       
  3643 	adapter->stats.xontxc += er32(XONTXC);
       
  3644 	adapter->stats.xoffrxc += er32(XOFFRXC);
       
  3645 	adapter->stats.xofftxc += er32(XOFFTXC);
       
  3646 	adapter->stats.fcruc += er32(FCRUC);
       
  3647 	adapter->stats.gptc += er32(GPTC);
       
  3648 	adapter->stats.gotcl += er32(GOTCL);
       
  3649 	adapter->stats.gotch += er32(GOTCH);
       
  3650 	adapter->stats.rnbc += er32(RNBC);
       
  3651 	adapter->stats.ruc += er32(RUC);
       
  3652 	adapter->stats.rfc += er32(RFC);
       
  3653 	adapter->stats.rjc += er32(RJC);
       
  3654 	adapter->stats.torl += er32(TORL);
       
  3655 	adapter->stats.torh += er32(TORH);
       
  3656 	adapter->stats.totl += er32(TOTL);
       
  3657 	adapter->stats.toth += er32(TOTH);
       
  3658 	adapter->stats.tpr += er32(TPR);
       
  3659 
       
  3660 	adapter->stats.ptc64 += er32(PTC64);
       
  3661 	adapter->stats.ptc127 += er32(PTC127);
       
  3662 	adapter->stats.ptc255 += er32(PTC255);
       
  3663 	adapter->stats.ptc511 += er32(PTC511);
       
  3664 	adapter->stats.ptc1023 += er32(PTC1023);
       
  3665 	adapter->stats.ptc1522 += er32(PTC1522);
       
  3666 
       
  3667 	adapter->stats.mptc += er32(MPTC);
       
  3668 	adapter->stats.bptc += er32(BPTC);
       
  3669 
       
  3670 	/* used for adaptive IFS */
       
  3671 
       
  3672 	hw->tx_packet_delta = er32(TPT);
       
  3673 	adapter->stats.tpt += hw->tx_packet_delta;
       
  3674 	hw->collision_delta = er32(COLC);
       
  3675 	adapter->stats.colc += hw->collision_delta;
       
  3676 
       
  3677 	if (hw->mac_type >= e1000_82543) {
       
  3678 		adapter->stats.algnerrc += er32(ALGNERRC);
       
  3679 		adapter->stats.rxerrc += er32(RXERRC);
       
  3680 		adapter->stats.tncrs += er32(TNCRS);
       
  3681 		adapter->stats.cexterr += er32(CEXTERR);
       
  3682 		adapter->stats.tsctc += er32(TSCTC);
       
  3683 		adapter->stats.tsctfc += er32(TSCTFC);
       
  3684 	}
       
  3685 
       
  3686 	/* Fill out the OS statistics structure */
       
  3687 	netdev->stats.multicast = adapter->stats.mprc;
       
  3688 	netdev->stats.collisions = adapter->stats.colc;
       
  3689 
       
  3690 	/* Rx Errors */
       
  3691 
       
  3692 	/* RLEC on some newer hardware can be incorrect so build
       
  3693 	* our own version based on RUC and ROC */
       
  3694 	netdev->stats.rx_errors = adapter->stats.rxerrc +
       
  3695 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  3696 		adapter->stats.ruc + adapter->stats.roc +
       
  3697 		adapter->stats.cexterr;
       
  3698 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
       
  3699 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
       
  3700 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
       
  3701 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
       
  3702 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
       
  3703 
       
  3704 	/* Tx Errors */
       
  3705 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
       
  3706 	netdev->stats.tx_errors = adapter->stats.txerrc;
       
  3707 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
       
  3708 	netdev->stats.tx_window_errors = adapter->stats.latecol;
       
  3709 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
       
  3710 	if (hw->bad_tx_carr_stats_fd &&
       
  3711 	    adapter->link_duplex == FULL_DUPLEX) {
       
  3712 		netdev->stats.tx_carrier_errors = 0;
       
  3713 		adapter->stats.tncrs = 0;
       
  3714 	}
       
  3715 
       
  3716 	/* Tx Dropped needs to be maintained elsewhere */
       
  3717 
       
  3718 	/* Phy Stats */
       
  3719 	if (hw->media_type == e1000_media_type_copper) {
       
  3720 		if ((adapter->link_speed == SPEED_1000) &&
       
  3721 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
       
  3722 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
       
  3723 			adapter->phy_stats.idle_errors += phy_tmp;
       
  3724 		}
       
  3725 
       
  3726 		if ((hw->mac_type <= e1000_82546) &&
       
  3727 		   (hw->phy_type == e1000_phy_m88) &&
       
  3728 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
       
  3729 			adapter->phy_stats.receive_errors += phy_tmp;
       
  3730 	}
       
  3731 
       
  3732 	/* Management Stats */
       
  3733 	if (hw->has_smbus) {
       
  3734 		adapter->stats.mgptc += er32(MGTPTC);
       
  3735 		adapter->stats.mgprc += er32(MGTPRC);
       
  3736 		adapter->stats.mgpdc += er32(MGTPDC);
       
  3737 	}
       
  3738 
       
  3739 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3740 }
       
  3741 
       
  3742 /**
       
  3743  * e1000_intr - Interrupt Handler
       
  3744  * @irq: interrupt number
       
  3745  * @data: pointer to a network interface device structure
       
  3746  **/
       
  3747 
       
  3748 static irqreturn_t e1000_intr(int irq, void *data)
       
  3749 {
       
  3750 	struct net_device *netdev = data;
       
  3751 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3752 	struct e1000_hw *hw = &adapter->hw;
       
  3753 	u32 icr = er32(ICR);
       
  3754 
       
  3755 	if (unlikely((!icr)))
       
  3756 		return IRQ_NONE;  /* Not our interrupt */
       
  3757 
       
  3758 	/*
       
  3759 	 * we might have caused the interrupt, but the above
       
  3760 	 * read cleared it, and just in case the driver is
       
  3761 	 * down there is nothing to do so return handled
       
  3762 	 */
       
  3763 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
       
  3764 		return IRQ_HANDLED;
       
  3765 
       
  3766 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
       
  3767 		hw->get_link_status = 1;
       
  3768 		/* guard against interrupt when we're going down */
       
  3769 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3770 			schedule_delayed_work(&adapter->watchdog_task, 1);
       
  3771 	}
       
  3772 
       
  3773 	/* disable interrupts, without the synchronize_irq bit */
       
  3774 	ew32(IMC, ~0);
       
  3775 	E1000_WRITE_FLUSH();
       
  3776 
       
  3777 	if (likely(napi_schedule_prep(&adapter->napi))) {
       
  3778 		adapter->total_tx_bytes = 0;
       
  3779 		adapter->total_tx_packets = 0;
       
  3780 		adapter->total_rx_bytes = 0;
       
  3781 		adapter->total_rx_packets = 0;
       
  3782 		__napi_schedule(&adapter->napi);
       
  3783 	} else {
       
  3784 		/* this really should not happen! if it does it is basically a
       
  3785 		 * bug, but not a hard error, so enable ints and continue */
       
  3786 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3787 			e1000_irq_enable(adapter);
       
  3788 	}
       
  3789 
       
  3790 	return IRQ_HANDLED;
       
  3791 }
       
  3792 
       
  3793 /**
       
  3794  * e1000_clean - NAPI Rx polling callback
       
  3795  * @adapter: board private structure
       
  3796  **/
       
  3797 static int e1000_clean(struct napi_struct *napi, int budget)
       
  3798 {
       
  3799 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
       
  3800 	int tx_clean_complete = 0, work_done = 0;
       
  3801 
       
  3802 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
       
  3803 
       
  3804 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
       
  3805 
       
  3806 	if (!tx_clean_complete)
       
  3807 		work_done = budget;
       
  3808 
       
  3809 	/* If budget not fully consumed, exit the polling mode */
       
  3810 	if (work_done < budget) {
       
  3811 		if (likely(adapter->itr_setting & 3))
       
