devices/e1000/e1000_main-2.6.26-orig.c
changeset 1360 afcea72f0040
equal deleted inserted replaced
1359:a3d54cccba48 1360:afcea72f0040
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000.h"
       
    30 #include <net/ip6_checksum.h>
       
    31 
       
    32 char e1000_driver_name[] = "e1000";
       
    33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
       
    34 #ifndef CONFIG_E1000_NAPI
       
    35 #define DRIVERNAPI
       
    36 #else
       
    37 #define DRIVERNAPI "-NAPI"
       
    38 #endif
       
    39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
       
    40 const char e1000_driver_version[] = DRV_VERSION;
       
    41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
       
    42 
       
    43 /* e1000_pci_tbl - PCI Device ID Table
       
    44  *
       
    45  * Last entry must be all 0s
       
    46  *
       
    47  * Macro expands to...
       
    48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
       
    49  */
       
    50 #ifdef CONFIG_E1000E_ENABLED
       
    51   #define PCIE(x) 
       
    52 #else
       
    53   #define PCIE(x) x,
       
    54 #endif
       
    55 
       
    56 static struct pci_device_id e1000_pci_tbl[] = {
       
    57 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
       
    58 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
       
    59 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
       
    60 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
       
    61 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
       
    62 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
       
    63 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
       
    64 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
       
    65 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
       
    66 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
       
    67 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
       
    68 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
       
    69 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
       
    70 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
       
    71 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
       
    72 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
       
    73 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
       
    74 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
       
    75 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
       
    76 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
       
    77 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
       
    78 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
       
    79 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
       
    80 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
       
    81 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
       
    82 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x1049))
       
    83 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x104A))
       
    84 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x104B))
       
    85 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x104C))
       
    86 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x104D))
       
    87 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x105E))
       
    88 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x105F))
       
    89 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x1060))
       
    90 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
       
    91 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
       
    92 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
       
    93 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
       
    94 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
       
    95 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
       
    96 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
       
    97 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
       
    98 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x107D))
       
    99 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x107E))
       
   100 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x107F))
       
   101 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
       
   102 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x108B))
       
   103 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x108C))
       
   104 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x1096))
       
   105 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x1098))
       
   106 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
       
   107 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x109A))
       
   108 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x10A4))
       
   109 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x10A5))
       
   110 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
       
   111 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x10B9))
       
   112 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x10BA))
       
   113 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x10BB))
       
   114 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x10BC))
       
   115 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x10C4))
       
   116 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x10C5))
       
   117 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x10D5))
       
   118 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x10D9))
       
   119 PCIE(	INTEL_E1000_ETHERNET_DEVICE(0x10DA))
       
   120 	/* required last entry */
       
   121 	{0,}
       
   122 };
       
   123 
       
   124 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
   125 
       
   126 int e1000_up(struct e1000_adapter *adapter);
       
   127 void e1000_down(struct e1000_adapter *adapter);
       
   128 void e1000_reinit_locked(struct e1000_adapter *adapter);
       
   129 void e1000_reset(struct e1000_adapter *adapter);
       
   130 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
       
   131 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
       
   132 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
       
   133 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
       
   134 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
       
   135 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
   136                              struct e1000_tx_ring *txdr);
       
   137 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
   138                              struct e1000_rx_ring *rxdr);
       
   139 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
   140                              struct e1000_tx_ring *tx_ring);
       
   141 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
   142                              struct e1000_rx_ring *rx_ring);
       
   143 void e1000_update_stats(struct e1000_adapter *adapter);
       
   144 
       
   145 static int e1000_init_module(void);
       
   146 static void e1000_exit_module(void);
       
   147 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
       
   148 static void __devexit e1000_remove(struct pci_dev *pdev);
       
   149 static int e1000_alloc_queues(struct e1000_adapter *adapter);
       
   150 static int e1000_sw_init(struct e1000_adapter *adapter);
       
   151 static int e1000_open(struct net_device *netdev);
       
   152 static int e1000_close(struct net_device *netdev);
       
   153 static void e1000_configure_tx(struct e1000_adapter *adapter);
       
   154 static void e1000_configure_rx(struct e1000_adapter *adapter);
       
   155 static void e1000_setup_rctl(struct e1000_adapter *adapter);
       
   156 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
       
   157 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
       
   158 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
   159                                 struct e1000_tx_ring *tx_ring);
       
   160 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
   161                                 struct e1000_rx_ring *rx_ring);
       
   162 static void e1000_set_rx_mode(struct net_device *netdev);
       
   163 static void e1000_update_phy_info(unsigned long data);
       
   164 static void e1000_watchdog(unsigned long data);
       
   165 static void e1000_82547_tx_fifo_stall(unsigned long data);
       
   166 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
       
   167 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
       
   168 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
       
   169 static int e1000_set_mac(struct net_device *netdev, void *p);
       
   170 static irqreturn_t e1000_intr(int irq, void *data);
       
   171 static irqreturn_t e1000_intr_msi(int irq, void *data);
       
   172 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
   173 			       struct e1000_tx_ring *tx_ring);
       
   174 #ifdef CONFIG_E1000_NAPI
       
   175 static int e1000_clean(struct napi_struct *napi, int budget);
       
   176 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   177 			       struct e1000_rx_ring *rx_ring,
       
   178 			       int *work_done, int work_to_do);
       
   179 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   180 				  struct e1000_rx_ring *rx_ring,
       
   181 				  int *work_done, int work_to_do);
       
   182 #else
       
   183 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   184 			       struct e1000_rx_ring *rx_ring);
       
   185 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   186 				  struct e1000_rx_ring *rx_ring);
       
   187 #endif
       
   188 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
   189                                    struct e1000_rx_ring *rx_ring,
       
   190 				   int cleaned_count);
       
   191 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
   192                                       struct e1000_rx_ring *rx_ring,
       
   193 				      int cleaned_count);
       
   194 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
       
   195 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
   196 			   int cmd);
       
   197 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
       
   198 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
       
   199 static void e1000_tx_timeout(struct net_device *dev);
       
   200 static void e1000_reset_task(struct work_struct *work);
       
   201 static void e1000_smartspeed(struct e1000_adapter *adapter);
       
   202 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
   203                                        struct sk_buff *skb);
       
   204 
       
   205 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
       
   206 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
       
   207 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
       
   208 static void e1000_restore_vlan(struct e1000_adapter *adapter);
       
   209 
       
   210 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
       
   211 #ifdef CONFIG_PM
       
   212 static int e1000_resume(struct pci_dev *pdev);
       
   213 #endif
       
   214 static void e1000_shutdown(struct pci_dev *pdev);
       
   215 
       
   216 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   217 /* for netdump / net console */
       
   218 static void e1000_netpoll (struct net_device *netdev);
       
   219 #endif
       
   220 
       
   221 #define COPYBREAK_DEFAULT 256
       
   222 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
       
   223 module_param(copybreak, uint, 0644);
       
   224 MODULE_PARM_DESC(copybreak,
       
   225 	"Maximum size of packet that is copied to a new buffer on receive");
       
   226 
       
   227 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
   228                      pci_channel_state_t state);
       
   229 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
       
   230 static void e1000_io_resume(struct pci_dev *pdev);
       
   231 
       
   232 static struct pci_error_handlers e1000_err_handler = {
       
   233 	.error_detected = e1000_io_error_detected,
       
   234 	.slot_reset = e1000_io_slot_reset,
       
   235 	.resume = e1000_io_resume,
       
   236 };
       
   237 
       
   238 static struct pci_driver e1000_driver = {
       
   239 	.name     = e1000_driver_name,
       
   240 	.id_table = e1000_pci_tbl,
       
   241 	.probe    = e1000_probe,
       
   242 	.remove   = __devexit_p(e1000_remove),
       
   243 #ifdef CONFIG_PM
       
   244 	/* Power Managment Hooks */
       
   245 	.suspend  = e1000_suspend,
       
   246 	.resume   = e1000_resume,
       
   247 #endif
       
   248 	.shutdown = e1000_shutdown,
       
   249 	.err_handler = &e1000_err_handler
       
   250 };
       
   251 
       
   252 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
       
   253 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
       
   254 MODULE_LICENSE("GPL");
       
   255 MODULE_VERSION(DRV_VERSION);
       
   256 
       
   257 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
       
   258 module_param(debug, int, 0);
       
   259 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   260 
       
   261 /**
       
   262  * e1000_init_module - Driver Registration Routine
       
   263  *
       
   264  * e1000_init_module is the first routine called when the driver is
       
   265  * loaded. All it does is register with the PCI subsystem.
       
   266  **/
       
   267 
       
   268 static int __init
       
   269 e1000_init_module(void)
       
   270 {
       
   271 	int ret;
       
   272 	printk(KERN_INFO "%s - version %s\n",
       
   273 	       e1000_driver_string, e1000_driver_version);
       
   274 
       
   275 	printk(KERN_INFO "%s\n", e1000_copyright);
       
   276 
       
   277 	ret = pci_register_driver(&e1000_driver);
       
   278 	if (copybreak != COPYBREAK_DEFAULT) {
       
   279 		if (copybreak == 0)
       
   280 			printk(KERN_INFO "e1000: copybreak disabled\n");
       
   281 		else
       
   282 			printk(KERN_INFO "e1000: copybreak enabled for "
       
   283 			       "packets <= %u bytes\n", copybreak);
       
   284 	}
       
   285 	return ret;
       
   286 }
       
   287 
       
   288 module_init(e1000_init_module);
       
   289 
       
   290 /**
       
   291  * e1000_exit_module - Driver Exit Cleanup Routine
       
   292  *
       
   293  * e1000_exit_module is called just before the driver is removed
       
   294  * from memory.
       
   295  **/
       
   296 
       
   297 static void __exit
       
   298 e1000_exit_module(void)
       
   299 {
       
   300 	pci_unregister_driver(&e1000_driver);
       
   301 }
       
   302 
       
   303 module_exit(e1000_exit_module);
       
   304 
       
   305 static int e1000_request_irq(struct e1000_adapter *adapter)
       
   306 {
       
   307 	struct net_device *netdev = adapter->netdev;
       
   308 	irq_handler_t handler = e1000_intr;
       
   309 	int irq_flags = IRQF_SHARED;
       
   310 	int err;
       
   311 
       
   312 	if (adapter->hw.mac_type >= e1000_82571) {
       
   313 		adapter->have_msi = !pci_enable_msi(adapter->pdev);
       
   314 		if (adapter->have_msi) {
       
   315 			handler = e1000_intr_msi;
       
   316 			irq_flags = 0;
       
   317 		}
       
   318 	}
       
   319 
       
   320 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
       
   321 	                  netdev);
       
   322 	if (err) {
       
   323 		if (adapter->have_msi)
       
   324 			pci_disable_msi(adapter->pdev);
       
   325 		DPRINTK(PROBE, ERR,
       
   326 		        "Unable to allocate interrupt Error: %d\n", err);
       
   327 	}
       
   328 
       
   329 	return err;
       
   330 }
       
   331 
       
   332 static void e1000_free_irq(struct e1000_adapter *adapter)
       
   333 {
       
   334 	struct net_device *netdev = adapter->netdev;
       
   335 
       
   336 	free_irq(adapter->pdev->irq, netdev);
       
   337 
       
   338 	if (adapter->have_msi)
       
   339 		pci_disable_msi(adapter->pdev);
       
   340 }
       
   341 
       
   342 /**
       
   343  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
   344  * @adapter: board private structure
       
   345  **/
       
   346 
       
   347 static void
       
   348 e1000_irq_disable(struct e1000_adapter *adapter)
       
   349 {
       
   350 	E1000_WRITE_REG(&adapter->hw, IMC, ~0);
       
   351 	E1000_WRITE_FLUSH(&adapter->hw);
       
   352 	synchronize_irq(adapter->pdev->irq);
       
   353 }
       
   354 
       
   355 /**
       
   356  * e1000_irq_enable - Enable default interrupt generation settings
       
   357  * @adapter: board private structure
       
   358  **/
       
   359 
       
   360 static void
       
   361 e1000_irq_enable(struct e1000_adapter *adapter)
       
   362 {
       
   363 	E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
       
   364 	E1000_WRITE_FLUSH(&adapter->hw);
       
   365 }
       
   366 
       
   367 static void
       
   368 e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
   369 {
       
   370 	struct net_device *netdev = adapter->netdev;
       
   371 	u16 vid = adapter->hw.mng_cookie.vlan_id;
       
   372 	u16 old_vid = adapter->mng_vlan_id;
       
   373 	if (adapter->vlgrp) {
       
   374 		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
       
   375 			if (adapter->hw.mng_cookie.status &
       
   376 				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
       
   377 				e1000_vlan_rx_add_vid(netdev, vid);
       
   378 				adapter->mng_vlan_id = vid;
       
   379 			} else
       
   380 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
   381 
       
   382 			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
       
   383 					(vid != old_vid) &&
       
   384 			    !vlan_group_get_device(adapter->vlgrp, old_vid))
       
   385 				e1000_vlan_rx_kill_vid(netdev, old_vid);
       
   386 		} else
       
   387 			adapter->mng_vlan_id = vid;
       
   388 	}
       
   389 }
       
   390 
       
   391 /**
       
   392  * e1000_release_hw_control - release control of the h/w to f/w
       
   393  * @adapter: address of board private structure
       
   394  *
       
   395  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   396  * For ASF and Pass Through versions of f/w this means that the
       
   397  * driver is no longer loaded. For AMT version (only with 82573) i
       
   398  * of the f/w this means that the network i/f is closed.
       
   399  *
       
   400  **/
       
   401 
       
   402 static void
       
   403 e1000_release_hw_control(struct e1000_adapter *adapter)
       
   404 {
       
   405 	u32 ctrl_ext;
       
   406 	u32 swsm;
       
   407 
       
   408 	/* Let firmware taken over control of h/w */
       
   409 	switch (adapter->hw.mac_type) {
       
   410 	case e1000_82573:
       
   411 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
   412 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
   413 				swsm & ~E1000_SWSM_DRV_LOAD);
       
   414 		break;
       
   415 	case e1000_82571:
       
   416 	case e1000_82572:
       
   417 	case e1000_80003es2lan:
       
   418 	case e1000_ich8lan:
       
   419 		ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
   420 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
       
   421 				ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
       
   422 		break;
       
   423 	default:
       
   424 		break;
       
   425 	}
       
   426 }
       
   427 
       
   428 /**
       
   429  * e1000_get_hw_control - get control of the h/w from f/w
       
   430  * @adapter: address of board private structure
       
   431  *
       
   432  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   433  * For ASF and Pass Through versions of f/w this means that
       
   434  * the driver is loaded. For AMT version (only with 82573)
       
   435  * of the f/w this means that the network i/f is open.
       
   436  *
       
   437  **/
       
   438 
       
   439 static void
       
   440 e1000_get_hw_control(struct e1000_adapter *adapter)
       
   441 {
       
   442 	u32 ctrl_ext;
       
   443 	u32 swsm;
       
   444 
       
   445 	/* Let firmware know the driver has taken over */
       
   446 	switch (adapter->hw.mac_type) {
       
   447 	case e1000_82573:
       
   448 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
   449 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
   450 				swsm | E1000_SWSM_DRV_LOAD);
       
   451 		break;
       
   452 	case e1000_82571:
       
   453 	case e1000_82572:
       
   454 	case e1000_80003es2lan:
       
   455 	case e1000_ich8lan:
       
   456 		ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
   457 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
       
   458 				ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
       
   459 		break;
       
   460 	default:
       
   461 		break;
       
   462 	}
       
   463 }
       
   464 
       
   465 static void
       
   466 e1000_init_manageability(struct e1000_adapter *adapter)
       
   467 {
       
   468 	if (adapter->en_mng_pt) {
       
   469 		u32 manc = E1000_READ_REG(&adapter->hw, MANC);
       
   470 
       
   471 		/* disable hardware interception of ARP */
       
   472 		manc &= ~(E1000_MANC_ARP_EN);
       
   473 
       
   474 		/* enable receiving management packets to the host */
       
   475 		/* this will probably generate destination unreachable messages
       
   476 		 * from the host OS, but the packets will be handled on SMBUS */
       
   477 		if (adapter->hw.has_manc2h) {
       
   478 			u32 manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
       
   479 
       
   480 			manc |= E1000_MANC_EN_MNG2HOST;
       
   481 #define E1000_MNG2HOST_PORT_623 (1 << 5)
       
   482 #define E1000_MNG2HOST_PORT_664 (1 << 6)
       
   483 			manc2h |= E1000_MNG2HOST_PORT_623;
       
   484 			manc2h |= E1000_MNG2HOST_PORT_664;
       
   485 			E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
       
   486 		}
       
   487 
       
   488 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
   489 	}
       
   490 }
       
   491 
       
   492 static void
       
   493 e1000_release_manageability(struct e1000_adapter *adapter)
       
   494 {
       
   495 	if (adapter->en_mng_pt) {
       
   496 		u32 manc = E1000_READ_REG(&adapter->hw, MANC);
       
   497 
       
   498 		/* re-enable hardware interception of ARP */
       
   499 		manc |= E1000_MANC_ARP_EN;
       
   500 
       
   501 		if (adapter->hw.has_manc2h)
       
   502 			manc &= ~E1000_MANC_EN_MNG2HOST;
       
   503 
       
   504 		/* don't explicitly have to mess with MANC2H since
       
   505 		 * MANC has an enable disable that gates MANC2H */
       
   506 
       
   507 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
   508 	}
       
   509 }
       
   510 
       
   511 /**
       
   512  * e1000_configure - configure the hardware for RX and TX
       
   513  * @adapter = private board structure
       
   514  **/
       
   515 static void e1000_configure(struct e1000_adapter *adapter)
       
   516 {
       
   517 	struct net_device *netdev = adapter->netdev;
       
   518 	int i;
       
   519 
       
   520 	e1000_set_rx_mode(netdev);
       
   521 
       
   522 	e1000_restore_vlan(adapter);
       
   523 	e1000_init_manageability(adapter);
       
   524 
       
   525 	e1000_configure_tx(adapter);
       
   526 	e1000_setup_rctl(adapter);
       
   527 	e1000_configure_rx(adapter);
       
   528 	/* call E1000_DESC_UNUSED which always leaves
       
   529 	 * at least 1 descriptor unused to make sure
       
   530 	 * next_to_use != next_to_clean */
       
   531 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
   532 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
       
   533 		adapter->alloc_rx_buf(adapter, ring,
       
   534 		                      E1000_DESC_UNUSED(ring));
       
   535 	}
       
   536 
       
   537 	adapter->tx_queue_len = netdev->tx_queue_len;
       
   538 }
       
   539 
       
   540 int e1000_up(struct e1000_adapter *adapter)
       
   541 {
       
   542 	/* hardware has been reset, we need to reload some things */
       
   543 	e1000_configure(adapter);
       
   544 
       
   545 	clear_bit(__E1000_DOWN, &adapter->flags);
       
   546 
       
   547 #ifdef CONFIG_E1000_NAPI
       
   548 	napi_enable(&adapter->napi);
       
   549 #endif
       
   550 	e1000_irq_enable(adapter);
       
   551 
       
   552 	/* fire a link change interrupt to start the watchdog */
       
   553 	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
       
   554 	return 0;
       
   555 }
       
   556 
       
   557 /**
       
   558  * e1000_power_up_phy - restore link in case the phy was powered down
       
   559  * @adapter: address of board private structure
       
   560  *
       
   561  * The phy may be powered down to save power and turn off link when the
       
   562  * driver is unloaded and wake on lan is not enabled (among others)
       
   563  * *** this routine MUST be followed by a call to e1000_reset ***
       
   564  *
       
   565  **/
       
   566 
       
   567 void e1000_power_up_phy(struct e1000_adapter *adapter)
       
   568 {
       
   569 	u16 mii_reg = 0;
       
   570 
       
   571 	/* Just clear the power down bit to wake the phy back up */
       
   572 	if (adapter->hw.media_type == e1000_media_type_copper) {
       
   573 		/* according to the manual, the phy will retain its
       
   574 		 * settings across a power-down/up cycle */
       
   575 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
       
   576 		mii_reg &= ~MII_CR_POWER_DOWN;
       
   577 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
       
   578 	}
       
   579 }
       
   580 
       
   581 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
   582 {
       
   583 	/* Power down the PHY so no link is implied when interface is down *
       
   584 	 * The PHY cannot be powered down if any of the following is true *
       
   585 	 * (a) WoL is enabled
       
   586 	 * (b) AMT is active
       
   587 	 * (c) SoL/IDER session is active */
       
   588 	if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
       
   589 	   adapter->hw.media_type == e1000_media_type_copper) {
       
   590 		u16 mii_reg = 0;
       
   591 
       
   592 		switch (adapter->hw.mac_type) {
       
   593 		case e1000_82540:
       
   594 		case e1000_82545:
       
   595 		case e1000_82545_rev_3:
       
   596 		case e1000_82546:
       
   597 		case e1000_82546_rev_3:
       
   598 		case e1000_82541:
       
   599 		case e1000_82541_rev_2:
       
   600 		case e1000_82547:
       
   601 		case e1000_82547_rev_2:
       
   602 			if (E1000_READ_REG(&adapter->hw, MANC) &
       
   603 			    E1000_MANC_SMBUS_EN)
       
   604 				goto out;
       
   605 			break;
       
   606 		case e1000_82571:
       
   607 		case e1000_82572:
       
   608 		case e1000_82573:
       
   609 		case e1000_80003es2lan:
       
   610 		case e1000_ich8lan:
       
   611 			if (e1000_check_mng_mode(&adapter->hw) ||
       
   612 			    e1000_check_phy_reset_block(&adapter->hw))
       
   613 				goto out;
       
   614 			break;
       
   615 		default:
       
   616 			goto out;
       
   617 		}
       
   618 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
       
   619 		mii_reg |= MII_CR_POWER_DOWN;
       
   620 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
       
   621 		mdelay(1);
       
   622 	}
       
   623 out:
       
   624 	return;
       
   625 }
       
   626 
       
   627 void
       
   628 e1000_down(struct e1000_adapter *adapter)
       
   629 {
       
   630 	struct net_device *netdev = adapter->netdev;
       
   631 
       
   632 	/* signal that we're down so the interrupt handler does not
       
   633 	 * reschedule our watchdog timer */
       
   634 	set_bit(__E1000_DOWN, &adapter->flags);
       
   635 
       
   636 #ifdef CONFIG_E1000_NAPI
       
   637 	napi_disable(&adapter->napi);
       
   638 #endif
       
   639 	e1000_irq_disable(adapter);
       
   640 
       
   641 	del_timer_sync(&adapter->tx_fifo_stall_timer);
       
   642 	del_timer_sync(&adapter->watchdog_timer);
       
   643 	del_timer_sync(&adapter->phy_info_timer);
       
   644 
       
   645 	netdev->tx_queue_len = adapter->tx_queue_len;
       
   646 	adapter->link_speed = 0;
       
   647 	adapter->link_duplex = 0;
       
   648 	netif_carrier_off(netdev);
       
   649 	netif_stop_queue(netdev);
       
   650 
       
   651 	e1000_reset(adapter);
       
   652 	e1000_clean_all_tx_rings(adapter);
       
   653 	e1000_clean_all_rx_rings(adapter);
       
   654 }
       
   655 
       
   656 void
       
   657 e1000_reinit_locked(struct e1000_adapter *adapter)
       
   658 {
       
   659 	WARN_ON(in_interrupt());
       
   660 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   661 		msleep(1);
       
   662 	e1000_down(adapter);
       
   663 	e1000_up(adapter);
       
   664 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   665 }
       
   666 
       
   667 void
       
   668 e1000_reset(struct e1000_adapter *adapter)
       
   669 {
       
   670 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
       
   671 	u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
       
   672 	bool legacy_pba_adjust = false;
       
   673 
       
   674 	/* Repartition Pba for greater than 9k mtu
       
   675 	 * To take effect CTRL.RST is required.
       
   676 	 */
       
   677 
       
   678 	switch (adapter->hw.mac_type) {
       
   679 	case e1000_82542_rev2_0:
       
   680 	case e1000_82542_rev2_1:
       
   681 	case e1000_82543:
       
   682 	case e1000_82544:
       
   683 	case e1000_82540:
       
   684 	case e1000_82541:
       
   685 	case e1000_82541_rev_2:
       
   686 		legacy_pba_adjust = true;
       
   687 		pba = E1000_PBA_48K;
       
   688 		break;
       
   689 	case e1000_82545:
       
   690 	case e1000_82545_rev_3:
       
   691 	case e1000_82546:
       
   692 	case e1000_82546_rev_3:
       
   693 		pba = E1000_PBA_48K;
       
   694 		break;
       
   695 	case e1000_82547:
       
   696 	case e1000_82547_rev_2:
       
   697 		legacy_pba_adjust = true;
       
   698 		pba = E1000_PBA_30K;
       
   699 		break;
       
   700 	case e1000_82571:
       
   701 	case e1000_82572:
       
   702 	case e1000_80003es2lan:
       
   703 		pba = E1000_PBA_38K;
       
   704 		break;
       
   705 	case e1000_82573:
       
   706 		pba = E1000_PBA_20K;
       
   707 		break;
       
   708 	case e1000_ich8lan:
       
   709 		pba = E1000_PBA_8K;
       
   710 	case e1000_undefined:
       
   711 	case e1000_num_macs:
       
   712 		break;
       
   713 	}
       
   714 
       
   715 	if (legacy_pba_adjust) {
       
   716 		if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
       
   717 			pba -= 8; /* allocate more FIFO for Tx */
       
   718 
       
   719 		if (adapter->hw.mac_type == e1000_82547) {
       
   720 			adapter->tx_fifo_head = 0;
       
   721 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
       
   722 			adapter->tx_fifo_size =
       
   723 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
       
   724 			atomic_set(&adapter->tx_fifo_stall, 0);
       
   725 		}
       
   726 	} else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
   727 		/* adjust PBA for jumbo frames */
       
   728 		E1000_WRITE_REG(&adapter->hw, PBA, pba);
       
   729 
       
   730 		/* To maintain wire speed transmits, the Tx FIFO should be
       
   731 		 * large enough to accomodate two full transmit packets,
       
   732 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
       
   733 		 * the Rx FIFO should be large enough to accomodate at least
       
   734 		 * one full receive packet and is similarly rounded up and
       
   735 		 * expressed in KB. */
       
   736 		pba = E1000_READ_REG(&adapter->hw, PBA);
       
   737 		/* upper 16 bits has Tx packet buffer allocation size in KB */
       
   738 		tx_space = pba >> 16;
       
   739 		/* lower 16 bits has Rx packet buffer allocation size in KB */
       
   740 		pba &= 0xffff;
       
   741 		/* don't include ethernet FCS because hardware appends/strips */
       
   742 		min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
       
   743 		               VLAN_TAG_SIZE;
       
   744 		min_tx_space = min_rx_space;
       
   745 		min_tx_space *= 2;
       
   746 		min_tx_space = ALIGN(min_tx_space, 1024);
       
   747 		min_tx_space >>= 10;
       
   748 		min_rx_space = ALIGN(min_rx_space, 1024);
       
   749 		min_rx_space >>= 10;
       
   750 
       
   751 		/* If current Tx allocation is less than the min Tx FIFO size,
       
   752 		 * and the min Tx FIFO size is less than the current Rx FIFO
       
   753 		 * allocation, take space away from current Rx allocation */
       
   754 		if (tx_space < min_tx_space &&
       
   755 		    ((min_tx_space - tx_space) < pba)) {
       
   756 			pba = pba - (min_tx_space - tx_space);
       
   757 
       
   758 			/* PCI/PCIx hardware has PBA alignment constraints */
       
   759 			switch (adapter->hw.mac_type) {
       
   760 			case e1000_82545 ... e1000_82546_rev_3:
       
   761 				pba &= ~(E1000_PBA_8K - 1);
       
   762 				break;
       
   763 			default:
       
   764 				break;
       
   765 			}
       
   766 
       
   767 			/* if short on rx space, rx wins and must trump tx
       
   768 			 * adjustment or use Early Receive if available */
       
   769 			if (pba < min_rx_space) {
       
   770 				switch (adapter->hw.mac_type) {
       
   771 				case e1000_82573:
       
   772 					/* ERT enabled in e1000_configure_rx */
       
   773 					break;
       
   774 				default:
       
   775 					pba = min_rx_space;
       
   776 					break;
       
   777 				}
       
   778 			}
       
   779 		}
       
   780 	}
       
   781 
       
   782 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
       
   783 
       
   784 	/* flow control settings */
       
   785 	/* Set the FC high water mark to 90% of the FIFO size.
       
