devices/e1000e/phy-3.14-orig.c
branchstable-1.5
changeset 2587 afd76ee3aa87
equal deleted inserted replaced
2586:5b89b4e38cdc 2587:afd76ee3aa87
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2013 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000.h"
       
    30 
       
    31 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
       
    32 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
       
    33 					  u16 *data, bool read, bool page_set);
       
    34 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
       
    35 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
       
    36 					  u16 *data, bool read);
       
    37 
       
    38 /* Cable length tables */
       
    39 static const u16 e1000_m88_cable_length_table[] = {
       
    40 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
       
    41 };
       
    42 
       
    43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
       
    44 		ARRAY_SIZE(e1000_m88_cable_length_table)
       
    45 
       
    46 static const u16 e1000_igp_2_cable_length_table[] = {
       
    47 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
       
    48 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
       
    49 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
       
    50 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
       
    51 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
       
    52 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
       
    53 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
       
    54 	124
       
    55 };
       
    56 
       
    57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
       
    58 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
       
    59 
       
    60 /**
       
    61  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
       
    62  *  @hw: pointer to the HW structure
       
    63  *
       
    64  *  Read the PHY management control register and check whether a PHY reset
       
    65  *  is blocked.  If a reset is not blocked return 0, otherwise
       
    66  *  return E1000_BLK_PHY_RESET (12).
       
    67  **/
       
    68 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
       
    69 {
       
    70 	u32 manc;
       
    71 
       
    72 	manc = er32(MANC);
       
    73 
       
    74 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
       
    75 }
       
    76 
       
    77 /**
       
    78  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
       
    79  *  @hw: pointer to the HW structure
       
    80  *
       
    81  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
       
    82  *  revision in the hardware structure.
       
    83  **/
       
    84 s32 e1000e_get_phy_id(struct e1000_hw *hw)
       
    85 {
       
    86 	struct e1000_phy_info *phy = &hw->phy;
       
    87 	s32 ret_val = 0;
       
    88 	u16 phy_id;
       
    89 	u16 retry_count = 0;
       
    90 
       
    91 	if (!phy->ops.read_reg)
       
    92 		return 0;
       
    93 
       
    94 	while (retry_count < 2) {
       
    95 		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
       
    96 		if (ret_val)
       
    97 			return ret_val;
       
    98 
       
    99 		phy->id = (u32)(phy_id << 16);
       
   100 		usleep_range(20, 40);
       
   101 		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
       
   102 		if (ret_val)
       
   103 			return ret_val;
       
   104 
       
   105 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
       
   106 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
       
   107 
       
   108 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
       
   109 			return 0;
       
   110 
       
   111 		retry_count++;
       
   112 	}
       
   113 
       
   114 	return 0;
       
   115 }
       
   116 
       
   117 /**
       
   118  *  e1000e_phy_reset_dsp - Reset PHY DSP
       
   119  *  @hw: pointer to the HW structure
       
   120  *
       
   121  *  Reset the digital signal processor.
       
   122  **/
       
   123 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
       
   124 {
       
   125 	s32 ret_val;
       
   126 
       
   127 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
       
   128 	if (ret_val)
       
   129 		return ret_val;
       
   130 
       
   131 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
       
   132 }
       
   133 
       
   134 /**
       
   135  *  e1000e_read_phy_reg_mdic - Read MDI control register
       
   136  *  @hw: pointer to the HW structure
       
   137  *  @offset: register offset to be read
       
   138  *  @data: pointer to the read data
       
   139  *
       
   140  *  Reads the MDI control register in the PHY at offset and stores the
       
   141  *  information read to data.
       
   142  **/
       
   143 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
       
   144 {
       
   145 	struct e1000_phy_info *phy = &hw->phy;
       
   146 	u32 i, mdic = 0;
       
   147 
       
   148 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   149 		e_dbg("PHY Address %d is out of range\n", offset);
       
   150 		return -E1000_ERR_PARAM;
       
   151 	}
       
   152 
       
   153 	/* Set up Op-code, Phy Address, and register offset in the MDI
       
   154 	 * Control register.  The MAC will take care of interfacing with the
       
   155 	 * PHY to retrieve the desired data.
       
   156 	 */
       
   157 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
       
   158 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   159 		(E1000_MDIC_OP_READ));
       
   160 
       
   161 	ew32(MDIC, mdic);
       
   162 
       
   163 	/* Poll the ready bit to see if the MDI read completed
       
   164 	 * Increasing the time out as testing showed failures with
       
   165 	 * the lower time out
       
   166 	 */
       
   167 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   168 		udelay(50);
       
   169 		mdic = er32(MDIC);
       
   170 		if (mdic & E1000_MDIC_READY)
       
   171 			break;
       
   172 	}
       
   173 	if (!(mdic & E1000_MDIC_READY)) {
       
   174 		e_dbg("MDI Read did not complete\n");
       
   175 		return -E1000_ERR_PHY;
       
   176 	}
       
   177 	if (mdic & E1000_MDIC_ERROR) {
       
   178 		e_dbg("MDI Error\n");
       
   179 		return -E1000_ERR_PHY;
       
   180 	}
       
   181 	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
       
   182 		e_dbg("MDI Read offset error - requested %d, returned %d\n",
       
   183 		      offset,
       
   184 		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
       
   185 		return -E1000_ERR_PHY;
       
   186 	}
       
   187 	*data = (u16)mdic;
       
   188 
       
   189 	/* Allow some time after each MDIC transaction to avoid
       
   190 	 * reading duplicate data in the next MDIC transaction.
       
   191 	 */
       
   192 	if (hw->mac.type == e1000_pch2lan)
       
   193 		udelay(100);
       
   194 
       
   195 	return 0;
       
   196 }
       
   197 
       
   198 /**
       
   199  *  e1000e_write_phy_reg_mdic - Write MDI control register
       
   200  *  @hw: pointer to the HW structure
       
   201  *  @offset: register offset to write to
       
   202  *  @data: data to write to register at offset
       
   203  *
       
   204  *  Writes data to MDI control register in the PHY at offset.
       
   205  **/
       
   206 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
       
   207 {
       
   208 	struct e1000_phy_info *phy = &hw->phy;
       
   209 	u32 i, mdic = 0;
       
   210 
       
   211 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   212 		e_dbg("PHY Address %d is out of range\n", offset);
       
   213 		return -E1000_ERR_PARAM;
       
   214 	}
       
   215 
       
   216 	/* Set up Op-code, Phy Address, and register offset in the MDI
       
   217 	 * Control register.  The MAC will take care of interfacing with the
       
   218 	 * PHY to retrieve the desired data.
       
   219 	 */
       
   220 	mdic = (((u32)data) |
       
   221 		(offset << E1000_MDIC_REG_SHIFT) |
       
   222 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   223 		(E1000_MDIC_OP_WRITE));
       
   224 
       
   225 	ew32(MDIC, mdic);
       
   226 
       
   227 	/* Poll the ready bit to see if the MDI read completed
       
   228 	 * Increasing the time out as testing showed failures with
       
   229 	 * the lower time out
       
   230 	 */
       
   231 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   232 		udelay(50);
       
   233 		mdic = er32(MDIC);
       
   234 		if (mdic & E1000_MDIC_READY)
       
   235 			break;
       
   236 	}
       
   237 	if (!(mdic & E1000_MDIC_READY)) {
       
   238 		e_dbg("MDI Write did not complete\n");
       
   239 		return -E1000_ERR_PHY;
       
   240 	}
       
   241 	if (mdic & E1000_MDIC_ERROR) {
       
   242 		e_dbg("MDI Error\n");
       
   243 		return -E1000_ERR_PHY;
       
   244 	}
       
   245 	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
       
   246 		e_dbg("MDI Write offset error - requested %d, returned %d\n",
       
   247 		      offset,
       
   248 		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
       
   249 		return -E1000_ERR_PHY;
       
   250 	}
       
   251 
       
   252 	/* Allow some time after each MDIC transaction to avoid
       
   253 	 * reading duplicate data in the next MDIC transaction.
       
   254 	 */
       
   255 	if (hw->mac.type == e1000_pch2lan)
       
   256 		udelay(100);
       
   257 
       
   258 	return 0;
       
   259 }
       
   260 
       
   261 /**
       
   262  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
       
   263  *  @hw: pointer to the HW structure
       
   264  *  @offset: register offset to be read
       
   265  *  @data: pointer to the read data
       
   266  *
       
   267  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
   268  *  and storing the retrieved information in data.  Release any acquired
       
   269  *  semaphores before exiting.
       
   270  **/
       
   271 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
       
   272 {
       
   273 	s32 ret_val;
       
   274 
       
   275 	ret_val = hw->phy.ops.acquire(hw);
       
   276 	if (ret_val)
       
   277 		return ret_val;
       
   278 
       
   279 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   280 					   data);
       
   281 
       
   282 	hw->phy.ops.release(hw);
       
   283 
       
   284 	return ret_val;
       
   285 }
       
   286 
       
   287 /**
       
   288  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
       
   289  *  @hw: pointer to the HW structure
       
   290  *  @offset: register offset to write to
       
   291  *  @data: data to write at register offset
       
   292  *
       
   293  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
   294  *  at the offset.  Release any acquired semaphores before exiting.
       
   295  **/
       
   296 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
       
   297 {
       
   298 	s32 ret_val;
       
   299 
       
   300 	ret_val = hw->phy.ops.acquire(hw);
       
   301 	if (ret_val)
       
   302 		return ret_val;
       
   303 
       
   304 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   305 					    data);
       
   306 
       
   307 	hw->phy.ops.release(hw);
       
   308 
       
   309 	return ret_val;
       
   310 }
       
   311 
       
   312 /**
       
   313  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
       
   314  *  @hw: pointer to the HW structure
       
   315  *  @page: page to set (shifted left when necessary)
       
   316  *
       
   317  *  Sets PHY page required for PHY register access.  Assumes semaphore is
       
   318  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
       
   319  *  must set it appropriately (if necessary) after this function returns.
       
   320  **/
       
   321 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
       
   322 {
       
   323 	e_dbg("Setting page 0x%x\n", page);
       
   324 
       
   325 	hw->phy.addr = 1;
       
   326 
       
   327 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
       
   328 }
       
   329 
       
   330 /**
       
   331  *  __e1000e_read_phy_reg_igp - Read igp PHY register
       
   332  *  @hw: pointer to the HW structure
       
   333  *  @offset: register offset to be read
       
   334  *  @data: pointer to the read data
       
   335  *  @locked: semaphore has already been acquired or not
       
   336  *
       
   337  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
   338  *  and stores the retrieved information in data.  Release any acquired
       
   339  *  semaphores before exiting.
       
   340  **/
       
   341 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
       
   342 				     bool locked)
       
   343 {
       
   344 	s32 ret_val = 0;
       
   345 
       
   346 	if (!locked) {
       
   347 		if (!hw->phy.ops.acquire)
       
   348 			return 0;
       
   349 
       
   350 		ret_val = hw->phy.ops.acquire(hw);
       
   351 		if (ret_val)
       
   352 			return ret_val;
       
   353 	}
       
   354 
       
   355 	if (offset > MAX_PHY_MULTI_PAGE_REG)
       
   356 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   357 						    IGP01E1000_PHY_PAGE_SELECT,
       
   358 						    (u16)offset);
       
   359 	if (!ret_val)
       
   360 		ret_val = e1000e_read_phy_reg_mdic(hw,
       
   361 						   MAX_PHY_REG_ADDRESS & offset,
       
   362 						   data);
       
   363 	if (!locked)
       
   364 		hw->phy.ops.release(hw);
       
   365 
       
   366 	return ret_val;
       
   367 }
       
   368 
       
   369 /**
       
   370  *  e1000e_read_phy_reg_igp - Read igp PHY register
       
   371  *  @hw: pointer to the HW structure
       
   372  *  @offset: register offset to be read
       
   373  *  @data: pointer to the read data
       
   374  *
       
   375  *  Acquires semaphore then reads the PHY register at offset and stores the
       
   376  *  retrieved information in data.
       
   377  *  Release the acquired semaphore before exiting.
       
   378  **/
       
   379 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
       
   380 {
       
   381 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
       
   382 }
       
   383 
       
   384 /**
       
   385  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
       
   386  *  @hw: pointer to the HW structure
       
   387  *  @offset: register offset to be read
       
   388  *  @data: pointer to the read data
       
   389  *
       
   390  *  Reads the PHY register at offset and stores the retrieved information
       
   391  *  in data.  Assumes semaphore already acquired.
       
   392  **/
       
   393 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
   394 {
       
   395 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
       
   396 }
       
   397 
       
   398 /**
       
   399  *  e1000e_write_phy_reg_igp - Write igp PHY register
       
   400  *  @hw: pointer to the HW structure
       
   401  *  @offset: register offset to write to
       
   402  *  @data: data to write at register offset
       
   403  *  @locked: semaphore has already been acquired or not
       
   404  *
       
   405  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
   406  *  at the offset.  Release any acquired semaphores before exiting.
       
   407  **/
       
   408 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
       
   409 				      bool locked)
       
   410 {
       
   411 	s32 ret_val = 0;
       
   412 
       
   413 	if (!locked) {
       
   414 		if (!hw->phy.ops.acquire)
       
   415 			return 0;
       
   416 
       
   417 		ret_val = hw->phy.ops.acquire(hw);
       
   418 		if (ret_val)
       
   419 			return ret_val;
       
   420 	}
       
   421 
       
   422 	if (offset > MAX_PHY_MULTI_PAGE_REG)
       
   423 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   424 						    IGP01E1000_PHY_PAGE_SELECT,
       
   425 						    (u16)offset);
       
   426 	if (!ret_val)
       
   427 		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
       
   428 						    offset, data);
       
   429 	if (!locked)
       
   430 		hw->phy.ops.release(hw);
       
   431 
       
   432 	return ret_val;
       
   433 }
       
   434 
       
   435 /**
       
   436  *  e1000e_write_phy_reg_igp - Write igp PHY register
       
   437  *  @hw: pointer to the HW structure
       
   438  *  @offset: register offset to write to
       
   439  *  @data: data to write at register offset
       
   440  *
       
   441  *  Acquires semaphore then writes the data to PHY register
       
   442  *  at the offset.  Release any acquired semaphores before exiting.
       