  3812 			e1000_set_itr(adapter);
       
  3813 		napi_complete(napi);
       
  3814 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3815 			e1000_irq_enable(adapter);
       
  3816 	}
       
  3817 
       
  3818 	return work_done;
       
  3819 }
       
  3820 
       
  3821 /**
       
  3822  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
  3823  * @adapter: board private structure
       
  3824  **/
       
  3825 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
  3826 			       struct e1000_tx_ring *tx_ring)
       
  3827 {
       
  3828 	struct e1000_hw *hw = &adapter->hw;
       
  3829 	struct net_device *netdev = adapter->netdev;
       
  3830 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
  3831 	struct e1000_buffer *buffer_info;
       
  3832 	unsigned int i, eop;
       
  3833 	unsigned int count = 0;
       
  3834 	unsigned int total_tx_bytes=0, total_tx_packets=0;
       
  3835 
       
  3836 	i = tx_ring->next_to_clean;
       
  3837 	eop = tx_ring->buffer_info[i].next_to_watch;
       
  3838 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3839 
       
  3840 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
       
  3841 	       (count < tx_ring->count)) {
       
  3842 		bool cleaned = false;
       
  3843 		rmb();	/* read buffer_info after eop_desc */
       
  3844 		for ( ; !cleaned; count++) {
       
  3845 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3846 			buffer_info = &tx_ring->buffer_info[i];
       
  3847 			cleaned = (i == eop);
       
  3848 
       
  3849 			if (cleaned) {
       
  3850 				total_tx_packets += buffer_info->segs;
       
  3851 				total_tx_bytes += buffer_info->bytecount;
       
  3852 			}
       
  3853 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  3854 			tx_desc->upper.data = 0;
       
  3855 
       
  3856 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  3857 		}
       
  3858 
       
  3859 		eop = tx_ring->buffer_info[i].next_to_watch;
       
  3860 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3861 	}
       
  3862 
       
  3863 	tx_ring->next_to_clean = i;
       
  3864 
       
  3865 #define TX_WAKE_THRESHOLD 32
       
  3866 	if (unlikely(count && netif_carrier_ok(netdev) &&
       
  3867 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
       
  3868 		/* Make sure that anybody stopping the queue after this
       
  3869 		 * sees the new next_to_clean.
       
  3870 		 */
       
  3871 		smp_mb();
       
  3872 
       
  3873 		if (netif_queue_stopped(netdev) &&
       
  3874 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
       
  3875 			netif_wake_queue(netdev);
       
  3876 			++adapter->restart_queue;
       
  3877 		}
       
  3878 	}
       
  3879 
       
  3880 	if (adapter->detect_tx_hung) {
       
  3881 		/* Detect a transmit hang in hardware, this serializes the
       
  3882 		 * check with the clearing of time_stamp and movement of i */
       
  3883 		adapter->detect_tx_hung = false;
       
  3884 		if (tx_ring->buffer_info[eop].time_stamp &&
       
  3885 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
       
  3886 		               (adapter->tx_timeout_factor * HZ)) &&
       
  3887 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
       
  3888 
       
  3889 			/* detected Tx unit hang */
       
  3890 			e_err(drv, "Detected Tx Unit Hang\n"
       
  3891 			      "  Tx Queue             <%lu>\n"
       
  3892 			      "  TDH                  <%x>\n"
       
  3893 			      "  TDT                  <%x>\n"
       
  3894 			      "  next_to_use          <%x>\n"
       
  3895 			      "  next_to_clean        <%x>\n"
       
  3896 			      "buffer_info[next_to_clean]\n"
       
  3897 			      "  time_stamp           <%lx>\n"
       
  3898 			      "  next_to_watch        <%x>\n"
       
  3899 			      "  jiffies              <%lx>\n"
       
  3900 			      "  next_to_watch.status <%x>\n",
       
  3901 				(unsigned long)((tx_ring - adapter->tx_ring) /
       
  3902 					sizeof(struct e1000_tx_ring)),
       
  3903 				readl(hw->hw_addr + tx_ring->tdh),
       
  3904 				readl(hw->hw_addr + tx_ring->tdt),
       
  3905 				tx_ring->next_to_use,
       
  3906 				tx_ring->next_to_clean,
       
  3907 				tx_ring->buffer_info[eop].time_stamp,
       
  3908 				eop,
       
  3909 				jiffies,
       
  3910 				eop_desc->upper.fields.status);
       
  3911 			e1000_dump(adapter);
       
  3912 			netif_stop_queue(netdev);
       
  3913 		}
       
  3914 	}
       
  3915 	adapter->total_tx_bytes += total_tx_bytes;
       
  3916 	adapter->total_tx_packets += total_tx_packets;
       
  3917 	netdev->stats.tx_bytes += total_tx_bytes;
       
  3918 	netdev->stats.tx_packets += total_tx_packets;
       
  3919 	return count < tx_ring->count;
       
  3920 }
       
  3921 
       
  3922 /**
       
  3923  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
  3924  * @adapter:     board private structure
       
  3925  * @status_err:  receive descriptor status and error fields
       
  3926  * @csum:        receive descriptor csum field
       
  3927  * @sk_buff:     socket buffer with received data
       
  3928  **/
       
  3929 
       
  3930 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
       
  3931 			      u32 csum, struct sk_buff *skb)
       
  3932 {
       
  3933 	struct e1000_hw *hw = &adapter->hw;
       
  3934 	u16 status = (u16)status_err;
       
  3935 	u8 errors = (u8)(status_err >> 24);
       
  3936 
       
  3937 	skb_checksum_none_assert(skb);
       
  3938 
       
  3939 	/* 82543 or newer only */
       
  3940 	if (unlikely(hw->mac_type < e1000_82543)) return;
       
  3941 	/* Ignore Checksum bit is set */
       
  3942 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
       
  3943 	/* TCP/UDP checksum error bit is set */
       
  3944 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
       
  3945 		/* let the stack verify checksum errors */
       
  3946 		adapter->hw_csum_err++;
       
  3947 		return;
       
  3948 	}
       
  3949 	/* TCP/UDP Checksum has not been calculated */
       
  3950 	if (!(status & E1000_RXD_STAT_TCPCS))
       
  3951 		return;
       
  3952 
       
  3953 	/* It must be a TCP or UDP packet with a valid checksum */
       
  3954 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
       
  3955 		/* TCP checksum is good */
       
  3956 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
  3957 	}
       
  3958 	adapter->hw_csum_good++;
       
  3959 }
       
  3960 
       
  3961 /**
       
  3962  * e1000_consume_page - helper function
       
  3963  **/
       
  3964 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
       
  3965                                u16 length)
       
  3966 {
       
  3967 	bi->page = NULL;
       
  3968 	skb->len += length;
       
  3969 	skb->data_len += length;
       
  3970 	skb->truesize += PAGE_SIZE;
       
  3971 }
       
  3972 
       
  3973 /**
       
  3974  * e1000_receive_skb - helper function to handle rx indications
       
  3975  * @adapter: board private structure
       
  3976  * @status: descriptor status field as written by hardware
       
  3977  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
       
  3978  * @skb: pointer to sk_buff to be indicated to stack
       
  3979  */
       
  3980 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
       
  3981 			      __le16 vlan, struct sk_buff *skb)
       
  3982 {
       
  3983 	skb->protocol = eth_type_trans(skb, adapter->netdev);
       
  3984 
       
  3985 	if (status & E1000_RXD_STAT_VP) {
       
  3986 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
       
  3987 
       
  3988 		__vlan_hwaccel_put_tag(skb, vid);
       
  3989 	}
       
  3990 	napi_gro_receive(&adapter->napi, skb);
       
  3991 }
       
  3992 
       
  3993 /**
       
  3994  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
       
  3995  * @adapter: board private structure
       
  3996  * @rx_ring: ring to clean
       
  3997  * @work_done: amount of napi work completed this call
       
  3998  * @work_to_do: max amount of work allowed for this call to do
       
  3999  *
       
  4000  * the return value indicates whether actual cleaning was done, there
       
  4001  * is no guarantee that everything was cleaned
       
  4002  */
       
  4003 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
       
  4004 				     struct e1000_rx_ring *rx_ring,
       
  4005 				     int *work_done, int work_to_do)
       
