devices/e1000e/e1000-3.14-orig.h
branchstable-1.5
changeset 2587 afd76ee3aa87
equal deleted inserted replaced
2586:5b89b4e38cdc 2587:afd76ee3aa87
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2013 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* Linux PRO/1000 Ethernet Driver main header file */
       
    30 
       
    31 #ifndef _E1000_H_
       
    32 #define _E1000_H_
       
    33 
       
    34 #include <linux/bitops.h>
       
    35 #include <linux/types.h>
       
    36 #include <linux/timer.h>
       
    37 #include <linux/workqueue.h>
       
    38 #include <linux/io.h>
       
    39 #include <linux/netdevice.h>
       
    40 #include <linux/pci.h>
       
    41 #include <linux/pci-aspm.h>
       
    42 #include <linux/crc32.h>
       
    43 #include <linux/if_vlan.h>
       
    44 #include <linux/clocksource.h>
       
    45 #include <linux/net_tstamp.h>
       
    46 #include <linux/ptp_clock_kernel.h>
       
    47 #include <linux/ptp_classify.h>
       
    48 #include <linux/mii.h>
       
    49 #include <linux/mdio.h>
       
    50 #include "hw.h"
       
    51 
       
    52 struct e1000_info;
       
    53 
       
    54 #define e_dbg(format, arg...) \
       
    55 	netdev_dbg(hw->adapter->netdev, format, ## arg)
       
    56 #define e_err(format, arg...) \
       
    57 	netdev_err(adapter->netdev, format, ## arg)
       
    58 #define e_info(format, arg...) \
       
    59 	netdev_info(adapter->netdev, format, ## arg)
       
    60 #define e_warn(format, arg...) \
       
    61 	netdev_warn(adapter->netdev, format, ## arg)
       
    62 #define e_notice(format, arg...) \
       
    63 	netdev_notice(adapter->netdev, format, ## arg)
       
    64 
       
    65 /* Interrupt modes, as used by the IntMode parameter */
       
    66 #define E1000E_INT_MODE_LEGACY		0
       
    67 #define E1000E_INT_MODE_MSI		1
       
    68 #define E1000E_INT_MODE_MSIX		2
       
    69 
       
    70 /* Tx/Rx descriptor defines */
       
    71 #define E1000_DEFAULT_TXD		256
       
    72 #define E1000_MAX_TXD			4096
       
    73 #define E1000_MIN_TXD			64
       
    74 
       
    75 #define E1000_DEFAULT_RXD		256
       
    76 #define E1000_MAX_RXD			4096
       
    77 #define E1000_MIN_RXD			64
       
    78 
       
    79 #define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
       
    80 #define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
       
    81 
       
    82 #define E1000_FC_PAUSE_TIME		0x0680 /* 858 usec */
       
    83 
       
    84 /* How many Tx Descriptors do we need to call netif_wake_queue ? */
       
    85 /* How many Rx Buffers do we bundle into one write to the hardware ? */
       
    86 #define E1000_RX_BUFFER_WRITE		16 /* Must be power of 2 */
       
    87 
       
    88 #define AUTO_ALL_MODES			0
       
    89 #define E1000_EEPROM_APME		0x0400
       
    90 
       
    91 #define E1000_MNG_VLAN_NONE		(-1)
       
    92 
       
    93 #define DEFAULT_JUMBO			9234
       
    94 
       
    95 /* Time to wait before putting the device into D3 if there's no link (in ms). */
       
    96 #define LINK_TIMEOUT		100
       
    97 
       
    98 /* Count for polling __E1000_RESET condition every 10-20msec.
       
    99  * Experimentation has shown the reset can take approximately 210msec.
       