   443  **/
       
   444 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
       
   445 {
       
   446 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
       
   447 }
       
   448 
       
   449 /**
       
   450  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
       
   451  *  @hw: pointer to the HW structure
       
   452  *  @offset: register offset to write to
       
   453  *  @data: data to write at register offset
       
   454  *
       
   455  *  Writes the data to PHY register at the offset.
       
   456  *  Assumes semaphore already acquired.
       
   457  **/
       
   458 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
   459 {
       
   460 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
       
   461 }
       
   462 
       
   463 /**
       
   464  *  __e1000_read_kmrn_reg - Read kumeran register
       
   465  *  @hw: pointer to the HW structure
       
   466  *  @offset: register offset to be read
       
   467  *  @data: pointer to the read data
       
   468  *  @locked: semaphore has already been acquired or not
       
   469  *
       
   470  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
       
   471  *  using the kumeran interface.  The information retrieved is stored in data.
       
   472  *  Release any acquired semaphores before exiting.
       
   473  **/
       
   474 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
       
   475 				 bool locked)
       
   476 {
       
   477 	u32 kmrnctrlsta;
       
   478 
       
   479 	if (!locked) {
       
   480 		s32 ret_val = 0;
       
   481 
       
   482 		if (!hw->phy.ops.acquire)
       
   483 			return 0;
       
   484 
       
   485 		ret_val = hw->phy.ops.acquire(hw);
       
   486 		if (ret_val)
       
   487 			return ret_val;
       
   488 	}
       
   489 
       
   490 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
   491 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
       
   492 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
   493 	e1e_flush();
       
   494 
       
   495 	udelay(2);
       
   496 
       
   497 	kmrnctrlsta = er32(KMRNCTRLSTA);
       
   498 	*data = (u16)kmrnctrlsta;
       
   499 
       
   500 	if (!locked)
       
   501 		hw->phy.ops.release(hw);
       
   502 
       
   503 	return 0;
       
   504 }
       
   505 
       
   506 /**
       
   507  *  e1000e_read_kmrn_reg -  Read kumeran register
       
   508  *  @hw: pointer to the HW structure
       
   509  *  @offset: register offset to be read
       
   510  *  @data: pointer to the read data
       
   511  *
       
   512  *  Acquires semaphore then reads the PHY register at offset using the
       
   513  *  kumeran interface.  The information retrieved is stored in data.
       
   514  *  Release the acquired semaphore before exiting.
       
   515  **/
       
   516 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
       
   517 {
       
   518 	return __e1000_read_kmrn_reg(hw, offset, data, false);
       
   519 }
       
   520 
       
   521 /**
       
   522  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
       
   523  *  @hw: pointer to the HW structure
       
   524  *  @offset: register offset to be read
       
   525  *  @data: pointer to the read data
       
   526  *
       
   527  *  Reads the PHY register at offset using the kumeran interface.  The
       
   528  *  information retrieved is stored in data.
       
   529  *  Assumes semaphore already acquired.
       
   530  **/
       
   531 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
   532 {
       
   533 	return __e1000_read_kmrn_reg(hw, offset, data, true);
       
   534 }
       
   535 
       
   536 /**
       
   537  *  __e1000_write_kmrn_reg - Write kumeran register
       
   538  *  @hw: pointer to the HW structure
       
   539  *  @offset: register offset to write to
       
   540  *  @data: data to write at register offset
       
   541  *  @locked: semaphore has already been acquired or not
       
   542  *
       
   543  *  Acquires semaphore, if necessary.  Then write the data to PHY register
       
   544  *  at the offset using the kumeran interface.  Release any acquired semaphores
       
   545  *  before exiting.
       
   546  **/
       
   547 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
       
   548 				  bool locked)
       
   549 {
       
   550 	u32 kmrnctrlsta;
       
   551 
       
   552 	if (!locked) {
       
   553 		s32 ret_val = 0;
       
   554 
       
   555 		if (!hw->phy.ops.acquire)
       
   556 			return 0;
       
   557 
       
   558 		ret_val = hw->phy.ops.acquire(hw);
       
   559 		if (ret_val)
       
   560 			return ret_val;
       
   561 	}
       
   562 
       
   563 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
   564 		       E1000_KMRNCTRLSTA_OFFSET) | data;
       
   565 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
   566 	e1e_flush();
       
   567 
       
   568 	udelay(2);
       
   569 
       
   570 	if (!locked)
       
   571 		hw->phy.ops.release(hw);
       
   572 
       
   573 	return 0;
       
   574 }
       
   575 
       
   576 /**
       
   577  *  e1000e_write_kmrn_reg -  Write kumeran register
       
   578  *  @hw: pointer to the HW structure
       
   579  *  @offset: register offset to write to
       
   580  *  @data: data to write at register offset
       
   581  *
       
   582  *  Acquires semaphore then writes the data to the PHY register at the offset
       
   583  *  using the kumeran interface.  Release the acquired semaphore before exiting.
       
   584  **/
       
   585 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
       
   586 {
       
   587 	return __e1000_write_kmrn_reg(hw, offset, data, false);
       
   588 }
       
   589 
       
   590 /**
       
   591  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
       
   592  *  @hw: pointer to the HW structure
       
   593  *  @offset: register offset to write to
       
   594  *  @data: data to write at register offset
       
   595  *
       
   596  *  Write the data to PHY register at the offset using the kumeran interface.
       
   597  *  Assumes semaphore already acquired.
       
   598  **/
       
   599 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
   600 {
       
   601 	return __e1000_write_kmrn_reg(hw, offset, data, true);
       
   602 }
       
   603 
       
   604 /**
       
   605  *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
       
   606  *  @hw: pointer to the HW structure
       
   607  *
       
   608  *  Sets up Master/slave mode
       
   609  **/
       
   610 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
       
   611 {
       
   612 	s32 ret_val;
       
   613 	u16 phy_data;
       
   614 
       
   615 	/* Resolve Master/Slave mode */
       
   616 	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
       
   617 	if (ret_val)
       
   618 		return ret_val;
       
   619 
       
   620 	/* load defaults for future use */
       
   621 	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
       
   622 	    ((phy_data & CTL1000_AS_MASTER) ?
       
   623 	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
       
   624 
       
   625 	switch (hw->phy.ms_type) {
       
   626 	case e1000_ms_force_master:
       
   627 		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
       
   628 		break;
       
   629 	case e1000_ms_force_slave:
       
   630 		phy_data |= CTL1000_ENABLE_MASTER;
       
   631 		phy_data &= ~(CTL1000_AS_MASTER);
       
   632 		break;
       
   633 	case e1000_ms_auto:
       
   634 		phy_data &= ~CTL1000_ENABLE_MASTER;
       
   635 		/* fall-through */
       
   636 	default:
       
   637 		break;
       
   638 	}
       
   639 
       
   640 	return e1e_wphy(hw, MII_CTRL1000, phy_data);
       
   641 }
       
   642 
       
   643 /**
       
   644  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
       
   645  *  @hw: pointer to the HW structure
       
   646  *
       
   647  *  Sets up Carrier-sense on Transmit and downshift values.
       
   648  **/
       
   649 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
       
   650 {
       
   651 	s32 ret_val;
       
   652 	u16 phy_data;
       
   653 
       
   654 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
       
   655 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
       
   656 	if (ret_val)
       
   657 		return ret_val;
       
   658 
       
   659 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
       
   660 
       
   661 	/* Enable downshift */
       
   662 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
       
   663 
       
   664 	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
       
   665 	if (ret_val)
       
   666 		return ret_val;
       
   667 
       
   668 	/* Set MDI/MDIX mode */
       
   669 	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
       
   670 	if (ret_val)
       
   671 		return ret_val;
       
   672 	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
       
   673 	/* Options:
       
   674 	 *   0 - Auto (default)
       
   675 	 *   1 - MDI mode
       
   676 	 *   2 - MDI-X mode
       
   677 	 */
       
   678 	switch (hw->phy.mdix) {
       
   679 	case 1:
       
   680 		break;
       
   681 	case 2:
       
   682 		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
       
   683 		break;
       
   684 	case 0:
       
   685 	default:
       
   686 		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
       
   687 		break;
       
   688 	}
       
   689 	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
       
   690 	if (ret_val)
       
   691 		return ret_val;
       
   692 
       
   693 	return e1000_set_master_slave_mode(hw);
       
   694 }
       
   695 
       
   696 /**
       
   697  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
       
   698  *  @hw: pointer to the HW structure
       
   699  *
       
   700  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
       
   701  *  and downshift values are set also.
       
   702  **/
       
   703 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
       
   704 {
       
   705 	struct e1000_phy_info *phy = &hw->phy;
       
   706 	s32 ret_val;
       
   707 	u16 phy_data;
       
   708 
       
   709 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
       
   710 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   711 	if (ret_val)
       
   712 		return ret_val;
       
   713 
       
   714 	/* For BM PHY this bit is downshift enable */
       
   715 	if (phy->type != e1000_phy_bm)
       
   716 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
   717 
       
   718 	/* Options:
       
   719 	 *   MDI/MDI-X = 0 (default)
       
   720 	 *   0 - Auto for all speeds
       
   721 	 *   1 - MDI mode
       
   722 	 *   2 - MDI-X mode
       
   723 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
   724 	 */
       
   725 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
   726 
       
   727 	switch (phy->mdix) {
       
   728 	case 1:
       
   729 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
       
   730 		break;
       
   731 	case 2:
       
   732 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
       
   733 		break;
       
   734 	case 3:
       
   735 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
       
   736 		break;
       
   737 	case 0:
       
   738 	default:
       
   739 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
       
   740 		break;
       
   741 	}
       
   742 
       
   743 	/* Options:
       
   744 	 *   disable_polarity_correction = 0 (default)
       
   745 	 *       Automatic Correction for Reversed Cable Polarity
       
   746 	 *   0 - Disabled
       
   747 	 *   1 - Enabled
       
   748 	 */
       
   749 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
       
   750 	if (phy->disable_polarity_correction)
       
   751 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
       
   752 
       
   753 	/* Enable downshift on BM (disabled by default) */
       
   754 	if (phy->type == e1000_phy_bm) {
       
   755 		/* For 82574/82583, first disable then enable downshift */
       
   756 		if (phy->id == BME1000_E_PHY_ID_R2) {
       
   757 			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
       
   758 			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
       
   759 					   phy_data);
       
   760 			if (ret_val)
       
   761 				return ret_val;
       
   762 			/* Commit the changes. */
       
   763 			ret_val = phy->ops.commit(hw);
       
   764 			if (ret_val) {
       
   765 				e_dbg("Error committing the PHY changes\n");
       
   766 				return ret_val;
       
   767 			}
       
   768 		}
       
   769 
       
   770 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
       
   771 	}
       
   772 
       
   773 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
   774 	if (ret_val)
       
   775 		return ret_val;
       
   776 
       
   777 	if ((phy->type == e1000_phy_m88) &&
       
   778 	    (phy->revision < E1000_REVISION_4) &&
       
   779 	    (phy->id != BME1000_E_PHY_ID_R2)) {
       
   780 		/* Force TX_CLK in the Extended PHY Specific Control Register
       
   781 		 * to 25MHz clock.
       
   782 		 */
       
   783 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
   784 		if (ret_val)
       
   785 			return ret_val;
       
   786 
       
   787 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
   788 
       
   789 		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
       
   790 			/* 82573L PHY - set the downshift counter to 5x. */
       
   791 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
       
   792 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
       
   793 		} else {
       
   794 			/* Configure Master and Slave downshift values */
       
   795 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
       
   796 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
       
   797 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
       
   798 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
       
   799 		}
       
   800 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
   801 		if (ret_val)
       
   802 			return ret_val;
       
   803 	}
       
   804 
       
   805 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
       
   806 		/* Set PHY page 0, register 29 to 0x0003 */
       
   807 		ret_val = e1e_wphy(hw, 29, 0x0003);
       
   808 		if (ret_val)
       
   809 			return ret_val;
       
   810 
       
   811 		/* Set PHY page 0, register 30 to 0x0000 */
       
   812 		ret_val = e1e_wphy(hw, 30, 0x0000);
       
   813 		if (ret_val)
       
   814 			return ret_val;
       
   815 	}
       
   816 
       
   817 	/* Commit the changes. */
       
   818 	if (phy->ops.commit) {
       
   819 		ret_val = phy->ops.commit(hw);
       
   820 		if (ret_val) {
       
   821 			e_dbg("Error committing the PHY changes\n");
       
   822 			return ret_val;
       
   823 		}
       
   824 	}
       
   825 
       
   826 	if (phy->type == e1000_phy_82578) {
       
   827 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
   828 		if (ret_val)
       
   829 			return ret_val;
       
   830 
       
   831 		/* 82578 PHY - set the downshift count to 1x. */
       
   832 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
       
   833 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
       
   834 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
   835 		if (ret_val)
       
   836 			return ret_val;
       
   837 	}
       
   838 
       
   839 	return 0;
       
   840 }
       
   841 
       
   842 /**
       
   843  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
       
   844  *  @hw: pointer to the HW structure
       
   845  *
       
   846  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
       
   847  *  igp PHY's.
       
   848  **/
       
   849 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
       
   850 {
       
   851 	struct e1000_phy_info *phy = &hw->phy;
       
   852 	s32 ret_val;
       
   853 	u16 data;
       
   854 
       
   855 	ret_val = e1000_phy_hw_reset(hw);
       
   856 	if (ret_val) {
       
   857 		e_dbg("Error resetting the PHY.\n");
       
   858 		return ret_val;
       
   859 	}
       
   860 
       
   861 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
       
   862 	 * timeout issues when LFS is enabled.
       
   863 	 */
       
   864 	msleep(100);
       
   865 
       
   866 	/* disable lplu d0 during driver init */
       
   867 	if (hw->phy.ops.set_d0_lplu_state) {
       
   868 		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
       
   869 		if (ret_val) {
       
   870 			e_dbg("Error Disabling LPLU D0\n");
       
   871 			return ret_val;
       
   872 		}
       
   873 	}
       
   874 	/* Configure mdi-mdix settings */
       
   875 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
       
   876 	if (ret_val)
       
   877 		return ret_val;
       
   878 
       
   879 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
   880 
       
   881 	switch (phy->mdix) {
       
   882 	case 1:
       
   883 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   884 		break;
       
   885 	case 2:
       
   886 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   887 		break;
       
   888 	case 0:
       
   889 	default:
       
   890 		data |= IGP01E1000_PSCR_AUTO_MDIX;
       
   891 		break;
       
   892 	}
       
   893 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
       
   894 	if (ret_val)
       
   895 		return ret_val;
       
   896 
       
   897 	/* set auto-master slave resolution settings */
       
   898 	if (hw->mac.autoneg) {
       
   899 		/* when autonegotiation advertisement is only 1000Mbps then we
       
   900 		 * should disable SmartSpeed and enable Auto MasterSlave
       
   901 		 * resolution as hardware default.
       