  4006 {
       
  4007 	struct e1000_hw *hw = &adapter->hw;
       
  4008 	struct net_device *netdev = adapter->netdev;
       
  4009 	struct pci_dev *pdev = adapter->pdev;
       
  4010 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
  4011 	struct e1000_buffer *buffer_info, *next_buffer;
       
  4012 	unsigned long irq_flags;
       
  4013 	u32 length;
       
  4014 	unsigned int i;
       
  4015 	int cleaned_count = 0;
       
  4016 	bool cleaned = false;
       
  4017 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  4018 
       
  4019 	i = rx_ring->next_to_clean;
       
  4020 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4021 	buffer_info = &rx_ring->buffer_info[i];
       
  4022 
       
  4023 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
  4024 		struct sk_buff *skb;
       
  4025 		u8 status;
       
  4026 
       
  4027 		if (*work_done >= work_to_do)
       
  4028 			break;
       
  4029 		(*work_done)++;
       
  4030 		rmb(); /* read descriptor and rx_buffer_info after status DD */
       
  4031 
       
  4032 		status = rx_desc->status;
       
  4033 		skb = buffer_info->skb;
       
  4034 		buffer_info->skb = NULL;
       
  4035 
       
  4036 		if (++i == rx_ring->count) i = 0;
       
  4037 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
  4038 		prefetch(next_rxd);
       
  4039 
       
  4040 		next_buffer = &rx_ring->buffer_info[i];
       
  4041 
       
  4042 		cleaned = true;
       
  4043 		cleaned_count++;
       
  4044 		dma_unmap_page(&pdev->dev, buffer_info->dma,
       
  4045 			       buffer_info->length, DMA_FROM_DEVICE);
       
  4046 		buffer_info->dma = 0;
       
  4047 
       
  4048 		length = le16_to_cpu(rx_desc->length);
       
  4049 
       
  4050 		/* errors is only valid for DD + EOP descriptors */
       
  4051 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
       
  4052 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
       
  4053 			u8 last_byte = *(skb->data + length - 1);
       
  4054 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
       
  4055 				       last_byte)) {
       
  4056 				spin_lock_irqsave(&adapter->stats_lock,
       
  4057 				                  irq_flags);
       
  4058 				e1000_tbi_adjust_stats(hw, &adapter->stats,
       
  4059 				                       length, skb->data);
       
  4060 				spin_unlock_irqrestore(&adapter->stats_lock,
       
  4061 				                       irq_flags);
       
  4062 				length--;
       
  4063 			} else {
       
  4064 				/* recycle both page and skb */
       
  4065 				buffer_info->skb = skb;
       
  4066 				/* an error means any chain goes out the window
       
  4067 				 * too */
       
  4068 				if (rx_ring->rx_skb_top)
       
  4069 					dev_kfree_skb(rx_ring->rx_skb_top);
       
  4070 				rx_ring->rx_skb_top = NULL;
       
  4071 				goto next_desc;
       
  4072 			}
       
  4073 		}
       
  4074 
       
  4075 #define rxtop rx_ring->rx_skb_top
       
  4076 		if (!(status & E1000_RXD_STAT_EOP)) {
       
  4077 			/* this descriptor is only the beginning (or middle) */
       
  4078 			if (!rxtop) {
       
  4079 				/* this is the beginning of a chain */
       
  4080 				rxtop = skb;
       
  4081 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
       
  4082 				                   0, length);
       
  4083 			} else {
       
  4084 				/* this is the middle of a chain */
       
  4085 				skb_fill_page_desc(rxtop,
       
  4086 				    skb_shinfo(rxtop)->nr_frags,
       
  4087 				    buffer_info->page, 0, length);
       
  4088 				/* re-use the skb, only consumed the page */
       
  4089 				buffer_info->skb = skb;
       
  4090 			}
       
  4091 			e1000_consume_page(buffer_info, rxtop, length);
       
  4092 			goto next_desc;
       
  4093 		} else {
       
  4094 			if (rxtop) {
       
  4095 				/* end of the chain */
       
  4096 				skb_fill_page_desc(rxtop,
       
  4097 				    skb_shinfo(rxtop)->nr_frags,
       
  4098 				    buffer_info->page, 0, length);
       
  4099 				/* re-use the current skb, we only consumed the
       
  4100 				 * page */
       
  4101 				buffer_info->skb = skb;
       
  4102 				skb = rxtop;
       
  4103 				rxtop = NULL;
       
  4104 				e1000_consume_page(buffer_info, skb, length);
       
  4105 			} else {
       
  4106 				/* no chain, got EOP, this buf is the packet
       
  4107 				 * copybreak to save the put_page/alloc_page */
       
  4108 				if (length <= copybreak &&
       
  4109 				    skb_tailroom(skb) >= length) {
       
  4110 					u8 *vaddr;
       
  4111 					vaddr = kmap_atomic(buffer_info->page);
       
  4112 					memcpy(skb_tail_pointer(skb), vaddr, length);
       
  4113 					kunmap_atomic(vaddr);
       
  4114 					/* re-use the page, so don't erase
       
  4115 					 * buffer_info->page */
       
  4116 					skb_put(skb, length);
       
  4117 				} else {
       
  4118 					skb_fill_page_desc(skb, 0,
       
  4119 					                   buffer_info->page, 0,
       
  4120 				                           length);
       
  4121 					e1000_consume_page(buffer_info, skb,
       
  4122 					                   length);
       
  4123 				}
       
  4124 			}
       
  4125 		}
       
  4126 
       
  4127 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
       
  4128 		e1000_rx_checksum(adapter,
       
  4129 		                  (u32)(status) |
       
  4130 		                  ((u32)(rx_desc->errors) << 24),
       
  4131 		                  le16_to_cpu(rx_desc->csum), skb);
       
  4132 
       
  4133 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
       
  4134 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
       
  4135 			pskb_trim(skb, skb->len - 4);
       
  4136 		total_rx_packets++;
       
  4137 
       
  4138 		/* eth type trans needs skb->data to point to something */
       
  4139 		if (!pskb_may_pull(skb, ETH_HLEN)) {
       
  4140 			e_err(drv, "pskb_may_pull failed.\n");
       
  4141 			dev_kfree_skb(skb);
       
  4142 			goto next_desc;
       
  4143 		}
       
  4144 
       
  4145 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
       
  4146 
       
  4147 next_desc:
       
  4148 		rx_desc->status = 0;
       
  4149 
       
  4150 		/* return some buffers to hardware, one at a time is too slow */
       
  4151 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  4152 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4153 			cleaned_count = 0;
       
  4154 		}
       
  4155 
       
  4156 		/* use prefetched values */
       
  4157 		rx_desc = next_rxd;
       
  4158 		buffer_info = next_buffer;
       
  4159 	}
       
  4160 	rx_ring->next_to_clean = i;
       
  4161 
       
  4162 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  4163 	if (cleaned_count)
       
  4164 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4165 
       
  4166 	adapter->total_rx_packets += total_rx_packets;
       
  4167 	adapter->total_rx_bytes += total_rx_bytes;
       
  4168 	netdev->stats.rx_bytes += total_rx_bytes;
       
  4169 	netdev->stats.rx_packets += total_rx_packets;
       
  4170 	return cleaned;
       
  4171 }
       
  4172 
       
  4173 /*
       
  4174  * this should improve performance for small packets with large amounts
       
  4175  * of reassembly being done in the stack
       
  4176  */
       
  4177 static void e1000_check_copybreak(struct net_device *netdev,
       
  4178 				 struct e1000_buffer *buffer_info,
       
  4179 				 u32 length, struct sk_buff **skb)
       
  4180 {
       
  4181 	struct sk_buff *new_skb;
       
