devices/e1000e/ich8lan-3.14-orig.c
branchstable-1.5
changeset 2587 afd76ee3aa87
equal deleted inserted replaced
2586:5b89b4e38cdc 2587:afd76ee3aa87
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2013 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* 82562G 10/100 Network Connection
       
    30  * 82562G-2 10/100 Network Connection
       
    31  * 82562GT 10/100 Network Connection
       
    32  * 82562GT-2 10/100 Network Connection
       
    33  * 82562V 10/100 Network Connection
       
    34  * 82562V-2 10/100 Network Connection
       
    35  * 82566DC-2 Gigabit Network Connection
       
    36  * 82566DC Gigabit Network Connection
       
    37  * 82566DM-2 Gigabit Network Connection
       
    38  * 82566DM Gigabit Network Connection
       
    39  * 82566MC Gigabit Network Connection
       
    40  * 82566MM Gigabit Network Connection
       
    41  * 82567LM Gigabit Network Connection
       
    42  * 82567LF Gigabit Network Connection
       
    43  * 82567V Gigabit Network Connection
       
    44  * 82567LM-2 Gigabit Network Connection
       
    45  * 82567LF-2 Gigabit Network Connection
       
    46  * 82567V-2 Gigabit Network Connection
       
    47  * 82567LF-3 Gigabit Network Connection
       
    48  * 82567LM-3 Gigabit Network Connection
       
    49  * 82567LM-4 Gigabit Network Connection
       
    50  * 82577LM Gigabit Network Connection
       
    51  * 82577LC Gigabit Network Connection
       
    52  * 82578DM Gigabit Network Connection
       
    53  * 82578DC Gigabit Network Connection
       
    54  * 82579LM Gigabit Network Connection
       
    55  * 82579V Gigabit Network Connection
       
    56  */
       
    57 
       
    58 #include "e1000.h"
       
    59 
       
    60 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
       
    61 /* Offset 04h HSFSTS */
       
    62 union ich8_hws_flash_status {
       
    63 	struct ich8_hsfsts {
       
    64 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
       
    65 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
       
    66 		u16 dael:1;	/* bit 2 Direct Access error Log */
       
    67 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
       
    68 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
       
    69 		u16 reserved1:2;	/* bit 13:6 Reserved */
       
    70 		u16 reserved2:6;	/* bit 13:6 Reserved */
       
    71 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
       
    72 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
       
    73 	} hsf_status;
       
    74 	u16 regval;
       
    75 };
       
    76 
       
    77 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
       
    78 /* Offset 06h FLCTL */
       
    79 union ich8_hws_flash_ctrl {
       
    80 	struct ich8_hsflctl {
       
    81 		u16 flcgo:1;	/* 0 Flash Cycle Go */
       
    82 		u16 flcycle:2;	/* 2:1 Flash Cycle */
       
    83 		u16 reserved:5;	/* 7:3 Reserved  */
       
    84 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
       
    85 		u16 flockdn:6;	/* 15:10 Reserved */
       
    86 	} hsf_ctrl;
       
    87 	u16 regval;
       
    88 };
       
    89 
       
    90 /* ICH Flash Region Access Permissions */
       
    91 union ich8_hws_flash_regacc {
       
    92 	struct ich8_flracc {
       
    93 		u32 grra:8;	/* 0:7 GbE region Read Access */
       
    94 		u32 grwa:8;	/* 8:15 GbE region Write Access */
       
    95 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
       
    96 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
       
    97 	} hsf_flregacc;
       
    98 	u16 regval;
       
    99 };
       
   100 
       
   101 /* ICH Flash Protected Region */
       
   102 union ich8_flash_protected_range {
       
   103 	struct ich8_pr {
       
   104 		u32 base:13;	/* 0:12 Protected Range Base */
       
   105 		u32 reserved1:2;	/* 13:14 Reserved */
       
   106 		u32 rpe:1;	/* 15 Read Protection Enable */
       
   107 		u32 limit:13;	/* 16:28 Protected Range Limit */
       
   108 		u32 reserved2:2;	/* 29:30 Reserved */
       
   109 		u32 wpe:1;	/* 31 Write Protection Enable */
       
   110 	} range;
       
   111 	u32 regval;
       
   112 };
       
   113 
       
   114 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
       
   115 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
       
   116 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
       
   117 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
       
   118 						u32 offset, u8 byte);
       
   119 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
   120 					 u8 *data);
       
   121 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
       
   122 					 u16 *data);
       
   123 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
   124 					 u8 size, u16 *data);
       
   125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
       
   126 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
       
   127 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
       
   128 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
       
   129 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
       
   130 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
       
   131 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
       
   132 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
       
   133 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
       
   134 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
       
   135 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
       
   136 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
       
   137 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
       
   138 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
       
   139 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
       
   140 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
       
   141 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
       
   142 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
       
   143 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
       
   144 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
       
   145 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
       
   146 
       
   147 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
       
   148 {
       
   149 	return readw(hw->flash_address + reg);
       
   150 }
       
   151 
       
   152 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
       
   153 {
       
   154 	return readl(hw->flash_address + reg);
       
   155 }
       
   156 
       
   157 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
       
   158 {
       
   159 	writew(val, hw->flash_address + reg);
       
   160 }
       
   161 
       
   162 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
       
   163 {
       
   164 	writel(val, hw->flash_address + reg);
       
   165 }
       
   166 
       
   167 #define er16flash(reg)		__er16flash(hw, (reg))
       
   168 #define er32flash(reg)		__er32flash(hw, (reg))
       
   169 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
       
   170 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
       
   171 
       
   172 /**
       
   173  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
       
   174  *  @hw: pointer to the HW structure
       
   175  *
       
   176  *  Test access to the PHY registers by reading the PHY ID registers.  If
       
   177  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
       
   178  *  otherwise assume the read PHY ID is correct if it is valid.
       
   179  *
       
   180  *  Assumes the sw/fw/hw semaphore is already acquired.
       
   181  **/
       
   182 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
       
   183 {
       
   184 	u16 phy_reg = 0;
       
   185 	u32 phy_id = 0;
       
   186 	s32 ret_val;
       
   187 	u16 retry_count;
       
   188 	u32 mac_reg = 0;
       
   189 
       
   190 	for (retry_count = 0; retry_count < 2; retry_count++) {
       
   191 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
       
   192 		if (ret_val || (phy_reg == 0xFFFF))
       
   193 			continue;
       
   194 		phy_id = (u32)(phy_reg << 16);
       
   195 
       
   196 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
       
   197 		if (ret_val || (phy_reg == 0xFFFF)) {
       
   198 			phy_id = 0;
       
   199 			continue;
       
   200 		}
       
   201 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
       
   202 		break;
       
   203 	}
       
   204 
       
   205 	if (hw->phy.id) {
       
   206 		if (hw->phy.id == phy_id)
       
   207 			goto out;
       
   208 	} else if (phy_id) {
       
   209 		hw->phy.id = phy_id;
       
   210 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
       
   211 		goto out;
       
   212 	}
       
   213 
       
   214 	/* In case the PHY needs to be in mdio slow mode,
       
   215 	 * set slow mode and try to get the PHY id again.
       
   216 	 */
       
   217 	hw->phy.ops.release(hw);
       
   218 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
   219 	if (!ret_val)
       
   220 		ret_val = e1000e_get_phy_id(hw);
       
   221 	hw->phy.ops.acquire(hw);
       
   222 
       
   223 	if (ret_val)
       
   224 		return false;
       
   225 out:
       
   226 	if (hw->mac.type == e1000_pch_lpt) {
       
   227 		/* Unforce SMBus mode in PHY */
       
   228 		e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
       
   229 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
       
   230 		e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
       
   231 
       
   232 		/* Unforce SMBus mode in MAC */
       
   233 		mac_reg = er32(CTRL_EXT);
       
   234 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
       
   235 		ew32(CTRL_EXT, mac_reg);
       
   236 	}
       
   237 
       
   238 	return true;
       
   239 }
       
   240 
       
   241 /**
       
   242  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
       
   243  *  @hw: pointer to the HW structure
       
   244  *
       
   245  *  Workarounds/flow necessary for PHY initialization during driver load
       
   246  *  and resume paths.
       
   247  **/
       
   248 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
       
   249 {
       
   250 	u32 mac_reg, fwsm = er32(FWSM);
       
   251 	s32 ret_val;
       
   252 
       
   253 	/* Gate automatic PHY configuration by hardware on managed and
       
   254 	 * non-managed 82579 and newer adapters.
       
   255 	 */
       
   256 	e1000_gate_hw_phy_config_ich8lan(hw, true);
       
   257 
       
   258 	ret_val = hw->phy.ops.acquire(hw);
       
   259 	if (ret_val) {
       
   260 		e_dbg("Failed to initialize PHY flow\n");
       
   261 		goto out;
       
   262 	}
       
   263 
       
   264 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
       
   265 	 * inaccessible and resetting the PHY is not blocked, toggle the
       
   266 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
       
   267 	 */
       
   268 	switch (hw->mac.type) {
       
   269 	case e1000_pch_lpt:
       
   270 		if (e1000_phy_is_accessible_pchlan(hw))
       
   271 			break;
       
   272 
       
   273 		/* Before toggling LANPHYPC, see if PHY is accessible by
       
   274 		 * forcing MAC to SMBus mode first.
       
   275 		 */
       
   276 		mac_reg = er32(CTRL_EXT);
       
   277 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
       
   278 		ew32(CTRL_EXT, mac_reg);
       
   279 
       
   280 		/* Wait 50 milliseconds for MAC to finish any retries
       
   281 		 * that it might be trying to perform from previous
       
   282 		 * attempts to acknowledge any phy read requests.
       
   283 		 */
       
   284 		msleep(50);
       
   285 
       
   286 		/* fall-through */
       
   287 	case e1000_pch2lan:
       
   288 		if (e1000_phy_is_accessible_pchlan(hw))
       
   289 			break;
       
   290 
       
   291 		/* fall-through */
       
   292 	case e1000_pchlan:
       
   293 		if ((hw->mac.type == e1000_pchlan) &&
       
   294 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
       
   295 			break;
       
   296 
       
   297 		if (hw->phy.ops.check_reset_block(hw)) {
       
   298 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
       
   299 			ret_val = -E1000_ERR_PHY;
       
   300 			break;
       
   301 		}
       
   302 
       
   303 		e_dbg("Toggling LANPHYPC\n");
       
   304 
       
   305 		/* Set Phy Config Counter to 50msec */
       
   306 		mac_reg = er32(FEXTNVM3);
       
   307 		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
       
   308 		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
       
   309 		ew32(FEXTNVM3, mac_reg);
       
   310 
       
   311 		/* Toggle LANPHYPC Value bit */
       
   312 		mac_reg = er32(CTRL);
       
   313 		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
       
   314 		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
       
   315 		ew32(CTRL, mac_reg);
       
   316 		e1e_flush();
       
   317 		usleep_range(10, 20);
       
   318 		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
       
   319 		ew32(CTRL, mac_reg);
       
   320 		e1e_flush();
       
   321 		if (hw->mac.type < e1000_pch_lpt) {
       
   322 			msleep(50);
       
   323 		} else {
       
   324 			u16 count = 20;
       
   325 			do {
       
   326 				usleep_range(5000, 10000);
       
   327 			} while (!(er32(CTRL_EXT) &
       
   328 				   E1000_CTRL_EXT_LPCD) && count--);
       
   329 			usleep_range(30000, 60000);
       
   330 			if (e1000_phy_is_accessible_pchlan(hw))
       
   331 				break;
       
   332 
       
   333 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
       
   334 			 * so ensure that the MAC is also out of SMBus mode
       
   335 			 */
       
   336 			mac_reg = er32(CTRL_EXT);
       
   337 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
       
   338 			ew32(CTRL_EXT, mac_reg);
       
   339 
       
   340 			if (e1000_phy_is_accessible_pchlan(hw))
       
   341 				break;
       
   342 
       
   343 			ret_val = -E1000_ERR_PHY;
       
   344 		}
       
   345 		break;
       
   346 	default:
       
   347 		break;
       
   348 	}
       
   349 
       
   350 	hw->phy.ops.release(hw);
       
   351 	if (!ret_val) {
       
   352 		/* Reset the PHY before any access to it.  Doing so, ensures
       
   353 		 * that the PHY is in a known good state before we read/write
       
   354 		 * PHY registers.  The generic reset is sufficient here,
       
   355 		 * because we haven't determined the PHY type yet.
       
   356 		 */
       
   357 		ret_val = e1000e_phy_hw_reset_generic(hw);
       
   358 	}
       
   359 
       
   360 out:
       
   361 	/* Ungate automatic PHY configuration on non-managed 82579 */
       
   362 	if ((hw->mac.type == e1000_pch2lan) &&
       
   363 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
       
   364 		usleep_range(10000, 20000);
       
   365 		e1000_gate_hw_phy_config_ich8lan(hw, false);
       
   366 	}
       
   367 
       
   368 	return ret_val;
       
   369 }
       
   370 
       
   371 /**
       
   372  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
       
   373  *  @hw: pointer to the HW structure
       
   374  *
       
   375  *  Initialize family-specific PHY parameters and function pointers.
       
   376  **/
       
   377 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
       
   378 {
       
   379 	struct e1000_phy_info *phy = &hw->phy;
       
   380 	s32 ret_val;
       
   381 
       
   382 	phy->addr = 1;
       
   383 	phy->reset_delay_us = 100;
       
   384 
       
   385 	phy->ops.set_page = e1000_set_page_igp;
       
   386 	phy->ops.read_reg = e1000_read_phy_reg_hv;
       
   387 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
       
   388 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
       
   389 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
       
   390 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
       
   391 	phy->ops.write_reg = e1000_write_phy_reg_hv;
       
   392 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
       
   393 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
       
   394 	phy->ops.power_up = e1000_power_up_phy_copper;
       
   395 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
       
   396 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   397 
       
   398 	phy->id = e1000_phy_unknown;
       
   399 
       
   400 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
       
   401 	if (ret_val)
       
   402 		return ret_val;
       
   403 
       
   404 	if (phy->id == e1000_phy_unknown)
       
   405 		switch (hw->mac.type) {
       
   406 		default:
       
   407 			ret_val = e1000e_get_phy_id(hw);
       
   408 			if (ret_val)
       
   409 				return ret_val;
       
   410 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
       
   411 				break;
       
   412 			/* fall-through */
       
   413 		case e1000_pch2lan:
       
   414 		case e1000_pch_lpt:
       
   415 			/* In case the PHY needs to be in mdio slow mode,
       
   416 			 * set slow mode and try to get the PHY id again.
       
   417 			 */
       
   418 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
   419 			if (ret_val)
       
   420 				return ret_val;
       
   421 			ret_val = e1000e_get_phy_id(hw);
       
   422 			if (ret_val)
       
   423 				return ret_val;
       
   424 			break;
       
   425 		}
       
   426 	phy->type = e1000e_get_phy_type_from_id(phy->id);
       
   427 
       
   428 	switch (phy->type) {
       
   429 	case e1000_phy_82577:
       
   430 	case e1000_phy_82579:
       
   431 	case e1000_phy_i217:
       
   432 		phy->ops.check_polarity = e1000_check_polarity_82577;
       
   433 		phy->ops.force_speed_duplex =
       
   434 		    e1000_phy_force_speed_duplex_82577;
       
   435 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
       
   436 		phy->ops.get_info = e1000_get_phy_info_82577;
       
   437 		phy->ops.commit = e1000e_phy_sw_reset;
       
   438 		break;
       
   439 	case e1000_phy_82578:
       
   440 		phy->ops.check_polarity = e1000_check_polarity_m88;
       
   441 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
       
   442 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
       
   443 		phy->ops.get_info = e1000e_get_phy_info_m88;
       
   444 		break;
       
   445 	default:
       
   446 		ret_val = -E1000_ERR_PHY;
       
   447 		break;
       
   448 	}
       
   449 
       
   450 	return ret_val;
       
   451 }
       
   452 
       
   453 /**
       
   454  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
       
   455  *  @hw: pointer to the HW structure
       
   456  *
       
   457  *  Initialize family-specific PHY parameters and function pointers.
       
   458  **/
       
   459 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
       
   460 {
       
   461 	struct e1000_phy_info *phy = &hw->phy;
       
   462 	s32 ret_val;
       
   463 	u16 i = 0;
       
   464 
       
   465 	phy->addr = 1;
       
   466 	phy->reset_delay_us = 100;
       
   467 
       
   468 	phy->ops.power_up = e1000_power_up_phy_copper;
       
   469 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
       
   470 
       
   471 	/* We may need to do this twice - once for IGP and if that fails,
       
   472 	 * we'll set BM func pointers and try again
       
   473 	 */
       
   474 	ret_val = e1000e_determine_phy_address(hw);
       
   475 	if (ret_val) {
       
   476 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
       
   477 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
       
   478 		ret_val = e1000e_determine_phy_address(hw);
       
   479 		if (ret_val) {
       
   480 			e_dbg("Cannot determine PHY addr. Erroring out\n");
       
   481 			return ret_val;
       
   482 		}
       
   483 	}
       
   484 
       
   485 	phy->id = 0;
       
   486 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
       
   487 	       (i++ < 100)) {
       
   488 		usleep_range(1000, 2000);
       
   489 		ret_val = e1000e_get_phy_id(hw);
       
   490 		if (ret_val)
       
   491 			return ret_val;
       
   492 	}
       
   493 
       
   494 	/* Verify phy id */
       
   495 	switch (phy->id) {
       
   496 	case IGP03E1000_E_PHY_ID:
       
   497 		phy->type = e1000_phy_igp_3;
       
   498 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   499 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
       
   500 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
       
   501 		phy->ops.get_info = e1000e_get_phy_info_igp;
       
   502 		phy->ops.check_polarity = e1000_check_polarity_igp;
       
   503 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
       
   504 		break;
       
   505 	case IFE_E_PHY_ID:
       
   506 	case IFE_PLUS_E_PHY_ID:
       
   507 	case IFE_C_E_PHY_ID:
       
   508 		phy->type = e1000_phy_ife;
       
   509 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
       
   510 		phy->ops.get_info = e1000_get_phy_info_ife;
       
   511 		phy->ops.check_polarity = e1000_check_polarity_ife;
       
   512 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
       
   513 		break;
       
   514 	case BME1000_E_PHY_ID:
       
   515 		phy->type = e1000_phy_bm;
       
   516 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   517 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
       
   518 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
       
   519 		phy->ops.commit = e1000e_phy_sw_reset;
       
   520 		phy->ops.get_info = e1000e_get_phy_info_m88;
       
   521 		phy->ops.check_polarity = e1000_check_polarity_m88;
       
   522 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
       
   523 		break;
       
   524 	default:
       
   525 		return -E1000_ERR_PHY;
       
   526 		break;
       
   527 	}
       
   528 
       
   529 	return 0;
       
   530 }
       
   531 
       
   532 /**
       
   533  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
       
   534  *  @hw: pointer to the HW structure
       
   535  *
       
   536  *  Initialize family-specific NVM parameters and function
       
   537  *  pointers.
       
   538  **/
       
   539 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
       
   540 {
       
   541 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   542 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
   543 	u32 gfpreg, sector_base_addr, sector_end_addr;
       
   544 	u16 i;
       
   545 
       
   546 	/* Can't read flash registers if the register set isn't mapped. */
       
   547 	if (!hw->flash_address) {
       
   548 		e_dbg("ERROR: Flash registers not mapped\n");
       
   549 		return -E1000_ERR_CONFIG;
       
   550 	}
       
   551 
       
   552 	nvm->type = e1000_nvm_flash_sw;
       
   553 
       
   554 	gfpreg = er32flash(ICH_FLASH_GFPREG);
       
   555 
       
   556 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
       
   557 	 * Add 1 to sector_end_addr since this sector is included in
       
   558 	 * the overall size.
       
   559 	 */
       
   560 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
       
   561 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
       
   562 
       
   563 	/* flash_base_addr is byte-aligned */
       
   564 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
       
   565 
       
   566 	/* find total size of the NVM, then cut in half since the total
       
   567 	 * size represents two separate NVM banks.
       
   568 	 */
       
   569 	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
       
   570 				<< FLASH_SECTOR_ADDR_SHIFT);
       
   571 	nvm->flash_bank_size /= 2;
       
   572 	/* Adjust to word count */
       
   573 	nvm->flash_bank_size /= sizeof(u16);
       
   574 
       
   575 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
       
   576 
       
   577 	/* Clear shadow ram */
       
   578 	for (i = 0; i < nvm->word_size; i++) {
       
   579 		dev_spec->shadow_ram[i].modified = false;
       
   580 		dev_spec->shadow_ram[i].value = 0xFFFF;
       
   581 	}
       
   582 
       
   583 	return 0;
       
   584 }
       
   585 
       
   586 /**
       
   587  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
       
   588  *  @hw: pointer to the HW structure
       
   589  *
       
   590  *  Initialize family-specific MAC parameters and function
       
   591  *  pointers.
       