   100  */
       
   101 #define E1000_CHECK_RESET_COUNT		25
       
   102 
       
   103 #define DEFAULT_RDTR			0
       
   104 #define DEFAULT_RADV			8
       
   105 #define BURST_RDTR			0x20
       
   106 #define BURST_RADV			0x20
       
   107 
       
   108 /* in the case of WTHRESH, it appears at least the 82571/2 hardware
       
   109  * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
       
   110  * WTHRESH=4, so a setting of 5 gives the most efficient bus
       
   111  * utilization but to avoid possible Tx stalls, set it to 1
       
   112  */
       
   113 #define E1000_TXDCTL_DMA_BURST_ENABLE                          \
       
   114 	(E1000_TXDCTL_GRAN | /* set descriptor granularity */  \
       
   115 	 E1000_TXDCTL_COUNT_DESC |                             \
       
   116 	 (1 << 16) | /* wthresh must be +1 more than desired */\
       
   117 	 (1 << 8)  | /* hthresh */                             \
       
   118 	 0x1f)       /* pthresh */
       
   119 
       
   120 #define E1000_RXDCTL_DMA_BURST_ENABLE                          \
       
   121 	(0x01000000 | /* set descriptor granularity */         \
       
   122 	 (4 << 16)  | /* set writeback threshold    */         \
       
   123 	 (4 << 8)   | /* set prefetch threshold     */         \
       
   124 	 0x20)        /* set hthresh                */
       
   125 
       
   126 #define E1000_TIDV_FPD (1 << 31)
       
   127 #define E1000_RDTR_FPD (1 << 31)
       
   128 
       
   129 enum e1000_boards {
       
   130 	board_82571,
       
   131 	board_82572,
       
   132 	board_82573,
       
   133 	board_82574,
       
   134 	board_82583,
       
   135 	board_80003es2lan,
       
   136 	board_ich8lan,
       
   137 	board_ich9lan,
       
   138 	board_ich10lan,
       
   139 	board_pchlan,
       
   140 	board_pch2lan,
       
   141 	board_pch_lpt,
       
   142 };
       
   143 
       
   144 struct e1000_ps_page {
       
   145 	struct page *page;
       
   146 	u64 dma; /* must be u64 - written to hw */
       
   147 };
       
   148 
       
   149 /* wrappers around a pointer to a socket buffer,
       
   150  * so a DMA handle can be stored along with the buffer
       
   151  */
       
   152 struct e1000_buffer {
       
   153 	dma_addr_t dma;
       
   154 	struct sk_buff *skb;
       
   155 	union {
       
   156 		/* Tx */
       
   157 		struct {
       
   158 			unsigned long time_stamp;
       
   159 			u16 length;
       
   160 			u16 next_to_watch;
       
   161 			unsigned int segs;
       
   162 			unsigned int bytecount;
       
   163 			u16 mapped_as_page;
       
   164 		};
       
   165 		/* Rx */
       
   166 		struct {
       
   167 			/* arrays of page information for packet split */
       
   168 			struct e1000_ps_page *ps_pages;
       
   169 			struct page *page;
       
   170 		};
       
   171 	};
       
   172 };
       
   173 
       
   174 struct e1000_ring {
       
   175 	struct e1000_adapter *adapter;	/* back pointer to adapter */
       
   176 	void *desc;			/* pointer to ring memory  */
       
   177 	dma_addr_t dma;			/* phys address of ring    */
       
   178 	unsigned int size;		/* length of ring in bytes */
       
   179 	unsigned int count;		/* number of desc. in ring */
       
   180 
       
   181 	u16 next_to_use;
       
   182 	u16 next_to_clean;
       
   183 
       
   184 	void __iomem *head;
       
   185 	void __iomem *tail;
       
   186 
       
   187 	/* array of buffer information structs */
       
   188 	struct e1000_buffer *buffer_info;
       
   189 
       
   190 	char name[IFNAMSIZ + 5];
       
   191 	u32 ims_val;
       
   192 	u32 itr_val;
       
   193 	void __iomem *itr_register;
       
   194 	int set_itr;
       
   195 
       
   196 	struct sk_buff *rx_skb_top;
       
   197 };
       