   786 	 * Required to clear last 3 LSB */
       
   787 	fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
       
   788 	/* We can't use 90% on small FIFOs because the remainder
       
   789 	 * would be less than 1 full frame.  In this case, we size
       
   790 	 * it to allow at least a full frame above the high water
       
   791 	 *  mark. */
       
   792 	if (pba < E1000_PBA_16K)
       
   793 		fc_high_water_mark = (pba * 1024) - 1600;
       
   794 
       
   795 	adapter->hw.fc_high_water = fc_high_water_mark;
       
   796 	adapter->hw.fc_low_water = fc_high_water_mark - 8;
       
   797 	if (adapter->hw.mac_type == e1000_80003es2lan)
       
   798 		adapter->hw.fc_pause_time = 0xFFFF;
       
   799 	else
       
   800 		adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
       
   801 	adapter->hw.fc_send_xon = 1;
       
   802 	adapter->hw.fc = adapter->hw.original_fc;
       
   803 
       
   804 	/* Allow time for pending master requests to run */
       
   805 	e1000_reset_hw(&adapter->hw);
       
   806 	if (adapter->hw.mac_type >= e1000_82544)
       
   807 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
       
   808 
       
   809 	if (e1000_init_hw(&adapter->hw))
       
   810 		DPRINTK(PROBE, ERR, "Hardware Error\n");
       
   811 	e1000_update_mng_vlan(adapter);
       
   812 
       
   813 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
       
   814 	if (adapter->hw.mac_type >= e1000_82544 &&
       
   815 	    adapter->hw.mac_type <= e1000_82547_rev_2 &&
       
   816 	    adapter->hw.autoneg == 1 &&
       
   817 	    adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
       
   818 		u32 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
   819 		/* clear phy power management bit if we are in gig only mode,
       
   820 		 * which if enabled will attempt negotiation to 100Mb, which
       
   821 		 * can cause a loss of link at power off or driver unload */
       
   822 		ctrl &= ~E1000_CTRL_SWDPIN3;
       
   823 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
   824 	}
       
   825 
       
   826 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
   827 	E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
       
   828 
       
   829 	e1000_reset_adaptive(&adapter->hw);
       
   830 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
       
   831 
       
   832 	if (!adapter->smart_power_down &&
       
   833 	    (adapter->hw.mac_type == e1000_82571 ||
       
   834 	     adapter->hw.mac_type == e1000_82572)) {
       
   835 		u16 phy_data = 0;
       
   836 		/* speed up time to link by disabling smart power down, ignore
       
   837 		 * the return value of this function because there is nothing
       
   838 		 * different we would do if it failed */
       
   839 		e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
       
   840 		                   &phy_data);
       
   841 		phy_data &= ~IGP02E1000_PM_SPD;
       
   842 		e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
       
   843 		                    phy_data);
       
   844 	}
       
   845 
       
   846 	e1000_release_manageability(adapter);
       
   847 }
       
   848 
       
   849 /**
       
   850  *  Dump the eeprom for users having checksum issues
       
   851  **/
       
   852 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
       
   853 {
       
   854 	struct net_device *netdev = adapter->netdev;
       
   855 	struct ethtool_eeprom eeprom;
       
   856 	const struct ethtool_ops *ops = netdev->ethtool_ops;
       
   857 	u8 *data;
       
   858 	int i;
       
   859 	u16 csum_old, csum_new = 0;
       
   860 
       
   861 	eeprom.len = ops->get_eeprom_len(netdev);
       
   862 	eeprom.offset = 0;
       
   863 
       
   864 	data = kmalloc(eeprom.len, GFP_KERNEL);
       
   865 	if (!data) {
       
   866 		printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
       
   867 		       " data\n");
       
   868 		return;
       
   869 	}
       
   870 
       
   871 	ops->get_eeprom(netdev, &eeprom, data);
       
   872 
       
   873 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
       
   874 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
       
   875 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
       
   876 		csum_new += data[i] + (data[i + 1] << 8);
       
   877 	csum_new = EEPROM_SUM - csum_new;
       
   878 
       
   879 	printk(KERN_ERR "/*********************/\n");
       
   880 	printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
       
   881 	printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
       
   882 
       
   883 	printk(KERN_ERR "Offset    Values\n");
       
   884 	printk(KERN_ERR "========  ======\n");
       
   885 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
       
   886 
       
   887 	printk(KERN_ERR "Include this output when contacting your support "
       
   888 	       "provider.\n");
       
   889 	printk(KERN_ERR "This is not a software error! Something bad "
       
   890 	       "happened to your hardware or\n");
       
   891 	printk(KERN_ERR "EEPROM image. Ignoring this "
       
   892 	       "problem could result in further problems,\n");
       
   893 	printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
       
   894 	printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
       
   895 	       "which is invalid\n");
       
   896 	printk(KERN_ERR "and requires you to set the proper MAC "
       
   897 	       "address manually before continuing\n");
       
   898 	printk(KERN_ERR "to enable this network device.\n");
       
   899 	printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
       
   900 	       "to your hardware vendor\n");
       
   901 	printk(KERN_ERR "or Intel Customer Support: linux-nics@intel.com\n");
       
   902 	printk(KERN_ERR "/*********************/\n");
       
   903 
       
   904 	kfree(data);
       
   905 }
       
   906 
       
   907 /**
       
   908  * e1000_probe - Device Initialization Routine
       
   909  * @pdev: PCI device information struct
       
   910  * @ent: entry in e1000_pci_tbl
       
   911  *
       
   912  * Returns 0 on success, negative on failure
       
   913  *
       
   914  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
   915  * The OS initialization, configuring of the adapter private structure,
       
   916  * and a hardware reset occur.
       
   917  **/
       
   918 
       
   919 static int __devinit
       
   920 e1000_probe(struct pci_dev *pdev,
       
   921             const struct pci_device_id *ent)
       
   922 {
       
   923 	struct net_device *netdev;
       
   924 	struct e1000_adapter *adapter;
       
   925 
       
   926 	static int cards_found = 0;
       
   927 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
       
   928 	int i, err, pci_using_dac;
       
   929 	u16 eeprom_data = 0;
       
   930 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
       
   931 	DECLARE_MAC_BUF(mac);
       
   932 
       
   933 	if ((err = pci_enable_device(pdev)))
       
   934 		return err;
       
   935 
       
   936 	if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
       
   937 	    !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
       
   938 		pci_using_dac = 1;
       
   939 	} else {
       
   940 		if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
       
   941 		    (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
       
   942 			E1000_ERR("No usable DMA configuration, aborting\n");
       
   943 			goto err_dma;
       
   944 		}
       
   945 		pci_using_dac = 0;
       
   946 	}
       
   947 
       
   948 	if ((err = pci_request_regions(pdev, e1000_driver_name)))
       
   949 		goto err_pci_reg;
       
   950 
       
   951 	pci_set_master(pdev);
       
   952 
       
   953 	err = -ENOMEM;
       
   954 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
   955 	if (!netdev)
       
   956 		goto err_alloc_etherdev;
       
   957 
       
   958 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
   959 
       
   960 	pci_set_drvdata(pdev, netdev);
       
   961 	adapter = netdev_priv(netdev);
       
   962 	adapter->netdev = netdev;
       
   963 	adapter->pdev = pdev;
       
   964 	adapter->hw.back = adapter;
       
   965 	adapter->msg_enable = (1 << debug) - 1;
       
   966 
       
   967 	err = -EIO;
       
   968 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
       
   969 				      pci_resource_len(pdev, BAR_0));
       
   970 	if (!adapter->hw.hw_addr)
       
   971 		goto err_ioremap;
       
   972 
       
   973 	for (i = BAR_1; i <= BAR_5; i++) {
       
   974 		if (pci_resource_len(pdev, i) == 0)
       
   975 			continue;
       
   976 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
       
   977 			adapter->hw.io_base = pci_resource_start(pdev, i);
       
   978 			break;
       
   979 		}
       
   980 	}
       
   981 
       
   982 	netdev->open = &e1000_open;
       
   983 	netdev->stop = &e1000_close;
       
   984 	netdev->hard_start_xmit = &e1000_xmit_frame;
       
   985 	netdev->get_stats = &e1000_get_stats;
       
   986 	netdev->set_rx_mode = &e1000_set_rx_mode;
       
   987 	netdev->set_mac_address = &e1000_set_mac;
       
   988 	netdev->change_mtu = &e1000_change_mtu;
       
   989 	netdev->do_ioctl = &e1000_ioctl;
       
   990 	e1000_set_ethtool_ops(netdev);
       
   991 	netdev->tx_timeout = &e1000_tx_timeout;
       
   992 	netdev->watchdog_timeo = 5 * HZ;
       
   993 #ifdef CONFIG_E1000_NAPI
       
   994 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
       
   995 #endif
       
   996 	netdev->vlan_rx_register = e1000_vlan_rx_register;
       
   997 	netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
       
   998 	netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
       
   999 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  1000 	netdev->poll_controller = e1000_netpoll;
       
  1001 #endif
       
  1002 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
  1003 
       
  1004 	adapter->bd_number = cards_found;
       
  1005 
       
  1006 	/* setup the private structure */
       
  1007 
       
  1008 	if ((err = e1000_sw_init(adapter)))
       
  1009 		goto err_sw_init;
       
  1010 
       
  1011 	err = -EIO;
       
  1012 	/* Flash BAR mapping must happen after e1000_sw_init
       
  1013 	 * because it depends on mac_type */
       
  1014 	if ((adapter->hw.mac_type == e1000_ich8lan) &&
       
  1015 	   (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
       
  1016 		adapter->hw.flash_address =
       
  1017 			ioremap(pci_resource_start(pdev, 1),
       
  1018 				pci_resource_len(pdev, 1));
       
  1019 		if (!adapter->hw.flash_address)
       
  1020 			goto err_flashmap;
       
  1021 	}
       
  1022 
       
  1023 	if (e1000_check_phy_reset_block(&adapter->hw))
       
  1024 		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
       
  1025 
       
  1026 	if (adapter->hw.mac_type >= e1000_82543) {
       
  1027 		netdev->features = NETIF_F_SG |
       
  1028 				   NETIF_F_HW_CSUM |
       
  1029 				   NETIF_F_HW_VLAN_TX |
       
  1030 				   NETIF_F_HW_VLAN_RX |
       
  1031 				   NETIF_F_HW_VLAN_FILTER;
       
  1032 		if (adapter->hw.mac_type == e1000_ich8lan)
       
  1033 			netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
       
  1034 	}
       
  1035 
       
  1036 	if ((adapter->hw.mac_type >= e1000_82544) &&
       
  1037 	   (adapter->hw.mac_type != e1000_82547))
       
  1038 		netdev->features |= NETIF_F_TSO;
       
  1039 
       
  1040 	if (adapter->hw.mac_type > e1000_82547_rev_2)
       
  1041 		netdev->features |= NETIF_F_TSO6;
       
  1042 	if (pci_using_dac)
       
  1043 		netdev->features |= NETIF_F_HIGHDMA;
       
  1044 
       
  1045 	netdev->features |= NETIF_F_LLTX;
       
  1046 
       
  1047 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
       
  1048 
       
  1049 	/* initialize eeprom parameters */
       
  1050 	if (e1000_init_eeprom_params(&adapter->hw)) {
       
  1051 		E1000_ERR("EEPROM initialization failed\n");
       
  1052 		goto err_eeprom;
       
  1053 	}
       
  1054 
       
  1055 	/* before reading the EEPROM, reset the controller to
       
  1056 	 * put the device in a known good starting state */
       
  1057 
       
  1058 	e1000_reset_hw(&adapter->hw);
       
  1059 
       
  1060 	/* make sure the EEPROM is good */
       
  1061 	if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
       
  1062 		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
       
  1063 		e1000_dump_eeprom(adapter);
       
  1064 		/*
       
  1065 		 * set MAC address to all zeroes to invalidate and temporary
       
  1066 		 * disable this device for the user. This blocks regular
       
  1067 		 * traffic while still permitting ethtool ioctls from reaching
       
  1068 		 * the hardware as well as allowing the user to run the
       
  1069 		 * interface after manually setting a hw addr using
       
  1070 		 * `ip set address`
       
  1071 		 */
       
  1072 		memset(adapter->hw.mac_addr, 0, netdev->addr_len);
       
  1073 	} else {
       
  1074 		/* copy the MAC address out of the EEPROM */
       
  1075 		if (e1000_read_mac_addr(&adapter->hw))
       
  1076 			DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
       
  1077 	}
       
  1078 	/* don't block initalization here due to bad MAC address */
       
  1079 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
       
  1080 	memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
       
  1081 
       
  1082 	if (!is_valid_ether_addr(netdev->perm_addr))
       
  1083 		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
       
  1084 
       
  1085 	e1000_get_bus_info(&adapter->hw);
       
  1086 
       
  1087 	init_timer(&adapter->tx_fifo_stall_timer);
       
  1088 	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
       
  1089 	adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
       
  1090 
       
  1091 	init_timer(&adapter->watchdog_timer);
       
  1092 	adapter->watchdog_timer.function = &e1000_watchdog;
       
  1093 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
  1094 
       
  1095 	init_timer(&adapter->phy_info_timer);
       
  1096 	adapter->phy_info_timer.function = &e1000_update_phy_info;
       
  1097 	adapter->phy_info_timer.data = (unsigned long) adapter;
       
  1098 
       
  1099 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
       
  1100 
       
  1101 	e1000_check_options(adapter);
       
  1102 
       
  1103 	/* Initial Wake on LAN setting
       
  1104 	 * If APM wake is enabled in the EEPROM,
       
  1105 	 * enable the ACPI Magic Packet filter
       
  1106 	 */
       
  1107 
       
  1108 	switch (adapter->hw.mac_type) {
       
  1109 	case e1000_82542_rev2_0:
       
  1110 	case e1000_82542_rev2_1:
       
  1111 	case e1000_82543:
       
  1112 		break;
       
  1113 	case e1000_82544:
       
  1114 		e1000_read_eeprom(&adapter->hw,
       
  1115 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
       
  1116 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
       
  1117 		break;
       
  1118 	case e1000_ich8lan:
       
  1119 		e1000_read_eeprom(&adapter->hw,
       
  1120 			EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
       
  1121 		eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
       
  1122 		break;
       
  1123 	case e1000_82546:
       
  1124 	case e1000_82546_rev_3:
       
  1125 	case e1000_82571:
       
  1126 	case e1000_80003es2lan:
       
  1127 		if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
       
  1128 			e1000_read_eeprom(&adapter->hw,
       
  1129 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
  1130 			break;
       
  1131 		}
       
  1132 		/* Fall Through */
       
  1133 	default:
       
  1134 		e1000_read_eeprom(&adapter->hw,
       
  1135 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
  1136 		break;
       
  1137 	}
       
  1138 	if (eeprom_data & eeprom_apme_mask)
       
  1139 		adapter->eeprom_wol |= E1000_WUFC_MAG;
       
  1140 
       
  1141 	/* now that we have the eeprom settings, apply the special cases
       
  1142 	 * where the eeprom may be wrong or the board simply won't support
       
  1143 	 * wake on lan on a particular port */
       
  1144 	switch (pdev->device) {
       
  1145 	case E1000_DEV_ID_82546GB_PCIE:
       
  1146 		adapter->eeprom_wol = 0;
       
  1147 		break;
       
  1148 	case E1000_DEV_ID_82546EB_FIBER:
       
  1149 	case E1000_DEV_ID_82546GB_FIBER:
       
  1150 	case E1000_DEV_ID_82571EB_FIBER:
       
  1151 		/* Wake events only supported on port A for dual fiber
       
  1152 		 * regardless of eeprom setting */
       
  1153 		if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
       
  1154 			adapter->eeprom_wol = 0;
       
  1155 		break;
       
  1156 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1157 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
       
  1158 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
  1159 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
       
  1160 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
       
  1161 		/* if quad port adapter, disable WoL on all but port A */
       
  1162 		if (global_quad_port_a != 0)
       
  1163 			adapter->eeprom_wol = 0;
       
  1164 		else
       
  1165 			adapter->quad_port_a = 1;
       
  1166 		/* Reset for multiple quad port adapters */
       
  1167 		if (++global_quad_port_a == 4)
       
  1168 			global_quad_port_a = 0;
       
  1169 		break;
       
  1170 	}
       
  1171 
       
  1172 	/* initialize the wol settings based on the eeprom settings */
       
  1173 	adapter->wol = adapter->eeprom_wol;
       
  1174 
       
  1175 	/* print bus type/speed/width info */
       
  1176 	{
       
  1177 	struct e1000_hw *hw = &adapter->hw;
       
  1178 	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
       
  1179 		((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
       
  1180 		 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
       
  1181 		((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
       
  1182 		 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
       
  1183 		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
       
  1184 		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
       
  1185 		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
       
  1186 		((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
       
  1187 		 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
       
  1188 		 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
       
  1189 		 "32-bit"));
       
  1190 	}
       
  1191 
       
  1192 	printk("%s\n", print_mac(mac, netdev->dev_addr));
       
  1193 
       
  1194 	if (adapter->hw.bus_type == e1000_bus_type_pci_express) {
       
  1195 		DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
       
  1196 			"longer be supported by this driver in the future.\n",
       
  1197 			pdev->vendor, pdev->device);
       
  1198 		DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
       
  1199 			"driver instead.\n");
       
  1200 	}
       
  1201 
       
  1202 	/* reset the hardware with the new settings */
       
  1203 	e1000_reset(adapter);
       
  1204 
       
  1205 	/* If the controller is 82573 and f/w is AMT, do not set
       
  1206 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  1207 	 * let the f/w know that the h/w is now under the control
       
  1208 	 * of the driver. */
       
  1209 	if (adapter->hw.mac_type != e1000_82573 ||
       
  1210 	    !e1000_check_mng_mode(&adapter->hw))
       
  1211 		e1000_get_hw_control(adapter);
       
  1212 
       
  1213 	/* tell the stack to leave us alone until e1000_open() is called */
       
  1214 	netif_carrier_off(netdev);
       
  1215 	netif_stop_queue(netdev);
       
  1216 
       
  1217 	strcpy(netdev->name, "eth%d");
       
  1218 	if ((err = register_netdev(netdev)))
       
  1219 		goto err_register;
       
  1220 
       
  1221 	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
       
  1222 
       
  1223 	cards_found++;
       
  1224 	return 0;
       
  1225 
       
  1226 err_register:
       
  1227 	e1000_release_hw_control(adapter);
       
  1228 err_eeprom:
       
  1229 	if (!e1000_check_phy_reset_block(&adapter->hw))
       
  1230 		e1000_phy_hw_reset(&adapter->hw);
       
  1231 
       
  1232 	if (adapter->hw.flash_address)
       
  1233 		iounmap(adapter->hw.flash_address);
       
  1234 err_flashmap:
       
  1235 #ifdef CONFIG_E1000_NAPI
       
  1236 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  1237 		dev_put(&adapter->polling_netdev[i]);
       
  1238 #endif
       
  1239 
       
  1240 	kfree(adapter->tx_ring);
       
  1241 	kfree(adapter->rx_ring);
       
  1242 #ifdef CONFIG_E1000_NAPI
       
  1243 	kfree(adapter->polling_netdev);
       
  1244 #endif
       
  1245 err_sw_init:
       
  1246 	iounmap(adapter->hw.hw_addr);
       
  1247 err_ioremap:
       
  1248 	free_netdev(netdev);
       
  1249 err_alloc_etherdev:
       
  1250 	pci_release_regions(pdev);
       
  1251 err_pci_reg:
       
  1252 err_dma:
       
  1253 	pci_disable_device(pdev);
       
  1254 	return err;
       
  1255 }
       
  1256 
       
  1257 /**
       
  1258  * e1000_remove - Device Removal Routine
       
  1259  * @pdev: PCI device information struct
       
  1260  *
       
  1261  * e1000_remove is called by the PCI subsystem to alert the driver
       
  1262  * that it should release a PCI device.  The could be caused by a
       
  1263  * Hot-Plug event, or because the driver is going to be removed from
       
  1264  * memory.
       
  1265  **/
       
  1266 
       
  1267 static void __devexit
       
  1268 e1000_remove(struct pci_dev *pdev)
       
  1269 {
       
  1270 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  1271 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1272 #ifdef CONFIG_E1000_NAPI
       
  1273 	int i;
       
  1274 #endif
       
  1275 
       
  1276 	cancel_work_sync(&adapter->reset_task);
       
  1277 
       
  1278 	e1000_release_manageability(adapter);
       
  1279 
       
  1280 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  1281 	 * would have already happened in close and is redundant. */
       
  1282 	e1000_release_hw_control(adapter);
       
  1283 
       
  1284 #ifdef CONFIG_E1000_NAPI
       
  1285 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  1286 		dev_put(&adapter->polling_netdev[i]);
       
  1287 #endif
       
  1288 
       
  1289 	unregister_netdev(netdev);
       
  1290 
       
  1291 	if (!e1000_check_phy_reset_block(&adapter->hw))
       
  1292 		e1000_phy_hw_reset(&adapter->hw);
       
  1293 
       
  1294 	kfree(adapter->tx_ring);
       
  1295 	kfree(adapter->rx_ring);
       
  1296 #ifdef CONFIG_E1000_NAPI
       
  1297 	kfree(adapter->polling_netdev);
       
  1298 #endif
       
  1299 
       
  1300 	iounmap(adapter->hw.hw_addr);
       
  1301 	if (adapter->hw.flash_address)
       
  1302 		iounmap(adapter->hw.flash_address);
       
  1303 	pci_release_regions(pdev);
       
  1304 
       
  1305 	free_netdev(netdev);
       
  1306 
       
  1307 	pci_disable_device(pdev);
       
  1308 }
       
  1309 
       
  1310 /**
       
  1311  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  1312  * @adapter: board private structure to initialize
       
  1313  *
       
  1314  * e1000_sw_init initializes the Adapter private data structure.
       
  1315  * Fields are initialized based on PCI device information and
       
  1316  * OS network device settings (MTU size).
       
  1317  **/
       
  1318 
       
  1319 static int __devinit
       
  1320 e1000_sw_init(struct e1000_adapter *adapter)
       
  1321 {
       
  1322 	struct e1000_hw *hw = &adapter->hw;
       
  1323 	struct net_device *netdev = adapter->netdev;
       
  1324 	struct pci_dev *pdev = adapter->pdev;
       
  1325 #ifdef CONFIG_E1000_NAPI
       
  1326 	int i;
       
  1327 #endif
       
  1328 
       
  1329 	/* PCI config space info */
       
  1330 
       
  1331 	hw->vendor_id = pdev->vendor;
       
  1332 	hw->device_id = pdev->device;
       
  1333 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
       
  1334 	hw->subsystem_id = pdev->subsystem_device;
       
  1335 	hw->revision_id = pdev->revision;
       
  1336 
       
  1337 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
       
  1338 
       
  1339 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  1340 	adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
       
  1341 	hw->max_frame_size = netdev->mtu +
       
  1342 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  1343 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
       
  1344 
       
  1345 	/* identify the MAC */
       
  1346 
       
  1347 	if (e1000_set_mac_type(hw)) {
       
  1348 		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
       
  1349 		return -EIO;
       
  1350 	}
       
  1351 
       
  1352 	switch (hw->mac_type) {
       
  1353 	default:
       
  1354 		break;
       
  1355 	case e1000_82541:
       
  1356 	case e1000_82547:
       
  1357 	case e1000_82541_rev_2:
       
  1358 	case e1000_82547_rev_2:
       
  1359 		hw->phy_init_script = 1;
       
  1360 		break;
       
  1361 	}
       
  1362 
       
  1363 	e1000_set_media_type(hw);
       
  1364 
       
  1365 	hw->wait_autoneg_complete = false;
       
  1366 	hw->tbi_compatibility_en = true;
       
  1367 	hw->adaptive_ifs = true;
       
  1368 
       
  1369 	/* Copper options */
       
  1370 
       
  1371 	if (hw->media_type == e1000_media_type_copper) {
       
  1372 		hw->mdix = AUTO_ALL_MODES;
       
  1373 		hw->disable_polarity_correction = false;
       
  1374 		hw->master_slave = E1000_MASTER_SLAVE;
       
  1375 	}
       
  1376 
       
  1377 	adapter->num_tx_queues = 1;
       
  1378 	adapter->num_rx_queues = 1;
       
  1379 
       
  1380 	if (e1000_alloc_queues(adapter)) {
       
  1381 		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
       
  1382 		return -ENOMEM;
       
  1383 	}
       
  1384 
       
  1385 #ifdef CONFIG_E1000_NAPI
       
  1386 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1387 		adapter->polling_netdev[i].priv = adapter;
       
  1388 		dev_hold(&adapter->polling_netdev[i]);
       
  1389 		set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
       
  1390 	}
       
  1391 	spin_lock_init(&adapter->tx_queue_lock);
       
  1392 #endif
       
  1393 
       
  1394 	/* Explicitly disable IRQ since the NIC can be in any state. */
       
  1395 	e1000_irq_disable(adapter);
       
  1396 
       
  1397 	spin_lock_init(&adapter->stats_lock);
       
  1398 
       
  1399 	set_bit(__E1000_DOWN, &adapter->flags);
       
  1400 
       
  1401 	return 0;
       
  1402 }
       
  1403 
       
  1404 /**
       
  1405  * e1000_alloc_queues - Allocate memory for all rings
       
  1406  * @adapter: board private structure to initialize
       
  1407  *
       
  1408  * We allocate one ring per queue at run-time since we don't know the
       
  1409  * number of queues at compile-time.  The polling_netdev array is
       
  1410  * intended for Multiqueue, but should work fine with a single queue.
       