   592  **/
       
   593 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
       
   594 {
       
   595 	struct e1000_mac_info *mac = &hw->mac;
       
   596 
       
   597 	/* Set media type function pointer */
       
   598 	hw->phy.media_type = e1000_media_type_copper;
       
   599 
       
   600 	/* Set mta register count */
       
   601 	mac->mta_reg_count = 32;
       
   602 	/* Set rar entry count */
       
   603 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
       
   604 	if (mac->type == e1000_ich8lan)
       
   605 		mac->rar_entry_count--;
       
   606 	/* FWSM register */
       
   607 	mac->has_fwsm = true;
       
   608 	/* ARC subsystem not supported */
       
   609 	mac->arc_subsystem_valid = false;
       
   610 	/* Adaptive IFS supported */
       
   611 	mac->adaptive_ifs = true;
       
   612 
       
   613 	/* LED and other operations */
       
   614 	switch (mac->type) {
       
   615 	case e1000_ich8lan:
       
   616 	case e1000_ich9lan:
       
   617 	case e1000_ich10lan:
       
   618 		/* check management mode */
       
   619 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
       
   620 		/* ID LED init */
       
   621 		mac->ops.id_led_init = e1000e_id_led_init_generic;
       
   622 		/* blink LED */
       
   623 		mac->ops.blink_led = e1000e_blink_led_generic;
       
   624 		/* setup LED */
       
   625 		mac->ops.setup_led = e1000e_setup_led_generic;
       
   626 		/* cleanup LED */
       
   627 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
       
   628 		/* turn on/off LED */
       
   629 		mac->ops.led_on = e1000_led_on_ich8lan;
       
   630 		mac->ops.led_off = e1000_led_off_ich8lan;
       
   631 		break;
       
   632 	case e1000_pch2lan:
       
   633 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
       
   634 		mac->ops.rar_set = e1000_rar_set_pch2lan;
       
   635 		/* fall-through */
       
   636 	case e1000_pch_lpt:
       
   637 	case e1000_pchlan:
       
   638 		/* check management mode */
       
   639 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
       
   640 		/* ID LED init */
       
   641 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
       
   642 		/* setup LED */
       
   643 		mac->ops.setup_led = e1000_setup_led_pchlan;
       
   644 		/* cleanup LED */
       
   645 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
       
   646 		/* turn on/off LED */
       
   647 		mac->ops.led_on = e1000_led_on_pchlan;
       
   648 		mac->ops.led_off = e1000_led_off_pchlan;
       
   649 		break;
       
   650 	default:
       
   651 		break;
       
   652 	}
       
   653 
       
   654 	if (mac->type == e1000_pch_lpt) {
       
   655 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
       
   656 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
       
   657 		mac->ops.setup_physical_interface =
       
   658 		    e1000_setup_copper_link_pch_lpt;
       
   659 	}
       
   660 
       
   661 	/* Enable PCS Lock-loss workaround for ICH8 */
       
   662 	if (mac->type == e1000_ich8lan)
       
   663 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
       
   664 
       
   665 	return 0;
       
   666 }
       
   667 
       
   668 /**
       
   669  *  __e1000_access_emi_reg_locked - Read/write EMI register
       
   670  *  @hw: pointer to the HW structure
       
   671  *  @addr: EMI address to program
       
   672  *  @data: pointer to value to read/write from/to the EMI address
       
   673  *  @read: boolean flag to indicate read or write
       
   674  *
       
   675  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
       
   676  **/
       
   677 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
       
   678 					 u16 *data, bool read)
       
   679 {
       
   680 	s32 ret_val;
       
   681 
       
   682 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
       
   683 	if (ret_val)
       
   684 		return ret_val;
       
   685 
       
   686 	if (read)
       
   687 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
       
   688 	else
       
   689 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
       
   690 
       
   691 	return ret_val;
       
   692 }
       
   693 
       
   694 /**
       
   695  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
       
   696  *  @hw: pointer to the HW structure
       
   697  *  @addr: EMI address to program
       
   698  *  @data: value to be read from the EMI address
       
   699  *
       
   700  *  Assumes the SW/FW/HW Semaphore is already acquired.
       
   701  **/
       
   702 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
       
   703 {
       
   704 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
       
   705 }
       
   706 
       
   707 /**
       
   708  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
       
   709  *  @hw: pointer to the HW structure
       
   710  *  @addr: EMI address to program
       
   711  *  @data: value to be written to the EMI address
       
   712  *
       
   713  *  Assumes the SW/FW/HW Semaphore is already acquired.
       
   714  **/
       
   715 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
       
   716 {
       
   717 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
       
   718 }
       
   719 
       
   720 /**
       
   721  *  e1000_set_eee_pchlan - Enable/disable EEE support
       
   722  *  @hw: pointer to the HW structure
       
   723  *
       
   724  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
       
   725  *  the link and the EEE capabilities of the link partner.  The LPI Control
       
   726  *  register bits will remain set only if/when link is up.
       
   727  **/
       
   728 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
       
   729 {
       
   730 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
   731 	s32 ret_val;
       
   732 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
       
   733 
       
   734 	switch (hw->phy.type) {
       
   735 	case e1000_phy_82579:
       
   736 		lpa = I82579_EEE_LP_ABILITY;
       
   737 		pcs_status = I82579_EEE_PCS_STATUS;
       
   738 		adv_addr = I82579_EEE_ADVERTISEMENT;
       
   739 		break;
       
   740 	case e1000_phy_i217:
       
   741 		lpa = I217_EEE_LP_ABILITY;
       
   742 		pcs_status = I217_EEE_PCS_STATUS;
       
   743 		adv_addr = I217_EEE_ADVERTISEMENT;
       
   744 		break;
       
   745 	default:
       
   746 		return 0;
       
   747 	}
       
   748 
       
   749 	ret_val = hw->phy.ops.acquire(hw);
       
   750 	if (ret_val)
       
   751 		return ret_val;
       
   752 
       
   753 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
       
   754 	if (ret_val)
       
   755 		goto release;
       
   756 
       
   757 	/* Clear bits that enable EEE in various speeds */
       
   758 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
       
   759 
       
   760 	/* Enable EEE if not disabled by user */
       
   761 	if (!dev_spec->eee_disable) {
       
   762 		/* Save off link partner's EEE ability */
       
   763 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
       
   764 						    &dev_spec->eee_lp_ability);
       
   765 		if (ret_val)
       
   766 			goto release;
       
   767 
       
   768 		/* Read EEE advertisement */
       
   769 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
       
   770 		if (ret_val)
       
   771 			goto release;
       
   772 
       
   773 		/* Enable EEE only for speeds in which the link partner is
       
   774 		 * EEE capable and for which we advertise EEE.
       
   775 		 */
       
   776 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
       
   777 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
       
   778 
       
   779 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
       
   780 			e1e_rphy_locked(hw, MII_LPA, &data);
       
   781 			if (data & LPA_100FULL)
       
   782 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
       
   783 			else
       
   784 				/* EEE is not supported in 100Half, so ignore
       
   785 				 * partner's EEE in 100 ability if full-duplex
       
   786 				 * is not advertised.
       
   787 				 */
       
   788 				dev_spec->eee_lp_ability &=
       
   789 				    ~I82579_EEE_100_SUPPORTED;
       
   790 		}
       
   791 	}
       
   792 
       
   793 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
       
   794 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
       
   795 	if (ret_val)
       
   796 		goto release;
       
   797 
       
   798 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
       
   799 release:
       
   800 	hw->phy.ops.release(hw);
       
   801 
       
   802 	return ret_val;
       
   803 }
       
   804 
       
   805 /**
       
   806  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
       
   807  *  @hw:   pointer to the HW structure
       
   808  *  @link: link up bool flag
       
   809  *
       
   810  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
       
   811  *  preventing further DMA write requests.  Workaround the issue by disabling
       
   812  *  the de-assertion of the clock request when in 1Gpbs mode.
       
   813  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
       
   814  *  speeds in order to avoid Tx hangs.
       
   815  **/
       
   816 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
       
   817 {
       
   818 	u32 fextnvm6 = er32(FEXTNVM6);
       
   819 	u32 status = er32(STATUS);
       
   820 	s32 ret_val = 0;
       
   821 	u16 reg;
       
   822 
       
   823 	if (link && (status & E1000_STATUS_SPEED_1000)) {
       
   824 		ret_val = hw->phy.ops.acquire(hw);
       
   825 		if (ret_val)
       
   826 			return ret_val;
       
   827 
       
   828 		ret_val =
       
   829 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
       
   830 						&reg);
       
   831 		if (ret_val)
       
   832 			goto release;
       
   833 
       
   834 		ret_val =
       
   835 		    e1000e_write_kmrn_reg_locked(hw,
       
   836 						 E1000_KMRNCTRLSTA_K1_CONFIG,
       
   837 						 reg &
       
   838 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
       
   839 		if (ret_val)
       
   840 			goto release;
       
   841 
       
   842 		usleep_range(10, 20);
       
   843 
       
   844 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
       
   845 
       
   846 		ret_val =
       
   847 		    e1000e_write_kmrn_reg_locked(hw,
       
   848 						 E1000_KMRNCTRLSTA_K1_CONFIG,
       
   849 						 reg);
       
   850 release:
       
   851 		hw->phy.ops.release(hw);
       
   852 	} else {
       
   853 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
       
   854 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
       
   855 
       
   856 		if (!link || ((status & E1000_STATUS_SPEED_100) &&
       
   857 			      (status & E1000_STATUS_FD)))
       
   858 			goto update_fextnvm6;
       
   859 
       
   860 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
       
   861 		if (ret_val)
       
   862 			return ret_val;
       
   863 
       
   864 		/* Clear link status transmit timeout */
       
   865 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
       
   866 
       
   867 		if (status & E1000_STATUS_SPEED_100) {
       
   868 			/* Set inband Tx timeout to 5x10us for 100Half */
       
   869 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
       
   870 
       
   871 			/* Do not extend the K1 entry latency for 100Half */
       
   872 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
       
   873 		} else {
       
   874 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
       
   875 			reg |= 50 <<
       
   876 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
       
   877 
       
   878 			/* Extend the K1 entry latency for 10 Mbps */
       
   879 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
       
   880 		}
       
   881 
       
   882 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
       
   883 		if (ret_val)
       
   884 			return ret_val;
       
   885 
       
   886 update_fextnvm6:
       
   887 		ew32(FEXTNVM6, fextnvm6);
       
   888 	}
       
   889 
       
   890 	return ret_val;
       
   891 }
       
   892 
       
   893 /**
       
   894  *  e1000_platform_pm_pch_lpt - Set platform power management values
       
   895  *  @hw: pointer to the HW structure
       
   896  *  @link: bool indicating link status
       
   897  *
       
   898  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
       
   899  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
       
   900  *  when link is up (which must not exceed the maximum latency supported
       
   901  *  by the platform), otherwise specify there is no LTR requirement.
       
   902  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
       
   903  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
       
   904  *  Capability register set, on this device LTR is set by writing the
       
   905  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
       
   906  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
       
   907  *  message to the PMC.
       
   908  **/
       
   909 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
       
   910 {
       
   911 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
       
   912 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
       
   913 	u16 lat_enc = 0;	/* latency encoded */
       
   914 
       
   915 	if (link) {
       
   916 		u16 speed, duplex, scale = 0;
       
   917 		u16 max_snoop, max_nosnoop;
       
   918 		u16 max_ltr_enc;	/* max LTR latency encoded */
       
   919 		s64 lat_ns;	/* latency (ns) */
       
   920 		s64 value;
       
   921 		u32 rxa;
       
   922 
       
   923 		if (!hw->adapter->max_frame_size) {
       
   924 			e_dbg("max_frame_size not set.\n");
       
   925 			return -E1000_ERR_CONFIG;
       
   926 		}
       
   927 
       
   928 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
       
   929 		if (!speed) {
       
   930 			e_dbg("Speed not set.\n");
       
   931 			return -E1000_ERR_CONFIG;
       
   932 		}
       
   933 
       
   934 		/* Rx Packet Buffer Allocation size (KB) */
       
   935 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
       
   936 
       
   937 		/* Determine the maximum latency tolerated by the device.
       
   938 		 *
       
   939 		 * Per the PCIe spec, the tolerated latencies are encoded as
       
   940 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
       
   941 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
       
   942 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
       
   943 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
       
   944 		 */
       
   945 		lat_ns = ((s64)rxa * 1024 -
       
   946 			  (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
       
   947 		if (lat_ns < 0)
       
   948 			lat_ns = 0;
       
   949 		else
       
   950 			do_div(lat_ns, speed);
       
   951 
       
   952 		value = lat_ns;
       
   953 		while (value > PCI_LTR_VALUE_MASK) {
       
   954 			scale++;
       
   955 			value = DIV_ROUND_UP(value, (1 << 5));
       
   956 		}
       
   957 		if (scale > E1000_LTRV_SCALE_MAX) {
       
   958 			e_dbg("Invalid LTR latency scale %d\n", scale);
       
   959 			return -E1000_ERR_CONFIG;
       
   960 		}
       
   961 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
       
   962 
       
   963 		/* Determine the maximum latency tolerated by the platform */
       
   964 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
       
   965 				     &max_snoop);
       
   966 		pci_read_config_word(hw->adapter->pdev,
       
   967 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
       
   968 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
       
   969 
       
   970 		if (lat_enc > max_ltr_enc)
       
   971 			lat_enc = max_ltr_enc;
       
   972 	}
       
   973 
       
   974 	/* Set Snoop and No-Snoop latencies the same */
       
   975 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
       
   976 	ew32(LTRV, reg);
       
   977 
       
   978 	return 0;
       
   979 }
       
   980 
       
   981 /**
       
   982  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
       
   983  *  @hw: pointer to the HW structure
       
   984  *
       
   985  *  Checks to see of the link status of the hardware has changed.  If a
       
   986  *  change in link status has been detected, then we read the PHY registers
       
   987  *  to get the current speed/duplex if link exists.
       
   988  **/
       
   989 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
       
   990 {
       
   991 	struct e1000_mac_info *mac = &hw->mac;
       
   992 	s32 ret_val;
       
   993 	bool link;
       
   994 	u16 phy_reg;
       
   995 
       
   996 	/* We only want to go out to the PHY registers to see if Auto-Neg
       
   997 	 * has completed and/or if our link status has changed.  The
       
   998 	 * get_link_status flag is set upon receiving a Link Status
       
   999 	 * Change or Rx Sequence Error interrupt.
       
  1000 	 */
       
  1001 	if (!mac->get_link_status)
       
  1002 		return 0;
       
  1003 
       
  1004 	/* First we want to see if the MII Status Register reports
       
  1005 	 * link.  If so, then we want to get the current speed/duplex
       
  1006 	 * of the PHY.
       
  1007 	 */
       
  1008 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  1009 	if (ret_val)
       
  1010 		return ret_val;
       
  1011 
       
  1012 	if (hw->mac.type == e1000_pchlan) {
       
  1013 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
       
  1014 		if (ret_val)
       
  1015 			return ret_val;
       
  1016 	}
       
  1017 
       
  1018 	/* When connected at 10Mbps half-duplex, 82579 parts are excessively
       
  1019 	 * aggressive resulting in many collisions. To avoid this, increase
       
  1020 	 * the IPG and reduce Rx latency in the PHY.
       
  1021 	 */
       
  1022 	if ((hw->mac.type == e1000_pch2lan) && link) {
       
  1023 		u32 reg;
       
  1024 		reg = er32(STATUS);
       
  1025 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
       
  1026 			reg = er32(TIPG);
       
  1027 			reg &= ~E1000_TIPG_IPGT_MASK;
       
  1028 			reg |= 0xFF;
       
  1029 			ew32(TIPG, reg);
       
  1030 
       
  1031 			/* Reduce Rx latency in analog PHY */
       
  1032 			ret_val = hw->phy.ops.acquire(hw);
       
  1033 			if (ret_val)
       
  1034 				return ret_val;
       
  1035 
       
  1036 			ret_val =
       
  1037 			    e1000_write_emi_reg_locked(hw, I82579_RX_CONFIG, 0);
       
  1038 
       
  1039 			hw->phy.ops.release(hw);
       
  1040 
       
  1041 			if (ret_val)
       
  1042 				return ret_val;
       
  1043 		}
       
  1044 	}
       
  1045 
       
  1046 	/* Work-around I218 hang issue */
       
  1047 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
       
  1048 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
       
  1049 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
       
  1050 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
       
  1051 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
       
  1052 		if (ret_val)
       
  1053 			return ret_val;
       
  1054 	}
       
  1055 
       
  1056 	if (hw->mac.type == e1000_pch_lpt) {
       
  1057 		/* Set platform power management values for
       
  1058 		 * Latency Tolerance Reporting (LTR)
       
  1059 		 */
       
  1060 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
       
  1061 		if (ret_val)
       
  1062 			return ret_val;
       
  1063 	}
       
  1064 
       
  1065 	/* Clear link partner's EEE ability */
       
  1066 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
       
  1067 
       
  1068 	if (!link)
       
  1069 		return 0;	/* No link detected */
       
  1070 
       
  1071 	mac->get_link_status = false;
       
  1072 
       
  1073 	switch (hw->mac.type) {
       
  1074 	case e1000_pch2lan:
       
  1075 		ret_val = e1000_k1_workaround_lv(hw);
       
  1076 		if (ret_val)
       
  1077 			return ret_val;
       
  1078 		/* fall-thru */
       
  1079 	case e1000_pchlan:
       
  1080 		if (hw->phy.type == e1000_phy_82578) {
       
  1081 			ret_val = e1000_link_stall_workaround_hv(hw);
       
  1082 			if (ret_val)
       
  1083 				return ret_val;
       
  1084 		}
       
  1085 
       
  1086 		/* Workaround for PCHx parts in half-duplex:
       
  1087 		 * Set the number of preambles removed from the packet
       
  1088 		 * when it is passed from the PHY to the MAC to prevent
       
  1089 		 * the MAC from misinterpreting the packet type.
       
  1090 		 */
       
  1091 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
       
  1092 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
       
  1093 
       
  1094 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
       
  1095 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
       
  1096 
       
  1097 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
       
  1098 		break;
       
  1099 	default:
       
  1100 		break;
       
  1101 	}
       
  1102 
       
  1103 	/* Check if there was DownShift, must be checked
       
  1104 	 * immediately after link-up
       
  1105 	 */
       
  1106 	e1000e_check_downshift(hw);
       
  1107 
       
  1108 	/* Enable/Disable EEE after link up */
       
  1109 	ret_val = e1000_set_eee_pchlan(hw);
       
  1110 	if (ret_val)
       
  1111 		return ret_val;
       
  1112 
       
  1113 	/* If we are forcing speed/duplex, then we simply return since
       
  1114 	 * we have already determined whether we have link or not.
       
  1115 	 */
       
  1116 	if (!mac->autoneg)
       
  1117 		return -E1000_ERR_CONFIG;
       
  1118 
       
  1119 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
       
  1120 	 * of MAC speed/duplex configuration.  So we only need to
       
  1121 	 * configure Collision Distance in the MAC.
       
  1122 	 */
       
  1123 	mac->ops.config_collision_dist(hw);
       
  1124 
       
  1125 	/* Configure Flow Control now that Auto-Neg has completed.
       
  1126 	 * First, we need to restore the desired flow control
       
  1127 	 * settings because we may have had to re-autoneg with a
       
  1128 	 * different link partner.
       
  1129 	 */
       
  1130 	ret_val = e1000e_config_fc_after_link_up(hw);
       
  1131 	if (ret_val)
       
  1132 		e_dbg("Error configuring flow control\n");
       
  1133 
       
  1134 	return ret_val;
       
  1135 }
       
  1136 
       
  1137 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
       
  1138 {
       
  1139 	struct e1000_hw *hw = &adapter->hw;
       
  1140 	s32 rc;
       
  1141 
       
  1142 	rc = e1000_init_mac_params_ich8lan(hw);
       
  1143 	if (rc)
       
  1144 		return rc;
       
  1145 
       
  1146 	rc = e1000_init_nvm_params_ich8lan(hw);
       
  1147 	if (rc)
       
  1148 		return rc;
       
  1149 
       
  1150 	switch (hw->mac.type) {
       
  1151 	case e1000_ich8lan:
       
  1152 	case e1000_ich9lan:
       
  1153 	case e1000_ich10lan:
       
  1154 		rc = e1000_init_phy_params_ich8lan(hw);
       
  1155 		break;
       
  1156 	case e1000_pchlan:
       
  1157 	case e1000_pch2lan:
       
  1158 	case e1000_pch_lpt:
       
  1159 		rc = e1000_init_phy_params_pchlan(hw);
       
  1160 		break;
       
  1161 	default:
       
  1162 		break;
       
  1163 	}
       
  1164 	if (rc)
       
  1165 		return rc;
       
  1166 
       
  1167 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
       
  1168 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
       
  1169 	 */
       
  1170 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
       
  1171 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
       
  1172 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
       
  1173 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
       
  1174 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
       
  1175 
       
  1176 		hw->mac.ops.blink_led = NULL;
       
  1177 	}
       
  1178 
       
  1179 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
       
  1180 	    (adapter->hw.phy.type != e1000_phy_ife))
       
  1181 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
       
  1182 
       
  1183 	/* Enable workaround for 82579 w/ ME enabled */
       
  1184 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
       
  1185 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
       
  1186 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
       
  1187 
       
  1188 	return 0;
       
  1189 }
       
  1190 
       
  1191 static DEFINE_MUTEX(nvm_mutex);
       
  1192 
       
  1193 /**
       
  1194  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
       
  1195  *  @hw: pointer to the HW structure
       
  1196  *
       
  1197  *  Acquires the mutex for performing NVM operations.
       
  1198  **/
       
  1199 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
       
  1200 {
       
  1201 	mutex_lock(&nvm_mutex);
       
  1202 
       
  1203 	return 0;
       
  1204 }
       
  1205 
       
  1206 /**
       
  1207  *  e1000_release_nvm_ich8lan - Release NVM mutex
       
  1208  *  @hw: pointer to the HW structure
       
  1209  *
       
  1210  *  Releases the mutex used while performing NVM operations.
       
  1211  **/
       
  1212 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
       
  1213 {
       
  1214 	mutex_unlock(&nvm_mutex);
       
  1215 }
       
  1216 
       
  1217 /**
       
  1218  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
       
  1219  *  @hw: pointer to the HW structure
       
  1220  *
       
  1221  *  Acquires the software control flag for performing PHY and select
       
  1222  *  MAC CSR accesses.
       
  1223  **/
       
  1224 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
       
  1225 {
       
  1226 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
       
  1227 	s32 ret_val = 0;
       
  1228 
       
  1229 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
       
  1230 			     &hw->adapter->state)) {
       
  1231 		e_dbg("contention for Phy access\n");
       
  1232 		return -E1000_ERR_PHY;
       
  1233 	}
       
  1234 
       
  1235 	while (timeout) {
       
  1236 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
  1237 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
       
  1238 			break;
       
  1239 
       
  1240 		mdelay(1);
       
  1241 		timeout--;
       
  1242 	}
       
  1243 
       
  1244 	if (!timeout) {
       
  1245 		e_dbg("SW has already locked the resource.\n");
       
  1246 		ret_val = -E1000_ERR_CONFIG;
       
  1247 		goto out;
       
  1248 	}
       
  1249 
       
  1250 	timeout = SW_FLAG_TIMEOUT;
       
  1251 
       
  1252 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
       
  1253 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
  1254 
       
  1255 	while (timeout) {
       
  1256 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
  1257 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
       
  1258 			break;
       
  1259 
       
  1260 		mdelay(1);
       
  1261 		timeout--;
       
  1262 	}
       
  1263 
       
  1264 	if (!timeout) {
       
  1265 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
       
  1266 		      er32(FWSM), extcnf_ctrl);
       
  1267 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
       
  1268 		ew32(EXTCNF_CTRL, extcnf_ctrl);
       
  1269 		ret_val = -E1000_ERR_CONFIG;
       
  1270 		goto out;
       
  1271 	}
       
  1272 
       
  1273 out:
       
  1274 	if (ret_val)
       
  1275 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
       
  1276 
       
  1277 	return ret_val;
       
  1278 }
       
  1279 
       
  1280 /**
       
  1281  *  e1000_release_swflag_ich8lan - Release software control flag
       
  1282  *  @hw: pointer to the HW structure
       
  1283  *
       
  1284  *  Releases the software control flag for performing PHY and select
       
  1285  *  MAC CSR accesses.
       
