devices/e1000/e1000_hw-2.6.26-orig.c
changeset 1360 afcea72f0040
equal deleted inserted replaced
1359:a3d54cccba48 1360:afcea72f0040
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* e1000_hw.c
       
    30  * Shared functions for accessing and configuring the MAC
       
    31  */
       
    32 
       
    33 
       
    34 #include "e1000_hw.h"
       
    35 
       
    36 static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask);
       
    37 static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask);
       
    38 static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data);
       
    39 static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
       
    40 static s32 e1000_get_software_semaphore(struct e1000_hw *hw);
       
    41 static void e1000_release_software_semaphore(struct e1000_hw *hw);
       
    42 
       
    43 static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw);
       
    44 static s32 e1000_check_downshift(struct e1000_hw *hw);
       
    45 static s32 e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity);
       
    46 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
       
    47 static void e1000_clear_vfta(struct e1000_hw *hw);
       
    48 static s32 e1000_commit_shadow_ram(struct e1000_hw *hw);
       
    49 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
       
    50 						  bool link_up);
       
    51 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
       
    52 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
       
    53 static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank);
       
    54 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
       
    55 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, u16 *max_length);
       
    56 static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
       
    57 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
       
    58 static s32 e1000_get_software_flag(struct e1000_hw *hw);
       
    59 static s32 e1000_ich8_cycle_init(struct e1000_hw *hw);
       
    60 static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout);
       
    61 static s32 e1000_id_led_init(struct e1000_hw *hw);
       
    62 static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, u32 cnf_base_addr, u32 cnf_size);
       
    63 static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw);
       
    64 static void e1000_init_rx_addrs(struct e1000_hw *hw);
       
    65 static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
       
    66 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
       
    67 static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
       
    68 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
       
    69 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, u16 offset, u8 *sum);
       
    70 static s32 e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr);
       
    71 static s32 e1000_mng_write_commit(struct e1000_hw *hw);
       
    72 static s32 e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
       
    73 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
       
    74 static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
       
    75 static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
       
    76 static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
       
    77 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
       
    78 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
       
    79 static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data);
       
    80 static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte);
       
    81 static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte);
       
    82 static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data);
       
    83 static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size, u16 *data);
       
    84 static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size, u16 data);
       
    85 static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
       
    86 static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
       
    87 static void e1000_release_software_flag(struct e1000_hw *hw);
       
    88 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
       
    89 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
       
    90 static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop);
       
    91 static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
       
    92 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
       
    93 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
       
    94 static s32 e1000_set_phy_type(struct e1000_hw *hw);
       
    95 static void e1000_phy_init_script(struct e1000_hw *hw);
       
    96 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
       
    97 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
       
    98 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
       
    99 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
       
   100 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
       
   101 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
       
   102 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
       
   103 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data,
       
   104                                      u16 count);
       
   105 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
       
   106 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
       
   107 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
       
   108                                       u16 words, u16 *data);
       
   109 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw,
       
   110                                             u16 offset, u16 words,
       
   111                                             u16 *data);
       
   112 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
       
   113 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
       
   114 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
       
   115 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data,
       
   116                                     u16 count);
       
   117 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
       
   118                                       u16 phy_data);
       
   119 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr,
       
   120                                      u16 *phy_data);
       
   121 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
       
   122 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
       
   123 static void e1000_release_eeprom(struct e1000_hw *hw);
       
   124 static void e1000_standby_eeprom(struct e1000_hw *hw);
       
   125 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
       
   126 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
       
   127 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
       
   128 static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer);
       
   129 static u8 e1000_calculate_mng_checksum(char *buffer, u32 length);
       
   130 static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
       
   131                                                u16 duplex);
       
   132 static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
       
   133 
       
   134 /* IGP cable length table */
       
   135 static const
       
   136 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
       
   137     { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
       
   138       5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
       
   139       25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
       
   140       40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
       
   141       60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
       
   142       90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
       
   143       100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
       
   144       110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
       
   145 
       
   146 static const
       
   147 u16 e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
       
   148     { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
       
   149       0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
       
   150       6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
       
   151       21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
       
   152       40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
       
   153       60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
       
   154       83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
       
   155       104, 109, 114, 118, 121, 124};
       
   156 
       
   157 /******************************************************************************
       
   158  * Set the phy type member in the hw struct.
       
   159  *
       
   160  * hw - Struct containing variables accessed by shared code
       
   161  *****************************************************************************/
       
   162 static s32
       
   163 e1000_set_phy_type(struct e1000_hw *hw)
       
   164 {
       
   165     DEBUGFUNC("e1000_set_phy_type");
       
   166 
       
   167     if (hw->mac_type == e1000_undefined)
       
   168         return -E1000_ERR_PHY_TYPE;
       
   169 
       
   170     switch (hw->phy_id) {
       
   171     case M88E1000_E_PHY_ID:
       
   172     case M88E1000_I_PHY_ID:
       
   173     case M88E1011_I_PHY_ID:
       
   174     case M88E1111_I_PHY_ID:
       
   175         hw->phy_type = e1000_phy_m88;
       
   176         break;
       
   177     case IGP01E1000_I_PHY_ID:
       
   178         if (hw->mac_type == e1000_82541 ||
       
   179             hw->mac_type == e1000_82541_rev_2 ||
       
   180             hw->mac_type == e1000_82547 ||
       
   181             hw->mac_type == e1000_82547_rev_2) {
       
   182             hw->phy_type = e1000_phy_igp;
       
   183             break;
       
   184         }
       
   185     case IGP03E1000_E_PHY_ID:
       
   186         hw->phy_type = e1000_phy_igp_3;
       
   187         break;
       
   188     case IFE_E_PHY_ID:
       
   189     case IFE_PLUS_E_PHY_ID:
       
   190     case IFE_C_E_PHY_ID:
       
   191         hw->phy_type = e1000_phy_ife;
       
   192         break;
       
   193     case GG82563_E_PHY_ID:
       
   194         if (hw->mac_type == e1000_80003es2lan) {
       
   195             hw->phy_type = e1000_phy_gg82563;
       
   196             break;
       
   197         }
       
   198         /* Fall Through */
       
   199     default:
       
   200         /* Should never have loaded on this device */
       
   201         hw->phy_type = e1000_phy_undefined;
       
   202         return -E1000_ERR_PHY_TYPE;
       
   203     }
       
   204 
       
   205     return E1000_SUCCESS;
       
   206 }
       
   207 
       
   208 /******************************************************************************
       
   209  * IGP phy init script - initializes the GbE PHY
       
   210  *
       
   211  * hw - Struct containing variables accessed by shared code
       
   212  *****************************************************************************/
       
   213 static void
       
   214 e1000_phy_init_script(struct e1000_hw *hw)
       
   215 {
       
   216     u32 ret_val;
       
   217     u16 phy_saved_data;
       
   218 
       
   219     DEBUGFUNC("e1000_phy_init_script");
       
   220 
       
   221     if (hw->phy_init_script) {
       
   222         msleep(20);
       
   223 
       
   224         /* Save off the current value of register 0x2F5B to be restored at
       
   225          * the end of this routine. */
       
   226         ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
       
   227 
       
   228         /* Disabled the PHY transmitter */
       
   229         e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
       
   230 
       
   231         msleep(20);
       
   232 
       
   233         e1000_write_phy_reg(hw,0x0000,0x0140);
       
   234 
       
   235         msleep(5);
       
   236 
       
   237         switch (hw->mac_type) {
       
   238         case e1000_82541:
       
   239         case e1000_82547:
       
   240             e1000_write_phy_reg(hw, 0x1F95, 0x0001);
       
   241 
       
   242             e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
       
   243 
       
   244             e1000_write_phy_reg(hw, 0x1F79, 0x0018);
       
   245 
       
   246             e1000_write_phy_reg(hw, 0x1F30, 0x1600);
       
   247 
       
   248             e1000_write_phy_reg(hw, 0x1F31, 0x0014);
       
   249 
       
   250             e1000_write_phy_reg(hw, 0x1F32, 0x161C);
       
   251 
       
   252             e1000_write_phy_reg(hw, 0x1F94, 0x0003);
       
   253 
       
   254             e1000_write_phy_reg(hw, 0x1F96, 0x003F);
       
   255 
       
   256             e1000_write_phy_reg(hw, 0x2010, 0x0008);
       
   257             break;
       
   258 
       
   259         case e1000_82541_rev_2:
       
   260         case e1000_82547_rev_2:
       
   261             e1000_write_phy_reg(hw, 0x1F73, 0x0099);
       
   262             break;
       
   263         default:
       
   264             break;
       
   265         }
       
   266 
       
   267         e1000_write_phy_reg(hw, 0x0000, 0x3300);
       
   268 
       
   269         msleep(20);
       
   270 
       
   271         /* Now enable the transmitter */
       
   272         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
       
   273 
       
   274         if (hw->mac_type == e1000_82547) {
       
   275             u16 fused, fine, coarse;
       
   276 
       
   277             /* Move to analog registers page */
       
   278             e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
       
   279 
       
   280             if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
       
   281                 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
       
   282 
       
   283                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
       
   284                 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
       
   285 
       
   286                 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
       
   287                     coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
       
   288                     fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
       
   289                 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
       
   290                     fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
       
   291 
       
   292                 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
       
   293                         (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
       
   294                         (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
       
   295 
       
   296                 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
       
   297                 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
       
   298                                     IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
       
   299             }
       
   300         }
       
   301     }
       
   302 }
       
   303 
       
   304 /******************************************************************************
       
   305  * Set the mac type member in the hw struct.
       
   306  *
       
   307  * hw - Struct containing variables accessed by shared code
       
   308  *****************************************************************************/
       
   309 s32
       
   310 e1000_set_mac_type(struct e1000_hw *hw)
       
   311 {
       
   312 	DEBUGFUNC("e1000_set_mac_type");
       
   313 
       
   314 	switch (hw->device_id) {
       
   315 	case E1000_DEV_ID_82542:
       
   316 		switch (hw->revision_id) {
       
   317 		case E1000_82542_2_0_REV_ID:
       
   318 			hw->mac_type = e1000_82542_rev2_0;
       
   319 			break;
       
   320 		case E1000_82542_2_1_REV_ID:
       
   321 			hw->mac_type = e1000_82542_rev2_1;
       
   322 			break;
       
   323 		default:
       
   324 			/* Invalid 82542 revision ID */
       
   325 			return -E1000_ERR_MAC_TYPE;
       
   326 		}
       
   327 		break;
       
   328 	case E1000_DEV_ID_82543GC_FIBER:
       
   329 	case E1000_DEV_ID_82543GC_COPPER:
       
   330 		hw->mac_type = e1000_82543;
       
   331 		break;
       
   332 	case E1000_DEV_ID_82544EI_COPPER:
       
   333 	case E1000_DEV_ID_82544EI_FIBER:
       
   334 	case E1000_DEV_ID_82544GC_COPPER:
       
   335 	case E1000_DEV_ID_82544GC_LOM:
       
   336 		hw->mac_type = e1000_82544;
       
   337 		break;
       
   338 	case E1000_DEV_ID_82540EM:
       
   339 	case E1000_DEV_ID_82540EM_LOM:
       
   340 	case E1000_DEV_ID_82540EP:
       
   341 	case E1000_DEV_ID_82540EP_LOM:
       
   342 	case E1000_DEV_ID_82540EP_LP:
       
   343 		hw->mac_type = e1000_82540;
       
   344 		break;
       
   345 	case E1000_DEV_ID_82545EM_COPPER:
       
   346 	case E1000_DEV_ID_82545EM_FIBER:
       
   347 		hw->mac_type = e1000_82545;
       
   348 		break;
       
   349 	case E1000_DEV_ID_82545GM_COPPER:
       
   350 	case E1000_DEV_ID_82545GM_FIBER:
       
   351 	case E1000_DEV_ID_82545GM_SERDES:
       
   352 		hw->mac_type = e1000_82545_rev_3;
       
   353 		break;
       
   354 	case E1000_DEV_ID_82546EB_COPPER:
       
   355 	case E1000_DEV_ID_82546EB_FIBER:
       
   356 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
       
   357 		hw->mac_type = e1000_82546;
       
   358 		break;
       
   359 	case E1000_DEV_ID_82546GB_COPPER:
       
   360 	case E1000_DEV_ID_82546GB_FIBER:
       
   361 	case E1000_DEV_ID_82546GB_SERDES:
       
   362 	case E1000_DEV_ID_82546GB_PCIE:
       
   363 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
       
   364 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
   365 		hw->mac_type = e1000_82546_rev_3;
       
   366 		break;
       
   367 	case E1000_DEV_ID_82541EI:
       
   368 	case E1000_DEV_ID_82541EI_MOBILE:
       
   369 	case E1000_DEV_ID_82541ER_LOM:
       
   370 		hw->mac_type = e1000_82541;
       
   371 		break;
       
   372 	case E1000_DEV_ID_82541ER:
       
   373 	case E1000_DEV_ID_82541GI:
       
   374 	case E1000_DEV_ID_82541GI_LF:
       
   375 	case E1000_DEV_ID_82541GI_MOBILE:
       
   376 		hw->mac_type = e1000_82541_rev_2;
       
   377 		break;
       
   378 	case E1000_DEV_ID_82547EI:
       
   379 	case E1000_DEV_ID_82547EI_MOBILE:
       
   380 		hw->mac_type = e1000_82547;
       
   381 		break;
       
   382 	case E1000_DEV_ID_82547GI:
       
   383 		hw->mac_type = e1000_82547_rev_2;
       
   384 		break;
       
   385 	case E1000_DEV_ID_82571EB_COPPER:
       
   386 	case E1000_DEV_ID_82571EB_FIBER:
       
   387 	case E1000_DEV_ID_82571EB_SERDES:
       
   388 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
       
   389 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
       
   390 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
       
   391 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
       
   392 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
   393 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
       
   394 		hw->mac_type = e1000_82571;
       
   395 		break;
       
   396 	case E1000_DEV_ID_82572EI_COPPER:
       
   397 	case E1000_DEV_ID_82572EI_FIBER:
       
   398 	case E1000_DEV_ID_82572EI_SERDES:
       
   399 	case E1000_DEV_ID_82572EI:
       
   400 		hw->mac_type = e1000_82572;
       
   401 		break;
       
   402 	case E1000_DEV_ID_82573E:
       
   403 	case E1000_DEV_ID_82573E_IAMT:
       
   404 	case E1000_DEV_ID_82573L:
       
   405 		hw->mac_type = e1000_82573;
       
   406 		break;
       
   407 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
       
   408 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
       
   409 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
       
   410 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
       
   411 		hw->mac_type = e1000_80003es2lan;
       
   412 		break;
       
   413 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
       
   414 	case E1000_DEV_ID_ICH8_IGP_AMT:
       
   415 	case E1000_DEV_ID_ICH8_IGP_C:
       
   416 	case E1000_DEV_ID_ICH8_IFE:
       
   417 	case E1000_DEV_ID_ICH8_IFE_GT:
       
   418 	case E1000_DEV_ID_ICH8_IFE_G:
       
   419 	case E1000_DEV_ID_ICH8_IGP_M:
       
   420 		hw->mac_type = e1000_ich8lan;
       
   421 		break;
       
   422 	default:
       
   423 		/* Should never have loaded on this device */
       
   424 		return -E1000_ERR_MAC_TYPE;
       
   425 	}
       
   426 
       
   427 	switch (hw->mac_type) {
       
   428 	case e1000_ich8lan:
       
   429 		hw->swfwhw_semaphore_present = true;
       
   430 		hw->asf_firmware_present = true;
       
   431 		break;
       
   432 	case e1000_80003es2lan:
       
   433 		hw->swfw_sync_present = true;
       
   434 		/* fall through */
       
   435 	case e1000_82571:
       
   436 	case e1000_82572:
       
   437 	case e1000_82573:
       
   438 		hw->eeprom_semaphore_present = true;
       
   439 		/* fall through */
       
   440 	case e1000_82541:
       
   441 	case e1000_82547:
       
   442 	case e1000_82541_rev_2:
       
   443 	case e1000_82547_rev_2:
       
   444 		hw->asf_firmware_present = true;
       
   445 		break;
       
   446 	default:
       
   447 		break;
       
   448 	}
       
   449 
       
   450 	/* The 82543 chip does not count tx_carrier_errors properly in
       
   451 	 * FD mode
       
   452 	 */
       
   453 	if (hw->mac_type == e1000_82543)
       
   454 		hw->bad_tx_carr_stats_fd = true;
       
   455 
       
   456 	/* capable of receiving management packets to the host */
       
   457 	if (hw->mac_type >= e1000_82571)
       
   458 		hw->has_manc2h = true;
       
   459 
       
   460 	/* In rare occasions, ESB2 systems would end up started without
       
   461 	 * the RX unit being turned on.
       
   462 	 */
       
   463 	if (hw->mac_type == e1000_80003es2lan)
       
   464 		hw->rx_needs_kicking = true;
       
   465 
       
   466 	if (hw->mac_type > e1000_82544)
       
   467 		hw->has_smbus = true;
       
   468 
       
   469 	return E1000_SUCCESS;
       
   470 }
       
   471 
       
   472 /*****************************************************************************
       
   473  * Set media type and TBI compatibility.
       
   474  *
       
   475  * hw - Struct containing variables accessed by shared code
       
   476  * **************************************************************************/
       
   477 void
       
   478 e1000_set_media_type(struct e1000_hw *hw)
       
   479 {
       
   480     u32 status;
       
   481 
       
   482     DEBUGFUNC("e1000_set_media_type");
       
   483 
       
   484     if (hw->mac_type != e1000_82543) {
       
   485         /* tbi_compatibility is only valid on 82543 */
       
   486         hw->tbi_compatibility_en = false;
       
   487     }
       
   488 
       
   489     switch (hw->device_id) {
       
   490     case E1000_DEV_ID_82545GM_SERDES:
       
   491     case E1000_DEV_ID_82546GB_SERDES:
       
   492     case E1000_DEV_ID_82571EB_SERDES:
       
   493     case E1000_DEV_ID_82571EB_SERDES_DUAL:
       
   494     case E1000_DEV_ID_82571EB_SERDES_QUAD:
       
   495     case E1000_DEV_ID_82572EI_SERDES:
       
   496     case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
       
   497         hw->media_type = e1000_media_type_internal_serdes;
       
   498         break;
       
   499     default:
       
   500         switch (hw->mac_type) {
       
   501         case e1000_82542_rev2_0:
       
   502         case e1000_82542_rev2_1:
       
   503             hw->media_type = e1000_media_type_fiber;
       
   504             break;
       
   505         case e1000_ich8lan:
       
   506         case e1000_82573:
       
   507             /* The STATUS_TBIMODE bit is reserved or reused for the this
       
   508              * device.
       
   509              */
       
   510             hw->media_type = e1000_media_type_copper;
       
   511             break;
       
   512         default:
       
   513             status = E1000_READ_REG(hw, STATUS);
       
   514             if (status & E1000_STATUS_TBIMODE) {
       
   515                 hw->media_type = e1000_media_type_fiber;
       
   516                 /* tbi_compatibility not valid on fiber */
       
   517                 hw->tbi_compatibility_en = false;
       
   518             } else {
       
   519                 hw->media_type = e1000_media_type_copper;
       
   520             }
       
   521             break;
       
   522         }
       
   523     }
       
   524 }
       
   525 
       
   526 /******************************************************************************
       
   527  * Reset the transmit and receive units; mask and clear all interrupts.
       
   528  *
       
   529  * hw - Struct containing variables accessed by shared code
       
   530  *****************************************************************************/
       
   531 s32
       
   532 e1000_reset_hw(struct e1000_hw *hw)
       
   533 {
       
   534     u32 ctrl;
       
   535     u32 ctrl_ext;
       
   536     u32 icr;
       
   537     u32 manc;
       
   538     u32 led_ctrl;
       
   539     u32 timeout;
       
   540     u32 extcnf_ctrl;
       
   541     s32 ret_val;
       
   542 
       
   543     DEBUGFUNC("e1000_reset_hw");
       
   544 
       
   545     /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
       
   546     if (hw->mac_type == e1000_82542_rev2_0) {
       
   547         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
       
   548         e1000_pci_clear_mwi(hw);
       
   549     }
       
   550 
       
   551     if (hw->bus_type == e1000_bus_type_pci_express) {
       
   552         /* Prevent the PCI-E bus from sticking if there is no TLP connection
       
   553          * on the last TLP read/write transaction when MAC is reset.
       
   554          */
       
   555         if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
       
   556             DEBUGOUT("PCI-E Master disable polling has failed.\n");
       
   557         }
       
   558     }
       
   559 
       
   560     /* Clear interrupt mask to stop board from generating interrupts */
       
   561     DEBUGOUT("Masking off all interrupts\n");
       
   562     E1000_WRITE_REG(hw, IMC, 0xffffffff);
       
   563 
       
   564     /* Disable the Transmit and Receive units.  Then delay to allow
       
   565      * any pending transactions to complete before we hit the MAC with
       
   566      * the global reset.
       
   567      */
       
   568     E1000_WRITE_REG(hw, RCTL, 0);
       
   569     E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
       
   570     E1000_WRITE_FLUSH(hw);
       
   571 
       
   572     /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
       
   573     hw->tbi_compatibility_on = false;
       
   574 
       
   575     /* Delay to allow any outstanding PCI transactions to complete before
       
   576      * resetting the device
       
   577      */
       
   578     msleep(10);
       
   579 
       
   580     ctrl = E1000_READ_REG(hw, CTRL);
       
   581 
       
   582     /* Must reset the PHY before resetting the MAC */
       
   583     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
       
   584         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
       
   585         msleep(5);
       
   586     }
       
   587 
       
   588     /* Must acquire the MDIO ownership before MAC reset.
       
   589      * Ownership defaults to firmware after a reset. */
       
   590     if (hw->mac_type == e1000_82573) {
       
   591         timeout = 10;
       
   592 
       
   593         extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
       
   594         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   595 
       
   596         do {
       
   597             E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
       
   598             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
       
   599 
       
   600             if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
       
   601                 break;
       
   602             else
       
   603                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   604 
       
   605             msleep(2);
       
   606             timeout--;
       
   607         } while (timeout);
       
   608     }
       
   609 
       
   610     /* Workaround for ICH8 bit corruption issue in FIFO memory */
       
   611     if (hw->mac_type == e1000_ich8lan) {
       
   612         /* Set Tx and Rx buffer allocation to 8k apiece. */
       
   613         E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
       
   614         /* Set Packet Buffer Size to 16k. */
       
   615         E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
       
   616     }
       
   617 
       
   618     /* Issue a global reset to the MAC.  This will reset the chip's
       
   619      * transmit, receive, DMA, and link units.  It will not effect
       
   620      * the current PCI configuration.  The global reset bit is self-
       
   621      * clearing, and should clear within a microsecond.
       
   622      */
       
   623     DEBUGOUT("Issuing a global reset to MAC\n");
       
   624 
       
   625     switch (hw->mac_type) {
       
   626         case e1000_82544:
       
   627         case e1000_82540:
       
   628         case e1000_82545:
       
   629         case e1000_82546:
       
   630         case e1000_82541:
       
   631         case e1000_82541_rev_2:
       
   632             /* These controllers can't ack the 64-bit write when issuing the
       
   633              * reset, so use IO-mapping as a workaround to issue the reset */
       
   634             E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
       
   635             break;
       
   636         case e1000_82545_rev_3:
       
   637         case e1000_82546_rev_3:
       
   638             /* Reset is performed on a shadow of the control register */
       
   639             E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
       
   640             break;
       
   641         case e1000_ich8lan:
       
   642             if (!hw->phy_reset_disable &&
       
   643                 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
       
   644                 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
       
   645                  * at the same time to make sure the interface between
       
   646                  * MAC and the external PHY is reset.
       
   647                  */
       
   648                 ctrl |= E1000_CTRL_PHY_RST;
       
   649             }
       
   650 
       
   651             e1000_get_software_flag(hw);
       
   652             E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
       
   653             msleep(5);
       
   654             break;
       
   655         default:
       
   656             E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
       
   657             break;
       
   658     }
       
   659 
       
   660     /* After MAC reset, force reload of EEPROM to restore power-on settings to
       
   661      * device.  Later controllers reload the EEPROM automatically, so just wait
       
   662      * for reload to complete.
       
   663      */
       
   664     switch (hw->mac_type) {
       
   665         case e1000_82542_rev2_0:
       
   666         case e1000_82542_rev2_1:
       
   667         case e1000_82543:
       
   668         case e1000_82544:
       
   669             /* Wait for reset to complete */
       
   670             udelay(10);
       
   671             ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
   672             ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
   673             E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
   674             E1000_WRITE_FLUSH(hw);
       
   675             /* Wait for EEPROM reload */
       
   676             msleep(2);
       
   677             break;
       
   678         case e1000_82541:
       
   679         case e1000_82541_rev_2:
       
   680         case e1000_82547:
       
   681         case e1000_82547_rev_2:
       
   682             /* Wait for EEPROM reload */
       
   683             msleep(20);
       
   684             break;
       
   685         case e1000_82573:
       
   686             if (!e1000_is_onboard_nvm_eeprom(hw)) {
       
   687                 udelay(10);
       
   688                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
   689                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
   690                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
   691                 E1000_WRITE_FLUSH(hw);
       
   692             }
       
   693             /* fall through */
       
   694         default:
       
   695             /* Auto read done will delay 5ms or poll based on mac type */
       
   696             ret_val = e1000_get_auto_rd_done(hw);
       
   697             if (ret_val)
       
   698                 return ret_val;
       
   699             break;
       
   700     }
       
   701 
       
   702     /* Disable HW ARPs on ASF enabled adapters */
       
   703     if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
       
   704         manc = E1000_READ_REG(hw, MANC);
       
   705         manc &= ~(E1000_MANC_ARP_EN);
       
   706         E1000_WRITE_REG(hw, MANC, manc);
       
   707     }
       
   708 
       
   709     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
       
   710         e1000_phy_init_script(hw);
       
   711 
       
   712         /* Configure activity LED after PHY reset */
       
   713         led_ctrl = E1000_READ_REG(hw, LEDCTL);
       
   714         led_ctrl &= IGP_ACTIVITY_LED_MASK;
       
   715         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
       
   716         E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
       
   717     }
       
   718 
       
   719     /* Clear interrupt mask to stop board from generating interrupts */
       
   720     DEBUGOUT("Masking off all interrupts\n");
       
   721     E1000_WRITE_REG(hw, IMC, 0xffffffff);
       
   722 
       
   723     /* Clear any pending interrupt events. */
       
   724     icr = E1000_READ_REG(hw, ICR);
       
   725 
       
   726     /* If MWI was previously enabled, reenable it. */
       
   727     if (hw->mac_type == e1000_82542_rev2_0) {
       
   728         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
   729             e1000_pci_set_mwi(hw);
       
   730     }
       
   731 
       
   732     if (hw->mac_type == e1000_ich8lan) {
       
   733         u32 kab = E1000_READ_REG(hw, KABGTXD);
       
   734         kab |= E1000_KABGTXD_BGSQLBIAS;
       
   735         E1000_WRITE_REG(hw, KABGTXD, kab);
       
   736     }
       
   737 
       
   738     return E1000_SUCCESS;
       
   739 }
       
   740 
       
   741 /******************************************************************************
       
   742  *
       
   743  * Initialize a number of hardware-dependent bits
       
   744  *
       
   745  * hw: Struct containing variables accessed by shared code
       
   746  *
       
   747  * This function contains hardware limitation workarounds for PCI-E adapters
       
   748  *
       
   749  *****************************************************************************/
       
   750 static void
       
   751 e1000_initialize_hardware_bits(struct e1000_hw *hw)
       
   752 {
       
   753     if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
       
   754         /* Settings common to all PCI-express silicon */
       
   755         u32 reg_ctrl, reg_ctrl_ext;
       
   756         u32 reg_tarc0, reg_tarc1;
       
   757         u32 reg_tctl;
       
   758         u32 reg_txdctl, reg_txdctl1;
       
   759 
       
   760         /* link autonegotiation/sync workarounds */
       
   761         reg_tarc0 = E1000_READ_REG(hw, TARC0);
       
   762         reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
       
   763 
       
   764         /* Enable not-done TX descriptor counting */
       
   765         reg_txdctl = E1000_READ_REG(hw, TXDCTL);
       
   766         reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
       
   767         E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
       
   768         reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
       
   769         reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
       
   770         E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
       
   771 
       
   772         switch (hw->mac_type) {
       
   773             case e1000_82571:
       
   774             case e1000_82572:
       
   775                 /* Clear PHY TX compatible mode bits */
       
   776                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
       
   777                 reg_tarc1 &= ~((1 << 30)|(1 << 29));
       
   778 
       
   779                 /* link autonegotiation/sync workarounds */
       
   780                 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
       
   781 
       
   782                 /* TX ring control fixes */
       
   783                 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
       
   784 
       
   785                 /* Multiple read bit is reversed polarity */
       
   786                 reg_tctl = E1000_READ_REG(hw, TCTL);
       
   787                 if (reg_tctl & E1000_TCTL_MULR)
       
   788                     reg_tarc1 &= ~(1 << 28);
       
   789                 else
       
   790                     reg_tarc1 |= (1 << 28);
       
   791 
       
   792                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
       
   793                 break;
       
   794             case e1000_82573:
       
   795                 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
   796                 reg_ctrl_ext &= ~(1 << 23);
       
   797                 reg_ctrl_ext |= (1 << 22);
       
   798 
       
   799                 /* TX byte count fix */
       
   800                 reg_ctrl = E1000_READ_REG(hw, CTRL);
       
   801                 reg_ctrl &= ~(1 << 29);
       
   802 
       
   803                 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
       
   804                 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
       
   805                 break;
       
   806             case e1000_80003es2lan:
       
   807                 /* improve small packet performace for fiber/serdes */
       
   808                 if ((hw->media_type == e1000_media_type_fiber) ||
       
   809                     (hw->media_type == e1000_media_type_internal_serdes)) {
       
   810                     reg_tarc0 &= ~(1 << 20);
       
   811                 }
       
   812 
       
   813                 /* Multiple read bit is reversed polarity */
       
   814                 reg_tctl = E1000_READ_REG(hw, TCTL);
       
   815                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
       
   816                 if (reg_tctl & E1000_TCTL_MULR)
       
   817                     reg_tarc1 &= ~(1 << 28);
       
   818                 else
       
   819                     reg_tarc1 |= (1 << 28);
       
   820 
       
   821                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
       
   822                 break;
       
   823             case e1000_ich8lan:
       
   824                 /* Reduce concurrent DMA requests to 3 from 4 */
       
   825                 if ((hw->revision_id < 3) ||
       
   826                     ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
       
   827                      (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
       
   828                     reg_tarc0 |= ((1 << 29)|(1 << 28));
       
   829 
       
   830                 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
   831                 reg_ctrl_ext |= (1 << 22);
       
   832                 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
       
   833 
       
   834                 /* workaround TX hang with TSO=on */
       
   835                 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
       
   836 
       
   837                 /* Multiple read bit is reversed polarity */
       
   838                 reg_tctl = E1000_READ_REG(hw, TCTL);
       
   839                 reg_tarc1 = E1000_READ_REG(hw, TARC1);
       
   840                 if (reg_tctl & E1000_TCTL_MULR)
       
   841                     reg_tarc1 &= ~(1 << 28);
       
   842                 else
       
   843                     reg_tarc1 |= (1 << 28);
       
   844 
       
   845                 /* workaround TX hang with TSO=on */
       
   846                 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
       
   847 
       
   848                 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
       
   849                 break;
       
   850             default:
       
   851                 break;
       
   852         }
       
   853 
       
   854         E1000_WRITE_REG(hw, TARC0, reg_tarc0);
       
   855     }
       
   856 }
       
   857 
       
   858 /******************************************************************************
       
   859  * Performs basic configuration of the adapter.
       