   198 
       
   199 /* PHY register snapshot values */
       
   200 struct e1000_phy_regs {
       
   201 	u16 bmcr;		/* basic mode control register    */
       
   202 	u16 bmsr;		/* basic mode status register     */
       
   203 	u16 advertise;		/* auto-negotiation advertisement */
       
   204 	u16 lpa;		/* link partner ability register  */
       
   205 	u16 expansion;		/* auto-negotiation expansion reg */
       
   206 	u16 ctrl1000;		/* 1000BASE-T control register    */
       
   207 	u16 stat1000;		/* 1000BASE-T status register     */
       
   208 	u16 estatus;		/* extended status register       */
       
   209 };
       
   210 
       
   211 /* board specific private data structure */
       
   212 struct e1000_adapter {
       
   213 	struct timer_list watchdog_timer;
       
   214 	struct timer_list phy_info_timer;
       
   215 	struct timer_list blink_timer;
       
   216 
       
   217 	struct work_struct reset_task;
       
   218 	struct work_struct watchdog_task;
       
   219 
       
   220 	const struct e1000_info *ei;
       
   221 
       
   222 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
       
   223 	u32 bd_number;
       
   224 	u32 rx_buffer_len;
       
   225 	u16 mng_vlan_id;
       
   226 	u16 link_speed;
       
   227 	u16 link_duplex;
       
   228 	u16 eeprom_vers;
       
   229 
       
   230 	/* track device up/down/testing state */
       
   231 	unsigned long state;
       
   232 
       
   233 	/* Interrupt Throttle Rate */
       
   234 	u32 itr;
       
   235 	u32 itr_setting;
       
   236 	u16 tx_itr;
       
   237 	u16 rx_itr;
       
   238 
       
   239 	/* Tx - one ring per active queue */
       
   240 	struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
       
   241 	u32 tx_fifo_limit;
       
   242 
       
   243 	struct napi_struct napi;
       
   244 
       
   245 	unsigned int uncorr_errors;	/* uncorrectable ECC errors */
       
   246 	unsigned int corr_errors;	/* correctable ECC errors */
       
   247 	unsigned int restart_queue;
       
   248 	u32 txd_cmd;
       
   249 
       
   250 	bool detect_tx_hung;
       
   251 	bool tx_hang_recheck;
       
   252 	u8 tx_timeout_factor;
       
   253 
       
   254 	u32 tx_int_delay;
       
   255 	u32 tx_abs_int_delay;
       
   256 
       
   257 	unsigned int total_tx_bytes;
       
   258 	unsigned int total_tx_packets;
       
   259 	unsigned int total_rx_bytes;
       
   260 	unsigned int total_rx_packets;
       
   261 
       
   262 	/* Tx stats */
       
   263 	u64 tpt_old;
       
   264 	u64 colc_old;
       
   265 	u32 gotc;
       
   266 	u64 gotc_old;
       
   267 	u32 tx_timeout_count;
       
   268 	u32 tx_fifo_head;
       
   269 	u32 tx_head_addr;
       
   270 	u32 tx_fifo_size;
       
   271 	u32 tx_dma_failed;
       
   272 
       
   273 	/* Rx */
       
   274 	bool (*clean_rx) (struct e1000_ring *ring, int *work_done,
       
   275 			  int work_to_do) ____cacheline_aligned_in_smp;
       
   276 	void (*alloc_rx_buf) (struct e1000_ring *ring, int cleaned_count,
       
   277 			      gfp_t gfp);
       
   278 	struct e1000_ring *rx_ring;
       
   279 
       
   280 	u32 rx_int_delay;
       
   281 	u32 rx_abs_int_delay;
       
   282 
       
   283 	/* Rx stats */
       
   284 	u64 hw_csum_err;
       
   285 	u64 hw_csum_good;
       
   286 	u64 rx_hdr_split;
       
   287 	u32 gorc;
       
   288 	u64 gorc_old;
       