  1286  **/
       
  1287 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
       
  1288 {
       
  1289 	u32 extcnf_ctrl;
       
  1290 
       
  1291 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
  1292 
       
  1293 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
       
  1294 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
       
  1295 		ew32(EXTCNF_CTRL, extcnf_ctrl);
       
  1296 	} else {
       
  1297 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
       
  1298 	}
       
  1299 
       
  1300 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
       
  1301 }
       
  1302 
       
  1303 /**
       
  1304  *  e1000_check_mng_mode_ich8lan - Checks management mode
       
  1305  *  @hw: pointer to the HW structure
       
  1306  *
       
  1307  *  This checks if the adapter has any manageability enabled.
       
  1308  *  This is a function pointer entry point only called by read/write
       
  1309  *  routines for the PHY and NVM parts.
       
  1310  **/
       
  1311 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
       
  1312 {
       
  1313 	u32 fwsm;
       
  1314 
       
  1315 	fwsm = er32(FWSM);
       
  1316 	return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
       
  1317 		((fwsm & E1000_FWSM_MODE_MASK) ==
       
  1318 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
       
  1319 }
       
  1320 
       
  1321 /**
       
  1322  *  e1000_check_mng_mode_pchlan - Checks management mode
       
  1323  *  @hw: pointer to the HW structure
       
  1324  *
       
  1325  *  This checks if the adapter has iAMT enabled.
       
  1326  *  This is a function pointer entry point only called by read/write
       
  1327  *  routines for the PHY and NVM parts.
       
  1328  **/
       
  1329 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
       
  1330 {
       
  1331 	u32 fwsm;
       
  1332 
       
  1333 	fwsm = er32(FWSM);
       
  1334 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
       
  1335 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
       
  1336 }
       
  1337 
       
  1338 /**
       
  1339  *  e1000_rar_set_pch2lan - Set receive address register
       
  1340  *  @hw: pointer to the HW structure
       
  1341  *  @addr: pointer to the receive address
       
  1342  *  @index: receive address array register
       
  1343  *
       
  1344  *  Sets the receive address array register at index to the address passed
       
  1345  *  in by addr.  For 82579, RAR[0] is the base address register that is to
       
  1346  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
       
  1347  *  Use SHRA[0-3] in place of those reserved for ME.
       
  1348  **/
       
  1349 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
       
  1350 {
       
  1351 	u32 rar_low, rar_high;
       
  1352 
       
  1353 	/* HW expects these in little endian so we reverse the byte order
       
  1354 	 * from network order (big endian) to little endian
       
  1355 	 */
       
  1356 	rar_low = ((u32)addr[0] |
       
  1357 		   ((u32)addr[1] << 8) |
       
  1358 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
       
  1359 
       
  1360 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
       
  1361 
       
  1362 	/* If MAC address zero, no need to set the AV bit */
       
  1363 	if (rar_low || rar_high)
       
  1364 		rar_high |= E1000_RAH_AV;
       
  1365 
       
  1366 	if (index == 0) {
       
  1367 		ew32(RAL(index), rar_low);
       
  1368 		e1e_flush();
       
  1369 		ew32(RAH(index), rar_high);
       
  1370 		e1e_flush();
       
  1371 		return;
       
  1372 	}
       
  1373 
       
  1374 	/* RAR[1-6] are owned by manageability.  Skip those and program the
       
  1375 	 * next address into the SHRA register array.
       
  1376 	 */
       
  1377 	if (index < (u32)(hw->mac.rar_entry_count - 6)) {
       
  1378 		s32 ret_val;
       
  1379 
       
  1380 		ret_val = e1000_acquire_swflag_ich8lan(hw);
       
  1381 		if (ret_val)
       
  1382 			goto out;
       
  1383 
       
  1384 		ew32(SHRAL(index - 1), rar_low);
       
  1385 		e1e_flush();
       
  1386 		ew32(SHRAH(index - 1), rar_high);
       
  1387 		e1e_flush();
       
  1388 
       
  1389 		e1000_release_swflag_ich8lan(hw);
       
  1390 
       
  1391 		/* verify the register updates */
       
  1392 		if ((er32(SHRAL(index - 1)) == rar_low) &&
       
  1393 		    (er32(SHRAH(index - 1)) == rar_high))
       
  1394 			return;
       
  1395 
       
  1396 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
       
  1397 		      (index - 1), er32(FWSM));
       
  1398 	}
       
  1399 
       
  1400 out:
       
  1401 	e_dbg("Failed to write receive address at index %d\n", index);
       
  1402 }
       
  1403 
       
  1404 /**
       
  1405  *  e1000_rar_set_pch_lpt - Set receive address registers
       
  1406  *  @hw: pointer to the HW structure
       
  1407  *  @addr: pointer to the receive address
       
  1408  *  @index: receive address array register
       
  1409  *
       
  1410  *  Sets the receive address register array at index to the address passed
       
  1411  *  in by addr. For LPT, RAR[0] is the base address register that is to
       
  1412  *  contain the MAC address. SHRA[0-10] are the shared receive address
       
  1413  *  registers that are shared between the Host and manageability engine (ME).
       
  1414  **/
       
  1415 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
       
  1416 {
       
  1417 	u32 rar_low, rar_high;
       
  1418 	u32 wlock_mac;
       
  1419 
       
  1420 	/* HW expects these in little endian so we reverse the byte order
       
  1421 	 * from network order (big endian) to little endian
       
  1422 	 */
       
  1423 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
       
  1424 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
       
  1425 
       
  1426 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
       
  1427 
       
  1428 	/* If MAC address zero, no need to set the AV bit */
       
  1429 	if (rar_low || rar_high)
       
  1430 		rar_high |= E1000_RAH_AV;
       
  1431 
       
  1432 	if (index == 0) {
       
  1433 		ew32(RAL(index), rar_low);
       
  1434 		e1e_flush();
       
  1435 		ew32(RAH(index), rar_high);
       
  1436 		e1e_flush();
       
  1437 		return;
       
  1438 	}
       
  1439 
       
  1440 	/* The manageability engine (ME) can lock certain SHRAR registers that
       
  1441 	 * it is using - those registers are unavailable for use.
       
  1442 	 */
       
  1443 	if (index < hw->mac.rar_entry_count) {
       
  1444 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
       
  1445 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
       
  1446 
       
  1447 		/* Check if all SHRAR registers are locked */
       
  1448 		if (wlock_mac == 1)
       
  1449 			goto out;
       
  1450 
       
  1451 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
       
  1452 			s32 ret_val;
       
  1453 
       
  1454 			ret_val = e1000_acquire_swflag_ich8lan(hw);
       
  1455 
       
  1456 			if (ret_val)
       
  1457 				goto out;
       
  1458 
       
  1459 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
       
  1460 			e1e_flush();
       
  1461 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
       
  1462 			e1e_flush();
       
  1463 
       
  1464 			e1000_release_swflag_ich8lan(hw);
       
  1465 
       
  1466 			/* verify the register updates */
       
  1467 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
       
  1468 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
       
  1469 				return;
       
  1470 		}
       
  1471 	}
       
  1472 
       
  1473 out:
       
  1474 	e_dbg("Failed to write receive address at index %d\n", index);
       
  1475 }
       
  1476 
       
  1477 /**
       
  1478  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
       
  1479  *  @hw: pointer to the HW structure
       
  1480  *
       
  1481  *  Checks if firmware is blocking the reset of the PHY.
       
  1482  *  This is a function pointer entry point only called by
       
  1483  *  reset routines.
       
  1484  **/
       
  1485 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
       
  1486 {
       
  1487 	u32 fwsm;
       
  1488 
       
  1489 	fwsm = er32(FWSM);
       
  1490 
       
  1491 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
       
  1492 }
       
  1493 
       
  1494 /**
       
  1495  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
       
  1496  *  @hw: pointer to the HW structure
       
  1497  *
       
  1498  *  Assumes semaphore already acquired.
       
  1499  *
       
  1500  **/
       
  1501 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
       
  1502 {
       
  1503 	u16 phy_data;
       
  1504 	u32 strap = er32(STRAP);
       
  1505 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
       
  1506 	    E1000_STRAP_SMT_FREQ_SHIFT;
       
  1507 	s32 ret_val;
       
  1508 
       
  1509 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
       
  1510 
       
  1511 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
       
  1512 	if (ret_val)
       
  1513 		return ret_val;
       
  1514 
       
  1515 	phy_data &= ~HV_SMB_ADDR_MASK;
       
  1516 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
       
  1517 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
       
  1518 
       
  1519 	if (hw->phy.type == e1000_phy_i217) {
       
  1520 		/* Restore SMBus frequency */
       
  1521 		if (freq--) {
       
  1522 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
       
  1523 			phy_data |= (freq & (1 << 0)) <<
       
  1524 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
       
  1525 			phy_data |= (freq & (1 << 1)) <<
       
  1526 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
       
  1527 		} else {
       
  1528 			e_dbg("Unsupported SMB frequency in PHY\n");
       
  1529 		}
       
  1530 	}
       
  1531 
       
  1532 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
       
  1533 }
       
  1534 
       
  1535 /**
       
  1536  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
       
  1537  *  @hw:   pointer to the HW structure
       
  1538  *
       
  1539  *  SW should configure the LCD from the NVM extended configuration region
       
  1540  *  as a workaround for certain parts.
       
  1541  **/
       
  1542 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
       
  1543 {
       
  1544 	struct e1000_phy_info *phy = &hw->phy;
       
  1545 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
       
  1546 	s32 ret_val = 0;
       
  1547 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
       
  1548 
       
  1549 	/* Initialize the PHY from the NVM on ICH platforms.  This
       
  1550 	 * is needed due to an issue where the NVM configuration is
       
  1551 	 * not properly autoloaded after power transitions.
       
  1552 	 * Therefore, after each PHY reset, we will load the
       
  1553 	 * configuration data out of the NVM manually.
       
  1554 	 */
       
  1555 	switch (hw->mac.type) {
       
  1556 	case e1000_ich8lan:
       
  1557 		if (phy->type != e1000_phy_igp_3)
       
  1558 			return ret_val;
       
  1559 
       
  1560 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
       
  1561 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
       
  1562 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
       
  1563 			break;
       
  1564 		}
       
  1565 		/* Fall-thru */
       
  1566 	case e1000_pchlan:
       
  1567 	case e1000_pch2lan:
       
  1568 	case e1000_pch_lpt:
       
  1569 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
       
  1570 		break;
       
  1571 	default:
       
  1572 		return ret_val;
       
  1573 	}
       
  1574 
       
  1575 	ret_val = hw->phy.ops.acquire(hw);
       
  1576 	if (ret_val)
       
  1577 		return ret_val;
       
  1578 
       
  1579 	data = er32(FEXTNVM);
       
  1580 	if (!(data & sw_cfg_mask))
       
  1581 		goto release;
       
  1582 
       
  1583 	/* Make sure HW does not configure LCD from PHY
       
  1584 	 * extended configuration before SW configuration
       
  1585 	 */
       
  1586 	data = er32(EXTCNF_CTRL);
       
  1587 	if ((hw->mac.type < e1000_pch2lan) &&
       
  1588 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
       
  1589 		goto release;
       
  1590 
       
  1591 	cnf_size = er32(EXTCNF_SIZE);
       
  1592 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
       
  1593 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
       
  1594 	if (!cnf_size)
       
  1595 		goto release;
       
  1596 
       
  1597 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
       
  1598 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
       
  1599 
       
  1600 	if (((hw->mac.type == e1000_pchlan) &&
       
  1601 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
       
  1602 	    (hw->mac.type > e1000_pchlan)) {
       
  1603 		/* HW configures the SMBus address and LEDs when the
       
  1604 		 * OEM and LCD Write Enable bits are set in the NVM.
       
  1605 		 * When both NVM bits are cleared, SW will configure
       
  1606 		 * them instead.
       
  1607 		 */
       
  1608 		ret_val = e1000_write_smbus_addr(hw);
       
  1609 		if (ret_val)
       
  1610 			goto release;
       
  1611 
       
  1612 		data = er32(LEDCTL);
       
  1613 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
       
  1614 							(u16)data);
       
  1615 		if (ret_val)
       
  1616 			goto release;
       
  1617 	}
       
  1618 
       
  1619 	/* Configure LCD from extended configuration region. */
       
  1620 
       
  1621 	/* cnf_base_addr is in DWORD */
       
  1622 	word_addr = (u16)(cnf_base_addr << 1);
       
  1623 
       
  1624 	for (i = 0; i < cnf_size; i++) {
       
  1625 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
       
  1626 		if (ret_val)
       
  1627 			goto release;
       
  1628 
       
  1629 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
       
  1630 					 1, &reg_addr);
       
  1631 		if (ret_val)
       
  1632 			goto release;
       
  1633 
       
  1634 		/* Save off the PHY page for future writes. */
       
  1635 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
       
  1636 			phy_page = reg_data;
       
  1637 			continue;
       
  1638 		}
       
  1639 
       
  1640 		reg_addr &= PHY_REG_MASK;
       
  1641 		reg_addr |= phy_page;
       
  1642 
       
  1643 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
       
  1644 		if (ret_val)
       
  1645 			goto release;
       
  1646 	}
       
  1647 
       
  1648 release:
       
  1649 	hw->phy.ops.release(hw);
       
  1650 	return ret_val;
       
  1651 }
       
  1652 
       
  1653 /**
       
  1654  *  e1000_k1_gig_workaround_hv - K1 Si workaround
       
  1655  *  @hw:   pointer to the HW structure
       
  1656  *  @link: link up bool flag
       
  1657  *
       
  1658  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
       
  1659  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
       
  1660  *  If link is down, the function will restore the default K1 setting located
       
  1661  *  in the NVM.
       
  1662  **/
       
  1663 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
       
  1664 {
       
  1665 	s32 ret_val = 0;
       
  1666 	u16 status_reg = 0;
       
  1667 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
       
  1668 
       
  1669 	if (hw->mac.type != e1000_pchlan)
       
  1670 		return 0;
       
  1671 
       
  1672 	/* Wrap the whole flow with the sw flag */
       
  1673 	ret_val = hw->phy.ops.acquire(hw);
       
  1674 	if (ret_val)
       
  1675 		return ret_val;
       
  1676 
       
  1677 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
       
  1678 	if (link) {
       
  1679 		if (hw->phy.type == e1000_phy_82578) {
       
  1680 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
       
  1681 						  &status_reg);
       
  1682 			if (ret_val)
       
  1683 				goto release;
       
  1684 
       
  1685 			status_reg &= (BM_CS_STATUS_LINK_UP |
       
  1686 				       BM_CS_STATUS_RESOLVED |
       
  1687 				       BM_CS_STATUS_SPEED_MASK);
       
  1688 
       
  1689 			if (status_reg == (BM_CS_STATUS_LINK_UP |
       
  1690 					   BM_CS_STATUS_RESOLVED |
       
  1691 					   BM_CS_STATUS_SPEED_1000))
       
  1692 				k1_enable = false;
       
  1693 		}
       
  1694 
       
  1695 		if (hw->phy.type == e1000_phy_82577) {
       
  1696 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
       
  1697 			if (ret_val)
       
  1698 				goto release;
       
  1699 
       
  1700 			status_reg &= (HV_M_STATUS_LINK_UP |
       
  1701 				       HV_M_STATUS_AUTONEG_COMPLETE |
       
  1702 				       HV_M_STATUS_SPEED_MASK);
       
  1703 
       
  1704 			if (status_reg == (HV_M_STATUS_LINK_UP |
       
  1705 					   HV_M_STATUS_AUTONEG_COMPLETE |
       
  1706 					   HV_M_STATUS_SPEED_1000))
       
  1707 				k1_enable = false;
       
  1708 		}
       
  1709 
       
  1710 		/* Link stall fix for link up */
       
  1711 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
       
  1712 		if (ret_val)
       
  1713 			goto release;
       
  1714 
       
  1715 	} else {
       
  1716 		/* Link stall fix for link down */
       
  1717 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
       
  1718 		if (ret_val)
       
  1719 			goto release;
       
  1720 	}
       
  1721 
       
  1722 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
       
  1723 
       
  1724 release:
       
  1725 	hw->phy.ops.release(hw);
       
  1726 
       
  1727 	return ret_val;
       
  1728 }
       
  1729 
       
  1730 /**
       
  1731  *  e1000_configure_k1_ich8lan - Configure K1 power state
       
  1732  *  @hw: pointer to the HW structure
       
  1733  *  @enable: K1 state to configure
       
  1734  *
       
  1735  *  Configure the K1 power state based on the provided parameter.
       
  1736  *  Assumes semaphore already acquired.
       
  1737  *
       
  1738  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1739  **/
       
  1740 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
       
  1741 {
       
  1742 	s32 ret_val;
       
  1743 	u32 ctrl_reg = 0;
       
  1744 	u32 ctrl_ext = 0;
       
  1745 	u32 reg = 0;
       
  1746 	u16 kmrn_reg = 0;
       
  1747 
       
  1748 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
       
  1749 					      &kmrn_reg);
       
  1750 	if (ret_val)
       
  1751 		return ret_val;
       
  1752 
       
  1753 	if (k1_enable)
       
  1754 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
       
  1755 	else
       
  1756 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
       
  1757 
       
  1758 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
       
  1759 					       kmrn_reg);
       
  1760 	if (ret_val)
       
  1761 		return ret_val;
       
  1762 
       
  1763 	usleep_range(20, 40);
       
  1764 	ctrl_ext = er32(CTRL_EXT);
       
  1765 	ctrl_reg = er32(CTRL);
       
  1766 
       
  1767 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1768 	reg |= E1000_CTRL_FRCSPD;
       
  1769 	ew32(CTRL, reg);
       
  1770 
       
  1771 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
       
  1772 	e1e_flush();
       
  1773 	usleep_range(20, 40);
       
  1774 	ew32(CTRL, ctrl_reg);
       
  1775 	ew32(CTRL_EXT, ctrl_ext);
       
  1776 	e1e_flush();
       
  1777 	usleep_range(20, 40);
       
  1778 
       
  1779 	return 0;
       
  1780 }
       
  1781 
       
  1782 /**
       
  1783  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
       
  1784  *  @hw:       pointer to the HW structure
       
  1785  *  @d0_state: boolean if entering d0 or d3 device state
       
  1786  *
       
  1787  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
       
  1788  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
       
  1789  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
       
  1790  **/
       
  1791 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
       
  1792 {
       
  1793 	s32 ret_val = 0;
       
  1794 	u32 mac_reg;
       
  1795 	u16 oem_reg;
       
  1796 
       
  1797 	if (hw->mac.type < e1000_pchlan)
       
  1798 		return ret_val;
       
  1799 
       
  1800 	ret_val = hw->phy.ops.acquire(hw);
       
  1801 	if (ret_val)
       
  1802 		return ret_val;
       
  1803 
       
  1804 	if (hw->mac.type == e1000_pchlan) {
       
  1805 		mac_reg = er32(EXTCNF_CTRL);
       
  1806 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
       
  1807 			goto release;
       
  1808 	}
       
  1809 
       
  1810 	mac_reg = er32(FEXTNVM);
       
  1811 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
       
  1812 		goto release;
       
  1813 
       
  1814 	mac_reg = er32(PHY_CTRL);
       
  1815 
       
  1816 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
       
  1817 	if (ret_val)
       
  1818 		goto release;
       
  1819 
       
  1820 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
       
  1821 
       
  1822 	if (d0_state) {
       
  1823 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
       
  1824 			oem_reg |= HV_OEM_BITS_GBE_DIS;
       
  1825 
       
  1826 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
       
  1827 			oem_reg |= HV_OEM_BITS_LPLU;
       
  1828 	} else {
       
  1829 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
       
  1830 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
       
  1831 			oem_reg |= HV_OEM_BITS_GBE_DIS;
       
  1832 
       
  1833 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
       
  1834 			       E1000_PHY_CTRL_NOND0A_LPLU))
       
  1835 			oem_reg |= HV_OEM_BITS_LPLU;
       
  1836 	}
       
  1837 
       
  1838 	/* Set Restart auto-neg to activate the bits */
       
  1839 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
       
  1840 	    !hw->phy.ops.check_reset_block(hw))
       
  1841 		oem_reg |= HV_OEM_BITS_RESTART_AN;
       
  1842 
       
  1843 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
       
  1844 
       
  1845 release:
       
  1846 	hw->phy.ops.release(hw);
       
  1847 
       
  1848 	return ret_val;
       
  1849 }
       
  1850 
       
  1851 /**
       
  1852  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
       
  1853  *  @hw:   pointer to the HW structure
       
  1854  **/
       
  1855 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
       
  1856 {
       
  1857 	s32 ret_val;
       
  1858 	u16 data;
       
  1859 
       
  1860 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
       
  1861 	if (ret_val)
       
  1862 		return ret_val;
       
  1863 
       
  1864 	data |= HV_KMRN_MDIO_SLOW;
       
  1865 
       
  1866 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
       
  1867 
       
  1868 	return ret_val;
       
  1869 }
       
  1870 
       
  1871 /**
       
  1872  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
       
  1873  *  done after every PHY reset.
       
  1874  **/
       
  1875 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
       
  1876 {
       
  1877 	s32 ret_val = 0;
       
  1878 	u16 phy_data;
       
  1879 
       
  1880 	if (hw->mac.type != e1000_pchlan)
       
  1881 		return 0;
       
  1882 
       
  1883 	/* Set MDIO slow mode before any other MDIO access */
       
  1884 	if (hw->phy.type == e1000_phy_82577) {
       
  1885 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
  1886 		if (ret_val)
       
  1887 			return ret_val;
       
  1888 	}
       
  1889 
       
  1890 	if (((hw->phy.type == e1000_phy_82577) &&
       
  1891 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
       
  1892 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
       
  1893 		/* Disable generation of early preamble */
       
  1894 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
       
  1895 		if (ret_val)
       
  1896 			return ret_val;
       
  1897 
       
  1898 		/* Preamble tuning for SSC */
       
  1899 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
       
  1900 		if (ret_val)
       
  1901 			return ret_val;
       
  1902 	}
       
  1903 
       
  1904 	if (hw->phy.type == e1000_phy_82578) {
       
  1905 		/* Return registers to default by doing a soft reset then
       
  1906 		 * writing 0x3140 to the control register.
       