   860  *
       
   861  * hw - Struct containing variables accessed by shared code
       
   862  *
       
   863  * Assumes that the controller has previously been reset and is in a
       
   864  * post-reset uninitialized state. Initializes the receive address registers,
       
   865  * multicast table, and VLAN filter table. Calls routines to setup link
       
   866  * configuration and flow control settings. Clears all on-chip counters. Leaves
       
   867  * the transmit and receive units disabled and uninitialized.
       
   868  *****************************************************************************/
       
   869 s32
       
   870 e1000_init_hw(struct e1000_hw *hw)
       
   871 {
       
   872     u32 ctrl;
       
   873     u32 i;
       
   874     s32 ret_val;
       
   875     u32 mta_size;
       
   876     u32 reg_data;
       
   877     u32 ctrl_ext;
       
   878 
       
   879     DEBUGFUNC("e1000_init_hw");
       
   880 
       
   881     /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
       
   882     if ((hw->mac_type == e1000_ich8lan) &&
       
   883         ((hw->revision_id < 3) ||
       
   884          ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
       
   885           (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
       
   886             reg_data = E1000_READ_REG(hw, STATUS);
       
   887             reg_data &= ~0x80000000;
       
   888             E1000_WRITE_REG(hw, STATUS, reg_data);
       
   889     }
       
   890 
       
   891     /* Initialize Identification LED */
       
   892     ret_val = e1000_id_led_init(hw);
       
   893     if (ret_val) {
       
   894         DEBUGOUT("Error Initializing Identification LED\n");
       
   895         return ret_val;
       
   896     }
       
   897 
       
   898     /* Set the media type and TBI compatibility */
       
   899     e1000_set_media_type(hw);
       
   900 
       
   901     /* Must be called after e1000_set_media_type because media_type is used */
       
   902     e1000_initialize_hardware_bits(hw);
       
   903 
       
   904     /* Disabling VLAN filtering. */
       
   905     DEBUGOUT("Initializing the IEEE VLAN\n");
       
   906     /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
       
   907     if (hw->mac_type != e1000_ich8lan) {
       
   908         if (hw->mac_type < e1000_82545_rev_3)
       
   909             E1000_WRITE_REG(hw, VET, 0);
       
   910         e1000_clear_vfta(hw);
       
   911     }
       
   912 
       
   913     /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
       
   914     if (hw->mac_type == e1000_82542_rev2_0) {
       
   915         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
       
   916         e1000_pci_clear_mwi(hw);
       
   917         E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
       
   918         E1000_WRITE_FLUSH(hw);
       
   919         msleep(5);
       
   920     }
       
   921 
       
   922     /* Setup the receive address. This involves initializing all of the Receive
       
   923      * Address Registers (RARs 0 - 15).
       
   924      */
       
   925     e1000_init_rx_addrs(hw);
       
   926 
       
   927     /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
       
   928     if (hw->mac_type == e1000_82542_rev2_0) {
       
   929         E1000_WRITE_REG(hw, RCTL, 0);
       
   930         E1000_WRITE_FLUSH(hw);
       
   931         msleep(1);
       
   932         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
   933             e1000_pci_set_mwi(hw);
       
   934     }
       
   935 
       
   936     /* Zero out the Multicast HASH table */
       
   937     DEBUGOUT("Zeroing the MTA\n");
       
   938     mta_size = E1000_MC_TBL_SIZE;
       
   939     if (hw->mac_type == e1000_ich8lan)
       
   940         mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
       
   941     for (i = 0; i < mta_size; i++) {
       
   942         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
       
   943         /* use write flush to prevent Memory Write Block (MWB) from
       
   944          * occuring when accessing our register space */
       
   945         E1000_WRITE_FLUSH(hw);
       
   946     }
       
   947 
       
   948     /* Set the PCI priority bit correctly in the CTRL register.  This
       
   949      * determines if the adapter gives priority to receives, or if it
       
   950      * gives equal priority to transmits and receives.  Valid only on
       
   951      * 82542 and 82543 silicon.
       
   952      */
       
   953     if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
       
   954         ctrl = E1000_READ_REG(hw, CTRL);
       
   955         E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
       
   956     }
       
   957 
       
   958     switch (hw->mac_type) {
       
   959     case e1000_82545_rev_3:
       
   960     case e1000_82546_rev_3:
       
   961         break;
       
   962     default:
       
   963         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
       
   964 	if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048)
       
   965 		e1000_pcix_set_mmrbc(hw, 2048);
       
   966 	break;
       
   967     }
       
   968 
       
   969     /* More time needed for PHY to initialize */
       
   970     if (hw->mac_type == e1000_ich8lan)
       
   971         msleep(15);
       
   972 
       
   973     /* Call a subroutine to configure the link and setup flow control. */
       
   974     ret_val = e1000_setup_link(hw);
       
   975 
       
   976     /* Set the transmit descriptor write-back policy */
       
   977     if (hw->mac_type > e1000_82544) {
       
   978         ctrl = E1000_READ_REG(hw, TXDCTL);
       
   979         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
       
   980         E1000_WRITE_REG(hw, TXDCTL, ctrl);
       
   981     }
       
   982 
       
   983     if (hw->mac_type == e1000_82573) {
       
   984         e1000_enable_tx_pkt_filtering(hw);
       
   985     }
       
   986 
       
   987     switch (hw->mac_type) {
       
   988     default:
       
   989         break;
       
   990     case e1000_80003es2lan:
       
   991         /* Enable retransmit on late collisions */
       
   992         reg_data = E1000_READ_REG(hw, TCTL);
       
   993         reg_data |= E1000_TCTL_RTLC;
       
   994         E1000_WRITE_REG(hw, TCTL, reg_data);
       
   995 
       
   996         /* Configure Gigabit Carry Extend Padding */
       
   997         reg_data = E1000_READ_REG(hw, TCTL_EXT);
       
   998         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
       
   999         reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
       
  1000         E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
       
  1001 
       
  1002         /* Configure Transmit Inter-Packet Gap */
       
  1003         reg_data = E1000_READ_REG(hw, TIPG);
       
  1004         reg_data &= ~E1000_TIPG_IPGT_MASK;
       
  1005         reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
       
  1006         E1000_WRITE_REG(hw, TIPG, reg_data);
       
  1007 
       
  1008         reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
       
  1009         reg_data &= ~0x00100000;
       
  1010         E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
       
  1011         /* Fall through */
       
  1012     case e1000_82571:
       
  1013     case e1000_82572:
       
  1014     case e1000_ich8lan:
       
  1015         ctrl = E1000_READ_REG(hw, TXDCTL1);
       
  1016         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
       
  1017         E1000_WRITE_REG(hw, TXDCTL1, ctrl);
       
  1018         break;
       
  1019     }
       
  1020 
       
  1021 
       
  1022     if (hw->mac_type == e1000_82573) {
       
  1023         u32 gcr = E1000_READ_REG(hw, GCR);
       
  1024         gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
       
  1025         E1000_WRITE_REG(hw, GCR, gcr);
       
  1026     }
       
  1027 
       
  1028     /* Clear all of the statistics registers (clear on read).  It is
       
  1029      * important that we do this after we have tried to establish link
       
  1030      * because the symbol error count will increment wildly if there
       
  1031      * is no link.
       
  1032      */
       
  1033     e1000_clear_hw_cntrs(hw);
       
  1034 
       
  1035     /* ICH8 No-snoop bits are opposite polarity.
       
  1036      * Set to snoop by default after reset. */
       
  1037     if (hw->mac_type == e1000_ich8lan)
       
  1038         e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
       
  1039 
       
  1040     if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
       
  1041         hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
       
  1042         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
  1043         /* Relaxed ordering must be disabled to avoid a parity
       
  1044          * error crash in a PCI slot. */
       
  1045         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
       
  1046         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
  1047     }
       
  1048 
       
  1049     return ret_val;
       
  1050 }
       
  1051 
       
  1052 /******************************************************************************
       
  1053  * Adjust SERDES output amplitude based on EEPROM setting.
       
  1054  *
       
  1055  * hw - Struct containing variables accessed by shared code.
       
  1056  *****************************************************************************/
       
  1057 static s32
       
  1058 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
       
  1059 {
       
  1060     u16 eeprom_data;
       
  1061     s32  ret_val;
       
  1062 
       
  1063     DEBUGFUNC("e1000_adjust_serdes_amplitude");
       
  1064 
       
  1065     if (hw->media_type != e1000_media_type_internal_serdes)
       
  1066         return E1000_SUCCESS;
       
  1067 
       
  1068     switch (hw->mac_type) {
       
  1069     case e1000_82545_rev_3:
       
  1070     case e1000_82546_rev_3:
       
  1071         break;
       
  1072     default:
       
  1073         return E1000_SUCCESS;
       
  1074     }
       
  1075 
       
  1076     ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
       
  1077     if (ret_val) {
       
  1078         return ret_val;
       
  1079     }
       
  1080 
       
  1081     if (eeprom_data != EEPROM_RESERVED_WORD) {
       
  1082         /* Adjust SERDES output amplitude only. */
       
  1083         eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
       
  1084         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
       
  1085         if (ret_val)
       
  1086             return ret_val;
       
  1087     }
       
  1088 
       
  1089     return E1000_SUCCESS;
       
  1090 }
       
  1091 
       
  1092 /******************************************************************************
       
  1093  * Configures flow control and link settings.
       
  1094  *
       
  1095  * hw - Struct containing variables accessed by shared code
       
  1096  *
       
  1097  * Determines which flow control settings to use. Calls the apropriate media-
       
  1098  * specific link configuration function. Configures the flow control settings.
       
  1099  * Assuming the adapter has a valid link partner, a valid link should be
       
  1100  * established. Assumes the hardware has previously been reset and the
       
  1101  * transmitter and receiver are not enabled.
       
  1102  *****************************************************************************/
       
  1103 s32
       
  1104 e1000_setup_link(struct e1000_hw *hw)
       
  1105 {
       
  1106     u32 ctrl_ext;
       
  1107     s32 ret_val;
       
  1108     u16 eeprom_data;
       
  1109 
       
  1110     DEBUGFUNC("e1000_setup_link");
       
  1111 
       
  1112     /* In the case of the phy reset being blocked, we already have a link.
       
  1113      * We do not have to set it up again. */
       
  1114     if (e1000_check_phy_reset_block(hw))
       
  1115         return E1000_SUCCESS;
       
  1116 
       
  1117     /* Read and store word 0x0F of the EEPROM. This word contains bits
       
  1118      * that determine the hardware's default PAUSE (flow control) mode,
       
  1119      * a bit that determines whether the HW defaults to enabling or
       
  1120      * disabling auto-negotiation, and the direction of the
       
  1121      * SW defined pins. If there is no SW over-ride of the flow
       
  1122      * control setting, then the variable hw->fc will
       
  1123      * be initialized based on a value in the EEPROM.
       
  1124      */
       
  1125     if (hw->fc == E1000_FC_DEFAULT) {
       
  1126         switch (hw->mac_type) {
       
  1127         case e1000_ich8lan:
       
  1128         case e1000_82573:
       
  1129             hw->fc = E1000_FC_FULL;
       
  1130             break;
       
  1131         default:
       
  1132             ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
       
  1133                                         1, &eeprom_data);
       
  1134             if (ret_val) {
       
  1135                 DEBUGOUT("EEPROM Read Error\n");
       
  1136                 return -E1000_ERR_EEPROM;
       
  1137             }
       
  1138             if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
       
  1139                 hw->fc = E1000_FC_NONE;
       
  1140             else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
       
  1141                     EEPROM_WORD0F_ASM_DIR)
       
  1142                 hw->fc = E1000_FC_TX_PAUSE;
       
  1143             else
       
  1144                 hw->fc = E1000_FC_FULL;
       
  1145             break;
       
  1146         }
       
  1147     }
       
  1148 
       
  1149     /* We want to save off the original Flow Control configuration just
       
  1150      * in case we get disconnected and then reconnected into a different
       
  1151      * hub or switch with different Flow Control capabilities.
       
  1152      */
       
  1153     if (hw->mac_type == e1000_82542_rev2_0)
       
  1154         hw->fc &= (~E1000_FC_TX_PAUSE);
       
  1155 
       
  1156     if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
       
  1157         hw->fc &= (~E1000_FC_RX_PAUSE);
       
  1158 
       
  1159     hw->original_fc = hw->fc;
       
  1160 
       
  1161     DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
       
  1162 
       
  1163     /* Take the 4 bits from EEPROM word 0x0F that determine the initial
       
  1164      * polarity value for the SW controlled pins, and setup the
       
  1165      * Extended Device Control reg with that info.
       
  1166      * This is needed because one of the SW controlled pins is used for
       
  1167      * signal detection.  So this should be done before e1000_setup_pcs_link()
       
  1168      * or e1000_phy_setup() is called.
       
  1169      */
       
  1170     if (hw->mac_type == e1000_82543) {
       
  1171         ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
       
  1172                                     1, &eeprom_data);
       
  1173         if (ret_val) {
       
  1174             DEBUGOUT("EEPROM Read Error\n");
       
  1175             return -E1000_ERR_EEPROM;
       
  1176         }
       
  1177         ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
       
  1178                     SWDPIO__EXT_SHIFT);
       
  1179         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
  1180     }
       
  1181 
       
  1182     /* Call the necessary subroutine to configure the link. */
       
  1183     ret_val = (hw->media_type == e1000_media_type_copper) ?
       
  1184               e1000_setup_copper_link(hw) :
       
  1185               e1000_setup_fiber_serdes_link(hw);
       
  1186 
       
  1187     /* Initialize the flow control address, type, and PAUSE timer
       
  1188      * registers to their default values.  This is done even if flow
       
  1189      * control is disabled, because it does not hurt anything to
       
  1190      * initialize these registers.
       
  1191      */
       
  1192     DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
       
  1193 
       
  1194     /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
       
  1195     if (hw->mac_type != e1000_ich8lan) {
       
  1196         E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
       
  1197         E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
       
  1198         E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
       
  1199     }
       
  1200 
       
  1201     E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
       
  1202 
       
  1203     /* Set the flow control receive threshold registers.  Normally,
       
  1204      * these registers will be set to a default threshold that may be
       
  1205      * adjusted later by the driver's runtime code.  However, if the
       
  1206      * ability to transmit pause frames in not enabled, then these
       
  1207      * registers will be set to 0.
       
  1208      */
       
  1209     if (!(hw->fc & E1000_FC_TX_PAUSE)) {
       
  1210         E1000_WRITE_REG(hw, FCRTL, 0);
       
  1211         E1000_WRITE_REG(hw, FCRTH, 0);
       
  1212     } else {
       
  1213         /* We need to set up the Receive Threshold high and low water marks
       
  1214          * as well as (optionally) enabling the transmission of XON frames.
       
  1215          */
       
  1216         if (hw->fc_send_xon) {
       
  1217             E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
       
  1218             E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
       
  1219         } else {
       
  1220             E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
       
  1221             E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
       
  1222         }
       
  1223     }
       
  1224     return ret_val;
       
  1225 }
       
  1226 
       
  1227 /******************************************************************************
       
  1228  * Sets up link for a fiber based or serdes based adapter
       
  1229  *
       
  1230  * hw - Struct containing variables accessed by shared code
       
  1231  *
       
  1232  * Manipulates Physical Coding Sublayer functions in order to configure
       
  1233  * link. Assumes the hardware has been previously reset and the transmitter
       
  1234  * and receiver are not enabled.
       
  1235  *****************************************************************************/
       
  1236 static s32
       
  1237 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
       
  1238 {
       
  1239     u32 ctrl;
       
  1240     u32 status;
       
  1241     u32 txcw = 0;
       
  1242     u32 i;
       
  1243     u32 signal = 0;
       
  1244     s32 ret_val;
       
  1245 
       
  1246     DEBUGFUNC("e1000_setup_fiber_serdes_link");
       
  1247 
       
  1248     /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
       
  1249      * until explicitly turned off or a power cycle is performed.  A read to
       
  1250      * the register does not indicate its status.  Therefore, we ensure
       
  1251      * loopback mode is disabled during initialization.
       
  1252      */
       
  1253     if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
       
  1254         E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
       
  1255 
       
  1256     /* On adapters with a MAC newer than 82544, SWDP 1 will be
       
  1257      * set when the optics detect a signal. On older adapters, it will be
       
  1258      * cleared when there is a signal.  This applies to fiber media only.
       
  1259      * If we're on serdes media, adjust the output amplitude to value
       
  1260      * set in the EEPROM.
       
  1261      */
       
  1262     ctrl = E1000_READ_REG(hw, CTRL);
       
  1263     if (hw->media_type == e1000_media_type_fiber)
       
  1264         signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
       
  1265 
       
  1266     ret_val = e1000_adjust_serdes_amplitude(hw);
       
  1267     if (ret_val)
       
  1268         return ret_val;
       
  1269 
       
  1270     /* Take the link out of reset */
       
  1271     ctrl &= ~(E1000_CTRL_LRST);
       
  1272 
       
  1273     /* Adjust VCO speed to improve BER performance */
       
  1274     ret_val = e1000_set_vco_speed(hw);
       
  1275     if (ret_val)
       
  1276         return ret_val;
       
  1277 
       
  1278     e1000_config_collision_dist(hw);
       
  1279 
       
  1280     /* Check for a software override of the flow control settings, and setup
       
  1281      * the device accordingly.  If auto-negotiation is enabled, then software
       
  1282      * will have to set the "PAUSE" bits to the correct value in the Tranmsit
       
  1283      * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
       
  1284      * auto-negotiation is disabled, then software will have to manually
       
  1285      * configure the two flow control enable bits in the CTRL register.
       
  1286      *
       
  1287      * The possible values of the "fc" parameter are:
       
  1288      *      0:  Flow control is completely disabled
       
  1289      *      1:  Rx flow control is enabled (we can receive pause frames, but
       
  1290      *          not send pause frames).
       
  1291      *      2:  Tx flow control is enabled (we can send pause frames but we do
       
  1292      *          not support receiving pause frames).
       
  1293      *      3:  Both Rx and TX flow control (symmetric) are enabled.
       
  1294      */
       
  1295     switch (hw->fc) {
       
  1296     case E1000_FC_NONE:
       
  1297         /* Flow control is completely disabled by a software over-ride. */
       
  1298         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
       
  1299         break;
       
  1300     case E1000_FC_RX_PAUSE:
       
  1301         /* RX Flow control is enabled and TX Flow control is disabled by a
       
  1302          * software over-ride. Since there really isn't a way to advertise
       
  1303          * that we are capable of RX Pause ONLY, we will advertise that we
       
  1304          * support both symmetric and asymmetric RX PAUSE. Later, we will
       
  1305          *  disable the adapter's ability to send PAUSE frames.
       
  1306          */
       
  1307         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
  1308         break;
       
  1309     case E1000_FC_TX_PAUSE:
       
  1310         /* TX Flow control is enabled, and RX Flow control is disabled, by a
       
  1311          * software over-ride.
       
  1312          */
       
  1313         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
       
  1314         break;
       
  1315     case E1000_FC_FULL:
       
  1316         /* Flow control (both RX and TX) is enabled by a software over-ride. */
       
  1317         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
  1318         break;
       
  1319     default:
       
  1320         DEBUGOUT("Flow control param set incorrectly\n");
       
  1321         return -E1000_ERR_CONFIG;
       
  1322         break;
       
  1323     }
       
  1324 
       
  1325     /* Since auto-negotiation is enabled, take the link out of reset (the link
       
  1326      * will be in reset, because we previously reset the chip). This will
       
  1327      * restart auto-negotiation.  If auto-neogtiation is successful then the
       
  1328      * link-up status bit will be set and the flow control enable bits (RFCE
       
  1329      * and TFCE) will be set according to their negotiated value.
       
  1330      */
       
  1331     DEBUGOUT("Auto-negotiation enabled\n");
       
  1332 
       
  1333     E1000_WRITE_REG(hw, TXCW, txcw);
       
  1334     E1000_WRITE_REG(hw, CTRL, ctrl);
       
  1335     E1000_WRITE_FLUSH(hw);
       
  1336 
       
  1337     hw->txcw = txcw;
       
  1338     msleep(1);
       
  1339 
       
  1340     /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
       
  1341      * indication in the Device Status Register.  Time-out if a link isn't
       
  1342      * seen in 500 milliseconds seconds (Auto-negotiation should complete in
       
  1343      * less than 500 milliseconds even if the other end is doing it in SW).
       
  1344      * For internal serdes, we just assume a signal is present, then poll.
       
  1345      */
       
  1346     if (hw->media_type == e1000_media_type_internal_serdes ||
       
  1347        (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
       
  1348         DEBUGOUT("Looking for Link\n");
       
  1349         for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
       
  1350             msleep(10);
       
  1351             status = E1000_READ_REG(hw, STATUS);
       
  1352             if (status & E1000_STATUS_LU) break;
       
  1353         }
       
  1354         if (i == (LINK_UP_TIMEOUT / 10)) {
       
  1355             DEBUGOUT("Never got a valid link from auto-neg!!!\n");
       
  1356             hw->autoneg_failed = 1;
       
  1357             /* AutoNeg failed to achieve a link, so we'll call
       
  1358              * e1000_check_for_link. This routine will force the link up if
       
  1359              * we detect a signal. This will allow us to communicate with
       
  1360              * non-autonegotiating link partners.
       
  1361              */
       
  1362             ret_val = e1000_check_for_link(hw);
       
  1363             if (ret_val) {
       
  1364                 DEBUGOUT("Error while checking for link\n");
       
  1365                 return ret_val;
       
  1366             }
       
  1367             hw->autoneg_failed = 0;
       
  1368         } else {
       
  1369             hw->autoneg_failed = 0;
       
  1370             DEBUGOUT("Valid Link Found\n");
       
  1371         }
       
  1372     } else {
       
  1373         DEBUGOUT("No Signal Detected\n");
       
  1374     }
       
  1375     return E1000_SUCCESS;
       
  1376 }
       
  1377 
       
  1378 /******************************************************************************
       
  1379 * Make sure we have a valid PHY and change PHY mode before link setup.
       
  1380 *
       
  1381 * hw - Struct containing variables accessed by shared code
       
  1382 ******************************************************************************/
       
  1383 static s32
       
  1384 e1000_copper_link_preconfig(struct e1000_hw *hw)
       
  1385 {
       
  1386     u32 ctrl;
       
  1387     s32 ret_val;
       
  1388     u16 phy_data;
       
  1389 
       
  1390     DEBUGFUNC("e1000_copper_link_preconfig");
       
  1391 
       
  1392     ctrl = E1000_READ_REG(hw, CTRL);
       
  1393     /* With 82543, we need to force speed and duplex on the MAC equal to what
       
  1394      * the PHY speed and duplex configuration is. In addition, we need to
       
  1395      * perform a hardware reset on the PHY to take it out of reset.
       
  1396      */
       
  1397     if (hw->mac_type > e1000_82543) {
       
  1398         ctrl |= E1000_CTRL_SLU;
       
  1399         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1400         E1000_WRITE_REG(hw, CTRL, ctrl);
       
  1401     } else {
       
  1402         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
       
  1403         E1000_WRITE_REG(hw, CTRL, ctrl);
       
  1404         ret_val = e1000_phy_hw_reset(hw);
       
  1405         if (ret_val)
       
  1406             return ret_val;
       
  1407     }
       
  1408 
       
  1409     /* Make sure we have a valid PHY */
       
  1410     ret_val = e1000_detect_gig_phy(hw);
       
  1411     if (ret_val) {
       
  1412         DEBUGOUT("Error, did not detect valid phy.\n");
       
  1413         return ret_val;
       
  1414     }
       
  1415     DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
       
  1416 
       
  1417     /* Set PHY to class A mode (if necessary) */
       
  1418     ret_val = e1000_set_phy_mode(hw);
       
  1419     if (ret_val)
       
  1420         return ret_val;
       
  1421 
       
  1422     if ((hw->mac_type == e1000_82545_rev_3) ||
       
  1423        (hw->mac_type == e1000_82546_rev_3)) {
       
  1424         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1425         phy_data |= 0x00000008;
       
  1426         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1427     }
       
  1428 
       
  1429     if (hw->mac_type <= e1000_82543 ||
       
  1430         hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
       
  1431         hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
       
  1432         hw->phy_reset_disable = false;
       
  1433 
       
  1434    return E1000_SUCCESS;
       
  1435 }
       
  1436 
       
  1437 
       
  1438 /********************************************************************
       
  1439 * Copper link setup for e1000_phy_igp series.
       
  1440 *
       
  1441 * hw - Struct containing variables accessed by shared code
       
  1442 *********************************************************************/
       
  1443 static s32
       
  1444 e1000_copper_link_igp_setup(struct e1000_hw *hw)
       
  1445 {
       
  1446     u32 led_ctrl;
       
  1447     s32 ret_val;
       
  1448     u16 phy_data;
       
  1449 
       
  1450     DEBUGFUNC("e1000_copper_link_igp_setup");
       
  1451 
       
  1452     if (hw->phy_reset_disable)
       
  1453         return E1000_SUCCESS;
       
  1454 
       
  1455     ret_val = e1000_phy_reset(hw);
       
  1456     if (ret_val) {
       
  1457         DEBUGOUT("Error Resetting the PHY\n");
       
  1458         return ret_val;
       
  1459     }
       
  1460 
       
  1461     /* Wait 15ms for MAC to configure PHY from eeprom settings */
       
  1462     msleep(15);
       
  1463     if (hw->mac_type != e1000_ich8lan) {
       
  1464     /* Configure activity LED after PHY reset */
       
  1465     led_ctrl = E1000_READ_REG(hw, LEDCTL);
       
  1466     led_ctrl &= IGP_ACTIVITY_LED_MASK;
       
  1467     led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
       
  1468     E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
       
  1469     }
       
  1470 
       
  1471     /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
       
  1472     if (hw->phy_type == e1000_phy_igp) {
       
  1473         /* disable lplu d3 during driver init */
       
  1474         ret_val = e1000_set_d3_lplu_state(hw, false);
       
  1475         if (ret_val) {
       
  1476             DEBUGOUT("Error Disabling LPLU D3\n");
       
  1477             return ret_val;
       
  1478         }
       
  1479     }
       
  1480 
       
  1481     /* disable lplu d0 during driver init */
       
  1482     ret_val = e1000_set_d0_lplu_state(hw, false);
       
  1483     if (ret_val) {
       
  1484         DEBUGOUT("Error Disabling LPLU D0\n");
       
  1485         return ret_val;
       
  1486     }
       
  1487     /* Configure mdi-mdix settings */
       
  1488     ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
       
  1489     if (ret_val)
       
  1490         return ret_val;
       
  1491 
       
  1492     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
       
  1493         hw->dsp_config_state = e1000_dsp_config_disabled;
       
  1494         /* Force MDI for earlier revs of the IGP PHY */
       
  1495         phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
       
  1496         hw->mdix = 1;
       
  1497 
       
  1498     } else {
       
  1499         hw->dsp_config_state = e1000_dsp_config_enabled;
       
  1500         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
  1501 
       
  1502         switch (hw->mdix) {
       
  1503         case 1:
       
  1504             phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  1505             break;
       
  1506         case 2:
       
  1507             phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  1508             break;
       
  1509         case 0:
       
  1510         default:
       
  1511             phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
       
  1512             break;
       
  1513         }
       
  1514     }
       
  1515     ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
       
  1516     if (ret_val)
       
  1517         return ret_val;
       
  1518 
       
  1519     /* set auto-master slave resolution settings */
       
  1520     if (hw->autoneg) {
       
  1521         e1000_ms_type phy_ms_setting = hw->master_slave;
       
  1522 
       
  1523         if (hw->ffe_config_state == e1000_ffe_config_active)
       
  1524             hw->ffe_config_state = e1000_ffe_config_enabled;
       
  1525 
       
  1526         if (hw->dsp_config_state == e1000_dsp_config_activated)
       
  1527             hw->dsp_config_state = e1000_dsp_config_enabled;
       
  1528 
       
  1529         /* when autonegotiation advertisment is only 1000Mbps then we
       
  1530           * should disable SmartSpeed and enable Auto MasterSlave
       
  1531           * resolution as hardware default. */
       
  1532         if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
       
  1533             /* Disable SmartSpeed */
       
  1534             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1535                                          &phy_data);
       
  1536             if (ret_val)
       
  1537                 return ret_val;
       
  1538             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1539             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1540                                           phy_data);
       
  1541             if (ret_val)
       
  1542                 return ret_val;
       
  1543             /* Set auto Master/Slave resolution process */
       
  1544             ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
       
  1545             if (ret_val)
       
  1546                 return ret_val;
       
  1547             phy_data &= ~CR_1000T_MS_ENABLE;
       
  1548             ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
       
  1549             if (ret_val)
       
  1550                 return ret_val;
       
  1551         }
       
  1552 
       
  1553         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
       
  1554         if (ret_val)
       
  1555             return ret_val;
       
  1556 
       
  1557         /* load defaults for future use */
       
  1558         hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
       
  1559                                         ((phy_data & CR_1000T_MS_VALUE) ?
       
  1560                                          e1000_ms_force_master :
       
  1561                                          e1000_ms_force_slave) :
       
  1562                                          e1000_ms_auto;
       
  1563 
       
  1564         switch (phy_ms_setting) {
       
  1565         case e1000_ms_force_master:
       
  1566             phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
       
  1567             break;
       
  1568         case e1000_ms_force_slave:
       
  1569             phy_data |= CR_1000T_MS_ENABLE;
       
  1570             phy_data &= ~(CR_1000T_MS_VALUE);
       
  1571             break;
       
  1572         case e1000_ms_auto:
       
  1573             phy_data &= ~CR_1000T_MS_ENABLE;
       
  1574             default:
       
  1575             break;
       
  1576         }
       
  1577         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
       
  1578         if (ret_val)
       
  1579             return ret_val;
       
  1580     }
       
  1581 
       
  1582     return E1000_SUCCESS;
       
  1583 }
       
  1584 
       
  1585 /********************************************************************
       
  1586 * Copper link setup for e1000_phy_gg82563 series.
       