   289 	u32 alloc_rx_buff_failed;
       
   290 	u32 rx_dma_failed;
       
   291 	u32 rx_hwtstamp_cleared;
       
   292 
       
   293 	unsigned int rx_ps_pages;
       
   294 	u16 rx_ps_bsize0;
       
   295 	u32 max_frame_size;
       
   296 	u32 min_frame_size;
       
   297 
       
   298 	/* OS defined structs */
       
   299 	struct net_device *netdev;
       
   300 	struct pci_dev *pdev;
       
   301 
       
   302 	/* structs defined in e1000_hw.h */
       
   303 	struct e1000_hw hw;
       
   304 
       
   305 	spinlock_t stats64_lock;	/* protects statistics counters */
       
   306 	struct e1000_hw_stats stats;
       
   307 	struct e1000_phy_info phy_info;
       
   308 	struct e1000_phy_stats phy_stats;
       
   309 
       
   310 	/* Snapshot of PHY registers */
       
   311 	struct e1000_phy_regs phy_regs;
       
   312 
       
   313 	struct e1000_ring test_tx_ring;
       
   314 	struct e1000_ring test_rx_ring;
       
   315 	u32 test_icr;
       
   316 
       
   317 	u32 msg_enable;
       
   318 	unsigned int num_vectors;
       
   319 	struct msix_entry *msix_entries;
       
   320 	int int_mode;
       
   321 	u32 eiac_mask;
       
   322 
       
   323 	u32 eeprom_wol;
       
   324 	u32 wol;
       
   325 	u32 pba;
       
   326 	u32 max_hw_frame_size;
       
   327 
       
   328 	bool fc_autoneg;
       
   329 
       
   330 	unsigned int flags;
       
   331 	unsigned int flags2;
       
   332 	struct work_struct downshift_task;
       
   333 	struct work_struct update_phy_task;
       
   334 	struct work_struct print_hang_task;
       
   335 
       
   336 	bool idle_check;
       
   337 	int phy_hang_count;
       
   338 
       
   339 	u16 tx_ring_count;
       
   340 	u16 rx_ring_count;
       
   341 
       
   342 	struct hwtstamp_config hwtstamp_config;
       
   343 	struct delayed_work systim_overflow_work;
       
   344 	struct sk_buff *tx_hwtstamp_skb;
       
   345 	struct work_struct tx_hwtstamp_work;
       
   346 	spinlock_t systim_lock;	/* protects SYSTIML/H regsters */
       
   347 	struct cyclecounter cc;
       
   348 	struct timecounter tc;
       
   349 	struct ptp_clock *ptp_clock;
       
   350 	struct ptp_clock_info ptp_clock_info;
       
   351 
       
   352 	u16 eee_advert;
       
   353 };
       
   354 
       
   355 struct e1000_info {
       
   356 	enum e1000_mac_type	mac;
       
   357 	unsigned int		flags;
       
   358 	unsigned int		flags2;
       
   359 	u32			pba;
       
   360 	u32			max_hw_frame_size;
       
   361 	s32			(*get_variants)(struct e1000_adapter *);
       
   362 	const struct e1000_mac_operations *mac_ops;
       
   363 	const struct e1000_phy_operations *phy_ops;
       
   364 	const struct e1000_nvm_operations *nvm_ops;
       
   365 };
       
   366 
       
   367 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
       
   368 
       
   369 /* The system time is maintained by a 64-bit counter comprised of the 32-bit
       
   370  * SYSTIMH and SYSTIML registers.  How the counter increments (and therefore
       
   371  * its resolution) is based on the contents of the TIMINCA register - it
       
   372  * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
       
   373  * For the best accuracy, the incperiod should be as small as possible.  The
       
   374  * incvalue is scaled by a factor as large as possible (while still fitting
       
   375  * in bits 23:0) so that relatively small clock corrections can be made.
       