  4182 
       
  4183 	if (length > copybreak)
       
  4184 		return;
       
  4185 
       
  4186 	new_skb = netdev_alloc_skb_ip_align(netdev, length);
       
  4187 	if (!new_skb)
       
  4188 		return;
       
  4189 
       
  4190 	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
       
  4191 				       (*skb)->data - NET_IP_ALIGN,
       
  4192 				       length + NET_IP_ALIGN);
       
  4193 	/* save the skb in buffer_info as good */
       
  4194 	buffer_info->skb = *skb;
       
  4195 	*skb = new_skb;
       
  4196 }
       
  4197 
       
  4198 /**
       
  4199  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
  4200  * @adapter: board private structure
       
  4201  * @rx_ring: ring to clean
       
  4202  * @work_done: amount of napi work completed this call
       
  4203  * @work_to_do: max amount of work allowed for this call to do
       
  4204  */
       
  4205 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  4206 			       struct e1000_rx_ring *rx_ring,
       
  4207 			       int *work_done, int work_to_do)
       
  4208 {
       
  4209 	struct e1000_hw *hw = &adapter->hw;
       
  4210 	struct net_device *netdev = adapter->netdev;
       
  4211 	struct pci_dev *pdev = adapter->pdev;
       
  4212 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
  4213 	struct e1000_buffer *buffer_info, *next_buffer;
       
  4214 	unsigned long flags;
       
  4215 	u32 length;
       
  4216 	unsigned int i;
       
  4217 	int cleaned_count = 0;
       
  4218 	bool cleaned = false;
       
  4219 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  4220 
       
  4221 	i = rx_ring->next_to_clean;
       
  4222 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4223 	buffer_info = &rx_ring->buffer_info[i];
       
  4224 
       
  4225 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
  4226 		struct sk_buff *skb;
       
  4227 		u8 status;
       
  4228 
       
  4229 		if (*work_done >= work_to_do)
       
  4230 			break;
       
  4231 		(*work_done)++;
       
  4232 		rmb(); /* read descriptor and rx_buffer_info after status DD */
       
  4233 
       
  4234 		status = rx_desc->status;
       
  4235 		skb = buffer_info->skb;
       
  4236 		buffer_info->skb = NULL;
       
  4237 
       
  4238 		prefetch(skb->data - NET_IP_ALIGN);
       
  4239 
       
  4240 		if (++i == rx_ring->count) i = 0;
       
  4241 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
  4242 		prefetch(next_rxd);
       
  4243 
       
  4244 		next_buffer = &rx_ring->buffer_info[i];
       
  4245 
       
  4246 		cleaned = true;
       
  4247 		cleaned_count++;
       
  4248 		dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  4249 				 buffer_info->length, DMA_FROM_DEVICE);
       
  4250 		buffer_info->dma = 0;
       
  4251 
       
  4252 		length = le16_to_cpu(rx_desc->length);
       
  4253 		/* !EOP means multiple descriptors were used to store a single
       
  4254 		 * packet, if thats the case we need to toss it.  In fact, we
       
  4255 		 * to toss every packet with the EOP bit clear and the next
       
  4256 		 * frame that _does_ have the EOP bit set, as it is by
       
  4257 		 * definition only a frame fragment
       
  4258 		 */
       
  4259 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
       
  4260 			adapter->discarding = true;
       
  4261 
       
  4262 		if (adapter->discarding) {
       
  4263 			/* All receives must fit into a single buffer */
       
  4264 			e_dbg("Receive packet consumed multiple buffers\n");
       
  4265 			/* recycle */
       
  4266 			buffer_info->skb = skb;
       
  4267 			if (status & E1000_RXD_STAT_EOP)
       
  4268 				adapter->discarding = false;
       
  4269 			goto next_desc;
       
  4270 		}
       
  4271 
       
  4272 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
       
  4273 			u8 last_byte = *(skb->data + length - 1);
       
  4274 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
       
  4275 				       last_byte)) {
       
  4276 				spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4277 				e1000_tbi_adjust_stats(hw, &adapter->stats,
       
  4278 				                       length, skb->data);
       
  4279 				spin_unlock_irqrestore(&adapter->stats_lock,
       
  4280 				                       flags);
       
  4281 				length--;
       
  4282 			} else {
       
  4283 				/* recycle */
       
  4284 				buffer_info->skb = skb;
       
  4285 				goto next_desc;
       
  4286 			}
       
  4287 		}
       
  4288 
       
  4289 		total_rx_bytes += (length - 4); /* don't count FCS */
       
  4290 		total_rx_packets++;
       
  4291 
       
  4292 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
       
  4293 			/* adjust length to remove Ethernet CRC, this must be
       
  4294 			 * done after the TBI_ACCEPT workaround above
       
  4295 			 */
       
  4296 			length -= 4;
       
  4297 
       
  4298 		e1000_check_copybreak(netdev, buffer_info, length, &skb);
       
  4299 
       
  4300 		skb_put(skb, length);
       
  4301 
       
  4302 		/* Receive Checksum Offload */
       
  4303 		e1000_rx_checksum(adapter,
       
  4304 				  (u32)(status) |
       
  4305 				  ((u32)(rx_desc->errors) << 24),
       
  4306 				  le16_to_cpu(rx_desc->csum), skb);
       
  4307 
       
  4308 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
       
  4309 
       
  4310 next_desc:
       
  4311 		rx_desc->status = 0;
       
  4312 
       
  4313 		/* return some buffers to hardware, one at a time is too slow */
       
  4314 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  4315 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4316 			cleaned_count = 0;
       
  4317 		}
       
  4318 
       
  4319 		/* use prefetched values */
       
  4320 		rx_desc = next_rxd;
       
  4321 		buffer_info = next_buffer;
       
  4322 	}
       
  4323 	rx_ring->next_to_clean = i;
       
  4324 
       
  4325 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  4326 	if (cleaned_count)
       
  4327 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4328 
       
  4329 	adapter->total_rx_packets += total_rx_packets;
       
  4330 	adapter->total_rx_bytes += total_rx_bytes;
       
  4331 	netdev->stats.rx_bytes += total_rx_bytes;
       
  4332 	netdev->stats.rx_packets += total_rx_packets;
       
  4333 	return cleaned;
       
  4334 }
       
  4335 
       
  4336 /**
       
  4337  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
       
  4338  * @adapter: address of board private structure
       
  4339  * @rx_ring: pointer to receive ring structure
       
  4340  * @cleaned_count: number of buffers to allocate this pass
       
  4341  **/
       
  4342 
       
  4343 static void
       
  4344 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
       
  4345                              struct e1000_rx_ring *rx_ring, int cleaned_count)
       
  4346 {
       
  4347 	struct net_device *netdev = adapter->netdev;
       
  4348 	struct pci_dev *pdev = adapter->pdev;
       
  4349 	struct e1000_rx_desc *rx_desc;
       
  4350 	struct e1000_buffer *buffer_info;
       
  4351 	struct sk_buff *skb;
       
  4352 	unsigned int i;
       
  4353 	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
       
  4354 
       
  4355 	i = rx_ring->next_to_use;
       
  4356 	buffer_info = &rx_ring->buffer_info[i];
       
  4357 
       
  4358 	while (cleaned_count--) {
       
  4359 		skb = buffer_info->skb;
       
  4360 		if (skb) {
       
  4361 			skb_trim(skb, 0);
       
  4362 			goto check_page;
       
  4363 		}
       
  4364 
       
  4365 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
  4366 		if (unlikely(!skb)) {
       
  4367 			/* Better luck next round */
       
  4368 			adapter->alloc_rx_buff_failed++;
       
  4369 			break;
       
  4370 		}
       
  4371 
       
  4372 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4373 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4374 			struct sk_buff *oldskb = skb;
       
  4375 			e_err(rx_err, "skb align check failed: %u bytes at "
       
  4376 			      "%p\n", bufsz, skb->data);
       