  1587 *
       
  1588 * hw - Struct containing variables accessed by shared code
       
  1589 *********************************************************************/
       
  1590 static s32
       
  1591 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
       
  1592 {
       
  1593     s32 ret_val;
       
  1594     u16 phy_data;
       
  1595     u32 reg_data;
       
  1596 
       
  1597     DEBUGFUNC("e1000_copper_link_ggp_setup");
       
  1598 
       
  1599     if (!hw->phy_reset_disable) {
       
  1600 
       
  1601         /* Enable CRS on TX for half-duplex operation. */
       
  1602         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
       
  1603                                      &phy_data);
       
  1604         if (ret_val)
       
  1605             return ret_val;
       
  1606 
       
  1607         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
       
  1608         /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
       
  1609         phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
       
  1610 
       
  1611         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
       
  1612                                       phy_data);
       
  1613         if (ret_val)
       
  1614             return ret_val;
       
  1615 
       
  1616         /* Options:
       
  1617          *   MDI/MDI-X = 0 (default)
       
  1618          *   0 - Auto for all speeds
       
  1619          *   1 - MDI mode
       
  1620          *   2 - MDI-X mode
       
  1621          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
  1622          */
       
  1623         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
       
  1624         if (ret_val)
       
  1625             return ret_val;
       
  1626 
       
  1627         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
       
  1628 
       
  1629         switch (hw->mdix) {
       
  1630         case 1:
       
  1631             phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
       
  1632             break;
       
  1633         case 2:
       
  1634             phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
       
  1635             break;
       
  1636         case 0:
       
  1637         default:
       
  1638             phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
       
  1639             break;
       
  1640         }
       
  1641 
       
  1642         /* Options:
       
  1643          *   disable_polarity_correction = 0 (default)
       
  1644          *       Automatic Correction for Reversed Cable Polarity
       
  1645          *   0 - Disabled
       
  1646          *   1 - Enabled
       
  1647          */
       
  1648         phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
       
  1649         if (hw->disable_polarity_correction == 1)
       
  1650             phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
       
  1651         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
       
  1652 
       
  1653         if (ret_val)
       
  1654             return ret_val;
       
  1655 
       
  1656         /* SW Reset the PHY so all changes take effect */
       
  1657         ret_val = e1000_phy_reset(hw);
       
  1658         if (ret_val) {
       
  1659             DEBUGOUT("Error Resetting the PHY\n");
       
  1660             return ret_val;
       
  1661         }
       
  1662     } /* phy_reset_disable */
       
  1663 
       
  1664     if (hw->mac_type == e1000_80003es2lan) {
       
  1665         /* Bypass RX and TX FIFO's */
       
  1666         ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
       
  1667                                        E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
       
  1668                                        E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
       
  1669         if (ret_val)
       
  1670             return ret_val;
       
  1671 
       
  1672         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
       
  1673         if (ret_val)
       
  1674             return ret_val;
       
  1675 
       
  1676         phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
       
  1677         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
       
  1678 
       
  1679         if (ret_val)
       
  1680             return ret_val;
       
  1681 
       
  1682         reg_data = E1000_READ_REG(hw, CTRL_EXT);
       
  1683         reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
       
  1684         E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
       
  1685 
       
  1686         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
       
  1687                                           &phy_data);
       
  1688         if (ret_val)
       
  1689             return ret_val;
       
  1690 
       
  1691         /* Do not init these registers when the HW is in IAMT mode, since the
       
  1692          * firmware will have already initialized them.  We only initialize
       
  1693          * them if the HW is not in IAMT mode.
       
  1694          */
       
  1695         if (!e1000_check_mng_mode(hw)) {
       
  1696             /* Enable Electrical Idle on the PHY */
       
  1697             phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
       
  1698             ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
       
  1699                                           phy_data);
       
  1700             if (ret_val)
       
  1701                 return ret_val;
       
  1702 
       
  1703             ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
       
  1704                                          &phy_data);
       
  1705             if (ret_val)
       
  1706                 return ret_val;
       
  1707 
       
  1708             phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
       
  1709             ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
       
  1710                                           phy_data);
       
  1711 
       
  1712             if (ret_val)
       
  1713                 return ret_val;
       
  1714         }
       
  1715 
       
  1716         /* Workaround: Disable padding in Kumeran interface in the MAC
       
  1717          * and in the PHY to avoid CRC errors.
       
  1718          */
       
  1719         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
       
  1720                                      &phy_data);
       
  1721         if (ret_val)
       
  1722             return ret_val;
       
  1723         phy_data |= GG82563_ICR_DIS_PADDING;
       
  1724         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
       
  1725                                       phy_data);
       
  1726         if (ret_val)
       
  1727             return ret_val;
       
  1728     }
       
  1729 
       
  1730     return E1000_SUCCESS;
       
  1731 }
       
  1732 
       
  1733 /********************************************************************
       
  1734 * Copper link setup for e1000_phy_m88 series.
       
  1735 *
       
  1736 * hw - Struct containing variables accessed by shared code
       
  1737 *********************************************************************/
       
  1738 static s32
       
  1739 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
       
  1740 {
       
  1741     s32 ret_val;
       
  1742     u16 phy_data;
       
  1743 
       
  1744     DEBUGFUNC("e1000_copper_link_mgp_setup");
       
  1745 
       
  1746     if (hw->phy_reset_disable)
       
  1747         return E1000_SUCCESS;
       
  1748 
       
  1749     /* Enable CRS on TX. This must be set for half-duplex operation. */
       
  1750     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1751     if (ret_val)
       
  1752         return ret_val;
       
  1753 
       
  1754     phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1755 
       
  1756     /* Options:
       
  1757      *   MDI/MDI-X = 0 (default)
       
  1758      *   0 - Auto for all speeds
       
  1759      *   1 - MDI mode
       
  1760      *   2 - MDI-X mode
       
  1761      *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
  1762      */
       
  1763     phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1764 
       
  1765     switch (hw->mdix) {
       
  1766     case 1:
       
  1767         phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
       
  1768         break;
       
  1769     case 2:
       
  1770         phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
       
  1771         break;
       
  1772     case 3:
       
  1773         phy_data |= M88E1000_PSCR_AUTO_X_1000T;
       
  1774         break;
       
  1775     case 0:
       
  1776     default:
       
  1777         phy_data |= M88E1000_PSCR_AUTO_X_MODE;
       
  1778         break;
       
  1779     }
       
  1780 
       
  1781     /* Options:
       
  1782      *   disable_polarity_correction = 0 (default)
       
  1783      *       Automatic Correction for Reversed Cable Polarity
       
  1784      *   0 - Disabled
       
  1785      *   1 - Enabled
       
  1786      */
       
  1787     phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
       
  1788     if (hw->disable_polarity_correction == 1)
       
  1789         phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
       
  1790     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1791     if (ret_val)
       
  1792         return ret_val;
       
  1793 
       
  1794     if (hw->phy_revision < M88E1011_I_REV_4) {
       
  1795         /* Force TX_CLK in the Extended PHY Specific Control Register
       
  1796          * to 25MHz clock.
       
  1797          */
       
  1798         ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
  1799         if (ret_val)
       
  1800             return ret_val;
       
  1801 
       
  1802         phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
  1803 
       
  1804         if ((hw->phy_revision == E1000_REVISION_2) &&
       
  1805             (hw->phy_id == M88E1111_I_PHY_ID)) {
       
  1806             /* Vidalia Phy, set the downshift counter to 5x */
       
  1807             phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
       
  1808             phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
       
  1809             ret_val = e1000_write_phy_reg(hw,
       
  1810                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
  1811             if (ret_val)
       
  1812                 return ret_val;
       
  1813         } else {
       
  1814             /* Configure Master and Slave downshift values */
       
  1815             phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
       
  1816                               M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
       
  1817             phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
       
  1818                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
       
  1819             ret_val = e1000_write_phy_reg(hw,
       
  1820                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
  1821             if (ret_val)
       
  1822                return ret_val;
       
  1823         }
       
  1824     }
       
  1825 
       
  1826     /* SW Reset the PHY so all changes take effect */
       
  1827     ret_val = e1000_phy_reset(hw);
       
  1828     if (ret_val) {
       
  1829         DEBUGOUT("Error Resetting the PHY\n");
       
  1830         return ret_val;
       
  1831     }
       
  1832 
       
  1833    return E1000_SUCCESS;
       
  1834 }
       
  1835 
       
  1836 /********************************************************************
       
  1837 * Setup auto-negotiation and flow control advertisements,
       
  1838 * and then perform auto-negotiation.
       
  1839 *
       
  1840 * hw - Struct containing variables accessed by shared code
       
  1841 *********************************************************************/
       
  1842 static s32
       
  1843 e1000_copper_link_autoneg(struct e1000_hw *hw)
       
  1844 {
       
  1845     s32 ret_val;
       
  1846     u16 phy_data;
       
  1847 
       
  1848     DEBUGFUNC("e1000_copper_link_autoneg");
       
  1849 
       
  1850     /* Perform some bounds checking on the hw->autoneg_advertised
       
  1851      * parameter.  If this variable is zero, then set it to the default.
       
  1852      */
       
  1853     hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
  1854 
       
  1855     /* If autoneg_advertised is zero, we assume it was not defaulted
       
  1856      * by the calling code so we set to advertise full capability.
       
  1857      */
       
  1858     if (hw->autoneg_advertised == 0)
       
  1859         hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
  1860 
       
  1861     /* IFE phy only supports 10/100 */
       
  1862     if (hw->phy_type == e1000_phy_ife)
       
  1863         hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
       
  1864 
       
  1865     DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
       
  1866     ret_val = e1000_phy_setup_autoneg(hw);
       
  1867     if (ret_val) {
       
  1868         DEBUGOUT("Error Setting up Auto-Negotiation\n");
       
  1869         return ret_val;
       
  1870     }
       
  1871     DEBUGOUT("Restarting Auto-Neg\n");
       
  1872 
       
  1873     /* Restart auto-negotiation by setting the Auto Neg Enable bit and
       
  1874      * the Auto Neg Restart bit in the PHY control register.
       
  1875      */
       
  1876     ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
       
  1877     if (ret_val)
       
  1878         return ret_val;
       
  1879 
       
  1880     phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
       
  1881     ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
       
  1882     if (ret_val)
       
  1883         return ret_val;
       
  1884 
       
  1885     /* Does the user want to wait for Auto-Neg to complete here, or
       
  1886      * check at a later time (for example, callback routine).
       
  1887      */
       
  1888     if (hw->wait_autoneg_complete) {
       
  1889         ret_val = e1000_wait_autoneg(hw);
       
  1890         if (ret_val) {
       
  1891             DEBUGOUT("Error while waiting for autoneg to complete\n");
       
  1892             return ret_val;
       
  1893         }
       
  1894     }
       
  1895 
       
  1896     hw->get_link_status = true;
       
  1897 
       
  1898     return E1000_SUCCESS;
       
  1899 }
       
  1900 
       
  1901 /******************************************************************************
       
  1902 * Config the MAC and the PHY after link is up.
       
  1903 *   1) Set up the MAC to the current PHY speed/duplex
       
  1904 *      if we are on 82543.  If we
       
  1905 *      are on newer silicon, we only need to configure
       
  1906 *      collision distance in the Transmit Control Register.
       
  1907 *   2) Set up flow control on the MAC to that established with
       
  1908 *      the link partner.
       
  1909 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
       
  1910 *
       
  1911 * hw - Struct containing variables accessed by shared code
       
  1912 ******************************************************************************/
       
  1913 static s32
       
  1914 e1000_copper_link_postconfig(struct e1000_hw *hw)
       
  1915 {
       
  1916     s32 ret_val;
       
  1917     DEBUGFUNC("e1000_copper_link_postconfig");
       
  1918 
       
  1919     if (hw->mac_type >= e1000_82544) {
       
  1920         e1000_config_collision_dist(hw);
       
  1921     } else {
       
  1922         ret_val = e1000_config_mac_to_phy(hw);
       
  1923         if (ret_val) {
       
  1924             DEBUGOUT("Error configuring MAC to PHY settings\n");
       
  1925             return ret_val;
       
  1926         }
       
  1927     }
       
  1928     ret_val = e1000_config_fc_after_link_up(hw);
       
  1929     if (ret_val) {
       
  1930         DEBUGOUT("Error Configuring Flow Control\n");
       
  1931         return ret_val;
       
  1932     }
       
  1933 
       
  1934     /* Config DSP to improve Giga link quality */
       
  1935     if (hw->phy_type == e1000_phy_igp) {
       
  1936         ret_val = e1000_config_dsp_after_link_change(hw, true);
       
  1937         if (ret_val) {
       
  1938             DEBUGOUT("Error Configuring DSP after link up\n");
       
  1939             return ret_val;
       
  1940         }
       
  1941     }
       
  1942 
       
  1943     return E1000_SUCCESS;
       
  1944 }
       
  1945 
       
  1946 /******************************************************************************
       
  1947 * Detects which PHY is present and setup the speed and duplex
       
  1948 *
       
  1949 * hw - Struct containing variables accessed by shared code
       
  1950 ******************************************************************************/
       
  1951 static s32
       
  1952 e1000_setup_copper_link(struct e1000_hw *hw)
       
  1953 {
       
  1954     s32 ret_val;
       
  1955     u16 i;
       
  1956     u16 phy_data;
       
  1957     u16 reg_data;
       
  1958 
       
  1959     DEBUGFUNC("e1000_setup_copper_link");
       
  1960 
       
  1961     switch (hw->mac_type) {
       
  1962     case e1000_80003es2lan:
       
  1963     case e1000_ich8lan:
       
  1964         /* Set the mac to wait the maximum time between each
       
  1965          * iteration and increase the max iterations when
       
  1966          * polling the phy; this fixes erroneous timeouts at 10Mbps. */
       
  1967         ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
       
  1968         if (ret_val)
       
  1969             return ret_val;
       
  1970         ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
       
  1971         if (ret_val)
       
  1972             return ret_val;
       
  1973         reg_data |= 0x3F;
       
  1974         ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
       
  1975         if (ret_val)
       
  1976             return ret_val;
       
  1977     default:
       
  1978         break;
       
  1979     }
       
  1980 
       
  1981     /* Check if it is a valid PHY and set PHY mode if necessary. */
       
  1982     ret_val = e1000_copper_link_preconfig(hw);
       
  1983     if (ret_val)
       
  1984         return ret_val;
       
  1985 
       
  1986     switch (hw->mac_type) {
       
  1987     case e1000_80003es2lan:
       
  1988         /* Kumeran registers are written-only */
       
  1989         reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
       
  1990         reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
       
  1991         ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
       
  1992                                        reg_data);
       
  1993         if (ret_val)
       
  1994             return ret_val;
       
  1995         break;
       
  1996     default:
       
  1997         break;
       
  1998     }
       
  1999 
       
  2000     if (hw->phy_type == e1000_phy_igp ||
       
  2001         hw->phy_type == e1000_phy_igp_3 ||
       
  2002         hw->phy_type == e1000_phy_igp_2) {
       
  2003         ret_val = e1000_copper_link_igp_setup(hw);
       
  2004         if (ret_val)
       
  2005             return ret_val;
       
  2006     } else if (hw->phy_type == e1000_phy_m88) {
       
  2007         ret_val = e1000_copper_link_mgp_setup(hw);
       
  2008         if (ret_val)
       
  2009             return ret_val;
       
  2010     } else if (hw->phy_type == e1000_phy_gg82563) {
       
  2011         ret_val = e1000_copper_link_ggp_setup(hw);
       
  2012         if (ret_val)
       
  2013             return ret_val;
       
  2014     }
       
  2015 
       
  2016     if (hw->autoneg) {
       
  2017         /* Setup autoneg and flow control advertisement
       
  2018           * and perform autonegotiation */
       
  2019         ret_val = e1000_copper_link_autoneg(hw);
       
  2020         if (ret_val)
       
  2021             return ret_val;
       
  2022     } else {
       
  2023         /* PHY will be set to 10H, 10F, 100H,or 100F
       
  2024           * depending on value from forced_speed_duplex. */
       
  2025         DEBUGOUT("Forcing speed and duplex\n");
       
  2026         ret_val = e1000_phy_force_speed_duplex(hw);
       
  2027         if (ret_val) {
       
  2028             DEBUGOUT("Error Forcing Speed and Duplex\n");
       
  2029             return ret_val;
       
  2030         }
       
  2031     }
       
  2032 
       
  2033     /* Check link status. Wait up to 100 microseconds for link to become
       
  2034      * valid.
       
  2035      */
       
  2036     for (i = 0; i < 10; i++) {
       
  2037         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  2038         if (ret_val)
       
  2039             return ret_val;
       
  2040         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  2041         if (ret_val)
       
  2042             return ret_val;
       
  2043 
       
  2044         if (phy_data & MII_SR_LINK_STATUS) {
       
  2045             /* Config the MAC and PHY after link is up */
       
  2046             ret_val = e1000_copper_link_postconfig(hw);
       
  2047             if (ret_val)
       
  2048                 return ret_val;
       
  2049 
       
  2050             DEBUGOUT("Valid link established!!!\n");
       
  2051             return E1000_SUCCESS;
       
  2052         }
       
  2053         udelay(10);
       
  2054     }
       
  2055 
       
  2056     DEBUGOUT("Unable to establish link!!!\n");
       
  2057     return E1000_SUCCESS;
       
  2058 }
       
  2059 
       
  2060 /******************************************************************************
       
  2061 * Configure the MAC-to-PHY interface for 10/100Mbps
       
  2062 *
       
  2063 * hw - Struct containing variables accessed by shared code
       
  2064 ******************************************************************************/
       
  2065 static s32
       
  2066 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex)
       
  2067 {
       
  2068     s32 ret_val = E1000_SUCCESS;
       
  2069     u32 tipg;
       
  2070     u16 reg_data;
       
  2071 
       
  2072     DEBUGFUNC("e1000_configure_kmrn_for_10_100");
       
  2073 
       
  2074     reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
       
  2075     ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
       
  2076                                    reg_data);
       
  2077     if (ret_val)
       
  2078         return ret_val;
       
  2079 
       
  2080     /* Configure Transmit Inter-Packet Gap */
       
  2081     tipg = E1000_READ_REG(hw, TIPG);
       
  2082     tipg &= ~E1000_TIPG_IPGT_MASK;
       
  2083     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
       
  2084     E1000_WRITE_REG(hw, TIPG, tipg);
       
  2085 
       
  2086     ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
       
  2087 
       
  2088     if (ret_val)
       
  2089         return ret_val;
       
  2090 
       
  2091     if (duplex == HALF_DUPLEX)
       
  2092         reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
       
  2093     else
       
  2094         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
       
  2095 
       
  2096     ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
       
  2097 
       
  2098     return ret_val;
       
  2099 }
       
  2100 
       
  2101 static s32
       
  2102 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
       
  2103 {
       
  2104     s32 ret_val = E1000_SUCCESS;
       
  2105     u16 reg_data;
       
  2106     u32 tipg;
       
  2107 
       
  2108     DEBUGFUNC("e1000_configure_kmrn_for_1000");
       
  2109 
       
  2110     reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
       
  2111     ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
       
  2112                                    reg_data);
       
  2113     if (ret_val)
       
  2114         return ret_val;
       
  2115 
       
  2116     /* Configure Transmit Inter-Packet Gap */
       
  2117     tipg = E1000_READ_REG(hw, TIPG);
       
  2118     tipg &= ~E1000_TIPG_IPGT_MASK;
       
  2119     tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
       
  2120     E1000_WRITE_REG(hw, TIPG, tipg);
       
  2121 
       
  2122     ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
       
  2123 
       
  2124     if (ret_val)
       
  2125         return ret_val;
       
  2126 
       
  2127     reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
       
  2128     ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
       
  2129 
       
  2130     return ret_val;
       
  2131 }
       
  2132 
       
  2133 /******************************************************************************
       
  2134 * Configures PHY autoneg and flow control advertisement settings
       
  2135 *
       
  2136 * hw - Struct containing variables accessed by shared code
       
  2137 ******************************************************************************/
       
  2138 s32
       
  2139 e1000_phy_setup_autoneg(struct e1000_hw *hw)
       
  2140 {
       
  2141     s32 ret_val;
       
  2142     u16 mii_autoneg_adv_reg;
       
  2143     u16 mii_1000t_ctrl_reg;
       
  2144 
       
  2145     DEBUGFUNC("e1000_phy_setup_autoneg");
       
  2146 
       
  2147     /* Read the MII Auto-Neg Advertisement Register (Address 4). */
       
  2148     ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
       
  2149     if (ret_val)
       
  2150         return ret_val;
       
  2151 
       
  2152     if (hw->phy_type != e1000_phy_ife) {
       
  2153         /* Read the MII 1000Base-T Control Register (Address 9). */
       
  2154         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
       
  2155         if (ret_val)
       
  2156             return ret_val;
       
  2157     } else
       
  2158         mii_1000t_ctrl_reg=0;
       
  2159 
       
  2160     /* Need to parse both autoneg_advertised and fc and set up
       
  2161      * the appropriate PHY registers.  First we will parse for
       
  2162      * autoneg_advertised software override.  Since we can advertise
       
  2163      * a plethora of combinations, we need to check each bit
       
  2164      * individually.
       
  2165      */
       
  2166 
       
  2167     /* First we clear all the 10/100 mb speed bits in the Auto-Neg
       
  2168      * Advertisement Register (Address 4) and the 1000 mb speed bits in
       
  2169      * the  1000Base-T Control Register (Address 9).
       
  2170      */
       
  2171     mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
       
  2172     mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
       
  2173 
       
  2174     DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
       
  2175 
       
  2176     /* Do we want to advertise 10 Mb Half Duplex? */
       
  2177     if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
       
  2178         DEBUGOUT("Advertise 10mb Half duplex\n");
       
  2179         mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
       
  2180     }
       
  2181 
       
  2182     /* Do we want to advertise 10 Mb Full Duplex? */
       
  2183     if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
       
  2184         DEBUGOUT("Advertise 10mb Full duplex\n");
       
  2185         mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
       
  2186     }
       
  2187 
       
  2188     /* Do we want to advertise 100 Mb Half Duplex? */
       
  2189     if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
       
  2190         DEBUGOUT("Advertise 100mb Half duplex\n");
       
  2191         mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
       
  2192     }
       
  2193 
       
  2194     /* Do we want to advertise 100 Mb Full Duplex? */
       
  2195     if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
       
  2196         DEBUGOUT("Advertise 100mb Full duplex\n");
       
  2197         mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
       
  2198     }
       
  2199 
       
  2200     /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
       
  2201     if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
       
  2202         DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
       
  2203     }
       
  2204 
       
  2205     /* Do we want to advertise 1000 Mb Full Duplex? */
       
  2206     if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
       
  2207         DEBUGOUT("Advertise 1000mb Full duplex\n");
       
  2208         mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
       
  2209         if (hw->phy_type == e1000_phy_ife) {
       
  2210             DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
       
  2211         }
       
  2212     }
       
  2213 
       
  2214     /* Check for a software override of the flow control settings, and
       
  2215      * setup the PHY advertisement registers accordingly.  If
       
  2216      * auto-negotiation is enabled, then software will have to set the
       
  2217      * "PAUSE" bits to the correct value in the Auto-Negotiation
       
  2218      * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
       
  2219      *
       
  2220      * The possible values of the "fc" parameter are:
       
  2221      *      0:  Flow control is completely disabled
       
  2222      *      1:  Rx flow control is enabled (we can receive pause frames
       
  2223      *          but not send pause frames).
       
  2224      *      2:  Tx flow control is enabled (we can send pause frames
       
  2225      *          but we do not support receiving pause frames).
       
  2226      *      3:  Both Rx and TX flow control (symmetric) are enabled.
       
  2227      *  other:  No software override.  The flow control configuration
       
  2228      *          in the EEPROM is used.
       
  2229      */
       
  2230     switch (hw->fc) {
       
  2231     case E1000_FC_NONE: /* 0 */
       
  2232         /* Flow control (RX & TX) is completely disabled by a
       
  2233          * software over-ride.
       
  2234          */
       
  2235         mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  2236         break;
       
  2237     case E1000_FC_RX_PAUSE: /* 1 */
       
  2238         /* RX Flow control is enabled, and TX Flow control is
       
  2239          * disabled, by a software over-ride.
       
  2240          */
       
  2241         /* Since there really isn't a way to advertise that we are
       
  2242          * capable of RX Pause ONLY, we will advertise that we
       
  2243          * support both symmetric and asymmetric RX PAUSE.  Later
       
  2244          * (in e1000_config_fc_after_link_up) we will disable the
       
  2245          *hw's ability to send PAUSE frames.
       
  2246          */
       
  2247         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  2248         break;
       
  2249     case E1000_FC_TX_PAUSE: /* 2 */
       
  2250         /* TX Flow control is enabled, and RX Flow control is
       
  2251          * disabled, by a software over-ride.
       
  2252          */
       
  2253         mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
       
  2254         mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
       
  2255         break;
       
  2256     case E1000_FC_FULL: /* 3 */
       
  2257         /* Flow control (both RX and TX) is enabled by a software
       
  2258          * over-ride.
       
  2259          */
       
  2260         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  2261         break;
       
  2262     default:
       
  2263         DEBUGOUT("Flow control param set incorrectly\n");
       
  2264         return -E1000_ERR_CONFIG;
       
  2265     }
       
  2266 
       
  2267     ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
       
  2268     if (ret_val)
       
  2269         return ret_val;
       
  2270 
       
  2271     DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
       
  2272 
       
  2273     if (hw->phy_type != e1000_phy_ife) {
       
  2274         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
       
  2275         if (ret_val)
       
  2276             return ret_val;
       
  2277     }
       
  2278 
       
  2279     return E1000_SUCCESS;
       
  2280 }
       
  2281 
       
  2282 /******************************************************************************
       
  2283 * Force PHY speed and duplex settings to hw->forced_speed_duplex
       
  2284 *
       
  2285 * hw - Struct containing variables accessed by shared code
       
  2286 ******************************************************************************/
       
  2287 static s32
       
  2288 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
       
  2289 {
       
  2290     u32 ctrl;
       
  2291     s32 ret_val;
       
  2292     u16 mii_ctrl_reg;
       
  2293     u16 mii_status_reg;
       
  2294     u16 phy_data;
       
  2295     u16 i;
       
  2296 
       
  2297     DEBUGFUNC("e1000_phy_force_speed_duplex");
       
  2298 
       
  2299     /* Turn off Flow control if we are forcing speed and duplex. */
       
  2300     hw->fc = E1000_FC_NONE;
       
  2301 
       
  2302     DEBUGOUT1("hw->fc = %d\n", hw->fc);
       
  2303 
       
  2304     /* Read the Device Control Register. */
       
  2305     ctrl = E1000_READ_REG(hw, CTRL);
       
  2306 
       
  2307     /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
       
  2308     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  2309     ctrl &= ~(DEVICE_SPEED_MASK);
       
  2310 
       
  2311     /* Clear the Auto Speed Detect Enable bit. */
       
  2312     ctrl &= ~E1000_CTRL_ASDE;
       
  2313 
       
  2314     /* Read the MII Control Register. */
       
  2315     ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
       
  2316     if (ret_val)
       
  2317         return ret_val;
       
  2318 
       
  2319     /* We need to disable autoneg in order to force link and duplex. */
       
  2320 
       
  2321     mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
       
  2322 
       
  2323     /* Are we forcing Full or Half Duplex? */
       
  2324     if (hw->forced_speed_duplex == e1000_100_full ||
       
  2325         hw->forced_speed_duplex == e1000_10_full) {
       
  2326         /* We want to force full duplex so we SET the full duplex bits in the
       
  2327          * Device and MII Control Registers.
       
  2328          */
       
  2329         ctrl |= E1000_CTRL_FD;
       
  2330         mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
       
  2331         DEBUGOUT("Full Duplex\n");
       
  2332     } else {
       
  2333         /* We want to force half duplex so we CLEAR the full duplex bits in
       
  2334          * the Device and MII Control Registers.
       
  2335          */
       
  2336         ctrl &= ~E1000_CTRL_FD;
       
  2337         mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
       
  2338         DEBUGOUT("Half Duplex\n");
       
  2339     }
       
  2340 
       
  2341     /* Are we forcing 100Mbps??? */
       
  2342     if (hw->forced_speed_duplex == e1000_100_full ||
       
  2343        hw->forced_speed_duplex == e1000_100_half) {
       
  2344         /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
       
  2345         ctrl |= E1000_CTRL_SPD_100;
       
  2346         mii_ctrl_reg |= MII_CR_SPEED_100;
       
  2347         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
       
  2348         DEBUGOUT("Forcing 100mb ");
       
  2349     } else {
       
  2350         /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
       
  2351         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  2352         mii_ctrl_reg |= MII_CR_SPEED_10;
       
  2353         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
       
  2354         DEBUGOUT("Forcing 10mb ");
       
  2355     }
       
  2356 
       
  2357     e1000_config_collision_dist(hw);
       
  2358 
       
  2359     /* Write the configured values back to the Device Control Reg. */
       
  2360     E1000_WRITE_REG(hw, CTRL, ctrl);
       
  2361 
       
  2362     if ((hw->phy_type == e1000_phy_m88) ||
       
  2363         (hw->phy_type == e1000_phy_gg82563)) {
       
  2364         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  2365         if (ret_val)
       
  2366             return ret_val;
       
  2367 
       
  2368         /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
       
  2369          * forced whenever speed are duplex are forced.
       
  2370          */
       
  2371         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  2372         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  2373         if (ret_val)
       
  2374             return ret_val;
       
  2375 
       
  2376         DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
       
  2377 
       
  2378         /* Need to reset the PHY or these changes will be ignored */
       
  2379         mii_ctrl_reg |= MII_CR_RESET;
       
  2380 
       
  2381     /* Disable MDI-X support for 10/100 */
       
  2382     } else if (hw->phy_type == e1000_phy_ife) {
       
  2383         ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
       
  2384         if (ret_val)
       
  2385             return ret_val;
       
  2386 
       
  2387         phy_data &= ~IFE_PMC_AUTO_MDIX;
       
  2388         phy_data &= ~IFE_PMC_FORCE_MDIX;
       
  2389 
       
  2390         ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
       
  2391         if (ret_val)
       
  2392             return ret_val;
       
  2393 
       
  2394     } else {
       
  2395         /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
       
  2396          * forced whenever speed or duplex are forced.
       
  2397          */
       
  2398         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
       
  2399         if (ret_val)
       
  2400             return ret_val;
       
  2401 
       
  2402         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
  2403         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  2404 
       
  2405         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
       
  2406         if (ret_val)
       
  2407             return ret_val;
       
  2408     }
       
  2409 
       
  2410     /* Write back the modified PHY MII control register. */
       
  2411     ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
       
  2412     if (ret_val)
       
  2413         return ret_val;
       
  2414 
       
  2415     udelay(1);
       
  2416 
       
  2417     /* The wait_autoneg_complete flag may be a little misleading here.
       
  2418      * Since we are forcing speed and duplex, Auto-Neg is not enabled.
       