   902 		 */
       
   903 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
       
   904 			/* Disable SmartSpeed */
       
   905 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   906 					   &data);
       
   907 			if (ret_val)
       
   908 				return ret_val;
       
   909 
       
   910 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   911 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   912 					   data);
       
   913 			if (ret_val)
       
   914 				return ret_val;
       
   915 
       
   916 			/* Set auto Master/Slave resolution process */
       
   917 			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
       
   918 			if (ret_val)
       
   919 				return ret_val;
       
   920 
       
   921 			data &= ~CTL1000_ENABLE_MASTER;
       
   922 			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
       
   923 			if (ret_val)
       
   924 				return ret_val;
       
   925 		}
       
   926 
       
   927 		ret_val = e1000_set_master_slave_mode(hw);
       
   928 	}
       
   929 
       
   930 	return ret_val;
       
   931 }
       
   932 
       
   933 /**
       
   934  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
       
   935  *  @hw: pointer to the HW structure
       
   936  *
       
   937  *  Reads the MII auto-neg advertisement register and/or the 1000T control
       
   938  *  register and if the PHY is already setup for auto-negotiation, then
       
   939  *  return successful.  Otherwise, setup advertisement and flow control to
       
   940  *  the appropriate values for the wanted auto-negotiation.
       
   941  **/
       
   942 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
       
   943 {
       
   944 	struct e1000_phy_info *phy = &hw->phy;
       
   945 	s32 ret_val;
       
   946 	u16 mii_autoneg_adv_reg;
       
   947 	u16 mii_1000t_ctrl_reg = 0;
       
   948 
       
   949 	phy->autoneg_advertised &= phy->autoneg_mask;
       
   950 
       
   951 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
       
   952 	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
       
   953 	if (ret_val)
       
   954 		return ret_val;
       
   955 
       
   956 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
       
   957 		/* Read the MII 1000Base-T Control Register (Address 9). */
       
   958 		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
       
   959 		if (ret_val)
       
   960 			return ret_val;
       
   961 	}
       
   962 
       
   963 	/* Need to parse both autoneg_advertised and fc and set up
       
   964 	 * the appropriate PHY registers.  First we will parse for
       
   965 	 * autoneg_advertised software override.  Since we can advertise
       
   966 	 * a plethora of combinations, we need to check each bit
       
   967 	 * individually.
       
   968 	 */
       
   969 
       
   970 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
       
   971 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
       
   972 	 * the  1000Base-T Control Register (Address 9).
       
   973 	 */
       
   974 	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
       
   975 				 ADVERTISE_100HALF |
       
   976 				 ADVERTISE_10FULL | ADVERTISE_10HALF);
       
   977 	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
       
   978 
       
   979 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
       
   980 
       
   981 	/* Do we want to advertise 10 Mb Half Duplex? */
       
   982 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
       
   983 		e_dbg("Advertise 10mb Half duplex\n");
       
   984 		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
       
   985 	}
       
   986 
       
   987 	/* Do we want to advertise 10 Mb Full Duplex? */
       
   988 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
       
   989 		e_dbg("Advertise 10mb Full duplex\n");
       
   990 		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
       
   991 	}
       
   992 
       
   993 	/* Do we want to advertise 100 Mb Half Duplex? */
       
   994 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
       
   995 		e_dbg("Advertise 100mb Half duplex\n");
       
   996 		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
       
   997 	}
       
   998 
       
   999 	/* Do we want to advertise 100 Mb Full Duplex? */
       
  1000 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
       
  1001 		e_dbg("Advertise 100mb Full duplex\n");
       
  1002 		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
       
  1003 	}
       
  1004 
       
  1005 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
       
  1006 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
       
  1007 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
       
  1008 
       
  1009 	/* Do we want to advertise 1000 Mb Full Duplex? */
       
  1010 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
       
  1011 		e_dbg("Advertise 1000mb Full duplex\n");
       
  1012 		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
       
  1013 	}
       
  1014 
       
  1015 	/* Check for a software override of the flow control settings, and
       
  1016 	 * setup the PHY advertisement registers accordingly.  If
       
  1017 	 * auto-negotiation is enabled, then software will have to set the
       
  1018 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
       
  1019 	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
       
  1020 	 * negotiation.
       
  1021 	 *
       
  1022 	 * The possible values of the "fc" parameter are:
       
  1023 	 *      0:  Flow control is completely disabled
       
  1024 	 *      1:  Rx flow control is enabled (we can receive pause frames
       
  1025 	 *          but not send pause frames).
       
  1026 	 *      2:  Tx flow control is enabled (we can send pause frames
       
  1027 	 *          but we do not support receiving pause frames).
       
  1028 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
       
  1029 	 *  other:  No software override.  The flow control configuration
       
  1030 	 *          in the EEPROM is used.
       
  1031 	 */
       
  1032 	switch (hw->fc.current_mode) {
       
  1033 	case e1000_fc_none:
       
  1034 		/* Flow control (Rx & Tx) is completely disabled by a
       
  1035 		 * software over-ride.
       
  1036 		 */
       
  1037 		mii_autoneg_adv_reg &=
       
  1038 		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
       
  1039 		break;
       
  1040 	case e1000_fc_rx_pause:
       
  1041 		/* Rx Flow control is enabled, and Tx Flow control is
       
  1042 		 * disabled, by a software over-ride.
       
  1043 		 *
       
  1044 		 * Since there really isn't a way to advertise that we are
       
  1045 		 * capable of Rx Pause ONLY, we will advertise that we
       
  1046 		 * support both symmetric and asymmetric Rx PAUSE.  Later
       
  1047 		 * (in e1000e_config_fc_after_link_up) we will disable the
       
  1048 		 * hw's ability to send PAUSE frames.
       
  1049 		 */
       
  1050 		mii_autoneg_adv_reg |=
       
  1051 		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
       
  1052 		break;
       
  1053 	case e1000_fc_tx_pause:
       
  1054 		/* Tx Flow control is enabled, and Rx Flow control is
       
  1055 		 * disabled, by a software over-ride.
       
  1056 		 */
       
  1057 		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
       
  1058 		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
       
  1059 		break;
       
  1060 	case e1000_fc_full:
       
  1061 		/* Flow control (both Rx and Tx) is enabled by a software
       
  1062 		 * over-ride.
       
  1063 		 */
       
  1064 		mii_autoneg_adv_reg |=
       
  1065 		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
       
  1066 		break;
       
  1067 	default:
       
  1068 		e_dbg("Flow control param set incorrectly\n");
       
  1069 		return -E1000_ERR_CONFIG;
       
  1070 	}
       
  1071 
       
  1072 	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
       
  1073 	if (ret_val)
       
  1074 		return ret_val;
       
  1075 
       
  1076 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
       
  1077 
       
  1078 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
       
  1079 		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
       
  1080 
       
  1081 	return ret_val;
       
  1082 }
       
  1083 
       
  1084 /**
       
  1085  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
       
  1086  *  @hw: pointer to the HW structure
       
  1087  *
       
  1088  *  Performs initial bounds checking on autoneg advertisement parameter, then
       
  1089  *  configure to advertise the full capability.  Setup the PHY to autoneg
       
  1090  *  and restart the negotiation process between the link partner.  If
       
  1091  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
       
  1092  **/
       
  1093 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
       
  1094 {
       
  1095 	struct e1000_phy_info *phy = &hw->phy;
       
  1096 	s32 ret_val;
       
  1097 	u16 phy_ctrl;
       
  1098 
       
  1099 	/* Perform some bounds checking on the autoneg advertisement
       
  1100 	 * parameter.
       
  1101 	 */
       
  1102 	phy->autoneg_advertised &= phy->autoneg_mask;
       
  1103 
       
  1104 	/* If autoneg_advertised is zero, we assume it was not defaulted
       
  1105 	 * by the calling code so we set to advertise full capability.
       
  1106 	 */
       
  1107 	if (!phy->autoneg_advertised)
       
  1108 		phy->autoneg_advertised = phy->autoneg_mask;
       
  1109 
       
  1110 	e_dbg("Reconfiguring auto-neg advertisement params\n");
       
  1111 	ret_val = e1000_phy_setup_autoneg(hw);
       
  1112 	if (ret_val) {
       
  1113 		e_dbg("Error Setting up Auto-Negotiation\n");
       
  1114 		return ret_val;
       
  1115 	}
       
  1116 	e_dbg("Restarting Auto-Neg\n");
       
  1117 
       
  1118 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
       
  1119 	 * the Auto Neg Restart bit in the PHY control register.
       
  1120 	 */
       
  1121 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
       
  1122 	if (ret_val)
       
  1123 		return ret_val;
       
  1124 
       
  1125 	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
       
  1126 	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
       
  1127 	if (ret_val)
       
  1128 		return ret_val;
       
  1129 
       
  1130 	/* Does the user want to wait for Auto-Neg to complete here, or
       
  1131 	 * check at a later time (for example, callback routine).
       
  1132 	 */
       
  1133 	if (phy->autoneg_wait_to_complete) {
       
  1134 		ret_val = e1000_wait_autoneg(hw);
       
  1135 		if (ret_val) {
       
  1136 			e_dbg("Error while waiting for autoneg to complete\n");
       
  1137 			return ret_val;
       
  1138 		}
       
  1139 	}
       
  1140 
       
  1141 	hw->mac.get_link_status = true;
       
  1142 
       
  1143 	return ret_val;
       
  1144 }
       
  1145 
       
  1146 /**
       
  1147  *  e1000e_setup_copper_link - Configure copper link settings
       
  1148  *  @hw: pointer to the HW structure
       
  1149  *
       
  1150  *  Calls the appropriate function to configure the link for auto-neg or forced
       
  1151  *  speed and duplex.  Then we check for link, once link is established calls
       
  1152  *  to configure collision distance and flow control are called.  If link is
       
  1153  *  not established, we return -E1000_ERR_PHY (-2).
       
  1154  **/
       
  1155 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
       
  1156 {
       
  1157 	s32 ret_val;
       
  1158 	bool link;
       
  1159 
       
  1160 	if (hw->mac.autoneg) {
       
  1161 		/* Setup autoneg and flow control advertisement and perform
       
  1162 		 * autonegotiation.
       
  1163 		 */
       
  1164 		ret_val = e1000_copper_link_autoneg(hw);
       
  1165 		if (ret_val)
       
  1166 			return ret_val;
       
  1167 	} else {
       
  1168 		/* PHY will be set to 10H, 10F, 100H or 100F
       
  1169 		 * depending on user settings.
       
  1170 		 */
       
  1171 		e_dbg("Forcing Speed and Duplex\n");
       
  1172 		ret_val = hw->phy.ops.force_speed_duplex(hw);
       
  1173 		if (ret_val) {
       
  1174 			e_dbg("Error Forcing Speed and Duplex\n");
       
  1175 			return ret_val;
       
  1176 		}
       
  1177 	}
       
  1178 
       
  1179 	/* Check link status. Wait up to 100 microseconds for link to become
       
  1180 	 * valid.
       
  1181 	 */
       
  1182 	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
       
  1183 					      &link);
       
  1184 	if (ret_val)
       
  1185 		return ret_val;
       
  1186 
       
  1187 	if (link) {
       
  1188 		e_dbg("Valid link established!!!\n");
       
  1189 		hw->mac.ops.config_collision_dist(hw);
       
  1190 		ret_val = e1000e_config_fc_after_link_up(hw);
       
  1191 	} else {
       
  1192 		e_dbg("Unable to establish link!!!\n");
       
  1193 	}
       
  1194 
       
  1195 	return ret_val;
       
  1196 }
       
  1197 
       
  1198 /**
       
  1199  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
       
  1200  *  @hw: pointer to the HW structure
       
  1201  *
       
  1202  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1203  *  auto-crossover to force MDI manually.  Waits for link and returns
       
  1204  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
       
  1205  **/
       
  1206 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
       
  1207 {
       
  1208 	struct e1000_phy_info *phy = &hw->phy;
       
  1209 	s32 ret_val;
       
  1210 	u16 phy_data;
       
  1211 	bool link;
       
  1212 
       
  1213 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
       
  1214 	if (ret_val)
       
  1215 		return ret_val;
       
  1216 
       
  1217 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1218 
       
  1219 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
       
  1220 	if (ret_val)
       
  1221 		return ret_val;
       
  1222 
       
  1223 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
       
  1224 	 * forced whenever speed and duplex are forced.
       
  1225 	 */
       
  1226 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
       
  1227 	if (ret_val)
       
  1228 		return ret_val;
       
  1229 
       
  1230 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
  1231 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  1232 
       
  1233 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
       
  1234 	if (ret_val)
       
  1235 		return ret_val;
       
  1236 
       
  1237 	e_dbg("IGP PSCR: %X\n", phy_data);
       
  1238 
       
  1239 	udelay(1);
       
  1240 
       
  1241 	if (phy->autoneg_wait_to_complete) {
       
  1242 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
       
  1243 
       
  1244 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1245 						      100000, &link);
       
  1246 		if (ret_val)
       
  1247 			return ret_val;
       
  1248 
       
  1249 		if (!link)
       
  1250 			e_dbg("Link taking longer than expected.\n");
       
  1251 
       
  1252 		/* Try once more */
       
  1253 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1254 						      100000, &link);
       
  1255 	}
       
  1256 
       
  1257 	return ret_val;
       
  1258 }
       
  1259 
       
  1260 /**
       
  1261  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
       
  1262  *  @hw: pointer to the HW structure
       
  1263  *
       
  1264  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1265  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
       
  1266  *  changes.  If time expires while waiting for link up, we reset the DSP.
       
  1267  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
       
  1268  *  successful completion, else return corresponding error code.
       
  1269  **/
       
  1270 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
       
  1271 {
       
  1272 	struct e1000_phy_info *phy = &hw->phy;
       
  1273 	s32 ret_val;
       
  1274 	u16 phy_data;
       
  1275 	bool link;
       
  1276 
       
  1277 	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
       
  1278 	 * forced whenever speed and duplex are forced.
       