  1411  **/
       
  1412 
       
  1413 static int __devinit
       
  1414 e1000_alloc_queues(struct e1000_adapter *adapter)
       
  1415 {
       
  1416 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
       
  1417 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
       
  1418 	if (!adapter->tx_ring)
       
  1419 		return -ENOMEM;
       
  1420 
       
  1421 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
       
  1422 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
       
  1423 	if (!adapter->rx_ring) {
       
  1424 		kfree(adapter->tx_ring);
       
  1425 		return -ENOMEM;
       
  1426 	}
       
  1427 
       
  1428 #ifdef CONFIG_E1000_NAPI
       
  1429 	adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
       
  1430 	                                  sizeof(struct net_device),
       
  1431 	                                  GFP_KERNEL);
       
  1432 	if (!adapter->polling_netdev) {
       
  1433 		kfree(adapter->tx_ring);
       
  1434 		kfree(adapter->rx_ring);
       
  1435 		return -ENOMEM;
       
  1436 	}
       
  1437 #endif
       
  1438 
       
  1439 	return E1000_SUCCESS;
       
  1440 }
       
  1441 
       
  1442 /**
       
  1443  * e1000_open - Called when a network interface is made active
       
  1444  * @netdev: network interface device structure
       
  1445  *
       
  1446  * Returns 0 on success, negative value on failure
       
  1447  *
       
  1448  * The open entry point is called when a network interface is made
       
  1449  * active by the system (IFF_UP).  At this point all resources needed
       
  1450  * for transmit and receive operations are allocated, the interrupt
       
  1451  * handler is registered with the OS, the watchdog timer is started,
       
  1452  * and the stack is notified that the interface is ready.
       
  1453  **/
       
  1454 
       
  1455 static int
       
  1456 e1000_open(struct net_device *netdev)
       
  1457 {
       
  1458 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1459 	int err;
       
  1460 
       
  1461 	/* disallow open during test */
       
  1462 	if (test_bit(__E1000_TESTING, &adapter->flags))
       
  1463 		return -EBUSY;
       
  1464 
       
  1465 	/* allocate transmit descriptors */
       
  1466 	err = e1000_setup_all_tx_resources(adapter);
       
  1467 	if (err)
       
  1468 		goto err_setup_tx;
       
  1469 
       
  1470 	/* allocate receive descriptors */
       
  1471 	err = e1000_setup_all_rx_resources(adapter);
       
  1472 	if (err)
       
  1473 		goto err_setup_rx;
       
  1474 
       
  1475 	e1000_power_up_phy(adapter);
       
  1476 
       
  1477 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  1478 	if ((adapter->hw.mng_cookie.status &
       
  1479 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
  1480 		e1000_update_mng_vlan(adapter);
       
  1481 	}
       
  1482 
       
  1483 	/* If AMT is enabled, let the firmware know that the network
       
  1484 	 * interface is now open */
       
  1485 	if (adapter->hw.mac_type == e1000_82573 &&
       
  1486 	    e1000_check_mng_mode(&adapter->hw))
       
  1487 		e1000_get_hw_control(adapter);
       
  1488 
       
  1489 	/* before we allocate an interrupt, we must be ready to handle it.
       
  1490 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
       
  1491 	 * as soon as we call pci_request_irq, so we have to setup our
       
  1492 	 * clean_rx handler before we do so.  */
       
  1493 	e1000_configure(adapter);
       
  1494 
       
  1495 	err = e1000_request_irq(adapter);
       
  1496 	if (err)
       
  1497 		goto err_req_irq;
       
  1498 
       
  1499 	/* From here on the code is the same as e1000_up() */
       
  1500 	clear_bit(__E1000_DOWN, &adapter->flags);
       
  1501 
       
  1502 #ifdef CONFIG_E1000_NAPI
       
  1503 	napi_enable(&adapter->napi);
       
  1504 #endif
       
  1505 
       
  1506 	e1000_irq_enable(adapter);
       
  1507 
       
  1508 	/* fire a link status change interrupt to start the watchdog */
       
  1509 	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
       
  1510 
       
  1511 	return E1000_SUCCESS;
       
  1512 
       
  1513 err_req_irq:
       
  1514 	e1000_release_hw_control(adapter);
       
  1515 	e1000_power_down_phy(adapter);
       
  1516 	e1000_free_all_rx_resources(adapter);
       
  1517 err_setup_rx:
       
  1518 	e1000_free_all_tx_resources(adapter);
       
  1519 err_setup_tx:
       
  1520 	e1000_reset(adapter);
       
  1521 
       
  1522 	return err;
       
  1523 }
       
  1524 
       
  1525 /**
       
  1526  * e1000_close - Disables a network interface
       
  1527  * @netdev: network interface device structure
       
  1528  *
       
  1529  * Returns 0, this is not allowed to fail
       
  1530  *
       
  1531  * The close entry point is called when an interface is de-activated
       
  1532  * by the OS.  The hardware is still under the drivers control, but
       
  1533  * needs to be disabled.  A global MAC reset is issued to stop the
       
  1534  * hardware, and all transmit and receive resources are freed.
       
  1535  **/
       
  1536 
       
  1537 static int
       
  1538 e1000_close(struct net_device *netdev)
       
  1539 {
       
  1540 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1541 
       
  1542 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  1543 	e1000_down(adapter);
       
  1544 	e1000_power_down_phy(adapter);
       
  1545 	e1000_free_irq(adapter);
       
  1546 
       
  1547 	e1000_free_all_tx_resources(adapter);
       
  1548 	e1000_free_all_rx_resources(adapter);
       
  1549 
       
  1550 	/* kill manageability vlan ID if supported, but not if a vlan with
       
  1551 	 * the same ID is registered on the host OS (let 8021q kill it) */
       
  1552 	if ((adapter->hw.mng_cookie.status &
       
  1553 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  1554 	     !(adapter->vlgrp &&
       
  1555 	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
       
  1556 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  1557 	}
       
  1558 
       
  1559 	/* If AMT is enabled, let the firmware know that the network
       
  1560 	 * interface is now closed */
       
  1561 	if (adapter->hw.mac_type == e1000_82573 &&
       
  1562 	    e1000_check_mng_mode(&adapter->hw))
       
  1563 		e1000_release_hw_control(adapter);
       
  1564 
       
  1565 	return 0;
       
  1566 }
       
  1567 
       
  1568 /**
       
  1569  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
       
  1570  * @adapter: address of board private structure
       
  1571  * @start: address of beginning of memory
       
  1572  * @len: length of memory
       
  1573  **/
       
  1574 static bool
       
  1575 e1000_check_64k_bound(struct e1000_adapter *adapter,
       
  1576 		      void *start, unsigned long len)
       
  1577 {
       
  1578 	unsigned long begin = (unsigned long) start;
       
  1579 	unsigned long end = begin + len;
       
  1580 
       
  1581 	/* First rev 82545 and 82546 need to not allow any memory
       
  1582 	 * write location to cross 64k boundary due to errata 23 */
       
  1583 	if (adapter->hw.mac_type == e1000_82545 ||
       
  1584 	    adapter->hw.mac_type == e1000_82546) {
       
  1585 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
       
  1586 	}
       
  1587 
       
  1588 	return true;
       
  1589 }
       
  1590 
       
  1591 /**
       
  1592  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
       
  1593  * @adapter: board private structure
       
  1594  * @txdr:    tx descriptor ring (for a specific queue) to setup
       
  1595  *
       
  1596  * Return 0 on success, negative on failure
       
  1597  **/
       
  1598 
       
  1599 static int
       
  1600 e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
  1601                          struct e1000_tx_ring *txdr)
       
  1602 {
       
  1603 	struct pci_dev *pdev = adapter->pdev;
       
  1604 	int size;
       
  1605 
       
  1606 	size = sizeof(struct e1000_buffer) * txdr->count;
       
  1607 	txdr->buffer_info = vmalloc(size);
       
  1608 	if (!txdr->buffer_info) {
       
  1609 		DPRINTK(PROBE, ERR,
       
  1610 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1611 		return -ENOMEM;
       
  1612 	}
       
  1613 	memset(txdr->buffer_info, 0, size);
       
  1614 
       
  1615 	/* round up to nearest 4K */
       
  1616 
       
  1617 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
  1618 	txdr->size = ALIGN(txdr->size, 4096);
       
  1619 
       
  1620 	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1621 	if (!txdr->desc) {
       
  1622 setup_tx_desc_die:
       
  1623 		vfree(txdr->buffer_info);
       
  1624 		DPRINTK(PROBE, ERR,
       
  1625 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1626 		return -ENOMEM;
       
  1627 	}
       
  1628 
       
  1629 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1630 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1631 		void *olddesc = txdr->desc;
       
  1632 		dma_addr_t olddma = txdr->dma;
       
  1633 		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
       
  1634 				     "at %p\n", txdr->size, txdr->desc);
       
  1635 		/* Try again, without freeing the previous */
       
  1636 		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1637 		/* Failed allocation, critical failure */
       
  1638 		if (!txdr->desc) {
       
  1639 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1640 			goto setup_tx_desc_die;
       
  1641 		}
       
  1642 
       
  1643 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1644 			/* give up */
       
  1645 			pci_free_consistent(pdev, txdr->size, txdr->desc,
       
  1646 					    txdr->dma);
       
  1647 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1648 			DPRINTK(PROBE, ERR,
       
  1649 				"Unable to allocate aligned memory "
       
  1650 				"for the transmit descriptor ring\n");
       
  1651 			vfree(txdr->buffer_info);
       
  1652 			return -ENOMEM;
       
  1653 		} else {
       
  1654 			/* Free old allocation, new allocation was successful */
       
  1655 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1656 		}
       
  1657 	}
       
  1658 	memset(txdr->desc, 0, txdr->size);
       
  1659 
       
  1660 	txdr->next_to_use = 0;
       
  1661 	txdr->next_to_clean = 0;
       
  1662 	spin_lock_init(&txdr->tx_lock);
       
  1663 
       
  1664 	return 0;
       
  1665 }
       
  1666 
       
  1667 /**
       
  1668  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
       
  1669  * 				  (Descriptors) for all queues
       
  1670  * @adapter: board private structure
       
  1671  *
       
  1672  * Return 0 on success, negative on failure
       
  1673  **/
       
  1674 
       
  1675 int
       
  1676 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
       
  1677 {
       
  1678 	int i, err = 0;
       
  1679 
       
  1680 	for (i = 0; i < adapter->num_tx_queues; i++) {
       
  1681 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1682 		if (err) {
       
  1683 			DPRINTK(PROBE, ERR,
       
  1684 				"Allocation for Tx Queue %u failed\n", i);
       
  1685 			for (i-- ; i >= 0; i--)
       
  1686 				e1000_free_tx_resources(adapter,
       
  1687 							&adapter->tx_ring[i]);
       
  1688 			break;
       
  1689 		}
       
  1690 	}
       
  1691 
       
  1692 	return err;
       
  1693 }
       
  1694 
       
  1695 /**
       
  1696  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  1697  * @adapter: board private structure
       
  1698  *
       
  1699  * Configure the Tx unit of the MAC after a reset.
       
  1700  **/
       
  1701 
       
  1702 static void
       
  1703 e1000_configure_tx(struct e1000_adapter *adapter)
       
  1704 {
       
  1705 	u64 tdba;
       
  1706 	struct e1000_hw *hw = &adapter->hw;
       
  1707 	u32 tdlen, tctl, tipg, tarc;
       
  1708 	u32 ipgr1, ipgr2;
       
  1709 
       
  1710 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  1711 
       
  1712 	switch (adapter->num_tx_queues) {
       
  1713 	case 1:
       
  1714 	default:
       
  1715 		tdba = adapter->tx_ring[0].dma;
       
  1716 		tdlen = adapter->tx_ring[0].count *
       
  1717 			sizeof(struct e1000_tx_desc);
       
  1718 		E1000_WRITE_REG(hw, TDLEN, tdlen);
       
  1719 		E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
       
  1720 		E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
       
  1721 		E1000_WRITE_REG(hw, TDT, 0);
       
  1722 		E1000_WRITE_REG(hw, TDH, 0);
       
  1723 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
       
  1724 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
       
  1725 		break;
       
  1726 	}
       
  1727 
       
  1728 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  1729 	if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
       
  1730 	    (hw->media_type == e1000_media_type_fiber ||
       
  1731 	     hw->media_type == e1000_media_type_internal_serdes))
       
  1732 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
       
  1733 	else
       
  1734 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
       
  1735 
       
  1736 	switch (hw->mac_type) {
       
  1737 	case e1000_82542_rev2_0:
       
  1738 	case e1000_82542_rev2_1:
       
  1739 		tipg = DEFAULT_82542_TIPG_IPGT;
       
  1740 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
       
  1741 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
       
  1742 		break;
       
  1743 	case e1000_80003es2lan:
       
  1744 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1745 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
       
  1746 		break;
       
  1747 	default:
       
  1748 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1749 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
       
  1750 		break;
       
  1751 	}
       
  1752 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
       
  1753 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
       
  1754 	E1000_WRITE_REG(hw, TIPG, tipg);
       
  1755 
       
  1756 	/* Set the Tx Interrupt Delay register */
       
  1757 
       
  1758 	E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
       
  1759 	if (hw->mac_type >= e1000_82540)
       
  1760 		E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
       
  1761 
       
  1762 	/* Program the Transmit Control Register */
       
  1763 
       
  1764 	tctl = E1000_READ_REG(hw, TCTL);
       
  1765 	tctl &= ~E1000_TCTL_CT;
       
  1766 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  1767 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  1768 
       
  1769 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
       
  1770 		tarc = E1000_READ_REG(hw, TARC0);
       
  1771 		/* set the speed mode bit, we'll clear it if we're not at
       
  1772 		 * gigabit link later */
       
  1773 		tarc |= (1 << 21);
       
  1774 		E1000_WRITE_REG(hw, TARC0, tarc);
       
  1775 	} else if (hw->mac_type == e1000_80003es2lan) {
       
  1776 		tarc = E1000_READ_REG(hw, TARC0);
       
  1777 		tarc |= 1;
       
  1778 		E1000_WRITE_REG(hw, TARC0, tarc);
       
  1779 		tarc = E1000_READ_REG(hw, TARC1);
       
  1780 		tarc |= 1;
       
  1781 		E1000_WRITE_REG(hw, TARC1, tarc);
       
  1782 	}
       
  1783 
       
  1784 	e1000_config_collision_dist(hw);
       
  1785 
       
  1786 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  1787 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
       
  1788 
       
  1789 	/* only set IDE if we are delaying interrupts using the timers */
       
  1790 	if (adapter->tx_int_delay)
       
  1791 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
       
  1792 
       
  1793 	if (hw->mac_type < e1000_82543)
       
  1794 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
       
  1795 	else
       
  1796 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  1797 
       
  1798 	/* Cache if we're 82544 running in PCI-X because we'll
       
  1799 	 * need this to apply a workaround later in the send path. */
       
  1800 	if (hw->mac_type == e1000_82544 &&
       
  1801 	    hw->bus_type == e1000_bus_type_pcix)
       
  1802 		adapter->pcix_82544 = 1;
       
  1803 
       
  1804 	E1000_WRITE_REG(hw, TCTL, tctl);
       
  1805 
       
  1806 }
       
  1807 
       
  1808 /**
       
  1809  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
       
  1810  * @adapter: board private structure
       
  1811  * @rxdr:    rx descriptor ring (for a specific queue) to setup
       
  1812  *
       
  1813  * Returns 0 on success, negative on failure
       
  1814  **/
       
  1815 
       
  1816 static int
       
  1817 e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
  1818                          struct e1000_rx_ring *rxdr)
       
  1819 {
       
  1820 	struct pci_dev *pdev = adapter->pdev;
       
  1821 	int size, desc_len;
       
  1822 
       
  1823 	size = sizeof(struct e1000_buffer) * rxdr->count;
       
  1824 	rxdr->buffer_info = vmalloc(size);
       
  1825 	if (!rxdr->buffer_info) {
       
  1826 		DPRINTK(PROBE, ERR,
       
  1827 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1828 		return -ENOMEM;
       
  1829 	}
       
  1830 	memset(rxdr->buffer_info, 0, size);
       
  1831 
       
  1832 	rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
       
  1833 	                        GFP_KERNEL);
       
  1834 	if (!rxdr->ps_page) {
       
  1835 		vfree(rxdr->buffer_info);
       
  1836 		DPRINTK(PROBE, ERR,
       
  1837 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1838 		return -ENOMEM;
       
  1839 	}
       
  1840 
       
  1841 	rxdr->ps_page_dma = kcalloc(rxdr->count,
       
  1842 	                            sizeof(struct e1000_ps_page_dma),
       
  1843 	                            GFP_KERNEL);
       
  1844 	if (!rxdr->ps_page_dma) {
       
  1845 		vfree(rxdr->buffer_info);
       
  1846 		kfree(rxdr->ps_page);
       
  1847 		DPRINTK(PROBE, ERR,
       
  1848 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1849 		return -ENOMEM;
       
  1850 	}
       
  1851 
       
  1852 	if (adapter->hw.mac_type <= e1000_82547_rev_2)
       
  1853 		desc_len = sizeof(struct e1000_rx_desc);
       
  1854 	else
       
  1855 		desc_len = sizeof(union e1000_rx_desc_packet_split);
       
  1856 
       
  1857 	/* Round up to nearest 4K */
       
  1858 
       
  1859 	rxdr->size = rxdr->count * desc_len;
       
  1860 	rxdr->size = ALIGN(rxdr->size, 4096);
       
  1861 
       
  1862 	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1863 
       
  1864 	if (!rxdr->desc) {
       
  1865 		DPRINTK(PROBE, ERR,
       
  1866 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1867 setup_rx_desc_die:
       
  1868 		vfree(rxdr->buffer_info);
       
  1869 		kfree(rxdr->ps_page);
       
  1870 		kfree(rxdr->ps_page_dma);
       
  1871 		return -ENOMEM;
       
  1872 	}
       
  1873 
       
  1874 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1875 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1876 		void *olddesc = rxdr->desc;
       
  1877 		dma_addr_t olddma = rxdr->dma;
       
  1878 		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
       
  1879 				     "at %p\n", rxdr->size, rxdr->desc);
       
  1880 		/* Try again, without freeing the previous */
       
  1881 		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1882 		/* Failed allocation, critical failure */
       
  1883 		if (!rxdr->desc) {
       
  1884 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1885 			DPRINTK(PROBE, ERR,
       
  1886 				"Unable to allocate memory "
       
  1887 				"for the receive descriptor ring\n");
       
  1888 			goto setup_rx_desc_die;
       
  1889 		}
       
  1890 
       
  1891 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1892 			/* give up */
       
  1893 			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
       
  1894 					    rxdr->dma);
       
  1895 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1896 			DPRINTK(PROBE, ERR,
       
  1897 				"Unable to allocate aligned memory "
       
  1898 				"for the receive descriptor ring\n");
       
  1899 			goto setup_rx_desc_die;
       
  1900 		} else {
       
  1901 			/* Free old allocation, new allocation was successful */
       
  1902 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1903 		}
       
  1904 	}
       
  1905 	memset(rxdr->desc, 0, rxdr->size);
       
  1906 
       
  1907 	rxdr->next_to_clean = 0;
       
  1908 	rxdr->next_to_use = 0;
       
  1909 
       
  1910 	return 0;
       
  1911 }
       
  1912 
       
  1913 /**
       
  1914  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
       
  1915  * 				  (Descriptors) for all queues
       
  1916  * @adapter: board private structure
       
  1917  *
       
  1918  * Return 0 on success, negative on failure
       
  1919  **/
       
  1920 
       
  1921 int
       
  1922 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
       
  1923 {
       
  1924 	int i, err = 0;
       
  1925 
       
  1926 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1927 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
       
  1928 		if (err) {
       
  1929 			DPRINTK(PROBE, ERR,
       
  1930 				"Allocation for Rx Queue %u failed\n", i);
       
  1931 			for (i-- ; i >= 0; i--)
       
  1932 				e1000_free_rx_resources(adapter,
       
  1933 							&adapter->rx_ring[i]);
       
  1934 			break;
       
  1935 		}
       
  1936 	}
       
  1937 
       
  1938 	return err;
       
  1939 }
       
  1940 
       
  1941 /**
       
  1942  * e1000_setup_rctl - configure the receive control registers
       
  1943  * @adapter: Board private structure
       
  1944  **/
       
  1945 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
       
  1946 			(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
       
  1947 static void
       
  1948 e1000_setup_rctl(struct e1000_adapter *adapter)
       
  1949 {
       
  1950 	u32 rctl, rfctl;
       
  1951 	u32 psrctl = 0;
       
  1952 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
       
  1953 	u32 pages = 0;
       
  1954 #endif
       
  1955 
       
  1956 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1957 
       
  1958 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  1959 
       
  1960 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  1961 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1962 		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1963 
       
  1964 	if (adapter->hw.tbi_compatibility_on == 1)
       
  1965 		rctl |= E1000_RCTL_SBP;
       
  1966 	else
       
  1967 		rctl &= ~E1000_RCTL_SBP;
       
  1968 
       
  1969 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  1970 		rctl &= ~E1000_RCTL_LPE;
       
  1971 	else
       
  1972 		rctl |= E1000_RCTL_LPE;
       
  1973 
       
  1974 	/* Setup buffer sizes */
       
  1975 	rctl &= ~E1000_RCTL_SZ_4096;
       
  1976 	rctl |= E1000_RCTL_BSEX;
       
  1977 	switch (adapter->rx_buffer_len) {
       
  1978 		case E1000_RXBUFFER_256:
       
  1979 			rctl |= E1000_RCTL_SZ_256;
       
  1980 			rctl &= ~E1000_RCTL_BSEX;
       
  1981 			break;
       
  1982 		case E1000_RXBUFFER_512:
       
  1983 			rctl |= E1000_RCTL_SZ_512;
       
  1984 			rctl &= ~E1000_RCTL_BSEX;
       
  1985 			break;
       
  1986 		case E1000_RXBUFFER_1024:
       
  1987 			rctl |= E1000_RCTL_SZ_1024;
       
  1988 			rctl &= ~E1000_RCTL_BSEX;
       
  1989 			break;
       
  1990 		case E1000_RXBUFFER_2048:
       
  1991 		default:
       
  1992 			rctl |= E1000_RCTL_SZ_2048;
       
  1993 			rctl &= ~E1000_RCTL_BSEX;
       
  1994 			break;
       
  1995 		case E1000_RXBUFFER_4096:
       
  1996 			rctl |= E1000_RCTL_SZ_4096;
       
  1997 			break;
       
  1998 		case E1000_RXBUFFER_8192:
       
  1999 			rctl |= E1000_RCTL_SZ_8192;
       
  2000 			break;
       
  2001 		case E1000_RXBUFFER_16384:
       
  2002 			rctl |= E1000_RCTL_SZ_16384;
       
  2003 			break;
       
  2004 	}
       
  2005 
       
  2006 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
       
  2007 	/* 82571 and greater support packet-split where the protocol
       
  2008 	 * header is placed in skb->data and the packet data is
       
  2009 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
       
  2010 	 * In the case of a non-split, skb->data is linearly filled,
       
  2011 	 * followed by the page buffers.  Therefore, skb->data is
       
  2012 	 * sized to hold the largest protocol header.
       
  2013 	 */
       
  2014 	/* allocations using alloc_page take too long for regular MTU
       
  2015 	 * so only enable packet split for jumbo frames */
       
  2016 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
       
  2017 	if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
       
  2018 	    PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
       
  2019 		adapter->rx_ps_pages = pages;
       
  2020 	else
       
  2021 		adapter->rx_ps_pages = 0;
       
  2022 #endif
       
  2023 	if (adapter->rx_ps_pages) {
       
  2024 		/* Configure extra packet-split registers */
       
  2025 		rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
       
  2026 		rfctl |= E1000_RFCTL_EXTEN;
       
  2027 		/* disable packet split support for IPv6 extension headers,
       
  2028 		 * because some malformed IPv6 headers can hang the RX */
       
  2029 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
       
  2030 		          E1000_RFCTL_NEW_IPV6_EXT_DIS);
       
  2031 
       
  2032 		E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
       
  2033 
       
  2034 		rctl |= E1000_RCTL_DTYP_PS;
       
  2035 
       
  2036 		psrctl |= adapter->rx_ps_bsize0 >>
       
  2037 			E1000_PSRCTL_BSIZE0_SHIFT;
       
  2038 
       
  2039 		switch (adapter->rx_ps_pages) {
       
  2040 		case 3:
       
  2041 			psrctl |= PAGE_SIZE <<
       
  2042 				E1000_PSRCTL_BSIZE3_SHIFT;
       
  2043 		case 2:
       
  2044 			psrctl |= PAGE_SIZE <<
       
  2045 				E1000_PSRCTL_BSIZE2_SHIFT;
       
  2046 		case 1:
       
  2047 			psrctl |= PAGE_SIZE >>
       
  2048 				E1000_PSRCTL_BSIZE1_SHIFT;
       
  2049 			break;
       
  2050 		}
       
  2051 
       
  2052 		E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
       
  2053 	}
       
  2054 
       
  2055 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  2056 }
       
  2057 
       
  2058 /**
       
  2059  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
       
  2060  * @adapter: board private structure
       
  2061  *
       
  2062  * Configure the Rx unit of the MAC after a reset.
       