  2419      * But we do want to delay for a period while forcing only so we
       
  2420      * don't generate false No Link messages.  So we will wait here
       
  2421      * only if the user has set wait_autoneg_complete to 1, which is
       
  2422      * the default.
       
  2423      */
       
  2424     if (hw->wait_autoneg_complete) {
       
  2425         /* We will wait for autoneg to complete. */
       
  2426         DEBUGOUT("Waiting for forced speed/duplex link.\n");
       
  2427         mii_status_reg = 0;
       
  2428 
       
  2429         /* We will wait for autoneg to complete or 4.5 seconds to expire. */
       
  2430         for (i = PHY_FORCE_TIME; i > 0; i--) {
       
  2431             /* Read the MII Status Register and wait for Auto-Neg Complete bit
       
  2432              * to be set.
       
  2433              */
       
  2434             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  2435             if (ret_val)
       
  2436                 return ret_val;
       
  2437 
       
  2438             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  2439             if (ret_val)
       
  2440                 return ret_val;
       
  2441 
       
  2442             if (mii_status_reg & MII_SR_LINK_STATUS) break;
       
  2443             msleep(100);
       
  2444         }
       
  2445         if ((i == 0) &&
       
  2446            ((hw->phy_type == e1000_phy_m88) ||
       
  2447             (hw->phy_type == e1000_phy_gg82563))) {
       
  2448             /* We didn't get link.  Reset the DSP and wait again for link. */
       
  2449             ret_val = e1000_phy_reset_dsp(hw);
       
  2450             if (ret_val) {
       
  2451                 DEBUGOUT("Error Resetting PHY DSP\n");
       
  2452                 return ret_val;
       
  2453             }
       
  2454         }
       
  2455         /* This loop will early-out if the link condition has been met.  */
       
  2456         for (i = PHY_FORCE_TIME; i > 0; i--) {
       
  2457             if (mii_status_reg & MII_SR_LINK_STATUS) break;
       
  2458             msleep(100);
       
  2459             /* Read the MII Status Register and wait for Auto-Neg Complete bit
       
  2460              * to be set.
       
  2461              */
       
  2462             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  2463             if (ret_val)
       
  2464                 return ret_val;
       
  2465 
       
  2466             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  2467             if (ret_val)
       
  2468                 return ret_val;
       
  2469         }
       
  2470     }
       
  2471 
       
  2472     if (hw->phy_type == e1000_phy_m88) {
       
  2473         /* Because we reset the PHY above, we need to re-force TX_CLK in the
       
  2474          * Extended PHY Specific Control Register to 25MHz clock.  This value
       
  2475          * defaults back to a 2.5MHz clock when the PHY is reset.
       
  2476          */
       
  2477         ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
  2478         if (ret_val)
       
  2479             return ret_val;
       
  2480 
       
  2481         phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
  2482         ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
  2483         if (ret_val)
       
  2484             return ret_val;
       
  2485 
       
  2486         /* In addition, because of the s/w reset above, we need to enable CRS on
       
  2487          * TX.  This must be set for both full and half duplex operation.
       
  2488          */
       
  2489         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  2490         if (ret_val)
       
  2491             return ret_val;
       
  2492 
       
  2493         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  2494         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  2495         if (ret_val)
       
  2496             return ret_val;
       
  2497 
       
  2498         if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
       
  2499             (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
       
  2500              hw->forced_speed_duplex == e1000_10_half)) {
       
  2501             ret_val = e1000_polarity_reversal_workaround(hw);
       
  2502             if (ret_val)
       
  2503                 return ret_val;
       
  2504         }
       
  2505     } else if (hw->phy_type == e1000_phy_gg82563) {
       
  2506         /* The TX_CLK of the Extended PHY Specific Control Register defaults
       
  2507          * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
       
  2508          * we're not in a forced 10/duplex configuration. */
       
  2509         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
       
  2510         if (ret_val)
       
  2511             return ret_val;
       
  2512 
       
  2513         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
       
  2514         if ((hw->forced_speed_duplex == e1000_10_full) ||
       
  2515             (hw->forced_speed_duplex == e1000_10_half))
       
  2516             phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
       
  2517         else
       
  2518             phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
       
  2519 
       
  2520         /* Also due to the reset, we need to enable CRS on Tx. */
       
  2521         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
       
  2522 
       
  2523         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
       
  2524         if (ret_val)
       
  2525             return ret_val;
       
  2526     }
       
  2527     return E1000_SUCCESS;
       
  2528 }
       
  2529 
       
  2530 /******************************************************************************
       
  2531 * Sets the collision distance in the Transmit Control register
       
  2532 *
       
  2533 * hw - Struct containing variables accessed by shared code
       
  2534 *
       
  2535 * Link should have been established previously. Reads the speed and duplex
       
  2536 * information from the Device Status register.
       
  2537 ******************************************************************************/
       
  2538 void
       
  2539 e1000_config_collision_dist(struct e1000_hw *hw)
       
  2540 {
       
  2541     u32 tctl, coll_dist;
       
  2542 
       
  2543     DEBUGFUNC("e1000_config_collision_dist");
       
  2544 
       
  2545     if (hw->mac_type < e1000_82543)
       
  2546         coll_dist = E1000_COLLISION_DISTANCE_82542;
       
  2547     else
       
  2548         coll_dist = E1000_COLLISION_DISTANCE;
       
  2549 
       
  2550     tctl = E1000_READ_REG(hw, TCTL);
       
  2551 
       
  2552     tctl &= ~E1000_TCTL_COLD;
       
  2553     tctl |= coll_dist << E1000_COLD_SHIFT;
       
  2554 
       
  2555     E1000_WRITE_REG(hw, TCTL, tctl);
       
  2556     E1000_WRITE_FLUSH(hw);
       
  2557 }
       
  2558 
       
  2559 /******************************************************************************
       
  2560 * Sets MAC speed and duplex settings to reflect the those in the PHY
       
  2561 *
       
  2562 * hw - Struct containing variables accessed by shared code
       
  2563 * mii_reg - data to write to the MII control register
       
  2564 *
       
  2565 * The contents of the PHY register containing the needed information need to
       
  2566 * be passed in.
       
  2567 ******************************************************************************/
       
  2568 static s32
       
  2569 e1000_config_mac_to_phy(struct e1000_hw *hw)
       
  2570 {
       
  2571     u32 ctrl;
       
  2572     s32 ret_val;
       
  2573     u16 phy_data;
       
  2574 
       
  2575     DEBUGFUNC("e1000_config_mac_to_phy");
       
  2576 
       
  2577     /* 82544 or newer MAC, Auto Speed Detection takes care of
       
  2578     * MAC speed/duplex configuration.*/
       
  2579     if (hw->mac_type >= e1000_82544)
       
  2580         return E1000_SUCCESS;
       
  2581 
       
  2582     /* Read the Device Control Register and set the bits to Force Speed
       
  2583      * and Duplex.
       
  2584      */
       
  2585     ctrl = E1000_READ_REG(hw, CTRL);
       
  2586     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  2587     ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
       
  2588 
       
  2589     /* Set up duplex in the Device Control and Transmit Control
       
  2590      * registers depending on negotiated values.
       
  2591      */
       
  2592     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  2593     if (ret_val)
       
  2594         return ret_val;
       
  2595 
       
  2596     if (phy_data & M88E1000_PSSR_DPLX)
       
  2597         ctrl |= E1000_CTRL_FD;
       
  2598     else
       
  2599         ctrl &= ~E1000_CTRL_FD;
       
  2600 
       
  2601     e1000_config_collision_dist(hw);
       
  2602 
       
  2603     /* Set up speed in the Device Control register depending on
       
  2604      * negotiated values.
       
  2605      */
       
  2606     if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
       
  2607         ctrl |= E1000_CTRL_SPD_1000;
       
  2608     else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
       
  2609         ctrl |= E1000_CTRL_SPD_100;
       
  2610 
       
  2611     /* Write the configured values back to the Device Control Reg. */
       
  2612     E1000_WRITE_REG(hw, CTRL, ctrl);
       
  2613     return E1000_SUCCESS;
       
  2614 }
       
  2615 
       
  2616 /******************************************************************************
       
  2617  * Forces the MAC's flow control settings.
       
  2618  *
       
  2619  * hw - Struct containing variables accessed by shared code
       
  2620  *
       
  2621  * Sets the TFCE and RFCE bits in the device control register to reflect
       
  2622  * the adapter settings. TFCE and RFCE need to be explicitly set by
       
  2623  * software when a Copper PHY is used because autonegotiation is managed
       
  2624  * by the PHY rather than the MAC. Software must also configure these
       
  2625  * bits when link is forced on a fiber connection.
       
  2626  *****************************************************************************/
       
  2627 s32
       
  2628 e1000_force_mac_fc(struct e1000_hw *hw)
       
  2629 {
       
  2630     u32 ctrl;
       
  2631 
       
  2632     DEBUGFUNC("e1000_force_mac_fc");
       
  2633 
       
  2634     /* Get the current configuration of the Device Control Register */
       
  2635     ctrl = E1000_READ_REG(hw, CTRL);
       
  2636 
       
  2637     /* Because we didn't get link via the internal auto-negotiation
       
  2638      * mechanism (we either forced link or we got link via PHY
       
  2639      * auto-neg), we have to manually enable/disable transmit an
       
  2640      * receive flow control.
       
  2641      *
       
  2642      * The "Case" statement below enables/disable flow control
       
  2643      * according to the "hw->fc" parameter.
       
  2644      *
       
  2645      * The possible values of the "fc" parameter are:
       
  2646      *      0:  Flow control is completely disabled
       
  2647      *      1:  Rx flow control is enabled (we can receive pause
       
  2648      *          frames but not send pause frames).
       
  2649      *      2:  Tx flow control is enabled (we can send pause frames
       
  2650      *          frames but we do not receive pause frames).
       
  2651      *      3:  Both Rx and TX flow control (symmetric) is enabled.
       
  2652      *  other:  No other values should be possible at this point.
       
  2653      */
       
  2654 
       
  2655     switch (hw->fc) {
       
  2656     case E1000_FC_NONE:
       
  2657         ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
       
  2658         break;
       
  2659     case E1000_FC_RX_PAUSE:
       
  2660         ctrl &= (~E1000_CTRL_TFCE);
       
  2661         ctrl |= E1000_CTRL_RFCE;
       
  2662         break;
       
  2663     case E1000_FC_TX_PAUSE:
       
  2664         ctrl &= (~E1000_CTRL_RFCE);
       
  2665         ctrl |= E1000_CTRL_TFCE;
       
  2666         break;
       
  2667     case E1000_FC_FULL:
       
  2668         ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
       
  2669         break;
       
  2670     default:
       
  2671         DEBUGOUT("Flow control param set incorrectly\n");
       
  2672         return -E1000_ERR_CONFIG;
       
  2673     }
       
  2674 
       
  2675     /* Disable TX Flow Control for 82542 (rev 2.0) */
       
  2676     if (hw->mac_type == e1000_82542_rev2_0)
       
  2677         ctrl &= (~E1000_CTRL_TFCE);
       
  2678 
       
  2679     E1000_WRITE_REG(hw, CTRL, ctrl);
       
  2680     return E1000_SUCCESS;
       
  2681 }
       
  2682 
       
  2683 /******************************************************************************
       
  2684  * Configures flow control settings after link is established
       
  2685  *
       
  2686  * hw - Struct containing variables accessed by shared code
       
  2687  *
       
  2688  * Should be called immediately after a valid link has been established.
       
  2689  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
       
  2690  * and autonegotiation is enabled, the MAC flow control settings will be set
       
  2691  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
       
  2692  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
       
  2693  *****************************************************************************/
       
  2694 static s32
       
  2695 e1000_config_fc_after_link_up(struct e1000_hw *hw)
       
  2696 {
       
  2697     s32 ret_val;
       
  2698     u16 mii_status_reg;
       
  2699     u16 mii_nway_adv_reg;
       
  2700     u16 mii_nway_lp_ability_reg;
       
  2701     u16 speed;
       
  2702     u16 duplex;
       
  2703 
       
  2704     DEBUGFUNC("e1000_config_fc_after_link_up");
       
  2705 
       
  2706     /* Check for the case where we have fiber media and auto-neg failed
       
  2707      * so we had to force link.  In this case, we need to force the
       
  2708      * configuration of the MAC to match the "fc" parameter.
       
  2709      */
       
  2710     if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
       
  2711         ((hw->media_type == e1000_media_type_internal_serdes) &&
       
  2712          (hw->autoneg_failed)) ||
       
  2713         ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
       
  2714         ret_val = e1000_force_mac_fc(hw);
       
  2715         if (ret_val) {
       
  2716             DEBUGOUT("Error forcing flow control settings\n");
       
  2717             return ret_val;
       
  2718         }
       
  2719     }
       
  2720 
       
  2721     /* Check for the case where we have copper media and auto-neg is
       
  2722      * enabled.  In this case, we need to check and see if Auto-Neg
       
  2723      * has completed, and if so, how the PHY and link partner has
       
  2724      * flow control configured.
       
  2725      */
       
  2726     if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
       
  2727         /* Read the MII Status Register and check to see if AutoNeg
       
  2728          * has completed.  We read this twice because this reg has
       
  2729          * some "sticky" (latched) bits.
       
  2730          */
       
  2731         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  2732         if (ret_val)
       
  2733             return ret_val;
       
  2734         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  2735         if (ret_val)
       
  2736             return ret_val;
       
  2737 
       
  2738         if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
       
  2739             /* The AutoNeg process has completed, so we now need to
       
  2740              * read both the Auto Negotiation Advertisement Register
       
  2741              * (Address 4) and the Auto_Negotiation Base Page Ability
       
  2742              * Register (Address 5) to determine how flow control was
       
  2743              * negotiated.
       
  2744              */
       
  2745             ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
       
  2746                                          &mii_nway_adv_reg);
       
  2747             if (ret_val)
       
  2748                 return ret_val;
       
  2749             ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
       
  2750                                          &mii_nway_lp_ability_reg);
       
  2751             if (ret_val)
       
  2752                 return ret_val;
       
  2753 
       
  2754             /* Two bits in the Auto Negotiation Advertisement Register
       
  2755              * (Address 4) and two bits in the Auto Negotiation Base
       
  2756              * Page Ability Register (Address 5) determine flow control
       
  2757              * for both the PHY and the link partner.  The following
       
  2758              * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
       
  2759              * 1999, describes these PAUSE resolution bits and how flow
       
  2760              * control is determined based upon these settings.
       
  2761              * NOTE:  DC = Don't Care
       
  2762              *
       
  2763              *   LOCAL DEVICE  |   LINK PARTNER
       
  2764              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
       
  2765              *-------|---------|-------|---------|--------------------
       
  2766              *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
       
  2767              *   0   |    1    |   0   |   DC    | E1000_FC_NONE
       
  2768              *   0   |    1    |   1   |    0    | E1000_FC_NONE
       
  2769              *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
       
  2770              *   1   |    0    |   0   |   DC    | E1000_FC_NONE
       
  2771              *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
       
  2772              *   1   |    1    |   0   |    0    | E1000_FC_NONE
       
  2773              *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
       
  2774              *
       
  2775              */
       
  2776             /* Are both PAUSE bits set to 1?  If so, this implies
       
  2777              * Symmetric Flow Control is enabled at both ends.  The
       
  2778              * ASM_DIR bits are irrelevant per the spec.
       
  2779              *
       
  2780              * For Symmetric Flow Control:
       
  2781              *
       
  2782              *   LOCAL DEVICE  |   LINK PARTNER
       
  2783              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  2784              *-------|---------|-------|---------|--------------------
       
  2785              *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
       
  2786              *
       
  2787              */
       
  2788             if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  2789                 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
       
  2790                 /* Now we need to check if the user selected RX ONLY
       
  2791                  * of pause frames.  In this case, we had to advertise
       
  2792                  * FULL flow control because we could not advertise RX
       
  2793                  * ONLY. Hence, we must now check to see if we need to
       
  2794                  * turn OFF  the TRANSMISSION of PAUSE frames.
       
  2795                  */
       
  2796                 if (hw->original_fc == E1000_FC_FULL) {
       
  2797                     hw->fc = E1000_FC_FULL;
       
  2798                     DEBUGOUT("Flow Control = FULL.\n");
       
  2799                 } else {
       
  2800                     hw->fc = E1000_FC_RX_PAUSE;
       
  2801                     DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
       
  2802                 }
       
  2803             }
       
  2804             /* For receiving PAUSE frames ONLY.
       
  2805              *
       
  2806              *   LOCAL DEVICE  |   LINK PARTNER
       
  2807              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  2808              *-------|---------|-------|---------|--------------------
       
  2809              *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
       
  2810              *
       
  2811              */
       
  2812             else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  2813                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  2814                      (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  2815                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  2816                 hw->fc = E1000_FC_TX_PAUSE;
       
  2817                 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
       
  2818             }
       
  2819             /* For transmitting PAUSE frames ONLY.
       
  2820              *
       
  2821              *   LOCAL DEVICE  |   LINK PARTNER
       
  2822              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  2823              *-------|---------|-------|---------|--------------------
       
  2824              *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
       
  2825              *
       
  2826              */
       
  2827             else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  2828                      (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  2829                      !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  2830                      (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  2831                 hw->fc = E1000_FC_RX_PAUSE;
       
  2832                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
       
  2833             }
       
  2834             /* Per the IEEE spec, at this point flow control should be
       
  2835              * disabled.  However, we want to consider that we could
       
  2836              * be connected to a legacy switch that doesn't advertise
       
  2837              * desired flow control, but can be forced on the link
       
  2838              * partner.  So if we advertised no flow control, that is
       
  2839              * what we will resolve to.  If we advertised some kind of
       
  2840              * receive capability (Rx Pause Only or Full Flow Control)
       
  2841              * and the link partner advertised none, we will configure
       
  2842              * ourselves to enable Rx Flow Control only.  We can do
       
  2843              * this safely for two reasons:  If the link partner really
       
  2844              * didn't want flow control enabled, and we enable Rx, no
       
  2845              * harm done since we won't be receiving any PAUSE frames
       
  2846              * anyway.  If the intent on the link partner was to have
       
  2847              * flow control enabled, then by us enabling RX only, we
       
  2848              * can at least receive pause frames and process them.
       
  2849              * This is a good idea because in most cases, since we are
       
  2850              * predominantly a server NIC, more times than not we will
       
  2851              * be asked to delay transmission of packets than asking
       
  2852              * our link partner to pause transmission of frames.
       
  2853              */
       
  2854             else if ((hw->original_fc == E1000_FC_NONE ||
       
  2855                       hw->original_fc == E1000_FC_TX_PAUSE) ||
       
  2856                       hw->fc_strict_ieee) {
       
  2857                 hw->fc = E1000_FC_NONE;
       
  2858                 DEBUGOUT("Flow Control = NONE.\n");
       
  2859             } else {
       
  2860                 hw->fc = E1000_FC_RX_PAUSE;
       
  2861                 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
       
  2862             }
       
  2863 
       
  2864             /* Now we need to do one last check...  If we auto-
       
  2865              * negotiated to HALF DUPLEX, flow control should not be
       
  2866              * enabled per IEEE 802.3 spec.
       
  2867              */
       
  2868             ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
       
  2869             if (ret_val) {
       
  2870                 DEBUGOUT("Error getting link speed and duplex\n");
       
  2871                 return ret_val;
       
  2872             }
       
  2873 
       
  2874             if (duplex == HALF_DUPLEX)
       
  2875                 hw->fc = E1000_FC_NONE;
       
  2876 
       
  2877             /* Now we call a subroutine to actually force the MAC
       
  2878              * controller to use the correct flow control settings.
       
  2879              */
       
  2880             ret_val = e1000_force_mac_fc(hw);
       
  2881             if (ret_val) {
       
  2882                 DEBUGOUT("Error forcing flow control settings\n");
       
  2883                 return ret_val;
       
  2884             }
       
  2885         } else {
       
  2886             DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
       
  2887         }
       
  2888     }
       
  2889     return E1000_SUCCESS;
       
  2890 }
       
  2891 
       
  2892 /******************************************************************************
       
  2893  * Checks to see if the link status of the hardware has changed.
       
  2894  *
       
  2895  * hw - Struct containing variables accessed by shared code
       
  2896  *
       
  2897  * Called by any function that needs to check the link status of the adapter.
       
  2898  *****************************************************************************/
       
  2899 s32
       
  2900 e1000_check_for_link(struct e1000_hw *hw)
       
  2901 {
       
  2902     u32 rxcw = 0;
       
  2903     u32 ctrl;
       
  2904     u32 status;
       
  2905     u32 rctl;
       
  2906     u32 icr;
       
  2907     u32 signal = 0;
       
  2908     s32 ret_val;
       
  2909     u16 phy_data;
       
  2910 
       
  2911     DEBUGFUNC("e1000_check_for_link");
       
  2912 
       
  2913     ctrl = E1000_READ_REG(hw, CTRL);
       
  2914     status = E1000_READ_REG(hw, STATUS);
       
  2915 
       
  2916     /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
       
  2917      * set when the optics detect a signal. On older adapters, it will be
       
  2918      * cleared when there is a signal.  This applies to fiber media only.
       
  2919      */
       
  2920     if ((hw->media_type == e1000_media_type_fiber) ||
       
  2921         (hw->media_type == e1000_media_type_internal_serdes)) {
       
  2922         rxcw = E1000_READ_REG(hw, RXCW);
       
  2923 
       
  2924         if (hw->media_type == e1000_media_type_fiber) {
       
  2925             signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
       
  2926             if (status & E1000_STATUS_LU)
       
  2927                 hw->get_link_status = false;
       
  2928         }
       
  2929     }
       
  2930 
       
  2931     /* If we have a copper PHY then we only want to go out to the PHY
       
  2932      * registers to see if Auto-Neg has completed and/or if our link
       
  2933      * status has changed.  The get_link_status flag will be set if we
       
  2934      * receive a Link Status Change interrupt or we have Rx Sequence
       
  2935      * Errors.
       
  2936      */
       
  2937     if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
       
  2938         /* First we want to see if the MII Status Register reports
       
  2939          * link.  If so, then we want to get the current speed/duplex
       
  2940          * of the PHY.
       
  2941          * Read the register twice since the link bit is sticky.
       
  2942          */
       
  2943         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  2944         if (ret_val)
       
  2945             return ret_val;
       
  2946         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  2947         if (ret_val)
       
  2948             return ret_val;
       
  2949 
       
  2950         if (phy_data & MII_SR_LINK_STATUS) {
       
  2951             hw->get_link_status = false;
       
  2952             /* Check if there was DownShift, must be checked immediately after
       
  2953              * link-up */
       
  2954             e1000_check_downshift(hw);
       
  2955 
       
  2956             /* If we are on 82544 or 82543 silicon and speed/duplex
       
  2957              * are forced to 10H or 10F, then we will implement the polarity
       
  2958              * reversal workaround.  We disable interrupts first, and upon
       
  2959              * returning, place the devices interrupt state to its previous
       
  2960              * value except for the link status change interrupt which will
       
  2961              * happen due to the execution of this workaround.
       
  2962              */
       
  2963 
       
  2964             if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
       
  2965                 (!hw->autoneg) &&
       
  2966                 (hw->forced_speed_duplex == e1000_10_full ||
       
  2967                  hw->forced_speed_duplex == e1000_10_half)) {
       
  2968                 E1000_WRITE_REG(hw, IMC, 0xffffffff);
       
  2969                 ret_val = e1000_polarity_reversal_workaround(hw);
       
  2970                 icr = E1000_READ_REG(hw, ICR);
       
  2971                 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
       
  2972                 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
       
  2973             }
       
  2974 
       
  2975         } else {
       
  2976             /* No link detected */
       
  2977             e1000_config_dsp_after_link_change(hw, false);
       
  2978             return 0;
       
  2979         }
       
  2980 
       
  2981         /* If we are forcing speed/duplex, then we simply return since
       
  2982          * we have already determined whether we have link or not.
       
  2983          */
       
  2984         if (!hw->autoneg) return -E1000_ERR_CONFIG;
       
  2985 
       
  2986         /* optimize the dsp settings for the igp phy */
       
  2987         e1000_config_dsp_after_link_change(hw, true);
       
  2988 
       
  2989         /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
       
  2990          * have Si on board that is 82544 or newer, Auto
       
  2991          * Speed Detection takes care of MAC speed/duplex
       
  2992          * configuration.  So we only need to configure Collision
       
  2993          * Distance in the MAC.  Otherwise, we need to force
       
  2994          * speed/duplex on the MAC to the current PHY speed/duplex
       
  2995          * settings.
       
  2996          */
       
  2997         if (hw->mac_type >= e1000_82544)
       
  2998             e1000_config_collision_dist(hw);
       
  2999         else {
       
  3000             ret_val = e1000_config_mac_to_phy(hw);
       
  3001             if (ret_val) {
       
  3002                 DEBUGOUT("Error configuring MAC to PHY settings\n");
       
  3003                 return ret_val;
       
  3004             }
       
  3005         }
       
  3006 
       
  3007         /* Configure Flow Control now that Auto-Neg has completed. First, we
       
  3008          * need to restore the desired flow control settings because we may
       
  3009          * have had to re-autoneg with a different link partner.
       
  3010          */
       
  3011         ret_val = e1000_config_fc_after_link_up(hw);
       
  3012         if (ret_val) {
       
  3013             DEBUGOUT("Error configuring flow control\n");
       
  3014             return ret_val;
       
  3015         }
       
  3016 
       
  3017         /* At this point we know that we are on copper and we have
       
  3018          * auto-negotiated link.  These are conditions for checking the link
       
  3019          * partner capability register.  We use the link speed to determine if
       
  3020          * TBI compatibility needs to be turned on or off.  If the link is not
       
  3021          * at gigabit speed, then TBI compatibility is not needed.  If we are
       
  3022          * at gigabit speed, we turn on TBI compatibility.
       
  3023          */
       
  3024         if (hw->tbi_compatibility_en) {
       
  3025             u16 speed, duplex;
       
  3026             ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
       
  3027             if (ret_val) {
       
  3028                 DEBUGOUT("Error getting link speed and duplex\n");
       
  3029                 return ret_val;
       
  3030             }
       
  3031             if (speed != SPEED_1000) {
       
  3032                 /* If link speed is not set to gigabit speed, we do not need
       
  3033                  * to enable TBI compatibility.
       
  3034                  */
       
  3035                 if (hw->tbi_compatibility_on) {
       
  3036                     /* If we previously were in the mode, turn it off. */
       
  3037                     rctl = E1000_READ_REG(hw, RCTL);
       
  3038                     rctl &= ~E1000_RCTL_SBP;
       
  3039                     E1000_WRITE_REG(hw, RCTL, rctl);
       
  3040                     hw->tbi_compatibility_on = false;
       
  3041                 }
       
  3042             } else {
       
  3043                 /* If TBI compatibility is was previously off, turn it on. For
       
  3044                  * compatibility with a TBI link partner, we will store bad
       
  3045                  * packets. Some frames have an additional byte on the end and
       
  3046                  * will look like CRC errors to to the hardware.
       
  3047                  */
       
  3048                 if (!hw->tbi_compatibility_on) {
       
  3049                     hw->tbi_compatibility_on = true;
       
  3050                     rctl = E1000_READ_REG(hw, RCTL);
       
  3051                     rctl |= E1000_RCTL_SBP;
       
  3052                     E1000_WRITE_REG(hw, RCTL, rctl);
       
  3053                 }
       
  3054             }
       
  3055         }
       
  3056     }
       
  3057     /* If we don't have link (auto-negotiation failed or link partner cannot
       
  3058      * auto-negotiate), the cable is plugged in (we have signal), and our
       
  3059      * link partner is not trying to auto-negotiate with us (we are receiving
       
  3060      * idles or data), we need to force link up. We also need to give
       
  3061      * auto-negotiation time to complete, in case the cable was just plugged
       
  3062      * in. The autoneg_failed flag does this.
       
  3063      */
       
  3064     else if ((((hw->media_type == e1000_media_type_fiber) &&
       
  3065               ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
       
  3066               (hw->media_type == e1000_media_type_internal_serdes)) &&
       
  3067               (!(status & E1000_STATUS_LU)) &&
       
  3068               (!(rxcw & E1000_RXCW_C))) {
       
  3069         if (hw->autoneg_failed == 0) {
       
  3070             hw->autoneg_failed = 1;
       
  3071             return 0;
       
  3072         }
       
  3073         DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
       
  3074 
       
  3075         /* Disable auto-negotiation in the TXCW register */
       
  3076         E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
       
  3077 
       
  3078         /* Force link-up and also force full-duplex. */
       
  3079         ctrl = E1000_READ_REG(hw, CTRL);
       
  3080         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
  3081         E1000_WRITE_REG(hw, CTRL, ctrl);
       
  3082 
       
  3083         /* Configure Flow Control after forcing link up. */
       
  3084         ret_val = e1000_config_fc_after_link_up(hw);
       
  3085         if (ret_val) {
       
  3086             DEBUGOUT("Error configuring flow control\n");
       
  3087             return ret_val;
       
  3088         }
       
  3089     }
       
  3090     /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
       
  3091      * auto-negotiation in the TXCW register and disable forced link in the
       
  3092      * Device Control register in an attempt to auto-negotiate with our link
       
  3093      * partner.
       
  3094      */
       
  3095     else if (((hw->media_type == e1000_media_type_fiber) ||
       
  3096               (hw->media_type == e1000_media_type_internal_serdes)) &&
       
  3097               (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
  3098         DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
       
  3099         E1000_WRITE_REG(hw, TXCW, hw->txcw);
       
  3100         E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
       
  3101 
       
  3102         hw->serdes_link_down = false;
       
  3103     }
       
  3104     /* If we force link for non-auto-negotiation switch, check link status
       
  3105      * based on MAC synchronization for internal serdes media type.
       
  3106      */
       
  3107     else if ((hw->media_type == e1000_media_type_internal_serdes) &&
       
  3108              !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
       
  3109         /* SYNCH bit and IV bit are sticky. */
       
  3110         udelay(10);
       
  3111         if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
       
  3112             if (!(rxcw & E1000_RXCW_IV)) {
       
  3113                 hw->serdes_link_down = false;
       
  3114                 DEBUGOUT("SERDES: Link is up.\n");
       
  3115             }
       
  3116         } else {
       
  3117             hw->serdes_link_down = true;
       
  3118             DEBUGOUT("SERDES: Link is down.\n");
       
  3119         }
       
  3120     }
       
  3121     if ((hw->media_type == e1000_media_type_internal_serdes) &&
       
  3122         (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
       
  3123         hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
       
  3124     }
       
  3125     return E1000_SUCCESS;
       
  3126 }
       
  3127 
       
  3128 /******************************************************************************
       
  3129  * Detects the current speed and duplex settings of the hardware.
       