  1279 	 */
       
  1280 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1281 	if (ret_val)
       
  1282 		return ret_val;
       
  1283 
       
  1284 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1285 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1286 	if (ret_val)
       
  1287 		return ret_val;
       
  1288 
       
  1289 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
       
  1290 
       
  1291 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
       
  1292 	if (ret_val)
       
  1293 		return ret_val;
       
  1294 
       
  1295 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1296 
       
  1297 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
       
  1298 	if (ret_val)
       
  1299 		return ret_val;
       
  1300 
       
  1301 	/* Reset the phy to commit changes. */
       
  1302 	if (hw->phy.ops.commit) {
       
  1303 		ret_val = hw->phy.ops.commit(hw);
       
  1304 		if (ret_val)
       
  1305 			return ret_val;
       
  1306 	}
       
  1307 
       
  1308 	if (phy->autoneg_wait_to_complete) {
       
  1309 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
       
  1310 
       
  1311 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1312 						      100000, &link);
       
  1313 		if (ret_val)
       
  1314 			return ret_val;
       
  1315 
       
  1316 		if (!link) {
       
  1317 			if (hw->phy.type != e1000_phy_m88) {
       
  1318 				e_dbg("Link taking longer than expected.\n");
       
  1319 			} else {
       
  1320 				/* We didn't get link.
       
  1321 				 * Reset the DSP and cross our fingers.
       
  1322 				 */
       
  1323 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
       
  1324 						   0x001d);
       
  1325 				if (ret_val)
       
  1326 					return ret_val;
       
  1327 				ret_val = e1000e_phy_reset_dsp(hw);
       
  1328 				if (ret_val)
       
  1329 					return ret_val;
       
  1330 			}
       
  1331 		}
       
  1332 
       
  1333 		/* Try once more */
       
  1334 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1335 						      100000, &link);
       
  1336 		if (ret_val)
       
  1337 			return ret_val;
       
  1338 	}
       
  1339 
       
  1340 	if (hw->phy.type != e1000_phy_m88)
       
  1341 		return 0;
       
  1342 
       
  1343 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
  1344 	if (ret_val)
       
  1345 		return ret_val;
       
  1346 
       
  1347 	/* Resetting the phy means we need to re-force TX_CLK in the
       
  1348 	 * Extended PHY Specific Control Register to 25MHz clock from
       
  1349 	 * the reset value of 2.5MHz.
       
  1350 	 */
       
  1351 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
  1352 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
  1353 	if (ret_val)
       
  1354 		return ret_val;
       
  1355 
       
  1356 	/* In addition, we must re-enable CRS on Tx for both half and full
       
  1357 	 * duplex.
       
  1358 	 */
       
  1359 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1360 	if (ret_val)
       
  1361 		return ret_val;
       
  1362 
       
  1363 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1364 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1365 
       
  1366 	return ret_val;
       
  1367 }
       
  1368 
       
  1369 /**
       
  1370  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
       
  1371  *  @hw: pointer to the HW structure
       
  1372  *
       
  1373  *  Forces the speed and duplex settings of the PHY.
       
  1374  *  This is a function pointer entry point only called by
       
  1375  *  PHY setup routines.
       
  1376  **/
       
  1377 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
       
  1378 {
       
  1379 	struct e1000_phy_info *phy = &hw->phy;
       
  1380 	s32 ret_val;
       
  1381 	u16 data;
       
  1382 	bool link;
       
  1383 
       
  1384 	ret_val = e1e_rphy(hw, MII_BMCR, &data);
       
  1385 	if (ret_val)
       
  1386 		return ret_val;
       
  1387 
       
  1388 	e1000e_phy_force_speed_duplex_setup(hw, &data);
       
  1389 
       
  1390 	ret_val = e1e_wphy(hw, MII_BMCR, data);
       
  1391 	if (ret_val)
       
  1392 		return ret_val;
       
  1393 
       
  1394 	/* Disable MDI-X support for 10/100 */
       
  1395 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
       
  1396 	if (ret_val)
       
  1397 		return ret_val;
       
  1398 
       
  1399 	data &= ~IFE_PMC_AUTO_MDIX;
       
  1400 	data &= ~IFE_PMC_FORCE_MDIX;
       
  1401 
       
  1402 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
       
  1403 	if (ret_val)
       
  1404 		return ret_val;
       
  1405 
       
  1406 	e_dbg("IFE PMC: %X\n", data);
       
  1407 
       
  1408 	udelay(1);
       
  1409 
       
  1410 	if (phy->autoneg_wait_to_complete) {
       
  1411 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
       
  1412 
       
  1413 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1414 						      100000, &link);
       
  1415 		if (ret_val)
       
  1416 			return ret_val;
       
  1417 
       
  1418 		if (!link)
       
  1419 			e_dbg("Link taking longer than expected.\n");
       
  1420 
       
  1421 		/* Try once more */
       
  1422 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1423 						      100000, &link);
       
  1424 		if (ret_val)
       
  1425 			return ret_val;
       
  1426 	}
       
  1427 
       
  1428 	return 0;
       
  1429 }
       
  1430 
       
  1431 /**
       
  1432  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
       
  1433  *  @hw: pointer to the HW structure
       
  1434  *  @phy_ctrl: pointer to current value of MII_BMCR
       
  1435  *
       
  1436  *  Forces speed and duplex on the PHY by doing the following: disable flow
       
  1437  *  control, force speed/duplex on the MAC, disable auto speed detection,
       
  1438  *  disable auto-negotiation, configure duplex, configure speed, configure
       
  1439  *  the collision distance, write configuration to CTRL register.  The
       
  1440  *  caller must write to the MII_BMCR register for these settings to
       
  1441  *  take affect.
       
  1442  **/
       
  1443 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
       
  1444 {
       
  1445 	struct e1000_mac_info *mac = &hw->mac;
       
  1446 	u32 ctrl;
       
  1447 
       
  1448 	/* Turn off flow control when forcing speed/duplex */
       
  1449 	hw->fc.current_mode = e1000_fc_none;
       
  1450 
       
  1451 	/* Force speed/duplex on the mac */
       
  1452 	ctrl = er32(CTRL);
       
  1453 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1454 	ctrl &= ~E1000_CTRL_SPD_SEL;
       
  1455 
       
  1456 	/* Disable Auto Speed Detection */
       
  1457 	ctrl &= ~E1000_CTRL_ASDE;
       
  1458 
       
  1459 	/* Disable autoneg on the phy */
       
  1460 	*phy_ctrl &= ~BMCR_ANENABLE;
       
  1461 
       
  1462 	/* Forcing Full or Half Duplex? */
       
  1463 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
       
  1464 		ctrl &= ~E1000_CTRL_FD;
       
  1465 		*phy_ctrl &= ~BMCR_FULLDPLX;
       
  1466 		e_dbg("Half Duplex\n");
       
  1467 	} else {
       
  1468 		ctrl |= E1000_CTRL_FD;
       
  1469 		*phy_ctrl |= BMCR_FULLDPLX;
       
  1470 		e_dbg("Full Duplex\n");
       
  1471 	}
       
  1472 
       
  1473 	/* Forcing 10mb or 100mb? */
       
  1474 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
       
  1475 		ctrl |= E1000_CTRL_SPD_100;
       
  1476 		*phy_ctrl |= BMCR_SPEED100;
       
  1477 		*phy_ctrl &= ~BMCR_SPEED1000;
       
  1478 		e_dbg("Forcing 100mb\n");
       
  1479 	} else {
       
  1480 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1481 		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
       
  1482 		e_dbg("Forcing 10mb\n");
       
  1483 	}
       
  1484 
       
  1485 	hw->mac.ops.config_collision_dist(hw);
       
  1486 
       
  1487 	ew32(CTRL, ctrl);
       
  1488 }
       
  1489 
       
  1490 /**
       
  1491  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
       
  1492  *  @hw: pointer to the HW structure
       
  1493  *  @active: boolean used to enable/disable lplu
       
  1494  *
       
  1495  *  Success returns 0, Failure returns 1
       
  1496  *
       
  1497  *  The low power link up (lplu) state is set to the power management level D3
       
  1498  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
       
  1499  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
       
  1500  *  is used during Dx states where the power conservation is most important.
       
  1501  *  During driver activity, SmartSpeed should be enabled so performance is
       
  1502  *  maintained.
       
  1503  **/
       
  1504 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
       
  1505 {
       
  1506 	struct e1000_phy_info *phy = &hw->phy;
       
  1507 	s32 ret_val;
       
  1508 	u16 data;
       
  1509 
       
  1510 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
       
  1511 	if (ret_val)
       
  1512 		return ret_val;
       
  1513 
       
  1514 	if (!active) {
       
  1515 		data &= ~IGP02E1000_PM_D3_LPLU;
       
  1516 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
  1517 		if (ret_val)
       
  1518 			return ret_val;
       
  1519 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  1520 		 * during Dx states where the power conservation is most
       
  1521 		 * important.  During driver activity we should enable
       
  1522 		 * SmartSpeed, so performance is maintained.
       
  1523 		 */
       
  1524 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  1525 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1526 					   &data);
       
  1527 			if (ret_val)
       
  1528 				return ret_val;
       
  1529 
       
  1530 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  1531 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1532 					   data);
       
  1533 			if (ret_val)
       
  1534 				return ret_val;
       
  1535 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  1536 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1537 					   &data);
       
  1538 			if (ret_val)
       
  1539 				return ret_val;
       
  1540 
       
  1541 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1542 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1543 					   data);
       
  1544 			if (ret_val)
       
  1545 				return ret_val;
       
  1546 		}
       
  1547 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
  1548 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
  1549 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
       
  1550 		data |= IGP02E1000_PM_D3_LPLU;
       
  1551 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
  1552 		if (ret_val)
       
  1553 			return ret_val;
       
  1554 
       
  1555 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  1556 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  1557 		if (ret_val)
       
  1558 			return ret_val;
       
  1559 
       
  1560 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1561 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  1562 	}
       
  1563 
       
  1564 	return ret_val;
       
  1565 }
       
  1566 
       
  1567 /**
       
  1568  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
       
  1569  *  @hw: pointer to the HW structure
       
  1570  *
       
  1571  *  Success returns 0, Failure returns 1
       
  1572  *
       
  1573  *  A downshift is detected by querying the PHY link health.
       
  1574  **/
       
  1575 s32 e1000e_check_downshift(struct e1000_hw *hw)
       
  1576 {
       
  1577 	struct e1000_phy_info *phy = &hw->phy;
       
  1578 	s32 ret_val;
       
  1579 	u16 phy_data, offset, mask;
       
  1580 
       
  1581 	switch (phy->type) {
       
  1582 	case e1000_phy_m88:
       
  1583 	case e1000_phy_gg82563:
       
  1584 	case e1000_phy_bm:
       
  1585 	case e1000_phy_82578:
       
  1586 		offset = M88E1000_PHY_SPEC_STATUS;
       
  1587 		mask = M88E1000_PSSR_DOWNSHIFT;
       
  1588 		break;
       
  1589 	case e1000_phy_igp_2:
       
  1590 	case e1000_phy_igp_3:
       
  1591 		offset = IGP01E1000_PHY_LINK_HEALTH;
       
  1592 		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
       
  1593 		break;
       
  1594 	default:
       
  1595 		/* speed downshift not supported */
       
  1596 		phy->speed_downgraded = false;
       
  1597 		return 0;
       
  1598 	}
       
  1599 
       
  1600 	ret_val = e1e_rphy(hw, offset, &phy_data);
       
  1601 
       
  1602 	if (!ret_val)
       
  1603 		phy->speed_downgraded = !!(phy_data & mask);
       
  1604 
       
  1605 	return ret_val;
       
  1606 }
       
  1607 
       
  1608 /**
       
  1609  *  e1000_check_polarity_m88 - Checks the polarity.
       
  1610  *  @hw: pointer to the HW structure
       
  1611  *
       
  1612  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1613  *
       
  1614  *  Polarity is determined based on the PHY specific status register.
       
  1615  **/
       
  1616 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
       
  1617 {
       
  1618 	struct e1000_phy_info *phy = &hw->phy;
       
  1619 	s32 ret_val;
       
  1620 	u16 data;
       
  1621 
       
  1622 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
       
  1623 
       
  1624 	if (!ret_val)
       
  1625 		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
       
  1626 				       ? e1000_rev_polarity_reversed
       
  1627 				       : e1000_rev_polarity_normal);
       
  1628 
       
  1629 	return ret_val;
       
  1630 }
       
  1631 
       
  1632 /**
       
  1633  *  e1000_check_polarity_igp - Checks the polarity.
       
  1634  *  @hw: pointer to the HW structure
       
  1635  *
       
  1636  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1637  *
       
  1638  *  Polarity is determined based on the PHY port status register, and the
       
  1639  *  current speed (since there is no polarity at 100Mbps).
       
  1640  **/
       
  1641 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
       
  1642 {
       
  1643 	struct e1000_phy_info *phy = &hw->phy;
       
  1644 	s32 ret_val;
       
  1645 	u16 data, offset, mask;
       
  1646 
       
  1647 	/* Polarity is determined based on the speed of
       
  1648 	 * our connection.
       
  1649 	 */
       
  1650 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  1651 	if (ret_val)
       
  1652 		return ret_val;
       
  1653 
       
  1654 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  1655 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  1656 		offset = IGP01E1000_PHY_PCS_INIT_REG;
       
  1657 		mask = IGP01E1000_PHY_POLARITY_MASK;
       
  1658 	} else {
       
  1659 		/* This really only applies to 10Mbps since
       
  1660 		 * there is no polarity for 100Mbps (always 0).
       
  1661 		 */
       
  1662 		offset = IGP01E1000_PHY_PORT_STATUS;
       
  1663 		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
       
  1664 	}
       
  1665 
       
  1666 	ret_val = e1e_rphy(hw, offset, &data);
       
  1667 
       
  1668 	if (!ret_val)
       
  1669 		phy->cable_polarity = ((data & mask)
       
  1670 				       ? e1000_rev_polarity_reversed
       
  1671 				       : e1000_rev_polarity_normal);
       
  1672 
       
  1673 	return ret_val;
       
  1674 }
       
  1675 
       
  1676 /**
       
  1677  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
       
  1678  *  @hw: pointer to the HW structure
       
  1679  *
       
  1680  *  Polarity is determined on the polarity reversal feature being enabled.
       