  4377 			/* Try again, without freeing the previous */
       
  4378 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
  4379 			/* Failed allocation, critical failure */
       
  4380 			if (!skb) {
       
  4381 				dev_kfree_skb(oldskb);
       
  4382 				adapter->alloc_rx_buff_failed++;
       
  4383 				break;
       
  4384 			}
       
  4385 
       
  4386 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4387 				/* give up */
       
  4388 				dev_kfree_skb(skb);
       
  4389 				dev_kfree_skb(oldskb);
       
  4390 				break; /* while (cleaned_count--) */
       
  4391 			}
       
  4392 
       
  4393 			/* Use new allocation */
       
  4394 			dev_kfree_skb(oldskb);
       
  4395 		}
       
  4396 		buffer_info->skb = skb;
       
  4397 		buffer_info->length = adapter->rx_buffer_len;
       
  4398 check_page:
       
  4399 		/* allocate a new page if necessary */
       
  4400 		if (!buffer_info->page) {
       
  4401 			buffer_info->page = alloc_page(GFP_ATOMIC);
       
  4402 			if (unlikely(!buffer_info->page)) {
       
  4403 				adapter->alloc_rx_buff_failed++;
       
  4404 				break;
       
  4405 			}
       
  4406 		}
       
  4407 
       
  4408 		if (!buffer_info->dma) {
       
  4409 			buffer_info->dma = dma_map_page(&pdev->dev,
       
  4410 			                                buffer_info->page, 0,
       
  4411 							buffer_info->length,
       
  4412 							DMA_FROM_DEVICE);
       
  4413 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
       
  4414 				put_page(buffer_info->page);
       
  4415 				dev_kfree_skb(skb);
       
  4416 				buffer_info->page = NULL;
       
  4417 				buffer_info->skb = NULL;
       
  4418 				buffer_info->dma = 0;
       
  4419 				adapter->alloc_rx_buff_failed++;
       
  4420 				break; /* while !buffer_info->skb */
       
  4421 			}
       
  4422 		}
       
  4423 
       
  4424 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4425 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4426 
       
  4427 		if (unlikely(++i == rx_ring->count))
       
  4428 			i = 0;
       
  4429 		buffer_info = &rx_ring->buffer_info[i];
       
  4430 	}
       
  4431 
       
  4432 	if (likely(rx_ring->next_to_use != i)) {
       
  4433 		rx_ring->next_to_use = i;
       
  4434 		if (unlikely(i-- == 0))
       
  4435 			i = (rx_ring->count - 1);
       
  4436 
       
  4437 		/* Force memory writes to complete before letting h/w
       
  4438 		 * know there are new descriptors to fetch.  (Only
       
  4439 		 * applicable for weak-ordered memory model archs,
       
  4440 		 * such as IA-64). */
       
  4441 		wmb();
       
  4442 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
       
  4443 	}
       
  4444 }
       
  4445 
       
  4446 /**
       
  4447  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
  4448  * @adapter: address of board private structure
       
  4449  **/
       
  4450 
       
  4451 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
  4452 				   struct e1000_rx_ring *rx_ring,
       
  4453 				   int cleaned_count)
       
  4454 {
       
  4455 	struct e1000_hw *hw = &adapter->hw;
       
  4456 	struct net_device *netdev = adapter->netdev;
       
  4457 	struct pci_dev *pdev = adapter->pdev;
       
  4458 	struct e1000_rx_desc *rx_desc;
       
  4459 	struct e1000_buffer *buffer_info;
       
  4460 	struct sk_buff *skb;
       
  4461 	unsigned int i;
       
  4462 	unsigned int bufsz = adapter->rx_buffer_len;
       
  4463 
       
  4464 	i = rx_ring->next_to_use;
       
  4465 	buffer_info = &rx_ring->buffer_info[i];
       
  4466 
       
  4467 	while (cleaned_count--) {
       
  4468 		skb = buffer_info->skb;
       
  4469 		if (skb) {
       
  4470 			skb_trim(skb, 0);
       
  4471 			goto map_skb;
       
  4472 		}
       
  4473 
       
  4474 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
  4475 		if (unlikely(!skb)) {
       
  4476 			/* Better luck next round */
       
  4477 			adapter->alloc_rx_buff_failed++;
       
  4478 			break;
       
  4479 		}
       
  4480 
       
  4481 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4482 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4483 			struct sk_buff *oldskb = skb;
       
  4484 			e_err(rx_err, "skb align check failed: %u bytes at "
       
  4485 			      "%p\n", bufsz, skb->data);
       
  4486 			/* Try again, without freeing the previous */
       
  4487 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
  4488 			/* Failed allocation, critical failure */
       
  4489 			if (!skb) {
       
  4490 				dev_kfree_skb(oldskb);
       
  4491 				adapter->alloc_rx_buff_failed++;
       
  4492 				break;
       
  4493 			}
       
  4494 
       
  4495 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4496 				/* give up */
       
  4497 				dev_kfree_skb(skb);
       
  4498 				dev_kfree_skb(oldskb);
       
  4499 				adapter->alloc_rx_buff_failed++;
       
  4500 				break; /* while !buffer_info->skb */
       
  4501 			}
       
  4502 
       
  4503 			/* Use new allocation */
       
  4504 			dev_kfree_skb(oldskb);
       
  4505 		}
       
  4506 		buffer_info->skb = skb;
       
  4507 		buffer_info->length = adapter->rx_buffer_len;
       
  4508 map_skb:
       
  4509 		buffer_info->dma = dma_map_single(&pdev->dev,
       
  4510 						  skb->data,
       
  4511 						  buffer_info->length,
       
  4512 						  DMA_FROM_DEVICE);
       
  4513 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
       
  4514 			dev_kfree_skb(skb);
       
  4515 			buffer_info->skb = NULL;
       
  4516 			buffer_info->dma = 0;
       
  4517 			adapter->alloc_rx_buff_failed++;
       
  4518 			break; /* while !buffer_info->skb */
       
  4519 		}
       
  4520 
       
  4521 		/*
       
  4522 		 * XXX if it was allocated cleanly it will never map to a
       
  4523 		 * boundary crossing
       
  4524 		 */
       
  4525 
       
  4526 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4527 		if (!e1000_check_64k_bound(adapter,
       
  4528 					(void *)(unsigned long)buffer_info->dma,
       
  4529 					adapter->rx_buffer_len)) {
       
  4530 			e_err(rx_err, "dma align check failed: %u bytes at "
       
  4531 			      "%p\n", adapter->rx_buffer_len,
       
  4532 			      (void *)(unsigned long)buffer_info->dma);
       
  4533 			dev_kfree_skb(skb);
       
  4534 			buffer_info->skb = NULL;
       
  4535 
       
  4536 			dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  4537 					 adapter->rx_buffer_len,
       
  4538 					 DMA_FROM_DEVICE);
       
  4539 			buffer_info->dma = 0;
       
  4540 
       
  4541 			adapter->alloc_rx_buff_failed++;
       
  4542 			break; /* while !buffer_info->skb */
       
  4543 		}
       
  4544 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4545 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4546 
       
  4547 		if (unlikely(++i == rx_ring->count))
       
  4548 			i = 0;
       
  4549 		buffer_info = &rx_ring->buffer_info[i];
       
  4550 	}
       
  4551 
       
  4552 	if (likely(rx_ring->next_to_use != i)) {
       
  4553 		rx_ring->next_to_use = i;
       
  4554 		if (unlikely(i-- == 0))
       
  4555 			i = (rx_ring->count - 1);
       
  4556 
       
  4557 		/* Force memory writes to complete before letting h/w
       
  4558 		 * know there are new descriptors to fetch.  (Only
       
  4559 		 * applicable for weak-ordered memory model archs,
       
  4560 		 * such as IA-64). */
       
  4561 		wmb();
       
  4562 		writel(i, hw->hw_addr + rx_ring->rdt);
       
  4563 	}
       
  4564 }
       
  4565 
       
  4566 /**
       
  4567  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
       
  4568  * @adapter:
       