  2063  **/
       
  2064 
       
  2065 static void
       
  2066 e1000_configure_rx(struct e1000_adapter *adapter)
       
  2067 {
       
  2068 	u64 rdba;
       
  2069 	struct e1000_hw *hw = &adapter->hw;
       
  2070 	u32 rdlen, rctl, rxcsum, ctrl_ext;
       
  2071 
       
  2072 	if (adapter->rx_ps_pages) {
       
  2073 		/* this is a 32 byte descriptor */
       
  2074 		rdlen = adapter->rx_ring[0].count *
       
  2075 			sizeof(union e1000_rx_desc_packet_split);
       
  2076 		adapter->clean_rx = e1000_clean_rx_irq_ps;
       
  2077 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
       
  2078 	} else {
       
  2079 		rdlen = adapter->rx_ring[0].count *
       
  2080 			sizeof(struct e1000_rx_desc);
       
  2081 		adapter->clean_rx = e1000_clean_rx_irq;
       
  2082 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  2083 	}
       
  2084 
       
  2085 	/* disable receives while setting up the descriptors */
       
  2086 	rctl = E1000_READ_REG(hw, RCTL);
       
  2087 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  2088 
       
  2089 	/* set the Receive Delay Timer Register */
       
  2090 	E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
       
  2091 
       
  2092 	if (hw->mac_type >= e1000_82540) {
       
  2093 		E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
       
  2094 		if (adapter->itr_setting != 0)
       
  2095 			E1000_WRITE_REG(hw, ITR,
       
  2096 				1000000000 / (adapter->itr * 256));
       
  2097 	}
       
  2098 
       
  2099 	if (hw->mac_type >= e1000_82571) {
       
  2100 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
  2101 		/* Reset delay timers after every interrupt */
       
  2102 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
       
  2103 #ifdef CONFIG_E1000_NAPI
       
  2104 		/* Auto-Mask interrupts upon ICR access */
       
  2105 		ctrl_ext |= E1000_CTRL_EXT_IAME;
       
  2106 		E1000_WRITE_REG(hw, IAM, 0xffffffff);
       
  2107 #endif
       
  2108 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
  2109 		E1000_WRITE_FLUSH(hw);
       
  2110 	}
       
  2111 
       
  2112 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
       
  2113 	 * the Base and Length of the Rx Descriptor Ring */
       
  2114 	switch (adapter->num_rx_queues) {
       
  2115 	case 1:
       
  2116 	default:
       
  2117 		rdba = adapter->rx_ring[0].dma;
       
  2118 		E1000_WRITE_REG(hw, RDLEN, rdlen);
       
  2119 		E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
       
  2120 		E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
       
  2121 		E1000_WRITE_REG(hw, RDT, 0);
       
  2122 		E1000_WRITE_REG(hw, RDH, 0);
       
  2123 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
       
  2124 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
       
  2125 		break;
       
  2126 	}
       
  2127 
       
  2128 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
       
  2129 	if (hw->mac_type >= e1000_82543) {
       
  2130 		rxcsum = E1000_READ_REG(hw, RXCSUM);
       
  2131 		if (adapter->rx_csum) {
       
  2132 			rxcsum |= E1000_RXCSUM_TUOFL;
       
  2133 
       
  2134 			/* Enable 82571 IPv4 payload checksum for UDP fragments
       
  2135 			 * Must be used in conjunction with packet-split. */
       
  2136 			if ((hw->mac_type >= e1000_82571) &&
       
  2137 			    (adapter->rx_ps_pages)) {
       
  2138 				rxcsum |= E1000_RXCSUM_IPPCSE;
       
  2139 			}
       
  2140 		} else {
       
  2141 			rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  2142 			/* don't need to clear IPPCSE as it defaults to 0 */
       
  2143 		}
       
  2144 		E1000_WRITE_REG(hw, RXCSUM, rxcsum);
       
  2145 	}
       
  2146 
       
  2147 	/* enable early receives on 82573, only takes effect if using > 2048
       
  2148 	 * byte total frame size.  for example only for jumbo frames */
       
  2149 #define E1000_ERT_2048 0x100
       
  2150 	if (hw->mac_type == e1000_82573)
       
  2151 		E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
       
  2152 
       
  2153 	/* Enable Receives */
       
  2154 	E1000_WRITE_REG(hw, RCTL, rctl);
       
  2155 }
       
  2156 
       
  2157 /**
       
  2158  * e1000_free_tx_resources - Free Tx Resources per Queue
       
  2159  * @adapter: board private structure
       
  2160  * @tx_ring: Tx descriptor ring for a specific queue
       
  2161  *
       
  2162  * Free all transmit software resources
       
  2163  **/
       
  2164 
       
  2165 static void
       
  2166 e1000_free_tx_resources(struct e1000_adapter *adapter,
       
  2167                         struct e1000_tx_ring *tx_ring)
       
  2168 {
       
  2169 	struct pci_dev *pdev = adapter->pdev;
       
  2170 
       
  2171 	e1000_clean_tx_ring(adapter, tx_ring);
       
  2172 
       
  2173 	vfree(tx_ring->buffer_info);
       
  2174 	tx_ring->buffer_info = NULL;
       
  2175 
       
  2176 	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
       
  2177 
       
  2178 	tx_ring->desc = NULL;
       
  2179 }
       
  2180 
       
  2181 /**
       
  2182  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
       
  2183  * @adapter: board private structure
       
  2184  *
       
  2185  * Free all transmit software resources
       
  2186  **/
       
  2187 
       
  2188 void
       
  2189 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
       
  2190 {
       
  2191 	int i;
       
  2192 
       
  2193 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  2194 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
       
  2195 }
       
  2196 
       
  2197 static void
       
  2198 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
       
  2199 			struct e1000_buffer *buffer_info)
       
  2200 {
       
  2201 	if (buffer_info->dma) {
       
  2202 		pci_unmap_page(adapter->pdev,
       
  2203 				buffer_info->dma,
       
  2204 				buffer_info->length,
       
  2205 				PCI_DMA_TODEVICE);
       
  2206 		buffer_info->dma = 0;
       
  2207 	}
       
  2208 	if (buffer_info->skb) {
       
  2209 		dev_kfree_skb_any(buffer_info->skb);
       
  2210 		buffer_info->skb = NULL;
       
  2211 	}
       
  2212 	/* buffer_info must be completely set up in the transmit path */
       
  2213 }
       
  2214 
       
  2215 /**
       
  2216  * e1000_clean_tx_ring - Free Tx Buffers
       
  2217  * @adapter: board private structure
       
  2218  * @tx_ring: ring to be cleaned
       
  2219  **/
       
  2220 
       
  2221 static void
       
  2222 e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
  2223                     struct e1000_tx_ring *tx_ring)
       
  2224 {
       
  2225 	struct e1000_buffer *buffer_info;
       
  2226 	unsigned long size;
       
  2227 	unsigned int i;
       
  2228 
       
  2229 	/* Free all the Tx ring sk_buffs */
       
  2230 
       
  2231 	for (i = 0; i < tx_ring->count; i++) {
       
  2232 		buffer_info = &tx_ring->buffer_info[i];
       
  2233 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  2234 	}
       
  2235 
       
  2236 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  2237 	memset(tx_ring->buffer_info, 0, size);
       
  2238 
       
  2239 	/* Zero out the descriptor ring */
       
  2240 
       
  2241 	memset(tx_ring->desc, 0, tx_ring->size);
       
  2242 
       
  2243 	tx_ring->next_to_use = 0;
       
  2244 	tx_ring->next_to_clean = 0;
       
  2245 	tx_ring->last_tx_tso = 0;
       
  2246 
       
  2247 	writel(0, adapter->hw.hw_addr + tx_ring->tdh);
       
  2248 	writel(0, adapter->hw.hw_addr + tx_ring->tdt);
       
  2249 }
       
  2250 
       
  2251 /**
       
  2252  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
       
  2253  * @adapter: board private structure
       
  2254  **/
       
  2255 
       
  2256 static void
       
  2257 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
       
  2258 {
       
  2259 	int i;
       
  2260 
       
  2261 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  2262 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
       
  2263 }
       
  2264 
       
  2265 /**
       
  2266  * e1000_free_rx_resources - Free Rx Resources
       
  2267  * @adapter: board private structure
       
  2268  * @rx_ring: ring to clean the resources from
       
  2269  *
       
  2270  * Free all receive software resources
       
  2271  **/
       
  2272 
       
  2273 static void
       
  2274 e1000_free_rx_resources(struct e1000_adapter *adapter,
       
  2275                         struct e1000_rx_ring *rx_ring)
       
  2276 {
       
  2277 	struct pci_dev *pdev = adapter->pdev;
       
  2278 
       
  2279 	e1000_clean_rx_ring(adapter, rx_ring);
       
  2280 
       
  2281 	vfree(rx_ring->buffer_info);
       
  2282 	rx_ring->buffer_info = NULL;
       
  2283 	kfree(rx_ring->ps_page);
       
  2284 	rx_ring->ps_page = NULL;
       
  2285 	kfree(rx_ring->ps_page_dma);
       
  2286 	rx_ring->ps_page_dma = NULL;
       
  2287 
       
  2288 	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
       
  2289 
       
  2290 	rx_ring->desc = NULL;
       
  2291 }
       
  2292 
       
  2293 /**
       
  2294  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
       
  2295  * @adapter: board private structure
       
  2296  *
       
  2297  * Free all receive software resources
       
  2298  **/
       
  2299 
       
  2300 void
       
  2301 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
       
  2302 {
       
  2303 	int i;
       
  2304 
       
  2305 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2306 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
       
  2307 }
       
  2308 
       
  2309 /**
       
  2310  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  2311  * @adapter: board private structure
       
  2312  * @rx_ring: ring to free buffers from
       
  2313  **/
       
  2314 
       
  2315 static void
       
  2316 e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
  2317                     struct e1000_rx_ring *rx_ring)
       
  2318 {
       
  2319 	struct e1000_buffer *buffer_info;
       
  2320 	struct e1000_ps_page *ps_page;
       
  2321 	struct e1000_ps_page_dma *ps_page_dma;
       
  2322 	struct pci_dev *pdev = adapter->pdev;
       
  2323 	unsigned long size;
       
  2324 	unsigned int i, j;
       
  2325 
       
  2326 	/* Free all the Rx ring sk_buffs */
       
  2327 	for (i = 0; i < rx_ring->count; i++) {
       
  2328 		buffer_info = &rx_ring->buffer_info[i];
       
  2329 		if (buffer_info->skb) {
       
  2330 			pci_unmap_single(pdev,
       
  2331 					 buffer_info->dma,
       
  2332 					 buffer_info->length,
       
  2333 					 PCI_DMA_FROMDEVICE);
       
  2334 
       
  2335 			dev_kfree_skb(buffer_info->skb);
       
  2336 			buffer_info->skb = NULL;
       
  2337 		}
       
  2338 		ps_page = &rx_ring->ps_page[i];
       
  2339 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  2340 		for (j = 0; j < adapter->rx_ps_pages; j++) {
       
  2341 			if (!ps_page->ps_page[j]) break;
       
  2342 			pci_unmap_page(pdev,
       
  2343 				       ps_page_dma->ps_page_dma[j],
       
  2344 				       PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  2345 			ps_page_dma->ps_page_dma[j] = 0;
       
  2346 			put_page(ps_page->ps_page[j]);
       
  2347 			ps_page->ps_page[j] = NULL;
       
  2348 		}
       
  2349 	}
       
  2350 
       
  2351 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  2352 	memset(rx_ring->buffer_info, 0, size);
       
  2353 	size = sizeof(struct e1000_ps_page) * rx_ring->count;
       
  2354 	memset(rx_ring->ps_page, 0, size);
       
  2355 	size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
       
  2356 	memset(rx_ring->ps_page_dma, 0, size);
       
  2357 
       
  2358 	/* Zero out the descriptor ring */
       
  2359 
       
  2360 	memset(rx_ring->desc, 0, rx_ring->size);
       
  2361 
       
  2362 	rx_ring->next_to_clean = 0;
       
  2363 	rx_ring->next_to_use = 0;
       
  2364 
       
  2365 	writel(0, adapter->hw.hw_addr + rx_ring->rdh);
       
  2366 	writel(0, adapter->hw.hw_addr + rx_ring->rdt);
       
  2367 }
       
  2368 
       
  2369 /**
       
  2370  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
       
  2371  * @adapter: board private structure
       
  2372  **/
       
  2373 
       
  2374 static void
       
  2375 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
       
  2376 {
       
  2377 	int i;
       
  2378 
       
  2379 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2380 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
       
  2381 }
       
  2382 
       
  2383 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
       
  2384  * and memory write and invalidate disabled for certain operations
       
  2385  */
       
  2386 static void
       
  2387 e1000_enter_82542_rst(struct e1000_adapter *adapter)
       
  2388 {
       
  2389 	struct net_device *netdev = adapter->netdev;
       
  2390 	u32 rctl;
       
  2391 
       
  2392 	e1000_pci_clear_mwi(&adapter->hw);
       
  2393 
       
  2394 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  2395 	rctl |= E1000_RCTL_RST;
       
  2396 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  2397 	E1000_WRITE_FLUSH(&adapter->hw);
       
  2398 	mdelay(5);
       
  2399 
       
  2400 	if (netif_running(netdev))
       
  2401 		e1000_clean_all_rx_rings(adapter);
       
  2402 }
       
  2403 
       
  2404 static void
       
  2405 e1000_leave_82542_rst(struct e1000_adapter *adapter)
       
  2406 {
       
  2407 	struct net_device *netdev = adapter->netdev;
       
  2408 	u32 rctl;
       
  2409 
       
  2410 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  2411 	rctl &= ~E1000_RCTL_RST;
       
  2412 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  2413 	E1000_WRITE_FLUSH(&adapter->hw);
       
  2414 	mdelay(5);
       
  2415 
       
  2416 	if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
  2417 		e1000_pci_set_mwi(&adapter->hw);
       
  2418 
       
  2419 	if (netif_running(netdev)) {
       
  2420 		/* No need to loop, because 82542 supports only 1 queue */
       
  2421 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
       
  2422 		e1000_configure_rx(adapter);
       
  2423 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
       
  2424 	}
       
  2425 }
       
  2426 
       
  2427 /**
       
  2428  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  2429  * @netdev: network interface device structure
       
  2430  * @p: pointer to an address structure
       
  2431  *
       
  2432  * Returns 0 on success, negative on failure
       
  2433  **/
       
  2434 
       
  2435 static int
       
  2436 e1000_set_mac(struct net_device *netdev, void *p)
       
  2437 {
       
  2438 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2439 	struct sockaddr *addr = p;
       
  2440 
       
  2441 	if (!is_valid_ether_addr(addr->sa_data))
       
  2442 		return -EADDRNOTAVAIL;
       
  2443 
       
  2444 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2445 
       
  2446 	if (adapter->hw.mac_type == e1000_82542_rev2_0)
       
  2447 		e1000_enter_82542_rst(adapter);
       
  2448 
       
  2449 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  2450 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
       
  2451 
       
  2452 	e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
       
  2453 
       
  2454 	/* With 82571 controllers, LAA may be overwritten (with the default)
       
  2455 	 * due to controller reset from the other port. */
       
  2456 	if (adapter->hw.mac_type == e1000_82571) {
       
  2457 		/* activate the work around */
       
  2458 		adapter->hw.laa_is_present = 1;
       
  2459 
       
  2460 		/* Hold a copy of the LAA in RAR[14] This is done so that
       
  2461 		 * between the time RAR[0] gets clobbered  and the time it
       
  2462 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
       
  2463 		 * of the RARs and no incoming packets directed to this port
       
  2464 		 * are dropped. Eventaully the LAA will be in RAR[0] and
       
  2465 		 * RAR[14] */
       
  2466 		e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
       
  2467 					E1000_RAR_ENTRIES - 1);
       
  2468 	}
       
  2469 
       
  2470 	if (adapter->hw.mac_type == e1000_82542_rev2_0)
       
  2471 		e1000_leave_82542_rst(adapter);
       
  2472 
       
  2473 	return 0;
       
  2474 }
       
  2475 
       
  2476 /**
       
  2477  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
       
  2478  * @netdev: network interface device structure
       
  2479  *
       
  2480  * The set_rx_mode entry point is called whenever the unicast or multicast
       
  2481  * address lists or the network interface flags are updated. This routine is
       
  2482  * responsible for configuring the hardware for proper unicast, multicast,
       
  2483  * promiscuous mode, and all-multi behavior.
       
  2484  **/
       
  2485 
       
  2486 static void
       
  2487 e1000_set_rx_mode(struct net_device *netdev)
       
  2488 {
       
  2489 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2490 	struct e1000_hw *hw = &adapter->hw;
       
  2491 	struct dev_addr_list *uc_ptr;
       
  2492 	struct dev_addr_list *mc_ptr;
       
  2493 	u32 rctl;
       
  2494 	u32 hash_value;
       
  2495 	int i, rar_entries = E1000_RAR_ENTRIES;
       
  2496 	int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
       
  2497 				E1000_NUM_MTA_REGISTERS_ICH8LAN :
       
  2498 				E1000_NUM_MTA_REGISTERS;
       
  2499 
       
  2500 	if (adapter->hw.mac_type == e1000_ich8lan)
       
  2501 		rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
       
  2502 
       
  2503 	/* reserve RAR[14] for LAA over-write work-around */
       
  2504 	if (adapter->hw.mac_type == e1000_82571)
       
  2505 		rar_entries--;
       
  2506 
       
  2507 	/* Check for Promiscuous and All Multicast modes */
       
  2508 
       
  2509 	rctl = E1000_READ_REG(hw, RCTL);
       
  2510 
       
  2511 	if (netdev->flags & IFF_PROMISC) {
       
  2512 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2513 	} else if (netdev->flags & IFF_ALLMULTI) {
       
  2514 		rctl |= E1000_RCTL_MPE;
       
  2515 	} else {
       
  2516 		rctl &= ~E1000_RCTL_MPE;
       
  2517 	}
       
  2518 
       
  2519 	uc_ptr = NULL;
       
  2520 	if (netdev->uc_count > rar_entries - 1) {
       
  2521 		rctl |= E1000_RCTL_UPE;
       
  2522 	} else if (!(netdev->flags & IFF_PROMISC)) {
       
  2523 		rctl &= ~E1000_RCTL_UPE;
       
  2524 		uc_ptr = netdev->uc_list;
       
  2525 	}
       
  2526 
       
  2527 	E1000_WRITE_REG(hw, RCTL, rctl);
       
  2528 
       
  2529 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2530 
       
  2531 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2532 		e1000_enter_82542_rst(adapter);
       
  2533 
       
  2534 	/* load the first 14 addresses into the exact filters 1-14. Unicast
       
  2535 	 * addresses take precedence to avoid disabling unicast filtering
       
  2536 	 * when possible.
       
  2537 	 *
       
  2538 	 * RAR 0 is used for the station MAC adddress
       
  2539 	 * if there are not 14 addresses, go ahead and clear the filters
       
  2540 	 * -- with 82571 controllers only 0-13 entries are filled here
       
  2541 	 */
       
  2542 	mc_ptr = netdev->mc_list;
       
  2543 
       
  2544 	for (i = 1; i < rar_entries; i++) {
       
  2545 		if (uc_ptr) {
       
  2546 			e1000_rar_set(hw, uc_ptr->da_addr, i);
       
  2547 			uc_ptr = uc_ptr->next;
       
  2548 		} else if (mc_ptr) {
       
  2549 			e1000_rar_set(hw, mc_ptr->da_addr, i);
       
  2550 			mc_ptr = mc_ptr->next;
       
  2551 		} else {
       
  2552 			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
       
  2553 			E1000_WRITE_FLUSH(hw);
       
  2554 			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
       
  2555 			E1000_WRITE_FLUSH(hw);
       
  2556 		}
       
  2557 	}
       
  2558 	WARN_ON(uc_ptr != NULL);
       
  2559 
       
  2560 	/* clear the old settings from the multicast hash table */
       
  2561 
       
  2562 	for (i = 0; i < mta_reg_count; i++) {
       
  2563 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
       
  2564 		E1000_WRITE_FLUSH(hw);
       
  2565 	}
       
  2566 
       
  2567 	/* load any remaining addresses into the hash table */
       
  2568 
       
  2569 	for (; mc_ptr; mc_ptr = mc_ptr->next) {
       
  2570 		hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
       
  2571 		e1000_mta_set(hw, hash_value);
       
  2572 	}
       
  2573 
       
  2574 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2575 		e1000_leave_82542_rst(adapter);
       
  2576 }
       
  2577 
       
  2578 /* Need to wait a few seconds after link up to get diagnostic information from
       
  2579  * the phy */
       
  2580 
       
  2581 static void
       
  2582 e1000_update_phy_info(unsigned long data)
       
  2583 {
       
  2584 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2585 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
       
  2586 }
       
  2587 
       
  2588 /**
       
  2589  * e1000_82547_tx_fifo_stall - Timer Call-back
       
  2590  * @data: pointer to adapter cast into an unsigned long
       
  2591  **/
       
  2592 
       
  2593 static void
       
  2594 e1000_82547_tx_fifo_stall(unsigned long data)
       
  2595 {
       
  2596 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2597 	struct net_device *netdev = adapter->netdev;
       
  2598 	u32 tctl;
       
  2599 
       
  2600 	if (atomic_read(&adapter->tx_fifo_stall)) {
       
  2601 		if ((E1000_READ_REG(&adapter->hw, TDT) ==
       
  2602 		    E1000_READ_REG(&adapter->hw, TDH)) &&
       
  2603 		   (E1000_READ_REG(&adapter->hw, TDFT) ==
       
  2604 		    E1000_READ_REG(&adapter->hw, TDFH)) &&
       
  2605 		   (E1000_READ_REG(&adapter->hw, TDFTS) ==
       
  2606 		    E1000_READ_REG(&adapter->hw, TDFHS))) {
       
  2607 			tctl = E1000_READ_REG(&adapter->hw, TCTL);
       
  2608 			E1000_WRITE_REG(&adapter->hw, TCTL,
       
  2609 					tctl & ~E1000_TCTL_EN);
       
  2610 			E1000_WRITE_REG(&adapter->hw, TDFT,
       
  2611 					adapter->tx_head_addr);
       
  2612 			E1000_WRITE_REG(&adapter->hw, TDFH,
       
  2613 					adapter->tx_head_addr);
       
  2614 			E1000_WRITE_REG(&adapter->hw, TDFTS,
       
  2615 					adapter->tx_head_addr);
       
  2616 			E1000_WRITE_REG(&adapter->hw, TDFHS,
       
  2617 					adapter->tx_head_addr);
       
  2618 			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
       
  2619 			E1000_WRITE_FLUSH(&adapter->hw);
       
  2620 
       
  2621 			adapter->tx_fifo_head = 0;
       
  2622 			atomic_set(&adapter->tx_fifo_stall, 0);
       
  2623 			netif_wake_queue(netdev);
       
  2624 		} else {
       
  2625 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  2626 		}
       
  2627 	}
       
  2628 }
       
  2629 
       
  2630 /**
       
  2631  * e1000_watchdog - Timer Call-back
       
  2632  * @data: pointer to adapter cast into an unsigned long
       
  2633  **/
       
  2634 static void
       
  2635 e1000_watchdog(unsigned long data)
       
  2636 {
       
  2637 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2638 	struct net_device *netdev = adapter->netdev;
       
  2639 	struct e1000_tx_ring *txdr = adapter->tx_ring;
       
  2640 	u32 link, tctl;
       
  2641 	s32 ret_val;
       
  2642 
       
  2643 	ret_val = e1000_check_for_link(&adapter->hw);
       
  2644 	if ((ret_val == E1000_ERR_PHY) &&
       
  2645 	    (adapter->hw.phy_type == e1000_phy_igp_3) &&
       
  2646 	    (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
       
  2647 		/* See e1000_kumeran_lock_loss_workaround() */
       
  2648 		DPRINTK(LINK, INFO,
       
  2649 			"Gigabit has been disabled, downgrading speed\n");
       
  2650 	}
       
  2651 
       
  2652 	if (adapter->hw.mac_type == e1000_82573) {
       
  2653 		e1000_enable_tx_pkt_filtering(&adapter->hw);
       
  2654 		if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
       
  2655 			e1000_update_mng_vlan(adapter);
       
  2656 	}
       
  2657 
       
  2658 	if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
       
  2659 	   !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
       
  2660 		link = !adapter->hw.serdes_link_down;
       
  2661 	else
       
  2662 		link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
       
  2663 
       
  2664 	if (link) {
       
  2665 		if (!netif_carrier_ok(netdev)) {
       
  2666 			u32 ctrl;
       
  2667 			bool txb2b = true;
       
  2668 			e1000_get_speed_and_duplex(&adapter->hw,
       
  2669 			                           &adapter->link_speed,
       
  2670 			                           &adapter->link_duplex);
       
  2671 
       
  2672 			ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  2673 			DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
       
  2674 			        "Flow Control: %s\n",
       
  2675 			        adapter->link_speed,
       
  2676 			        adapter->link_duplex == FULL_DUPLEX ?
       