  3130  *
       
  3131  * hw - Struct containing variables accessed by shared code
       
  3132  * speed - Speed of the connection
       
  3133  * duplex - Duplex setting of the connection
       
  3134  *****************************************************************************/
       
  3135 s32
       
  3136 e1000_get_speed_and_duplex(struct e1000_hw *hw,
       
  3137                            u16 *speed,
       
  3138                            u16 *duplex)
       
  3139 {
       
  3140     u32 status;
       
  3141     s32 ret_val;
       
  3142     u16 phy_data;
       
  3143 
       
  3144     DEBUGFUNC("e1000_get_speed_and_duplex");
       
  3145 
       
  3146     if (hw->mac_type >= e1000_82543) {
       
  3147         status = E1000_READ_REG(hw, STATUS);
       
  3148         if (status & E1000_STATUS_SPEED_1000) {
       
  3149             *speed = SPEED_1000;
       
  3150             DEBUGOUT("1000 Mbs, ");
       
  3151         } else if (status & E1000_STATUS_SPEED_100) {
       
  3152             *speed = SPEED_100;
       
  3153             DEBUGOUT("100 Mbs, ");
       
  3154         } else {
       
  3155             *speed = SPEED_10;
       
  3156             DEBUGOUT("10 Mbs, ");
       
  3157         }
       
  3158 
       
  3159         if (status & E1000_STATUS_FD) {
       
  3160             *duplex = FULL_DUPLEX;
       
  3161             DEBUGOUT("Full Duplex\n");
       
  3162         } else {
       
  3163             *duplex = HALF_DUPLEX;
       
  3164             DEBUGOUT(" Half Duplex\n");
       
  3165         }
       
  3166     } else {
       
  3167         DEBUGOUT("1000 Mbs, Full Duplex\n");
       
  3168         *speed = SPEED_1000;
       
  3169         *duplex = FULL_DUPLEX;
       
  3170     }
       
  3171 
       
  3172     /* IGP01 PHY may advertise full duplex operation after speed downgrade even
       
  3173      * if it is operating at half duplex.  Here we set the duplex settings to
       
  3174      * match the duplex in the link partner's capabilities.
       
  3175      */
       
  3176     if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
       
  3177         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
       
  3178         if (ret_val)
       
  3179             return ret_val;
       
  3180 
       
  3181         if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
       
  3182             *duplex = HALF_DUPLEX;
       
  3183         else {
       
  3184             ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
       
  3185             if (ret_val)
       
  3186                 return ret_val;
       
  3187             if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
       
  3188                (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
       
  3189                 *duplex = HALF_DUPLEX;
       
  3190         }
       
  3191     }
       
  3192 
       
  3193     if ((hw->mac_type == e1000_80003es2lan) &&
       
  3194         (hw->media_type == e1000_media_type_copper)) {
       
  3195         if (*speed == SPEED_1000)
       
  3196             ret_val = e1000_configure_kmrn_for_1000(hw);
       
  3197         else
       
  3198             ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
       
  3199         if (ret_val)
       
  3200             return ret_val;
       
  3201     }
       
  3202 
       
  3203     if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
       
  3204         ret_val = e1000_kumeran_lock_loss_workaround(hw);
       
  3205         if (ret_val)
       
  3206             return ret_val;
       
  3207     }
       
  3208 
       
  3209     return E1000_SUCCESS;
       
  3210 }
       
  3211 
       
  3212 /******************************************************************************
       
  3213 * Blocks until autoneg completes or times out (~4.5 seconds)
       
  3214 *
       
  3215 * hw - Struct containing variables accessed by shared code
       
  3216 ******************************************************************************/
       
  3217 static s32
       
  3218 e1000_wait_autoneg(struct e1000_hw *hw)
       
  3219 {
       
  3220     s32 ret_val;
       
  3221     u16 i;
       
  3222     u16 phy_data;
       
  3223 
       
  3224     DEBUGFUNC("e1000_wait_autoneg");
       
  3225     DEBUGOUT("Waiting for Auto-Neg to complete.\n");
       
  3226 
       
  3227     /* We will wait for autoneg to complete or 4.5 seconds to expire. */
       
  3228     for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
       
  3229         /* Read the MII Status Register and wait for Auto-Neg
       
  3230          * Complete bit to be set.
       
  3231          */
       
  3232         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  3233         if (ret_val)
       
  3234             return ret_val;
       
  3235         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  3236         if (ret_val)
       
  3237             return ret_val;
       
  3238         if (phy_data & MII_SR_AUTONEG_COMPLETE) {
       
  3239             return E1000_SUCCESS;
       
  3240         }
       
  3241         msleep(100);
       
  3242     }
       
  3243     return E1000_SUCCESS;
       
  3244 }
       
  3245 
       
  3246 /******************************************************************************
       
  3247 * Raises the Management Data Clock
       
  3248 *
       
  3249 * hw - Struct containing variables accessed by shared code
       
  3250 * ctrl - Device control register's current value
       
  3251 ******************************************************************************/
       
  3252 static void
       
  3253 e1000_raise_mdi_clk(struct e1000_hw *hw,
       
  3254                     u32 *ctrl)
       
  3255 {
       
  3256     /* Raise the clock input to the Management Data Clock (by setting the MDC
       
  3257      * bit), and then delay 10 microseconds.
       
  3258      */
       
  3259     E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
       
  3260     E1000_WRITE_FLUSH(hw);
       
  3261     udelay(10);
       
  3262 }
       
  3263 
       
  3264 /******************************************************************************
       
  3265 * Lowers the Management Data Clock
       
  3266 *
       
  3267 * hw - Struct containing variables accessed by shared code
       
  3268 * ctrl - Device control register's current value
       
  3269 ******************************************************************************/
       
  3270 static void
       
  3271 e1000_lower_mdi_clk(struct e1000_hw *hw,
       
  3272                     u32 *ctrl)
       
  3273 {
       
  3274     /* Lower the clock input to the Management Data Clock (by clearing the MDC
       
  3275      * bit), and then delay 10 microseconds.
       
  3276      */
       
  3277     E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
       
  3278     E1000_WRITE_FLUSH(hw);
       
  3279     udelay(10);
       
  3280 }
       
  3281 
       
  3282 /******************************************************************************
       
  3283 * Shifts data bits out to the PHY
       
  3284 *
       
  3285 * hw - Struct containing variables accessed by shared code
       
  3286 * data - Data to send out to the PHY
       
  3287 * count - Number of bits to shift out
       
  3288 *
       
  3289 * Bits are shifted out in MSB to LSB order.
       
  3290 ******************************************************************************/
       
  3291 static void
       
  3292 e1000_shift_out_mdi_bits(struct e1000_hw *hw,
       
  3293                          u32 data,
       
  3294                          u16 count)
       
  3295 {
       
  3296     u32 ctrl;
       
  3297     u32 mask;
       
  3298 
       
  3299     /* We need to shift "count" number of bits out to the PHY. So, the value
       
  3300      * in the "data" parameter will be shifted out to the PHY one bit at a
       
  3301      * time. In order to do this, "data" must be broken down into bits.
       
  3302      */
       
  3303     mask = 0x01;
       
  3304     mask <<= (count - 1);
       
  3305 
       
  3306     ctrl = E1000_READ_REG(hw, CTRL);
       
  3307 
       
  3308     /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
       
  3309     ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
       
  3310 
       
  3311     while (mask) {
       
  3312         /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
       
  3313          * then raising and lowering the Management Data Clock. A "0" is
       
  3314          * shifted out to the PHY by setting the MDIO bit to "0" and then
       
  3315          * raising and lowering the clock.
       
  3316          */
       
  3317         if (data & mask)
       
  3318             ctrl |= E1000_CTRL_MDIO;
       
  3319         else
       
  3320             ctrl &= ~E1000_CTRL_MDIO;
       
  3321 
       
  3322         E1000_WRITE_REG(hw, CTRL, ctrl);
       
  3323         E1000_WRITE_FLUSH(hw);
       
  3324 
       
  3325         udelay(10);
       
  3326 
       
  3327         e1000_raise_mdi_clk(hw, &ctrl);
       
  3328         e1000_lower_mdi_clk(hw, &ctrl);
       
  3329 
       
  3330         mask = mask >> 1;
       
  3331     }
       
  3332 }
       
  3333 
       
  3334 /******************************************************************************
       
  3335 * Shifts data bits in from the PHY
       
  3336 *
       
  3337 * hw - Struct containing variables accessed by shared code
       
  3338 *
       
  3339 * Bits are shifted in in MSB to LSB order.
       
  3340 ******************************************************************************/
       
  3341 static u16
       
  3342 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
       
  3343 {
       
  3344     u32 ctrl;
       
  3345     u16 data = 0;
       
  3346     u8 i;
       
  3347 
       
  3348     /* In order to read a register from the PHY, we need to shift in a total
       
  3349      * of 18 bits from the PHY. The first two bit (turnaround) times are used
       
  3350      * to avoid contention on the MDIO pin when a read operation is performed.
       
  3351      * These two bits are ignored by us and thrown away. Bits are "shifted in"
       
  3352      * by raising the input to the Management Data Clock (setting the MDC bit),
       
  3353      * and then reading the value of the MDIO bit.
       
  3354      */
       
  3355     ctrl = E1000_READ_REG(hw, CTRL);
       
  3356 
       
  3357     /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
       
  3358     ctrl &= ~E1000_CTRL_MDIO_DIR;
       
  3359     ctrl &= ~E1000_CTRL_MDIO;
       
  3360 
       
  3361     E1000_WRITE_REG(hw, CTRL, ctrl);
       
  3362     E1000_WRITE_FLUSH(hw);
       
  3363 
       
  3364     /* Raise and Lower the clock before reading in the data. This accounts for
       
  3365      * the turnaround bits. The first clock occurred when we clocked out the
       
  3366      * last bit of the Register Address.
       
  3367      */
       
  3368     e1000_raise_mdi_clk(hw, &ctrl);
       
  3369     e1000_lower_mdi_clk(hw, &ctrl);
       
  3370 
       
  3371     for (data = 0, i = 0; i < 16; i++) {
       
  3372         data = data << 1;
       
  3373         e1000_raise_mdi_clk(hw, &ctrl);
       
  3374         ctrl = E1000_READ_REG(hw, CTRL);
       
  3375         /* Check to see if we shifted in a "1". */
       
  3376         if (ctrl & E1000_CTRL_MDIO)
       
  3377             data |= 1;
       
  3378         e1000_lower_mdi_clk(hw, &ctrl);
       
  3379     }
       
  3380 
       
  3381     e1000_raise_mdi_clk(hw, &ctrl);
       
  3382     e1000_lower_mdi_clk(hw, &ctrl);
       
  3383 
       
  3384     return data;
       
  3385 }
       
  3386 
       
  3387 static s32
       
  3388 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask)
       
  3389 {
       
  3390     u32 swfw_sync = 0;
       
  3391     u32 swmask = mask;
       
  3392     u32 fwmask = mask << 16;
       
  3393     s32 timeout = 200;
       
  3394 
       
  3395     DEBUGFUNC("e1000_swfw_sync_acquire");
       
  3396 
       
  3397     if (hw->swfwhw_semaphore_present)
       
  3398         return e1000_get_software_flag(hw);
       
  3399 
       
  3400     if (!hw->swfw_sync_present)
       
  3401         return e1000_get_hw_eeprom_semaphore(hw);
       
  3402 
       
  3403     while (timeout) {
       
  3404             if (e1000_get_hw_eeprom_semaphore(hw))
       
  3405                 return -E1000_ERR_SWFW_SYNC;
       
  3406 
       
  3407             swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
       
  3408             if (!(swfw_sync & (fwmask | swmask))) {
       
  3409                 break;
       
  3410             }
       
  3411 
       
  3412             /* firmware currently using resource (fwmask) */
       
  3413             /* or other software thread currently using resource (swmask) */
       
  3414             e1000_put_hw_eeprom_semaphore(hw);
       
  3415             mdelay(5);
       
  3416             timeout--;
       
  3417     }
       
  3418 
       
  3419     if (!timeout) {
       
  3420         DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
       
  3421         return -E1000_ERR_SWFW_SYNC;
       
  3422     }
       
  3423 
       
  3424     swfw_sync |= swmask;
       
  3425     E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
       
  3426 
       
  3427     e1000_put_hw_eeprom_semaphore(hw);
       
  3428     return E1000_SUCCESS;
       
  3429 }
       
  3430 
       
  3431 static void
       
  3432 e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask)
       
  3433 {
       
  3434     u32 swfw_sync;
       
  3435     u32 swmask = mask;
       
  3436 
       
  3437     DEBUGFUNC("e1000_swfw_sync_release");
       
  3438 
       
  3439     if (hw->swfwhw_semaphore_present) {
       
  3440         e1000_release_software_flag(hw);
       
  3441         return;
       
  3442     }
       
  3443 
       
  3444     if (!hw->swfw_sync_present) {
       
  3445         e1000_put_hw_eeprom_semaphore(hw);
       
  3446         return;
       
  3447     }
       
  3448 
       
  3449     /* if (e1000_get_hw_eeprom_semaphore(hw))
       
  3450      *    return -E1000_ERR_SWFW_SYNC; */
       
  3451     while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
       
  3452         /* empty */
       
  3453 
       
  3454     swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
       
  3455     swfw_sync &= ~swmask;
       
  3456     E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
       
  3457 
       
  3458     e1000_put_hw_eeprom_semaphore(hw);
       
  3459 }
       
  3460 
       
  3461 /*****************************************************************************
       
  3462 * Reads the value from a PHY register, if the value is on a specific non zero
       
  3463 * page, sets the page first.
       
  3464 * hw - Struct containing variables accessed by shared code
       
  3465 * reg_addr - address of the PHY register to read
       
  3466 ******************************************************************************/
       
  3467 s32
       
  3468 e1000_read_phy_reg(struct e1000_hw *hw,
       
  3469                    u32 reg_addr,
       
  3470                    u16 *phy_data)
       
  3471 {
       
  3472     u32 ret_val;
       
  3473     u16 swfw;
       
  3474 
       
  3475     DEBUGFUNC("e1000_read_phy_reg");
       
  3476 
       
  3477     if ((hw->mac_type == e1000_80003es2lan) &&
       
  3478         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
       
  3479         swfw = E1000_SWFW_PHY1_SM;
       
  3480     } else {
       
  3481         swfw = E1000_SWFW_PHY0_SM;
       
  3482     }
       
  3483     if (e1000_swfw_sync_acquire(hw, swfw))
       
  3484         return -E1000_ERR_SWFW_SYNC;
       
  3485 
       
  3486     if ((hw->phy_type == e1000_phy_igp ||
       
  3487         hw->phy_type == e1000_phy_igp_3 ||
       
  3488         hw->phy_type == e1000_phy_igp_2) &&
       
  3489        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
       
  3490         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  3491                                          (u16)reg_addr);
       
  3492         if (ret_val) {
       
  3493             e1000_swfw_sync_release(hw, swfw);
       
  3494             return ret_val;
       
  3495         }
       
  3496     } else if (hw->phy_type == e1000_phy_gg82563) {
       
  3497         if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
       
  3498             (hw->mac_type == e1000_80003es2lan)) {
       
  3499             /* Select Configuration Page */
       
  3500             if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
       
  3501                 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
       
  3502                           (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
       
  3503             } else {
       
  3504                 /* Use Alternative Page Select register to access
       
  3505                  * registers 30 and 31
       
  3506                  */
       
  3507                 ret_val = e1000_write_phy_reg_ex(hw,
       
  3508                                                  GG82563_PHY_PAGE_SELECT_ALT,
       
  3509                           (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
       
  3510             }
       
  3511 
       
  3512             if (ret_val) {
       
  3513                 e1000_swfw_sync_release(hw, swfw);
       
  3514                 return ret_val;
       
  3515             }
       
  3516         }
       
  3517     }
       
  3518 
       
  3519     ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
       
  3520                                     phy_data);
       
  3521 
       
  3522     e1000_swfw_sync_release(hw, swfw);
       
  3523     return ret_val;
       
  3524 }
       
  3525 
       
  3526 static s32
       
  3527 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
       
  3528                       u16 *phy_data)
       
  3529 {
       
  3530     u32 i;
       
  3531     u32 mdic = 0;
       
  3532     const u32 phy_addr = 1;
       
  3533 
       
  3534     DEBUGFUNC("e1000_read_phy_reg_ex");
       
  3535 
       
  3536     if (reg_addr > MAX_PHY_REG_ADDRESS) {
       
  3537         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
       
  3538         return -E1000_ERR_PARAM;
       
  3539     }
       
  3540 
       
  3541     if (hw->mac_type > e1000_82543) {
       
  3542         /* Set up Op-code, Phy Address, and register address in the MDI
       
  3543          * Control register.  The MAC will take care of interfacing with the
       
  3544          * PHY to retrieve the desired data.
       
  3545          */
       
  3546         mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
       
  3547                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
       
  3548                 (E1000_MDIC_OP_READ));
       
  3549 
       
  3550         E1000_WRITE_REG(hw, MDIC, mdic);
       
  3551 
       
  3552         /* Poll the ready bit to see if the MDI read completed */
       
  3553         for (i = 0; i < 64; i++) {
       
  3554             udelay(50);
       
  3555             mdic = E1000_READ_REG(hw, MDIC);
       
  3556             if (mdic & E1000_MDIC_READY) break;
       
  3557         }
       
  3558         if (!(mdic & E1000_MDIC_READY)) {
       
  3559             DEBUGOUT("MDI Read did not complete\n");
       
  3560             return -E1000_ERR_PHY;
       
  3561         }
       
  3562         if (mdic & E1000_MDIC_ERROR) {
       
  3563             DEBUGOUT("MDI Error\n");
       
  3564             return -E1000_ERR_PHY;
       
  3565         }
       
  3566         *phy_data = (u16) mdic;
       
  3567     } else {
       
  3568         /* We must first send a preamble through the MDIO pin to signal the
       
  3569          * beginning of an MII instruction.  This is done by sending 32
       
  3570          * consecutive "1" bits.
       
  3571          */
       
  3572         e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
       
  3573 
       
  3574         /* Now combine the next few fields that are required for a read
       
  3575          * operation.  We use this method instead of calling the
       
  3576          * e1000_shift_out_mdi_bits routine five different times. The format of
       
  3577          * a MII read instruction consists of a shift out of 14 bits and is
       
  3578          * defined as follows:
       
  3579          *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
       
  3580          * followed by a shift in of 18 bits.  This first two bits shifted in
       
  3581          * are TurnAround bits used to avoid contention on the MDIO pin when a
       
  3582          * READ operation is performed.  These two bits are thrown away
       
  3583          * followed by a shift in of 16 bits which contains the desired data.
       
  3584          */
       
  3585         mdic = ((reg_addr) | (phy_addr << 5) |
       
  3586                 (PHY_OP_READ << 10) | (PHY_SOF << 12));
       
  3587 
       
  3588         e1000_shift_out_mdi_bits(hw, mdic, 14);
       
  3589 
       
  3590         /* Now that we've shifted out the read command to the MII, we need to
       
  3591          * "shift in" the 16-bit value (18 total bits) of the requested PHY
       
  3592          * register address.
       
  3593          */
       
  3594         *phy_data = e1000_shift_in_mdi_bits(hw);
       
  3595     }
       
  3596     return E1000_SUCCESS;
       
  3597 }
       
  3598 
       
  3599 /******************************************************************************
       
  3600 * Writes a value to a PHY register
       
  3601 *
       
  3602 * hw - Struct containing variables accessed by shared code
       
  3603 * reg_addr - address of the PHY register to write
       
  3604 * data - data to write to the PHY
       
  3605 ******************************************************************************/
       
  3606 s32
       
  3607 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr,
       
  3608                     u16 phy_data)
       
  3609 {
       
  3610     u32 ret_val;
       
  3611     u16 swfw;
       
  3612 
       
  3613     DEBUGFUNC("e1000_write_phy_reg");
       
  3614 
       
  3615     if ((hw->mac_type == e1000_80003es2lan) &&
       
  3616         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
       
  3617         swfw = E1000_SWFW_PHY1_SM;
       
  3618     } else {
       
  3619         swfw = E1000_SWFW_PHY0_SM;
       
  3620     }
       
  3621     if (e1000_swfw_sync_acquire(hw, swfw))
       
  3622         return -E1000_ERR_SWFW_SYNC;
       
  3623 
       
  3624     if ((hw->phy_type == e1000_phy_igp ||
       
  3625         hw->phy_type == e1000_phy_igp_3 ||
       
  3626         hw->phy_type == e1000_phy_igp_2) &&
       
  3627        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
       
  3628         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  3629                                          (u16)reg_addr);
       
  3630         if (ret_val) {
       
  3631             e1000_swfw_sync_release(hw, swfw);
       
  3632             return ret_val;
       
  3633         }
       
  3634     } else if (hw->phy_type == e1000_phy_gg82563) {
       
  3635         if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
       
  3636             (hw->mac_type == e1000_80003es2lan)) {
       
  3637             /* Select Configuration Page */
       
  3638             if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
       
  3639                 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
       
  3640                           (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
       
  3641             } else {
       
  3642                 /* Use Alternative Page Select register to access
       
  3643                  * registers 30 and 31
       
  3644                  */
       
  3645                 ret_val = e1000_write_phy_reg_ex(hw,
       
  3646                                                  GG82563_PHY_PAGE_SELECT_ALT,
       
  3647                           (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
       
  3648             }
       
  3649 
       
  3650             if (ret_val) {
       
  3651                 e1000_swfw_sync_release(hw, swfw);
       
  3652                 return ret_val;
       
  3653             }
       
  3654         }
       
  3655     }
       
  3656 
       
  3657     ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
       
  3658                                      phy_data);
       
  3659 
       
  3660     e1000_swfw_sync_release(hw, swfw);
       
  3661     return ret_val;
       
  3662 }
       
  3663 
       
  3664 static s32
       
  3665 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
       
  3666                        u16 phy_data)
       
  3667 {
       
  3668     u32 i;
       
  3669     u32 mdic = 0;
       
  3670     const u32 phy_addr = 1;
       
  3671 
       
  3672     DEBUGFUNC("e1000_write_phy_reg_ex");
       
  3673 
       
  3674     if (reg_addr > MAX_PHY_REG_ADDRESS) {
       
  3675         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
       
  3676         return -E1000_ERR_PARAM;
       
  3677     }
       
  3678 
       
  3679     if (hw->mac_type > e1000_82543) {
       
  3680         /* Set up Op-code, Phy Address, register address, and data intended
       
  3681          * for the PHY register in the MDI Control register.  The MAC will take
       
  3682          * care of interfacing with the PHY to send the desired data.
       
  3683          */
       
  3684         mdic = (((u32) phy_data) |
       
  3685                 (reg_addr << E1000_MDIC_REG_SHIFT) |
       
  3686                 (phy_addr << E1000_MDIC_PHY_SHIFT) |
       
  3687                 (E1000_MDIC_OP_WRITE));
       
  3688 
       
  3689         E1000_WRITE_REG(hw, MDIC, mdic);
       
  3690 
       
  3691         /* Poll the ready bit to see if the MDI read completed */
       
  3692         for (i = 0; i < 641; i++) {
       
  3693             udelay(5);
       
  3694             mdic = E1000_READ_REG(hw, MDIC);
       
  3695             if (mdic & E1000_MDIC_READY) break;
       
  3696         }
       
  3697         if (!(mdic & E1000_MDIC_READY)) {
       
  3698             DEBUGOUT("MDI Write did not complete\n");
       
  3699             return -E1000_ERR_PHY;
       
  3700         }
       
  3701     } else {
       
  3702         /* We'll need to use the SW defined pins to shift the write command
       
  3703          * out to the PHY. We first send a preamble to the PHY to signal the
       
  3704          * beginning of the MII instruction.  This is done by sending 32
       
  3705          * consecutive "1" bits.
       
  3706          */
       
  3707         e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
       
  3708 
       
  3709         /* Now combine the remaining required fields that will indicate a
       
  3710          * write operation. We use this method instead of calling the
       
  3711          * e1000_shift_out_mdi_bits routine for each field in the command. The
       
  3712          * format of a MII write instruction is as follows:
       
  3713          * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
       
  3714          */
       
  3715         mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
       
  3716                 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
       
  3717         mdic <<= 16;
       
  3718         mdic |= (u32) phy_data;
       
  3719 
       
  3720         e1000_shift_out_mdi_bits(hw, mdic, 32);
       
  3721     }
       
  3722 
       
  3723     return E1000_SUCCESS;
       
  3724 }
       
  3725 
       
  3726 static s32
       
  3727 e1000_read_kmrn_reg(struct e1000_hw *hw,
       
  3728                     u32 reg_addr,
       
  3729                     u16 *data)
       
  3730 {
       
  3731     u32 reg_val;
       
  3732     u16 swfw;
       
  3733     DEBUGFUNC("e1000_read_kmrn_reg");
       
  3734 
       
  3735     if ((hw->mac_type == e1000_80003es2lan) &&
       
  3736         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
       
  3737         swfw = E1000_SWFW_PHY1_SM;
       
  3738     } else {
       
  3739         swfw = E1000_SWFW_PHY0_SM;
       
  3740     }
       
  3741     if (e1000_swfw_sync_acquire(hw, swfw))
       
  3742         return -E1000_ERR_SWFW_SYNC;
       
  3743 
       
  3744     /* Write register address */
       
  3745     reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
       
  3746               E1000_KUMCTRLSTA_OFFSET) |
       
  3747               E1000_KUMCTRLSTA_REN;
       
  3748     E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
       
  3749     udelay(2);
       
  3750 
       
  3751     /* Read the data returned */
       
  3752     reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
       
  3753     *data = (u16)reg_val;
       
  3754 
       
  3755     e1000_swfw_sync_release(hw, swfw);
       
  3756     return E1000_SUCCESS;
       
  3757 }
       
  3758 
       
  3759 static s32
       
  3760 e1000_write_kmrn_reg(struct e1000_hw *hw,
       
  3761                      u32 reg_addr,
       
  3762                      u16 data)
       
  3763 {
       
  3764     u32 reg_val;
       
  3765     u16 swfw;
       
  3766     DEBUGFUNC("e1000_write_kmrn_reg");
       
  3767 
       
  3768     if ((hw->mac_type == e1000_80003es2lan) &&
       
  3769         (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
       
  3770         swfw = E1000_SWFW_PHY1_SM;
       
  3771     } else {
       
  3772         swfw = E1000_SWFW_PHY0_SM;
       
  3773     }
       
  3774     if (e1000_swfw_sync_acquire(hw, swfw))
       
  3775         return -E1000_ERR_SWFW_SYNC;
       
  3776 
       
  3777     reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
       
  3778               E1000_KUMCTRLSTA_OFFSET) | data;
       
  3779     E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
       
  3780     udelay(2);
       
  3781 
       
  3782     e1000_swfw_sync_release(hw, swfw);
       
  3783     return E1000_SUCCESS;
       
  3784 }
       
  3785 
       
  3786 /******************************************************************************
       
  3787 * Returns the PHY to the power-on reset state
       
  3788 *
       
  3789 * hw - Struct containing variables accessed by shared code
       
  3790 ******************************************************************************/
       
  3791 s32
       
  3792 e1000_phy_hw_reset(struct e1000_hw *hw)
       
  3793 {
       
  3794     u32 ctrl, ctrl_ext;
       
  3795     u32 led_ctrl;
       
  3796     s32 ret_val;
       
  3797     u16 swfw;
       
  3798 
       
  3799     DEBUGFUNC("e1000_phy_hw_reset");
       
  3800 
       
  3801     /* In the case of the phy reset being blocked, it's not an error, we
       
  3802      * simply return success without performing the reset. */
       
  3803     ret_val = e1000_check_phy_reset_block(hw);
       
  3804     if (ret_val)
       
  3805         return E1000_SUCCESS;
       
  3806 
       
  3807     DEBUGOUT("Resetting Phy...\n");
       
  3808 
       
  3809     if (hw->mac_type > e1000_82543) {
       
  3810         if ((hw->mac_type == e1000_80003es2lan) &&
       
  3811             (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
       
  3812             swfw = E1000_SWFW_PHY1_SM;
       
  3813         } else {
       
  3814             swfw = E1000_SWFW_PHY0_SM;
       
  3815         }
       
  3816         if (e1000_swfw_sync_acquire(hw, swfw)) {
       
  3817             DEBUGOUT("Unable to acquire swfw sync\n");
       
  3818             return -E1000_ERR_SWFW_SYNC;
       
  3819         }
       
  3820         /* Read the device control register and assert the E1000_CTRL_PHY_RST
       
  3821          * bit. Then, take it out of reset.
       
  3822          * For pre-e1000_82571 hardware, we delay for 10ms between the assert
       
  3823          * and deassert.  For e1000_82571 hardware and later, we instead delay
       
  3824          * for 50us between and 10ms after the deassertion.
       
  3825          */
       
  3826         ctrl = E1000_READ_REG(hw, CTRL);
       
  3827         E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
       
  3828         E1000_WRITE_FLUSH(hw);
       
  3829 
       
  3830         if (hw->mac_type < e1000_82571)
       
  3831             msleep(10);
       
  3832         else
       
  3833             udelay(100);
       
  3834 
       
  3835         E1000_WRITE_REG(hw, CTRL, ctrl);
       
  3836         E1000_WRITE_FLUSH(hw);
       
  3837 
       
  3838         if (hw->mac_type >= e1000_82571)
       
  3839             mdelay(10);
       
  3840 
       
  3841         e1000_swfw_sync_release(hw, swfw);
       
  3842     } else {
       
  3843         /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
       
  3844          * bit to put the PHY into reset. Then, take it out of reset.
       