  4569  **/
       
  4570 
       
  4571 static void e1000_smartspeed(struct e1000_adapter *adapter)
       
  4572 {
       
  4573 	struct e1000_hw *hw = &adapter->hw;
       
  4574 	u16 phy_status;
       
  4575 	u16 phy_ctrl;
       
  4576 
       
  4577 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
       
  4578 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
       
  4579 		return;
       
  4580 
       
  4581 	if (adapter->smartspeed == 0) {
       
  4582 		/* If Master/Slave config fault is asserted twice,
       
  4583 		 * we assume back-to-back */
       
  4584 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
       
  4585 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4586 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
       
  4587 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4588 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4589 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
       
  4590 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
       
  4591 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
       
  4592 					    phy_ctrl);
       
  4593 			adapter->smartspeed++;
       
  4594 			if (!e1000_phy_setup_autoneg(hw) &&
       
  4595 			   !e1000_read_phy_reg(hw, PHY_CTRL,
       
  4596 				   	       &phy_ctrl)) {
       
  4597 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4598 					     MII_CR_RESTART_AUTO_NEG);
       
  4599 				e1000_write_phy_reg(hw, PHY_CTRL,
       
  4600 						    phy_ctrl);
       
  4601 			}
       
  4602 		}
       
  4603 		return;
       
  4604 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
       
  4605 		/* If still no link, perhaps using 2/3 pair cable */
       
  4606 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4607 		phy_ctrl |= CR_1000T_MS_ENABLE;
       
  4608 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
       
  4609 		if (!e1000_phy_setup_autoneg(hw) &&
       
  4610 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
       
  4611 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4612 				     MII_CR_RESTART_AUTO_NEG);
       
  4613 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
       
  4614 		}
       
  4615 	}
       
  4616 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
       
  4617 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
       
  4618 		adapter->smartspeed = 0;
       
  4619 }
       
  4620 
       
  4621 /**
       
  4622  * e1000_ioctl -
       
  4623  * @netdev:
       
  4624  * @ifreq:
       
  4625  * @cmd:
       
  4626  **/
       
  4627 
       
  4628 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4629 {
       
  4630 	switch (cmd) {
       
  4631 	case SIOCGMIIPHY:
       
  4632 	case SIOCGMIIREG:
       
  4633 	case SIOCSMIIREG:
       
  4634 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  4635 	default:
       
  4636 		return -EOPNOTSUPP;
       
  4637 	}
       
  4638 }
       
  4639 
       
  4640 /**
       
  4641  * e1000_mii_ioctl -
       
  4642  * @netdev:
       
  4643  * @ifreq:
       
  4644  * @cmd:
       
  4645  **/
       
  4646 
       
  4647 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
  4648 			   int cmd)
       
  4649 {
       
  4650 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4651 	struct e1000_hw *hw = &adapter->hw;
       
  4652 	struct mii_ioctl_data *data = if_mii(ifr);
       
  4653 	int retval;
       
  4654 	u16 mii_reg;
       
  4655 	unsigned long flags;
       
  4656 
       
  4657 	if (hw->media_type != e1000_media_type_copper)
       
  4658 		return -EOPNOTSUPP;
       
  4659 
       
  4660 	switch (cmd) {
       
  4661 	case SIOCGMIIPHY:
       
  4662 		data->phy_id = hw->phy_addr;
       
  4663 		break;
       
  4664 	case SIOCGMIIREG:
       
  4665 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4666 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
       
  4667 				   &data->val_out)) {
       
  4668 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4669 			return -EIO;
       
  4670 		}
       
  4671 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4672 		break;
       
  4673 	case SIOCSMIIREG:
       
  4674 		if (data->reg_num & ~(0x1F))
       
  4675 			return -EFAULT;
       
  4676 		mii_reg = data->val_in;
       
  4677 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4678 		if (e1000_write_phy_reg(hw, data->reg_num,
       
  4679 					mii_reg)) {
       
  4680 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4681 			return -EIO;
       
  4682 		}
       
  4683 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4684 		if (hw->media_type == e1000_media_type_copper) {
       
  4685 			switch (data->reg_num) {
       
  4686 			case PHY_CTRL:
       
  4687 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4688 					break;
       
  4689 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
       
  4690 					hw->autoneg = 1;
       
  4691 					hw->autoneg_advertised = 0x2F;
       
  4692 				} else {
       
  4693 					u32 speed;
       
  4694 					if (mii_reg & 0x40)
       
  4695 						speed = SPEED_1000;
       
  4696 					else if (mii_reg & 0x2000)
       
  4697 						speed = SPEED_100;
       
  4698 					else
       
  4699 						speed = SPEED_10;
       
  4700 					retval = e1000_set_spd_dplx(
       
  4701 						adapter, speed,
       
  4702 						((mii_reg & 0x100)
       
  4703 						 ? DUPLEX_FULL :
       
  4704 						 DUPLEX_HALF));
       
  4705 					if (retval)
       
  4706 						return retval;
       
  4707 				}
       
  4708 				if (netif_running(adapter->netdev))
       
  4709 					e1000_reinit_locked(adapter);
       
  4710 				else
       
  4711 					e1000_reset(adapter);
       
  4712 				break;
       
  4713 			case M88E1000_PHY_SPEC_CTRL:
       
  4714 			case M88E1000_EXT_PHY_SPEC_CTRL:
       
  4715 				if (e1000_phy_reset(hw))
       
  4716 					return -EIO;
       
  4717 				break;
       
  4718 			}
       
  4719 		} else {
       
  4720 			switch (data->reg_num) {
       
  4721 			case PHY_CTRL:
       
  4722 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4723 					break;
       
  4724 				if (netif_running(adapter->netdev))
       
  4725 					e1000_reinit_locked(adapter);
       
  4726 				else
       
  4727 					e1000_reset(adapter);
       
  4728 				break;
       
  4729 			}
       
  4730 		}
       
  4731 		break;
       
  4732 	default:
       
  4733 		return -EOPNOTSUPP;
       
  4734 	}
       
  4735 	return E1000_SUCCESS;
       
  4736 }
       
  4737 
       
  4738 void e1000_pci_set_mwi(struct e1000_hw *hw)
       
  4739 {
       
  4740 	struct e1000_adapter *adapter = hw->back;
       
  4741 	int ret_val = pci_set_mwi(adapter->pdev);
       
  4742 
       
  4743 	if (ret_val)
       
  4744 		e_err(probe, "Error in setting MWI\n");
       
  4745 }
       
  4746 
       
  4747 void e1000_pci_clear_mwi(struct e1000_hw *hw)
       
  4748 {
       
  4749 	struct e1000_adapter *adapter = hw->back;
       
  4750 
       
  4751 	pci_clear_mwi(adapter->pdev);
       
  4752 }
       
  4753 
       
  4754 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
       
  4755 {
       
  4756 	struct e1000_adapter *adapter = hw->back;
       
  4757 	return pcix_get_mmrbc(adapter->pdev);
       
  4758 }
       
  4759 
       
  4760 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
       
  4761 {
       
  4762 	struct e1000_adapter *adapter = hw->back;
       
  4763 	pcix_set_mmrbc(adapter->pdev, mmrbc);
       
  4764 }
       
  4765 
       
  4766 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
       
  4767 {
       
  4768 	outl(value, port);
       
  4769 }
       
  4770 
       
  4771 static bool e1000_vlan_used(struct e1000_adapter *adapter)
       
  4772 {
       
  4773 	u16 vid;
       
  4774 
       
  4775 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
       
  4776 		return true;
       
  4777 	return false;
       
  4778 }
       
  4779 
       
  4780 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
       
  4781 			      netdev_features_t features)
       
  4782 {
       
  4783 	struct e1000_hw *hw = &adapter->hw;
       
  4784 	u32 ctrl;
       
  4785 
       
  4786 	ctrl = er32(CTRL);
       