   376  *
       
   377  * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
       
   378  * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
       
   379  * bits to count nanoseconds leaving the rest for fractional nonseconds.
       
   380  */
       
   381 #define INCVALUE_96MHz		125
       
   382 #define INCVALUE_SHIFT_96MHz	17
       
   383 #define INCPERIOD_SHIFT_96MHz	2
       
   384 #define INCPERIOD_96MHz		(12 >> INCPERIOD_SHIFT_96MHz)
       
   385 
       
   386 #define INCVALUE_25MHz		40
       
   387 #define INCVALUE_SHIFT_25MHz	18
       
   388 #define INCPERIOD_25MHz		1
       
   389 
       
   390 /* Another drawback of scaling the incvalue by a large factor is the
       
   391  * 64-bit SYSTIM register overflows more quickly.  This is dealt with
       
   392  * by simply reading the clock before it overflows.
       
   393  *
       
   394  * Clock	ns bits	Overflows after
       
   395  * ~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~
       
   396  * 96MHz	47-bit	2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
       
   397  * 25MHz	46-bit	2^46 / 10^9 / 3600 = 19.55 hours
       
   398  */
       
   399 #define E1000_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 60 * 4)
       
   400 
       
   401 /* hardware capability, feature, and workaround flags */
       
   402 #define FLAG_HAS_AMT                      (1 << 0)
       
   403 #define FLAG_HAS_FLASH                    (1 << 1)
       
   404 #define FLAG_HAS_HW_VLAN_FILTER           (1 << 2)
       
   405 #define FLAG_HAS_WOL                      (1 << 3)
       
   406 /* reserved bit4 */
       
   407 #define FLAG_HAS_CTRLEXT_ON_LOAD          (1 << 5)
       
   408 #define FLAG_HAS_SWSM_ON_LOAD             (1 << 6)
       
   409 #define FLAG_HAS_JUMBO_FRAMES             (1 << 7)
       
   410 #define FLAG_READ_ONLY_NVM                (1 << 8)
       
   411 #define FLAG_IS_ICH                       (1 << 9)
       
   412 #define FLAG_HAS_MSIX                     (1 << 10)
       
   413 #define FLAG_HAS_SMART_POWER_DOWN         (1 << 11)
       
   414 #define FLAG_IS_QUAD_PORT_A               (1 << 12)
       
   415 #define FLAG_IS_QUAD_PORT                 (1 << 13)
       
   416 #define FLAG_HAS_HW_TIMESTAMP             (1 << 14)
       
   417 #define FLAG_APME_IN_WUC                  (1 << 15)
       
   418 #define FLAG_APME_IN_CTRL3                (1 << 16)
       
   419 #define FLAG_APME_CHECK_PORT_B            (1 << 17)
       
   420 #define FLAG_DISABLE_FC_PAUSE_TIME        (1 << 18)
       
   421 #define FLAG_NO_WAKE_UCAST                (1 << 19)
       
   422 #define FLAG_MNG_PT_ENABLED               (1 << 20)
       
   423 #define FLAG_RESET_OVERWRITES_LAA         (1 << 21)
       
   424 #define FLAG_TARC_SPEED_MODE_BIT          (1 << 22)
       
   425 #define FLAG_TARC_SET_BIT_ZERO            (1 << 23)
       
   426 #define FLAG_RX_NEEDS_RESTART             (1 << 24)
       
   427 #define FLAG_LSC_GIG_SPEED_DROP           (1 << 25)
       
   428 #define FLAG_SMART_POWER_DOWN             (1 << 26)
       
   429 #define FLAG_MSI_ENABLED                  (1 << 27)
       
   430 /* reserved (1 << 28) */
       
   431 #define FLAG_TSO_FORCE                    (1 << 29)
       
   432 #define FLAG_RESTART_NOW                  (1 << 30)
       
   433 #define FLAG_MSI_TEST_FAILED              (1 << 31)
       
   434 
       
   435 #define FLAG2_CRC_STRIPPING               (1 << 0)
       