  1681  **/
       
  1682 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
       
  1683 {
       
  1684 	struct e1000_phy_info *phy = &hw->phy;
       
  1685 	s32 ret_val;
       
  1686 	u16 phy_data, offset, mask;
       
  1687 
       
  1688 	/* Polarity is determined based on the reversal feature being enabled.
       
  1689 	 */
       
  1690 	if (phy->polarity_correction) {
       
  1691 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
       
  1692 		mask = IFE_PESC_POLARITY_REVERSED;
       
  1693 	} else {
       
  1694 		offset = IFE_PHY_SPECIAL_CONTROL;
       
  1695 		mask = IFE_PSC_FORCE_POLARITY;
       
  1696 	}
       
  1697 
       
  1698 	ret_val = e1e_rphy(hw, offset, &phy_data);
       
  1699 
       
  1700 	if (!ret_val)
       
  1701 		phy->cable_polarity = ((phy_data & mask)
       
  1702 				       ? e1000_rev_polarity_reversed
       
  1703 				       : e1000_rev_polarity_normal);
       
  1704 
       
  1705 	return ret_val;
       
  1706 }
       
  1707 
       
  1708 /**
       
  1709  *  e1000_wait_autoneg - Wait for auto-neg completion
       
  1710  *  @hw: pointer to the HW structure
       
  1711  *
       
  1712  *  Waits for auto-negotiation to complete or for the auto-negotiation time
       
  1713  *  limit to expire, which ever happens first.
       
  1714  **/
       
  1715 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
       
  1716 {
       
  1717 	s32 ret_val = 0;
       
  1718 	u16 i, phy_status;
       
  1719 
       
  1720 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
       
  1721 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
       
  1722 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
       
  1723 		if (ret_val)
       
  1724 			break;
       
  1725 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
       
  1726 		if (ret_val)
       
  1727 			break;
       
  1728 		if (phy_status & BMSR_ANEGCOMPLETE)
       
  1729 			break;
       
  1730 		msleep(100);
       
  1731 	}
       
  1732 
       
  1733 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
       
  1734 	 * has completed.
       
  1735 	 */
       
  1736 	return ret_val;
       
  1737 }
       
  1738 
       
  1739 /**
       
  1740  *  e1000e_phy_has_link_generic - Polls PHY for link
       
  1741  *  @hw: pointer to the HW structure
       
  1742  *  @iterations: number of times to poll for link
       
  1743  *  @usec_interval: delay between polling attempts
       
  1744  *  @success: pointer to whether polling was successful or not
       
  1745  *
       
  1746  *  Polls the PHY status register for link, 'iterations' number of times.
       
  1747  **/
       
  1748 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
       
  1749 				u32 usec_interval, bool *success)
       
  1750 {
       
  1751 	s32 ret_val = 0;
       
  1752 	u16 i, phy_status;
       
  1753 
       
  1754 	for (i = 0; i < iterations; i++) {
       
  1755 		/* Some PHYs require the MII_BMSR register to be read
       
  1756 		 * twice due to the link bit being sticky.  No harm doing
       
  1757 		 * it across the board.
       
  1758 		 */
       
  1759 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
       
  1760 		if (ret_val) {
       
  1761 			/* If the first read fails, another entity may have
       
  1762 			 * ownership of the resources, wait and try again to
       
  1763 			 * see if they have relinquished the resources yet.
       
  1764 			 */
       
  1765 			if (usec_interval >= 1000)
       
  1766 				msleep(usec_interval / 1000);
       
  1767 			else
       
  1768 				udelay(usec_interval);
       
  1769 		}
       
  1770 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
       
  1771 		if (ret_val)
       
  1772 			break;
       
  1773 		if (phy_status & BMSR_LSTATUS)
       
  1774 			break;
       
  1775 		if (usec_interval >= 1000)
       
  1776 			msleep(usec_interval / 1000);
       
  1777 		else
       
  1778 			udelay(usec_interval);
       
  1779 	}
       
  1780 
       
  1781 	*success = (i < iterations);
       
  1782 
       
  1783 	return ret_val;
       
  1784 }
       
  1785 
       
  1786 /**
       
  1787  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
       
  1788  *  @hw: pointer to the HW structure
       
  1789  *
       
  1790  *  Reads the PHY specific status register to retrieve the cable length
       
  1791  *  information.  The cable length is determined by averaging the minimum and
       
  1792  *  maximum values to get the "average" cable length.  The m88 PHY has four
       
  1793  *  possible cable length values, which are:
       
  1794  *	Register Value		Cable Length
       
  1795  *	0			< 50 meters
       
  1796  *	1			50 - 80 meters
       
  1797  *	2			80 - 110 meters
       
  1798  *	3			110 - 140 meters
       
  1799  *	4			> 140 meters
       
  1800  **/
       
  1801 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
       
  1802 {
       
  1803 	struct e1000_phy_info *phy = &hw->phy;
       
  1804 	s32 ret_val;
       
  1805 	u16 phy_data, index;
       
  1806 
       
  1807 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1808 	if (ret_val)
       
  1809 		return ret_val;
       
  1810 
       
  1811 	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
       
  1812 		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
       
  1813 
       
  1814 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
       
  1815 		return -E1000_ERR_PHY;
       
  1816 
       
  1817 	phy->min_cable_length = e1000_m88_cable_length_table[index];
       
  1818 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
       
  1819 
       
  1820 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1821 
       
  1822 	return 0;
       
  1823 }
       
  1824 
       
  1825 /**
       
  1826  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
       
  1827  *  @hw: pointer to the HW structure
       
  1828  *
       
  1829  *  The automatic gain control (agc) normalizes the amplitude of the
       
  1830  *  received signal, adjusting for the attenuation produced by the
       
  1831  *  cable.  By reading the AGC registers, which represent the
       
  1832  *  combination of coarse and fine gain value, the value can be put
       
  1833  *  into a lookup table to obtain the approximate cable length
       
  1834  *  for each channel.
       
  1835  **/
       
  1836 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
       
  1837 {
       
  1838 	struct e1000_phy_info *phy = &hw->phy;
       
  1839 	s32 ret_val;
       
  1840 	u16 phy_data, i, agc_value = 0;
       
  1841 	u16 cur_agc_index, max_agc_index = 0;
       
  1842 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
       
  1843 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
       
  1844 		IGP02E1000_PHY_AGC_A,
       
  1845 		IGP02E1000_PHY_AGC_B,
       
  1846 		IGP02E1000_PHY_AGC_C,
       
  1847 		IGP02E1000_PHY_AGC_D
       
  1848 	};
       
  1849 
       
  1850 	/* Read the AGC registers for all channels */
       
  1851 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
       
  1852 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
       
  1853 		if (ret_val)
       
  1854 			return ret_val;
       
  1855 
       
  1856 		/* Getting bits 15:9, which represent the combination of
       
  1857 		 * coarse and fine gain values.  The result is a number
       
  1858 		 * that can be put into the lookup table to obtain the
       
  1859 		 * approximate cable length.
       
  1860 		 */
       
  1861 		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
       
  1862 				 IGP02E1000_AGC_LENGTH_MASK);
       
  1863 
       
  1864 		/* Array index bound check. */
       
  1865 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
       
  1866 		    (cur_agc_index == 0))
       
  1867 			return -E1000_ERR_PHY;
       
  1868 
       
  1869 		/* Remove min & max AGC values from calculation. */
       
  1870 		if (e1000_igp_2_cable_length_table[min_agc_index] >
       
  1871 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1872 			min_agc_index = cur_agc_index;
       
  1873 		if (e1000_igp_2_cable_length_table[max_agc_index] <
       
  1874 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1875 			max_agc_index = cur_agc_index;
       
  1876 
       
  1877 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
       
  1878 	}
       
  1879 
       
  1880 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
       
  1881 		      e1000_igp_2_cable_length_table[max_agc_index]);
       
  1882 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
       
  1883 
       
  1884 	/* Calculate cable length with the error range of +/- 10 meters. */
       
  1885 	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
       
  1886 				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
       
  1887 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
       
  1888 
       
  1889 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1890 
       
  1891 	return 0;
       
  1892 }
       
  1893 
       
  1894 /**
       
  1895  *  e1000e_get_phy_info_m88 - Retrieve PHY information
       
  1896  *  @hw: pointer to the HW structure
       
  1897  *
       
  1898  *  Valid for only copper links.  Read the PHY status register (sticky read)
       
  1899  *  to verify that link is up.  Read the PHY special control register to
       
  1900  *  determine the polarity and 10base-T extended distance.  Read the PHY
       
  1901  *  special status register to determine MDI/MDIx and current speed.  If
       
  1902  *  speed is 1000, then determine cable length, local and remote receiver.
       
  1903  **/
       
  1904 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
       
  1905 {
       
  1906 	struct e1000_phy_info *phy = &hw->phy;
       
  1907 	s32 ret_val;
       
  1908 	u16 phy_data;
       
  1909 	bool link;
       
  1910 
       
  1911 	if (phy->media_type != e1000_media_type_copper) {
       
  1912 		e_dbg("Phy info is only valid for copper media\n");
       
  1913 		return -E1000_ERR_CONFIG;
       
  1914 	}
       
  1915 
       
  1916 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  1917 	if (ret_val)
       
  1918 		return ret_val;
       
  1919 
       
  1920 	if (!link) {
       
  1921 		e_dbg("Phy info is only valid if link is up\n");
       
  1922 		return -E1000_ERR_CONFIG;
       
  1923 	}
       
  1924 
       
  1925 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1926 	if (ret_val)
       
  1927 		return ret_val;
       
  1928 
       
  1929 	phy->polarity_correction = !!(phy_data &
       
  1930 				      M88E1000_PSCR_POLARITY_REVERSAL);
       
  1931 
       
  1932 	ret_val = e1000_check_polarity_m88(hw);
       
  1933 	if (ret_val)
       
  1934 		return ret_val;
       
  1935 
       
  1936 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1937 	if (ret_val)
       
  1938 		return ret_val;
       
  1939 
       
  1940 	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
       
  1941 
       
  1942 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
       
  1943 		ret_val = hw->phy.ops.get_cable_length(hw);
       
  1944 		if (ret_val)
       
  1945 			return ret_val;
       
  1946 
       
  1947 		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
       
  1948 		if (ret_val)
       
  1949 			return ret_val;
       
  1950 
       
  1951 		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
       
  1952 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  1953 
       
  1954 		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
       
  1955 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  1956 	} else {
       
  1957 		/* Set values to "undefined" */
       
  1958 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  1959 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  1960 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  1961 	}
       
  1962 
       
  1963 	return ret_val;
       
  1964 }
       
  1965 
       
  1966 /**
       
  1967  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
       
  1968  *  @hw: pointer to the HW structure
       
  1969  *
       
  1970  *  Read PHY status to determine if link is up.  If link is up, then
       
  1971  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  1972  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  1973  *  determine on the cable length, local and remote receiver.
       
  1974  **/
       
  1975 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
       
  1976 {
       
  1977 	struct e1000_phy_info *phy = &hw->phy;
       
  1978 	s32 ret_val;
       
  1979 	u16 data;
       
  1980 	bool link;
       
  1981 
       
  1982 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  1983 	if (ret_val)
       
  1984 		return ret_val;
       
  1985 
       
  1986 	if (!link) {
       
  1987 		e_dbg("Phy info is only valid if link is up\n");
       
  1988 		return -E1000_ERR_CONFIG;
       
  1989 	}
       
  1990 
       
  1991 	phy->polarity_correction = true;
       
  1992 
       
  1993 	ret_val = e1000_check_polarity_igp(hw);
       
  1994 	if (ret_val)
       
  1995 		return ret_val;
       
  1996 
       
  1997 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  1998 	if (ret_val)
       
  1999 		return ret_val;
       
  2000 
       
  2001 	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
       
  2002 
       
  2003 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  2004 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  2005 		ret_val = phy->ops.get_cable_length(hw);
       
  2006 		if (ret_val)
       
  2007 			return ret_val;
       
  2008 
       
  2009 		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
       
  2010 		if (ret_val)
       
  2011 			return ret_val;
       
  2012 
       
  2013 		phy->local_rx = (data & LPA_1000LOCALRXOK)
       
  2014 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  2015 
       
  2016 		phy->remote_rx = (data & LPA_1000REMRXOK)
       
  2017 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  2018 	} else {
       
  2019 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2020 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2021 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2022 	}
       
  2023 
       
  2024 	return ret_val;
       
  2025 }
       
  2026 
       
  2027 /**
       
  2028  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
       
  2029  *  @hw: pointer to the HW structure
       
  2030  *
       
  2031  *  Populates "phy" structure with various feature states.
       
  2032  **/
       
  2033 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
       
  2034 {
       
  2035 	struct e1000_phy_info *phy = &hw->phy;
       
  2036 	s32 ret_val;
       
  2037 	u16 data;
       
  2038 	bool link;
       
  2039 
       
  2040 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  2041 	if (ret_val)
       
  2042 		return ret_val;
       
  2043 
       
  2044 	if (!link) {
       
  2045 		e_dbg("Phy info is only valid if link is up\n");
       
  2046 		return -E1000_ERR_CONFIG;
       
  2047 	}
       
  2048 
       
  2049 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
       
  2050 	if (ret_val)
       
  2051 		return ret_val;
       
  2052 	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
       
  2053 
       
  2054 	if (phy->polarity_correction) {
       
  2055 		ret_val = e1000_check_polarity_ife(hw);
       
  2056 		if (ret_val)
       
  2057 			return ret_val;
       
  2058 	} else {
       
  2059 		/* Polarity is forced */
       
  2060 		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
       
  2061 				       ? e1000_rev_polarity_reversed
       
  2062 				       : e1000_rev_polarity_normal);
       
  2063 	}
       
  2064 
       
  2065 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
       
  2066 	if (ret_val)
       
  2067 		return ret_val;
       
  2068 
       
  2069 	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
       
  2070 
       
  2071 	/* The following parameters are undefined for 10/100 operation. */
       
  2072 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2073 	phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2074 	phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2075 
       
  2076 	return 0;
       
  2077 }
       
  2078 
       
  2079 /**
       
  2080  *  e1000e_phy_sw_reset - PHY software reset
       
  2081  *  @hw: pointer to the HW structure
       
  2082  *
       
  2083  *  Does a software reset of the PHY by reading the PHY control register and
       
  2084  *  setting/write the control register reset bit to the PHY.
       