  3845          */
       
  3846         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
  3847         ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
       
  3848         ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
       
  3849         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
  3850         E1000_WRITE_FLUSH(hw);
       
  3851         msleep(10);
       
  3852         ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
       
  3853         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
  3854         E1000_WRITE_FLUSH(hw);
       
  3855     }
       
  3856     udelay(150);
       
  3857 
       
  3858     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
       
  3859         /* Configure activity LED after PHY reset */
       
  3860         led_ctrl = E1000_READ_REG(hw, LEDCTL);
       
  3861         led_ctrl &= IGP_ACTIVITY_LED_MASK;
       
  3862         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
       
  3863         E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
       
  3864     }
       
  3865 
       
  3866     /* Wait for FW to finish PHY configuration. */
       
  3867     ret_val = e1000_get_phy_cfg_done(hw);
       
  3868     if (ret_val != E1000_SUCCESS)
       
  3869         return ret_val;
       
  3870     e1000_release_software_semaphore(hw);
       
  3871 
       
  3872     if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
       
  3873         ret_val = e1000_init_lcd_from_nvm(hw);
       
  3874 
       
  3875     return ret_val;
       
  3876 }
       
  3877 
       
  3878 /******************************************************************************
       
  3879 * Resets the PHY
       
  3880 *
       
  3881 * hw - Struct containing variables accessed by shared code
       
  3882 *
       
  3883 * Sets bit 15 of the MII Control register
       
  3884 ******************************************************************************/
       
  3885 s32
       
  3886 e1000_phy_reset(struct e1000_hw *hw)
       
  3887 {
       
  3888     s32 ret_val;
       
  3889     u16 phy_data;
       
  3890 
       
  3891     DEBUGFUNC("e1000_phy_reset");
       
  3892 
       
  3893     /* In the case of the phy reset being blocked, it's not an error, we
       
  3894      * simply return success without performing the reset. */
       
  3895     ret_val = e1000_check_phy_reset_block(hw);
       
  3896     if (ret_val)
       
  3897         return E1000_SUCCESS;
       
  3898 
       
  3899     switch (hw->phy_type) {
       
  3900     case e1000_phy_igp:
       
  3901     case e1000_phy_igp_2:
       
  3902     case e1000_phy_igp_3:
       
  3903     case e1000_phy_ife:
       
  3904         ret_val = e1000_phy_hw_reset(hw);
       
  3905         if (ret_val)
       
  3906             return ret_val;
       
  3907         break;
       
  3908     default:
       
  3909         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
       
  3910         if (ret_val)
       
  3911             return ret_val;
       
  3912 
       
  3913         phy_data |= MII_CR_RESET;
       
  3914         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
       
  3915         if (ret_val)
       
  3916             return ret_val;
       
  3917 
       
  3918         udelay(1);
       
  3919         break;
       
  3920     }
       
  3921 
       
  3922     if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
       
  3923         e1000_phy_init_script(hw);
       
  3924 
       
  3925     return E1000_SUCCESS;
       
  3926 }
       
  3927 
       
  3928 /******************************************************************************
       
  3929 * Work-around for 82566 power-down: on D3 entry-
       
  3930 * 1) disable gigabit link
       
  3931 * 2) write VR power-down enable
       
  3932 * 3) read it back
       
  3933 * if successful continue, else issue LCD reset and repeat
       
  3934 *
       
  3935 * hw - struct containing variables accessed by shared code
       
  3936 ******************************************************************************/
       
  3937 void
       
  3938 e1000_phy_powerdown_workaround(struct e1000_hw *hw)
       
  3939 {
       
  3940     s32 reg;
       
  3941     u16 phy_data;
       
  3942     s32 retry = 0;
       
  3943 
       
  3944     DEBUGFUNC("e1000_phy_powerdown_workaround");
       
  3945 
       
  3946     if (hw->phy_type != e1000_phy_igp_3)
       
  3947         return;
       
  3948 
       
  3949     do {
       
  3950         /* Disable link */
       
  3951         reg = E1000_READ_REG(hw, PHY_CTRL);
       
  3952         E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
       
  3953                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  3954 
       
  3955         /* Write VR power-down enable - bits 9:8 should be 10b */
       
  3956         e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
       
  3957         phy_data |= (1 << 9);
       
  3958         phy_data &= ~(1 << 8);
       
  3959         e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data);
       
  3960 
       
  3961         /* Read it back and test */
       
  3962         e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
       
  3963         if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry)
       
  3964             break;
       
  3965 
       
  3966         /* Issue PHY reset and repeat at most one more time */
       
  3967         reg = E1000_READ_REG(hw, CTRL);
       
  3968         E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
       
  3969         retry++;
       
  3970     } while (retry);
       
  3971 
       
  3972     return;
       
  3973 
       
  3974 }
       
  3975 
       
  3976 /******************************************************************************
       
  3977 * Work-around for 82566 Kumeran PCS lock loss:
       
  3978 * On link status change (i.e. PCI reset, speed change) and link is up and
       
  3979 * speed is gigabit-
       
  3980 * 0) if workaround is optionally disabled do nothing
       
  3981 * 1) wait 1ms for Kumeran link to come up
       
  3982 * 2) check Kumeran Diagnostic register PCS lock loss bit
       
  3983 * 3) if not set the link is locked (all is good), otherwise...
       
  3984 * 4) reset the PHY
       
  3985 * 5) repeat up to 10 times
       
  3986 * Note: this is only called for IGP3 copper when speed is 1gb.
       
  3987 *
       
  3988 * hw - struct containing variables accessed by shared code
       
  3989 ******************************************************************************/
       
  3990 static s32
       
  3991 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
       
  3992 {
       
  3993     s32 ret_val;
       
  3994     s32 reg;
       
  3995     s32 cnt;
       
  3996     u16 phy_data;
       
  3997 
       
  3998     if (hw->kmrn_lock_loss_workaround_disabled)
       
  3999         return E1000_SUCCESS;
       
  4000 
       
  4001     /* Make sure link is up before proceeding.  If not just return.
       
  4002      * Attempting this while link is negotiating fouled up link
       
  4003      * stability */
       
  4004     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  4005     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  4006 
       
  4007     if (phy_data & MII_SR_LINK_STATUS) {
       
  4008         for (cnt = 0; cnt < 10; cnt++) {
       
  4009             /* read once to clear */
       
  4010             ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
       
  4011             if (ret_val)
       
  4012                 return ret_val;
       
  4013             /* and again to get new status */
       
  4014             ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
       
  4015             if (ret_val)
       
  4016                 return ret_val;
       
  4017 
       
  4018             /* check for PCS lock */
       
  4019             if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
       
  4020                 return E1000_SUCCESS;
       
  4021 
       
  4022             /* Issue PHY reset */
       
  4023             e1000_phy_hw_reset(hw);
       
  4024             mdelay(5);
       
  4025         }
       
  4026         /* Disable GigE link negotiation */
       
  4027         reg = E1000_READ_REG(hw, PHY_CTRL);
       
  4028         E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
       
  4029                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  4030 
       
  4031         /* unable to acquire PCS lock */
       
  4032         return E1000_ERR_PHY;
       
  4033     }
       
  4034 
       
  4035     return E1000_SUCCESS;
       
  4036 }
       
  4037 
       
  4038 /******************************************************************************
       
  4039 * Probes the expected PHY address for known PHY IDs
       
  4040 *
       
  4041 * hw - Struct containing variables accessed by shared code
       
  4042 ******************************************************************************/
       
  4043 static s32
       
  4044 e1000_detect_gig_phy(struct e1000_hw *hw)
       
  4045 {
       
  4046     s32 phy_init_status, ret_val;
       
  4047     u16 phy_id_high, phy_id_low;
       
  4048     bool match = false;
       
  4049 
       
  4050     DEBUGFUNC("e1000_detect_gig_phy");
       
  4051 
       
  4052     if (hw->phy_id != 0)
       
  4053         return E1000_SUCCESS;
       
  4054 
       
  4055     /* The 82571 firmware may still be configuring the PHY.  In this
       
  4056      * case, we cannot access the PHY until the configuration is done.  So
       
  4057      * we explicitly set the PHY values. */
       
  4058     if (hw->mac_type == e1000_82571 ||
       
  4059         hw->mac_type == e1000_82572) {
       
  4060         hw->phy_id = IGP01E1000_I_PHY_ID;
       
  4061         hw->phy_type = e1000_phy_igp_2;
       
  4062         return E1000_SUCCESS;
       
  4063     }
       
  4064 
       
  4065     /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
       
  4066      * around that forces PHY page 0 to be set or the reads fail.  The rest of
       
  4067      * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
       
  4068      * So for ESB-2 we need to have this set so our reads won't fail.  If the
       
  4069      * attached PHY is not a e1000_phy_gg82563, the routines below will figure
       
  4070      * this out as well. */
       
  4071     if (hw->mac_type == e1000_80003es2lan)
       
  4072         hw->phy_type = e1000_phy_gg82563;
       
  4073 
       
  4074     /* Read the PHY ID Registers to identify which PHY is onboard. */
       
  4075     ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
       
  4076     if (ret_val)
       
  4077         return ret_val;
       
  4078 
       
  4079     hw->phy_id = (u32) (phy_id_high << 16);
       
  4080     udelay(20);
       
  4081     ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
       
  4082     if (ret_val)
       
  4083         return ret_val;
       
  4084 
       
  4085     hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
       
  4086     hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
       
  4087 
       
  4088     switch (hw->mac_type) {
       
  4089     case e1000_82543:
       
  4090         if (hw->phy_id == M88E1000_E_PHY_ID) match = true;
       
  4091         break;
       
  4092     case e1000_82544:
       
  4093         if (hw->phy_id == M88E1000_I_PHY_ID) match = true;
       
  4094         break;
       
  4095     case e1000_82540:
       
  4096     case e1000_82545:
       
  4097     case e1000_82545_rev_3:
       
  4098     case e1000_82546:
       
  4099     case e1000_82546_rev_3:
       
  4100         if (hw->phy_id == M88E1011_I_PHY_ID) match = true;
       
  4101         break;
       
  4102     case e1000_82541:
       
  4103     case e1000_82541_rev_2:
       
  4104     case e1000_82547:
       
  4105     case e1000_82547_rev_2:
       
  4106         if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true;
       
  4107         break;
       
  4108     case e1000_82573:
       
  4109         if (hw->phy_id == M88E1111_I_PHY_ID) match = true;
       
  4110         break;
       
  4111     case e1000_80003es2lan:
       
  4112         if (hw->phy_id == GG82563_E_PHY_ID) match = true;
       
  4113         break;
       
  4114     case e1000_ich8lan:
       
  4115         if (hw->phy_id == IGP03E1000_E_PHY_ID) match = true;
       
  4116         if (hw->phy_id == IFE_E_PHY_ID) match = true;
       
  4117         if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = true;
       
  4118         if (hw->phy_id == IFE_C_E_PHY_ID) match = true;
       
  4119         break;
       
  4120     default:
       
  4121         DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
       
  4122         return -E1000_ERR_CONFIG;
       
  4123     }
       
  4124     phy_init_status = e1000_set_phy_type(hw);
       
  4125 
       
  4126     if ((match) && (phy_init_status == E1000_SUCCESS)) {
       
  4127         DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
       
  4128         return E1000_SUCCESS;
       
  4129     }
       
  4130     DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
       
  4131     return -E1000_ERR_PHY;
       
  4132 }
       
  4133 
       
  4134 /******************************************************************************
       
  4135 * Resets the PHY's DSP
       
  4136 *
       
  4137 * hw - Struct containing variables accessed by shared code
       
  4138 ******************************************************************************/
       
  4139 static s32
       
  4140 e1000_phy_reset_dsp(struct e1000_hw *hw)
       
  4141 {
       
  4142     s32 ret_val;
       
  4143     DEBUGFUNC("e1000_phy_reset_dsp");
       
  4144 
       
  4145     do {
       
  4146         if (hw->phy_type != e1000_phy_gg82563) {
       
  4147             ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
       
  4148             if (ret_val) break;
       
  4149         }
       
  4150         ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
       
  4151         if (ret_val) break;
       
  4152         ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
       
  4153         if (ret_val) break;
       
  4154         ret_val = E1000_SUCCESS;
       
  4155     } while (0);
       
  4156 
       
  4157     return ret_val;
       
  4158 }
       
  4159 
       
  4160 /******************************************************************************
       
  4161 * Get PHY information from various PHY registers for igp PHY only.
       
  4162 *
       
  4163 * hw - Struct containing variables accessed by shared code
       
  4164 * phy_info - PHY information structure
       
  4165 ******************************************************************************/
       
  4166 static s32
       
  4167 e1000_phy_igp_get_info(struct e1000_hw *hw,
       
  4168                        struct e1000_phy_info *phy_info)
       
  4169 {
       
  4170     s32 ret_val;
       
  4171     u16 phy_data, min_length, max_length, average;
       
  4172     e1000_rev_polarity polarity;
       
  4173 
       
  4174     DEBUGFUNC("e1000_phy_igp_get_info");
       
  4175 
       
  4176     /* The downshift status is checked only once, after link is established,
       
  4177      * and it stored in the hw->speed_downgraded parameter. */
       
  4178     phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
       
  4179 
       
  4180     /* IGP01E1000 does not need to support it. */
       
  4181     phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
       
  4182 
       
  4183     /* IGP01E1000 always correct polarity reversal */
       
  4184     phy_info->polarity_correction = e1000_polarity_reversal_enabled;
       
  4185 
       
  4186     /* Check polarity status */
       
  4187     ret_val = e1000_check_polarity(hw, &polarity);
       
  4188     if (ret_val)
       
  4189         return ret_val;
       
  4190 
       
  4191     phy_info->cable_polarity = polarity;
       
  4192 
       
  4193     ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
       
  4194     if (ret_val)
       
  4195         return ret_val;
       
  4196 
       
  4197     phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
       
  4198                           IGP01E1000_PSSR_MDIX_SHIFT);
       
  4199 
       
  4200     if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  4201        IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  4202         /* Local/Remote Receiver Information are only valid at 1000 Mbps */
       
  4203         ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
       
  4204         if (ret_val)
       
  4205             return ret_val;
       
  4206 
       
  4207         phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
       
  4208                              SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
       
  4209                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  4210         phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
       
  4211                               SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
       
  4212                               e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  4213 
       
  4214         /* Get cable length */
       
  4215         ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
       
  4216         if (ret_val)
       
  4217             return ret_val;
       
  4218 
       
  4219         /* Translate to old method */
       
  4220         average = (max_length + min_length) / 2;
       
  4221 
       
  4222         if (average <= e1000_igp_cable_length_50)
       
  4223             phy_info->cable_length = e1000_cable_length_50;
       
  4224         else if (average <= e1000_igp_cable_length_80)
       
  4225             phy_info->cable_length = e1000_cable_length_50_80;
       
  4226         else if (average <= e1000_igp_cable_length_110)
       
  4227             phy_info->cable_length = e1000_cable_length_80_110;
       
  4228         else if (average <= e1000_igp_cable_length_140)
       
  4229             phy_info->cable_length = e1000_cable_length_110_140;
       
  4230         else
       
  4231             phy_info->cable_length = e1000_cable_length_140;
       
  4232     }
       
  4233 
       
  4234     return E1000_SUCCESS;
       
  4235 }
       
  4236 
       
  4237 /******************************************************************************
       
  4238 * Get PHY information from various PHY registers for ife PHY only.
       
  4239 *
       
  4240 * hw - Struct containing variables accessed by shared code
       
  4241 * phy_info - PHY information structure
       
  4242 ******************************************************************************/
       
  4243 static s32
       
  4244 e1000_phy_ife_get_info(struct e1000_hw *hw,
       
  4245                        struct e1000_phy_info *phy_info)
       
  4246 {
       
  4247     s32 ret_val;
       
  4248     u16 phy_data;
       
  4249     e1000_rev_polarity polarity;
       
  4250 
       
  4251     DEBUGFUNC("e1000_phy_ife_get_info");
       
  4252 
       
  4253     phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
       
  4254     phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
       
  4255 
       
  4256     ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
       
  4257     if (ret_val)
       
  4258         return ret_val;
       
  4259     phy_info->polarity_correction =
       
  4260                         ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
       
  4261                         IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
       
  4262                         e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
       
  4263 
       
  4264     if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
       
  4265         ret_val = e1000_check_polarity(hw, &polarity);
       
  4266         if (ret_val)
       
  4267             return ret_val;
       
  4268     } else {
       
  4269         /* Polarity is forced. */
       
  4270         polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
       
  4271                      IFE_PSC_FORCE_POLARITY_SHIFT) ?
       
  4272                      e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
       
  4273     }
       
  4274     phy_info->cable_polarity = polarity;
       
  4275 
       
  4276     ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
       
  4277     if (ret_val)
       
  4278         return ret_val;
       
  4279 
       
  4280     phy_info->mdix_mode = (e1000_auto_x_mode)
       
  4281                      ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
       
  4282                      IFE_PMC_MDIX_MODE_SHIFT);
       
  4283 
       
  4284     return E1000_SUCCESS;
       
  4285 }
       
  4286 
       
  4287 /******************************************************************************
       
  4288 * Get PHY information from various PHY registers fot m88 PHY only.
       
  4289 *
       
  4290 * hw - Struct containing variables accessed by shared code
       
  4291 * phy_info - PHY information structure
       
  4292 ******************************************************************************/
       
  4293 static s32
       
  4294 e1000_phy_m88_get_info(struct e1000_hw *hw,
       
  4295                        struct e1000_phy_info *phy_info)
       
  4296 {
       
  4297     s32 ret_val;
       
  4298     u16 phy_data;
       
  4299     e1000_rev_polarity polarity;
       
  4300 
       
  4301     DEBUGFUNC("e1000_phy_m88_get_info");
       
  4302 
       
  4303     /* The downshift status is checked only once, after link is established,
       
  4304      * and it stored in the hw->speed_downgraded parameter. */
       
  4305     phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
       
  4306 
       
  4307     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  4308     if (ret_val)
       
  4309         return ret_val;
       
  4310 
       
  4311     phy_info->extended_10bt_distance =
       
  4312         ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
       
  4313         M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
       
  4314         e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
       
  4315 
       
  4316     phy_info->polarity_correction =
       
  4317         ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
       
  4318         M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
       
  4319         e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
       
  4320 
       
  4321     /* Check polarity status */
       
  4322     ret_val = e1000_check_polarity(hw, &polarity);
       
  4323     if (ret_val)
       
  4324         return ret_val;
       
  4325     phy_info->cable_polarity = polarity;
       
  4326 
       
  4327     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  4328     if (ret_val)
       
  4329         return ret_val;
       
  4330 
       
  4331     phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
       
  4332                           M88E1000_PSSR_MDIX_SHIFT);
       
  4333 
       
  4334     if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
       
  4335         /* Cable Length Estimation and Local/Remote Receiver Information
       
  4336          * are only valid at 1000 Mbps.
       
  4337          */
       
  4338         if (hw->phy_type != e1000_phy_gg82563) {
       
  4339             phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
       
  4340                                       M88E1000_PSSR_CABLE_LENGTH_SHIFT);
       
  4341         } else {
       
  4342             ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
       
  4343                                          &phy_data);
       
  4344             if (ret_val)
       
  4345                 return ret_val;
       
  4346 
       
  4347             phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
       
  4348         }
       
  4349 
       
  4350         ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
       
  4351         if (ret_val)
       
  4352             return ret_val;
       
  4353 
       
  4354         phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
       
  4355                              SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
       
  4356                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  4357         phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
       
  4358                               SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
       
  4359                               e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  4360 
       
  4361     }
       
  4362 
       
  4363     return E1000_SUCCESS;
       
  4364 }
       
  4365 
       
  4366 /******************************************************************************
       
  4367 * Get PHY information from various PHY registers
       
  4368 *
       
  4369 * hw - Struct containing variables accessed by shared code
       
  4370 * phy_info - PHY information structure
       
  4371 ******************************************************************************/
       
  4372 s32
       
  4373 e1000_phy_get_info(struct e1000_hw *hw,
       
  4374                    struct e1000_phy_info *phy_info)
       
  4375 {
       
  4376     s32 ret_val;
       
  4377     u16 phy_data;
       
  4378 
       
  4379     DEBUGFUNC("e1000_phy_get_info");
       
  4380 
       
  4381     phy_info->cable_length = e1000_cable_length_undefined;
       
  4382     phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
       
  4383     phy_info->cable_polarity = e1000_rev_polarity_undefined;
       
  4384     phy_info->downshift = e1000_downshift_undefined;
       
  4385     phy_info->polarity_correction = e1000_polarity_reversal_undefined;
       
  4386     phy_info->mdix_mode = e1000_auto_x_mode_undefined;
       
  4387     phy_info->local_rx = e1000_1000t_rx_status_undefined;
       
  4388     phy_info->remote_rx = e1000_1000t_rx_status_undefined;
       
  4389 
       
  4390     if (hw->media_type != e1000_media_type_copper) {
       
  4391         DEBUGOUT("PHY info is only valid for copper media\n");
       
  4392         return -E1000_ERR_CONFIG;
       
  4393     }
       
  4394 
       
  4395     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  4396     if (ret_val)
       
  4397         return ret_val;
       
  4398 
       
  4399     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  4400     if (ret_val)
       
  4401         return ret_val;
       
  4402 
       
  4403     if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
       
  4404         DEBUGOUT("PHY info is only valid if link is up\n");
       
  4405         return -E1000_ERR_CONFIG;
       
  4406     }
       
  4407 
       
  4408     if (hw->phy_type == e1000_phy_igp ||
       
  4409         hw->phy_type == e1000_phy_igp_3 ||
       
  4410         hw->phy_type == e1000_phy_igp_2)
       
  4411         return e1000_phy_igp_get_info(hw, phy_info);
       
  4412     else if (hw->phy_type == e1000_phy_ife)
       
  4413         return e1000_phy_ife_get_info(hw, phy_info);
       
  4414     else
       
  4415         return e1000_phy_m88_get_info(hw, phy_info);
       
  4416 }
       
  4417 
       
  4418 s32
       
  4419 e1000_validate_mdi_setting(struct e1000_hw *hw)
       
  4420 {
       
  4421     DEBUGFUNC("e1000_validate_mdi_settings");
       
  4422 
       
  4423     if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
       
  4424         DEBUGOUT("Invalid MDI setting detected\n");
       
  4425         hw->mdix = 1;
       
  4426         return -E1000_ERR_CONFIG;
       
  4427     }
       
  4428     return E1000_SUCCESS;
       
  4429 }
       
  4430 
       
  4431 
       
  4432 /******************************************************************************
       
  4433  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
       
  4434  * is configured.  Additionally, if this is ICH8, the flash controller GbE
       
  4435  * registers must be mapped, or this will crash.
       
  4436  *
       
  4437  * hw - Struct containing variables accessed by shared code
       
  4438  *****************************************************************************/
       
  4439 s32
       
  4440 e1000_init_eeprom_params(struct e1000_hw *hw)
       
  4441 {
       
  4442     struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  4443     u32 eecd = E1000_READ_REG(hw, EECD);
       
  4444     s32 ret_val = E1000_SUCCESS;
       
  4445     u16 eeprom_size;
       
  4446 
       
  4447     DEBUGFUNC("e1000_init_eeprom_params");
       
  4448 
       
  4449     switch (hw->mac_type) {
       
  4450     case e1000_82542_rev2_0:
       
  4451     case e1000_82542_rev2_1:
       
  4452     case e1000_82543:
       
  4453     case e1000_82544:
       
  4454         eeprom->type = e1000_eeprom_microwire;
       
  4455         eeprom->word_size = 64;
       
  4456         eeprom->opcode_bits = 3;
       
  4457         eeprom->address_bits = 6;
       
  4458         eeprom->delay_usec = 50;
       
  4459         eeprom->use_eerd = false;
       
  4460         eeprom->use_eewr = false;
       
  4461         break;
       
  4462     case e1000_82540:
       
  4463     case e1000_82545:
       
  4464     case e1000_82545_rev_3:
       
  4465     case e1000_82546:
       
  4466     case e1000_82546_rev_3:
       
  4467         eeprom->type = e1000_eeprom_microwire;
       
  4468         eeprom->opcode_bits = 3;
       
  4469         eeprom->delay_usec = 50;
       
  4470         if (eecd & E1000_EECD_SIZE) {
       
  4471             eeprom->word_size = 256;
       
  4472             eeprom->address_bits = 8;
       
  4473         } else {
       
  4474             eeprom->word_size = 64;
       
  4475             eeprom->address_bits = 6;
       
  4476         }
       
  4477         eeprom->use_eerd = false;
       
  4478         eeprom->use_eewr = false;
       
  4479         break;
       
  4480     case e1000_82541:
       
  4481     case e1000_82541_rev_2:
       
  4482     case e1000_82547:
       
  4483     case e1000_82547_rev_2:
       
  4484         if (eecd & E1000_EECD_TYPE) {
       
  4485             eeprom->type = e1000_eeprom_spi;
       
  4486             eeprom->opcode_bits = 8;
       
  4487             eeprom->delay_usec = 1;
       
  4488             if (eecd & E1000_EECD_ADDR_BITS) {
       
  4489                 eeprom->page_size = 32;
       
  4490                 eeprom->address_bits = 16;
       
  4491             } else {
       
  4492                 eeprom->page_size = 8;
       
  4493                 eeprom->address_bits = 8;
       
  4494             }
       
  4495         } else {
       
  4496             eeprom->type = e1000_eeprom_microwire;
       
  4497             eeprom->opcode_bits = 3;
       
  4498             eeprom->delay_usec = 50;
       
  4499             if (eecd & E1000_EECD_ADDR_BITS) {
       
  4500                 eeprom->word_size = 256;
       
  4501                 eeprom->address_bits = 8;
       
  4502             } else {
       
  4503                 eeprom->word_size = 64;
       
  4504                 eeprom->address_bits = 6;
       
  4505             }
       
  4506         }
       
  4507         eeprom->use_eerd = false;
       
  4508         eeprom->use_eewr = false;
       
  4509         break;
       
  4510     case e1000_82571:
       
  4511     case e1000_82572:
       
  4512         eeprom->type = e1000_eeprom_spi;
       
  4513         eeprom->opcode_bits = 8;
       
  4514         eeprom->delay_usec = 1;
       
  4515         if (eecd & E1000_EECD_ADDR_BITS) {
       
  4516             eeprom->page_size = 32;
       
  4517             eeprom->address_bits = 16;
       
  4518         } else {
       
  4519             eeprom->page_size = 8;
       
  4520             eeprom->address_bits = 8;
       
  4521         }
       
  4522         eeprom->use_eerd = false;
       
  4523         eeprom->use_eewr = false;
       
  4524         break;
       
  4525     case e1000_82573:
       
  4526         eeprom->type = e1000_eeprom_spi;
       
  4527         eeprom->opcode_bits = 8;
       
  4528         eeprom->delay_usec = 1;
       
  4529         if (eecd & E1000_EECD_ADDR_BITS) {
       
  4530             eeprom->page_size = 32;
       
  4531             eeprom->address_bits = 16;
       
  4532         } else {
       
  4533             eeprom->page_size = 8;
       
  4534             eeprom->address_bits = 8;
       
  4535         }
       
  4536         eeprom->use_eerd = true;
       
  4537         eeprom->use_eewr = true;
       
  4538         if (!e1000_is_onboard_nvm_eeprom(hw)) {
       
  4539             eeprom->type = e1000_eeprom_flash;
       
  4540             eeprom->word_size = 2048;
       
  4541 
       
  4542             /* Ensure that the Autonomous FLASH update bit is cleared due to
       
  4543              * Flash update issue on parts which use a FLASH for NVM. */
       
  4544             eecd &= ~E1000_EECD_AUPDEN;
       
  4545             E1000_WRITE_REG(hw, EECD, eecd);
       
  4546         }
       
  4547         break;
       
  4548     case e1000_80003es2lan:
       
  4549         eeprom->type = e1000_eeprom_spi;
       
  4550         eeprom->opcode_bits = 8;
       
  4551         eeprom->delay_usec = 1;
       
  4552         if (eecd & E1000_EECD_ADDR_BITS) {
       
  4553             eeprom->page_size = 32;
       
  4554             eeprom->address_bits = 16;
       
  4555         } else {
       
  4556             eeprom->page_size = 8;
       
  4557             eeprom->address_bits = 8;
       
  4558         }
       
  4559         eeprom->use_eerd = true;
       
  4560         eeprom->use_eewr = false;
       
  4561         break;
       
  4562     case e1000_ich8lan:
       
  4563         {
       
  4564         s32  i = 0;
       
  4565         u32 flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
       
  4566 
       
  4567         eeprom->type = e1000_eeprom_ich8;
       
  4568         eeprom->use_eerd = false;
       
  4569         eeprom->use_eewr = false;
       
  4570         eeprom->word_size = E1000_SHADOW_RAM_WORDS;
       
  4571 
       
  4572         /* Zero the shadow RAM structure. But don't load it from NVM
       
  4573          * so as to save time for driver init */
       
  4574         if (hw->eeprom_shadow_ram != NULL) {
       
  4575             for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
       
  4576                 hw->eeprom_shadow_ram[i].modified = false;
       
  4577                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
       
  4578             }
       
  4579         }
       
  4580 
       
  4581         hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
       
  4582                               ICH_FLASH_SECTOR_SIZE;
       
  4583 
       
  4584         hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
       
  4585         hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
       
  4586 
       
  4587         hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
       
  4588 
       
  4589         hw->flash_bank_size /= 2 * sizeof(u16);
       
  4590 
       
  4591         break;
       
  4592         }
       
  4593     default:
       
  4594         break;
       
  4595     }
       
  4596 
       
  4597     if (eeprom->type == e1000_eeprom_spi) {
       
  4598         /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
       
  4599          * 32KB (incremented by powers of 2).
       
  4600          */
       
  4601         if (hw->mac_type <= e1000_82547_rev_2) {
       
  4602             /* Set to default value for initial eeprom read. */
       
  4603             eeprom->word_size = 64;
       
  4604             ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
       
  4605             if (ret_val)
       
  4606                 return ret_val;
       
  4607             eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
       
  4608             /* 256B eeprom size was not supported in earlier hardware, so we
       
  4609              * bump eeprom_size up one to ensure that "1" (which maps to 256B)
       
  4610              * is never the result used in the shifting logic below. */
       
  4611             if (eeprom_size)
       
  4612                 eeprom_size++;
       
  4613         } else {
       
  4614             eeprom_size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
       
  4615                           E1000_EECD_SIZE_EX_SHIFT);
       
  4616         }
       
  4617 
       
  4618         eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
       
  4619     }
       
  4620     return ret_val;
       
  4621 }
       
  4622 
       
  4623 /******************************************************************************
       
  4624  * Raises the EEPROM's clock input.
       
  4625  *
       
  4626  * hw - Struct containing variables accessed by shared code
       
  4627  * eecd - EECD's current value
       
  4628  *****************************************************************************/
       
  4629 static void
       
  4630 e1000_raise_ee_clk(struct e1000_hw *hw,
       
  4631                    u32 *eecd)
       
  4632 {
       
  4633     /* Raise the clock input to the EEPROM (by setting the SK bit), and then
       
  4634      * wait <delay> microseconds.
       
  4635      */
       
  4636     *eecd = *eecd | E1000_EECD_SK;
       
  4637     E1000_WRITE_REG(hw, EECD, *eecd);
       
  4638     E1000_WRITE_FLUSH(hw);
       
  4639     udelay(hw->eeprom.delay_usec);
       
  4640 }
       
  4641 
       
  4642 /******************************************************************************
       
  4643  * Lowers the EEPROM's clock input.
       
  4644  *
       
  4645  * hw - Struct containing variables accessed by shared code
       
  4646  * eecd - EECD's current value
       
  4647  *****************************************************************************/
       
  4648 static void
       
  4649 e1000_lower_ee_clk(struct e1000_hw *hw,
       
  4650                    u32 *eecd)
       
  4651 {
       
  4652     /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
       
  4653      * wait 50 microseconds.
       
  4654      */
       
  4655     *eecd = *eecd & ~E1000_EECD_SK;
       
  4656     E1000_WRITE_REG(hw, EECD, *eecd);
       
  4657     E1000_WRITE_FLUSH(hw);
       
  4658     udelay(hw->eeprom.delay_usec);
       
  4659 }
       
  4660 
       
  4661 /******************************************************************************
       
  4662  * Shift data bits out to the EEPROM.
       