  2677 			        "Full Duplex" : "Half Duplex",
       
  2678 			        ((ctrl & E1000_CTRL_TFCE) && (ctrl &
       
  2679 			        E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
       
  2680 			        E1000_CTRL_RFCE) ? "RX" : ((ctrl &
       
  2681 			        E1000_CTRL_TFCE) ? "TX" : "None" )));
       
  2682 
       
  2683 			/* tweak tx_queue_len according to speed/duplex
       
  2684 			 * and adjust the timeout factor */
       
  2685 			netdev->tx_queue_len = adapter->tx_queue_len;
       
  2686 			adapter->tx_timeout_factor = 1;
       
  2687 			switch (adapter->link_speed) {
       
  2688 			case SPEED_10:
       
  2689 				txb2b = false;
       
  2690 				netdev->tx_queue_len = 10;
       
  2691 				adapter->tx_timeout_factor = 8;
       
  2692 				break;
       
  2693 			case SPEED_100:
       
  2694 				txb2b = false;
       
  2695 				netdev->tx_queue_len = 100;
       
  2696 				/* maybe add some timeout factor ? */
       
  2697 				break;
       
  2698 			}
       
  2699 
       
  2700 			if ((adapter->hw.mac_type == e1000_82571 ||
       
  2701 			     adapter->hw.mac_type == e1000_82572) &&
       
  2702 			    !txb2b) {
       
  2703 				u32 tarc0;
       
  2704 				tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
       
  2705 				tarc0 &= ~(1 << 21);
       
  2706 				E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
       
  2707 			}
       
  2708 
       
  2709 			/* disable TSO for pcie and 10/100 speeds, to avoid
       
  2710 			 * some hardware issues */
       
  2711 			if (!adapter->tso_force &&
       
  2712 			    adapter->hw.bus_type == e1000_bus_type_pci_express){
       
  2713 				switch (adapter->link_speed) {
       
  2714 				case SPEED_10:
       
  2715 				case SPEED_100:
       
  2716 					DPRINTK(PROBE,INFO,
       
  2717 				        "10/100 speed: disabling TSO\n");
       
  2718 					netdev->features &= ~NETIF_F_TSO;
       
  2719 					netdev->features &= ~NETIF_F_TSO6;
       
  2720 					break;
       
  2721 				case SPEED_1000:
       
  2722 					netdev->features |= NETIF_F_TSO;
       
  2723 					netdev->features |= NETIF_F_TSO6;
       
  2724 					break;
       
  2725 				default:
       
  2726 					/* oops */
       
  2727 					break;
       
  2728 				}
       
  2729 			}
       
  2730 
       
  2731 			/* enable transmits in the hardware, need to do this
       
  2732 			 * after setting TARC0 */
       
  2733 			tctl = E1000_READ_REG(&adapter->hw, TCTL);
       
  2734 			tctl |= E1000_TCTL_EN;
       
  2735 			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
       
  2736 
       
  2737 			netif_carrier_on(netdev);
       
  2738 			netif_wake_queue(netdev);
       
  2739 			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
       
  2740 			adapter->smartspeed = 0;
       
  2741 		} else {
       
  2742 			/* make sure the receive unit is started */
       
  2743 			if (adapter->hw.rx_needs_kicking) {
       
  2744 				struct e1000_hw *hw = &adapter->hw;
       
  2745 				u32 rctl = E1000_READ_REG(hw, RCTL);
       
  2746 				E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
       
  2747 			}
       
  2748 		}
       
  2749 	} else {
       
  2750 		if (netif_carrier_ok(netdev)) {
       
  2751 			adapter->link_speed = 0;
       
  2752 			adapter->link_duplex = 0;
       
  2753 			DPRINTK(LINK, INFO, "NIC Link is Down\n");
       
  2754 			netif_carrier_off(netdev);
       
  2755 			netif_stop_queue(netdev);
       
  2756 			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
       
  2757 
       
  2758 			/* 80003ES2LAN workaround--
       
  2759 			 * For packet buffer work-around on link down event;
       
  2760 			 * disable receives in the ISR and
       
  2761 			 * reset device here in the watchdog
       
  2762 			 */
       
  2763 			if (adapter->hw.mac_type == e1000_80003es2lan)
       
  2764 				/* reset device */
       
  2765 				schedule_work(&adapter->reset_task);
       
  2766 		}
       
  2767 
       
  2768 		e1000_smartspeed(adapter);
       
  2769 	}
       
  2770 
       
  2771 	e1000_update_stats(adapter);
       
  2772 
       
  2773 	adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  2774 	adapter->tpt_old = adapter->stats.tpt;
       
  2775 	adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
       
  2776 	adapter->colc_old = adapter->stats.colc;
       
  2777 
       
  2778 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
       
  2779 	adapter->gorcl_old = adapter->stats.gorcl;
       
  2780 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
       
  2781 	adapter->gotcl_old = adapter->stats.gotcl;
       
  2782 
       
  2783 	e1000_update_adaptive(&adapter->hw);
       
  2784 
       
  2785 	if (!netif_carrier_ok(netdev)) {
       
  2786 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
       
  2787 			/* We've lost link, so the controller stops DMA,
       
  2788 			 * but we've got queued Tx work that's never going
       
  2789 			 * to get done, so reset controller to flush Tx.
       
  2790 			 * (Do the reset outside of interrupt context). */
       
  2791 			adapter->tx_timeout_count++;
       
  2792 			schedule_work(&adapter->reset_task);
       
  2793 		}
       
  2794 	}
       
  2795 
       
  2796 	/* Cause software interrupt to ensure rx ring is cleaned */
       
  2797 	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
       
  2798 
       
  2799 	/* Force detection of hung controller every watchdog period */
       
  2800 	adapter->detect_tx_hung = true;
       
  2801 
       
  2802 	/* With 82571 controllers, LAA may be overwritten due to controller
       
  2803 	 * reset from the other port. Set the appropriate LAA in RAR[0] */
       
  2804 	if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
       
  2805 		e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
       
  2806 
       
  2807 	/* Reset the timer */
       
  2808 	mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
       
  2809 }
       
  2810 
       
  2811 enum latency_range {
       
  2812 	lowest_latency = 0,
       
  2813 	low_latency = 1,
       
  2814 	bulk_latency = 2,
       
  2815 	latency_invalid = 255
       
  2816 };
       
  2817 
       
  2818 /**
       
  2819  * e1000_update_itr - update the dynamic ITR value based on statistics
       
  2820  *      Stores a new ITR value based on packets and byte
       
  2821  *      counts during the last interrupt.  The advantage of per interrupt
       
  2822  *      computation is faster updates and more accurate ITR for the current
       
  2823  *      traffic pattern.  Constants in this function were computed
       
  2824  *      based on theoretical maximum wire speed and thresholds were set based
       
  2825  *      on testing data as well as attempting to minimize response time
       
  2826  *      while increasing bulk throughput.
       
  2827  *      this functionality is controlled by the InterruptThrottleRate module
       
  2828  *      parameter (see e1000_param.c)
       
  2829  * @adapter: pointer to adapter
       
  2830  * @itr_setting: current adapter->itr
       
  2831  * @packets: the number of packets during this measurement interval
       
  2832  * @bytes: the number of bytes during this measurement interval
       
  2833  **/
       
  2834 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
       
  2835                                    u16 itr_setting,
       
  2836                                    int packets,
       
  2837                                    int bytes)
       
  2838 {
       
  2839 	unsigned int retval = itr_setting;
       
  2840 	struct e1000_hw *hw = &adapter->hw;
       
  2841 
       
  2842 	if (unlikely(hw->mac_type < e1000_82540))
       
  2843 		goto update_itr_done;
       
  2844 
       
  2845 	if (packets == 0)
       
  2846 		goto update_itr_done;
       
  2847 
       
  2848 	switch (itr_setting) {
       
  2849 	case lowest_latency:
       
  2850 		/* jumbo frames get bulk treatment*/
       
  2851 		if (bytes/packets > 8000)
       
  2852 			retval = bulk_latency;
       
  2853 		else if ((packets < 5) && (bytes > 512))
       
  2854 			retval = low_latency;
       
  2855 		break;
       
  2856 	case low_latency:  /* 50 usec aka 20000 ints/s */
       
  2857 		if (bytes > 10000) {
       
  2858 			/* jumbo frames need bulk latency setting */
       
  2859 			if (bytes/packets > 8000)
       
  2860 				retval = bulk_latency;
       
  2861 			else if ((packets < 10) || ((bytes/packets) > 1200))
       
  2862 				retval = bulk_latency;
       
  2863 			else if ((packets > 35))
       
  2864 				retval = lowest_latency;
       
  2865 		} else if (bytes/packets > 2000)
       
  2866 			retval = bulk_latency;
       
  2867 		else if (packets <= 2 && bytes < 512)
       
  2868 			retval = lowest_latency;
       
  2869 		break;
       
  2870 	case bulk_latency: /* 250 usec aka 4000 ints/s */
       
  2871 		if (bytes > 25000) {
       
  2872 			if (packets > 35)
       
  2873 				retval = low_latency;
       
  2874 		} else if (bytes < 6000) {
       
  2875 			retval = low_latency;
       
  2876 		}
       
  2877 		break;
       
  2878 	}
       
  2879 
       
  2880 update_itr_done:
       
  2881 	return retval;
       
  2882 }
       
  2883 
       
  2884 static void e1000_set_itr(struct e1000_adapter *adapter)
       
  2885 {
       
  2886 	struct e1000_hw *hw = &adapter->hw;
       
  2887 	u16 current_itr;
       
  2888 	u32 new_itr = adapter->itr;
       
  2889 
       
  2890 	if (unlikely(hw->mac_type < e1000_82540))
       
  2891 		return;
       
  2892 
       
  2893 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
       
  2894 	if (unlikely(adapter->link_speed != SPEED_1000)) {
       
  2895 		current_itr = 0;
       
  2896 		new_itr = 4000;
       
  2897 		goto set_itr_now;
       
  2898 	}
       
  2899 
       
  2900 	adapter->tx_itr = e1000_update_itr(adapter,
       
  2901 	                            adapter->tx_itr,
       
  2902 	                            adapter->total_tx_packets,
       
  2903 	                            adapter->total_tx_bytes);
       
  2904 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2905 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
       
  2906 		adapter->tx_itr = low_latency;
       
  2907 
       
  2908 	adapter->rx_itr = e1000_update_itr(adapter,
       
  2909 	                            adapter->rx_itr,
       
  2910 	                            adapter->total_rx_packets,
       
  2911 	                            adapter->total_rx_bytes);
       
  2912 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2913 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
       
  2914 		adapter->rx_itr = low_latency;
       
  2915 
       
  2916 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
       
  2917 
       
  2918 	switch (current_itr) {
       
  2919 	/* counts and packets in update_itr are dependent on these numbers */
       
  2920 	case lowest_latency:
       
  2921 		new_itr = 70000;
       
  2922 		break;
       
  2923 	case low_latency:
       
  2924 		new_itr = 20000; /* aka hwitr = ~200 */
       
  2925 		break;
       
  2926 	case bulk_latency:
       
  2927 		new_itr = 4000;
       
  2928 		break;
       
  2929 	default:
       
  2930 		break;
       
  2931 	}
       
  2932 
       
  2933 set_itr_now:
       
  2934 	if (new_itr != adapter->itr) {
       
  2935 		/* this attempts to bias the interrupt rate towards Bulk
       
  2936 		 * by adding intermediate steps when interrupt rate is
       
  2937 		 * increasing */
       
  2938 		new_itr = new_itr > adapter->itr ?
       
  2939 		             min(adapter->itr + (new_itr >> 2), new_itr) :
       
  2940 		             new_itr;
       
  2941 		adapter->itr = new_itr;
       
  2942 		E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
       
  2943 	}
       
  2944 
       
  2945 	return;
       
  2946 }
       
  2947 
       
  2948 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  2949 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  2950 #define E1000_TX_FLAGS_TSO		0x00000004
       
  2951 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  2952 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  2953 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  2954 
       
  2955 static int
       
  2956 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2957           struct sk_buff *skb)
       
  2958 {
       
  2959 	struct e1000_context_desc *context_desc;
       
  2960 	struct e1000_buffer *buffer_info;
       
  2961 	unsigned int i;
       
  2962 	u32 cmd_length = 0;
       
  2963 	u16 ipcse = 0, tucse, mss;
       
  2964 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
       
  2965 	int err;
       
  2966 
       
  2967 	if (skb_is_gso(skb)) {
       
  2968 		if (skb_header_cloned(skb)) {
       
  2969 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  2970 			if (err)
       
  2971 				return err;
       
  2972 		}
       
  2973 
       
  2974 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  2975 		mss = skb_shinfo(skb)->gso_size;
       
  2976 		if (skb->protocol == htons(ETH_P_IP)) {
       
  2977 			struct iphdr *iph = ip_hdr(skb);
       
  2978 			iph->tot_len = 0;
       
  2979 			iph->check = 0;
       
  2980 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
       
  2981 								 iph->daddr, 0,
       
  2982 								 IPPROTO_TCP,
       
  2983 								 0);
       
  2984 			cmd_length = E1000_TXD_CMD_IP;
       
  2985 			ipcse = skb_transport_offset(skb) - 1;
       
  2986 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
       
  2987 			ipv6_hdr(skb)->payload_len = 0;
       
  2988 			tcp_hdr(skb)->check =
       
  2989 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
       
  2990 						 &ipv6_hdr(skb)->daddr,
       
  2991 						 0, IPPROTO_TCP, 0);
       
  2992 			ipcse = 0;
       
  2993 		}
       
  2994 		ipcss = skb_network_offset(skb);
       
  2995 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
       
  2996 		tucss = skb_transport_offset(skb);
       
  2997 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
       
  2998 		tucse = 0;
       
  2999 
       
  3000 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  3001 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  3002 
       
  3003 		i = tx_ring->next_to_use;
       
  3004 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  3005 		buffer_info = &tx_ring->buffer_info[i];
       
  3006 
       
  3007 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  3008 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  3009 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  3010 		context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  3011 		context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  3012 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  3013 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  3014 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  3015 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  3016 
       
  3017 		buffer_info->time_stamp = jiffies;
       
  3018 		buffer_info->next_to_watch = i;
       
  3019 
       
  3020 		if (++i == tx_ring->count) i = 0;
       
  3021 		tx_ring->next_to_use = i;
       
  3022 
       
  3023 		return true;
       
  3024 	}
       
  3025 	return false;
       
  3026 }
       
  3027 
       
  3028 static bool
       
  3029 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  3030               struct sk_buff *skb)
       
  3031 {
       
  3032 	struct e1000_context_desc *context_desc;
       
  3033 	struct e1000_buffer *buffer_info;
       
  3034 	unsigned int i;
       
  3035 	u8 css;
       
  3036 
       
  3037 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
       
  3038 		css = skb_transport_offset(skb);
       
  3039 
       
  3040 		i = tx_ring->next_to_use;
       
  3041 		buffer_info = &tx_ring->buffer_info[i];
       
  3042 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  3043 
       
  3044 		context_desc->lower_setup.ip_config = 0;
       
  3045 		context_desc->upper_setup.tcp_fields.tucss = css;
       
  3046 		context_desc->upper_setup.tcp_fields.tucso =
       
  3047 			css + skb->csum_offset;
       
  3048 		context_desc->upper_setup.tcp_fields.tucse = 0;
       
  3049 		context_desc->tcp_seg_setup.data = 0;
       
  3050 		context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
       
  3051 
       
  3052 		buffer_info->time_stamp = jiffies;
       
  3053 		buffer_info->next_to_watch = i;
       
  3054 
       
  3055 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  3056 		tx_ring->next_to_use = i;
       
  3057 
       
  3058 		return true;
       
  3059 	}
       
  3060 
       
  3061 	return false;
       
  3062 }
       
  3063 
       
  3064 #define E1000_MAX_TXD_PWR	12
       
  3065 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
       
  3066 
       
  3067 static int
       
  3068 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  3069              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
       
  3070              unsigned int nr_frags, unsigned int mss)
       
  3071 {
       
  3072 	struct e1000_buffer *buffer_info;
       
  3073 	unsigned int len = skb->len;
       
  3074 	unsigned int offset = 0, size, count = 0, i;
       
  3075 	unsigned int f;
       
  3076 	len -= skb->data_len;
       
  3077 
       
  3078 	i = tx_ring->next_to_use;
       
  3079 
       
  3080 	while (len) {
       
  3081 		buffer_info = &tx_ring->buffer_info[i];
       
  3082 		size = min(len, max_per_txd);
       
  3083 		/* Workaround for Controller erratum --
       
  3084 		 * descriptor for non-tso packet in a linear SKB that follows a
       
  3085 		 * tso gets written back prematurely before the data is fully
       
  3086 		 * DMA'd to the controller */
       
  3087 		if (!skb->data_len && tx_ring->last_tx_tso &&
       
  3088 		    !skb_is_gso(skb)) {
       
  3089 			tx_ring->last_tx_tso = 0;
       
  3090 			size -= 4;
       
  3091 		}
       
  3092 
       
  3093 		/* Workaround for premature desc write-backs
       
  3094 		 * in TSO mode.  Append 4-byte sentinel desc */
       
  3095 		if (unlikely(mss && !nr_frags && size == len && size > 8))
       
  3096 			size -= 4;
       
  3097 		/* work-around for errata 10 and it applies
       
  3098 		 * to all controllers in PCI-X mode
       
  3099 		 * The fix is to make sure that the first descriptor of a
       
  3100 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
       
  3101 		 */
       
  3102 		if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
       
  3103 		                (size > 2015) && count == 0))
       
  3104 		        size = 2015;
       
  3105 
       
  3106 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
       
  3107 		 * terminating buffers within evenly-aligned dwords. */
       
  3108 		if (unlikely(adapter->pcix_82544 &&
       
  3109 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
       
  3110 		   size > 4))
       
  3111 			size -= 4;
       
  3112 
       
  3113 		buffer_info->length = size;
       
  3114 		buffer_info->dma =
       
  3115 			pci_map_single(adapter->pdev,
       
  3116 				skb->data + offset,
       
  3117 				size,
       
  3118 				PCI_DMA_TODEVICE);
       
  3119 		buffer_info->time_stamp = jiffies;
       
  3120 		buffer_info->next_to_watch = i;
       
  3121 
       
  3122 		len -= size;
       
  3123 		offset += size;
       
  3124 		count++;
       
  3125 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  3126 	}
       
  3127 
       
  3128 	for (f = 0; f < nr_frags; f++) {
       
  3129 		struct skb_frag_struct *frag;
       
  3130 
       
  3131 		frag = &skb_shinfo(skb)->frags[f];
       
  3132 		len = frag->size;
       
  3133 		offset = frag->page_offset;
       
  3134 
       
  3135 		while (len) {
       
  3136 			buffer_info = &tx_ring->buffer_info[i];
       
  3137 			size = min(len, max_per_txd);
       
  3138 			/* Workaround for premature desc write-backs
       
  3139 			 * in TSO mode.  Append 4-byte sentinel desc */
       
  3140 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
       
  3141 				size -= 4;
       
  3142 			/* Workaround for potential 82544 hang in PCI-X.
       
  3143 			 * Avoid terminating buffers within evenly-aligned
       
  3144 			 * dwords. */
       
  3145 			if (unlikely(adapter->pcix_82544 &&
       
  3146 			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
       
  3147 			   size > 4))
       
  3148 				size -= 4;
       
  3149 
       
  3150 			buffer_info->length = size;
       
  3151 			buffer_info->dma =
       
  3152 				pci_map_page(adapter->pdev,
       
  3153 					frag->page,
       
  3154 					offset,
       
  3155 					size,
       
  3156 					PCI_DMA_TODEVICE);
       
  3157 			buffer_info->time_stamp = jiffies;
       
  3158 			buffer_info->next_to_watch = i;
       
  3159 
       
  3160 			len -= size;
       
  3161 			offset += size;
       
  3162 			count++;
       
  3163 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  3164 		}
       
  3165 	}
       
  3166 
       
  3167 	i = (i == 0) ? tx_ring->count - 1 : i - 1;
       
  3168 	tx_ring->buffer_info[i].skb = skb;
       
  3169 	tx_ring->buffer_info[first].next_to_watch = i;
       
  3170 
       
  3171 	return count;
       
  3172 }
       
  3173 
       
  3174 static void
       
  3175 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  3176                int tx_flags, int count)
       
  3177 {
       
  3178 	struct e1000_tx_desc *tx_desc = NULL;
       
  3179 	struct e1000_buffer *buffer_info;
       
  3180 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  3181 	unsigned int i;
       
  3182 
       
  3183 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
       
  3184 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  3185 		             E1000_TXD_CMD_TSE;
       
  3186 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  3187 
       
  3188 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
       
  3189 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  3190 	}
       
  3191 
       
  3192 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
       
  3193 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  3194 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  3195 	}
       
  3196 
       
  3197 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
       
  3198 		txd_lower |= E1000_TXD_CMD_VLE;
       
  3199 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  3200 	}
       
  3201 
       
  3202 	i = tx_ring->next_to_use;
       
  3203 
       
  3204 	while (count--) {
       
  3205 		buffer_info = &tx_ring->buffer_info[i];
       
  3206 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3207 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  3208 		tx_desc->lower.data =
       
  3209 			cpu_to_le32(txd_lower | buffer_info->length);
       
  3210 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  3211 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  3212 	}
       
  3213 
       
  3214 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  3215 
       
  3216 	/* Force memory writes to complete before letting h/w
       
  3217 	 * know there are new descriptors to fetch.  (Only
       
  3218 	 * applicable for weak-ordered memory model archs,
       
  3219 	 * such as IA-64). */
       
  3220 	wmb();
       
  3221 
       
  3222 	tx_ring->next_to_use = i;
       
  3223 	writel(i, adapter->hw.hw_addr + tx_ring->tdt);
       
  3224 	/* we need this if more than one processor can write to our tail
       
  3225 	 * at a time, it syncronizes IO on IA64/Altix systems */
       
  3226 	mmiowb();
       
  3227 }
       
  3228 
       
  3229 /**
       
  3230  * 82547 workaround to avoid controller hang in half-duplex environment.
       
  3231  * The workaround is to avoid queuing a large packet that would span
       
  3232  * the internal Tx FIFO ring boundary by notifying the stack to resend
       
  3233  * the packet at a later time.  This gives the Tx FIFO an opportunity to
       
  3234  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
       
  3235  * to the beginning of the Tx FIFO.
       
  3236  **/
       
  3237 
       
  3238 #define E1000_FIFO_HDR			0x10
       
  3239 #define E1000_82547_PAD_LEN		0x3E0
       
  3240 
       
  3241 static int
       
  3242 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  3243 {
       
  3244 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
       
  3245 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
       
  3246 
       
  3247 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
       
  3248 
       
  3249 	if (adapter->link_duplex != HALF_DUPLEX)
       
  3250 		goto no_fifo_stall_required;
       
  3251 
       
  3252 	if (atomic_read(&adapter->tx_fifo_stall))
       
  3253 		return 1;
       
  3254 
       
  3255 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
       
  3256 		atomic_set(&adapter->tx_fifo_stall, 1);
       
  3257 		return 1;
       
  3258 	}
       
  3259 
       
  3260 no_fifo_stall_required:
       
  3261 	adapter->tx_fifo_head += skb_fifo_len;
       
  3262 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
       
  3263 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
       
  3264 	return 0;
       
  3265 }
       
  3266 
       
  3267 #define MINIMUM_DHCP_PACKET_SIZE 282
       
  3268 static int
       
  3269 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  3270 {
       
  3271 	struct e1000_hw *hw =  &adapter->hw;
       
  3272 	u16 length, offset;
       
  3273 	if (vlan_tx_tag_present(skb)) {
       
  3274 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
       
  3275 			( adapter->hw.mng_cookie.status &
       
  3276 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
       
  3277 			return 0;
       
  3278 	}
       
  3279 	if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
       
  3280 		struct ethhdr *eth = (struct ethhdr *) skb->data;
       
  3281 		if ((htons(ETH_P_IP) == eth->h_proto)) {
       
  3282 			const struct iphdr *ip =
       
  3283 				(struct iphdr *)((u8 *)skb->data+14);
       
  3284 			if (IPPROTO_UDP == ip->protocol) {
       
  3285 				struct udphdr *udp =
       
  3286 					(struct udphdr *)((u8 *)ip +
       
  3287 						(ip->ihl << 2));
       
  3288 				if (ntohs(udp->dest) == 67) {
       
  3289 					offset = (u8 *)udp + 8 - skb->data;
       
  3290 					length = skb->len - offset;
       
  3291 
       
  3292 					return e1000_mng_write_dhcp_info(hw,
       
  3293 							(u8 *)udp + 8,
       
  3294 							length);
       
  3295 				}
       
  3296 			}
       
  3297 		}
       
  3298 	}
       
  3299 	return 0;
       
  3300 }
       
  3301 
       
  3302 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  3303 {
       
  3304 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3305 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
       
  3306 
       
  3307 	netif_stop_queue(netdev);
       
  3308 	/* Herbert's original patch had:
       
  3309 	 *  smp_mb__after_netif_stop_queue();
       
  3310 	 * but since that doesn't exist yet, just open code it. */
       
  3311 	smp_mb();
       
  3312 
       
  3313 	/* We need to check again in a case another CPU has just
       
  3314 	 * made room available. */
       
  3315 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
       
  3316 		return -EBUSY;
       
  3317 
       
  3318 	/* A reprieve! */
       
  3319 	netif_start_queue(netdev);
       
  3320 	++adapter->restart_queue;
       
  3321 	return 0;
       
  3322 }
       
  3323 
       
  3324 static int e1000_maybe_stop_tx(struct net_device *netdev,
       
  3325                                struct e1000_tx_ring *tx_ring, int size)
       
  3326 {
       
  3327 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
       
  3328 		return 0;
       
  3329 	return __e1000_maybe_stop_tx(netdev, size);
       
  3330 }
       
  3331 
       
  3332 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  3333 static int
       
  3334 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
       
  3335 {
       
  3336 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3337 	struct e1000_tx_ring *tx_ring;
       
  3338 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
       
  3339 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  3340 	unsigned int tx_flags = 0;
       
  3341 	unsigned int len = skb->len - skb->data_len;
       
  3342 	unsigned long flags;
       
  3343 	unsigned int nr_frags;
       
  3344 	unsigned int mss;
       
  3345 	int count = 0;
       
  3346 	int tso;
       
  3347 	unsigned int f;
       
  3348 
       
  3349 	/* This goes back to the question of how to logically map a tx queue
       
  3350 	 * to a flow.  Right now, performance is impacted slightly negatively
       
  3351 	 * if using multiple tx queues.  If the stack breaks away from a
       
  3352 	 * single qdisc implementation, we can look at this again. */
       
  3353 	tx_ring = adapter->tx_ring;
       
  3354 
       
  3355 	if (unlikely(skb->len <= 0)) {
       
  3356 		dev_kfree_skb_any(skb);
       
  3357 		return NETDEV_TX_OK;
       
  3358 	}
       
  3359 
       
  3360 	/* 82571 and newer doesn't need the workaround that limited descriptor
       
  3361 	 * length to 4kB */
       
  3362 	if (adapter->hw.mac_type >= e1000_82571)
       
  3363 		max_per_txd = 8192;
       
  3364 
       
  3365 	mss = skb_shinfo(skb)->gso_size;
       
  3366 	/* The controller does a simple calculation to
       
  3367 	 * make sure there is enough room in the FIFO before
       
  3368 	 * initiating the DMA for each buffer.  The calc is:
       