  4787 	if (features & NETIF_F_HW_VLAN_RX) {
       
  4788 		/* enable VLAN tag insert/strip */
       
  4789 		ctrl |= E1000_CTRL_VME;
       
  4790 	} else {
       
  4791 		/* disable VLAN tag insert/strip */
       
  4792 		ctrl &= ~E1000_CTRL_VME;
       
  4793 	}
       
  4794 	ew32(CTRL, ctrl);
       
  4795 }
       
  4796 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
       
  4797 				     bool filter_on)
       
  4798 {
       
  4799 	struct e1000_hw *hw = &adapter->hw;
       
  4800 	u32 rctl;
       
  4801 
       
  4802 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4803 		e1000_irq_disable(adapter);
       
  4804 
       
  4805 	__e1000_vlan_mode(adapter, adapter->netdev->features);
       
  4806 	if (filter_on) {
       
  4807 		/* enable VLAN receive filtering */
       
  4808 		rctl = er32(RCTL);
       
  4809 		rctl &= ~E1000_RCTL_CFIEN;
       
  4810 		if (!(adapter->netdev->flags & IFF_PROMISC))
       
  4811 			rctl |= E1000_RCTL_VFE;
       
  4812 		ew32(RCTL, rctl);
       
  4813 		e1000_update_mng_vlan(adapter);
       
  4814 	} else {
       
  4815 		/* disable VLAN receive filtering */
       
  4816 		rctl = er32(RCTL);
       
  4817 		rctl &= ~E1000_RCTL_VFE;
       
  4818 		ew32(RCTL, rctl);
       
  4819 	}
       
  4820 
       
  4821 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4822 		e1000_irq_enable(adapter);
       
  4823 }
       
  4824 
       
  4825 static void e1000_vlan_mode(struct net_device *netdev,
       
  4826 			    netdev_features_t features)
       
  4827 {
       
  4828 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4829 
       
  4830 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4831 		e1000_irq_disable(adapter);
       
  4832 
       
  4833 	__e1000_vlan_mode(adapter, features);
       
  4834 
       
  4835 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4836 		e1000_irq_enable(adapter);
       
  4837 }
       
  4838 
       
  4839 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
       
  4840 {
       
  4841 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4842 	struct e1000_hw *hw = &adapter->hw;
       
  4843 	u32 vfta, index;
       
  4844 
       
  4845 	if ((hw->mng_cookie.status &
       
  4846 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  4847 	    (vid == adapter->mng_vlan_id))
       
  4848 		return 0;
       
  4849 
       
  4850 	if (!e1000_vlan_used(adapter))
       
  4851 		e1000_vlan_filter_on_off(adapter, true);
       
  4852 
       
  4853 	/* add VID to filter table */
       
  4854 	index = (vid >> 5) & 0x7F;
       
  4855 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
       
  4856 	vfta |= (1 << (vid & 0x1F));
       
  4857 	e1000_write_vfta(hw, index, vfta);
       
  4858 
       
  4859 	set_bit(vid, adapter->active_vlans);
       
  4860 
       
  4861 	return 0;
       
  4862 }
       
  4863 
       
  4864 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
       
  4865 {
       
  4866 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4867 	struct e1000_hw *hw = &adapter->hw;
       
  4868 	u32 vfta, index;
       
  4869 
       
  4870 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4871 		e1000_irq_disable(adapter);
       
  4872 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4873 		e1000_irq_enable(adapter);
       
  4874 
       
  4875 	/* remove VID from filter table */
       
  4876 	index = (vid >> 5) & 0x7F;
       
  4877 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
       
  4878 	vfta &= ~(1 << (vid & 0x1F));
       
  4879 	e1000_write_vfta(hw, index, vfta);
       
  4880 
       
  4881 	clear_bit(vid, adapter->active_vlans);
       
  4882 
       
  4883 	if (!e1000_vlan_used(adapter))
       
  4884 		e1000_vlan_filter_on_off(adapter, false);
       
  4885 
       
  4886 	return 0;
       
  4887 }
       
  4888 
       
  4889 static void e1000_restore_vlan(struct e1000_adapter *adapter)
       
  4890 {
       
  4891 	u16 vid;
       
  4892 
       
  4893 	if (!e1000_vlan_used(adapter))
       
  4894 		return;
       
  4895 
       
  4896 	e1000_vlan_filter_on_off(adapter, true);
       
  4897 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
       
  4898 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  4899 }
       
  4900 
       
  4901 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
       
  4902 {
       
  4903 	struct e1000_hw *hw = &adapter->hw;
       
  4904 
       
  4905 	hw->autoneg = 0;
       
  4906 
       
  4907 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
       
  4908 	 * for the switch() below to work */
       
  4909 	if ((spd & 1) || (dplx & ~1))
       
  4910 		goto err_inval;
       
  4911 
       
  4912 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
  4913 	if ((hw->media_type == e1000_media_type_fiber) &&
       
  4914 	    spd != SPEED_1000 &&
       
  4915 	    dplx != DUPLEX_FULL)
       
  4916 		goto err_inval;
       
  4917 
       
  4918 	switch (spd + dplx) {
       
  4919 	case SPEED_10 + DUPLEX_HALF:
       
  4920 		hw->forced_speed_duplex = e1000_10_half;
       
  4921 		break;
       
  4922 	case SPEED_10 + DUPLEX_FULL:
       
  4923 		hw->forced_speed_duplex = e1000_10_full;
       
  4924 		break;
       
  4925 	case SPEED_100 + DUPLEX_HALF:
       
  4926 		hw->forced_speed_duplex = e1000_100_half;
       
  4927 		break;
       
  4928 	case SPEED_100 + DUPLEX_FULL:
       
  4929 		hw->forced_speed_duplex = e1000_100_full;
       
  4930 		break;
       
  4931 	case SPEED_1000 + DUPLEX_FULL:
       
  4932 		hw->autoneg = 1;
       
  4933 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
       
  4934 		break;
       
  4935 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
  4936 	default:
       
  4937 		goto err_inval;
       
  4938 	}
       
  4939 	return 0;
       
  4940 
       
  4941 err_inval:
       
  4942 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
       
  4943 	return -EINVAL;
       
  4944 }
       
  4945 
       
  4946 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
       
  4947 {
       
  4948 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4949 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4950 	struct e1000_hw *hw = &adapter->hw;
       
  4951 	u32 ctrl, ctrl_ext, rctl, status;
       
  4952 	u32 wufc = adapter->wol;
       
  4953 #ifdef CONFIG_PM
       
  4954 	int retval = 0;
       
  4955 #endif
       
  4956 
       
  4957 	netif_device_detach(netdev);
       
  4958 
       
  4959 	if (netif_running(netdev)) {
       
  4960 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  4961 		e1000_down(adapter);
       
  4962 	}
       
  4963 
       
  4964 #ifdef CONFIG_PM
       
  4965 	retval = pci_save_state(pdev);
       
  4966 	if (retval)
       
  4967 		return retval;
       
  4968 #endif
       
  4969 
       
  4970 	status = er32(STATUS);
       
  4971 	if (status & E1000_STATUS_LU)
       
  4972 		wufc &= ~E1000_WUFC_LNKC;
       
  4973 
       
  4974 	if (wufc) {
       
  4975 		e1000_setup_rctl(adapter);
       
  4976 		e1000_set_rx_mode(netdev);
       
  4977 
       
  4978 		rctl = er32(RCTL);
       
  4979 
       
  4980 		/* turn on all-multi mode if wake on multicast is enabled */
       
  4981 		if (wufc & E1000_WUFC_MC)
       
  4982 			rctl |= E1000_RCTL_MPE;
       
  4983 
       
  4984 		/* enable receives in the hardware */
       
  4985 		ew32(RCTL, rctl | E1000_RCTL_EN);
       
  4986 
       
  4987 		if (hw->mac_type >= e1000_82540) {
       
  4988 			ctrl = er32(CTRL);
       