  2085  **/
       
  2086 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
       
  2087 {
       
  2088 	s32 ret_val;
       
  2089 	u16 phy_ctrl;
       
  2090 
       
  2091 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
       
  2092 	if (ret_val)
       
  2093 		return ret_val;
       
  2094 
       
  2095 	phy_ctrl |= BMCR_RESET;
       
  2096 	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
       
  2097 	if (ret_val)
       
  2098 		return ret_val;
       
  2099 
       
  2100 	udelay(1);
       
  2101 
       
  2102 	return ret_val;
       
  2103 }
       
  2104 
       
  2105 /**
       
  2106  *  e1000e_phy_hw_reset_generic - PHY hardware reset
       
  2107  *  @hw: pointer to the HW structure
       
  2108  *
       
  2109  *  Verify the reset block is not blocking us from resetting.  Acquire
       
  2110  *  semaphore (if necessary) and read/set/write the device control reset
       
  2111  *  bit in the PHY.  Wait the appropriate delay time for the device to
       
  2112  *  reset and release the semaphore (if necessary).
       
  2113  **/
       
  2114 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
       
  2115 {
       
  2116 	struct e1000_phy_info *phy = &hw->phy;
       
  2117 	s32 ret_val;
       
  2118 	u32 ctrl;
       
  2119 
       
  2120 	if (phy->ops.check_reset_block) {
       
  2121 		ret_val = phy->ops.check_reset_block(hw);
       
  2122 		if (ret_val)
       
  2123 			return 0;
       
  2124 	}
       
  2125 
       
  2126 	ret_val = phy->ops.acquire(hw);
       
  2127 	if (ret_val)
       
  2128 		return ret_val;
       
  2129 
       
  2130 	ctrl = er32(CTRL);
       
  2131 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
       
  2132 	e1e_flush();
       
  2133 
       
  2134 	udelay(phy->reset_delay_us);
       
  2135 
       
  2136 	ew32(CTRL, ctrl);
       
  2137 	e1e_flush();
       
  2138 
       
  2139 	usleep_range(150, 300);
       
  2140 
       
  2141 	phy->ops.release(hw);
       
  2142 
       
  2143 	return phy->ops.get_cfg_done(hw);
       
  2144 }
       
  2145 
       
  2146 /**
       
  2147  *  e1000e_get_cfg_done_generic - Generic configuration done
       
  2148  *  @hw: pointer to the HW structure
       
  2149  *
       
  2150  *  Generic function to wait 10 milli-seconds for configuration to complete
       
  2151  *  and return success.
       
  2152  **/
       
  2153 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
       
  2154 {
       
  2155 	mdelay(10);
       
  2156 
       
  2157 	return 0;
       
  2158 }
       
  2159 
       
  2160 /**
       
  2161  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
       
  2162  *  @hw: pointer to the HW structure
       
  2163  *
       
  2164  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
       
  2165  **/
       
  2166 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
       
  2167 {
       
  2168 	e_dbg("Running IGP 3 PHY init script\n");
       
  2169 
       
  2170 	/* PHY init IGP 3 */
       
  2171 	/* Enable rise/fall, 10-mode work in class-A */
       
  2172 	e1e_wphy(hw, 0x2F5B, 0x9018);
       
  2173 	/* Remove all caps from Replica path filter */
       
  2174 	e1e_wphy(hw, 0x2F52, 0x0000);
       
  2175 	/* Bias trimming for ADC, AFE and Driver (Default) */
       
  2176 	e1e_wphy(hw, 0x2FB1, 0x8B24);
       
  2177 	/* Increase Hybrid poly bias */
       
  2178 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
       
  2179 	/* Add 4% to Tx amplitude in Gig mode */
       
  2180 	e1e_wphy(hw, 0x2010, 0x10B0);
       
  2181 	/* Disable trimming (TTT) */
       
  2182 	e1e_wphy(hw, 0x2011, 0x0000);
       
  2183 	/* Poly DC correction to 94.6% + 2% for all channels */
       
  2184 	e1e_wphy(hw, 0x20DD, 0x249A);
       
  2185 	/* ABS DC correction to 95.9% */
       
  2186 	e1e_wphy(hw, 0x20DE, 0x00D3);
       
  2187 	/* BG temp curve trim */
       
  2188 	e1e_wphy(hw, 0x28B4, 0x04CE);
       
  2189 	/* Increasing ADC OPAMP stage 1 currents to max */
       
  2190 	e1e_wphy(hw, 0x2F70, 0x29E4);
       
  2191 	/* Force 1000 ( required for enabling PHY regs configuration) */
       
  2192 	e1e_wphy(hw, 0x0000, 0x0140);
       
  2193 	/* Set upd_freq to 6 */
       
  2194 	e1e_wphy(hw, 0x1F30, 0x1606);
       
  2195 	/* Disable NPDFE */
       
  2196 	e1e_wphy(hw, 0x1F31, 0xB814);
       
  2197 	/* Disable adaptive fixed FFE (Default) */
       
  2198 	e1e_wphy(hw, 0x1F35, 0x002A);
       
  2199 	/* Enable FFE hysteresis */
       
  2200 	e1e_wphy(hw, 0x1F3E, 0x0067);
       
  2201 	/* Fixed FFE for short cable lengths */
       
  2202 	e1e_wphy(hw, 0x1F54, 0x0065);
       
  2203 	/* Fixed FFE for medium cable lengths */
       
  2204 	e1e_wphy(hw, 0x1F55, 0x002A);
       
  2205 	/* Fixed FFE for long cable lengths */
       
  2206 	e1e_wphy(hw, 0x1F56, 0x002A);
       
  2207 	/* Enable Adaptive Clip Threshold */
       
  2208 	e1e_wphy(hw, 0x1F72, 0x3FB0);
       
  2209 	/* AHT reset limit to 1 */
       
  2210 	e1e_wphy(hw, 0x1F76, 0xC0FF);
       
  2211 	/* Set AHT master delay to 127 msec */
       
  2212 	e1e_wphy(hw, 0x1F77, 0x1DEC);
       
  2213 	/* Set scan bits for AHT */
       
  2214 	e1e_wphy(hw, 0x1F78, 0xF9EF);
       
  2215 	/* Set AHT Preset bits */
       
  2216 	e1e_wphy(hw, 0x1F79, 0x0210);
       
  2217 	/* Change integ_factor of channel A to 3 */
       
  2218 	e1e_wphy(hw, 0x1895, 0x0003);
       
  2219 	/* Change prop_factor of channels BCD to 8 */
       
  2220 	e1e_wphy(hw, 0x1796, 0x0008);
       
  2221 	/* Change cg_icount + enable integbp for channels BCD */
       
  2222 	e1e_wphy(hw, 0x1798, 0xD008);
       
  2223 	/* Change cg_icount + enable integbp + change prop_factor_master
       
  2224 	 * to 8 for channel A
       
  2225 	 */
       
  2226 	e1e_wphy(hw, 0x1898, 0xD918);
       
  2227 	/* Disable AHT in Slave mode on channel A */
       
  2228 	e1e_wphy(hw, 0x187A, 0x0800);
       
  2229 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
       
  2230 	 * Enable SPD+B2B
       
  2231 	 */
       
  2232 	e1e_wphy(hw, 0x0019, 0x008D);
       
  2233 	/* Enable restart AN on an1000_dis change */
       
  2234 	e1e_wphy(hw, 0x001B, 0x2080);
       
  2235 	/* Enable wh_fifo read clock in 10/100 modes */
       
  2236 	e1e_wphy(hw, 0x0014, 0x0045);
       
  2237 	/* Restart AN, Speed selection is 1000 */
       
  2238 	e1e_wphy(hw, 0x0000, 0x1340);
       
  2239 
       
  2240 	return 0;
       
  2241 }
       
  2242 
       
  2243 /**
       
  2244  *  e1000e_get_phy_type_from_id - Get PHY type from id
       
  2245  *  @phy_id: phy_id read from the phy
       
  2246  *
       
  2247  *  Returns the phy type from the id.
       
  2248  **/
       
  2249 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
       
  2250 {
       
  2251 	enum e1000_phy_type phy_type = e1000_phy_unknown;
       
  2252 
       
  2253 	switch (phy_id) {
       
  2254 	case M88E1000_I_PHY_ID:
       
  2255 	case M88E1000_E_PHY_ID:
       
  2256 	case M88E1111_I_PHY_ID:
       
  2257 	case M88E1011_I_PHY_ID:
       
  2258 		phy_type = e1000_phy_m88;
       
  2259 		break;
       
  2260 	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
       
  2261 		phy_type = e1000_phy_igp_2;
       
  2262 		break;
       
  2263 	case GG82563_E_PHY_ID:
       
  2264 		phy_type = e1000_phy_gg82563;
       
  2265 		break;
       
  2266 	case IGP03E1000_E_PHY_ID:
       
  2267 		phy_type = e1000_phy_igp_3;
       
  2268 		break;
       
  2269 	case IFE_E_PHY_ID:
       
  2270 	case IFE_PLUS_E_PHY_ID:
       
  2271 	case IFE_C_E_PHY_ID:
       
  2272 		phy_type = e1000_phy_ife;
       
  2273 		break;
       
  2274 	case BME1000_E_PHY_ID:
       
  2275 	case BME1000_E_PHY_ID_R2:
       
  2276 		phy_type = e1000_phy_bm;
       
  2277 		break;
       
  2278 	case I82578_E_PHY_ID:
       
  2279 		phy_type = e1000_phy_82578;
       
  2280 		break;
       
  2281 	case I82577_E_PHY_ID:
       
  2282 		phy_type = e1000_phy_82577;
       
  2283 		break;
       
  2284 	case I82579_E_PHY_ID:
       
  2285 		phy_type = e1000_phy_82579;
       
  2286 		break;
       
  2287 	case I217_E_PHY_ID:
       
  2288 		phy_type = e1000_phy_i217;
       
  2289 		break;
       
  2290 	default:
       
  2291 		phy_type = e1000_phy_unknown;
       
  2292 		break;
       
  2293 	}
       
  2294 	return phy_type;
       
  2295 }
       
  2296 
       
  2297 /**
       
  2298  *  e1000e_determine_phy_address - Determines PHY address.
       
  2299  *  @hw: pointer to the HW structure
       
  2300  *
       
  2301  *  This uses a trial and error method to loop through possible PHY
       
  2302  *  addresses. It tests each by reading the PHY ID registers and
       
  2303  *  checking for a match.
       
  2304  **/
       
  2305 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
       
  2306 {
       
  2307 	u32 phy_addr = 0;
       
  2308 	u32 i;
       
  2309 	enum e1000_phy_type phy_type = e1000_phy_unknown;
       
  2310 
       
  2311 	hw->phy.id = phy_type;
       
  2312 
       
  2313 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
       
  2314 		hw->phy.addr = phy_addr;
       
  2315 		i = 0;
       
  2316 
       
  2317 		do {
       
  2318 			e1000e_get_phy_id(hw);
       
  2319 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
       
  2320 
       
  2321 			/* If phy_type is valid, break - we found our
       
  2322 			 * PHY address
       
  2323 			 */
       
  2324 			if (phy_type != e1000_phy_unknown)
       
  2325 				return 0;
       
  2326 
       
  2327 			usleep_range(1000, 2000);
       
  2328 			i++;
       
  2329 		} while (i < 10);
       
  2330 	}
       
  2331 
       
  2332 	return -E1000_ERR_PHY_TYPE;
       
  2333 }
       
  2334 
       
  2335 /**
       
  2336  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
       
  2337  *  @page: page to access
       
  2338  *
       
  2339  *  Returns the phy address for the page requested.
       
  2340  **/
       
  2341 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
       
  2342 {
       
  2343 	u32 phy_addr = 2;
       
  2344 
       
  2345 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
       
  2346 		phy_addr = 1;
       
  2347 
       
  2348 	return phy_addr;
       
  2349 }
       
  2350 
       
  2351 /**
       
  2352  *  e1000e_write_phy_reg_bm - Write BM PHY register
       
  2353  *  @hw: pointer to the HW structure
       
  2354  *  @offset: register offset to write to
       
  2355  *  @data: data to write at register offset
       
  2356  *
       
  2357  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2358  *  at the offset.  Release any acquired semaphores before exiting.
       
  2359  **/
       
  2360 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
       
  2361 {
       
  2362 	s32 ret_val;
       
  2363 	u32 page = offset >> IGP_PAGE_SHIFT;
       
  2364 
       
  2365 	ret_val = hw->phy.ops.acquire(hw);
       
  2366 	if (ret_val)
       
  2367 		return ret_val;
       
  2368 
       
  2369 	/* Page 800 works differently than the rest so it has its own func */
       
  2370 	if (page == BM_WUC_PAGE) {
       
  2371 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2372 							 false, false);
       
  2373 		goto release;
       
  2374 	}
       
  2375 
       
  2376 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
       
  2377 
       
  2378 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2379 		u32 page_shift, page_select;
       
  2380 
       
  2381 		/* Page select is register 31 for phy address 1 and 22 for
       
  2382 		 * phy address 2 and 3. Page select is shifted only for
       
  2383 		 * phy address 1.
       
  2384 		 */
       
  2385 		if (hw->phy.addr == 1) {
       
  2386 			page_shift = IGP_PAGE_SHIFT;
       
  2387 			page_select = IGP01E1000_PHY_PAGE_SELECT;
       
  2388 		} else {
       
  2389 			page_shift = 0;
       
  2390 			page_select = BM_PHY_PAGE_SELECT;
       
  2391 		}
       
  2392 
       
  2393 		/* Page is shifted left, PHY expects (page x 32) */
       
  2394 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
       
  2395 						    (page << page_shift));
       
  2396 		if (ret_val)
       
  2397 			goto release;
       
  2398 	}
       
  2399 
       
  2400 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2401 					    data);
       
  2402 
       
  2403 release:
       
  2404 	hw->phy.ops.release(hw);
       
  2405 	return ret_val;
       
  2406 }
       
  2407 
       
  2408 /**
       
  2409  *  e1000e_read_phy_reg_bm - Read BM PHY register
       
  2410  *  @hw: pointer to the HW structure
       
  2411  *  @offset: register offset to be read
       
  2412  *  @data: pointer to the read data
       
  2413  *
       
  2414  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2415  *  and storing the retrieved information in data.  Release any acquired
       
  2416  *  semaphores before exiting.
       