  1907 		 */
       
  1908 		if (hw->phy.revision < 2) {
       
  1909 			e1000e_phy_sw_reset(hw);
       
  1910 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
       
  1911 		}
       
  1912 	}
       
  1913 
       
  1914 	/* Select page 0 */
       
  1915 	ret_val = hw->phy.ops.acquire(hw);
       
  1916 	if (ret_val)
       
  1917 		return ret_val;
       
  1918 
       
  1919 	hw->phy.addr = 1;
       
  1920 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
       
  1921 	hw->phy.ops.release(hw);
       
  1922 	if (ret_val)
       
  1923 		return ret_val;
       
  1924 
       
  1925 	/* Configure the K1 Si workaround during phy reset assuming there is
       
  1926 	 * link so that it disables K1 if link is in 1Gbps.
       
  1927 	 */
       
  1928 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
       
  1929 	if (ret_val)
       
  1930 		return ret_val;
       
  1931 
       
  1932 	/* Workaround for link disconnects on a busy hub in half duplex */
       
  1933 	ret_val = hw->phy.ops.acquire(hw);
       
  1934 	if (ret_val)
       
  1935 		return ret_val;
       
  1936 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
       
  1937 	if (ret_val)
       
  1938 		goto release;
       
  1939 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
       
  1940 	if (ret_val)
       
  1941 		goto release;
       
  1942 
       
  1943 	/* set MSE higher to enable link to stay up when noise is high */
       
  1944 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
       
  1945 release:
       
  1946 	hw->phy.ops.release(hw);
       
  1947 
       
  1948 	return ret_val;
       
  1949 }
       
  1950 
       
  1951 /**
       
  1952  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
       
  1953  *  @hw:   pointer to the HW structure
       
  1954  **/
       
  1955 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
       
  1956 {
       
  1957 	u32 mac_reg;
       
  1958 	u16 i, phy_reg = 0;
       
  1959 	s32 ret_val;
       
  1960 
       
  1961 	ret_val = hw->phy.ops.acquire(hw);
       
  1962 	if (ret_val)
       
  1963 		return;
       
  1964 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  1965 	if (ret_val)
       
  1966 		goto release;
       
  1967 
       
  1968 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
       
  1969 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
       
  1970 		mac_reg = er32(RAL(i));
       
  1971 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
       
  1972 					   (u16)(mac_reg & 0xFFFF));
       
  1973 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
       
  1974 					   (u16)((mac_reg >> 16) & 0xFFFF));
       
  1975 
       
  1976 		mac_reg = er32(RAH(i));
       
  1977 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
       
  1978 					   (u16)(mac_reg & 0xFFFF));
       
  1979 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
       
  1980 					   (u16)((mac_reg & E1000_RAH_AV)
       
  1981 						 >> 16));
       
  1982 	}
       
  1983 
       
  1984 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  1985 
       
  1986 release:
       
  1987 	hw->phy.ops.release(hw);
       
  1988 }
       
  1989 
       
  1990 /**
       
  1991  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
       
  1992  *  with 82579 PHY
       
  1993  *  @hw: pointer to the HW structure
       
  1994  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
       
  1995  **/
       
  1996 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
       
  1997 {
       
  1998 	s32 ret_val = 0;
       
  1999 	u16 phy_reg, data;
       
  2000 	u32 mac_reg;
       
  2001 	u16 i;
       
  2002 
       
  2003 	if (hw->mac.type < e1000_pch2lan)
       
  2004 		return 0;
       
  2005 
       
  2006 	/* disable Rx path while enabling/disabling workaround */
       
  2007 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
       
  2008 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
       
  2009 	if (ret_val)
       
  2010 		return ret_val;
       
  2011 
       
  2012 	if (enable) {
       
  2013 		/* Write Rx addresses (rar_entry_count for RAL/H, and
       
  2014 		 * SHRAL/H) and initial CRC values to the MAC
       
  2015 		 */
       
  2016 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
       
  2017 			u8 mac_addr[ETH_ALEN] = { 0 };
       
  2018 			u32 addr_high, addr_low;
       
  2019 
       
  2020 			addr_high = er32(RAH(i));
       
  2021 			if (!(addr_high & E1000_RAH_AV))
       
  2022 				continue;
       
  2023 			addr_low = er32(RAL(i));
       
  2024 			mac_addr[0] = (addr_low & 0xFF);
       
  2025 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
       
  2026 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
       
  2027 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
       
  2028 			mac_addr[4] = (addr_high & 0xFF);
       
  2029 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
       
  2030 
       
  2031 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
       
  2032 		}
       
  2033 
       
  2034 		/* Write Rx addresses to the PHY */
       
  2035 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
       
  2036 
       
  2037 		/* Enable jumbo frame workaround in the MAC */
       
  2038 		mac_reg = er32(FFLT_DBG);
       
  2039 		mac_reg &= ~(1 << 14);
       
  2040 		mac_reg |= (7 << 15);
       
  2041 		ew32(FFLT_DBG, mac_reg);
       
  2042 
       
  2043 		mac_reg = er32(RCTL);
       
  2044 		mac_reg |= E1000_RCTL_SECRC;
       
  2045 		ew32(RCTL, mac_reg);
       
  2046 
       
  2047 		ret_val = e1000e_read_kmrn_reg(hw,
       
  2048 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  2049 					       &data);
       
  2050 		if (ret_val)
       
  2051 			return ret_val;
       
  2052 		ret_val = e1000e_write_kmrn_reg(hw,
       
  2053 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  2054 						data | (1 << 0));
       
  2055 		if (ret_val)
       
  2056 			return ret_val;
       
  2057 		ret_val = e1000e_read_kmrn_reg(hw,
       
  2058 					       E1000_KMRNCTRLSTA_HD_CTRL,
       
  2059 					       &data);
       
  2060 		if (ret_val)
       
  2061 			return ret_val;
       
  2062 		data &= ~(0xF << 8);
       
  2063 		data |= (0xB << 8);
       
  2064 		ret_val = e1000e_write_kmrn_reg(hw,
       
  2065 						E1000_KMRNCTRLSTA_HD_CTRL,
       
  2066 						data);
       
  2067 		if (ret_val)
       
  2068 			return ret_val;
       
  2069 
       
  2070 		/* Enable jumbo frame workaround in the PHY */
       
  2071 		e1e_rphy(hw, PHY_REG(769, 23), &data);
       
  2072 		data &= ~(0x7F << 5);
       
  2073 		data |= (0x37 << 5);
       
  2074 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
       
  2075 		if (ret_val)
       
  2076 			return ret_val;
       
  2077 		e1e_rphy(hw, PHY_REG(769, 16), &data);
       
  2078 		data &= ~(1 << 13);
       
  2079 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
       
  2080 		if (ret_val)
       
  2081 			return ret_val;
       
  2082 		e1e_rphy(hw, PHY_REG(776, 20), &data);
       
  2083 		data &= ~(0x3FF << 2);
       
  2084 		data |= (0x1A << 2);
       
  2085 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
       
  2086 		if (ret_val)
       
  2087 			return ret_val;
       
  2088 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
       
  2089 		if (ret_val)
       
  2090 			return ret_val;
       
  2091 		e1e_rphy(hw, HV_PM_CTRL, &data);
       
  2092 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
       
  2093 		if (ret_val)
       
  2094 			return ret_val;
       
  2095 	} else {
       
  2096 		/* Write MAC register values back to h/w defaults */
       
  2097 		mac_reg = er32(FFLT_DBG);
       
  2098 		mac_reg &= ~(0xF << 14);
       
  2099 		ew32(FFLT_DBG, mac_reg);
       
  2100 
       
  2101 		mac_reg = er32(RCTL);
       
  2102 		mac_reg &= ~E1000_RCTL_SECRC;
       
  2103 		ew32(RCTL, mac_reg);
       
  2104 
       
  2105 		ret_val = e1000e_read_kmrn_reg(hw,
       
  2106 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  2107 					       &data);
       
  2108 		if (ret_val)
       
  2109 			return ret_val;
       
  2110 		ret_val = e1000e_write_kmrn_reg(hw,
       
  2111 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  2112 						data & ~(1 << 0));
       
  2113 		if (ret_val)
       
  2114 			return ret_val;
       
  2115 		ret_val = e1000e_read_kmrn_reg(hw,
       
  2116 					       E1000_KMRNCTRLSTA_HD_CTRL,
       
  2117 					       &data);
       
  2118 		if (ret_val)
       
  2119 			return ret_val;
       
  2120 		data &= ~(0xF << 8);
       
  2121 		data |= (0xB << 8);
       
  2122 		ret_val = e1000e_write_kmrn_reg(hw,
       
  2123 						E1000_KMRNCTRLSTA_HD_CTRL,
       
  2124 						data);
       
  2125 		if (ret_val)
       
  2126 			return ret_val;
       
  2127 
       
  2128 		/* Write PHY register values back to h/w defaults */
       
  2129 		e1e_rphy(hw, PHY_REG(769, 23), &data);
       
  2130 		data &= ~(0x7F << 5);
       
  2131 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
       
  2132 		if (ret_val)
       
  2133 			return ret_val;
       
  2134 		e1e_rphy(hw, PHY_REG(769, 16), &data);
       
  2135 		data |= (1 << 13);
       
  2136 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
       
  2137 		if (ret_val)
       
  2138 			return ret_val;
       
  2139 		e1e_rphy(hw, PHY_REG(776, 20), &data);
       
  2140 		data &= ~(0x3FF << 2);
       
  2141 		data |= (0x8 << 2);
       
  2142 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
       
  2143 		if (ret_val)
       
  2144 			return ret_val;
       
  2145 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
       
  2146 		if (ret_val)
       
  2147 			return ret_val;
       
  2148 		e1e_rphy(hw, HV_PM_CTRL, &data);
       
  2149 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
       
  2150 		if (ret_val)
       
  2151 			return ret_val;
       
  2152 	}
       
  2153 
       
  2154 	/* re-enable Rx path after enabling/disabling workaround */
       
  2155 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
       
  2156 }
       
  2157 
       
  2158 /**
       
  2159  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
       
  2160  *  done after every PHY reset.
       
  2161  **/
       
  2162 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
       
  2163 {
       
  2164 	s32 ret_val = 0;
       
  2165 
       
  2166 	if (hw->mac.type != e1000_pch2lan)
       
  2167 		return 0;
       
  2168 
       
  2169 	/* Set MDIO slow mode before any other MDIO access */
       
  2170 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
  2171 	if (ret_val)
       
  2172 		return ret_val;
       
  2173 
       
  2174 	ret_val = hw->phy.ops.acquire(hw);
       
  2175 	if (ret_val)
       
  2176 		return ret_val;
       
  2177 	/* set MSE higher to enable link to stay up when noise is high */
       
  2178 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
       
  2179 	if (ret_val)
       
  2180 		goto release;
       
  2181 	/* drop link after 5 times MSE threshold was reached */
       
  2182 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
       
  2183 release:
       
  2184 	hw->phy.ops.release(hw);
       
  2185 
       
  2186 	return ret_val;
       
  2187 }
       
  2188 
       
  2189 /**
       
  2190  *  e1000_k1_gig_workaround_lv - K1 Si workaround
       
  2191  *  @hw:   pointer to the HW structure
       
  2192  *
       
  2193  *  Workaround to set the K1 beacon duration for 82579 parts
       
  2194  **/
       
  2195 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
       
  2196 {
       
  2197 	s32 ret_val = 0;
       
  2198 	u16 status_reg = 0;
       
  2199 	u32 mac_reg;
       
  2200 	u16 phy_reg;
       
  2201 
       
  2202 	if (hw->mac.type != e1000_pch2lan)
       
  2203 		return 0;
       
  2204 
       
  2205 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
       
  2206 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
       
  2207 	if (ret_val)
       
  2208 		return ret_val;
       
  2209 
       
  2210 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
       
  2211 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
       
  2212 		mac_reg = er32(FEXTNVM4);
       
  2213 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
       
  2214 
       
  2215 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
       
  2216 		if (ret_val)
       
  2217 			return ret_val;
       
  2218 
       
  2219 		if (status_reg & HV_M_STATUS_SPEED_1000) {
       
  2220 			u16 pm_phy_reg;
       
  2221 
       
  2222 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
       
  2223 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
       
  2224 			/* LV 1G Packet drop issue wa  */
       
  2225 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
       
  2226 			if (ret_val)
       
  2227 				return ret_val;
       
  2228 			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
       
  2229 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
       
  2230 			if (ret_val)
       
  2231 				return ret_val;
       
  2232 		} else {
       
  2233 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
       
  2234 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
       
  2235 		}
       
  2236 		ew32(FEXTNVM4, mac_reg);
       
  2237 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
       
  2238 	}
       
  2239 
       
  2240 	return ret_val;
       
  2241 }
       
  2242 
       
  2243 /**
       
  2244  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
       
  2245  *  @hw:   pointer to the HW structure
       
  2246  *  @gate: boolean set to true to gate, false to ungate
       
  2247  *
       
  2248  *  Gate/ungate the automatic PHY configuration via hardware; perform
       
  2249  *  the configuration via software instead.
       
  2250  **/
       
  2251 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
       
  2252 {
       
  2253 	u32 extcnf_ctrl;
       
  2254 
       
  2255 	if (hw->mac.type < e1000_pch2lan)
       
  2256 		return;
       
  2257 
       
  2258 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
  2259 
       
  2260 	if (gate)
       
  2261 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
       
  2262 	else
       
  2263 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
       
  2264 
       
  2265 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
  2266 }
       
  2267 
       
  2268 /**
       
  2269  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
       
  2270  *  @hw: pointer to the HW structure
       
  2271  *
       
  2272  *  Check the appropriate indication the MAC has finished configuring the
       
  2273  *  PHY after a software reset.
       
  2274  **/
       
  2275 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
       
  2276 {
       
  2277 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
       
  2278 
       
  2279 	/* Wait for basic configuration completes before proceeding */
       
  2280 	do {
       
  2281 		data = er32(STATUS);
       
  2282 		data &= E1000_STATUS_LAN_INIT_DONE;
       
  2283 		usleep_range(100, 200);
       
  2284 	} while ((!data) && --loop);
       
  2285 
       
  2286 	/* If basic configuration is incomplete before the above loop
       
  2287 	 * count reaches 0, loading the configuration from NVM will
       
  2288 	 * leave the PHY in a bad state possibly resulting in no link.
       
  2289 	 */
       
  2290 	if (loop == 0)
       
  2291 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
       
  2292 
       
  2293 	/* Clear the Init Done bit for the next init event */
       
  2294 	data = er32(STATUS);
       
  2295 	data &= ~E1000_STATUS_LAN_INIT_DONE;
       
  2296 	ew32(STATUS, data);
       
  2297 }
       
  2298 
       
  2299 /**
       
  2300  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
       
  2301  *  @hw: pointer to the HW structure
       
  2302  **/
       
  2303 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
       
  2304 {
       
  2305 	s32 ret_val = 0;
       
  2306 	u16 reg;
       
  2307 
       
  2308 	if (hw->phy.ops.check_reset_block(hw))
       
  2309 		return 0;
       
  2310 
       
  2311 	/* Allow time for h/w to get to quiescent state after reset */
       
  2312 	usleep_range(10000, 20000);
       
  2313 
       
  2314 	/* Perform any necessary post-reset workarounds */
       
  2315 	switch (hw->mac.type) {
       
  2316 	case e1000_pchlan:
       
  2317 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
       
  2318 		if (ret_val)
       
  2319 			return ret_val;
       
  2320 		break;
       
  2321 	case e1000_pch2lan:
       
  2322 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
       
  2323 		if (ret_val)
       
  2324 			return ret_val;
       
  2325 		break;
       
  2326 	default:
       
  2327 		break;
       
  2328 	}
       
  2329 
       
  2330 	/* Clear the host wakeup bit after lcd reset */
       
  2331 	if (hw->mac.type >= e1000_pchlan) {
       
  2332 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
       
  2333 		reg &= ~BM_WUC_HOST_WU_BIT;
       
  2334 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
       
  2335 	}
       
  2336 
       
  2337 	/* Configure the LCD with the extended configuration region in NVM */
       
  2338 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
       
  2339 	if (ret_val)
       
  2340 		return ret_val;
       
  2341 
       
  2342 	/* Configure the LCD with the OEM bits in NVM */
       
  2343 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
       
  2344 
       
  2345 	if (hw->mac.type == e1000_pch2lan) {
       
  2346 		/* Ungate automatic PHY configuration on non-managed 82579 */
       
  2347 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
       
  2348 			usleep_range(10000, 20000);
       
  2349 			e1000_gate_hw_phy_config_ich8lan(hw, false);
       
  2350 		}
       
  2351 
       
  2352 		/* Set EEE LPI Update Timer to 200usec */
       
  2353 		ret_val = hw->phy.ops.acquire(hw);
       
  2354 		if (ret_val)
       
  2355 			return ret_val;
       
  2356 		ret_val = e1000_write_emi_reg_locked(hw,
       
  2357 						     I82579_LPI_UPDATE_TIMER,
       
  2358 						     0x1387);
       
  2359 		hw->phy.ops.release(hw);
       
  2360 	}
       
  2361 
       
  2362 	return ret_val;
       
  2363 }
       
  2364 
       
  2365 /**
       
  2366  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
       
  2367  *  @hw: pointer to the HW structure
       
  2368  *
       
  2369  *  Resets the PHY
       
  2370  *  This is a function pointer entry point called by drivers
       
  2371  *  or other shared routines.
       
  2372  **/
       
  2373 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
       
  2374 {
       
  2375 	s32 ret_val = 0;
       
  2376 
       
  2377 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
       
  2378 	if ((hw->mac.type == e1000_pch2lan) &&
       
  2379 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
       
  2380 		e1000_gate_hw_phy_config_ich8lan(hw, true);
       
  2381 
       
  2382 	ret_val = e1000e_phy_hw_reset_generic(hw);
       
  2383 	if (ret_val)
       
  2384 		return ret_val;
       
  2385 
       
  2386 	return e1000_post_phy_reset_ich8lan(hw);
       
  2387 }
       
  2388 
       
  2389 /**
       
  2390  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
       
  2391  *  @hw: pointer to the HW structure
       
  2392  *  @active: true to enable LPLU, false to disable
       
  2393  *
       
  2394  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
       
  2395  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
       
  2396  *  the phy speed. This function will manually set the LPLU bit and restart
       
  2397  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
       
  2398  *  since it configures the same bit.
       
  2399  **/
       
  2400 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
       
  2401 {
       
  2402 	s32 ret_val;
       
  2403 	u16 oem_reg;
       
  2404 
       
  2405 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
       
  2406 	if (ret_val)
       
  2407 		return ret_val;
       
  2408 
       
  2409 	if (active)
       
  2410 		oem_reg |= HV_OEM_BITS_LPLU;
       
  2411 	else
       
  2412 		oem_reg &= ~HV_OEM_BITS_LPLU;
       
  2413 
       
  2414 	if (!hw->phy.ops.check_reset_block(hw))
       
  2415 		oem_reg |= HV_OEM_BITS_RESTART_AN;
       
  2416 
       
  2417 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
       
  2418 }
       
  2419 
       
  2420 /**
       
  2421  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
       
  2422  *  @hw: pointer to the HW structure
       
  2423  *  @active: true to enable LPLU, false to disable
       
  2424  *
       
  2425  *  Sets the LPLU D0 state according to the active flag.  When
       
  2426  *  activating LPLU this function also disables smart speed
       
  2427  *  and vice versa.  LPLU will not be activated unless the
       
  2428  *  device autonegotiation advertisement meets standards of
       
  2429  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  2430  *  This is a function pointer entry point only called by
       
  2431  *  PHY setup routines.
       
  2432  **/
       
  2433 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
       
  2434 {
       
  2435 	struct e1000_phy_info *phy = &hw->phy;
       
  2436 	u32 phy_ctrl;
       
  2437 	s32 ret_val = 0;
       
  2438 	u16 data;
       
  2439 
       
  2440 	if (phy->type == e1000_phy_ife)
       
  2441 		return 0;
       
  2442 
       
  2443 	phy_ctrl = er32(PHY_CTRL);
       
  2444 
       
  2445 	if (active) {
       
  2446 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
       
  2447 		ew32(PHY_CTRL, phy_ctrl);
       
  2448 
       
  2449 		if (phy->type != e1000_phy_igp_3)
       
  2450 			return 0;
       
  2451 
       
  2452 		/* Call gig speed drop workaround on LPLU before accessing
       
  2453 		 * any PHY registers
       
  2454 		 */
       
  2455 		if (hw->mac.type == e1000_ich8lan)
       
  2456 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  2457 
       
  2458 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  2459 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  2460 		if (ret_val)
       
  2461 			return ret_val;
       
  2462 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  2463 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  2464 		if (ret_val)
       
  2465 			return ret_val;
       
  2466 	} else {
       
  2467 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
       
  2468 		ew32(PHY_CTRL, phy_ctrl);
       
  2469 
       
  2470 		if (phy->type != e1000_phy_igp_3)
       
  2471 			return 0;
       
  2472 
       
  2473 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  2474 		 * during Dx states where the power conservation is most
       
  2475 		 * important.  During driver activity we should enable
       
  2476 		 * SmartSpeed, so performance is maintained.
       