  4989 			/* advertise wake from D3Cold */
       
  4990 			#define E1000_CTRL_ADVD3WUC 0x00100000
       
  4991 			/* phy power management enable */
       
  4992 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  4993 			ctrl |= E1000_CTRL_ADVD3WUC |
       
  4994 				E1000_CTRL_EN_PHY_PWR_MGMT;
       
  4995 			ew32(CTRL, ctrl);
       
  4996 		}
       
  4997 
       
  4998 		if (hw->media_type == e1000_media_type_fiber ||
       
  4999 		    hw->media_type == e1000_media_type_internal_serdes) {
       
  5000 			/* keep the laser running in D3 */
       
  5001 			ctrl_ext = er32(CTRL_EXT);
       
  5002 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
       
  5003 			ew32(CTRL_EXT, ctrl_ext);
       
  5004 		}
       
  5005 
       
  5006 		ew32(WUC, E1000_WUC_PME_EN);
       
  5007 		ew32(WUFC, wufc);
       
  5008 	} else {
       
  5009 		ew32(WUC, 0);
       
  5010 		ew32(WUFC, 0);
       
  5011 	}
       
  5012 
       
  5013 	e1000_release_manageability(adapter);
       
  5014 
       
  5015 	*enable_wake = !!wufc;
       
  5016 
       
  5017 	/* make sure adapter isn't asleep if manageability is enabled */
       
  5018 	if (adapter->en_mng_pt)
       
  5019 		*enable_wake = true;
       
  5020 
       
  5021 	if (netif_running(netdev))
       
  5022 		e1000_free_irq(adapter);
       
  5023 
       
  5024 	pci_disable_device(pdev);
       
  5025 
       
  5026 	return 0;
       
  5027 }
       
  5028 
       
  5029 #ifdef CONFIG_PM
       
  5030 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
       
  5031 {
       
  5032 	int retval;
       
  5033 	bool wake;
       
  5034 
       
  5035 	retval = __e1000_shutdown(pdev, &wake);
       
  5036 	if (retval)
       
  5037 		return retval;
       
  5038 
       
  5039 	if (wake) {
       
  5040 		pci_prepare_to_sleep(pdev);
       
  5041 	} else {
       
  5042 		pci_wake_from_d3(pdev, false);
       
  5043 		pci_set_power_state(pdev, PCI_D3hot);
       
  5044 	}
       
  5045 
       
  5046 	return 0;
       
  5047 }
       
  5048 
       
  5049 static int e1000_resume(struct pci_dev *pdev)
       
  5050 {
       
  5051 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5052 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5053 	struct e1000_hw *hw = &adapter->hw;
       
  5054 	u32 err;
       
  5055 
       
  5056 	pci_set_power_state(pdev, PCI_D0);
       
  5057 	pci_restore_state(pdev);
       
  5058 	pci_save_state(pdev);
       
  5059 
       
  5060 	if (adapter->need_ioport)
       
  5061 		err = pci_enable_device(pdev);
       
  5062 	else
       
  5063 		err = pci_enable_device_mem(pdev);
       
  5064 	if (err) {
       
  5065 		pr_err("Cannot enable PCI device from suspend\n");
       
  5066 		return err;
       
  5067 	}
       
  5068 	pci_set_master(pdev);
       
  5069 
       
  5070 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5071 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5072 
       
  5073 	if (netif_running(netdev)) {
       
  5074 		err = e1000_request_irq(adapter);
       
  5075 		if (err)
       
  5076 			return err;
       
  5077 	}
       
  5078 
       
  5079 	e1000_power_up_phy(adapter);
       
  5080 	e1000_reset(adapter);
       
  5081 	ew32(WUS, ~0);
       
  5082 
       
  5083 	e1000_init_manageability(adapter);
       
  5084 
       
  5085 	if (netif_running(netdev))
       
  5086 		e1000_up(adapter);
       
  5087 
       
  5088 	netif_device_attach(netdev);
       
  5089 
       
  5090 	return 0;
       
  5091 }
       
  5092 #endif
       
  5093 
       
  5094 static void e1000_shutdown(struct pci_dev *pdev)
       
  5095 {
       
  5096 	bool wake;
       
  5097 
       
  5098 	__e1000_shutdown(pdev, &wake);
       
  5099 
       
  5100 	if (system_state == SYSTEM_POWER_OFF) {
       
  5101 		pci_wake_from_d3(pdev, wake);
       
  5102 		pci_set_power_state(pdev, PCI_D3hot);
       
  5103 	}
       
  5104 }
       
  5105 
       
  5106 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  5107 /*
       
  5108  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  5109  * without having to re-enable interrupts. It's not called while
       
  5110  * the interrupt routine is executing.
       
  5111  */
       
  5112 static void e1000_netpoll(struct net_device *netdev)
       
  5113 {
       
  5114 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5115 
       
  5116 	disable_irq(adapter->pdev->irq);
       
  5117 	e1000_intr(adapter->pdev->irq, netdev);
       
  5118 	enable_irq(adapter->pdev->irq);
       
  5119 }
       
  5120 #endif
       
  5121 
       
  5122 /**
       
  5123  * e1000_io_error_detected - called when PCI error is detected
       
  5124  * @pdev: Pointer to PCI device
       
  5125  * @state: The current pci connection state
       
  5126  *
       
  5127  * This function is called after a PCI bus error affecting
       
  5128  * this device has been detected.
       
  5129  */
       
  5130 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
  5131 						pci_channel_state_t state)
       
  5132 {
       
  5133 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5134 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5135 
       
  5136 	netif_device_detach(netdev);
       
  5137 
       
  5138 	if (state == pci_channel_io_perm_failure)
       
  5139 		return PCI_ERS_RESULT_DISCONNECT;
       
  5140 
       
  5141 	if (netif_running(netdev))
       
  5142 		e1000_down(adapter);
       
  5143 	pci_disable_device(pdev);
       
  5144 
       
  5145 	/* Request a slot slot reset. */
       
  5146 	return PCI_ERS_RESULT_NEED_RESET;
       
  5147 }
       
  5148 
       
  5149 /**
       
  5150  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  5151  * @pdev: Pointer to PCI device
       
  5152  *
       
  5153  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  5154  * resembles the first-half of the e1000_resume routine.
       
  5155  */
       
  5156 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  5157 {
       
  5158 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5159 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5160 	struct e1000_hw *hw = &adapter->hw;
       
  5161 	int err;
       
  5162 
       
  5163 	if (adapter->need_ioport)
       
  5164 		err = pci_enable_device(pdev);
       
  5165 	else
       
  5166 		err = pci_enable_device_mem(pdev);
       
  5167 	if (err) {
       
  5168 		pr_err("Cannot re-enable PCI device after reset.\n");
       
  5169 		return PCI_ERS_RESULT_DISCONNECT;
       
  5170 	}
       
  5171 	pci_set_master(pdev);
       
  5172 
       
  5173 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5174 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5175 
       
  5176 	e1000_reset(adapter);
       
  5177 	ew32(WUS, ~0);
       
  5178 
       
  5179 	return PCI_ERS_RESULT_RECOVERED;
       
  5180 }
       
  5181 
       
  5182 /**
       
  5183  * e1000_io_resume - called when traffic can start flowing again.
       
  5184  * @pdev: Pointer to PCI device
       
  5185  *
       
  5186  * This callback is called when the error recovery driver tells us that
       
  5187  * its OK to resume normal operation. Implementation resembles the
       
  5188  * second-half of the e1000_resume routine.
       
  5189  */
       
  5190 static void e1000_io_resume(struct pci_dev *pdev)
       
  5191 {
       
  5192 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5193 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5194 
       
  5195 	e1000_init_manageability(adapter);
       
  5196 
       
  5197 	if (netif_running(netdev)) {
       
  5198 		if (e1000_up(adapter)) {
       
  5199 			pr_info("can't bring device back up after reset\n");
       
  5200 			return;
       
  5201 		}
       
  5202 	}
       
  5203 
       
  5204 	netif_device_attach(netdev);
       
  5205 }
       
  5206 
       
  5207 /* e1000_main.c */