  4663  *
       
  4664  * hw - Struct containing variables accessed by shared code
       
  4665  * data - data to send to the EEPROM
       
  4666  * count - number of bits to shift out
       
  4667  *****************************************************************************/
       
  4668 static void
       
  4669 e1000_shift_out_ee_bits(struct e1000_hw *hw,
       
  4670                         u16 data,
       
  4671                         u16 count)
       
  4672 {
       
  4673     struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  4674     u32 eecd;
       
  4675     u32 mask;
       
  4676 
       
  4677     /* We need to shift "count" bits out to the EEPROM. So, value in the
       
  4678      * "data" parameter will be shifted out to the EEPROM one bit at a time.
       
  4679      * In order to do this, "data" must be broken down into bits.
       
  4680      */
       
  4681     mask = 0x01 << (count - 1);
       
  4682     eecd = E1000_READ_REG(hw, EECD);
       
  4683     if (eeprom->type == e1000_eeprom_microwire) {
       
  4684         eecd &= ~E1000_EECD_DO;
       
  4685     } else if (eeprom->type == e1000_eeprom_spi) {
       
  4686         eecd |= E1000_EECD_DO;
       
  4687     }
       
  4688     do {
       
  4689         /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
       
  4690          * and then raising and then lowering the clock (the SK bit controls
       
  4691          * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
       
  4692          * by setting "DI" to "0" and then raising and then lowering the clock.
       
  4693          */
       
  4694         eecd &= ~E1000_EECD_DI;
       
  4695 
       
  4696         if (data & mask)
       
  4697             eecd |= E1000_EECD_DI;
       
  4698 
       
  4699         E1000_WRITE_REG(hw, EECD, eecd);
       
  4700         E1000_WRITE_FLUSH(hw);
       
  4701 
       
  4702         udelay(eeprom->delay_usec);
       
  4703 
       
  4704         e1000_raise_ee_clk(hw, &eecd);
       
  4705         e1000_lower_ee_clk(hw, &eecd);
       
  4706 
       
  4707         mask = mask >> 1;
       
  4708 
       
  4709     } while (mask);
       
  4710 
       
  4711     /* We leave the "DI" bit set to "0" when we leave this routine. */
       
  4712     eecd &= ~E1000_EECD_DI;
       
  4713     E1000_WRITE_REG(hw, EECD, eecd);
       
  4714 }
       
  4715 
       
  4716 /******************************************************************************
       
  4717  * Shift data bits in from the EEPROM
       
  4718  *
       
  4719  * hw - Struct containing variables accessed by shared code
       
  4720  *****************************************************************************/
       
  4721 static u16
       
  4722 e1000_shift_in_ee_bits(struct e1000_hw *hw,
       
  4723                        u16 count)
       
  4724 {
       
  4725     u32 eecd;
       
  4726     u32 i;
       
  4727     u16 data;
       
  4728 
       
  4729     /* In order to read a register from the EEPROM, we need to shift 'count'
       
  4730      * bits in from the EEPROM. Bits are "shifted in" by raising the clock
       
  4731      * input to the EEPROM (setting the SK bit), and then reading the value of
       
  4732      * the "DO" bit.  During this "shifting in" process the "DI" bit should
       
  4733      * always be clear.
       
  4734      */
       
  4735 
       
  4736     eecd = E1000_READ_REG(hw, EECD);
       
  4737 
       
  4738     eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
       
  4739     data = 0;
       
  4740 
       
  4741     for (i = 0; i < count; i++) {
       
  4742         data = data << 1;
       
  4743         e1000_raise_ee_clk(hw, &eecd);
       
  4744 
       
  4745         eecd = E1000_READ_REG(hw, EECD);
       
  4746 
       
  4747         eecd &= ~(E1000_EECD_DI);
       
  4748         if (eecd & E1000_EECD_DO)
       
  4749             data |= 1;
       
  4750 
       
  4751         e1000_lower_ee_clk(hw, &eecd);
       
  4752     }
       
  4753 
       
  4754     return data;
       
  4755 }
       
  4756 
       
  4757 /******************************************************************************
       
  4758  * Prepares EEPROM for access
       
  4759  *
       
  4760  * hw - Struct containing variables accessed by shared code
       
  4761  *
       
  4762  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
       
  4763  * function should be called before issuing a command to the EEPROM.
       
  4764  *****************************************************************************/
       
  4765 static s32
       
  4766 e1000_acquire_eeprom(struct e1000_hw *hw)
       
  4767 {
       
  4768     struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  4769     u32 eecd, i=0;
       
  4770 
       
  4771     DEBUGFUNC("e1000_acquire_eeprom");
       
  4772 
       
  4773     if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
       
  4774         return -E1000_ERR_SWFW_SYNC;
       
  4775     eecd = E1000_READ_REG(hw, EECD);
       
  4776 
       
  4777     if (hw->mac_type != e1000_82573) {
       
  4778         /* Request EEPROM Access */
       
  4779         if (hw->mac_type > e1000_82544) {
       
  4780             eecd |= E1000_EECD_REQ;
       
  4781             E1000_WRITE_REG(hw, EECD, eecd);
       
  4782             eecd = E1000_READ_REG(hw, EECD);
       
  4783             while ((!(eecd & E1000_EECD_GNT)) &&
       
  4784                   (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
       
  4785                 i++;
       
  4786                 udelay(5);
       
  4787                 eecd = E1000_READ_REG(hw, EECD);
       
  4788             }
       
  4789             if (!(eecd & E1000_EECD_GNT)) {
       
  4790                 eecd &= ~E1000_EECD_REQ;
       
  4791                 E1000_WRITE_REG(hw, EECD, eecd);
       
  4792                 DEBUGOUT("Could not acquire EEPROM grant\n");
       
  4793                 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
       
  4794                 return -E1000_ERR_EEPROM;
       
  4795             }
       
  4796         }
       
  4797     }
       
  4798 
       
  4799     /* Setup EEPROM for Read/Write */
       
  4800 
       
  4801     if (eeprom->type == e1000_eeprom_microwire) {
       
  4802         /* Clear SK and DI */
       
  4803         eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
       
  4804         E1000_WRITE_REG(hw, EECD, eecd);
       
  4805 
       
  4806         /* Set CS */
       
  4807         eecd |= E1000_EECD_CS;
       
  4808         E1000_WRITE_REG(hw, EECD, eecd);
       
  4809     } else if (eeprom->type == e1000_eeprom_spi) {
       
  4810         /* Clear SK and CS */
       
  4811         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
       
  4812         E1000_WRITE_REG(hw, EECD, eecd);
       
  4813         udelay(1);
       
  4814     }
       
  4815 
       
  4816     return E1000_SUCCESS;
       
  4817 }
       
  4818 
       
  4819 /******************************************************************************
       
  4820  * Returns EEPROM to a "standby" state
       
  4821  *
       
  4822  * hw - Struct containing variables accessed by shared code
       
  4823  *****************************************************************************/
       
  4824 static void
       
  4825 e1000_standby_eeprom(struct e1000_hw *hw)
       
  4826 {
       
  4827     struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  4828     u32 eecd;
       
  4829 
       
  4830     eecd = E1000_READ_REG(hw, EECD);
       
  4831 
       
  4832     if (eeprom->type == e1000_eeprom_microwire) {
       
  4833         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
       
  4834         E1000_WRITE_REG(hw, EECD, eecd);
       
  4835         E1000_WRITE_FLUSH(hw);
       
  4836         udelay(eeprom->delay_usec);
       
  4837 
       
  4838         /* Clock high */
       
  4839         eecd |= E1000_EECD_SK;
       
  4840         E1000_WRITE_REG(hw, EECD, eecd);
       
  4841         E1000_WRITE_FLUSH(hw);
       
  4842         udelay(eeprom->delay_usec);
       
  4843 
       
  4844         /* Select EEPROM */
       
  4845         eecd |= E1000_EECD_CS;
       
  4846         E1000_WRITE_REG(hw, EECD, eecd);
       
  4847         E1000_WRITE_FLUSH(hw);
       
  4848         udelay(eeprom->delay_usec);
       
  4849 
       
  4850         /* Clock low */
       
  4851         eecd &= ~E1000_EECD_SK;
       
  4852         E1000_WRITE_REG(hw, EECD, eecd);
       
  4853         E1000_WRITE_FLUSH(hw);
       
  4854         udelay(eeprom->delay_usec);
       
  4855     } else if (eeprom->type == e1000_eeprom_spi) {
       
  4856         /* Toggle CS to flush commands */
       
  4857         eecd |= E1000_EECD_CS;
       
  4858         E1000_WRITE_REG(hw, EECD, eecd);
       
  4859         E1000_WRITE_FLUSH(hw);
       
  4860         udelay(eeprom->delay_usec);
       
  4861         eecd &= ~E1000_EECD_CS;
       
  4862         E1000_WRITE_REG(hw, EECD, eecd);
       
  4863         E1000_WRITE_FLUSH(hw);
       
  4864         udelay(eeprom->delay_usec);
       
  4865     }
       
  4866 }
       
  4867 
       
  4868 /******************************************************************************
       
  4869  * Terminates a command by inverting the EEPROM's chip select pin
       
  4870  *
       
  4871  * hw - Struct containing variables accessed by shared code
       
  4872  *****************************************************************************/
       
  4873 static void
       
  4874 e1000_release_eeprom(struct e1000_hw *hw)
       
  4875 {
       
  4876     u32 eecd;
       
  4877 
       
  4878     DEBUGFUNC("e1000_release_eeprom");
       
  4879 
       
  4880     eecd = E1000_READ_REG(hw, EECD);
       
  4881 
       
  4882     if (hw->eeprom.type == e1000_eeprom_spi) {
       
  4883         eecd |= E1000_EECD_CS;  /* Pull CS high */
       
  4884         eecd &= ~E1000_EECD_SK; /* Lower SCK */
       
  4885 
       
  4886         E1000_WRITE_REG(hw, EECD, eecd);
       
  4887 
       
  4888         udelay(hw->eeprom.delay_usec);
       
  4889     } else if (hw->eeprom.type == e1000_eeprom_microwire) {
       
  4890         /* cleanup eeprom */
       
  4891 
       
  4892         /* CS on Microwire is active-high */
       
  4893         eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
       
  4894 
       
  4895         E1000_WRITE_REG(hw, EECD, eecd);
       
  4896 
       
  4897         /* Rising edge of clock */
       
  4898         eecd |= E1000_EECD_SK;
       
  4899         E1000_WRITE_REG(hw, EECD, eecd);
       
  4900         E1000_WRITE_FLUSH(hw);
       
  4901         udelay(hw->eeprom.delay_usec);
       
  4902 
       
  4903         /* Falling edge of clock */
       
  4904         eecd &= ~E1000_EECD_SK;
       
  4905         E1000_WRITE_REG(hw, EECD, eecd);
       
  4906         E1000_WRITE_FLUSH(hw);
       
  4907         udelay(hw->eeprom.delay_usec);
       
  4908     }
       
  4909 
       
  4910     /* Stop requesting EEPROM access */
       
  4911     if (hw->mac_type > e1000_82544) {
       
  4912         eecd &= ~E1000_EECD_REQ;
       
  4913         E1000_WRITE_REG(hw, EECD, eecd);
       
  4914     }
       
  4915 
       
  4916     e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
       
  4917 }
       
  4918 
       
  4919 /******************************************************************************
       
  4920  * Reads a 16 bit word from the EEPROM.
       
  4921  *
       
  4922  * hw - Struct containing variables accessed by shared code
       
  4923  *****************************************************************************/
       
  4924 static s32
       
  4925 e1000_spi_eeprom_ready(struct e1000_hw *hw)
       
  4926 {
       
  4927     u16 retry_count = 0;
       
  4928     u8 spi_stat_reg;
       
  4929 
       
  4930     DEBUGFUNC("e1000_spi_eeprom_ready");
       
  4931 
       
  4932     /* Read "Status Register" repeatedly until the LSB is cleared.  The
       
  4933      * EEPROM will signal that the command has been completed by clearing
       
  4934      * bit 0 of the internal status register.  If it's not cleared within
       
  4935      * 5 milliseconds, then error out.
       
  4936      */
       
  4937     retry_count = 0;
       
  4938     do {
       
  4939         e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
       
  4940                                 hw->eeprom.opcode_bits);
       
  4941         spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
       
  4942         if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
       
  4943             break;
       
  4944 
       
  4945         udelay(5);
       
  4946         retry_count += 5;
       
  4947 
       
  4948         e1000_standby_eeprom(hw);
       
  4949     } while (retry_count < EEPROM_MAX_RETRY_SPI);
       
  4950 
       
  4951     /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
       
  4952      * only 0-5mSec on 5V devices)
       
  4953      */
       
  4954     if (retry_count >= EEPROM_MAX_RETRY_SPI) {
       
  4955         DEBUGOUT("SPI EEPROM Status error\n");
       
  4956         return -E1000_ERR_EEPROM;
       
  4957     }
       
  4958 
       
  4959     return E1000_SUCCESS;
       
  4960 }
       
  4961 
       
  4962 /******************************************************************************
       
  4963  * Reads a 16 bit word from the EEPROM.
       
  4964  *
       
  4965  * hw - Struct containing variables accessed by shared code
       
  4966  * offset - offset of  word in the EEPROM to read
       
  4967  * data - word read from the EEPROM
       
  4968  * words - number of words to read
       
  4969  *****************************************************************************/
       
  4970 s32
       
  4971 e1000_read_eeprom(struct e1000_hw *hw,
       
  4972                   u16 offset,
       
  4973                   u16 words,
       
  4974                   u16 *data)
       
  4975 {
       
  4976     struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  4977     u32 i = 0;
       
  4978 
       
  4979     DEBUGFUNC("e1000_read_eeprom");
       
  4980 
       
  4981     /* If eeprom is not yet detected, do so now */
       
  4982     if (eeprom->word_size == 0)
       
  4983         e1000_init_eeprom_params(hw);
       
  4984 
       
  4985     /* A check for invalid values:  offset too large, too many words, and not
       
  4986      * enough words.
       
  4987      */
       
  4988     if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
       
  4989        (words == 0)) {
       
  4990         DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
       
  4991         return -E1000_ERR_EEPROM;
       
  4992     }
       
  4993 
       
  4994     /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
       
  4995      * directly. In this case, we need to acquire the EEPROM so that
       
  4996      * FW or other port software does not interrupt.
       
  4997      */
       
  4998     if (e1000_is_onboard_nvm_eeprom(hw) && !hw->eeprom.use_eerd) {
       
  4999         /* Prepare the EEPROM for bit-bang reading */
       
  5000         if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
       
  5001             return -E1000_ERR_EEPROM;
       
  5002     }
       
  5003 
       
  5004     /* Eerd register EEPROM access requires no eeprom aquire/release */
       
  5005     if (eeprom->use_eerd)
       
  5006         return e1000_read_eeprom_eerd(hw, offset, words, data);
       
  5007 
       
  5008     /* ICH EEPROM access is done via the ICH flash controller */
       
  5009     if (eeprom->type == e1000_eeprom_ich8)
       
  5010         return e1000_read_eeprom_ich8(hw, offset, words, data);
       
  5011 
       
  5012     /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
       
  5013      * acquired the EEPROM at this point, so any returns should relase it */
       
  5014     if (eeprom->type == e1000_eeprom_spi) {
       
  5015         u16 word_in;
       
  5016         u8 read_opcode = EEPROM_READ_OPCODE_SPI;
       
  5017 
       
  5018         if (e1000_spi_eeprom_ready(hw)) {
       
  5019             e1000_release_eeprom(hw);
       
  5020             return -E1000_ERR_EEPROM;
       
  5021         }
       
  5022 
       
  5023         e1000_standby_eeprom(hw);
       
  5024 
       
  5025         /* Some SPI eeproms use the 8th address bit embedded in the opcode */
       
  5026         if ((eeprom->address_bits == 8) && (offset >= 128))
       
  5027             read_opcode |= EEPROM_A8_OPCODE_SPI;
       
  5028 
       
  5029         /* Send the READ command (opcode + addr)  */
       
  5030         e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
       
  5031         e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits);
       
  5032 
       
  5033         /* Read the data.  The address of the eeprom internally increments with
       
  5034          * each byte (spi) being read, saving on the overhead of eeprom setup
       
  5035          * and tear-down.  The address counter will roll over if reading beyond
       
  5036          * the size of the eeprom, thus allowing the entire memory to be read
       
  5037          * starting from any offset. */
       
  5038         for (i = 0; i < words; i++) {
       
  5039             word_in = e1000_shift_in_ee_bits(hw, 16);
       
  5040             data[i] = (word_in >> 8) | (word_in << 8);
       
  5041         }
       
  5042     } else if (eeprom->type == e1000_eeprom_microwire) {
       
  5043         for (i = 0; i < words; i++) {
       
  5044             /* Send the READ command (opcode + addr)  */
       
  5045             e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
       
  5046                                     eeprom->opcode_bits);
       
  5047             e1000_shift_out_ee_bits(hw, (u16)(offset + i),
       
  5048                                     eeprom->address_bits);
       
  5049 
       
  5050             /* Read the data.  For microwire, each word requires the overhead
       
  5051              * of eeprom setup and tear-down. */
       
  5052             data[i] = e1000_shift_in_ee_bits(hw, 16);
       
  5053             e1000_standby_eeprom(hw);
       
  5054         }
       
  5055     }
       
  5056 
       
  5057     /* End this read operation */
       
  5058     e1000_release_eeprom(hw);
       
  5059 
       
  5060     return E1000_SUCCESS;
       
  5061 }
       
  5062 
       
  5063 /******************************************************************************
       
  5064  * Reads a 16 bit word from the EEPROM using the EERD register.
       
  5065  *
       
  5066  * hw - Struct containing variables accessed by shared code
       
  5067  * offset - offset of  word in the EEPROM to read
       
  5068  * data - word read from the EEPROM
       
  5069  * words - number of words to read
       
  5070  *****************************************************************************/
       
  5071 static s32
       
  5072 e1000_read_eeprom_eerd(struct e1000_hw *hw,
       
  5073                   u16 offset,
       
  5074                   u16 words,
       
  5075                   u16 *data)
       
  5076 {
       
  5077     u32 i, eerd = 0;
       
  5078     s32 error = 0;
       
  5079 
       
  5080     for (i = 0; i < words; i++) {
       
  5081         eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
       
  5082                          E1000_EEPROM_RW_REG_START;
       
  5083 
       
  5084         E1000_WRITE_REG(hw, EERD, eerd);
       
  5085         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
       
  5086 
       
  5087         if (error) {
       
  5088             break;
       
  5089         }
       
  5090         data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
       
  5091 
       
  5092     }
       
  5093 
       
  5094     return error;
       
  5095 }
       
  5096 
       
  5097 /******************************************************************************
       
  5098  * Writes a 16 bit word from the EEPROM using the EEWR register.
       
  5099  *
       
  5100  * hw - Struct containing variables accessed by shared code
       
  5101  * offset - offset of  word in the EEPROM to read
       
  5102  * data - word read from the EEPROM
       
  5103  * words - number of words to read
       
  5104  *****************************************************************************/
       
  5105 static s32
       
  5106 e1000_write_eeprom_eewr(struct e1000_hw *hw,
       
  5107                    u16 offset,
       
  5108                    u16 words,
       
  5109                    u16 *data)
       
  5110 {
       
  5111     u32    register_value = 0;
       
  5112     u32    i              = 0;
       
  5113     s32     error          = 0;
       
  5114 
       
  5115     if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
       
  5116         return -E1000_ERR_SWFW_SYNC;
       
  5117 
       
  5118     for (i = 0; i < words; i++) {
       
  5119         register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
       
  5120                          ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
       
  5121                          E1000_EEPROM_RW_REG_START;
       
  5122 
       
  5123         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
       
  5124         if (error) {
       
  5125             break;
       
  5126         }
       
  5127 
       
  5128         E1000_WRITE_REG(hw, EEWR, register_value);
       
  5129 
       
  5130         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
       
  5131 
       
  5132         if (error) {
       
  5133             break;
       
  5134         }
       
  5135     }
       
  5136 
       
  5137     e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
       
  5138     return error;
       
  5139 }
       
  5140 
       
  5141 /******************************************************************************
       
  5142  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
       
  5143  *
       
  5144  * hw - Struct containing variables accessed by shared code
       
  5145  *****************************************************************************/
       
  5146 static s32
       
  5147 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
       
  5148 {
       
  5149     u32 attempts = 100000;
       
  5150     u32 i, reg = 0;
       
  5151     s32 done = E1000_ERR_EEPROM;
       
  5152 
       
  5153     for (i = 0; i < attempts; i++) {
       
  5154         if (eerd == E1000_EEPROM_POLL_READ)
       
  5155             reg = E1000_READ_REG(hw, EERD);
       
  5156         else
       
  5157             reg = E1000_READ_REG(hw, EEWR);
       
  5158 
       
  5159         if (reg & E1000_EEPROM_RW_REG_DONE) {
       
  5160             done = E1000_SUCCESS;
       
  5161             break;
       
  5162         }
       
  5163         udelay(5);
       
  5164     }
       
  5165 
       
  5166     return done;
       
  5167 }
       
  5168 
       
  5169 /***************************************************************************
       
  5170 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
       
  5171 *
       
  5172 * hw - Struct containing variables accessed by shared code
       
  5173 ****************************************************************************/
       
  5174 static bool
       
  5175 e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
       
  5176 {
       
  5177     u32 eecd = 0;
       
  5178 
       
  5179     DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
       
  5180 
       
  5181     if (hw->mac_type == e1000_ich8lan)
       
  5182         return false;
       
  5183 
       
  5184     if (hw->mac_type == e1000_82573) {
       
  5185         eecd = E1000_READ_REG(hw, EECD);
       
  5186 
       
  5187         /* Isolate bits 15 & 16 */
       
  5188         eecd = ((eecd >> 15) & 0x03);
       
  5189 
       
  5190         /* If both bits are set, device is Flash type */
       
  5191         if (eecd == 0x03) {
       
  5192             return false;
       
  5193         }
       
  5194     }
       
  5195     return true;
       
  5196 }
       
  5197 
       
  5198 /******************************************************************************
       
  5199  * Verifies that the EEPROM has a valid checksum
       
  5200  *
       
  5201  * hw - Struct containing variables accessed by shared code
       
  5202  *
       
  5203  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
       
  5204  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
       
  5205  * valid.
       
  5206  *****************************************************************************/
       
  5207 s32
       
  5208 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
       
  5209 {
       
  5210     u16 checksum = 0;
       
  5211     u16 i, eeprom_data;
       
  5212 
       
  5213     DEBUGFUNC("e1000_validate_eeprom_checksum");
       
  5214 
       
  5215     if ((hw->mac_type == e1000_82573) && !e1000_is_onboard_nvm_eeprom(hw)) {
       
  5216         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
       
  5217          * 10h-12h.  Checksum may need to be fixed. */
       
  5218         e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
       
  5219         if ((eeprom_data & 0x10) == 0) {
       
  5220             /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
       
  5221              * has already been fixed.  If the checksum is still wrong and this
       
  5222              * bit is a 1, we need to return bad checksum.  Otherwise, we need
       
  5223              * to set this bit to a 1 and update the checksum. */
       
  5224             e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
       
  5225             if ((eeprom_data & 0x8000) == 0) {
       
  5226                 eeprom_data |= 0x8000;
       
  5227                 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
       
  5228                 e1000_update_eeprom_checksum(hw);
       
  5229             }
       
  5230         }
       
  5231     }
       
  5232 
       
  5233     if (hw->mac_type == e1000_ich8lan) {
       
  5234         /* Drivers must allocate the shadow ram structure for the
       
  5235          * EEPROM checksum to be updated.  Otherwise, this bit as well
       
  5236          * as the checksum must both be set correctly for this
       
  5237          * validation to pass.
       
  5238          */
       
  5239         e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
       
  5240         if ((eeprom_data & 0x40) == 0) {
       
  5241             eeprom_data |= 0x40;
       
  5242             e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
       
  5243             e1000_update_eeprom_checksum(hw);
       
  5244         }
       
  5245     }
       
  5246 
       
  5247     for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
       
  5248         if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
       
  5249             DEBUGOUT("EEPROM Read Error\n");
       
  5250             return -E1000_ERR_EEPROM;
       
  5251         }
       
  5252         checksum += eeprom_data;
       
  5253     }
       
  5254 
       
  5255     if (checksum == (u16) EEPROM_SUM)
       
  5256         return E1000_SUCCESS;
       
  5257     else {
       
  5258         DEBUGOUT("EEPROM Checksum Invalid\n");
       
  5259         return -E1000_ERR_EEPROM;
       
  5260     }
       
  5261 }
       
  5262 
       
  5263 /******************************************************************************
       
  5264  * Calculates the EEPROM checksum and writes it to the EEPROM
       
  5265  *
       
  5266  * hw - Struct containing variables accessed by shared code
       
  5267  *
       
  5268  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
       
  5269  * Writes the difference to word offset 63 of the EEPROM.
       
  5270  *****************************************************************************/
       
  5271 s32
       
  5272 e1000_update_eeprom_checksum(struct e1000_hw *hw)
       
  5273 {
       
  5274     u32 ctrl_ext;
       
  5275     u16 checksum = 0;
       
  5276     u16 i, eeprom_data;
       
  5277 
       
  5278     DEBUGFUNC("e1000_update_eeprom_checksum");
       
  5279 
       
  5280     for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
       
  5281         if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
       
  5282             DEBUGOUT("EEPROM Read Error\n");
       
  5283             return -E1000_ERR_EEPROM;
       
  5284         }
       
  5285         checksum += eeprom_data;
       
  5286     }
       
  5287     checksum = (u16) EEPROM_SUM - checksum;
       
  5288     if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
       
  5289         DEBUGOUT("EEPROM Write Error\n");
       
  5290         return -E1000_ERR_EEPROM;
       
  5291     } else if (hw->eeprom.type == e1000_eeprom_flash) {
       
  5292         e1000_commit_shadow_ram(hw);
       
  5293     } else if (hw->eeprom.type == e1000_eeprom_ich8) {
       
  5294         e1000_commit_shadow_ram(hw);
       
  5295         /* Reload the EEPROM, or else modifications will not appear
       
  5296          * until after next adapter reset. */
       
  5297         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
  5298         ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
  5299         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
  5300         msleep(10);
       
  5301     }
       
  5302     return E1000_SUCCESS;
       
  5303 }
       
  5304 
       
  5305 /******************************************************************************
       
  5306  * Parent function for writing words to the different EEPROM types.
       
  5307  *
       
  5308  * hw - Struct containing variables accessed by shared code
       
  5309  * offset - offset within the EEPROM to be written to
       
  5310  * words - number of words to write
       
  5311  * data - 16 bit word to be written to the EEPROM
       
  5312  *
       
  5313  * If e1000_update_eeprom_checksum is not called after this function, the
       
  5314  * EEPROM will most likely contain an invalid checksum.
       
  5315  *****************************************************************************/
       
  5316 s32
       
  5317 e1000_write_eeprom(struct e1000_hw *hw,
       
  5318                    u16 offset,
       
  5319                    u16 words,
       
  5320                    u16 *data)
       
  5321 {
       
  5322     struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  5323     s32 status = 0;
       
  5324 
       
  5325     DEBUGFUNC("e1000_write_eeprom");
       
  5326 
       
  5327     /* If eeprom is not yet detected, do so now */
       
  5328     if (eeprom->word_size == 0)
       
  5329         e1000_init_eeprom_params(hw);
       
  5330 
       
  5331     /* A check for invalid values:  offset too large, too many words, and not
       
  5332      * enough words.
       
  5333      */
       
  5334     if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
       
  5335        (words == 0)) {
       
  5336         DEBUGOUT("\"words\" parameter out of bounds\n");
       
  5337         return -E1000_ERR_EEPROM;
       
  5338     }
       
  5339 
       
  5340     /* 82573 writes only through eewr */
       
  5341     if (eeprom->use_eewr)
       
  5342         return e1000_write_eeprom_eewr(hw, offset, words, data);
       
  5343 
       
  5344     if (eeprom->type == e1000_eeprom_ich8)
       
  5345         return e1000_write_eeprom_ich8(hw, offset, words, data);
       
  5346 
       
  5347     /* Prepare the EEPROM for writing  */
       
  5348     if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
       
  5349         return -E1000_ERR_EEPROM;
       
  5350 
       
  5351     if (eeprom->type == e1000_eeprom_microwire) {
       
  5352         status = e1000_write_eeprom_microwire(hw, offset, words, data);
       
  5353     } else {
       
  5354         status = e1000_write_eeprom_spi(hw, offset, words, data);
       
  5355         msleep(10);
       
  5356     }
       
  5357 
       
  5358     /* Done with writing */
       
  5359     e1000_release_eeprom(hw);
       
  5360 
       
  5361     return status;
       
  5362 }
       
  5363 
       
  5364 /******************************************************************************
       
  5365  * Writes a 16 bit word to a given offset in an SPI EEPROM.
       
  5366  *
       
  5367  * hw - Struct containing variables accessed by shared code
       
  5368  * offset - offset within the EEPROM to be written to
       
  5369  * words - number of words to write
       
  5370  * data - pointer to array of 8 bit words to be written to the EEPROM
       
  5371  *
       
  5372  *****************************************************************************/
       
  5373 static s32
       
  5374 e1000_write_eeprom_spi(struct e1000_hw *hw,
       
  5375                        u16 offset,
       
  5376                        u16 words,
       
  5377                        u16 *data)
       
  5378 {
       
  5379     struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  5380     u16 widx = 0;
       
  5381 
       
  5382     DEBUGFUNC("e1000_write_eeprom_spi");
       
  5383 
       
  5384     while (widx < words) {
       
  5385         u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
       
  5386 
       
  5387         if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
       
  5388 
       
  5389         e1000_standby_eeprom(hw);
       
  5390 
       
  5391         /*  Send the WRITE ENABLE command (8 bit opcode )  */
       
  5392         e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
       
  5393                                     eeprom->opcode_bits);
       
  5394 
       
  5395         e1000_standby_eeprom(hw);
       
  5396 
       
  5397         /* Some SPI eeproms use the 8th address bit embedded in the opcode */
       
  5398         if ((eeprom->address_bits == 8) && (offset >= 128))
       
  5399             write_opcode |= EEPROM_A8_OPCODE_SPI;
       
  5400 
       
  5401         /* Send the Write command (8-bit opcode + addr) */
       
  5402         e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
       
  5403 
       
  5404         e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2),
       
  5405                                 eeprom->address_bits);
       
  5406 
       
  5407         /* Send the data */
       
  5408 
       
  5409         /* Loop to allow for up to whole page write (32 bytes) of eeprom */
       
  5410         while (widx < words) {
       
  5411             u16 word_out = data[widx];
       
  5412             word_out = (word_out >> 8) | (word_out << 8);
       
  5413             e1000_shift_out_ee_bits(hw, word_out, 16);
       
  5414             widx++;
       
  5415 
       
  5416             /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
       
  5417              * operation, while the smaller eeproms are capable of an 8-byte
       
  5418              * PAGE WRITE operation.  Break the inner loop to pass new address
       
  5419              */
       
  5420             if ((((offset + widx)*2) % eeprom->page_size) == 0) {
       
  5421                 e1000_standby_eeprom(hw);
       
  5422                 break;
       
  5423             }
       
  5424         }
       
  5425     }
       
  5426 
       
  5427     return E1000_SUCCESS;
       
  5428 }
       
  5429 
       
  5430 /******************************************************************************
       
  5431  * Writes a 16 bit word to a given offset in a Microwire EEPROM.
       