  2477 		 */
       
  2478 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  2479 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2480 					   &data);
       
  2481 			if (ret_val)
       
  2482 				return ret_val;
       
  2483 
       
  2484 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  2485 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2486 					   data);
       
  2487 			if (ret_val)
       
  2488 				return ret_val;
       
  2489 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  2490 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2491 					   &data);
       
  2492 			if (ret_val)
       
  2493 				return ret_val;
       
  2494 
       
  2495 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  2496 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2497 					   data);
       
  2498 			if (ret_val)
       
  2499 				return ret_val;
       
  2500 		}
       
  2501 	}
       
  2502 
       
  2503 	return 0;
       
  2504 }
       
  2505 
       
  2506 /**
       
  2507  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
       
  2508  *  @hw: pointer to the HW structure
       
  2509  *  @active: true to enable LPLU, false to disable
       
  2510  *
       
  2511  *  Sets the LPLU D3 state according to the active flag.  When
       
  2512  *  activating LPLU this function also disables smart speed
       
  2513  *  and vice versa.  LPLU will not be activated unless the
       
  2514  *  device autonegotiation advertisement meets standards of
       
  2515  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  2516  *  This is a function pointer entry point only called by
       
  2517  *  PHY setup routines.
       
  2518  **/
       
  2519 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
       
  2520 {
       
  2521 	struct e1000_phy_info *phy = &hw->phy;
       
  2522 	u32 phy_ctrl;
       
  2523 	s32 ret_val = 0;
       
  2524 	u16 data;
       
  2525 
       
  2526 	phy_ctrl = er32(PHY_CTRL);
       
  2527 
       
  2528 	if (!active) {
       
  2529 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
       
  2530 		ew32(PHY_CTRL, phy_ctrl);
       
  2531 
       
  2532 		if (phy->type != e1000_phy_igp_3)
       
  2533 			return 0;
       
  2534 
       
  2535 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  2536 		 * during Dx states where the power conservation is most
       
  2537 		 * important.  During driver activity we should enable
       
  2538 		 * SmartSpeed, so performance is maintained.
       
  2539 		 */
       
  2540 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  2541 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2542 					   &data);
       
  2543 			if (ret_val)
       
  2544 				return ret_val;
       
  2545 
       
  2546 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  2547 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2548 					   data);
       
  2549 			if (ret_val)
       
  2550 				return ret_val;
       
  2551 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  2552 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2553 					   &data);
       
  2554 			if (ret_val)
       
  2555 				return ret_val;
       
  2556 
       
  2557 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  2558 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2559 					   data);
       
  2560 			if (ret_val)
       
  2561 				return ret_val;
       
  2562 		}
       
  2563 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
  2564 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
  2565 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
       
  2566 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
       
  2567 		ew32(PHY_CTRL, phy_ctrl);
       
  2568 
       
  2569 		if (phy->type != e1000_phy_igp_3)
       
  2570 			return 0;
       
  2571 
       
  2572 		/* Call gig speed drop workaround on LPLU before accessing
       
  2573 		 * any PHY registers
       
  2574 		 */
       
  2575 		if (hw->mac.type == e1000_ich8lan)
       
  2576 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  2577 
       
  2578 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  2579 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  2580 		if (ret_val)
       
  2581 			return ret_val;
       
  2582 
       
  2583 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  2584 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  2585 	}
       
  2586 
       
  2587 	return ret_val;
       
  2588 }
       
  2589 
       
  2590 /**
       
  2591  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
       
  2592  *  @hw: pointer to the HW structure
       
  2593  *  @bank:  pointer to the variable that returns the active bank
       
  2594  *
       
  2595  *  Reads signature byte from the NVM using the flash access registers.
       
  2596  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
       
  2597  **/
       
  2598 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
       
  2599 {
       
  2600 	u32 eecd;
       
  2601 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2602 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
       
  2603 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
       
  2604 	u8 sig_byte = 0;
       
  2605 	s32 ret_val;
       
  2606 
       
  2607 	switch (hw->mac.type) {
       
  2608 	case e1000_ich8lan:
       
  2609 	case e1000_ich9lan:
       
  2610 		eecd = er32(EECD);
       
  2611 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
       
  2612 		    E1000_EECD_SEC1VAL_VALID_MASK) {
       
  2613 			if (eecd & E1000_EECD_SEC1VAL)
       
  2614 				*bank = 1;
       
  2615 			else
       
  2616 				*bank = 0;
       
  2617 
       
  2618 			return 0;
       
  2619 		}
       
  2620 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
       
  2621 		/* fall-thru */
       
  2622 	default:
       
  2623 		/* set bank to 0 in case flash read fails */
       
  2624 		*bank = 0;
       
  2625 
       
  2626 		/* Check bank 0 */
       
  2627 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
       
  2628 							&sig_byte);
       
  2629 		if (ret_val)
       
  2630 			return ret_val;
       
  2631 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
       
  2632 		    E1000_ICH_NVM_SIG_VALUE) {
       
  2633 			*bank = 0;
       
  2634 			return 0;
       
  2635 		}
       
  2636 
       
  2637 		/* Check bank 1 */
       
  2638 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
       
  2639 							bank1_offset,
       
  2640 							&sig_byte);
       
  2641 		if (ret_val)
       
  2642 			return ret_val;
       
  2643 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
       
  2644 		    E1000_ICH_NVM_SIG_VALUE) {
       
  2645 			*bank = 1;
       
  2646 			return 0;
       
  2647 		}
       
  2648 
       
  2649 		e_dbg("ERROR: No valid NVM bank present\n");
       
  2650 		return -E1000_ERR_NVM;
       
  2651 	}
       
  2652 }
       
  2653 
       
  2654 /**
       
  2655  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
       
  2656  *  @hw: pointer to the HW structure
       
  2657  *  @offset: The offset (in bytes) of the word(s) to read.
       
  2658  *  @words: Size of data to read in words
       
  2659  *  @data: Pointer to the word(s) to read at offset.
       
  2660  *
       
  2661  *  Reads a word(s) from the NVM using the flash access registers.
       
  2662  **/
       
  2663 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
       
  2664 				  u16 *data)
       
  2665 {
       
  2666 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2667 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2668 	u32 act_offset;
       
  2669 	s32 ret_val = 0;
       
  2670 	u32 bank = 0;
       
  2671 	u16 i, word;
       
  2672 
       
  2673 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
       
  2674 	    (words == 0)) {
       
  2675 		e_dbg("nvm parameter(s) out of bounds\n");
       
  2676 		ret_val = -E1000_ERR_NVM;
       
  2677 		goto out;
       
  2678 	}
       
  2679 
       
  2680 	nvm->ops.acquire(hw);
       
  2681 
       
  2682 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
       
  2683 	if (ret_val) {
       
  2684 		e_dbg("Could not detect valid bank, assuming bank 0\n");
       
  2685 		bank = 0;
       
  2686 	}
       
  2687 
       
  2688 	act_offset = (bank) ? nvm->flash_bank_size : 0;
       
  2689 	act_offset += offset;
       
  2690 
       
  2691 	ret_val = 0;
       
  2692 	for (i = 0; i < words; i++) {
       
  2693 		if (dev_spec->shadow_ram[offset + i].modified) {
       
  2694 			data[i] = dev_spec->shadow_ram[offset + i].value;
       
  2695 		} else {
       
  2696 			ret_val = e1000_read_flash_word_ich8lan(hw,
       
  2697 								act_offset + i,
       
  2698 								&word);
       
  2699 			if (ret_val)
       
  2700 				break;
       
  2701 			data[i] = word;
       
  2702 		}
       
  2703 	}
       
  2704 
       
  2705 	nvm->ops.release(hw);
       
  2706 
       
  2707 out:
       
  2708 	if (ret_val)
       
  2709 		e_dbg("NVM read error: %d\n", ret_val);
       
  2710 
       
  2711 	return ret_val;
       
  2712 }
       
  2713 
       
  2714 /**
       
  2715  *  e1000_flash_cycle_init_ich8lan - Initialize flash
       
  2716  *  @hw: pointer to the HW structure
       
  2717  *
       
  2718  *  This function does initial flash setup so that a new read/write/erase cycle
       
  2719  *  can be started.
       
  2720  **/
       
  2721 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
       
  2722 {
       
  2723 	union ich8_hws_flash_status hsfsts;
       
  2724 	s32 ret_val = -E1000_ERR_NVM;
       
  2725 
       
  2726 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2727 
       
  2728 	/* Check if the flash descriptor is valid */
       
  2729 	if (!hsfsts.hsf_status.fldesvalid) {
       
  2730 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
       
  2731 		return -E1000_ERR_NVM;
       
  2732 	}
       
  2733 
       
  2734 	/* Clear FCERR and DAEL in hw status by writing 1 */
       
  2735 	hsfsts.hsf_status.flcerr = 1;
       
  2736 	hsfsts.hsf_status.dael = 1;
       
  2737 
       
  2738 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2739 
       
  2740 	/* Either we should have a hardware SPI cycle in progress
       
  2741 	 * bit to check against, in order to start a new cycle or
       
  2742 	 * FDONE bit should be changed in the hardware so that it
       
  2743 	 * is 1 after hardware reset, which can then be used as an
       
  2744 	 * indication whether a cycle is in progress or has been
       
  2745 	 * completed.
       
  2746 	 */
       
  2747 
       
  2748 	if (!hsfsts.hsf_status.flcinprog) {
       
  2749 		/* There is no cycle running at present,
       
  2750 		 * so we can start a cycle.
       
  2751 		 * Begin by setting Flash Cycle Done.
       
  2752 		 */
       
  2753 		hsfsts.hsf_status.flcdone = 1;
       
  2754 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2755 		ret_val = 0;
       
  2756 	} else {
       
  2757 		s32 i;
       
  2758 
       
  2759 		/* Otherwise poll for sometime so the current
       
  2760 		 * cycle has a chance to end before giving up.
       
  2761 		 */
       
  2762 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
       
  2763 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2764 			if (!hsfsts.hsf_status.flcinprog) {
       
  2765 				ret_val = 0;
       
  2766 				break;
       
  2767 			}
       
  2768 			udelay(1);
       
  2769 		}
       
  2770 		if (!ret_val) {
       
  2771 			/* Successful in waiting for previous cycle to timeout,
       
  2772 			 * now set the Flash Cycle Done.
       
  2773 			 */
       
  2774 			hsfsts.hsf_status.flcdone = 1;
       
  2775 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2776 		} else {
       
  2777 			e_dbg("Flash controller busy, cannot get access\n");
       
  2778 		}
       
  2779 	}
       
  2780 
       
  2781 	return ret_val;
       
  2782 }
       
  2783 
       
  2784 /**
       
  2785  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
       
  2786  *  @hw: pointer to the HW structure
       
  2787  *  @timeout: maximum time to wait for completion
       
  2788  *
       
  2789  *  This function starts a flash cycle and waits for its completion.
       
  2790  **/
       
  2791 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
       
  2792 {
       
  2793 	union ich8_hws_flash_ctrl hsflctl;
       
  2794 	union ich8_hws_flash_status hsfsts;
       
  2795 	u32 i = 0;
       
  2796 
       
  2797 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
       
  2798 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2799 	hsflctl.hsf_ctrl.flcgo = 1;
       
  2800 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2801 
       
  2802 	/* wait till FDONE bit is set to 1 */
       
  2803 	do {
       
  2804 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2805 		if (hsfsts.hsf_status.flcdone)
       
  2806 			break;
       
  2807 		udelay(1);
       
  2808 	} while (i++ < timeout);
       
  2809 
       
  2810 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
       
  2811 		return 0;
       
  2812 
       
  2813 	return -E1000_ERR_NVM;
       
  2814 }
       
  2815 
       
  2816 /**
       
  2817  *  e1000_read_flash_word_ich8lan - Read word from flash
       
  2818  *  @hw: pointer to the HW structure
       
  2819  *  @offset: offset to data location
       
  2820  *  @data: pointer to the location for storing the data
       
  2821  *
       
  2822  *  Reads the flash word at offset into data.  Offset is converted
       
  2823  *  to bytes before read.
       
  2824  **/
       
  2825 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2826 					 u16 *data)
       
  2827 {
       
  2828 	/* Must convert offset into bytes. */
       
  2829 	offset <<= 1;
       
  2830 
       
  2831 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
       
  2832 }
       
  2833 
       
  2834 /**
       
  2835  *  e1000_read_flash_byte_ich8lan - Read byte from flash
       
  2836  *  @hw: pointer to the HW structure
       
  2837  *  @offset: The offset of the byte to read.
       
  2838  *  @data: Pointer to a byte to store the value read.
       
  2839  *
       
  2840  *  Reads a single byte from the NVM using the flash access registers.
       
  2841  **/
       
  2842 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2843 					 u8 *data)
       
  2844 {
       
  2845 	s32 ret_val;
       
  2846 	u16 word = 0;
       
  2847 
       
  2848 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
       
  2849 	if (ret_val)
       
  2850 		return ret_val;
       
  2851 
       
  2852 	*data = (u8)word;
       
  2853 
       
  2854 	return 0;
       
  2855 }
       
  2856 
       
  2857 /**
       
  2858  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
       
  2859  *  @hw: pointer to the HW structure
       
  2860  *  @offset: The offset (in bytes) of the byte or word to read.
       
  2861  *  @size: Size of data to read, 1=byte 2=word
       
  2862  *  @data: Pointer to the word to store the value read.
       
  2863  *
       
  2864  *  Reads a byte or word from the NVM using the flash access registers.
       
  2865  **/
       
  2866 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2867 					 u8 size, u16 *data)
       
  2868 {
       
  2869 	union ich8_hws_flash_status hsfsts;
       
  2870 	union ich8_hws_flash_ctrl hsflctl;
       
  2871 	u32 flash_linear_addr;
       
  2872 	u32 flash_data = 0;
       
  2873 	s32 ret_val = -E1000_ERR_NVM;
       
  2874 	u8 count = 0;
       
  2875 
       
  2876 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
       
  2877 		return -E1000_ERR_NVM;
       
  2878 
       
  2879 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
       
  2880 			     hw->nvm.flash_base_addr);
       
  2881 
       
  2882 	do {
       
  2883 		udelay(1);
       
  2884 		/* Steps */
       
  2885 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  2886 		if (ret_val)
       
  2887 			break;
       
  2888 
       
  2889 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2890 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  2891 		hsflctl.hsf_ctrl.fldbcount = size - 1;
       
  2892 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
       
  2893 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2894 
       
  2895 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  2896 
       
  2897 		ret_val =
       
  2898 		    e1000_flash_cycle_ich8lan(hw,
       
  2899 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
       
  2900 
       
  2901 		/* Check if FCERR is set to 1, if set to 1, clear it
       
  2902 		 * and try the whole sequence a few more times, else
       
  2903 		 * read in (shift in) the Flash Data0, the order is
       
  2904 		 * least significant byte first msb to lsb
       
  2905 		 */
       
  2906 		if (!ret_val) {
       
  2907 			flash_data = er32flash(ICH_FLASH_FDATA0);
       
  2908 			if (size == 1)
       
  2909 				*data = (u8)(flash_data & 0x000000FF);
       
  2910 			else if (size == 2)
       
  2911 				*data = (u16)(flash_data & 0x0000FFFF);
       
  2912 			break;
       
  2913 		} else {
       
  2914 			/* If we've gotten here, then things are probably
       
  2915 			 * completely hosed, but if the error condition is
       
  2916 			 * detected, it won't hurt to give it another try...
       
  2917 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  2918 			 */
       
  2919 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2920 			if (hsfsts.hsf_status.flcerr) {
       
  2921 				/* Repeat for some time before giving up. */
       
  2922 				continue;
       
  2923 			} else if (!hsfsts.hsf_status.flcdone) {
       
  2924 				e_dbg("Timeout error - flash cycle did not complete.\n");
       
  2925 				break;
       
  2926 			}
       
  2927 		}
       
  2928 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  2929 
       
  2930 	return ret_val;
       
  2931 }
       
  2932 
       
  2933 /**
       
  2934  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
       
  2935  *  @hw: pointer to the HW structure
       
  2936  *  @offset: The offset (in bytes) of the word(s) to write.
       
  2937  *  @words: Size of data to write in words
       
  2938  *  @data: Pointer to the word(s) to write at offset.
       
  2939  *
       
  2940  *  Writes a byte or word to the NVM using the flash access registers.
       
  2941  **/
       
  2942 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
       
  2943 				   u16 *data)
       
  2944 {
       
  2945 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2946 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2947 	u16 i;
       
  2948 
       
  2949 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
       
  2950 	    (words == 0)) {
       
  2951 		e_dbg("nvm parameter(s) out of bounds\n");
       
  2952 		return -E1000_ERR_NVM;
       
  2953 	}
       
  2954 
       
  2955 	nvm->ops.acquire(hw);
       
  2956 
       
  2957 	for (i = 0; i < words; i++) {
       
  2958 		dev_spec->shadow_ram[offset + i].modified = true;
       
  2959 		dev_spec->shadow_ram[offset + i].value = data[i];
       
  2960 	}
       
  2961 
       
  2962 	nvm->ops.release(hw);
       
  2963 
       
  2964 	return 0;
       
  2965 }
       
  2966 
       
  2967 /**
       
  2968  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
       
  2969  *  @hw: pointer to the HW structure
       
  2970  *
       
  2971  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
       
  2972  *  which writes the checksum to the shadow ram.  The changes in the shadow
       
  2973  *  ram are then committed to the EEPROM by processing each bank at a time
       
  2974  *  checking for the modified bit and writing only the pending changes.
       
  2975  *  After a successful commit, the shadow ram is cleared and is ready for
       
  2976  *  future writes.
       
  2977  **/
       
  2978 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
       
  2979 {
       
  2980 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2981 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2982 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
       
  2983 	s32 ret_val;
       
  2984 	u16 data;
       
  2985 
       
  2986 	ret_val = e1000e_update_nvm_checksum_generic(hw);
       
  2987 	if (ret_val)
       
  2988 		goto out;
       
  2989 
       
  2990 	if (nvm->type != e1000_nvm_flash_sw)
       
  2991 		goto out;
       
  2992 
       
  2993 	nvm->ops.acquire(hw);
       
  2994 
       
  2995 	/* We're writing to the opposite bank so if we're on bank 1,
       
  2996 	 * write to bank 0 etc.  We also need to erase the segment that
       
  2997 	 * is going to be written
       
  2998 	 */
       
  2999 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
       
  3000 	if (ret_val) {
       
  3001 		e_dbg("Could not detect valid bank, assuming bank 0\n");
       
  3002 		bank = 0;
       
  3003 	}
       
  3004 
       
  3005 	if (bank == 0) {
       
  3006 		new_bank_offset = nvm->flash_bank_size;
       
  3007 		old_bank_offset = 0;
       
  3008 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
       
  3009 		if (ret_val)
       
  3010 			goto release;
       
  3011 	} else {
       
  3012 		old_bank_offset = nvm->flash_bank_size;
       
  3013 		new_bank_offset = 0;
       
  3014 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
       
  3015 		if (ret_val)
       
  3016 			goto release;
       
  3017 	}
       
  3018 
       
  3019 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
       
  3020 		/* Determine whether to write the value stored
       
  3021 		 * in the other NVM bank or a modified value stored
       
  3022 		 * in the shadow RAM
       
  3023 		 */
       
  3024 		if (dev_spec->shadow_ram[i].modified) {
       
  3025 			data = dev_spec->shadow_ram[i].value;
       
  3026 		} else {
       
  3027 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
       
  3028 								old_bank_offset,
       
  3029 								&data);
       
  3030 			if (ret_val)
       
  3031 				break;
       
  3032 		}
       
  3033 
       
  3034 		/* If the word is 0x13, then make sure the signature bits
       
  3035 		 * (15:14) are 11b until the commit has completed.
       
  3036 		 * This will allow us to write 10b which indicates the
       
  3037 		 * signature is valid.  We want to do this after the write
       
  3038 		 * has completed so that we don't mark the segment valid
       
  3039 		 * while the write is still in progress
       
  3040 		 */
       
  3041 		if (i == E1000_ICH_NVM_SIG_WORD)
       
  3042 			data |= E1000_ICH_NVM_SIG_MASK;
       
  3043 
       
  3044 		/* Convert offset to bytes. */
       
  3045 		act_offset = (i + new_bank_offset) << 1;
       
  3046 
       
  3047 		usleep_range(100, 200);
       
  3048 		/* Write the bytes to the new bank. */
       
  3049 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  3050 							       act_offset,
       
  3051 							       (u8)data);
       
  3052 		if (ret_val)
       
  3053 			break;
       
  3054 
       
  3055 		usleep_range(100, 200);
       
  3056 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  3057 							       act_offset + 1,
       
  3058 							       (u8)(data >> 8));
       
  3059 		if (ret_val)
       
  3060 			break;
       
  3061 	}
       
  3062 
       
  3063 	/* Don't bother writing the segment valid bits if sector
       
  3064 	 * programming failed.
       
  3065 	 */
       
  3066 	if (ret_val) {
       
  3067 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
       
  3068 		e_dbg("Flash commit failed.\n");
       
  3069 		goto release;
       
  3070 	}
       
  3071 
       
  3072 	/* Finally validate the new segment by setting bit 15:14
       
  3073 	 * to 10b in word 0x13 , this can be done without an
       
  3074 	 * erase as well since these bits are 11 to start with
       
  3075 	 * and we need to change bit 14 to 0b
       
  3076 	 */
       
  3077 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
       
  3078 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
       
  3079 	if (ret_val)
       
  3080 		goto release;
       
  3081 
       
  3082 	data &= 0xBFFF;
       
  3083 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  3084 						       act_offset * 2 + 1,
       
  3085 						       (u8)(data >> 8));
       
  3086 	if (ret_val)
       
  3087 		goto release;
       
  3088 
       
  3089 	/* And invalidate the previously valid segment by setting
       
  3090 	 * its signature word (0x13) high_byte to 0b. This can be
       
  3091 	 * done without an erase because flash erase sets all bits
       
  3092 	 * to 1's. We can write 1's to 0's without an erase
       
  3093 	 */
       
  3094 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
       
  3095 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
       
  3096 	if (ret_val)
       
  3097 		goto release;
       
  3098 
       
  3099 	/* Great!  Everything worked, we can now clear the cached entries. */
       
  3100 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
       
  3101 		dev_spec->shadow_ram[i].modified = false;
       
  3102 		dev_spec->shadow_ram[i].value = 0xFFFF;
       
  3103 	}
       
  3104 
       
  3105 release:
       
  3106 	nvm->ops.release(hw);
       
  3107 
       
  3108 	/* Reload the EEPROM, or else modifications will not appear
       
  3109 	 * until after the next adapter reset.
       