  3369 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  3370 	 * overrun the FIFO, adjust the max buffer len if mss
       
  3371 	 * drops. */
       
  3372 	if (mss) {
       
  3373 		u8 hdr_len;
       
  3374 		max_per_txd = min(mss << 2, max_per_txd);
       
  3375 		max_txd_pwr = fls(max_per_txd) - 1;
       
  3376 
       
  3377 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
       
  3378 		* points to just header, pull a few bytes of payload from
       
  3379 		* frags into skb->data */
       
  3380 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  3381 		if (skb->data_len && hdr_len == len) {
       
  3382 			switch (adapter->hw.mac_type) {
       
  3383 				unsigned int pull_size;
       
  3384 			case e1000_82544:
       
  3385 				/* Make sure we have room to chop off 4 bytes,
       
  3386 				 * and that the end alignment will work out to
       
  3387 				 * this hardware's requirements
       
  3388 				 * NOTE: this is a TSO only workaround
       
  3389 				 * if end byte alignment not correct move us
       
  3390 				 * into the next dword */
       
  3391 				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
       
  3392 					break;
       
  3393 				/* fall through */
       
  3394 			case e1000_82571:
       
  3395 			case e1000_82572:
       
  3396 			case e1000_82573:
       
  3397 			case e1000_ich8lan:
       
  3398 				pull_size = min((unsigned int)4, skb->data_len);
       
  3399 				if (!__pskb_pull_tail(skb, pull_size)) {
       
  3400 					DPRINTK(DRV, ERR,
       
  3401 						"__pskb_pull_tail failed.\n");
       
  3402 					dev_kfree_skb_any(skb);
       
  3403 					return NETDEV_TX_OK;
       
  3404 				}
       
  3405 				len = skb->len - skb->data_len;
       
  3406 				break;
       
  3407 			default:
       
  3408 				/* do nothing */
       
  3409 				break;
       
  3410 			}
       
  3411 		}
       
  3412 	}
       
  3413 
       
  3414 	/* reserve a descriptor for the offload context */
       
  3415 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
       
  3416 		count++;
       
  3417 	count++;
       
  3418 
       
  3419 	/* Controller Erratum workaround */
       
  3420 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
       
  3421 		count++;
       
  3422 
       
  3423 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  3424 
       
  3425 	if (adapter->pcix_82544)
       
  3426 		count++;
       
  3427 
       
  3428 	/* work-around for errata 10 and it applies to all controllers
       
  3429 	 * in PCI-X mode, so add one more descriptor to the count
       
  3430 	 */
       
  3431 	if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
       
  3432 			(len > 2015)))
       
  3433 		count++;
       
  3434 
       
  3435 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  3436 	for (f = 0; f < nr_frags; f++)
       
  3437 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
       
  3438 				       max_txd_pwr);
       
  3439 	if (adapter->pcix_82544)
       
  3440 		count += nr_frags;
       
  3441 
       
  3442 
       
  3443 	if (adapter->hw.tx_pkt_filtering &&
       
  3444 	    (adapter->hw.mac_type == e1000_82573))
       
  3445 		e1000_transfer_dhcp_info(adapter, skb);
       
  3446 
       
  3447 	if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
       
  3448 		/* Collision - tell upper layer to requeue */
       
  3449 		return NETDEV_TX_LOCKED;
       
  3450 
       
  3451 	/* need: count + 2 desc gap to keep tail from touching
       
  3452 	 * head, otherwise try next time */
       
  3453 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
       
  3454 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3455 		return NETDEV_TX_BUSY;
       
  3456 	}
       
  3457 
       
  3458 	if (unlikely(adapter->hw.mac_type == e1000_82547)) {
       
  3459 		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
       
  3460 			netif_stop_queue(netdev);
       
  3461 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  3462 			spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3463 			return NETDEV_TX_BUSY;
       
  3464 		}
       
  3465 	}
       
  3466 
       
  3467 	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
       
  3468 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  3469 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  3470 	}
       
  3471 
       
  3472 	first = tx_ring->next_to_use;
       
  3473 
       
  3474 	tso = e1000_tso(adapter, tx_ring, skb);
       
  3475 	if (tso < 0) {
       
  3476 		dev_kfree_skb_any(skb);
       
  3477 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3478 		return NETDEV_TX_OK;
       
  3479 	}
       
  3480 
       
  3481 	if (likely(tso)) {
       
  3482 		tx_ring->last_tx_tso = 1;
       
  3483 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  3484 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
       
  3485 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  3486 
       
  3487 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
       
  3488 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
       
  3489 	 * no longer assume, we must. */
       
  3490 	if (likely(skb->protocol == htons(ETH_P_IP)))
       
  3491 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  3492 
       
  3493 	e1000_tx_queue(adapter, tx_ring, tx_flags,
       
  3494 	               e1000_tx_map(adapter, tx_ring, skb, first,
       
  3495 	                            max_per_txd, nr_frags, mss));
       
  3496 
       
  3497 	netdev->trans_start = jiffies;
       
  3498 
       
  3499 	/* Make sure there is space in the ring for the next send. */
       
  3500 	e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
       
  3501 
       
  3502 	spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3503 	return NETDEV_TX_OK;
       
  3504 }
       
  3505 
       
  3506 /**
       
  3507  * e1000_tx_timeout - Respond to a Tx Hang
       
  3508  * @netdev: network interface device structure
       
  3509  **/
       
  3510 
       
  3511 static void
       
  3512 e1000_tx_timeout(struct net_device *netdev)
       
  3513 {
       
  3514 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3515 
       
  3516 	/* Do the reset outside of interrupt context */
       
  3517 	adapter->tx_timeout_count++;
       
  3518 	schedule_work(&adapter->reset_task);
       
  3519 }
       
  3520 
       
  3521 static void
       
  3522 e1000_reset_task(struct work_struct *work)
       
  3523 {
       
  3524 	struct e1000_adapter *adapter =
       
  3525 		container_of(work, struct e1000_adapter, reset_task);
       
  3526 
       
  3527 	e1000_reinit_locked(adapter);
       
  3528 }
       
  3529 
       
  3530 /**
       
  3531  * e1000_get_stats - Get System Network Statistics
       
  3532  * @netdev: network interface device structure
       
  3533  *
       
  3534  * Returns the address of the device statistics structure.
       
  3535  * The statistics are actually updated from the timer callback.
       
  3536  **/
       
  3537 
       
  3538 static struct net_device_stats *
       
  3539 e1000_get_stats(struct net_device *netdev)
       
  3540 {
       
  3541 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3542 
       
  3543 	/* only return the current stats */
       
  3544 	return &adapter->net_stats;
       
  3545 }
       
  3546 
       
  3547 /**
       
  3548  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  3549  * @netdev: network interface device structure
       
  3550  * @new_mtu: new value for maximum frame size
       
  3551  *
       
  3552  * Returns 0 on success, negative on failure
       
  3553  **/
       
  3554 
       
  3555 static int
       
  3556 e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  3557 {
       
  3558 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3559 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  3560 	u16 eeprom_data = 0;
       
  3561 
       
  3562 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
       
  3563 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
       
  3564 		DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
       
  3565 		return -EINVAL;
       
  3566 	}
       
  3567 
       
  3568 	/* Adapter-specific max frame size limits. */
       
  3569 	switch (adapter->hw.mac_type) {
       
  3570 	case e1000_undefined ... e1000_82542_rev2_1:
       
  3571 	case e1000_ich8lan:
       
  3572 		if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3573 			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
       
  3574 			return -EINVAL;
       
  3575 		}
       
  3576 		break;
       
  3577 	case e1000_82573:
       
  3578 		/* Jumbo Frames not supported if:
       
  3579 		 * - this is not an 82573L device
       
  3580 		 * - ASPM is enabled in any way (0x1A bits 3:2) */
       
  3581 		e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
       
  3582 		                  &eeprom_data);
       
  3583 		if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
       
  3584 		    (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
       
  3585 			if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3586 				DPRINTK(PROBE, ERR,
       
  3587 			            	"Jumbo Frames not supported.\n");
       
  3588 				return -EINVAL;
       
  3589 			}
       
  3590 			break;
       
  3591 		}
       
  3592 		/* ERT will be enabled later to enable wire speed receives */
       
  3593 
       
  3594 		/* fall through to get support */
       
  3595 	case e1000_82571:
       
  3596 	case e1000_82572:
       
  3597 	case e1000_80003es2lan:
       
  3598 #define MAX_STD_JUMBO_FRAME_SIZE 9234
       
  3599 		if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
       
  3600 			DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
       
  3601 			return -EINVAL;
       
  3602 		}
       
  3603 		break;
       
  3604 	default:
       
  3605 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
       
  3606 		break;
       
  3607 	}
       
  3608 
       
  3609 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  3610 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  3611 	 * larger slab size
       
  3612 	 * i.e. RXBUFFER_2048 --> size-4096 slab */
       
  3613 
       
  3614 	if (max_frame <= E1000_RXBUFFER_256)
       
  3615 		adapter->rx_buffer_len = E1000_RXBUFFER_256;
       
  3616 	else if (max_frame <= E1000_RXBUFFER_512)
       
  3617 		adapter->rx_buffer_len = E1000_RXBUFFER_512;
       
  3618 	else if (max_frame <= E1000_RXBUFFER_1024)
       
  3619 		adapter->rx_buffer_len = E1000_RXBUFFER_1024;
       
  3620 	else if (max_frame <= E1000_RXBUFFER_2048)
       
  3621 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
       
  3622 	else if (max_frame <= E1000_RXBUFFER_4096)
       
  3623 		adapter->rx_buffer_len = E1000_RXBUFFER_4096;
       
  3624 	else if (max_frame <= E1000_RXBUFFER_8192)
       
  3625 		adapter->rx_buffer_len = E1000_RXBUFFER_8192;
       
  3626 	else if (max_frame <= E1000_RXBUFFER_16384)
       
  3627 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
       
  3628 
       
  3629 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  3630 	if (!adapter->hw.tbi_compatibility_on &&
       
  3631 	    ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
       
  3632 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
       
  3633 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  3634 
       
  3635 	netdev->mtu = new_mtu;
       
  3636 	adapter->hw.max_frame_size = max_frame;
       
  3637 
       
  3638 	if (netif_running(netdev))
       
  3639 		e1000_reinit_locked(adapter);
       
  3640 
       
  3641 	return 0;
       
  3642 }
       
  3643 
       
  3644 /**
       
  3645  * e1000_update_stats - Update the board statistics counters
       
  3646  * @adapter: board private structure
       
  3647  **/
       
  3648 
       
  3649 void
       
  3650 e1000_update_stats(struct e1000_adapter *adapter)
       
  3651 {
       
  3652 	struct e1000_hw *hw = &adapter->hw;
       
  3653 	struct pci_dev *pdev = adapter->pdev;
       
  3654 	unsigned long flags;
       
  3655 	u16 phy_tmp;
       
  3656 
       
  3657 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
       
  3658 
       
  3659 	/*
       
  3660 	 * Prevent stats update while adapter is being reset, or if the pci
       
  3661 	 * connection is down.
       
  3662 	 */
       
  3663 	if (adapter->link_speed == 0)
       
  3664 		return;
       
  3665 	if (pci_channel_offline(pdev))
       
  3666 		return;
       
  3667 
       
  3668 	spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3669 
       
  3670 	/* these counters are modified from e1000_tbi_adjust_stats,
       
  3671 	 * called from the interrupt context, so they must only
       
  3672 	 * be written while holding adapter->stats_lock
       
  3673 	 */
       
  3674 
       
  3675 	adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
       
  3676 	adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
       
  3677 	adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
       
  3678 	adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
       
  3679 	adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
       
  3680 	adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
       
  3681 	adapter->stats.roc += E1000_READ_REG(hw, ROC);
       
  3682 
       
  3683 	if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3684 		adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
       
  3685 		adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
       
  3686 		adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
       
  3687 		adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
       
  3688 		adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
       
  3689 		adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
       
  3690 	}
       
  3691 
       
  3692 	adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
       
  3693 	adapter->stats.mpc += E1000_READ_REG(hw, MPC);
       
  3694 	adapter->stats.scc += E1000_READ_REG(hw, SCC);
       
  3695 	adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
       
  3696 	adapter->stats.mcc += E1000_READ_REG(hw, MCC);
       
  3697 	adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
       
  3698 	adapter->stats.dc += E1000_READ_REG(hw, DC);
       
  3699 	adapter->stats.sec += E1000_READ_REG(hw, SEC);
       
  3700 	adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
       
  3701 	adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
       
  3702 	adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
       
  3703 	adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
       
  3704 	adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
       
  3705 	adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
       
  3706 	adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
       
  3707 	adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
       
  3708 	adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
       
  3709 	adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
       
  3710 	adapter->stats.ruc += E1000_READ_REG(hw, RUC);
       
  3711 	adapter->stats.rfc += E1000_READ_REG(hw, RFC);
       
  3712 	adapter->stats.rjc += E1000_READ_REG(hw, RJC);
       
  3713 	adapter->stats.torl += E1000_READ_REG(hw, TORL);
       
  3714 	adapter->stats.torh += E1000_READ_REG(hw, TORH);
       
  3715 	adapter->stats.totl += E1000_READ_REG(hw, TOTL);
       
  3716 	adapter->stats.toth += E1000_READ_REG(hw, TOTH);
       
  3717 	adapter->stats.tpr += E1000_READ_REG(hw, TPR);
       
  3718 
       
  3719 	if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3720 		adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
       
  3721 		adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
       
  3722 		adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
       
  3723 		adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
       
  3724 		adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
       
  3725 		adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
       
  3726 	}
       
  3727 
       
  3728 	adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
       
  3729 	adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
       
  3730 
       
  3731 	/* used for adaptive IFS */
       
  3732 
       
  3733 	hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
       
  3734 	adapter->stats.tpt += hw->tx_packet_delta;
       
  3735 	hw->collision_delta = E1000_READ_REG(hw, COLC);
       
  3736 	adapter->stats.colc += hw->collision_delta;
       
  3737 
       
  3738 	if (hw->mac_type >= e1000_82543) {
       
  3739 		adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
       
  3740 		adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
       
  3741 		adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
       
  3742 		adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
       
  3743 		adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
       
  3744 		adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
       
  3745 	}
       
  3746 	if (hw->mac_type > e1000_82547_rev_2) {
       
  3747 		adapter->stats.iac += E1000_READ_REG(hw, IAC);
       
  3748 		adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
       
  3749 
       
  3750 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3751 			adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
       
  3752 			adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
       
  3753 			adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
       
  3754 			adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
       
  3755 			adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
       
  3756 			adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
       
  3757 			adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
       
  3758 		}
       
  3759 	}
       
  3760 
       
  3761 	/* Fill out the OS statistics structure */
       
  3762 	adapter->net_stats.multicast = adapter->stats.mprc;
       
  3763 	adapter->net_stats.collisions = adapter->stats.colc;
       
  3764 
       
  3765 	/* Rx Errors */
       
  3766 
       
  3767 	/* RLEC on some newer hardware can be incorrect so build
       
  3768 	* our own version based on RUC and ROC */
       
  3769 	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
       
  3770 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  3771 		adapter->stats.ruc + adapter->stats.roc +
       
  3772 		adapter->stats.cexterr;
       
  3773 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
       
  3774 	adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
       
  3775 	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
       
  3776 	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
       
  3777 	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
       
  3778 
       
  3779 	/* Tx Errors */
       
  3780 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
       
  3781 	adapter->net_stats.tx_errors = adapter->stats.txerrc;
       
  3782 	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
       
  3783 	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
       
  3784 	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
       
  3785 	if (adapter->hw.bad_tx_carr_stats_fd &&
       
  3786 	    adapter->link_duplex == FULL_DUPLEX) {
       
  3787 		adapter->net_stats.tx_carrier_errors = 0;
       
  3788 		adapter->stats.tncrs = 0;
       
  3789 	}
       
  3790 
       
  3791 	/* Tx Dropped needs to be maintained elsewhere */
       
  3792 
       
  3793 	/* Phy Stats */
       
  3794 	if (hw->media_type == e1000_media_type_copper) {
       
  3795 		if ((adapter->link_speed == SPEED_1000) &&
       
  3796 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
       
  3797 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
       
  3798 			adapter->phy_stats.idle_errors += phy_tmp;
       
  3799 		}
       
  3800 
       
  3801 		if ((hw->mac_type <= e1000_82546) &&
       
  3802 		   (hw->phy_type == e1000_phy_m88) &&
       
  3803 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
       
  3804 			adapter->phy_stats.receive_errors += phy_tmp;
       
  3805 	}
       
  3806 
       
  3807 	/* Management Stats */
       
  3808 	if (adapter->hw.has_smbus) {
       
  3809 		adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
       
  3810 		adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
       
  3811 		adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
       
  3812 	}
       
  3813 
       
  3814 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3815 }
       
  3816 
       
  3817 /**
       
  3818  * e1000_intr_msi - Interrupt Handler
       
  3819  * @irq: interrupt number
       
  3820  * @data: pointer to a network interface device structure
       
  3821  **/
       
  3822 
       
  3823 static irqreturn_t
       
  3824 e1000_intr_msi(int irq, void *data)
       
  3825 {
       
  3826 	struct net_device *netdev = data;
       
  3827 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3828 	struct e1000_hw *hw = &adapter->hw;
       
  3829 #ifndef CONFIG_E1000_NAPI
       
  3830 	int i;
       
  3831 #endif
       
  3832 	u32 icr = E1000_READ_REG(hw, ICR);
       
  3833 
       
  3834 	/* in NAPI mode read ICR disables interrupts using IAM */
       
  3835 
       
  3836 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
       
  3837 		hw->get_link_status = 1;
       
  3838 		/* 80003ES2LAN workaround-- For packet buffer work-around on
       
  3839 		 * link down event; disable receives here in the ISR and reset
       
  3840 		 * adapter in watchdog */
       
  3841 		if (netif_carrier_ok(netdev) &&
       
  3842 		    (adapter->hw.mac_type == e1000_80003es2lan)) {
       
  3843 			/* disable receives */
       
  3844 			u32 rctl = E1000_READ_REG(hw, RCTL);
       
  3845 			E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  3846 		}
       
  3847 		/* guard against interrupt when we're going down */
       
  3848 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3849 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  3850 	}
       
  3851 
       
  3852 #ifdef CONFIG_E1000_NAPI
       
  3853 	if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
       
  3854 		adapter->total_tx_bytes = 0;
       
  3855 		adapter->total_tx_packets = 0;
       
  3856 		adapter->total_rx_bytes = 0;
       
  3857 		adapter->total_rx_packets = 0;
       
  3858 		__netif_rx_schedule(netdev, &adapter->napi);
       
  3859 	} else
       
  3860 		e1000_irq_enable(adapter);
       
  3861 #else
       
  3862 	adapter->total_tx_bytes = 0;
       
  3863 	adapter->total_rx_bytes = 0;
       
  3864 	adapter->total_tx_packets = 0;
       
  3865 	adapter->total_rx_packets = 0;
       
  3866 
       
  3867 	for (i = 0; i < E1000_MAX_INTR; i++)
       
  3868 		if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
       
  3869 		   !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
       
  3870 			break;
       
  3871 
       
  3872 	if (likely(adapter->itr_setting & 3))
       
  3873 		e1000_set_itr(adapter);
       
  3874 #endif
       
  3875 
       
  3876 	return IRQ_HANDLED;
       
  3877 }
       
  3878 
       
  3879 /**
       
  3880  * e1000_intr - Interrupt Handler
       
  3881  * @irq: interrupt number
       
  3882  * @data: pointer to a network interface device structure
       
  3883  **/
       
  3884 
       
  3885 static irqreturn_t
       
  3886 e1000_intr(int irq, void *data)
       
  3887 {
       
  3888 	struct net_device *netdev = data;
       
  3889 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3890 	struct e1000_hw *hw = &adapter->hw;
       
  3891 	u32 rctl, icr = E1000_READ_REG(hw, ICR);
       
  3892 #ifndef CONFIG_E1000_NAPI
       
  3893 	int i;
       
  3894 #endif
       
  3895 	if (unlikely(!icr))
       
  3896 		return IRQ_NONE;  /* Not our interrupt */
       
  3897 
       
  3898 #ifdef CONFIG_E1000_NAPI
       
  3899 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
       
  3900 	 * not set, then the adapter didn't send an interrupt */
       
  3901 	if (unlikely(hw->mac_type >= e1000_82571 &&
       
  3902 	             !(icr & E1000_ICR_INT_ASSERTED)))
       
  3903 		return IRQ_NONE;
       
  3904 
       
  3905 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
       
  3906 	 * need for the IMC write */
       
  3907 #endif
       
  3908 
       
  3909 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
       
  3910 		hw->get_link_status = 1;
       
  3911 		/* 80003ES2LAN workaround--
       
  3912 		 * For packet buffer work-around on link down event;
       
  3913 		 * disable receives here in the ISR and
       
  3914 		 * reset adapter in watchdog
       
  3915 		 */
       
  3916 		if (netif_carrier_ok(netdev) &&
       
  3917 		    (adapter->hw.mac_type == e1000_80003es2lan)) {
       
  3918 			/* disable receives */
       
  3919 			rctl = E1000_READ_REG(hw, RCTL);
       
  3920 			E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  3921 		}
       
  3922 		/* guard against interrupt when we're going down */
       
  3923 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3924 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  3925 	}
       
  3926 
       
  3927 #ifdef CONFIG_E1000_NAPI
       
  3928 	if (unlikely(hw->mac_type < e1000_82571)) {
       
  3929 		/* disable interrupts, without the synchronize_irq bit */
       
  3930 		E1000_WRITE_REG(hw, IMC, ~0);
       
  3931 		E1000_WRITE_FLUSH(hw);
       
  3932 	}
       
  3933 	if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
       
  3934 		adapter->total_tx_bytes = 0;
       
  3935 		adapter->total_tx_packets = 0;
       
  3936 		adapter->total_rx_bytes = 0;
       
  3937 		adapter->total_rx_packets = 0;
       
  3938 		__netif_rx_schedule(netdev, &adapter->napi);
       
  3939 	} else
       
  3940 		/* this really should not happen! if it does it is basically a
       
  3941 		 * bug, but not a hard error, so enable ints and continue */
       
  3942 		e1000_irq_enable(adapter);
       
  3943 #else
       
  3944 	/* Writing IMC and IMS is needed for 82547.
       
  3945 	 * Due to Hub Link bus being occupied, an interrupt
       
  3946 	 * de-assertion message is not able to be sent.
       
  3947 	 * When an interrupt assertion message is generated later,
       
  3948 	 * two messages are re-ordered and sent out.
       
  3949 	 * That causes APIC to think 82547 is in de-assertion
       
  3950 	 * state, while 82547 is in assertion state, resulting
       
  3951 	 * in dead lock. Writing IMC forces 82547 into
       
  3952 	 * de-assertion state.
       
  3953 	 */
       
  3954 	if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
       
  3955 		E1000_WRITE_REG(hw, IMC, ~0);
       
  3956 
       
  3957 	adapter->total_tx_bytes = 0;
       
  3958 	adapter->total_rx_bytes = 0;
       
  3959 	adapter->total_tx_packets = 0;
       
  3960 	adapter->total_rx_packets = 0;
       
  3961 
       
  3962 	for (i = 0; i < E1000_MAX_INTR; i++)
       
  3963 		if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
       
  3964 		   !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
       
  3965 			break;
       
  3966 
       
  3967 	if (likely(adapter->itr_setting & 3))
       
  3968 		e1000_set_itr(adapter);
       
  3969 
       
  3970 	if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
       
  3971 		e1000_irq_enable(adapter);
       
  3972 
       
  3973 #endif
       
  3974 	return IRQ_HANDLED;
       
  3975 }
       
  3976 
       
  3977 #ifdef CONFIG_E1000_NAPI
       
  3978 /**
       
  3979  * e1000_clean - NAPI Rx polling callback
       
  3980  * @adapter: board private structure
       
  3981  **/
       
  3982 
       
  3983 static int
       
  3984 e1000_clean(struct napi_struct *napi, int budget)
       
  3985 {
       
  3986 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
       
  3987 	struct net_device *poll_dev = adapter->netdev;
       
  3988 	int tx_cleaned = 0, work_done = 0;
       
  3989 
       
  3990 	/* Must NOT use netdev_priv macro here. */
       
  3991 	adapter = poll_dev->priv;
       
  3992 
       
  3993 	/* e1000_clean is called per-cpu.  This lock protects
       
  3994 	 * tx_ring[0] from being cleaned by multiple cpus
       
  3995 	 * simultaneously.  A failure obtaining the lock means
       
  3996 	 * tx_ring[0] is currently being cleaned anyway. */
       
  3997 	if (spin_trylock(&adapter->tx_queue_lock)) {
       
  3998 		tx_cleaned = e1000_clean_tx_irq(adapter,
       
  3999 						&adapter->tx_ring[0]);
       
  4000 		spin_unlock(&adapter->tx_queue_lock);
       
  4001 	}
       
  4002 
       
  4003 	adapter->clean_rx(adapter, &adapter->rx_ring[0],
       
  4004 	                  &work_done, budget);
       
  4005 
       
  4006 	if (tx_cleaned)
       
  4007 		work_done = budget;
       
  4008 
       
  4009 	/* If budget not fully consumed, exit the polling mode */
       
  4010 	if (work_done < budget) {
       
  4011 		if (likely(adapter->itr_setting & 3))
       
  4012 			e1000_set_itr(adapter);
       
  4013 		netif_rx_complete(poll_dev, napi);
       
  4014 		e1000_irq_enable(adapter);
       
  4015 	}
       
  4016 
       
  4017 	return work_done;
       
  4018 }
       
  4019 
       
  4020 #endif
       
  4021 /**
       
  4022  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
  4023  * @adapter: board private structure
       
  4024  **/
       
  4025 
       
  4026 static bool
       
  4027 e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
  4028                    struct e1000_tx_ring *tx_ring)
       
  4029 {
       
  4030 	struct net_device *netdev = adapter->netdev;
       
  4031 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
  4032 	struct e1000_buffer *buffer_info;
       
  4033 	unsigned int i, eop;
       
  4034 #ifdef CONFIG_E1000_NAPI
       
  4035 	unsigned int count = 0;
       
  4036 #endif
       
  4037 	bool cleaned = false;
       
  4038 	unsigned int total_tx_bytes=0, total_tx_packets=0;
       
  4039 
       
  4040 	i = tx_ring->next_to_clean;
       
  4041 	eop = tx_ring->buffer_info[i].next_to_watch;
       
  4042 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  4043 
       
  4044 	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
       
  4045 		for (cleaned = false; !cleaned; ) {
       
  4046 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  4047 			buffer_info = &tx_ring->buffer_info[i];
       
  4048 			cleaned = (i == eop);
       
  4049 
       
  4050 			if (cleaned) {
       
  4051 				struct sk_buff *skb = buffer_info->skb;
       
  4052 				unsigned int segs, bytecount;
       
  4053 				segs = skb_shinfo(skb)->gso_segs ?: 1;
       
  4054 				/* multiply data chunks by size of headers */
       
  4055 				bytecount = ((segs - 1) * skb_headlen(skb)) +
       
  4056 				            skb->len;
       
  4057 				total_tx_packets += segs;
       
  4058 				total_tx_bytes += bytecount;
       
  4059 			}
       
  4060 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  4061 			tx_desc->upper.data = 0;
       
  4062 
       
  4063 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  4064 		}
       
  4065 
       
  4066 		eop = tx_ring->buffer_info[i].next_to_watch;
       
  4067 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  4068 #ifdef CONFIG_E1000_NAPI
       
  4069 #define E1000_TX_WEIGHT 64
       
  4070 		/* weight of a sort for tx, to avoid endless transmit cleanup */
       
  4071 		if (count++ == E1000_TX_WEIGHT) break;
       
  4072 #endif
       
  4073 	}
       
  4074 
       
  4075 	tx_ring->next_to_clean = i;
       
  4076 
       
  4077 #define TX_WAKE_THRESHOLD 32
       
  4078 	if (unlikely(cleaned && netif_carrier_ok(netdev) &&
       
  4079 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
       
  4080 		/* Make sure that anybody stopping the queue after this
       
  4081 		 * sees the new next_to_clean.
       