   436 #define FLAG2_HAS_PHY_WAKEUP              (1 << 1)
       
   437 #define FLAG2_IS_DISCARDING               (1 << 2)
       
   438 #define FLAG2_DISABLE_ASPM_L1             (1 << 3)
       
   439 #define FLAG2_HAS_PHY_STATS               (1 << 4)
       
   440 #define FLAG2_HAS_EEE                     (1 << 5)
       
   441 #define FLAG2_DMA_BURST                   (1 << 6)
       
   442 #define FLAG2_DISABLE_ASPM_L0S            (1 << 7)
       
   443 #define FLAG2_DISABLE_AIM                 (1 << 8)
       
   444 #define FLAG2_CHECK_PHY_HANG              (1 << 9)
       
   445 #define FLAG2_NO_DISABLE_RX               (1 << 10)
       
   446 #define FLAG2_PCIM2PCI_ARBITER_WA         (1 << 11)
       
   447 #define FLAG2_DFLT_CRC_STRIPPING          (1 << 12)
       
   448 #define FLAG2_CHECK_RX_HWTSTAMP           (1 << 13)
       
   449 
       
   450 #define E1000_RX_DESC_PS(R, i)	    \
       
   451 	(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
       
   452 #define E1000_RX_DESC_EXT(R, i)	    \
       
   453 	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
       
   454 #define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
       
   455 #define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
       
   456 #define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
       
   457 
       
   458 enum e1000_state_t {
       
   459 	__E1000_TESTING,
       
   460 	__E1000_RESETTING,
       
   461 	__E1000_ACCESS_SHARED_RESOURCE,
       
   462 	__E1000_DOWN
       
   463 };
       
   464 
       
   465 enum latency_range {
       
   466 	lowest_latency = 0,
       
   467 	low_latency = 1,
       
   468 	bulk_latency = 2,
       
   469 	latency_invalid = 255
       
   470 };
       
   471 
       
   472 extern char e1000e_driver_name[];
       
   473 extern const char e1000e_driver_version[];
       
   474 
       
   475 void e1000e_check_options(struct e1000_adapter *adapter);
       
   476 void e1000e_set_ethtool_ops(struct net_device *netdev);
       
   477 
       
   478 int e1000e_up(struct e1000_adapter *adapter);
       
   479 void e1000e_down(struct e1000_adapter *adapter);
       
   480 void e1000e_reinit_locked(struct e1000_adapter *adapter);
       
   481 void e1000e_reset(struct e1000_adapter *adapter);
       
   482 void e1000e_power_up_phy(struct e1000_adapter *adapter);
       
   483 int e1000e_setup_rx_resources(struct e1000_ring *ring);
       
   484 int e1000e_setup_tx_resources(struct e1000_ring *ring);
       
   485 void e1000e_free_rx_resources(struct e1000_ring *ring);
       
   486 void e1000e_free_tx_resources(struct e1000_ring *ring);
       
   487 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
       
   488 					     struct rtnl_link_stats64 *stats);
       
   489 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
       
   490 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
       
   491 void e1000e_get_hw_control(struct e1000_adapter *adapter);
       
   492 void e1000e_release_hw_control(struct e1000_adapter *adapter);
       
   493 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
       
   494 
       
   495 extern unsigned int copybreak;
       
   496 
       
   497 extern const struct e1000_info e1000_82571_info;
       
   498 extern const struct e1000_info e1000_82572_info;
       
   499 extern const struct e1000_info e1000_82573_info;
       
   500 extern const struct e1000_info e1000_82574_info;
       
   501 extern const struct e1000_info e1000_82583_info;
       
   502 extern const struct e1000_info e1000_ich8_info;
       
   503 extern const struct e1000_info e1000_ich9_info;
       
   504 extern const struct e1000_info e1000_ich10_info;
       
   505 extern const struct e1000_info e1000_pch_info;
       
   506 extern const struct e1000_info e1000_pch2_info;
       