  3110 	 */
       
  3111 	if (!ret_val) {
       
  3112 		nvm->ops.reload(hw);
       
  3113 		usleep_range(10000, 20000);
       
  3114 	}
       
  3115 
       
  3116 out:
       
  3117 	if (ret_val)
       
  3118 		e_dbg("NVM update error: %d\n", ret_val);
       
  3119 
       
  3120 	return ret_val;
       
  3121 }
       
  3122 
       
  3123 /**
       
  3124  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
       
  3125  *  @hw: pointer to the HW structure
       
  3126  *
       
  3127  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
       
  3128  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
       
  3129  *  calculated, in which case we need to calculate the checksum and set bit 6.
       
  3130  **/
       
  3131 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
       
  3132 {
       
  3133 	s32 ret_val;
       
  3134 	u16 data;
       
  3135 	u16 word;
       
  3136 	u16 valid_csum_mask;
       
  3137 
       
  3138 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
       
  3139 	 * the checksum needs to be fixed.  This bit is an indication that
       
  3140 	 * the NVM was prepared by OEM software and did not calculate
       
  3141 	 * the checksum...a likely scenario.
       
  3142 	 */
       
  3143 	switch (hw->mac.type) {
       
  3144 	case e1000_pch_lpt:
       
  3145 		word = NVM_COMPAT;
       
  3146 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
       
  3147 		break;
       
  3148 	default:
       
  3149 		word = NVM_FUTURE_INIT_WORD1;
       
  3150 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
       
  3151 		break;
       
  3152 	}
       
  3153 
       
  3154 	ret_val = e1000_read_nvm(hw, word, 1, &data);
       
  3155 	if (ret_val)
       
  3156 		return ret_val;
       
  3157 
       
  3158 	if (!(data & valid_csum_mask)) {
       
  3159 		data |= valid_csum_mask;
       
  3160 		ret_val = e1000_write_nvm(hw, word, 1, &data);
       
  3161 		if (ret_val)
       
  3162 			return ret_val;
       
  3163 		ret_val = e1000e_update_nvm_checksum(hw);
       
  3164 		if (ret_val)
       
  3165 			return ret_val;
       
  3166 	}
       
  3167 
       
  3168 	return e1000e_validate_nvm_checksum_generic(hw);
       
  3169 }
       
  3170 
       
  3171 /**
       
  3172  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
       
  3173  *  @hw: pointer to the HW structure
       
  3174  *
       
  3175  *  To prevent malicious write/erase of the NVM, set it to be read-only
       
  3176  *  so that the hardware ignores all write/erase cycles of the NVM via
       
  3177  *  the flash control registers.  The shadow-ram copy of the NVM will
       
  3178  *  still be updated, however any updates to this copy will not stick
       
  3179  *  across driver reloads.
       
  3180  **/
       
  3181 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
       
  3182 {
       
  3183 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  3184 	union ich8_flash_protected_range pr0;
       
  3185 	union ich8_hws_flash_status hsfsts;
       
  3186 	u32 gfpreg;
       
  3187 
       
  3188 	nvm->ops.acquire(hw);
       
  3189 
       
  3190 	gfpreg = er32flash(ICH_FLASH_GFPREG);
       
  3191 
       
  3192 	/* Write-protect GbE Sector of NVM */
       
  3193 	pr0.regval = er32flash(ICH_FLASH_PR0);
       
  3194 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
       
  3195 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
       
  3196 	pr0.range.wpe = true;
       
  3197 	ew32flash(ICH_FLASH_PR0, pr0.regval);
       
  3198 
       
  3199 	/* Lock down a subset of GbE Flash Control Registers, e.g.
       
  3200 	 * PR0 to prevent the write-protection from being lifted.
       
  3201 	 * Once FLOCKDN is set, the registers protected by it cannot
       
  3202 	 * be written until FLOCKDN is cleared by a hardware reset.
       
  3203 	 */
       
  3204 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  3205 	hsfsts.hsf_status.flockdn = true;
       
  3206 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  3207 
       
  3208 	nvm->ops.release(hw);
       
  3209 }
       
  3210 
       
  3211 /**
       
  3212  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
       
  3213  *  @hw: pointer to the HW structure
       
  3214  *  @offset: The offset (in bytes) of the byte/word to read.
       
  3215  *  @size: Size of data to read, 1=byte 2=word
       
  3216  *  @data: The byte(s) to write to the NVM.
       
  3217  *
       
  3218  *  Writes one/two bytes to the NVM using the flash access registers.
       
  3219  **/
       
  3220 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
  3221 					  u8 size, u16 data)
       
  3222 {
       
  3223 	union ich8_hws_flash_status hsfsts;
       
  3224 	union ich8_hws_flash_ctrl hsflctl;
       
  3225 	u32 flash_linear_addr;
       
  3226 	u32 flash_data = 0;
       
  3227 	s32 ret_val;
       
  3228 	u8 count = 0;
       
  3229 
       
  3230 	if (size < 1 || size > 2 || data > size * 0xff ||
       
  3231 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
       
  3232 		return -E1000_ERR_NVM;
       
  3233 
       
  3234 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
       
  3235 			     hw->nvm.flash_base_addr);
       
  3236 
       
  3237 	do {
       
  3238 		udelay(1);
       
  3239 		/* Steps */
       
  3240 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  3241 		if (ret_val)
       
  3242 			break;
       
  3243 
       
  3244 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  3245 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  3246 		hsflctl.hsf_ctrl.fldbcount = size - 1;
       
  3247 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
       
  3248 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  3249 
       
  3250 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  3251 
       
  3252 		if (size == 1)
       
  3253 			flash_data = (u32)data & 0x00FF;
       
  3254 		else
       
  3255 			flash_data = (u32)data;
       
  3256 
       
  3257 		ew32flash(ICH_FLASH_FDATA0, flash_data);
       
  3258 
       
  3259 		/* check if FCERR is set to 1 , if set to 1, clear it
       
  3260 		 * and try the whole sequence a few more times else done
       
  3261 		 */
       
  3262 		ret_val =
       
  3263 		    e1000_flash_cycle_ich8lan(hw,
       
  3264 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
       
  3265 		if (!ret_val)
       
  3266 			break;
       
  3267 
       
  3268 		/* If we're here, then things are most likely
       
  3269 		 * completely hosed, but if the error condition
       
  3270 		 * is detected, it won't hurt to give it another
       
  3271 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  3272 		 */
       
  3273 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  3274 		if (hsfsts.hsf_status.flcerr)
       
  3275 			/* Repeat for some time before giving up. */
       
  3276 			continue;
       
  3277 		if (!hsfsts.hsf_status.flcdone) {
       
  3278 			e_dbg("Timeout error - flash cycle did not complete.\n");
       
  3279 			break;
       
  3280 		}
       
  3281 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  3282 
       
  3283 	return ret_val;
       
  3284 }
       
  3285 
       
  3286 /**
       
  3287  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
       
  3288  *  @hw: pointer to the HW structure
       
  3289  *  @offset: The index of the byte to read.
       
  3290  *  @data: The byte to write to the NVM.
       
  3291  *
       
  3292  *  Writes a single byte to the NVM using the flash access registers.
       
  3293  **/
       
  3294 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
  3295 					  u8 data)
       
  3296 {
       
  3297 	u16 word = (u16)data;
       
  3298 
       
  3299 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
       
  3300 }
       
  3301 
       
  3302 /**
       
  3303  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
       
  3304  *  @hw: pointer to the HW structure
       
  3305  *  @offset: The offset of the byte to write.
       
  3306  *  @byte: The byte to write to the NVM.
       
  3307  *
       
  3308  *  Writes a single byte to the NVM using the flash access registers.
       
  3309  *  Goes through a retry algorithm before giving up.
       
  3310  **/
       
  3311 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
       
  3312 						u32 offset, u8 byte)
       
  3313 {
       
  3314 	s32 ret_val;
       
  3315 	u16 program_retries;
       
  3316 
       
  3317 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
       
  3318 	if (!ret_val)
       
  3319 		return ret_val;
       
  3320 
       
  3321 	for (program_retries = 0; program_retries < 100; program_retries++) {
       
  3322 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
       
  3323 		usleep_range(100, 200);
       
  3324 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
       
  3325 		if (!ret_val)
       
  3326 			break;
       
  3327 	}
       
  3328 	if (program_retries == 100)
       
  3329 		return -E1000_ERR_NVM;
       
  3330 
       
  3331 	return 0;
       
  3332 }
       
  3333 
       
  3334 /**
       
  3335  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
       
  3336  *  @hw: pointer to the HW structure
       
  3337  *  @bank: 0 for first bank, 1 for second bank, etc.
       
  3338  *
       
  3339  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
       
  3340  *  bank N is 4096 * N + flash_reg_addr.
       
  3341  **/
       
  3342 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
       
  3343 {
       
  3344 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  3345 	union ich8_hws_flash_status hsfsts;
       
  3346 	union ich8_hws_flash_ctrl hsflctl;
       
  3347 	u32 flash_linear_addr;
       
  3348 	/* bank size is in 16bit words - adjust to bytes */
       
  3349 	u32 flash_bank_size = nvm->flash_bank_size * 2;
       
  3350 	s32 ret_val;
       
  3351 	s32 count = 0;
       
  3352 	s32 j, iteration, sector_size;
       
  3353 
       
  3354 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  3355 
       
  3356 	/* Determine HW Sector size: Read BERASE bits of hw flash status
       
  3357 	 * register
       
  3358 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
       
  3359 	 *     consecutive sectors.  The start index for the nth Hw sector
       
  3360 	 *     can be calculated as = bank * 4096 + n * 256
       
  3361 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
       
  3362 	 *     The start index for the nth Hw sector can be calculated
       
  3363 	 *     as = bank * 4096
       
  3364 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
       
  3365 	 *     (ich9 only, otherwise error condition)
       
  3366 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
       
  3367 	 */
       
  3368 	switch (hsfsts.hsf_status.berasesz) {
       
  3369 	case 0:
       
  3370 		/* Hw sector size 256 */
       
  3371 		sector_size = ICH_FLASH_SEG_SIZE_256;
       
  3372 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
       
  3373 		break;
       
  3374 	case 1:
       
  3375 		sector_size = ICH_FLASH_SEG_SIZE_4K;
       
  3376 		iteration = 1;
       
  3377 		break;
       
  3378 	case 2:
       
  3379 		sector_size = ICH_FLASH_SEG_SIZE_8K;
       
  3380 		iteration = 1;
       
  3381 		break;
       
  3382 	case 3:
       
  3383 		sector_size = ICH_FLASH_SEG_SIZE_64K;
       
  3384 		iteration = 1;
       
  3385 		break;
       
  3386 	default:
       
  3387 		return -E1000_ERR_NVM;
       
  3388 	}
       
  3389 
       
  3390 	/* Start with the base address, then add the sector offset. */
       
  3391 	flash_linear_addr = hw->nvm.flash_base_addr;
       
  3392 	flash_linear_addr += (bank) ? flash_bank_size : 0;
       
  3393 
       
  3394 	for (j = 0; j < iteration; j++) {
       
  3395 		do {
       
  3396 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
       
  3397 
       
  3398 			/* Steps */
       
  3399 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  3400 			if (ret_val)
       
  3401 				return ret_val;
       
  3402 
       
  3403 			/* Write a value 11 (block Erase) in Flash
       
  3404 			 * Cycle field in hw flash control
       
  3405 			 */
       
  3406 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  3407 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
       
  3408 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  3409 
       
  3410 			/* Write the last 24 bits of an index within the
       
  3411 			 * block into Flash Linear address field in Flash
       
  3412 			 * Address.
       
  3413 			 */
       
  3414 			flash_linear_addr += (j * sector_size);
       
  3415 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  3416 
       
  3417 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
       
  3418 			if (!ret_val)
       
  3419 				break;
       
  3420 
       
  3421 			/* Check if FCERR is set to 1.  If 1,
       
  3422 			 * clear it and try the whole sequence
       
  3423 			 * a few more times else Done
       
  3424 			 */
       
  3425 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  3426 			if (hsfsts.hsf_status.flcerr)
       
  3427 				/* repeat for some time before giving up */
       
  3428 				continue;
       
  3429 			else if (!hsfsts.hsf_status.flcdone)
       
  3430 				return ret_val;
       
  3431 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  3432 	}
       
  3433 
       
  3434 	return 0;
       
  3435 }
       
  3436 
       
  3437 /**
       
  3438  *  e1000_valid_led_default_ich8lan - Set the default LED settings
       
  3439  *  @hw: pointer to the HW structure
       
  3440  *  @data: Pointer to the LED settings
       
  3441  *
       
  3442  *  Reads the LED default settings from the NVM to data.  If the NVM LED
       
  3443  *  settings is all 0's or F's, set the LED default to a valid LED default
       
  3444  *  setting.
       
  3445  **/
       
  3446 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
       
  3447 {
       
  3448 	s32 ret_val;
       
  3449 
       
  3450 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  3451 	if (ret_val) {
       
  3452 		e_dbg("NVM Read Error\n");
       
  3453 		return ret_val;
       
  3454 	}
       
  3455 
       
  3456 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
       
  3457 		*data = ID_LED_DEFAULT_ICH8LAN;
       
  3458 
       
  3459 	return 0;
       
  3460 }
       
  3461 
       
  3462 /**
       
  3463  *  e1000_id_led_init_pchlan - store LED configurations
       
  3464  *  @hw: pointer to the HW structure
       
  3465  *
       
  3466  *  PCH does not control LEDs via the LEDCTL register, rather it uses
       
  3467  *  the PHY LED configuration register.
       
  3468  *
       
  3469  *  PCH also does not have an "always on" or "always off" mode which
       
  3470  *  complicates the ID feature.  Instead of using the "on" mode to indicate
       
  3471  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
       
  3472  *  use "link_up" mode.  The LEDs will still ID on request if there is no
       
  3473  *  link based on logic in e1000_led_[on|off]_pchlan().
       
  3474  **/
       
  3475 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
       
  3476 {
       
  3477 	struct e1000_mac_info *mac = &hw->mac;
       
  3478 	s32 ret_val;
       
  3479 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
       
  3480 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
       
  3481 	u16 data, i, temp, shift;
       
  3482 
       
  3483 	/* Get default ID LED modes */
       
  3484 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
       
  3485 	if (ret_val)
       
  3486 		return ret_val;
       
  3487 
       
  3488 	mac->ledctl_default = er32(LEDCTL);
       
  3489 	mac->ledctl_mode1 = mac->ledctl_default;
       
  3490 	mac->ledctl_mode2 = mac->ledctl_default;
       
  3491 
       
  3492 	for (i = 0; i < 4; i++) {
       
  3493 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
       
  3494 		shift = (i * 5);
       
  3495 		switch (temp) {
       
  3496 		case ID_LED_ON1_DEF2:
       
  3497 		case ID_LED_ON1_ON2:
       
  3498 		case ID_LED_ON1_OFF2:
       
  3499 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
       
  3500 			mac->ledctl_mode1 |= (ledctl_on << shift);
       
  3501 			break;
       
  3502 		case ID_LED_OFF1_DEF2:
       
  3503 		case ID_LED_OFF1_ON2:
       
  3504 		case ID_LED_OFF1_OFF2:
       
  3505 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
       
  3506 			mac->ledctl_mode1 |= (ledctl_off << shift);
       
  3507 			break;
       
  3508 		default:
       
  3509 			/* Do nothing */
       
  3510 			break;
       
  3511 		}
       
  3512 		switch (temp) {
       
  3513 		case ID_LED_DEF1_ON2:
       
  3514 		case ID_LED_ON1_ON2:
       
  3515 		case ID_LED_OFF1_ON2:
       
  3516 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
       
  3517 			mac->ledctl_mode2 |= (ledctl_on << shift);
       
  3518 			break;
       
  3519 		case ID_LED_DEF1_OFF2:
       
  3520 		case ID_LED_ON1_OFF2:
       
  3521 		case ID_LED_OFF1_OFF2:
       
  3522 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
       
  3523 			mac->ledctl_mode2 |= (ledctl_off << shift);
       
  3524 			break;
       
  3525 		default:
       
  3526 			/* Do nothing */
       
  3527 			break;
       
  3528 		}
       
  3529 	}
       
  3530 
       
  3531 	return 0;
       
  3532 }
       
  3533 
       
  3534 /**
       
  3535  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
       
  3536  *  @hw: pointer to the HW structure
       
  3537  *
       
  3538  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
       
  3539  *  register, so the the bus width is hard coded.
       
  3540  **/
       
  3541 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
       
  3542 {
       
  3543 	struct e1000_bus_info *bus = &hw->bus;
       
  3544 	s32 ret_val;
       
  3545 
       
  3546 	ret_val = e1000e_get_bus_info_pcie(hw);
       
  3547 
       
  3548 	/* ICH devices are "PCI Express"-ish.  They have
       
  3549 	 * a configuration space, but do not contain
       
  3550 	 * PCI Express Capability registers, so bus width
       
  3551 	 * must be hardcoded.
       
  3552 	 */
       
  3553 	if (bus->width == e1000_bus_width_unknown)
       
  3554 		bus->width = e1000_bus_width_pcie_x1;
       
  3555 
       
  3556 	return ret_val;
       
  3557 }
       
  3558 
       
  3559 /**
       
  3560  *  e1000_reset_hw_ich8lan - Reset the hardware
       
  3561  *  @hw: pointer to the HW structure
       
  3562  *
       
  3563  *  Does a full reset of the hardware which includes a reset of the PHY and
       
  3564  *  MAC.
       
  3565  **/
       
  3566 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
       
  3567 {
       
  3568 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  3569 	u16 kum_cfg;
       
  3570 	u32 ctrl, reg;
       
  3571 	s32 ret_val;
       
  3572 
       
  3573 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
       
  3574 	 * on the last TLP read/write transaction when MAC is reset.
       
  3575 	 */
       
  3576 	ret_val = e1000e_disable_pcie_master(hw);
       
  3577 	if (ret_val)
       
  3578 		e_dbg("PCI-E Master disable polling has failed.\n");
       
  3579 
       
  3580 	e_dbg("Masking off all interrupts\n");
       
  3581 	ew32(IMC, 0xffffffff);
       
  3582 
       
  3583 	/* Disable the Transmit and Receive units.  Then delay to allow
       
  3584 	 * any pending transactions to complete before we hit the MAC
       
  3585 	 * with the global reset.
       
  3586 	 */
       
  3587 	ew32(RCTL, 0);
       
  3588 	ew32(TCTL, E1000_TCTL_PSP);
       
  3589 	e1e_flush();
       
  3590 
       
  3591 	usleep_range(10000, 20000);
       
  3592 
       
  3593 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
       
  3594 	if (hw->mac.type == e1000_ich8lan) {
       
  3595 		/* Set Tx and Rx buffer allocation to 8k apiece. */
       
  3596 		ew32(PBA, E1000_PBA_8K);
       
  3597 		/* Set Packet Buffer Size to 16k. */
       
  3598 		ew32(PBS, E1000_PBS_16K);
       
  3599 	}
       
  3600 
       
  3601 	if (hw->mac.type == e1000_pchlan) {
       
  3602 		/* Save the NVM K1 bit setting */
       
  3603 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
       
  3604 		if (ret_val)
       
  3605 			return ret_val;
       
  3606 
       
  3607 		if (kum_cfg & E1000_NVM_K1_ENABLE)
       
  3608 			dev_spec->nvm_k1_enabled = true;
       
  3609 		else
       
  3610 			dev_spec->nvm_k1_enabled = false;
       
  3611 	}
       
  3612 
       
  3613 	ctrl = er32(CTRL);
       
  3614 
       
  3615 	if (!hw->phy.ops.check_reset_block(hw)) {
       
  3616 		/* Full-chip reset requires MAC and PHY reset at the same
       
  3617 		 * time to make sure the interface between MAC and the
       
  3618 		 * external PHY is reset.
       
  3619 		 */
       
  3620 		ctrl |= E1000_CTRL_PHY_RST;
       
  3621 
       
  3622 		/* Gate automatic PHY configuration by hardware on
       
  3623 		 * non-managed 82579
       
  3624 		 */
       
  3625 		if ((hw->mac.type == e1000_pch2lan) &&
       
  3626 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
       
  3627 			e1000_gate_hw_phy_config_ich8lan(hw, true);
       
  3628 	}
       
  3629 	ret_val = e1000_acquire_swflag_ich8lan(hw);
       
  3630 	e_dbg("Issuing a global reset to ich8lan\n");
       
  3631 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
       
  3632 	/* cannot issue a flush here because it hangs the hardware */
       
  3633 	msleep(20);
       
  3634 
       
  3635 	/* Set Phy Config Counter to 50msec */
       
  3636 	if (hw->mac.type == e1000_pch2lan) {
       
  3637 		reg = er32(FEXTNVM3);
       
  3638 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
       
  3639 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
       
  3640 		ew32(FEXTNVM3, reg);
       
  3641 	}
       
  3642 
       
  3643 	if (!ret_val)
       
  3644 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
       
  3645 
       
  3646 	if (ctrl & E1000_CTRL_PHY_RST) {
       
  3647 		ret_val = hw->phy.ops.get_cfg_done(hw);
       
  3648 		if (ret_val)
       
  3649 			return ret_val;
       
  3650 
       
  3651 		ret_val = e1000_post_phy_reset_ich8lan(hw);
       
  3652 		if (ret_val)
       
  3653 			return ret_val;
       
  3654 	}
       
  3655 
       
  3656 	/* For PCH, this write will make sure that any noise
       
  3657 	 * will be detected as a CRC error and be dropped rather than show up
       
  3658 	 * as a bad packet to the DMA engine.
       