  4082 		 */
       
  4083 		smp_mb();
       
  4084 		if (netif_queue_stopped(netdev)) {
       
  4085 			netif_wake_queue(netdev);
       
  4086 			++adapter->restart_queue;
       
  4087 		}
       
  4088 	}
       
  4089 
       
  4090 	if (adapter->detect_tx_hung) {
       
  4091 		/* Detect a transmit hang in hardware, this serializes the
       
  4092 		 * check with the clearing of time_stamp and movement of i */
       
  4093 		adapter->detect_tx_hung = false;
       
  4094 		if (tx_ring->buffer_info[eop].dma &&
       
  4095 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
       
  4096 		               (adapter->tx_timeout_factor * HZ))
       
  4097 		    && !(E1000_READ_REG(&adapter->hw, STATUS) &
       
  4098 		         E1000_STATUS_TXOFF)) {
       
  4099 
       
  4100 			/* detected Tx unit hang */
       
  4101 			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
       
  4102 					"  Tx Queue             <%lu>\n"
       
  4103 					"  TDH                  <%x>\n"
       
  4104 					"  TDT                  <%x>\n"
       
  4105 					"  next_to_use          <%x>\n"
       
  4106 					"  next_to_clean        <%x>\n"
       
  4107 					"buffer_info[next_to_clean]\n"
       
  4108 					"  time_stamp           <%lx>\n"
       
  4109 					"  next_to_watch        <%x>\n"
       
  4110 					"  jiffies              <%lx>\n"
       
  4111 					"  next_to_watch.status <%x>\n",
       
  4112 				(unsigned long)((tx_ring - adapter->tx_ring) /
       
  4113 					sizeof(struct e1000_tx_ring)),
       
  4114 				readl(adapter->hw.hw_addr + tx_ring->tdh),
       
  4115 				readl(adapter->hw.hw_addr + tx_ring->tdt),
       
  4116 				tx_ring->next_to_use,
       
  4117 				tx_ring->next_to_clean,
       
  4118 				tx_ring->buffer_info[eop].time_stamp,
       
  4119 				eop,
       
  4120 				jiffies,
       
  4121 				eop_desc->upper.fields.status);
       
  4122 			netif_stop_queue(netdev);
       
  4123 		}
       
  4124 	}
       
  4125 	adapter->total_tx_bytes += total_tx_bytes;
       
  4126 	adapter->total_tx_packets += total_tx_packets;
       
  4127 	adapter->net_stats.tx_bytes += total_tx_bytes;
       
  4128 	adapter->net_stats.tx_packets += total_tx_packets;
       
  4129 	return cleaned;
       
  4130 }
       
  4131 
       
  4132 /**
       
  4133  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
  4134  * @adapter:     board private structure
       
  4135  * @status_err:  receive descriptor status and error fields
       
  4136  * @csum:        receive descriptor csum field
       
  4137  * @sk_buff:     socket buffer with received data
       
  4138  **/
       
  4139 
       
  4140 static void
       
  4141 e1000_rx_checksum(struct e1000_adapter *adapter,
       
  4142 		  u32 status_err, u32 csum,
       
  4143 		  struct sk_buff *skb)
       
  4144 {
       
  4145 	u16 status = (u16)status_err;
       
  4146 	u8 errors = (u8)(status_err >> 24);
       
  4147 	skb->ip_summed = CHECKSUM_NONE;
       
  4148 
       
  4149 	/* 82543 or newer only */
       
  4150 	if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
       
  4151 	/* Ignore Checksum bit is set */
       
  4152 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
       
  4153 	/* TCP/UDP checksum error bit is set */
       
  4154 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
       
  4155 		/* let the stack verify checksum errors */
       
  4156 		adapter->hw_csum_err++;
       
  4157 		return;
       
  4158 	}
       
  4159 	/* TCP/UDP Checksum has not been calculated */
       
  4160 	if (adapter->hw.mac_type <= e1000_82547_rev_2) {
       
  4161 		if (!(status & E1000_RXD_STAT_TCPCS))
       
  4162 			return;
       
  4163 	} else {
       
  4164 		if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
       
  4165 			return;
       
  4166 	}
       
  4167 	/* It must be a TCP or UDP packet with a valid checksum */
       
  4168 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
       
  4169 		/* TCP checksum is good */
       
  4170 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
  4171 	} else if (adapter->hw.mac_type > e1000_82547_rev_2) {
       
  4172 		/* IP fragment with UDP payload */
       
  4173 		/* Hardware complements the payload checksum, so we undo it
       
  4174 		 * and then put the value in host order for further stack use.
       
  4175 		 */
       
  4176 		__sum16 sum = (__force __sum16)htons(csum);
       
  4177 		skb->csum = csum_unfold(~sum);
       
  4178 		skb->ip_summed = CHECKSUM_COMPLETE;
       
  4179 	}
       
  4180 	adapter->hw_csum_good++;
       
  4181 }
       
  4182 
       
  4183 /**
       
  4184  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
  4185  * @adapter: board private structure
       
  4186  **/
       
  4187 
       
  4188 static bool
       
  4189 #ifdef CONFIG_E1000_NAPI
       
  4190 e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  4191                    struct e1000_rx_ring *rx_ring,
       
  4192                    int *work_done, int work_to_do)
       
  4193 #else
       
  4194 e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  4195                    struct e1000_rx_ring *rx_ring)
       
  4196 #endif
       
  4197 {
       
  4198 	struct net_device *netdev = adapter->netdev;
       
  4199 	struct pci_dev *pdev = adapter->pdev;
       
  4200 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
  4201 	struct e1000_buffer *buffer_info, *next_buffer;
       
  4202 	unsigned long flags;
       
  4203 	u32 length;
       
  4204 	u8 last_byte;
       
  4205 	unsigned int i;
       
  4206 	int cleaned_count = 0;
       
  4207 	bool cleaned = false;
       
  4208 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  4209 
       
  4210 	i = rx_ring->next_to_clean;
       
  4211 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4212 	buffer_info = &rx_ring->buffer_info[i];
       
  4213 
       
  4214 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
  4215 		struct sk_buff *skb;
       
  4216 		u8 status;
       
  4217 
       
  4218 #ifdef CONFIG_E1000_NAPI
       
  4219 		if (*work_done >= work_to_do)
       
  4220 			break;
       
  4221 		(*work_done)++;
       
  4222 #endif
       
  4223 		status = rx_desc->status;
       
  4224 		skb = buffer_info->skb;
       
  4225 		buffer_info->skb = NULL;
       
  4226 
       
  4227 		prefetch(skb->data - NET_IP_ALIGN);
       
  4228 
       
  4229 		if (++i == rx_ring->count) i = 0;
       
  4230 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
  4231 		prefetch(next_rxd);
       
  4232 
       
  4233 		next_buffer = &rx_ring->buffer_info[i];
       
  4234 
       
  4235 		cleaned = true;
       
  4236 		cleaned_count++;
       
  4237 		pci_unmap_single(pdev,
       
  4238 		                 buffer_info->dma,
       
  4239 		                 buffer_info->length,
       
  4240 		                 PCI_DMA_FROMDEVICE);
       
  4241 
       
  4242 		length = le16_to_cpu(rx_desc->length);
       
  4243 
       
  4244 		if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
       
  4245 			/* All receives must fit into a single buffer */
       
  4246 			E1000_DBG("%s: Receive packet consumed multiple"
       
  4247 				  " buffers\n", netdev->name);
       
  4248 			/* recycle */
       
  4249 			buffer_info->skb = skb;
       
  4250 			goto next_desc;
       
  4251 		}
       
  4252 
       
  4253 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
       
  4254 			last_byte = *(skb->data + length - 1);
       
  4255 			if (TBI_ACCEPT(&adapter->hw, status,
       
  4256 			              rx_desc->errors, length, last_byte)) {
       
  4257 				spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4258 				e1000_tbi_adjust_stats(&adapter->hw,
       
  4259 				                       &adapter->stats,
       
  4260 				                       length, skb->data);
       
  4261 				spin_unlock_irqrestore(&adapter->stats_lock,
       
  4262 				                       flags);
       
  4263 				length--;
       
  4264 			} else {
       
  4265 				/* recycle */
       
  4266 				buffer_info->skb = skb;
       
  4267 				goto next_desc;
       
  4268 			}
       
  4269 		}
       
  4270 
       
  4271 		/* adjust length to remove Ethernet CRC, this must be
       
  4272 		 * done after the TBI_ACCEPT workaround above */
       
  4273 		length -= 4;
       
  4274 
       
  4275 		/* probably a little skewed due to removing CRC */
       
  4276 		total_rx_bytes += length;
       
  4277 		total_rx_packets++;
       
  4278 
       
  4279 		/* code added for copybreak, this should improve
       
  4280 		 * performance for small packets with large amounts
       
  4281 		 * of reassembly being done in the stack */
       
  4282 		if (length < copybreak) {
       
  4283 			struct sk_buff *new_skb =
       
  4284 			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
       
  4285 			if (new_skb) {
       
  4286 				skb_reserve(new_skb, NET_IP_ALIGN);
       
  4287 				skb_copy_to_linear_data_offset(new_skb,
       
  4288 							       -NET_IP_ALIGN,
       
  4289 							       (skb->data -
       
  4290 							        NET_IP_ALIGN),
       
  4291 							       (length +
       
  4292 							        NET_IP_ALIGN));
       
  4293 				/* save the skb in buffer_info as good */
       
  4294 				buffer_info->skb = skb;
       
  4295 				skb = new_skb;
       
  4296 			}
       
  4297 			/* else just continue with the old one */
       
  4298 		}
       
  4299 		/* end copybreak code */
       
  4300 		skb_put(skb, length);
       
  4301 
       
  4302 		/* Receive Checksum Offload */
       
  4303 		e1000_rx_checksum(adapter,
       
  4304 				  (u32)(status) |
       
  4305 				  ((u32)(rx_desc->errors) << 24),
       
  4306 				  le16_to_cpu(rx_desc->csum), skb);
       
  4307 
       
  4308 		skb->protocol = eth_type_trans(skb, netdev);
       
  4309 #ifdef CONFIG_E1000_NAPI
       
  4310 		if (unlikely(adapter->vlgrp &&
       
  4311 			    (status & E1000_RXD_STAT_VP))) {
       
  4312 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  4313 						 le16_to_cpu(rx_desc->special) &
       
  4314 						 E1000_RXD_SPC_VLAN_MASK);
       
  4315 		} else {
       
  4316 			netif_receive_skb(skb);
       
  4317 		}
       
  4318 #else /* CONFIG_E1000_NAPI */
       
  4319 		if (unlikely(adapter->vlgrp &&
       
  4320 			    (status & E1000_RXD_STAT_VP))) {
       
  4321 			vlan_hwaccel_rx(skb, adapter->vlgrp,
       
  4322 					le16_to_cpu(rx_desc->special) &
       
  4323 					E1000_RXD_SPC_VLAN_MASK);
       
  4324 		} else {
       
  4325 			netif_rx(skb);
       
  4326 		}
       
  4327 #endif /* CONFIG_E1000_NAPI */
       
  4328 		netdev->last_rx = jiffies;
       
  4329 
       
  4330 next_desc:
       
  4331 		rx_desc->status = 0;
       
  4332 
       
  4333 		/* return some buffers to hardware, one at a time is too slow */
       
  4334 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  4335 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4336 			cleaned_count = 0;
       
  4337 		}
       
  4338 
       
  4339 		/* use prefetched values */
       
  4340 		rx_desc = next_rxd;
       
  4341 		buffer_info = next_buffer;
       
  4342 	}
       
  4343 	rx_ring->next_to_clean = i;
       
  4344 
       
  4345 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  4346 	if (cleaned_count)
       
  4347 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4348 
       
  4349 	adapter->total_rx_packets += total_rx_packets;
       
  4350 	adapter->total_rx_bytes += total_rx_bytes;
       
  4351 	adapter->net_stats.rx_bytes += total_rx_bytes;
       
  4352 	adapter->net_stats.rx_packets += total_rx_packets;
       
  4353 	return cleaned;
       
  4354 }
       
  4355 
       
  4356 /**
       
  4357  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
       
  4358  * @adapter: board private structure
       
  4359  **/
       
  4360 
       
  4361 static bool
       
  4362 #ifdef CONFIG_E1000_NAPI
       
  4363 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
  4364                       struct e1000_rx_ring *rx_ring,
       
  4365                       int *work_done, int work_to_do)
       
  4366 #else
       
  4367 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
  4368                       struct e1000_rx_ring *rx_ring)
       
  4369 #endif
       
  4370 {
       
  4371 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
       
  4372 	struct net_device *netdev = adapter->netdev;
       
  4373 	struct pci_dev *pdev = adapter->pdev;
       
  4374 	struct e1000_buffer *buffer_info, *next_buffer;
       
  4375 	struct e1000_ps_page *ps_page;
       
  4376 	struct e1000_ps_page_dma *ps_page_dma;
       
  4377 	struct sk_buff *skb;
       
  4378 	unsigned int i, j;
       
  4379 	u32 length, staterr;
       
  4380 	int cleaned_count = 0;
       
  4381 	bool cleaned = false;
       
  4382 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  4383 
       
  4384 	i = rx_ring->next_to_clean;
       
  4385 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  4386 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  4387 	buffer_info = &rx_ring->buffer_info[i];
       
  4388 
       
  4389 	while (staterr & E1000_RXD_STAT_DD) {
       
  4390 		ps_page = &rx_ring->ps_page[i];
       
  4391 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4392 #ifdef CONFIG_E1000_NAPI
       
  4393 		if (unlikely(*work_done >= work_to_do))
       
  4394 			break;
       
  4395 		(*work_done)++;
       
  4396 #endif
       
  4397 		skb = buffer_info->skb;
       
  4398 
       
  4399 		/* in the packet split case this is header only */
       
  4400 		prefetch(skb->data - NET_IP_ALIGN);
       
  4401 
       
  4402 		if (++i == rx_ring->count) i = 0;
       
  4403 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
       
  4404 		prefetch(next_rxd);
       
  4405 
       
  4406 		next_buffer = &rx_ring->buffer_info[i];
       
  4407 
       
  4408 		cleaned = true;
       
  4409 		cleaned_count++;
       
  4410 		pci_unmap_single(pdev, buffer_info->dma,
       
  4411 				 buffer_info->length,
       
  4412 				 PCI_DMA_FROMDEVICE);
       
  4413 
       
  4414 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
       
  4415 			E1000_DBG("%s: Packet Split buffers didn't pick up"
       
  4416 				  " the full packet\n", netdev->name);
       
  4417 			dev_kfree_skb_irq(skb);
       
  4418 			goto next_desc;
       
  4419 		}
       
  4420 
       
  4421 		if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
       
  4422 			dev_kfree_skb_irq(skb);
       
  4423 			goto next_desc;
       
  4424 		}
       
  4425 
       
  4426 		length = le16_to_cpu(rx_desc->wb.middle.length0);
       
  4427 
       
  4428 		if (unlikely(!length)) {
       
  4429 			E1000_DBG("%s: Last part of the packet spanning"
       
  4430 				  " multiple descriptors\n", netdev->name);
       
  4431 			dev_kfree_skb_irq(skb);
       
  4432 			goto next_desc;
       
  4433 		}
       
  4434 
       
  4435 		/* Good Receive */
       
  4436 		skb_put(skb, length);
       
  4437 
       
  4438 		{
       
  4439 		/* this looks ugly, but it seems compiler issues make it
       
  4440 		   more efficient than reusing j */
       
  4441 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
       
  4442 
       
  4443 		/* page alloc/put takes too long and effects small packet
       
  4444 		 * throughput, so unsplit small packets and save the alloc/put*/
       
  4445 		if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
       
  4446 			u8 *vaddr;
       
  4447 			/* there is no documentation about how to call
       
  4448 			 * kmap_atomic, so we can't hold the mapping
       
  4449 			 * very long */
       
  4450 			pci_dma_sync_single_for_cpu(pdev,
       
  4451 				ps_page_dma->ps_page_dma[0],
       
  4452 				PAGE_SIZE,
       
  4453 				PCI_DMA_FROMDEVICE);
       
  4454 			vaddr = kmap_atomic(ps_page->ps_page[0],
       
  4455 			                    KM_SKB_DATA_SOFTIRQ);
       
  4456 			memcpy(skb_tail_pointer(skb), vaddr, l1);
       
  4457 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
       
  4458 			pci_dma_sync_single_for_device(pdev,
       
  4459 				ps_page_dma->ps_page_dma[0],
       
  4460 				PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  4461 			/* remove the CRC */
       
  4462 			l1 -= 4;
       
  4463 			skb_put(skb, l1);
       
  4464 			goto copydone;
       
  4465 		} /* if */
       
  4466 		}
       
  4467 
       
  4468 		for (j = 0; j < adapter->rx_ps_pages; j++) {
       
  4469 			if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
       
  4470 				break;
       
  4471 			pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
       
  4472 					PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  4473 			ps_page_dma->ps_page_dma[j] = 0;
       
  4474 			skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
       
  4475 			                   length);
       
  4476 			ps_page->ps_page[j] = NULL;
       
  4477 			skb->len += length;
       
  4478 			skb->data_len += length;
       
  4479 			skb->truesize += length;
       
  4480 		}
       
  4481 
       
  4482 		/* strip the ethernet crc, problem is we're using pages now so
       
  4483 		 * this whole operation can get a little cpu intensive */
       
  4484 		pskb_trim(skb, skb->len - 4);
       
  4485 
       
  4486 copydone:
       
  4487 		total_rx_bytes += skb->len;
       
  4488 		total_rx_packets++;
       
  4489 
       
  4490 		e1000_rx_checksum(adapter, staterr,
       
  4491 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
       
  4492 		skb->protocol = eth_type_trans(skb, netdev);
       
  4493 
       
  4494 		if (likely(rx_desc->wb.upper.header_status &
       
  4495 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
       
  4496 			adapter->rx_hdr_split++;
       
  4497 #ifdef CONFIG_E1000_NAPI
       
  4498 		if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
       
  4499 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  4500 				le16_to_cpu(rx_desc->wb.middle.vlan) &
       
  4501 				E1000_RXD_SPC_VLAN_MASK);
       
  4502 		} else {
       
  4503 			netif_receive_skb(skb);
       
  4504 		}
       
  4505 #else /* CONFIG_E1000_NAPI */
       
  4506 		if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
       
  4507 			vlan_hwaccel_rx(skb, adapter->vlgrp,
       
  4508 				le16_to_cpu(rx_desc->wb.middle.vlan) &
       
  4509 				E1000_RXD_SPC_VLAN_MASK);
       
  4510 		} else {
       
  4511 			netif_rx(skb);
       
  4512 		}
       
  4513 #endif /* CONFIG_E1000_NAPI */
       
  4514 		netdev->last_rx = jiffies;
       
  4515 
       
  4516 next_desc:
       
  4517 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
       
  4518 		buffer_info->skb = NULL;
       
  4519 
       
  4520 		/* return some buffers to hardware, one at a time is too slow */
       
  4521 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  4522 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4523 			cleaned_count = 0;
       
  4524 		}
       
  4525 
       
  4526 		/* use prefetched values */
       
  4527 		rx_desc = next_rxd;
       
  4528 		buffer_info = next_buffer;
       
  4529 
       
  4530 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  4531 	}
       
  4532 	rx_ring->next_to_clean = i;
       
  4533 
       
  4534 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  4535 	if (cleaned_count)
       
  4536 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4537 
       
  4538 	adapter->total_rx_packets += total_rx_packets;
       
  4539 	adapter->total_rx_bytes += total_rx_bytes;
       
  4540 	adapter->net_stats.rx_bytes += total_rx_bytes;
       
  4541 	adapter->net_stats.rx_packets += total_rx_packets;
       
  4542 	return cleaned;
       
  4543 }
       
  4544 
       
  4545 /**
       
  4546  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
  4547  * @adapter: address of board private structure
       
  4548  **/
       
  4549 
       
  4550 static void
       
  4551 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
  4552                        struct e1000_rx_ring *rx_ring,
       
  4553 		       int cleaned_count)
       
  4554 {
       
  4555 	struct net_device *netdev = adapter->netdev;
       
  4556 	struct pci_dev *pdev = adapter->pdev;
       
  4557 	struct e1000_rx_desc *rx_desc;
       
  4558 	struct e1000_buffer *buffer_info;
       
  4559 	struct sk_buff *skb;
       
  4560 	unsigned int i;
       
  4561 	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
       
  4562 
       
  4563 	i = rx_ring->next_to_use;
       
  4564 	buffer_info = &rx_ring->buffer_info[i];
       
  4565 
       
  4566 	while (cleaned_count--) {
       
  4567 		skb = buffer_info->skb;
       
  4568 		if (skb) {
       
  4569 			skb_trim(skb, 0);
       
  4570 			goto map_skb;
       
  4571 		}
       
  4572 
       
  4573 		skb = netdev_alloc_skb(netdev, bufsz);
       
  4574 		if (unlikely(!skb)) {
       
  4575 			/* Better luck next round */
       
  4576 			adapter->alloc_rx_buff_failed++;
       
  4577 			break;
       
  4578 		}
       
  4579 
       
  4580 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4581 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4582 			struct sk_buff *oldskb = skb;
       
  4583 			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
       
  4584 					     "at %p\n", bufsz, skb->data);
       
  4585 			/* Try again, without freeing the previous */
       
  4586 			skb = netdev_alloc_skb(netdev, bufsz);
       
  4587 			/* Failed allocation, critical failure */
       
  4588 			if (!skb) {
       
  4589 				dev_kfree_skb(oldskb);
       
  4590 				break;
       
  4591 			}
       
  4592 
       
  4593 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4594 				/* give up */
       
  4595 				dev_kfree_skb(skb);
       
  4596 				dev_kfree_skb(oldskb);
       
  4597 				break; /* while !buffer_info->skb */
       
  4598 			}
       
  4599 
       
  4600 			/* Use new allocation */
       
  4601 			dev_kfree_skb(oldskb);
       
  4602 		}
       
  4603 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  4604 		 * this will result in a 16 byte aligned IP header after
       
  4605 		 * the 14 byte MAC header is removed
       
  4606 		 */
       
  4607 		skb_reserve(skb, NET_IP_ALIGN);
       
  4608 
       
  4609 		buffer_info->skb = skb;
       
  4610 		buffer_info->length = adapter->rx_buffer_len;
       
  4611 map_skb:
       
  4612 		buffer_info->dma = pci_map_single(pdev,
       
  4613 						  skb->data,
       
  4614 						  adapter->rx_buffer_len,
       
  4615 						  PCI_DMA_FROMDEVICE);
       
  4616 
       
  4617 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4618 		if (!e1000_check_64k_bound(adapter,
       
  4619 					(void *)(unsigned long)buffer_info->dma,
       
  4620 					adapter->rx_buffer_len)) {
       
  4621 			DPRINTK(RX_ERR, ERR,
       
  4622 				"dma align check failed: %u bytes at %p\n",
       
  4623 				adapter->rx_buffer_len,
       
  4624 				(void *)(unsigned long)buffer_info->dma);
       
  4625 			dev_kfree_skb(skb);
       
  4626 			buffer_info->skb = NULL;
       
  4627 
       
  4628 			pci_unmap_single(pdev, buffer_info->dma,
       
  4629 					 adapter->rx_buffer_len,
       
  4630 					 PCI_DMA_FROMDEVICE);
       
  4631 
       
  4632 			break; /* while !buffer_info->skb */
       
  4633 		}
       
  4634 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4635 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4636 
       
  4637 		if (unlikely(++i == rx_ring->count))
       
  4638 			i = 0;
       
  4639 		buffer_info = &rx_ring->buffer_info[i];
       
  4640 	}
       
  4641 
       
  4642 	if (likely(rx_ring->next_to_use != i)) {
       
  4643 		rx_ring->next_to_use = i;
       
  4644 		if (unlikely(i-- == 0))
       
  4645 			i = (rx_ring->count - 1);
       
  4646 
       
  4647 		/* Force memory writes to complete before letting h/w
       
  4648 		 * know there are new descriptors to fetch.  (Only
       
  4649 		 * applicable for weak-ordered memory model archs,
       
  4650 		 * such as IA-64). */
       
  4651 		wmb();
       
  4652 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
       
  4653 	}
       
  4654 }
       
  4655 
       
  4656 /**
       
  4657  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
       
  4658  * @adapter: address of board private structure
       
  4659  **/
       
  4660 
       
  4661 static void
       
  4662 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
  4663                           struct e1000_rx_ring *rx_ring,
       
  4664 			  int cleaned_count)
       
  4665 {
       
  4666 	struct net_device *netdev = adapter->netdev;
       
  4667 	struct pci_dev *pdev = adapter->pdev;
       
  4668 	union e1000_rx_desc_packet_split *rx_desc;
       
  4669 	struct e1000_buffer *buffer_info;
       
  4670 	struct e1000_ps_page *ps_page;
       
  4671 	struct e1000_ps_page_dma *ps_page_dma;
       
  4672 	struct sk_buff *skb;
       
  4673 	unsigned int i, j;
       
  4674 
       
  4675 	i = rx_ring->next_to_use;
       
  4676 	buffer_info = &rx_ring->buffer_info[i];
       
  4677 	ps_page = &rx_ring->ps_page[i];
       
  4678 	ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4679 
       
  4680 	while (cleaned_count--) {
       
  4681 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  4682 
       
  4683 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  4684 			if (j < adapter->rx_ps_pages) {
       
  4685 				if (likely(!ps_page->ps_page[j])) {
       
  4686 					ps_page->ps_page[j] =
       
  4687 						alloc_page(GFP_ATOMIC);
       
  4688 					if (unlikely(!ps_page->ps_page[j])) {
       
  4689 						adapter->alloc_rx_buff_failed++;
       
  4690 						goto no_buffers;
       
  4691 					}
       
  4692 					ps_page_dma->ps_page_dma[j] =
       
  4693 						pci_map_page(pdev,
       
  4694 							    ps_page->ps_page[j],
       
  4695 							    0, PAGE_SIZE,
       
  4696 							    PCI_DMA_FROMDEVICE);
       
  4697 				}
       
  4698 				/* Refresh the desc even if buffer_addrs didn't
       
  4699 				 * change because each write-back erases
       
  4700 				 * this info.
       