  2417  **/
       
  2418 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2419 {
       
  2420 	s32 ret_val;
       
  2421 	u32 page = offset >> IGP_PAGE_SHIFT;
       
  2422 
       
  2423 	ret_val = hw->phy.ops.acquire(hw);
       
  2424 	if (ret_val)
       
  2425 		return ret_val;
       
  2426 
       
  2427 	/* Page 800 works differently than the rest so it has its own func */
       
  2428 	if (page == BM_WUC_PAGE) {
       
  2429 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2430 							 true, false);
       
  2431 		goto release;
       
  2432 	}
       
  2433 
       
  2434 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
       
  2435 
       
  2436 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2437 		u32 page_shift, page_select;
       
  2438 
       
  2439 		/* Page select is register 31 for phy address 1 and 22 for
       
  2440 		 * phy address 2 and 3. Page select is shifted only for
       
  2441 		 * phy address 1.
       
  2442 		 */
       
  2443 		if (hw->phy.addr == 1) {
       
  2444 			page_shift = IGP_PAGE_SHIFT;
       
  2445 			page_select = IGP01E1000_PHY_PAGE_SELECT;
       
  2446 		} else {
       
  2447 			page_shift = 0;
       
  2448 			page_select = BM_PHY_PAGE_SELECT;
       
  2449 		}
       
  2450 
       
  2451 		/* Page is shifted left, PHY expects (page x 32) */
       
  2452 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
       
  2453 						    (page << page_shift));
       
  2454 		if (ret_val)
       
  2455 			goto release;
       
  2456 	}
       
  2457 
       
  2458 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2459 					   data);
       
  2460 release:
       
  2461 	hw->phy.ops.release(hw);
       
  2462 	return ret_val;
       
  2463 }
       
  2464 
       
  2465 /**
       
  2466  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
       
  2467  *  @hw: pointer to the HW structure
       
  2468  *  @offset: register offset to be read
       
  2469  *  @data: pointer to the read data
       
  2470  *
       
  2471  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2472  *  and storing the retrieved information in data.  Release any acquired
       
  2473  *  semaphores before exiting.
       
  2474  **/
       
  2475 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2476 {
       
  2477 	s32 ret_val;
       
  2478 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
       
  2479 
       
  2480 	ret_val = hw->phy.ops.acquire(hw);
       
  2481 	if (ret_val)
       
  2482 		return ret_val;
       
  2483 
       
  2484 	/* Page 800 works differently than the rest so it has its own func */
       
  2485 	if (page == BM_WUC_PAGE) {
       
  2486 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2487 							 true, false);
       
  2488 		goto release;
       
  2489 	}
       
  2490 
       
  2491 	hw->phy.addr = 1;
       
  2492 
       
  2493 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2494 		/* Page is shifted left, PHY expects (page x 32) */
       
  2495 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
       
  2496 						    page);
       
  2497 
       
  2498 		if (ret_val)
       
  2499 			goto release;
       
  2500 	}
       
  2501 
       
  2502 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2503 					   data);
       
  2504 release:
       
  2505 	hw->phy.ops.release(hw);
       
  2506 	return ret_val;
       
  2507 }
       
  2508 
       
  2509 /**
       
  2510  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
       
  2511  *  @hw: pointer to the HW structure
       
  2512  *  @offset: register offset to write to
       
  2513  *  @data: data to write at register offset
       
  2514  *
       
  2515  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2516  *  at the offset.  Release any acquired semaphores before exiting.
       
  2517  **/
       
  2518 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
       
  2519 {
       
  2520 	s32 ret_val;
       
  2521 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
       
  2522 
       
  2523 	ret_val = hw->phy.ops.acquire(hw);
       
  2524 	if (ret_val)
       
  2525 		return ret_val;
       
  2526 
       
  2527 	/* Page 800 works differently than the rest so it has its own func */
       
  2528 	if (page == BM_WUC_PAGE) {
       
  2529 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2530 							 false, false);
       
  2531 		goto release;
       
  2532 	}
       
  2533 
       
  2534 	hw->phy.addr = 1;
       
  2535 
       
  2536 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2537 		/* Page is shifted left, PHY expects (page x 32) */
       
  2538 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
       
  2539 						    page);
       
  2540 
       
  2541 		if (ret_val)
       
  2542 			goto release;
       
  2543 	}
       
  2544 
       
  2545 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2546 					    data);
       
  2547 
       
  2548 release:
       
  2549 	hw->phy.ops.release(hw);
       
  2550 	return ret_val;
       
  2551 }
       
  2552 
       
  2553 /**
       
  2554  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
       
  2555  *  @hw: pointer to the HW structure
       
  2556  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
       
  2557  *
       
  2558  *  Assumes semaphore already acquired and phy_reg points to a valid memory
       
  2559  *  address to store contents of the BM_WUC_ENABLE_REG register.
       
  2560  **/
       
  2561 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
       
  2562 {
       
  2563 	s32 ret_val;
       
  2564 	u16 temp;
       
  2565 
       
  2566 	/* All page select, port ctrl and wakeup registers use phy address 1 */
       
  2567 	hw->phy.addr = 1;
       
  2568 
       
  2569 	/* Select Port Control Registers page */
       
  2570 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
       
  2571 	if (ret_val) {
       
  2572 		e_dbg("Could not set Port Control page\n");
       
  2573 		return ret_val;
       
  2574 	}
       
  2575 
       
  2576 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
       
  2577 	if (ret_val) {
       
  2578 		e_dbg("Could not read PHY register %d.%d\n",
       
  2579 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
       
  2580 		return ret_val;
       
  2581 	}
       
  2582 
       
  2583 	/* Enable both PHY wakeup mode and Wakeup register page writes.
       
  2584 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
       
  2585 	 */
       
  2586 	temp = *phy_reg;
       
  2587 	temp |= BM_WUC_ENABLE_BIT;
       
  2588 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
       
  2589 
       
  2590 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
       
  2591 	if (ret_val) {
       
  2592 		e_dbg("Could not write PHY register %d.%d\n",
       
  2593 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
       
  2594 		return ret_val;
       
  2595 	}
       
  2596 
       
  2597 	/* Select Host Wakeup Registers page - caller now able to write
       
  2598 	 * registers on the Wakeup registers page
       
  2599 	 */
       
  2600 	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
       
  2601 }
       
  2602 
       
  2603 /**
       
  2604  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
       
  2605  *  @hw: pointer to the HW structure
       
  2606  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
       
  2607  *
       
  2608  *  Restore BM_WUC_ENABLE_REG to its original value.
       
  2609  *
       
  2610  *  Assumes semaphore already acquired and *phy_reg is the contents of the
       
  2611  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
       
  2612  *  caller.
       
  2613  **/
       
  2614 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
       
  2615 {
       
  2616 	s32 ret_val;
       
  2617 
       
  2618 	/* Select Port Control Registers page */
       
  2619 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
       
  2620 	if (ret_val) {
       
  2621 		e_dbg("Could not set Port Control page\n");
       
  2622 		return ret_val;
       
  2623 	}
       
  2624 
       
  2625 	/* Restore 769.17 to its original value */
       
  2626 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
       
  2627 	if (ret_val)
       
  2628 		e_dbg("Could not restore PHY register %d.%d\n",
       
  2629 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
       
  2630 
       
  2631 	return ret_val;
       
  2632 }
       
  2633 
       
  2634 /**
       
  2635  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
       
  2636  *  @hw: pointer to the HW structure
       
  2637  *  @offset: register offset to be read or written
       
  2638  *  @data: pointer to the data to read or write
       
  2639  *  @read: determines if operation is read or write
       
  2640  *  @page_set: BM_WUC_PAGE already set and access enabled
       
  2641  *
       
  2642  *  Read the PHY register at offset and store the retrieved information in
       
  2643  *  data, or write data to PHY register at offset.  Note the procedure to
       
  2644  *  access the PHY wakeup registers is different than reading the other PHY
       
  2645  *  registers. It works as such:
       
  2646  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
       
  2647  *  2) Set page to 800 for host (801 if we were manageability)
       
  2648  *  3) Write the address using the address opcode (0x11)
       
  2649  *  4) Read or write the data using the data opcode (0x12)
       
  2650  *  5) Restore 769.17.2 to its original value
       
  2651  *
       
  2652  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
       
  2653  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
       
  2654  *
       
  2655  *  Assumes semaphore is already acquired.  When page_set==true, assumes
       
  2656  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
       
  2657  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
       
  2658  **/
       
  2659 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
       
  2660 					  u16 *data, bool read, bool page_set)
       
  2661 {
       
  2662 	s32 ret_val;
       
  2663 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2664 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2665 	u16 phy_reg = 0;
       
  2666 
       
  2667 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
       
  2668 	if ((hw->mac.type == e1000_pchlan) &&
       
  2669 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
       
  2670 		e_dbg("Attempting to access page %d while gig enabled.\n",
       
  2671 		      page);
       
  2672 
       
  2673 	if (!page_set) {
       
  2674 		/* Enable access to PHY wakeup registers */
       
  2675 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  2676 		if (ret_val) {
       
  2677 			e_dbg("Could not enable PHY wakeup reg access\n");
       
  2678 			return ret_val;
       
  2679 		}
       
  2680 	}
       
  2681 
       
  2682 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
       
  2683 
       
  2684 	/* Write the Wakeup register page offset value using opcode 0x11 */
       
  2685 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
       
  2686 	if (ret_val) {
       
  2687 		e_dbg("Could not write address opcode to page %d\n", page);
       
  2688 		return ret_val;
       
  2689 	}
       
  2690 
       
  2691 	if (read) {
       
  2692 		/* Read the Wakeup register page value using opcode 0x12 */
       
  2693 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
       
  2694 						   data);
       
  2695 	} else {
       
  2696 		/* Write the Wakeup register page value using opcode 0x12 */
       
  2697 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
       
  2698 						    *data);
       
  2699 	}
       
  2700 
       
  2701 	if (ret_val) {
       
  2702 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
       
  2703 		return ret_val;
       
  2704 	}
       
  2705 
       
  2706 	if (!page_set)
       
  2707 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  2708 
       
  2709 	return ret_val;
       
  2710 }
       
  2711 
       
  2712 /**
       
  2713  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
       
  2714  * @hw: pointer to the HW structure
       
  2715  *
       
  2716  * In the case of a PHY power down to save power, or to turn off link during a
       
  2717  * driver unload, or wake on lan is not enabled, restore the link to previous
       
  2718  * settings.
       
  2719  **/
       
  2720 void e1000_power_up_phy_copper(struct e1000_hw *hw)
       
  2721 {
       
  2722 	u16 mii_reg = 0;
       
  2723 
       
  2724 	/* The PHY will retain its settings across a power down/up cycle */
       
  2725 	e1e_rphy(hw, MII_BMCR, &mii_reg);
       
  2726 	mii_reg &= ~BMCR_PDOWN;
       
  2727 	e1e_wphy(hw, MII_BMCR, mii_reg);
       
  2728 }
       
  2729 
       
  2730 /**
       
  2731  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
       
  2732  * @hw: pointer to the HW structure
       
  2733  *
       
  2734  * In the case of a PHY power down to save power, or to turn off link during a
       
  2735  * driver unload, or wake on lan is not enabled, restore the link to previous
       
  2736  * settings.
       
  2737  **/
       
  2738 void e1000_power_down_phy_copper(struct e1000_hw *hw)
       
  2739 {
       
  2740 	u16 mii_reg = 0;
       
  2741 
       
  2742 	/* The PHY will retain its settings across a power down/up cycle */
       
  2743 	e1e_rphy(hw, MII_BMCR, &mii_reg);
       
  2744 	mii_reg |= BMCR_PDOWN;
       
  2745 	e1e_wphy(hw, MII_BMCR, mii_reg);
       
  2746 	usleep_range(1000, 2000);
       
  2747 }
       
  2748 
       
  2749 /**
       
  2750  *  __e1000_read_phy_reg_hv -  Read HV PHY register
       
  2751  *  @hw: pointer to the HW structure
       
  2752  *  @offset: register offset to be read
       
  2753  *  @data: pointer to the read data
       
  2754  *  @locked: semaphore has already been acquired or not
       
  2755  *
       
  2756  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2757  *  and stores the retrieved information in data.  Release any acquired
       
  2758  *  semaphore before exiting.
       
  2759  **/
       
  2760 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
       
  2761 				   bool locked, bool page_set)
       
  2762 {
       
  2763 	s32 ret_val;
       
  2764 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2765 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2766 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
       
  2767 
       
  2768 	if (!locked) {
       
  2769 		ret_val = hw->phy.ops.acquire(hw);
       
  2770 		if (ret_val)
       
  2771 			return ret_val;
       
  2772 	}
       
  2773 
       
  2774 	/* Page 800 works differently than the rest so it has its own func */
       
  2775 	if (page == BM_WUC_PAGE) {
       
  2776 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2777 							 true, page_set);
       
  2778 		goto out;
       
  2779 	}
       
  2780 
       
  2781 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
       
  2782 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
       
  2783 							 data, true);
       
  2784 		goto out;
       
  2785 	}
       
  2786 
       
  2787 	if (!page_set) {
       
  2788 		if (page == HV_INTC_FC_PAGE_START)
       
  2789 			page = 0;
       
  2790 
       
  2791 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
       
  2792 			/* Page is shifted left, PHY expects (page x 32) */
       
  2793 			ret_val = e1000_set_page_igp(hw,
       
  2794 						     (page << IGP_PAGE_SHIFT));
       
  2795 
       
  2796 			hw->phy.addr = phy_addr;
       
  2797 
       
  2798 			if (ret_val)
       
  2799 				goto out;
       
  2800 		}
       
  2801 	}
       
  2802 
       
  2803 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
       
  2804 	      page << IGP_PAGE_SHIFT, reg);
       
  2805 
       
  2806 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
       
  2807 out:
       
  2808 	if (!locked)
       
  2809 		hw->phy.ops.release(hw);
       
  2810 
       
  2811 	return ret_val;
       
  2812 }
       
  2813 
       
  2814 /**
       
  2815  *  e1000_read_phy_reg_hv -  Read HV PHY register
       
  2816  *  @hw: pointer to the HW structure
       
  2817  *  @offset: register offset to be read
       
  2818  *  @data: pointer to the read data
       
  2819  *
       
  2820  *  Acquires semaphore then reads the PHY register at offset and stores
       
  2821  *  the retrieved information in data.  Release the acquired semaphore
       
  2822  *  before exiting.
       