  3659 	 */
       
  3660 	if (hw->mac.type == e1000_pchlan)
       
  3661 		ew32(CRC_OFFSET, 0x65656565);
       
  3662 
       
  3663 	ew32(IMC, 0xffffffff);
       
  3664 	er32(ICR);
       
  3665 
       
  3666 	reg = er32(KABGTXD);
       
  3667 	reg |= E1000_KABGTXD_BGSQLBIAS;
       
  3668 	ew32(KABGTXD, reg);
       
  3669 
       
  3670 	return 0;
       
  3671 }
       
  3672 
       
  3673 /**
       
  3674  *  e1000_init_hw_ich8lan - Initialize the hardware
       
  3675  *  @hw: pointer to the HW structure
       
  3676  *
       
  3677  *  Prepares the hardware for transmit and receive by doing the following:
       
  3678  *   - initialize hardware bits
       
  3679  *   - initialize LED identification
       
  3680  *   - setup receive address registers
       
  3681  *   - setup flow control
       
  3682  *   - setup transmit descriptors
       
  3683  *   - clear statistics
       
  3684  **/
       
  3685 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
       
  3686 {
       
  3687 	struct e1000_mac_info *mac = &hw->mac;
       
  3688 	u32 ctrl_ext, txdctl, snoop;
       
  3689 	s32 ret_val;
       
  3690 	u16 i;
       
  3691 
       
  3692 	e1000_initialize_hw_bits_ich8lan(hw);
       
  3693 
       
  3694 	/* Initialize identification LED */
       
  3695 	ret_val = mac->ops.id_led_init(hw);
       
  3696 	/* An error is not fatal and we should not stop init due to this */
       
  3697 	if (ret_val)
       
  3698 		e_dbg("Error initializing identification LED\n");
       
  3699 
       
  3700 	/* Setup the receive address. */
       
  3701 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
       
  3702 
       
  3703 	/* Zero out the Multicast HASH table */
       
  3704 	e_dbg("Zeroing the MTA\n");
       
  3705 	for (i = 0; i < mac->mta_reg_count; i++)
       
  3706 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
       
  3707 
       
  3708 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
       
  3709 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
       
  3710 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
       
  3711 	 */
       
  3712 	if (hw->phy.type == e1000_phy_82578) {
       
  3713 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
       
  3714 		i &= ~BM_WUC_HOST_WU_BIT;
       
  3715 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
       
  3716 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
       
  3717 		if (ret_val)
       
  3718 			return ret_val;
       
  3719 	}
       
  3720 
       
  3721 	/* Setup link and flow control */
       
  3722 	ret_val = mac->ops.setup_link(hw);
       
  3723 
       
  3724 	/* Set the transmit descriptor write-back policy for both queues */
       
  3725 	txdctl = er32(TXDCTL(0));
       
  3726 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
       
  3727 		  E1000_TXDCTL_FULL_TX_DESC_WB);
       
  3728 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
       
  3729 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
       
  3730 	ew32(TXDCTL(0), txdctl);
       
  3731 	txdctl = er32(TXDCTL(1));
       
  3732 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
       
  3733 		  E1000_TXDCTL_FULL_TX_DESC_WB);
       
  3734 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
       
  3735 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
       
  3736 	ew32(TXDCTL(1), txdctl);
       
  3737 
       
  3738 	/* ICH8 has opposite polarity of no_snoop bits.
       
  3739 	 * By default, we should use snoop behavior.
       
  3740 	 */
       
  3741 	if (mac->type == e1000_ich8lan)
       
  3742 		snoop = PCIE_ICH8_SNOOP_ALL;
       
  3743 	else
       
  3744 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
       
  3745 	e1000e_set_pcie_no_snoop(hw, snoop);
       
  3746 
       
  3747 	ctrl_ext = er32(CTRL_EXT);
       
  3748 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
       
  3749 	ew32(CTRL_EXT, ctrl_ext);
       
  3750 
       
  3751 	/* Clear all of the statistics registers (clear on read).  It is
       
  3752 	 * important that we do this after we have tried to establish link
       
  3753 	 * because the symbol error count will increment wildly if there
       
  3754 	 * is no link.
       
  3755 	 */
       
  3756 	e1000_clear_hw_cntrs_ich8lan(hw);
       
  3757 
       
  3758 	return ret_val;
       
  3759 }
       
  3760 
       
  3761 /**
       
  3762  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
       
  3763  *  @hw: pointer to the HW structure
       
  3764  *
       
  3765  *  Sets/Clears required hardware bits necessary for correctly setting up the
       
  3766  *  hardware for transmit and receive.
       
  3767  **/
       
  3768 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
       
  3769 {
       
  3770 	u32 reg;
       
  3771 
       
  3772 	/* Extended Device Control */
       
  3773 	reg = er32(CTRL_EXT);
       
  3774 	reg |= (1 << 22);
       
  3775 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
       
  3776 	if (hw->mac.type >= e1000_pchlan)
       
  3777 		reg |= E1000_CTRL_EXT_PHYPDEN;
       
  3778 	ew32(CTRL_EXT, reg);
       
  3779 
       
  3780 	/* Transmit Descriptor Control 0 */
       
  3781 	reg = er32(TXDCTL(0));
       
  3782 	reg |= (1 << 22);
       
  3783 	ew32(TXDCTL(0), reg);
       
  3784 
       
  3785 	/* Transmit Descriptor Control 1 */
       
  3786 	reg = er32(TXDCTL(1));
       
  3787 	reg |= (1 << 22);
       
  3788 	ew32(TXDCTL(1), reg);
       
  3789 
       
  3790 	/* Transmit Arbitration Control 0 */
       
  3791 	reg = er32(TARC(0));
       
  3792 	if (hw->mac.type == e1000_ich8lan)
       
  3793 		reg |= (1 << 28) | (1 << 29);
       
  3794 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
       
  3795 	ew32(TARC(0), reg);
       
  3796 
       
  3797 	/* Transmit Arbitration Control 1 */
       
  3798 	reg = er32(TARC(1));
       
  3799 	if (er32(TCTL) & E1000_TCTL_MULR)
       
  3800 		reg &= ~(1 << 28);
       
  3801 	else
       
  3802 		reg |= (1 << 28);
       
  3803 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
       
  3804 	ew32(TARC(1), reg);
       
  3805 
       
  3806 	/* Device Status */
       
  3807 	if (hw->mac.type == e1000_ich8lan) {
       
  3808 		reg = er32(STATUS);
       
  3809 		reg &= ~(1 << 31);
       
  3810 		ew32(STATUS, reg);
       
  3811 	}
       
  3812 
       
  3813 	/* work-around descriptor data corruption issue during nfs v2 udp
       
  3814 	 * traffic, just disable the nfs filtering capability
       
  3815 	 */
       
  3816 	reg = er32(RFCTL);
       
  3817 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
       
  3818 
       
  3819 	/* Disable IPv6 extension header parsing because some malformed
       
  3820 	 * IPv6 headers can hang the Rx.
       
  3821 	 */
       
  3822 	if (hw->mac.type == e1000_ich8lan)
       
  3823 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
       
  3824 	ew32(RFCTL, reg);
       
  3825 
       
  3826 	/* Enable ECC on Lynxpoint */
       
  3827 	if (hw->mac.type == e1000_pch_lpt) {
       
  3828 		reg = er32(PBECCSTS);
       
  3829 		reg |= E1000_PBECCSTS_ECC_ENABLE;
       
  3830 		ew32(PBECCSTS, reg);
       
  3831 
       
  3832 		reg = er32(CTRL);
       
  3833 		reg |= E1000_CTRL_MEHE;
       
  3834 		ew32(CTRL, reg);
       
  3835 	}
       
  3836 }
       
  3837 
       
  3838 /**
       
  3839  *  e1000_setup_link_ich8lan - Setup flow control and link settings
       
  3840  *  @hw: pointer to the HW structure
       
  3841  *
       
  3842  *  Determines which flow control settings to use, then configures flow
       
  3843  *  control.  Calls the appropriate media-specific link configuration
       
  3844  *  function.  Assuming the adapter has a valid link partner, a valid link
       
  3845  *  should be established.  Assumes the hardware has previously been reset
       
  3846  *  and the transmitter and receiver are not enabled.
       
  3847  **/
       
  3848 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
       
  3849 {
       
  3850 	s32 ret_val;
       
  3851 
       
  3852 	if (hw->phy.ops.check_reset_block(hw))
       
  3853 		return 0;
       
  3854 
       
  3855 	/* ICH parts do not have a word in the NVM to determine
       
  3856 	 * the default flow control setting, so we explicitly
       
  3857 	 * set it to full.
       
  3858 	 */
       
  3859 	if (hw->fc.requested_mode == e1000_fc_default) {
       
  3860 		/* Workaround h/w hang when Tx flow control enabled */
       
  3861 		if (hw->mac.type == e1000_pchlan)
       
  3862 			hw->fc.requested_mode = e1000_fc_rx_pause;
       
  3863 		else
       
  3864 			hw->fc.requested_mode = e1000_fc_full;
       
  3865 	}
       
  3866 
       
  3867 	/* Save off the requested flow control mode for use later.  Depending
       
  3868 	 * on the link partner's capabilities, we may or may not use this mode.
       
  3869 	 */
       
  3870 	hw->fc.current_mode = hw->fc.requested_mode;
       
  3871 
       
  3872 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
       
  3873 
       
  3874 	/* Continue to configure the copper link. */
       
  3875 	ret_val = hw->mac.ops.setup_physical_interface(hw);
       
  3876 	if (ret_val)
       
  3877 		return ret_val;
       
  3878 
       
  3879 	ew32(FCTTV, hw->fc.pause_time);
       
  3880 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3881 	    (hw->phy.type == e1000_phy_82579) ||
       
  3882 	    (hw->phy.type == e1000_phy_i217) ||
       
  3883 	    (hw->phy.type == e1000_phy_82577)) {
       
  3884 		ew32(FCRTV_PCH, hw->fc.refresh_time);
       
  3885 
       
  3886 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
       
  3887 				   hw->fc.pause_time);
       
  3888 		if (ret_val)
       
  3889 			return ret_val;
       
  3890 	}
       
  3891 
       
  3892 	return e1000e_set_fc_watermarks(hw);
       
  3893 }
       
  3894 
       
  3895 /**
       
  3896  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
       
  3897  *  @hw: pointer to the HW structure
       
  3898  *
       
  3899  *  Configures the kumeran interface to the PHY to wait the appropriate time
       
  3900  *  when polling the PHY, then call the generic setup_copper_link to finish
       
  3901  *  configuring the copper link.
       
  3902  **/
       
  3903 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
       
  3904 {
       
  3905 	u32 ctrl;
       
  3906 	s32 ret_val;
       
  3907 	u16 reg_data;
       
  3908 
       
  3909 	ctrl = er32(CTRL);
       
  3910 	ctrl |= E1000_CTRL_SLU;
       
  3911 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  3912 	ew32(CTRL, ctrl);
       
  3913 
       
  3914 	/* Set the mac to wait the maximum time between each iteration
       
  3915 	 * and increase the max iterations when polling the phy;
       
  3916 	 * this fixes erroneous timeouts at 10Mbps.
       
  3917 	 */
       
  3918 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
       
  3919 	if (ret_val)
       
  3920 		return ret_val;
       
  3921 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
  3922 				       &reg_data);
       
  3923 	if (ret_val)
       
  3924 		return ret_val;
       
  3925 	reg_data |= 0x3F;
       
  3926 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
  3927 					reg_data);
       
  3928 	if (ret_val)
       
  3929 		return ret_val;
       
  3930 
       
  3931 	switch (hw->phy.type) {
       
  3932 	case e1000_phy_igp_3:
       
  3933 		ret_val = e1000e_copper_link_setup_igp(hw);
       
  3934 		if (ret_val)
       
  3935 			return ret_val;
       
  3936 		break;
       
  3937 	case e1000_phy_bm:
       
  3938 	case e1000_phy_82578:
       
  3939 		ret_val = e1000e_copper_link_setup_m88(hw);
       
  3940 		if (ret_val)
       
  3941 			return ret_val;
       
  3942 		break;
       
  3943 	case e1000_phy_82577:
       
  3944 	case e1000_phy_82579:
       
  3945 		ret_val = e1000_copper_link_setup_82577(hw);
       
  3946 		if (ret_val)
       
  3947 			return ret_val;
       
  3948 		break;
       
  3949 	case e1000_phy_ife:
       
  3950 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
       
  3951 		if (ret_val)
       
  3952 			return ret_val;
       
  3953 
       
  3954 		reg_data &= ~IFE_PMC_AUTO_MDIX;
       
  3955 
       
  3956 		switch (hw->phy.mdix) {
       
  3957 		case 1:
       
  3958 			reg_data &= ~IFE_PMC_FORCE_MDIX;
       
  3959 			break;
       
  3960 		case 2:
       
  3961 			reg_data |= IFE_PMC_FORCE_MDIX;
       
  3962 			break;
       
  3963 		case 0:
       
  3964 		default:
       
  3965 			reg_data |= IFE_PMC_AUTO_MDIX;
       
  3966 			break;
       
  3967 		}
       
  3968 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
       
  3969 		if (ret_val)
       
  3970 			return ret_val;
       
  3971 		break;
       
  3972 	default:
       
  3973 		break;
       
  3974 	}
       
  3975 
       
  3976 	return e1000e_setup_copper_link(hw);
       
  3977 }
       
  3978 
       
  3979 /**
       
  3980  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
       
  3981  *  @hw: pointer to the HW structure
       
  3982  *
       
  3983  *  Calls the PHY specific link setup function and then calls the
       
  3984  *  generic setup_copper_link to finish configuring the link for
       
  3985  *  Lynxpoint PCH devices
       
  3986  **/
       
  3987 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
       
  3988 {
       
  3989 	u32 ctrl;
       
  3990 	s32 ret_val;
       
  3991 
       
  3992 	ctrl = er32(CTRL);
       
  3993 	ctrl |= E1000_CTRL_SLU;
       
  3994 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  3995 	ew32(CTRL, ctrl);
       
  3996 
       
  3997 	ret_val = e1000_copper_link_setup_82577(hw);
       
  3998 	if (ret_val)
       
  3999 		return ret_val;
       
  4000 
       
  4001 	return e1000e_setup_copper_link(hw);
       
  4002 }
       
  4003 
       
  4004 /**
       
  4005  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
       
  4006  *  @hw: pointer to the HW structure
       
  4007  *  @speed: pointer to store current link speed
       
  4008  *  @duplex: pointer to store the current link duplex
       
  4009  *
       
  4010  *  Calls the generic get_speed_and_duplex to retrieve the current link
       
  4011  *  information and then calls the Kumeran lock loss workaround for links at
       
  4012  *  gigabit speeds.
       
  4013  **/
       
  4014 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
       
  4015 					  u16 *duplex)
       
  4016 {
       
  4017 	s32 ret_val;
       
  4018 
       
  4019 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
       
  4020 	if (ret_val)
       
  4021 		return ret_val;
       
  4022 
       
  4023 	if ((hw->mac.type == e1000_ich8lan) &&
       
  4024 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
       
  4025 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
       
  4026 	}
       
  4027 
       
  4028 	return ret_val;
       
  4029 }
       
  4030 
       
  4031 /**
       
  4032  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
       
  4033  *  @hw: pointer to the HW structure
       
  4034  *
       
  4035  *  Work-around for 82566 Kumeran PCS lock loss:
       
  4036  *  On link status change (i.e. PCI reset, speed change) and link is up and
       
  4037  *  speed is gigabit-
       
  4038  *    0) if workaround is optionally disabled do nothing
       
  4039  *    1) wait 1ms for Kumeran link to come up
       
  4040  *    2) check Kumeran Diagnostic register PCS lock loss bit
       
  4041  *    3) if not set the link is locked (all is good), otherwise...
       
  4042  *    4) reset the PHY
       
  4043  *    5) repeat up to 10 times
       
  4044  *  Note: this is only called for IGP3 copper when speed is 1gb.
       
  4045  **/
       
  4046 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
       
  4047 {
       
  4048 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  4049 	u32 phy_ctrl;
       
  4050 	s32 ret_val;
       
  4051 	u16 i, data;
       
  4052 	bool link;
       
  4053 
       
  4054 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
       
  4055 		return 0;
       
  4056 
       
  4057 	/* Make sure link is up before proceeding.  If not just return.
       
  4058 	 * Attempting this while link is negotiating fouled up link
       
  4059 	 * stability
       
  4060 	 */
       
  4061 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  4062 	if (!link)
       
  4063 		return 0;
       
  4064 
       
  4065 	for (i = 0; i < 10; i++) {
       
  4066 		/* read once to clear */
       
  4067 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
       
  4068 		if (ret_val)
       
  4069 			return ret_val;
       
  4070 		/* and again to get new status */
       
  4071 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
       
  4072 		if (ret_val)
       
  4073 			return ret_val;
       
  4074 
       
  4075 		/* check for PCS lock */
       
  4076 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
       
  4077 			return 0;
       
  4078 
       
  4079 		/* Issue PHY reset */
       
  4080 		e1000_phy_hw_reset(hw);
       
  4081 		mdelay(5);
       
  4082 	}
       
  4083 	/* Disable GigE link negotiation */
       
  4084 	phy_ctrl = er32(PHY_CTRL);
       
  4085 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
       
  4086 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  4087 	ew32(PHY_CTRL, phy_ctrl);
       
  4088 
       
  4089 	/* Call gig speed drop workaround on Gig disable before accessing
       
  4090 	 * any PHY registers
       
  4091 	 */
       
  4092 	e1000e_gig_downshift_workaround_ich8lan(hw);
       
  4093 
       
  4094 	/* unable to acquire PCS lock */
       
  4095 	return -E1000_ERR_PHY;
       
  4096 }
       
  4097 
       
  4098 /**
       
  4099  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
       
  4100  *  @hw: pointer to the HW structure
       
  4101  *  @state: boolean value used to set the current Kumeran workaround state
       
  4102  *
       
  4103  *  If ICH8, set the current Kumeran workaround state (enabled - true
       
  4104  *  /disabled - false).
       
  4105  **/
       
  4106 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
       
  4107 						  bool state)
       
  4108 {
       
  4109 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  4110 
       
  4111 	if (hw->mac.type != e1000_ich8lan) {
       
  4112 		e_dbg("Workaround applies to ICH8 only.\n");
       
  4113 		return;
       
  4114 	}
       
  4115 
       
  4116 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
       
  4117 }
       
  4118 
       
  4119 /**
       
  4120  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
       
  4121  *  @hw: pointer to the HW structure
       
  4122  *
       
  4123  *  Workaround for 82566 power-down on D3 entry:
       
  4124  *    1) disable gigabit link
       
  4125  *    2) write VR power-down enable
       
  4126  *    3) read it back
       
  4127  *  Continue if successful, else issue LCD reset and repeat
       
  4128  **/
       
  4129 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
       
  4130 {
       
  4131 	u32 reg;
       
  4132 	u16 data;
       
  4133 	u8 retry = 0;
       
  4134 
       
  4135 	if (hw->phy.type != e1000_phy_igp_3)
       
  4136 		return;
       
  4137 
       
  4138 	/* Try the workaround twice (if needed) */
       
  4139 	do {
       
  4140 		/* Disable link */
       
  4141 		reg = er32(PHY_CTRL);
       
  4142 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
       
  4143 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  4144 		ew32(PHY_CTRL, reg);
       
  4145 
       
  4146 		/* Call gig speed drop workaround on Gig disable before
       
  4147 		 * accessing any PHY registers
       
  4148 		 */
       
  4149 		if (hw->mac.type == e1000_ich8lan)
       
  4150 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  4151 
       
  4152 		/* Write VR power-down enable */
       
  4153 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
       
  4154 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
       
  4155 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
       
  4156 
       
  4157 		/* Read it back and test */
       
  4158 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
       
  4159 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
       
  4160 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
       
  4161 			break;
       
  4162 
       
  4163 		/* Issue PHY reset and repeat at most one more time */
       
  4164 		reg = er32(CTRL);
       
  4165 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
       
  4166 		retry++;
       
  4167 	} while (retry);
       
  4168 }
       
  4169 
       
  4170 /**
       
  4171  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
       
  4172  *  @hw: pointer to the HW structure
       
  4173  *
       
  4174  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
       
  4175  *  LPLU, Gig disable, MDIC PHY reset):
       
  4176  *    1) Set Kumeran Near-end loopback
       
  4177  *    2) Clear Kumeran Near-end loopback
       
  4178  *  Should only be called for ICH8[m] devices with any 1G Phy.
       
  4179  **/
       
  4180 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
       
  4181 {
       
  4182 	s32 ret_val;
       
  4183 	u16 reg_data;
       
  4184 
       
  4185 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
       
  4186 		return;
       
  4187 
       
  4188 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  4189 				       &reg_data);
       
  4190 	if (ret_val)
       
  4191 		return;
       
  4192 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
       
  4193 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  4194 					reg_data);
       
  4195 	if (ret_val)
       
  4196 		return;
       
  4197 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
       
  4198 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
       
  4199 }
       
  4200 
       
  4201 /**
       
  4202  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
       
  4203  *  @hw: pointer to the HW structure
       
  4204  *
       
  4205  *  During S0 to Sx transition, it is possible the link remains at gig
       
  4206  *  instead of negotiating to a lower speed.  Before going to Sx, set
       
  4207  *  'Gig Disable' to force link speed negotiation to a lower speed based on
       
  4208  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
       
  4209  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
       
  4210  *  needs to be written.
       
  4211  *  Parts that support (and are linked to a partner which support) EEE in
       
  4212  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
       
  4213  *  than 10Mbps w/o EEE.
       
  4214  **/
       
  4215 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
       
  4216 {
       
  4217 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  4218 	u32 phy_ctrl;
       
  4219 	s32 ret_val;
       
  4220 
       
  4221 	phy_ctrl = er32(PHY_CTRL);
       
  4222 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
       
  4223 
       
  4224 	if (hw->phy.type == e1000_phy_i217) {
       
  4225 		u16 phy_reg, device_id = hw->adapter->pdev->device;
       
  4226 
       
  4227 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
       
  4228 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
       
  4229 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
       
  4230 		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
       
  4231 			u32 fextnvm6 = er32(FEXTNVM6);
       
  4232 
       
  4233 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
       
  4234 		}
       
  4235 
       
  4236 		ret_val = hw->phy.ops.acquire(hw);
       
  4237 		if (ret_val)
       
  4238 			goto out;
       
  4239 
       
  4240 		if (!dev_spec->eee_disable) {
       
  4241 			u16 eee_advert;
       
  4242 
       
  4243 			ret_val =
       
  4244 			    e1000_read_emi_reg_locked(hw,
       
  4245 						      I217_EEE_ADVERTISEMENT,
       
  4246 						      &eee_advert);
       
  4247 			if (ret_val)
       
  4248 				goto release;
       
  4249 
       
  4250 			/* Disable LPLU if both link partners support 100BaseT
       
  4251 			 * EEE and 100Full is advertised on both ends of the
       
  4252 			 * link.
       