  4701 				 */
       
  4702 				rx_desc->read.buffer_addr[j+1] =
       
  4703 				     cpu_to_le64(ps_page_dma->ps_page_dma[j]);
       
  4704 			} else
       
  4705 				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
       
  4706 		}
       
  4707 
       
  4708 		skb = netdev_alloc_skb(netdev,
       
  4709 		                       adapter->rx_ps_bsize0 + NET_IP_ALIGN);
       
  4710 
       
  4711 		if (unlikely(!skb)) {
       
  4712 			adapter->alloc_rx_buff_failed++;
       
  4713 			break;
       
  4714 		}
       
  4715 
       
  4716 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  4717 		 * this will result in a 16 byte aligned IP header after
       
  4718 		 * the 14 byte MAC header is removed
       
  4719 		 */
       
  4720 		skb_reserve(skb, NET_IP_ALIGN);
       
  4721 
       
  4722 		buffer_info->skb = skb;
       
  4723 		buffer_info->length = adapter->rx_ps_bsize0;
       
  4724 		buffer_info->dma = pci_map_single(pdev, skb->data,
       
  4725 						  adapter->rx_ps_bsize0,
       
  4726 						  PCI_DMA_FROMDEVICE);
       
  4727 
       
  4728 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
       
  4729 
       
  4730 		if (unlikely(++i == rx_ring->count)) i = 0;
       
  4731 		buffer_info = &rx_ring->buffer_info[i];
       
  4732 		ps_page = &rx_ring->ps_page[i];
       
  4733 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4734 	}
       
  4735 
       
  4736 no_buffers:
       
  4737 	if (likely(rx_ring->next_to_use != i)) {
       
  4738 		rx_ring->next_to_use = i;
       
  4739 		if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
       
  4740 
       
  4741 		/* Force memory writes to complete before letting h/w
       
  4742 		 * know there are new descriptors to fetch.  (Only
       
  4743 		 * applicable for weak-ordered memory model archs,
       
  4744 		 * such as IA-64). */
       
  4745 		wmb();
       
  4746 		/* Hardware increments by 16 bytes, but packet split
       
  4747 		 * descriptors are 32 bytes...so we increment tail
       
  4748 		 * twice as much.
       
  4749 		 */
       
  4750 		writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
       
  4751 	}
       
  4752 }
       
  4753 
       
  4754 /**
       
  4755  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
       
  4756  * @adapter:
       
  4757  **/
       
  4758 
       
  4759 static void
       
  4760 e1000_smartspeed(struct e1000_adapter *adapter)
       
  4761 {
       
  4762 	u16 phy_status;
       
  4763 	u16 phy_ctrl;
       
  4764 
       
  4765 	if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
       
  4766 	   !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
       
  4767 		return;
       
  4768 
       
  4769 	if (adapter->smartspeed == 0) {
       
  4770 		/* If Master/Slave config fault is asserted twice,
       
  4771 		 * we assume back-to-back */
       
  4772 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
       
  4773 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4774 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
       
  4775 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4776 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4777 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
       
  4778 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
       
  4779 			e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
       
  4780 					    phy_ctrl);
       
  4781 			adapter->smartspeed++;
       
  4782 			if (!e1000_phy_setup_autoneg(&adapter->hw) &&
       
  4783 			   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
       
  4784 				   	       &phy_ctrl)) {
       
  4785 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4786 					     MII_CR_RESTART_AUTO_NEG);
       
  4787 				e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
       
  4788 						    phy_ctrl);
       
  4789 			}
       
  4790 		}
       
  4791 		return;
       
  4792 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
       
  4793 		/* If still no link, perhaps using 2/3 pair cable */
       
  4794 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4795 		phy_ctrl |= CR_1000T_MS_ENABLE;
       
  4796 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
       
  4797 		if (!e1000_phy_setup_autoneg(&adapter->hw) &&
       
  4798 		   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
       
  4799 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4800 				     MII_CR_RESTART_AUTO_NEG);
       
  4801 			e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
       
  4802 		}
       
  4803 	}
       
  4804 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
       
  4805 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
       
  4806 		adapter->smartspeed = 0;
       
  4807 }
       
  4808 
       
  4809 /**
       
  4810  * e1000_ioctl -
       
  4811  * @netdev:
       
  4812  * @ifreq:
       
  4813  * @cmd:
       
  4814  **/
       
  4815 
       
  4816 static int
       
  4817 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4818 {
       
  4819 	switch (cmd) {
       
  4820 	case SIOCGMIIPHY:
       
  4821 	case SIOCGMIIREG:
       
  4822 	case SIOCSMIIREG:
       
  4823 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  4824 	default:
       
  4825 		return -EOPNOTSUPP;
       
  4826 	}
       
  4827 }
       
  4828 
       
  4829 /**
       
  4830  * e1000_mii_ioctl -
       
  4831  * @netdev:
       
  4832  * @ifreq:
       
  4833  * @cmd:
       
  4834  **/
       
  4835 
       
  4836 static int
       
  4837 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4838 {
       
  4839 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4840 	struct mii_ioctl_data *data = if_mii(ifr);
       
  4841 	int retval;
       
  4842 	u16 mii_reg;
       
  4843 	u16 spddplx;
       
  4844 	unsigned long flags;
       
  4845 
       
  4846 	if (adapter->hw.media_type != e1000_media_type_copper)
       
  4847 		return -EOPNOTSUPP;
       
  4848 
       
  4849 	switch (cmd) {
       
  4850 	case SIOCGMIIPHY:
       
  4851 		data->phy_id = adapter->hw.phy_addr;
       
  4852 		break;
       
  4853 	case SIOCGMIIREG:
       
  4854 		if (!capable(CAP_NET_ADMIN))
       
  4855 			return -EPERM;
       
  4856 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4857 		if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
       
  4858 				   &data->val_out)) {
       
  4859 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4860 			return -EIO;
       
  4861 		}
       
  4862 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4863 		break;
       
  4864 	case SIOCSMIIREG:
       
  4865 		if (!capable(CAP_NET_ADMIN))
       
  4866 			return -EPERM;
       
  4867 		if (data->reg_num & ~(0x1F))
       
  4868 			return -EFAULT;
       
  4869 		mii_reg = data->val_in;
       
  4870 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4871 		if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
       
  4872 					mii_reg)) {
       
  4873 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4874 			return -EIO;
       
  4875 		}
       
  4876 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4877 		if (adapter->hw.media_type == e1000_media_type_copper) {
       
  4878 			switch (data->reg_num) {
       
  4879 			case PHY_CTRL:
       
  4880 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4881 					break;
       
  4882 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
       
  4883 					adapter->hw.autoneg = 1;
       
  4884 					adapter->hw.autoneg_advertised = 0x2F;
       
  4885 				} else {
       
  4886 					if (mii_reg & 0x40)
       
  4887 						spddplx = SPEED_1000;
       
  4888 					else if (mii_reg & 0x2000)
       
  4889 						spddplx = SPEED_100;
       
  4890 					else
       
  4891 						spddplx = SPEED_10;
       
  4892 					spddplx += (mii_reg & 0x100)
       
  4893 						   ? DUPLEX_FULL :
       
  4894 						   DUPLEX_HALF;
       
  4895 					retval = e1000_set_spd_dplx(adapter,
       
  4896 								    spddplx);
       
  4897 					if (retval)
       
  4898 						return retval;
       
  4899 				}
       
  4900 				if (netif_running(adapter->netdev))
       
  4901 					e1000_reinit_locked(adapter);
       
  4902 				else
       
  4903 					e1000_reset(adapter);
       
  4904 				break;
       
  4905 			case M88E1000_PHY_SPEC_CTRL:
       
  4906 			case M88E1000_EXT_PHY_SPEC_CTRL:
       
  4907 				if (e1000_phy_reset(&adapter->hw))
       
  4908 					return -EIO;
       
  4909 				break;
       
  4910 			}
       
  4911 		} else {
       
  4912 			switch (data->reg_num) {
       
  4913 			case PHY_CTRL:
       
  4914 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4915 					break;
       
  4916 				if (netif_running(adapter->netdev))
       
  4917 					e1000_reinit_locked(adapter);
       
  4918 				else
       
  4919 					e1000_reset(adapter);
       
  4920 				break;
       
  4921 			}
       
  4922 		}
       
  4923 		break;
       
  4924 	default:
       
  4925 		return -EOPNOTSUPP;
       
  4926 	}
       
  4927 	return E1000_SUCCESS;
       
  4928 }
       
  4929 
       
  4930 void
       
  4931 e1000_pci_set_mwi(struct e1000_hw *hw)
       
  4932 {
       
  4933 	struct e1000_adapter *adapter = hw->back;
       
  4934 	int ret_val = pci_set_mwi(adapter->pdev);
       
  4935 
       
  4936 	if (ret_val)
       
  4937 		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
       
  4938 }
       
  4939 
       
  4940 void
       
  4941 e1000_pci_clear_mwi(struct e1000_hw *hw)
       
  4942 {
       
  4943 	struct e1000_adapter *adapter = hw->back;
       
  4944 
       
  4945 	pci_clear_mwi(adapter->pdev);
       
  4946 }
       
  4947 
       
  4948 int
       
  4949 e1000_pcix_get_mmrbc(struct e1000_hw *hw)
       
  4950 {
       
  4951 	struct e1000_adapter *adapter = hw->back;
       
  4952 	return pcix_get_mmrbc(adapter->pdev);
       
  4953 }
       
  4954 
       
  4955 void
       
  4956 e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
       
  4957 {
       
  4958 	struct e1000_adapter *adapter = hw->back;
       
  4959 	pcix_set_mmrbc(adapter->pdev, mmrbc);
       
  4960 }
       
  4961 
       
  4962 s32
       
  4963 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
       
  4964 {
       
  4965     struct e1000_adapter *adapter = hw->back;
       
  4966     u16 cap_offset;
       
  4967 
       
  4968     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
       
  4969     if (!cap_offset)
       
  4970         return -E1000_ERR_CONFIG;
       
  4971 
       
  4972     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
       
  4973 
       
  4974     return E1000_SUCCESS;
       
  4975 }
       
  4976 
       
  4977 void
       
  4978 e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
       
  4979 {
       
  4980 	outl(value, port);
       
  4981 }
       
  4982 
       
  4983 static void
       
  4984 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
       
  4985 {
       
  4986 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4987 	u32 ctrl, rctl;
       
  4988 
       
  4989 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4990 		e1000_irq_disable(adapter);
       
  4991 	adapter->vlgrp = grp;
       
  4992 
       
  4993 	if (grp) {
       
  4994 		/* enable VLAN tag insert/strip */
       
  4995 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  4996 		ctrl |= E1000_CTRL_VME;
       
  4997 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  4998 
       
  4999 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  5000 			/* enable VLAN receive filtering */
       
  5001 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  5002 			rctl |= E1000_RCTL_VFE;
       
  5003 			rctl &= ~E1000_RCTL_CFIEN;
       
  5004 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  5005 			e1000_update_mng_vlan(adapter);
       
  5006 		}
       
  5007 	} else {
       
  5008 		/* disable VLAN tag insert/strip */
       
  5009 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  5010 		ctrl &= ~E1000_CTRL_VME;
       
  5011 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  5012 
       
  5013 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  5014 			/* disable VLAN filtering */
       
  5015 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  5016 			rctl &= ~E1000_RCTL_VFE;
       
  5017 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  5018 			if (adapter->mng_vlan_id !=
       
  5019 			    (u16)E1000_MNG_VLAN_NONE) {
       
  5020 				e1000_vlan_rx_kill_vid(netdev,
       
  5021 				                       adapter->mng_vlan_id);
       
  5022 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  5023 			}
       
  5024 		}
       
  5025 	}
       
  5026 
       
  5027 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  5028 		e1000_irq_enable(adapter);
       
  5029 }
       
  5030 
       
  5031 static void
       
  5032 e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
       
  5033 {
       
  5034 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5035 	u32 vfta, index;
       
  5036 
       
  5037 	if ((adapter->hw.mng_cookie.status &
       
  5038 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  5039 	    (vid == adapter->mng_vlan_id))
       
  5040 		return;
       
  5041 	/* add VID to filter table */
       
  5042 	index = (vid >> 5) & 0x7F;
       
  5043 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
       
  5044 	vfta |= (1 << (vid & 0x1F));
       
  5045 	e1000_write_vfta(&adapter->hw, index, vfta);
       
  5046 }
       
  5047 
       
  5048 static void
       
  5049 e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
       
  5050 {
       
  5051 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5052 	u32 vfta, index;
       
  5053 
       
  5054 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  5055 		e1000_irq_disable(adapter);
       
  5056 	vlan_group_set_device(adapter->vlgrp, vid, NULL);
       
  5057 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  5058 		e1000_irq_enable(adapter);
       
  5059 
       
  5060 	if ((adapter->hw.mng_cookie.status &
       
  5061 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  5062 	    (vid == adapter->mng_vlan_id)) {
       
  5063 		/* release control to f/w */
       
  5064 		e1000_release_hw_control(adapter);
       
  5065 		return;
       
  5066 	}
       
  5067 
       
  5068 	/* remove VID from filter table */
       
  5069 	index = (vid >> 5) & 0x7F;
       
  5070 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
       
  5071 	vfta &= ~(1 << (vid & 0x1F));
       
  5072 	e1000_write_vfta(&adapter->hw, index, vfta);
       
  5073 }
       
  5074 
       
  5075 static void
       
  5076 e1000_restore_vlan(struct e1000_adapter *adapter)
       
  5077 {
       
  5078 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
       
  5079 
       
  5080 	if (adapter->vlgrp) {
       
  5081 		u16 vid;
       
  5082 		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
       
  5083 			if (!vlan_group_get_device(adapter->vlgrp, vid))
       
  5084 				continue;
       
  5085 			e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  5086 		}
       
  5087 	}
       
  5088 }
       
  5089 
       
  5090 int
       
  5091 e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
       
  5092 {
       
  5093 	adapter->hw.autoneg = 0;
       
  5094 
       
  5095 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
  5096 	if ((adapter->hw.media_type == e1000_media_type_fiber) &&
       
  5097 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
       
  5098 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  5099 		return -EINVAL;
       
  5100 	}
       
  5101 
       
  5102 	switch (spddplx) {
       
  5103 	case SPEED_10 + DUPLEX_HALF:
       
  5104 		adapter->hw.forced_speed_duplex = e1000_10_half;
       
  5105 		break;
       
  5106 	case SPEED_10 + DUPLEX_FULL:
       
  5107 		adapter->hw.forced_speed_duplex = e1000_10_full;
       
  5108 		break;
       
  5109 	case SPEED_100 + DUPLEX_HALF:
       
  5110 		adapter->hw.forced_speed_duplex = e1000_100_half;
       
  5111 		break;
       
  5112 	case SPEED_100 + DUPLEX_FULL:
       
  5113 		adapter->hw.forced_speed_duplex = e1000_100_full;
       
  5114 		break;
       
  5115 	case SPEED_1000 + DUPLEX_FULL:
       
  5116 		adapter->hw.autoneg = 1;
       
  5117 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
       
  5118 		break;
       
  5119 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
  5120 	default:
       
  5121 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  5122 		return -EINVAL;
       
  5123 	}
       
  5124 	return 0;
       
  5125 }
       
  5126 
       
  5127 static int
       
  5128 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
       
  5129 {
       
  5130 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5131 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5132 	u32 ctrl, ctrl_ext, rctl, status;
       
  5133 	u32 wufc = adapter->wol;
       
  5134 #ifdef CONFIG_PM
       
  5135 	int retval = 0;
       
  5136 #endif
       
  5137 
       
  5138 	netif_device_detach(netdev);
       
  5139 
       
  5140 	if (netif_running(netdev)) {
       
  5141 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  5142 		e1000_down(adapter);
       
  5143 	}
       
  5144 
       
  5145 #ifdef CONFIG_PM
       
  5146 	retval = pci_save_state(pdev);
       
  5147 	if (retval)
       
  5148 		return retval;
       
  5149 #endif
       
  5150 
       
  5151 	status = E1000_READ_REG(&adapter->hw, STATUS);
       
  5152 	if (status & E1000_STATUS_LU)
       
  5153 		wufc &= ~E1000_WUFC_LNKC;
       
  5154 
       
  5155 	if (wufc) {
       
  5156 		e1000_setup_rctl(adapter);
       
  5157 		e1000_set_rx_mode(netdev);
       
  5158 
       
  5159 		/* turn on all-multi mode if wake on multicast is enabled */
       
  5160 		if (wufc & E1000_WUFC_MC) {
       
  5161 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  5162 			rctl |= E1000_RCTL_MPE;
       
  5163 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  5164 		}
       
  5165 
       
  5166 		if (adapter->hw.mac_type >= e1000_82540) {
       
  5167 			ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  5168 			/* advertise wake from D3Cold */
       
  5169 			#define E1000_CTRL_ADVD3WUC 0x00100000
       
  5170 			/* phy power management enable */
       
  5171 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  5172 			ctrl |= E1000_CTRL_ADVD3WUC |
       
  5173 				E1000_CTRL_EN_PHY_PWR_MGMT;
       
  5174 			E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  5175 		}
       
  5176 
       
  5177 		if (adapter->hw.media_type == e1000_media_type_fiber ||
       
  5178 		   adapter->hw.media_type == e1000_media_type_internal_serdes) {
       
  5179 			/* keep the laser running in D3 */
       
  5180 			ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
  5181 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
       
  5182 			E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
       
  5183 		}
       
  5184 
       
  5185 		/* Allow time for pending master requests to run */
       
  5186 		e1000_disable_pciex_master(&adapter->hw);
       
  5187 
       
  5188 		E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
       
  5189 		E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
       
  5190 		pci_enable_wake(pdev, PCI_D3hot, 1);
       
  5191 		pci_enable_wake(pdev, PCI_D3cold, 1);
       
  5192 	} else {
       
  5193 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
       
  5194 		E1000_WRITE_REG(&adapter->hw, WUFC, 0);
       
  5195 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5196 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5197 	}
       
  5198 
       
  5199 	e1000_release_manageability(adapter);
       
  5200 
       
  5201 	/* make sure adapter isn't asleep if manageability is enabled */
       
  5202 	if (adapter->en_mng_pt) {
       
  5203 		pci_enable_wake(pdev, PCI_D3hot, 1);
       
  5204 		pci_enable_wake(pdev, PCI_D3cold, 1);
       
  5205 	}
       
  5206 
       
  5207 	if (adapter->hw.phy_type == e1000_phy_igp_3)
       
  5208 		e1000_phy_powerdown_workaround(&adapter->hw);
       
  5209 
       
  5210 	if (netif_running(netdev))
       
  5211 		e1000_free_irq(adapter);
       
  5212 
       
  5213 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  5214 	 * would have already happened in close and is redundant. */
       
  5215 	e1000_release_hw_control(adapter);
       
  5216 
       
  5217 	pci_disable_device(pdev);
       
  5218 
       
  5219 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
       
  5220 
       
  5221 	return 0;
       
  5222 }
       
  5223 
       
  5224 #ifdef CONFIG_PM
       
  5225 static int
       
  5226 e1000_resume(struct pci_dev *pdev)
       
  5227 {
       
  5228 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5229 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5230 	u32 err;
       
  5231 
       
  5232 	pci_set_power_state(pdev, PCI_D0);
       
  5233 	pci_restore_state(pdev);
       
  5234 	if ((err = pci_enable_device(pdev))) {
       
  5235 		printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
       
  5236 		return err;
       
  5237 	}
       
  5238 	pci_set_master(pdev);
       
  5239 
       
  5240 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5241 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5242 
       
  5243 	if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
       
  5244 		return err;
       
  5245 
       
  5246 	e1000_power_up_phy(adapter);
       
  5247 	e1000_reset(adapter);
       
  5248 	E1000_WRITE_REG(&adapter->hw, WUS, ~0);
       
  5249 
       
  5250 	e1000_init_manageability(adapter);
       
  5251 
       
  5252 	if (netif_running(netdev))
       
  5253 		e1000_up(adapter);
       
  5254 
       
  5255 	netif_device_attach(netdev);
       
  5256 
       
  5257 	/* If the controller is 82573 and f/w is AMT, do not set
       
  5258 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  5259 	 * let the f/w know that the h/w is now under the control
       
  5260 	 * of the driver. */
       
  5261 	if (adapter->hw.mac_type != e1000_82573 ||
       
  5262 	    !e1000_check_mng_mode(&adapter->hw))
       
  5263 		e1000_get_hw_control(adapter);
       
  5264 
       
  5265 	return 0;
       
  5266 }
       
  5267 #endif
       
  5268 
       
  5269 static void e1000_shutdown(struct pci_dev *pdev)
       
  5270 {
       
  5271 	e1000_suspend(pdev, PMSG_SUSPEND);
       
  5272 }
       
  5273 
       
  5274 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  5275 /*
       
  5276  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  5277  * without having to re-enable interrupts. It's not called while
       
  5278  * the interrupt routine is executing.
       
  5279  */
       
  5280 static void
       
  5281 e1000_netpoll(struct net_device *netdev)
       
  5282 {
       
  5283 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5284 
       
  5285 	disable_irq(adapter->pdev->irq);
       
  5286 	e1000_intr(adapter->pdev->irq, netdev);
       
  5287 	e1000_clean_tx_irq(adapter, adapter->tx_ring);
       
  5288 #ifndef CONFIG_E1000_NAPI
       
  5289 	adapter->clean_rx(adapter, adapter->rx_ring);
       
  5290 #endif
       
  5291 	enable_irq(adapter->pdev->irq);
       
  5292 }
       
  5293 #endif
       
  5294 
       
  5295 /**
       
  5296  * e1000_io_error_detected - called when PCI error is detected
       
  5297  * @pdev: Pointer to PCI device
       
  5298  * @state: The current pci conneection state
       
  5299  *
       
  5300  * This function is called after a PCI bus error affecting
       
  5301  * this device has been detected.
       
  5302  */
       
  5303 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
       
  5304 {
       
  5305 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5306 	struct e1000_adapter *adapter = netdev->priv;
       
  5307 
       
  5308 	netif_device_detach(netdev);
       
  5309 
       
  5310 	if (netif_running(netdev))
       
  5311 		e1000_down(adapter);
       
  5312 	pci_disable_device(pdev);
       
  5313 
       
  5314 	/* Request a slot slot reset. */
       
  5315 	return PCI_ERS_RESULT_NEED_RESET;
       
  5316 }
       
  5317 
       
  5318 /**
       
  5319  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  5320  * @pdev: Pointer to PCI device
       
  5321  *
       
  5322  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  5323  * resembles the first-half of the e1000_resume routine.
       
  5324  */
       
  5325 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  5326 {
       
  5327 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5328 	struct e1000_adapter *adapter = netdev->priv;
       
  5329 
       
  5330 	if (pci_enable_device(pdev)) {
       
  5331 		printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
       
  5332 		return PCI_ERS_RESULT_DISCONNECT;
       
  5333 	}
       
  5334 	pci_set_master(pdev);
       
  5335 
       
  5336 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5337 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5338 
       
  5339 	e1000_reset(adapter);
       
  5340 	E1000_WRITE_REG(&adapter->hw, WUS, ~0);
       
  5341 
       
  5342 	return PCI_ERS_RESULT_RECOVERED;
       
  5343 }
       
  5344 
       
  5345 /**
       
  5346  * e1000_io_resume - called when traffic can start flowing again.
       
  5347  * @pdev: Pointer to PCI device
       
  5348  *
       
  5349  * This callback is called when the error recovery driver tells us that
       
  5350  * its OK to resume normal operation. Implementation resembles the
       
  5351  * second-half of the e1000_resume routine.
       
  5352  */
       
  5353 static void e1000_io_resume(struct pci_dev *pdev)
       
  5354 {
       
  5355 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5356 	struct e1000_adapter *adapter = netdev->priv;
       
  5357 
       
  5358 	e1000_init_manageability(adapter);
       
  5359 
       
  5360 	if (netif_running(netdev)) {
       
  5361 		if (e1000_up(adapter)) {
       
  5362 			printk("e1000: can't bring device back up after reset\n");
       
  5363 			return;
       
  5364 		}
       
  5365 	}
       
  5366 
       
  5367 	netif_device_attach(netdev);
       
  5368 
       
  5369 	/* If the controller is 82573 and f/w is AMT, do not set
       
  5370 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  5371 	 * let the f/w know that the h/w is now under the control
       
  5372 	 * of the driver. */
       
  5373 	if (adapter->hw.mac_type != e1000_82573 ||
       
  5374 	    !e1000_check_mng_mode(&adapter->hw))
       
  5375 		e1000_get_hw_control(adapter);
       
  5376 
       
  5377 }
       
  5378 
       
  5379 /* e1000_main.c */