   507 extern const struct e1000_info e1000_pch_lpt_info;
       
   508 extern const struct e1000_info e1000_es2_info;
       
   509 
       
   510 void e1000e_ptp_init(struct e1000_adapter *adapter);
       
   511 void e1000e_ptp_remove(struct e1000_adapter *adapter);
       
   512 
       
   513 static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
       
   514 {
       
   515 	return hw->phy.ops.reset(hw);
       
   516 }
       
   517 
       
   518 static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
       
   519 {
       
   520 	return hw->phy.ops.read_reg(hw, offset, data);
       
   521 }
       
   522 
       
   523 static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
   524 {
       
   525 	return hw->phy.ops.read_reg_locked(hw, offset, data);
       
   526 }
       
   527 
       
   528 static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
       
   529 {
       
   530 	return hw->phy.ops.write_reg(hw, offset, data);
       
   531 }
       
   532 
       
   533 static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
   534 {
       
   535 	return hw->phy.ops.write_reg_locked(hw, offset, data);
       
   536 }
       
   537 
       
   538 void e1000e_reload_nvm_generic(struct e1000_hw *hw);
       
   539 
       
   540 static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
       
   541 {
       
   542 	if (hw->mac.ops.read_mac_addr)
       
   543 		return hw->mac.ops.read_mac_addr(hw);
       
   544 
       
   545 	return e1000_read_mac_addr_generic(hw);
       
   546 }
       
   547 
       
   548 static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
       
   549 {
       
   550 	return hw->nvm.ops.validate(hw);
       
   551 }
       
   552 
       
   553 static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
       
   554 {
       
   555 	return hw->nvm.ops.update(hw);
       
   556 }
       
   557 
       
   558 static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
       
   559 				 u16 *data)
       
   560 {
       
   561 	return hw->nvm.ops.read(hw, offset, words, data);
       
   562 }
       
   563 
       
   564 static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
       
   565 				  u16 *data)
       
   566 {
       
   567 	return hw->nvm.ops.write(hw, offset, words, data);
       
   568 }
       
   569 
       
   570 static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
       
   571 {
       
   572 	return hw->phy.ops.get_info(hw);
       
   573 }
       
   574 
       
   575 static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
       
   576 {
       
   577 	return readl(hw->hw_addr + reg);
       
   578 }
       
   579 
       
   580 #define er32(reg)	__er32(hw, E1000_##reg)
       
   581 
       
   582 /**
       
   583  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
       
   584  * @hw: pointer to the HW structure
       
   585  *
       
   586  * When updating the MAC CSR registers, the Manageability Engine (ME) could
       
   587  * be accessing the registers at the same time.  Normally, this is handled in
       
   588  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
       
   589  * accesses later than it should which could result in the register to have
       
   590  * an incorrect value.  Workaround this by checking the FWSM register which
       
   591  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
       
   592  * and try again a number of times.
       
   593  **/
       
   594 static inline s32 __ew32_prepare(struct e1000_hw *hw)
       
   595 {
       
   596 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
       
   597 
       
   598 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
       
   599 		udelay(50);
       
   600 
       
   601 	return i;
       
   602 }
       
   603 
       
   604 static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
       
   605 {
       
   606 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
       
   607 		__ew32_prepare(hw);
       
   608 
       
   609 	writel(val, hw->hw_addr + reg);
       
   610 }
       
   611 
       
   612 #define ew32(reg, val)	__ew32(hw, E1000_##reg, (val))
       
   613 
       
   614 #define e1e_flush()	er32(STATUS)
       
   615 
       
   616 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
       
   617 	(__ew32((a), (reg + ((offset) << 2)), (value)))
       
   618 
       
   619 #define E1000_READ_REG_ARRAY(a, reg, offset) \
       
   620 	(readl((a)->hw_addr + reg + ((offset) << 2)))
       
   621 
       
   622 #endif /* _E1000_H_ */