  2823  **/
       
  2824 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2825 {
       
  2826 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
       
  2827 }
       
  2828 
       
  2829 /**
       
  2830  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
       
  2831  *  @hw: pointer to the HW structure
       
  2832  *  @offset: register offset to be read
       
  2833  *  @data: pointer to the read data
       
  2834  *
       
  2835  *  Reads the PHY register at offset and stores the retrieved information
       
  2836  *  in data.  Assumes semaphore already acquired.
       
  2837  **/
       
  2838 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2839 {
       
  2840 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
       
  2841 }
       
  2842 
       
  2843 /**
       
  2844  *  e1000_read_phy_reg_page_hv - Read HV PHY register
       
  2845  *  @hw: pointer to the HW structure
       
  2846  *  @offset: register offset to write to
       
  2847  *  @data: data to write at register offset
       
  2848  *
       
  2849  *  Reads the PHY register at offset and stores the retrieved information
       
  2850  *  in data.  Assumes semaphore already acquired and page already set.
       
  2851  **/
       
  2852 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2853 {
       
  2854 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
       
  2855 }
       
  2856 
       
  2857 /**
       
  2858  *  __e1000_write_phy_reg_hv - Write HV PHY register
       
  2859  *  @hw: pointer to the HW structure
       
  2860  *  @offset: register offset to write to
       
  2861  *  @data: data to write at register offset
       
  2862  *  @locked: semaphore has already been acquired or not
       
  2863  *
       
  2864  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2865  *  at the offset.  Release any acquired semaphores before exiting.
       
  2866  **/
       
  2867 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
       
  2868 				    bool locked, bool page_set)
       
  2869 {
       
  2870 	s32 ret_val;
       
  2871 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2872 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2873 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
       
  2874 
       
  2875 	if (!locked) {
       
  2876 		ret_val = hw->phy.ops.acquire(hw);
       
  2877 		if (ret_val)
       
  2878 			return ret_val;
       
  2879 	}
       
  2880 
       
  2881 	/* Page 800 works differently than the rest so it has its own func */
       
  2882 	if (page == BM_WUC_PAGE) {
       
  2883 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2884 							 false, page_set);
       
  2885 		goto out;
       
  2886 	}
       
  2887 
       
  2888 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
       
  2889 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
       
  2890 							 &data, false);
       
  2891 		goto out;
       
  2892 	}
       
  2893 
       
  2894 	if (!page_set) {
       
  2895 		if (page == HV_INTC_FC_PAGE_START)
       
  2896 			page = 0;
       
  2897 
       
  2898 		/* Workaround MDIO accesses being disabled after entering IEEE
       
  2899 		 * Power Down (when bit 11 of the PHY Control register is set)
       
  2900 		 */
       
  2901 		if ((hw->phy.type == e1000_phy_82578) &&
       
  2902 		    (hw->phy.revision >= 1) &&
       
  2903 		    (hw->phy.addr == 2) &&
       
  2904 		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
       
  2905 			u16 data2 = 0x7EFF;
       
  2906 			ret_val = e1000_access_phy_debug_regs_hv(hw,
       
  2907 								 (1 << 6) | 0x3,
       
  2908 								 &data2, false);
       
  2909 			if (ret_val)
       
  2910 				goto out;
       
  2911 		}
       
  2912 
       
  2913 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
       
  2914 			/* Page is shifted left, PHY expects (page x 32) */
       
  2915 			ret_val = e1000_set_page_igp(hw,
       
  2916 						     (page << IGP_PAGE_SHIFT));
       
  2917 
       
  2918 			hw->phy.addr = phy_addr;
       
  2919 
       
  2920 			if (ret_val)
       
  2921 				goto out;
       
  2922 		}
       
  2923 	}
       
  2924 
       
  2925 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
       
  2926 	      page << IGP_PAGE_SHIFT, reg);
       
  2927 
       
  2928 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
       
  2929 					    data);
       
  2930 
       
  2931 out:
       
  2932 	if (!locked)
       
  2933 		hw->phy.ops.release(hw);
       
  2934 
       
  2935 	return ret_val;
       
  2936 }
       
  2937 
       
  2938 /**
       
  2939  *  e1000_write_phy_reg_hv - Write HV PHY register
       
  2940  *  @hw: pointer to the HW structure
       
  2941  *  @offset: register offset to write to
       
  2942  *  @data: data to write at register offset
       
  2943  *
       
  2944  *  Acquires semaphore then writes the data to PHY register at the offset.
       
  2945  *  Release the acquired semaphores before exiting.
       
  2946  **/
       
  2947 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
       
  2948 {
       
  2949 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
       
  2950 }
       
  2951 
       
  2952 /**
       
  2953  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
       
  2954  *  @hw: pointer to the HW structure
       
  2955  *  @offset: register offset to write to
       
  2956  *  @data: data to write at register offset
       
  2957  *
       
  2958  *  Writes the data to PHY register at the offset.  Assumes semaphore
       
  2959  *  already acquired.
       
  2960  **/
       
  2961 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
  2962 {
       
  2963 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
       
  2964 }
       
  2965 
       
  2966 /**
       
  2967  *  e1000_write_phy_reg_page_hv - Write HV PHY register
       
  2968  *  @hw: pointer to the HW structure
       
  2969  *  @offset: register offset to write to
       
  2970  *  @data: data to write at register offset
       
  2971  *
       
  2972  *  Writes the data to PHY register at the offset.  Assumes semaphore
       
  2973  *  already acquired and page already set.
       
  2974  **/
       
  2975 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
       
  2976 {
       
  2977 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
       
  2978 }
       
  2979 
       
  2980 /**
       
  2981  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
       
  2982  *  @page: page to be accessed
       
  2983  **/
       
  2984 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
       
  2985 {
       
  2986 	u32 phy_addr = 2;
       
  2987 
       
  2988 	if (page >= HV_INTC_FC_PAGE_START)
       
  2989 		phy_addr = 1;
       
  2990 
       
  2991 	return phy_addr;
       
  2992 }
       
  2993 
       
  2994 /**
       
  2995  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
       
  2996  *  @hw: pointer to the HW structure
       
  2997  *  @offset: register offset to be read or written
       
  2998  *  @data: pointer to the data to be read or written
       
  2999  *  @read: determines if operation is read or write
       
  3000  *
       
  3001  *  Reads the PHY register at offset and stores the retreived information
       
  3002  *  in data.  Assumes semaphore already acquired.  Note that the procedure
       
  3003  *  to access these regs uses the address port and data port to read/write.
       
  3004  *  These accesses done with PHY address 2 and without using pages.
       
  3005  **/
       
  3006 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
       
  3007 					  u16 *data, bool read)
       
  3008 {
       
  3009 	s32 ret_val;
       
  3010 	u32 addr_reg;
       
  3011 	u32 data_reg;
       
  3012 
       
  3013 	/* This takes care of the difference with desktop vs mobile phy */
       
  3014 	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
       
  3015 		    I82578_ADDR_REG : I82577_ADDR_REG);
       
  3016 	data_reg = addr_reg + 1;
       
  3017 
       
  3018 	/* All operations in this function are phy address 2 */
       
  3019 	hw->phy.addr = 2;
       
  3020 
       
  3021 	/* masking with 0x3F to remove the page from offset */
       
  3022 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
       
  3023 	if (ret_val) {
       
  3024 		e_dbg("Could not write the Address Offset port register\n");
       
  3025 		return ret_val;
       
  3026 	}
       
  3027 
       
  3028 	/* Read or write the data value next */
       
  3029 	if (read)
       
  3030 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
       
  3031 	else
       
  3032 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
       
  3033 
       
  3034 	if (ret_val)
       
  3035 		e_dbg("Could not access the Data port register\n");
       
  3036 
       
  3037 	return ret_val;
       
  3038 }
       
  3039 
       
  3040 /**
       
  3041  *  e1000_link_stall_workaround_hv - Si workaround
       
  3042  *  @hw: pointer to the HW structure
       
  3043  *
       
  3044  *  This function works around a Si bug where the link partner can get
       
  3045  *  a link up indication before the PHY does.  If small packets are sent
       
  3046  *  by the link partner they can be placed in the packet buffer without
       
  3047  *  being properly accounted for by the PHY and will stall preventing
       
  3048  *  further packets from being received.  The workaround is to clear the
       
  3049  *  packet buffer after the PHY detects link up.
       
  3050  **/
       
  3051 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
       
  3052 {
       
  3053 	s32 ret_val = 0;
       
  3054 	u16 data;
       
  3055 
       
  3056 	if (hw->phy.type != e1000_phy_82578)
       
  3057 		return 0;
       
  3058 
       
  3059 	/* Do not apply workaround if in PHY loopback bit 14 set */
       
  3060 	e1e_rphy(hw, MII_BMCR, &data);
       
  3061 	if (data & BMCR_LOOPBACK)
       
  3062 		return 0;
       
  3063 
       
  3064 	/* check if link is up and at 1Gbps */
       
  3065 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
       
  3066 	if (ret_val)
       
  3067 		return ret_val;
       
  3068 
       
  3069 	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
       
  3070 		 BM_CS_STATUS_SPEED_MASK);
       
  3071 
       
  3072 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
       
  3073 		     BM_CS_STATUS_SPEED_1000))
       
  3074 		return 0;
       
  3075 
       
  3076 	msleep(200);
       
  3077 
       
  3078 	/* flush the packets in the fifo buffer */
       
  3079 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
       
  3080 			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
       
  3081 			    HV_MUX_DATA_CTRL_FORCE_SPEED));
       
  3082 	if (ret_val)
       
  3083 		return ret_val;
       
  3084 
       
  3085 	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
       
  3086 }
       
  3087 
       
  3088 /**
       
  3089  *  e1000_check_polarity_82577 - Checks the polarity.
       
  3090  *  @hw: pointer to the HW structure
       
  3091  *
       
  3092  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  3093  *
       
  3094  *  Polarity is determined based on the PHY specific status register.
       
  3095  **/
       
  3096 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
       
  3097 {
       
  3098 	struct e1000_phy_info *phy = &hw->phy;
       
  3099 	s32 ret_val;
       
  3100 	u16 data;
       
  3101 
       
  3102 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
       
  3103 
       
  3104 	if (!ret_val)
       
  3105 		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
       
  3106 				       ? e1000_rev_polarity_reversed
       
  3107 				       : e1000_rev_polarity_normal);
       
  3108 
       
  3109 	return ret_val;
       
  3110 }
       
  3111 
       
  3112 /**
       
  3113  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
       
  3114  *  @hw: pointer to the HW structure
       
  3115  *
       
  3116  *  Calls the PHY setup function to force speed and duplex.
       
  3117  **/
       
  3118 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
       
  3119 {
       
  3120 	struct e1000_phy_info *phy = &hw->phy;
       
  3121 	s32 ret_val;
       
  3122 	u16 phy_data;
       
  3123 	bool link;
       
  3124 
       
  3125 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
       
  3126 	if (ret_val)
       
  3127 		return ret_val;
       
  3128 
       
  3129 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  3130 
       
  3131 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
       
  3132 	if (ret_val)
       
  3133 		return ret_val;
       
  3134 
       
  3135 	udelay(1);
       
  3136 
       
  3137 	if (phy->autoneg_wait_to_complete) {
       
  3138 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
       
  3139 
       
  3140 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  3141 						      100000, &link);
       
  3142 		if (ret_val)
       
  3143 			return ret_val;
       
  3144 
       
  3145 		if (!link)
       
  3146 			e_dbg("Link taking longer than expected.\n");
       
  3147 
       
  3148 		/* Try once more */
       
  3149 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  3150 						      100000, &link);
       
  3151 	}
       
  3152 
       
  3153 	return ret_val;
       
  3154 }
       
  3155 
       
  3156 /**
       
  3157  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
       
  3158  *  @hw: pointer to the HW structure
       
  3159  *
       
  3160  *  Read PHY status to determine if link is up.  If link is up, then
       
  3161  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  3162  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  3163  *  determine on the cable length, local and remote receiver.
       
  3164  **/
       
  3165 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
       
  3166 {
       
  3167 	struct e1000_phy_info *phy = &hw->phy;
       
  3168 	s32 ret_val;
       
  3169 	u16 data;
       
  3170 	bool link;
       
  3171 
       
  3172 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  3173 	if (ret_val)
       
  3174 		return ret_val;
       
  3175 
       
  3176 	if (!link) {
       
  3177 		e_dbg("Phy info is only valid if link is up\n");
       
  3178 		return -E1000_ERR_CONFIG;
       
  3179 	}
       
  3180 
       
  3181 	phy->polarity_correction = true;
       
  3182 
       
  3183 	ret_val = e1000_check_polarity_82577(hw);
       
  3184 	if (ret_val)
       
  3185 		return ret_val;
       
  3186 
       
  3187 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
       
  3188 	if (ret_val)
       
  3189 		return ret_val;
       
  3190 
       
  3191 	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
       
  3192 
       
  3193 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
       
  3194 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
       
  3195 		ret_val = hw->phy.ops.get_cable_length(hw);
       
  3196 		if (ret_val)
       
  3197 			return ret_val;
       
  3198 
       
  3199 		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
       
  3200 		if (ret_val)
       
  3201 			return ret_val;
       
  3202 
       
  3203 		phy->local_rx = (data & LPA_1000LOCALRXOK)
       
  3204 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  3205 
       
  3206 		phy->remote_rx = (data & LPA_1000REMRXOK)
       
  3207 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  3208 	} else {
       
  3209 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  3210 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  3211 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  3212 	}
       
  3213 
       
  3214 	return 0;
       
  3215 }
       
  3216 
       
  3217 /**
       
  3218  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
       
  3219  *  @hw: pointer to the HW structure
       
  3220  *
       
  3221  * Reads the diagnostic status register and verifies result is valid before
       
  3222  * placing it in the phy_cable_length field.
       
  3223  **/
       
  3224 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
       
  3225 {
       
  3226 	struct e1000_phy_info *phy = &hw->phy;
       
  3227 	s32 ret_val;
       
  3228 	u16 phy_data, length;
       
  3229 
       
  3230 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
       
  3231 	if (ret_val)
       
  3232 		return ret_val;
       
  3233 
       
  3234 	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
       
  3235 		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
       
  3236 
       
  3237 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
       
  3238 		return -E1000_ERR_PHY;
       
  3239 
       
  3240 	phy->cable_length = length;
       
  3241 
       
  3242 	return 0;
       
  3243 }