  4253 			 */
       
  4254 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
       
  4255 			    (dev_spec->eee_lp_ability &
       
  4256 			     I82579_EEE_100_SUPPORTED) &&
       
  4257 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
       
  4258 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
       
  4259 					      E1000_PHY_CTRL_NOND0A_LPLU);
       
  4260 		}
       
  4261 
       
  4262 		/* For i217 Intel Rapid Start Technology support,
       
  4263 		 * when the system is going into Sx and no manageability engine
       
  4264 		 * is present, the driver must configure proxy to reset only on
       
  4265 		 * power good.  LPI (Low Power Idle) state must also reset only
       
  4266 		 * on power good, as well as the MTA (Multicast table array).
       
  4267 		 * The SMBus release must also be disabled on LCD reset.
       
  4268 		 */
       
  4269 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
       
  4270 			/* Enable proxy to reset only on power good. */
       
  4271 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
       
  4272 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
       
  4273 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
       
  4274 
       
  4275 			/* Set bit enable LPI (EEE) to reset only on
       
  4276 			 * power good.
       
  4277 			 */
       
  4278 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
       
  4279 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
       
  4280 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
       
  4281 
       
  4282 			/* Disable the SMB release on LCD reset. */
       
  4283 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
       
  4284 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
       
  4285 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
       
  4286 		}
       
  4287 
       
  4288 		/* Enable MTA to reset for Intel Rapid Start Technology
       
  4289 		 * Support
       
  4290 		 */
       
  4291 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
       
  4292 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
       
  4293 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
       
  4294 
       
  4295 release:
       
  4296 		hw->phy.ops.release(hw);
       
  4297 	}
       
  4298 out:
       
  4299 	ew32(PHY_CTRL, phy_ctrl);
       
  4300 
       
  4301 	if (hw->mac.type == e1000_ich8lan)
       
  4302 		e1000e_gig_downshift_workaround_ich8lan(hw);
       
  4303 
       
  4304 	if (hw->mac.type >= e1000_pchlan) {
       
  4305 		e1000_oem_bits_config_ich8lan(hw, false);
       
  4306 
       
  4307 		/* Reset PHY to activate OEM bits on 82577/8 */
       
  4308 		if (hw->mac.type == e1000_pchlan)
       
  4309 			e1000e_phy_hw_reset_generic(hw);
       
  4310 
       
  4311 		ret_val = hw->phy.ops.acquire(hw);
       
  4312 		if (ret_val)
       
  4313 			return;
       
  4314 		e1000_write_smbus_addr(hw);
       
  4315 		hw->phy.ops.release(hw);
       
  4316 	}
       
  4317 }
       
  4318 
       
  4319 /**
       
  4320  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
       
  4321  *  @hw: pointer to the HW structure
       
  4322  *
       
  4323  *  During Sx to S0 transitions on non-managed devices or managed devices
       
  4324  *  on which PHY resets are not blocked, if the PHY registers cannot be
       
  4325  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
       
  4326  *  the PHY.
       
  4327  *  On i217, setup Intel Rapid Start Technology.
       
  4328  **/
       
  4329 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
       
  4330 {
       
  4331 	s32 ret_val;
       
  4332 
       
  4333 	if (hw->mac.type < e1000_pch2lan)
       
  4334 		return;
       
  4335 
       
  4336 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
       
  4337 	if (ret_val) {
       
  4338 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
       
  4339 		return;
       
  4340 	}
       
  4341 
       
  4342 	/* For i217 Intel Rapid Start Technology support when the system
       
  4343 	 * is transitioning from Sx and no manageability engine is present
       
  4344 	 * configure SMBus to restore on reset, disable proxy, and enable
       
  4345 	 * the reset on MTA (Multicast table array).
       
  4346 	 */
       
  4347 	if (hw->phy.type == e1000_phy_i217) {
       
  4348 		u16 phy_reg;
       
  4349 
       
  4350 		ret_val = hw->phy.ops.acquire(hw);
       
  4351 		if (ret_val) {
       
  4352 			e_dbg("Failed to setup iRST\n");
       
  4353 			return;
       
  4354 		}
       
  4355 
       
  4356 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
       
  4357 			/* Restore clear on SMB if no manageability engine
       
  4358 			 * is present
       
  4359 			 */
       
  4360 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
       
  4361 			if (ret_val)
       
  4362 				goto release;
       
  4363 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
       
  4364 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
       
  4365 
       
  4366 			/* Disable Proxy */
       
  4367 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
       
  4368 		}
       
  4369 		/* Enable reset on MTA */
       
  4370 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
       
  4371 		if (ret_val)
       
  4372 			goto release;
       
  4373 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
       
  4374 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
       
  4375 release:
       
  4376 		if (ret_val)
       
  4377 			e_dbg("Error %d in resume workarounds\n", ret_val);
       
  4378 		hw->phy.ops.release(hw);
       
  4379 	}
       
  4380 }
       
  4381 
       
  4382 /**
       
  4383  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
       
  4384  *  @hw: pointer to the HW structure
       
  4385  *
       
  4386  *  Return the LED back to the default configuration.
       
  4387  **/
       
  4388 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
       
  4389 {
       
  4390 	if (hw->phy.type == e1000_phy_ife)
       
  4391 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  4392 
       
  4393 	ew32(LEDCTL, hw->mac.ledctl_default);
       
  4394 	return 0;
       
  4395 }
       
  4396 
       
  4397 /**
       
  4398  *  e1000_led_on_ich8lan - Turn LEDs on
       
  4399  *  @hw: pointer to the HW structure
       
  4400  *
       
  4401  *  Turn on the LEDs.
       
  4402  **/
       
  4403 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
       
  4404 {
       
  4405 	if (hw->phy.type == e1000_phy_ife)
       
  4406 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  4407 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
       
  4408 
       
  4409 	ew32(LEDCTL, hw->mac.ledctl_mode2);
       
  4410 	return 0;
       
  4411 }
       
  4412 
       
  4413 /**
       
  4414  *  e1000_led_off_ich8lan - Turn LEDs off
       
  4415  *  @hw: pointer to the HW structure
       
  4416  *
       
  4417  *  Turn off the LEDs.
       
  4418  **/
       
  4419 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
       
  4420 {
       
  4421 	if (hw->phy.type == e1000_phy_ife)
       
  4422 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  4423 				(IFE_PSCL_PROBE_MODE |
       
  4424 				 IFE_PSCL_PROBE_LEDS_OFF));
       
  4425 
       
  4426 	ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  4427 	return 0;
       
  4428 }
       
  4429 
       
  4430 /**
       
  4431  *  e1000_setup_led_pchlan - Configures SW controllable LED
       
  4432  *  @hw: pointer to the HW structure
       
  4433  *
       
  4434  *  This prepares the SW controllable LED for use.
       
  4435  **/
       
  4436 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
       
  4437 {
       
  4438 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
       
  4439 }
       
  4440 
       
  4441 /**
       
  4442  *  e1000_cleanup_led_pchlan - Restore the default LED operation
       
  4443  *  @hw: pointer to the HW structure
       
  4444  *
       
  4445  *  Return the LED back to the default configuration.
       
  4446  **/
       
  4447 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
       
  4448 {
       
  4449 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
       
  4450 }
       
  4451 
       
  4452 /**
       
  4453  *  e1000_led_on_pchlan - Turn LEDs on
       
  4454  *  @hw: pointer to the HW structure
       
  4455  *
       
  4456  *  Turn on the LEDs.
       
  4457  **/
       
  4458 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
       
  4459 {
       
  4460 	u16 data = (u16)hw->mac.ledctl_mode2;
       
  4461 	u32 i, led;
       
  4462 
       
  4463 	/* If no link, then turn LED on by setting the invert bit
       
  4464 	 * for each LED that's mode is "link_up" in ledctl_mode2.
       
  4465 	 */
       
  4466 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
       
  4467 		for (i = 0; i < 3; i++) {
       
  4468 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
       
  4469 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
       
  4470 			    E1000_LEDCTL_MODE_LINK_UP)
       
  4471 				continue;
       
  4472 			if (led & E1000_PHY_LED0_IVRT)
       
  4473 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
       
  4474 			else
       
  4475 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
       
  4476 		}
       
  4477 	}
       
  4478 
       
  4479 	return e1e_wphy(hw, HV_LED_CONFIG, data);
       
  4480 }
       
  4481 
       
  4482 /**
       
  4483  *  e1000_led_off_pchlan - Turn LEDs off
       
  4484  *  @hw: pointer to the HW structure
       
  4485  *
       
  4486  *  Turn off the LEDs.
       
  4487  **/
       
  4488 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
       
  4489 {
       
  4490 	u16 data = (u16)hw->mac.ledctl_mode1;
       
  4491 	u32 i, led;
       
  4492 
       
  4493 	/* If no link, then turn LED off by clearing the invert bit
       
  4494 	 * for each LED that's mode is "link_up" in ledctl_mode1.
       
  4495 	 */
       
  4496 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
       
  4497 		for (i = 0; i < 3; i++) {
       
  4498 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
       
  4499 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
       
  4500 			    E1000_LEDCTL_MODE_LINK_UP)
       
  4501 				continue;
       
  4502 			if (led & E1000_PHY_LED0_IVRT)
       
  4503 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
       
  4504 			else
       
  4505 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
       
  4506 		}
       
  4507 	}
       
  4508 
       
  4509 	return e1e_wphy(hw, HV_LED_CONFIG, data);
       
  4510 }
       
  4511 
       
  4512 /**
       
  4513  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
       
  4514  *  @hw: pointer to the HW structure
       
  4515  *
       
  4516  *  Read appropriate register for the config done bit for completion status
       
  4517  *  and configure the PHY through s/w for EEPROM-less parts.
       
  4518  *
       
  4519  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
       
  4520  *  config done bit, so only an error is logged and continues.  If we were
       
  4521  *  to return with error, EEPROM-less silicon would not be able to be reset
       
  4522  *  or change link.
       
  4523  **/
       
  4524 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
       
  4525 {
       
  4526 	s32 ret_val = 0;
       
  4527 	u32 bank = 0;
       
  4528 	u32 status;
       
  4529 
       
  4530 	e1000e_get_cfg_done_generic(hw);
       
  4531 
       
  4532 	/* Wait for indication from h/w that it has completed basic config */
       
  4533 	if (hw->mac.type >= e1000_ich10lan) {
       
  4534 		e1000_lan_init_done_ich8lan(hw);
       
  4535 	} else {
       
  4536 		ret_val = e1000e_get_auto_rd_done(hw);
       
  4537 		if (ret_val) {
       
  4538 			/* When auto config read does not complete, do not
       
  4539 			 * return with an error. This can happen in situations
       
  4540 			 * where there is no eeprom and prevents getting link.
       
  4541 			 */
       
  4542 			e_dbg("Auto Read Done did not complete\n");
       
  4543 			ret_val = 0;
       
  4544 		}
       
  4545 	}
       
  4546 
       
  4547 	/* Clear PHY Reset Asserted bit */
       
  4548 	status = er32(STATUS);
       
  4549 	if (status & E1000_STATUS_PHYRA)
       
  4550 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
       
  4551 	else
       
  4552 		e_dbg("PHY Reset Asserted not set - needs delay\n");
       
  4553 
       
  4554 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
       
  4555 	if (hw->mac.type <= e1000_ich9lan) {
       
  4556 		if (!(er32(EECD) & E1000_EECD_PRES) &&
       
  4557 		    (hw->phy.type == e1000_phy_igp_3)) {
       
  4558 			e1000e_phy_init_script_igp3(hw);
       
  4559 		}
       
  4560 	} else {
       
  4561 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
       
  4562 			/* Maybe we should do a basic PHY config */
       
  4563 			e_dbg("EEPROM not present\n");
       
  4564 			ret_val = -E1000_ERR_CONFIG;
       
  4565 		}
       
  4566 	}
       
  4567 
       
  4568 	return ret_val;
       
  4569 }
       
  4570 
       
  4571 /**
       
  4572  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
       
  4573  * @hw: pointer to the HW structure
       
  4574  *
       
  4575  * In the case of a PHY power down to save power, or to turn off link during a
       
  4576  * driver unload, or wake on lan is not enabled, remove the link.
       
  4577  **/
       
  4578 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
       
  4579 {
       
  4580 	/* If the management interface is not enabled, then power down */
       
  4581 	if (!(hw->mac.ops.check_mng_mode(hw) ||
       
  4582 	      hw->phy.ops.check_reset_block(hw)))
       
  4583 		e1000_power_down_phy_copper(hw);
       
  4584 }
       
  4585 
       
  4586 /**
       
  4587  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
       
  4588  *  @hw: pointer to the HW structure
       
  4589  *
       
  4590  *  Clears hardware counters specific to the silicon family and calls
       
  4591  *  clear_hw_cntrs_generic to clear all general purpose counters.
       
  4592  **/
       
  4593 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
       
  4594 {
       
  4595 	u16 phy_data;
       
  4596 	s32 ret_val;
       
  4597 
       
  4598 	e1000e_clear_hw_cntrs_base(hw);
       
  4599 
       
  4600 	er32(ALGNERRC);
       
  4601 	er32(RXERRC);
       
  4602 	er32(TNCRS);
       
  4603 	er32(CEXTERR);
       
  4604 	er32(TSCTC);
       
  4605 	er32(TSCTFC);
       
  4606 
       
  4607 	er32(MGTPRC);
       
  4608 	er32(MGTPDC);
       
  4609 	er32(MGTPTC);
       
  4610 
       
  4611 	er32(IAC);
       
  4612 	er32(ICRXOC);
       
  4613 
       
  4614 	/* Clear PHY statistics registers */
       
  4615 	if ((hw->phy.type == e1000_phy_82578) ||
       
  4616 	    (hw->phy.type == e1000_phy_82579) ||
       
  4617 	    (hw->phy.type == e1000_phy_i217) ||
       
  4618 	    (hw->phy.type == e1000_phy_82577)) {
       
  4619 		ret_val = hw->phy.ops.acquire(hw);
       
  4620 		if (ret_val)
       
  4621 			return;
       
  4622 		ret_val = hw->phy.ops.set_page(hw,
       
  4623 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
       
  4624 		if (ret_val)
       
  4625 			goto release;
       
  4626 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
       
  4627 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
       
  4628 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
       
  4629 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
       
  4630 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
       
  4631 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
       
  4632 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
       
  4633 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
       
  4634 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
       
  4635 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
       
  4636 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
       
  4637 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
       
  4638 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
       
  4639 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
       
  4640 release:
       
  4641 		hw->phy.ops.release(hw);
       
  4642 	}
       
  4643 }
       
  4644 
       
  4645 static const struct e1000_mac_operations ich8_mac_ops = {
       
  4646 	/* check_mng_mode dependent on mac type */
       
  4647 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
       
  4648 	/* cleanup_led dependent on mac type */
       
  4649 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
       
  4650 	.get_bus_info		= e1000_get_bus_info_ich8lan,
       
  4651 	.set_lan_id		= e1000_set_lan_id_single_port,
       
  4652 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
       
  4653 	/* led_on dependent on mac type */
       
  4654 	/* led_off dependent on mac type */
       
  4655 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
       
  4656 	.reset_hw		= e1000_reset_hw_ich8lan,
       
  4657 	.init_hw		= e1000_init_hw_ich8lan,
       
  4658 	.setup_link		= e1000_setup_link_ich8lan,
       
  4659 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
       
  4660 	/* id_led_init dependent on mac type */
       
  4661 	.config_collision_dist	= e1000e_config_collision_dist_generic,
       
  4662 	.rar_set		= e1000e_rar_set_generic,
       
  4663 };
       
  4664 
       
  4665 static const struct e1000_phy_operations ich8_phy_ops = {
       
  4666 	.acquire		= e1000_acquire_swflag_ich8lan,
       
  4667 	.check_reset_block	= e1000_check_reset_block_ich8lan,
       
  4668 	.commit			= NULL,
       
  4669 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
       
  4670 	.get_cable_length	= e1000e_get_cable_length_igp_2,
       
  4671 	.read_reg		= e1000e_read_phy_reg_igp,
       
  4672 	.release		= e1000_release_swflag_ich8lan,
       
  4673 	.reset			= e1000_phy_hw_reset_ich8lan,
       
  4674 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
       
  4675 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
       
  4676 	.write_reg		= e1000e_write_phy_reg_igp,
       
  4677 };
       
  4678 
       
  4679 static const struct e1000_nvm_operations ich8_nvm_ops = {
       
  4680 	.acquire		= e1000_acquire_nvm_ich8lan,
       
  4681 	.read			= e1000_read_nvm_ich8lan,
       
  4682 	.release		= e1000_release_nvm_ich8lan,
       
  4683 	.reload			= e1000e_reload_nvm_generic,
       
  4684 	.update			= e1000_update_nvm_checksum_ich8lan,
       
  4685 	.valid_led_default	= e1000_valid_led_default_ich8lan,
       
  4686 	.validate		= e1000_validate_nvm_checksum_ich8lan,
       
  4687 	.write			= e1000_write_nvm_ich8lan,
       
  4688 };
       
  4689 
       
  4690 const struct e1000_info e1000_ich8_info = {
       
  4691 	.mac			= e1000_ich8lan,
       
  4692 	.flags			= FLAG_HAS_WOL
       
  4693 				  | FLAG_IS_ICH
       
  4694 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4695 				  | FLAG_HAS_AMT
       
  4696 				  | FLAG_HAS_FLASH
       
  4697 				  | FLAG_APME_IN_WUC,
       
  4698 	.pba			= 8,
       
  4699 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
       
  4700 	.get_variants		= e1000_get_variants_ich8lan,
       
  4701 	.mac_ops		= &ich8_mac_ops,
       
  4702 	.phy_ops		= &ich8_phy_ops,
       
  4703 	.nvm_ops		= &ich8_nvm_ops,
       
  4704 };
       
  4705 
       
  4706 const struct e1000_info e1000_ich9_info = {
       
  4707 	.mac			= e1000_ich9lan,
       
  4708 	.flags			= FLAG_HAS_JUMBO_FRAMES
       
  4709 				  | FLAG_IS_ICH
       
  4710 				  | FLAG_HAS_WOL
       
  4711 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4712 				  | FLAG_HAS_AMT
       
  4713 				  | FLAG_HAS_FLASH
       
  4714 				  | FLAG_APME_IN_WUC,
       
  4715 	.pba			= 18,
       
  4716 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  4717 	.get_variants		= e1000_get_variants_ich8lan,
       
  4718 	.mac_ops		= &ich8_mac_ops,
       
  4719 	.phy_ops		= &ich8_phy_ops,
       
  4720 	.nvm_ops		= &ich8_nvm_ops,
       
  4721 };
       
  4722 
       
  4723 const struct e1000_info e1000_ich10_info = {
       
  4724 	.mac			= e1000_ich10lan,
       
  4725 	.flags			= FLAG_HAS_JUMBO_FRAMES
       
  4726 				  | FLAG_IS_ICH
       
  4727 				  | FLAG_HAS_WOL
       
  4728 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4729 				  | FLAG_HAS_AMT
       
  4730 				  | FLAG_HAS_FLASH
       
  4731 				  | FLAG_APME_IN_WUC,
       
  4732 	.pba			= 18,
       
  4733 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  4734 	.get_variants		= e1000_get_variants_ich8lan,
       
  4735 	.mac_ops		= &ich8_mac_ops,
       
  4736 	.phy_ops		= &ich8_phy_ops,
       
  4737 	.nvm_ops		= &ich8_nvm_ops,
       
  4738 };
       
  4739 
       
  4740 const struct e1000_info e1000_pch_info = {
       
  4741 	.mac			= e1000_pchlan,
       
  4742 	.flags			= FLAG_IS_ICH
       
  4743 				  | FLAG_HAS_WOL
       
  4744 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4745 				  | FLAG_HAS_AMT
       
  4746 				  | FLAG_HAS_FLASH
       
  4747 				  | FLAG_HAS_JUMBO_FRAMES
       
  4748 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
       
  4749 				  | FLAG_APME_IN_WUC,
       
  4750 	.flags2			= FLAG2_HAS_PHY_STATS,
       
  4751 	.pba			= 26,
       
  4752 	.max_hw_frame_size	= 4096,
       
  4753 	.get_variants		= e1000_get_variants_ich8lan,
       
  4754 	.mac_ops		= &ich8_mac_ops,
       
  4755 	.phy_ops		= &ich8_phy_ops,
       
  4756 	.nvm_ops		= &ich8_nvm_ops,
       
  4757 };
       
  4758 
       
  4759 const struct e1000_info e1000_pch2_info = {
       
  4760 	.mac			= e1000_pch2lan,
       
  4761 	.flags			= FLAG_IS_ICH
       
  4762 				  | FLAG_HAS_WOL
       
  4763 				  | FLAG_HAS_HW_TIMESTAMP
       
  4764 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4765 				  | FLAG_HAS_AMT
       
  4766 				  | FLAG_HAS_FLASH
       
  4767 				  | FLAG_HAS_JUMBO_FRAMES
       
  4768 				  | FLAG_APME_IN_WUC,
       
  4769 	.flags2			= FLAG2_HAS_PHY_STATS
       
  4770 				  | FLAG2_HAS_EEE,
       
  4771 	.pba			= 26,
       
  4772 	.max_hw_frame_size	= 9018,
       
  4773 	.get_variants		= e1000_get_variants_ich8lan,
       
  4774 	.mac_ops		= &ich8_mac_ops,
       
  4775 	.phy_ops		= &ich8_phy_ops,
       
  4776 	.nvm_ops		= &ich8_nvm_ops,
       
  4777 };
       
  4778 
       
  4779 const struct e1000_info e1000_pch_lpt_info = {
       
  4780 	.mac			= e1000_pch_lpt,
       
  4781 	.flags			= FLAG_IS_ICH
       
  4782 				  | FLAG_HAS_WOL
       
  4783 				  | FLAG_HAS_HW_TIMESTAMP
       
  4784 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4785 				  | FLAG_HAS_AMT
       
  4786 				  | FLAG_HAS_FLASH
       
  4787 				  | FLAG_HAS_JUMBO_FRAMES
       
  4788 				  | FLAG_APME_IN_WUC,
       
  4789 	.flags2			= FLAG2_HAS_PHY_STATS
       
  4790 				  | FLAG2_HAS_EEE,
       
  4791 	.pba			= 26,
       
  4792 	.max_hw_frame_size	= 9018,
       
  4793 	.get_variants		= e1000_get_variants_ich8lan,
       
  4794 	.mac_ops		= &ich8_mac_ops,
       
  4795 	.phy_ops		= &ich8_phy_ops,
       
  4796 	.nvm_ops		= &ich8_nvm_ops,
       
  4797 };