  5432  *
       
  5433  * hw - Struct containing variables accessed by shared code
       
  5434  * offset - offset within the EEPROM to be written to
       
  5435  * words - number of words to write
       
  5436  * data - pointer to array of 16 bit words to be written to the EEPROM
       
  5437  *
       
  5438  *****************************************************************************/
       
  5439 static s32
       
  5440 e1000_write_eeprom_microwire(struct e1000_hw *hw,
       
  5441                              u16 offset,
       
  5442                              u16 words,
       
  5443                              u16 *data)
       
  5444 {
       
  5445     struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  5446     u32 eecd;
       
  5447     u16 words_written = 0;
       
  5448     u16 i = 0;
       
  5449 
       
  5450     DEBUGFUNC("e1000_write_eeprom_microwire");
       
  5451 
       
  5452     /* Send the write enable command to the EEPROM (3-bit opcode plus
       
  5453      * 6/8-bit dummy address beginning with 11).  It's less work to include
       
  5454      * the 11 of the dummy address as part of the opcode than it is to shift
       
  5455      * it over the correct number of bits for the address.  This puts the
       
  5456      * EEPROM into write/erase mode.
       
  5457      */
       
  5458     e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
       
  5459                             (u16)(eeprom->opcode_bits + 2));
       
  5460 
       
  5461     e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
       
  5462 
       
  5463     /* Prepare the EEPROM */
       
  5464     e1000_standby_eeprom(hw);
       
  5465 
       
  5466     while (words_written < words) {
       
  5467         /* Send the Write command (3-bit opcode + addr) */
       
  5468         e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
       
  5469                                 eeprom->opcode_bits);
       
  5470 
       
  5471         e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
       
  5472                                 eeprom->address_bits);
       
  5473 
       
  5474         /* Send the data */
       
  5475         e1000_shift_out_ee_bits(hw, data[words_written], 16);
       
  5476 
       
  5477         /* Toggle the CS line.  This in effect tells the EEPROM to execute
       
  5478          * the previous command.
       
  5479          */
       
  5480         e1000_standby_eeprom(hw);
       
  5481 
       
  5482         /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
       
  5483          * signal that the command has been completed by raising the DO signal.
       
  5484          * If DO does not go high in 10 milliseconds, then error out.
       
  5485          */
       
  5486         for (i = 0; i < 200; i++) {
       
  5487             eecd = E1000_READ_REG(hw, EECD);
       
  5488             if (eecd & E1000_EECD_DO) break;
       
  5489             udelay(50);
       
  5490         }
       
  5491         if (i == 200) {
       
  5492             DEBUGOUT("EEPROM Write did not complete\n");
       
  5493             return -E1000_ERR_EEPROM;
       
  5494         }
       
  5495 
       
  5496         /* Recover from write */
       
  5497         e1000_standby_eeprom(hw);
       
  5498 
       
  5499         words_written++;
       
  5500     }
       
  5501 
       
  5502     /* Send the write disable command to the EEPROM (3-bit opcode plus
       
  5503      * 6/8-bit dummy address beginning with 10).  It's less work to include
       
  5504      * the 10 of the dummy address as part of the opcode than it is to shift
       
  5505      * it over the correct number of bits for the address.  This takes the
       
  5506      * EEPROM out of write/erase mode.
       
  5507      */
       
  5508     e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
       
  5509                             (u16)(eeprom->opcode_bits + 2));
       
  5510 
       
  5511     e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
       
  5512 
       
  5513     return E1000_SUCCESS;
       
  5514 }
       
  5515 
       
  5516 /******************************************************************************
       
  5517  * Flushes the cached eeprom to NVM. This is done by saving the modified values
       
  5518  * in the eeprom cache and the non modified values in the currently active bank
       
  5519  * to the new bank.
       
  5520  *
       
  5521  * hw - Struct containing variables accessed by shared code
       
  5522  * offset - offset of  word in the EEPROM to read
       
  5523  * data - word read from the EEPROM
       
  5524  * words - number of words to read
       
  5525  *****************************************************************************/
       
  5526 static s32
       
  5527 e1000_commit_shadow_ram(struct e1000_hw *hw)
       
  5528 {
       
  5529     u32 attempts = 100000;
       
  5530     u32 eecd = 0;
       
  5531     u32 flop = 0;
       
  5532     u32 i = 0;
       
  5533     s32 error = E1000_SUCCESS;
       
  5534     u32 old_bank_offset = 0;
       
  5535     u32 new_bank_offset = 0;
       
  5536     u8 low_byte = 0;
       
  5537     u8 high_byte = 0;
       
  5538     bool sector_write_failed = false;
       
  5539 
       
  5540     if (hw->mac_type == e1000_82573) {
       
  5541         /* The flop register will be used to determine if flash type is STM */
       
  5542         flop = E1000_READ_REG(hw, FLOP);
       
  5543         for (i=0; i < attempts; i++) {
       
  5544             eecd = E1000_READ_REG(hw, EECD);
       
  5545             if ((eecd & E1000_EECD_FLUPD) == 0) {
       
  5546                 break;
       
  5547             }
       
  5548             udelay(5);
       
  5549         }
       
  5550 
       
  5551         if (i == attempts) {
       
  5552             return -E1000_ERR_EEPROM;
       
  5553         }
       
  5554 
       
  5555         /* If STM opcode located in bits 15:8 of flop, reset firmware */
       
  5556         if ((flop & 0xFF00) == E1000_STM_OPCODE) {
       
  5557             E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
       
  5558         }
       
  5559 
       
  5560         /* Perform the flash update */
       
  5561         E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
       
  5562 
       
  5563         for (i=0; i < attempts; i++) {
       
  5564             eecd = E1000_READ_REG(hw, EECD);
       
  5565             if ((eecd & E1000_EECD_FLUPD) == 0) {
       
  5566                 break;
       
  5567             }
       
  5568             udelay(5);
       
  5569         }
       
  5570 
       
  5571         if (i == attempts) {
       
  5572             return -E1000_ERR_EEPROM;
       
  5573         }
       
  5574     }
       
  5575 
       
  5576     if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
       
  5577         /* We're writing to the opposite bank so if we're on bank 1,
       
  5578          * write to bank 0 etc.  We also need to erase the segment that
       
  5579          * is going to be written */
       
  5580         if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
       
  5581             new_bank_offset = hw->flash_bank_size * 2;
       
  5582             old_bank_offset = 0;
       
  5583             e1000_erase_ich8_4k_segment(hw, 1);
       
  5584         } else {
       
  5585             old_bank_offset = hw->flash_bank_size * 2;
       
  5586             new_bank_offset = 0;
       
  5587             e1000_erase_ich8_4k_segment(hw, 0);
       
  5588         }
       
  5589 
       
  5590         sector_write_failed = false;
       
  5591         /* Loop for every byte in the shadow RAM,
       
  5592          * which is in units of words. */
       
  5593         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
       
  5594             /* Determine whether to write the value stored
       
  5595              * in the other NVM bank or a modified value stored
       
  5596              * in the shadow RAM */
       
  5597             if (hw->eeprom_shadow_ram[i].modified) {
       
  5598                 low_byte = (u8)hw->eeprom_shadow_ram[i].eeprom_word;
       
  5599                 udelay(100);
       
  5600                 error = e1000_verify_write_ich8_byte(hw,
       
  5601                             (i << 1) + new_bank_offset, low_byte);
       
  5602 
       
  5603                 if (error != E1000_SUCCESS)
       
  5604                     sector_write_failed = true;
       
  5605                 else {
       
  5606                     high_byte =
       
  5607                         (u8)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
       
  5608                     udelay(100);
       
  5609                 }
       
  5610             } else {
       
  5611                 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
       
  5612                                      &low_byte);
       
  5613                 udelay(100);
       
  5614                 error = e1000_verify_write_ich8_byte(hw,
       
  5615                             (i << 1) + new_bank_offset, low_byte);
       
  5616 
       
  5617                 if (error != E1000_SUCCESS)
       
  5618                     sector_write_failed = true;
       
  5619                 else {
       
  5620                     e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
       
  5621                                          &high_byte);
       
  5622                     udelay(100);
       
  5623                 }
       
  5624             }
       
  5625 
       
  5626             /* If the write of the low byte was successful, go ahead and
       
  5627              * write the high byte while checking to make sure that if it
       
  5628              * is the signature byte, then it is handled properly */
       
  5629             if (!sector_write_failed) {
       
  5630                 /* If the word is 0x13, then make sure the signature bits
       
  5631                  * (15:14) are 11b until the commit has completed.
       
  5632                  * This will allow us to write 10b which indicates the
       
  5633                  * signature is valid.  We want to do this after the write
       
  5634                  * has completed so that we don't mark the segment valid
       
  5635                  * while the write is still in progress */
       
  5636                 if (i == E1000_ICH_NVM_SIG_WORD)
       
  5637                     high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
       
  5638 
       
  5639                 error = e1000_verify_write_ich8_byte(hw,
       
  5640                             (i << 1) + new_bank_offset + 1, high_byte);
       
  5641                 if (error != E1000_SUCCESS)
       
  5642                     sector_write_failed = true;
       
  5643 
       
  5644             } else {
       
  5645                 /* If the write failed then break from the loop and
       
  5646                  * return an error */
       
  5647                 break;
       
  5648             }
       
  5649         }
       
  5650 
       
  5651         /* Don't bother writing the segment valid bits if sector
       
  5652          * programming failed. */
       
  5653         if (!sector_write_failed) {
       
  5654             /* Finally validate the new segment by setting bit 15:14
       
  5655              * to 10b in word 0x13 , this can be done without an
       
  5656              * erase as well since these bits are 11 to start with
       
  5657              * and we need to change bit 14 to 0b */
       
  5658             e1000_read_ich8_byte(hw,
       
  5659                                  E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
       
  5660                                  &high_byte);
       
  5661             high_byte &= 0xBF;
       
  5662             error = e1000_verify_write_ich8_byte(hw,
       
  5663                         E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
       
  5664             /* And invalidate the previously valid segment by setting
       
  5665              * its signature word (0x13) high_byte to 0b. This can be
       
  5666              * done without an erase because flash erase sets all bits
       
  5667              * to 1's. We can write 1's to 0's without an erase */
       
  5668             if (error == E1000_SUCCESS) {
       
  5669                 error = e1000_verify_write_ich8_byte(hw,
       
  5670                             E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
       
  5671             }
       
  5672 
       
  5673             /* Clear the now not used entry in the cache */
       
  5674             for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
       
  5675                 hw->eeprom_shadow_ram[i].modified = false;
       
  5676                 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
       
  5677             }
       
  5678         }
       
  5679     }
       
  5680 
       
  5681     return error;
       
  5682 }
       
  5683 
       
  5684 /******************************************************************************
       
  5685  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
       
  5686  * second function of dual function devices
       
  5687  *
       
  5688  * hw - Struct containing variables accessed by shared code
       
  5689  *****************************************************************************/
       
  5690 s32
       
  5691 e1000_read_mac_addr(struct e1000_hw * hw)
       
  5692 {
       
  5693     u16 offset;
       
  5694     u16 eeprom_data, i;
       
  5695 
       
  5696     DEBUGFUNC("e1000_read_mac_addr");
       
  5697 
       
  5698     for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
       
  5699         offset = i >> 1;
       
  5700         if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
       
  5701             DEBUGOUT("EEPROM Read Error\n");
       
  5702             return -E1000_ERR_EEPROM;
       
  5703         }
       
  5704         hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
       
  5705         hw->perm_mac_addr[i+1] = (u8) (eeprom_data >> 8);
       
  5706     }
       
  5707 
       
  5708     switch (hw->mac_type) {
       
  5709     default:
       
  5710         break;
       
  5711     case e1000_82546:
       
  5712     case e1000_82546_rev_3:
       
  5713     case e1000_82571:
       
  5714     case e1000_80003es2lan:
       
  5715         if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
       
  5716             hw->perm_mac_addr[5] ^= 0x01;
       
  5717         break;
       
  5718     }
       
  5719 
       
  5720     for (i = 0; i < NODE_ADDRESS_SIZE; i++)
       
  5721         hw->mac_addr[i] = hw->perm_mac_addr[i];
       
  5722     return E1000_SUCCESS;
       
  5723 }
       
  5724 
       
  5725 /******************************************************************************
       
  5726  * Initializes receive address filters.
       
  5727  *
       
  5728  * hw - Struct containing variables accessed by shared code
       
  5729  *
       
  5730  * Places the MAC address in receive address register 0 and clears the rest
       
  5731  * of the receive addresss registers. Clears the multicast table. Assumes
       
  5732  * the receiver is in reset when the routine is called.
       
  5733  *****************************************************************************/
       
  5734 static void
       
  5735 e1000_init_rx_addrs(struct e1000_hw *hw)
       
  5736 {
       
  5737     u32 i;
       
  5738     u32 rar_num;
       
  5739 
       
  5740     DEBUGFUNC("e1000_init_rx_addrs");
       
  5741 
       
  5742     /* Setup the receive address. */
       
  5743     DEBUGOUT("Programming MAC Address into RAR[0]\n");
       
  5744 
       
  5745     e1000_rar_set(hw, hw->mac_addr, 0);
       
  5746 
       
  5747     rar_num = E1000_RAR_ENTRIES;
       
  5748 
       
  5749     /* Reserve a spot for the Locally Administered Address to work around
       
  5750      * an 82571 issue in which a reset on one port will reload the MAC on
       
  5751      * the other port. */
       
  5752     if ((hw->mac_type == e1000_82571) && (hw->laa_is_present))
       
  5753         rar_num -= 1;
       
  5754     if (hw->mac_type == e1000_ich8lan)
       
  5755         rar_num = E1000_RAR_ENTRIES_ICH8LAN;
       
  5756 
       
  5757     /* Zero out the other 15 receive addresses. */
       
  5758     DEBUGOUT("Clearing RAR[1-15]\n");
       
  5759     for (i = 1; i < rar_num; i++) {
       
  5760         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
       
  5761         E1000_WRITE_FLUSH(hw);
       
  5762         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
       
  5763         E1000_WRITE_FLUSH(hw);
       
  5764     }
       
  5765 }
       
  5766 
       
  5767 /******************************************************************************
       
  5768  * Hashes an address to determine its location in the multicast table
       
  5769  *
       
  5770  * hw - Struct containing variables accessed by shared code
       
  5771  * mc_addr - the multicast address to hash
       
  5772  *****************************************************************************/
       
  5773 u32
       
  5774 e1000_hash_mc_addr(struct e1000_hw *hw,
       
  5775                    u8 *mc_addr)
       
  5776 {
       
  5777     u32 hash_value = 0;
       
  5778 
       
  5779     /* The portion of the address that is used for the hash table is
       
  5780      * determined by the mc_filter_type setting.
       
  5781      */
       
  5782     switch (hw->mc_filter_type) {
       
  5783     /* [0] [1] [2] [3] [4] [5]
       
  5784      * 01  AA  00  12  34  56
       
  5785      * LSB                 MSB
       
  5786      */
       
  5787     case 0:
       
  5788         if (hw->mac_type == e1000_ich8lan) {
       
  5789             /* [47:38] i.e. 0x158 for above example address */
       
  5790             hash_value = ((mc_addr[4] >> 6) | (((u16) mc_addr[5]) << 2));
       
  5791         } else {
       
  5792             /* [47:36] i.e. 0x563 for above example address */
       
  5793             hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
       
  5794         }
       
  5795         break;
       
  5796     case 1:
       
  5797         if (hw->mac_type == e1000_ich8lan) {
       
  5798             /* [46:37] i.e. 0x2B1 for above example address */
       
  5799             hash_value = ((mc_addr[4] >> 5) | (((u16) mc_addr[5]) << 3));
       
  5800         } else {
       
  5801             /* [46:35] i.e. 0xAC6 for above example address */
       
  5802             hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
       
  5803         }
       
  5804         break;
       
  5805     case 2:
       
  5806         if (hw->mac_type == e1000_ich8lan) {
       
  5807             /*[45:36] i.e. 0x163 for above example address */
       
  5808             hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
       
  5809         } else {
       
  5810             /* [45:34] i.e. 0x5D8 for above example address */
       
  5811             hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
       
  5812         }
       
  5813         break;
       
  5814     case 3:
       
  5815         if (hw->mac_type == e1000_ich8lan) {
       
  5816             /* [43:34] i.e. 0x18D for above example address */
       
  5817             hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
       
  5818         } else {
       
  5819             /* [43:32] i.e. 0x634 for above example address */
       
  5820             hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
       
  5821         }
       
  5822         break;
       
  5823     }
       
  5824 
       
  5825     hash_value &= 0xFFF;
       
  5826     if (hw->mac_type == e1000_ich8lan)
       
  5827         hash_value &= 0x3FF;
       
  5828 
       
  5829     return hash_value;
       
  5830 }
       
  5831 
       
  5832 /******************************************************************************
       
  5833  * Sets the bit in the multicast table corresponding to the hash value.
       
  5834  *
       
  5835  * hw - Struct containing variables accessed by shared code
       
  5836  * hash_value - Multicast address hash value
       
  5837  *****************************************************************************/
       
  5838 void
       
  5839 e1000_mta_set(struct e1000_hw *hw,
       
  5840               u32 hash_value)
       
  5841 {
       
  5842     u32 hash_bit, hash_reg;
       
  5843     u32 mta;
       
  5844     u32 temp;
       
  5845 
       
  5846     /* The MTA is a register array of 128 32-bit registers.
       
  5847      * It is treated like an array of 4096 bits.  We want to set
       
  5848      * bit BitArray[hash_value]. So we figure out what register
       
  5849      * the bit is in, read it, OR in the new bit, then write
       
  5850      * back the new value.  The register is determined by the
       
  5851      * upper 7 bits of the hash value and the bit within that
       
  5852      * register are determined by the lower 5 bits of the value.
       
  5853      */
       
  5854     hash_reg = (hash_value >> 5) & 0x7F;
       
  5855     if (hw->mac_type == e1000_ich8lan)
       
  5856         hash_reg &= 0x1F;
       
  5857 
       
  5858     hash_bit = hash_value & 0x1F;
       
  5859 
       
  5860     mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
       
  5861 
       
  5862     mta |= (1 << hash_bit);
       
  5863 
       
  5864     /* If we are on an 82544 and we are trying to write an odd offset
       
  5865      * in the MTA, save off the previous entry before writing and
       
  5866      * restore the old value after writing.
       
  5867      */
       
  5868     if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
       
  5869         temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
       
  5870         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
       
  5871         E1000_WRITE_FLUSH(hw);
       
  5872         E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
       
  5873         E1000_WRITE_FLUSH(hw);
       
  5874     } else {
       
  5875         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
       
  5876         E1000_WRITE_FLUSH(hw);
       
  5877     }
       
  5878 }
       
  5879 
       
  5880 /******************************************************************************
       
  5881  * Puts an ethernet address into a receive address register.
       
  5882  *
       
  5883  * hw - Struct containing variables accessed by shared code
       
  5884  * addr - Address to put into receive address register
       
  5885  * index - Receive address register to write
       
  5886  *****************************************************************************/
       
  5887 void
       
  5888 e1000_rar_set(struct e1000_hw *hw,
       
  5889               u8 *addr,
       
  5890               u32 index)
       
  5891 {
       
  5892     u32 rar_low, rar_high;
       
  5893 
       
  5894     /* HW expects these in little endian so we reverse the byte order
       
  5895      * from network order (big endian) to little endian
       
  5896      */
       
  5897     rar_low = ((u32) addr[0] |
       
  5898                ((u32) addr[1] << 8) |
       
  5899                ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
       
  5900     rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
       
  5901 
       
  5902     /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
       
  5903      * unit hang.
       
  5904      *
       
  5905      * Description:
       
  5906      * If there are any Rx frames queued up or otherwise present in the HW
       
  5907      * before RSS is enabled, and then we enable RSS, the HW Rx unit will
       
  5908      * hang.  To work around this issue, we have to disable receives and
       
  5909      * flush out all Rx frames before we enable RSS. To do so, we modify we
       
  5910      * redirect all Rx traffic to manageability and then reset the HW.
       
  5911      * This flushes away Rx frames, and (since the redirections to
       
  5912      * manageability persists across resets) keeps new ones from coming in
       
  5913      * while we work.  Then, we clear the Address Valid AV bit for all MAC
       
  5914      * addresses and undo the re-direction to manageability.
       
  5915      * Now, frames are coming in again, but the MAC won't accept them, so
       
  5916      * far so good.  We now proceed to initialize RSS (if necessary) and
       
  5917      * configure the Rx unit.  Last, we re-enable the AV bits and continue
       
  5918      * on our merry way.
       
  5919      */
       
  5920     switch (hw->mac_type) {
       
  5921     case e1000_82571:
       
  5922     case e1000_82572:
       
  5923     case e1000_80003es2lan:
       
  5924         if (hw->leave_av_bit_off)
       
  5925             break;
       
  5926     default:
       
  5927         /* Indicate to hardware the Address is Valid. */
       
  5928         rar_high |= E1000_RAH_AV;
       
  5929         break;
       
  5930     }
       
  5931 
       
  5932     E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
       
  5933     E1000_WRITE_FLUSH(hw);
       
  5934     E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
       
  5935     E1000_WRITE_FLUSH(hw);
       
  5936 }
       
  5937 
       
  5938 /******************************************************************************
       
  5939  * Writes a value to the specified offset in the VLAN filter table.
       
  5940  *
       
  5941  * hw - Struct containing variables accessed by shared code
       
  5942  * offset - Offset in VLAN filer table to write
       
  5943  * value - Value to write into VLAN filter table
       
  5944  *****************************************************************************/
       
  5945 void
       
  5946 e1000_write_vfta(struct e1000_hw *hw,
       
  5947                  u32 offset,
       
  5948                  u32 value)
       
  5949 {
       
  5950     u32 temp;
       
  5951 
       
  5952     if (hw->mac_type == e1000_ich8lan)
       
  5953         return;
       
  5954 
       
  5955     if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
       
  5956         temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
       
  5957         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
       
  5958         E1000_WRITE_FLUSH(hw);
       
  5959         E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
       
  5960         E1000_WRITE_FLUSH(hw);
       
  5961     } else {
       
  5962         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
       
  5963         E1000_WRITE_FLUSH(hw);
       
  5964     }
       
  5965 }
       
  5966 
       
  5967 /******************************************************************************
       
  5968  * Clears the VLAN filer table
       
  5969  *
       
  5970  * hw - Struct containing variables accessed by shared code
       
  5971  *****************************************************************************/
       
  5972 static void
       
  5973 e1000_clear_vfta(struct e1000_hw *hw)
       
  5974 {
       
  5975     u32 offset;
       
  5976     u32 vfta_value = 0;
       
  5977     u32 vfta_offset = 0;
       
  5978     u32 vfta_bit_in_reg = 0;
       
  5979 
       
  5980     if (hw->mac_type == e1000_ich8lan)
       
  5981         return;
       
  5982 
       
  5983     if (hw->mac_type == e1000_82573) {
       
  5984         if (hw->mng_cookie.vlan_id != 0) {
       
  5985             /* The VFTA is a 4096b bit-field, each identifying a single VLAN
       
  5986              * ID.  The following operations determine which 32b entry
       
  5987              * (i.e. offset) into the array we want to set the VLAN ID
       
  5988              * (i.e. bit) of the manageability unit. */
       
  5989             vfta_offset = (hw->mng_cookie.vlan_id >>
       
  5990                            E1000_VFTA_ENTRY_SHIFT) &
       
  5991                           E1000_VFTA_ENTRY_MASK;
       
  5992             vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
       
  5993                                     E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
       
  5994         }
       
  5995     }
       
  5996     for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
  5997         /* If the offset we want to clear is the same offset of the
       
  5998          * manageability VLAN ID, then clear all bits except that of the
       
  5999          * manageability unit */
       
  6000         vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
       
  6001         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
       
  6002         E1000_WRITE_FLUSH(hw);
       
  6003     }
       
  6004 }
       
  6005 
       
  6006 static s32
       
  6007 e1000_id_led_init(struct e1000_hw * hw)
       
  6008 {
       
  6009     u32 ledctl;
       
  6010     const u32 ledctl_mask = 0x000000FF;
       
  6011     const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
       
  6012     const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
       
  6013     u16 eeprom_data, i, temp;
       
  6014     const u16 led_mask = 0x0F;
       
  6015 
       
  6016     DEBUGFUNC("e1000_id_led_init");
       
  6017 
       
  6018     if (hw->mac_type < e1000_82540) {
       
  6019         /* Nothing to do */
       
  6020         return E1000_SUCCESS;
       
  6021     }
       
  6022 
       
  6023     ledctl = E1000_READ_REG(hw, LEDCTL);
       
  6024     hw->ledctl_default = ledctl;
       
  6025     hw->ledctl_mode1 = hw->ledctl_default;
       
  6026     hw->ledctl_mode2 = hw->ledctl_default;
       
  6027 
       
  6028     if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
       
  6029         DEBUGOUT("EEPROM Read Error\n");
       
  6030         return -E1000_ERR_EEPROM;
       
  6031     }
       
  6032 
       
  6033     if ((hw->mac_type == e1000_82573) &&
       
  6034         (eeprom_data == ID_LED_RESERVED_82573))
       
  6035         eeprom_data = ID_LED_DEFAULT_82573;
       
  6036     else if ((eeprom_data == ID_LED_RESERVED_0000) ||
       
  6037             (eeprom_data == ID_LED_RESERVED_FFFF)) {
       
  6038         if (hw->mac_type == e1000_ich8lan)
       
  6039             eeprom_data = ID_LED_DEFAULT_ICH8LAN;
       
  6040         else
       
  6041             eeprom_data = ID_LED_DEFAULT;
       
  6042     }
       
  6043 
       
  6044     for (i = 0; i < 4; i++) {
       
  6045         temp = (eeprom_data >> (i << 2)) & led_mask;
       
  6046         switch (temp) {
       
  6047         case ID_LED_ON1_DEF2:
       
  6048         case ID_LED_ON1_ON2:
       
  6049         case ID_LED_ON1_OFF2:
       
  6050             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  6051             hw->ledctl_mode1 |= ledctl_on << (i << 3);
       
  6052             break;
       
  6053         case ID_LED_OFF1_DEF2:
       
  6054         case ID_LED_OFF1_ON2:
       
  6055         case ID_LED_OFF1_OFF2:
       
  6056             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  6057             hw->ledctl_mode1 |= ledctl_off << (i << 3);
       
  6058             break;
       
  6059         default:
       
  6060             /* Do nothing */
       
  6061             break;
       
  6062         }
       
  6063         switch (temp) {
       
  6064         case ID_LED_DEF1_ON2:
       
  6065         case ID_LED_ON1_ON2:
       
  6066         case ID_LED_OFF1_ON2:
       
  6067             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  6068             hw->ledctl_mode2 |= ledctl_on << (i << 3);
       
  6069             break;
       
  6070         case ID_LED_DEF1_OFF2:
       
  6071         case ID_LED_ON1_OFF2:
       
  6072         case ID_LED_OFF1_OFF2:
       
  6073             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  6074             hw->ledctl_mode2 |= ledctl_off << (i << 3);
       
  6075             break;
       
  6076         default:
       
  6077             /* Do nothing */
       
  6078             break;
       
  6079         }
       
  6080     }
       
  6081     return E1000_SUCCESS;
       
  6082 }
       
  6083 
       
  6084 /******************************************************************************
       
  6085  * Prepares SW controlable LED for use and saves the current state of the LED.
       
  6086  *
       
  6087  * hw - Struct containing variables accessed by shared code
       
  6088  *****************************************************************************/
       
  6089 s32
       
  6090 e1000_setup_led(struct e1000_hw *hw)
       
  6091 {
       
  6092     u32 ledctl;
       
  6093     s32 ret_val = E1000_SUCCESS;
       
  6094 
       
  6095     DEBUGFUNC("e1000_setup_led");
       
  6096 
       
  6097     switch (hw->mac_type) {
       
  6098     case e1000_82542_rev2_0:
       
  6099     case e1000_82542_rev2_1:
       
  6100     case e1000_82543:
       
  6101     case e1000_82544:
       
  6102         /* No setup necessary */
       
  6103         break;
       
  6104     case e1000_82541:
       
  6105     case e1000_82547:
       
  6106     case e1000_82541_rev_2:
       
  6107     case e1000_82547_rev_2:
       
  6108         /* Turn off PHY Smart Power Down (if enabled) */
       
  6109         ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
       
  6110                                      &hw->phy_spd_default);
       
  6111         if (ret_val)
       
  6112             return ret_val;
       
  6113         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
       
  6114                                       (u16)(hw->phy_spd_default &
       
  6115                                       ~IGP01E1000_GMII_SPD));
       
  6116         if (ret_val)
       
  6117             return ret_val;
       
  6118         /* Fall Through */
       
  6119     default:
       
  6120         if (hw->media_type == e1000_media_type_fiber) {
       
  6121             ledctl = E1000_READ_REG(hw, LEDCTL);
       
  6122             /* Save current LEDCTL settings */
       
  6123             hw->ledctl_default = ledctl;
       
  6124             /* Turn off LED0 */
       
  6125             ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
       
  6126                         E1000_LEDCTL_LED0_BLINK |
       
  6127                         E1000_LEDCTL_LED0_MODE_MASK);
       
  6128             ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
       
  6129                        E1000_LEDCTL_LED0_MODE_SHIFT);
       
  6130             E1000_WRITE_REG(hw, LEDCTL, ledctl);
       
  6131         } else if (hw->media_type == e1000_media_type_copper)
       
  6132             E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
       
  6133         break;
       
  6134     }
       
  6135 
       
  6136     return E1000_SUCCESS;
       
  6137 }
       
  6138 
       
  6139 
       
  6140 /******************************************************************************
       
  6141  * Used on 82571 and later Si that has LED blink bits.
       
  6142  * Callers must use their own timer and should have already called
       
  6143  * e1000_id_led_init()
       
  6144  * Call e1000_cleanup led() to stop blinking
       
  6145  *
       
  6146  * hw - Struct containing variables accessed by shared code
       
  6147  *****************************************************************************/
       
  6148 s32
       
  6149 e1000_blink_led_start(struct e1000_hw *hw)
       
  6150 {
       
  6151     s16  i;
       
  6152     u32 ledctl_blink = 0;
       
  6153 
       
  6154     DEBUGFUNC("e1000_id_led_blink_on");
       
  6155 
       
  6156     if (hw->mac_type < e1000_82571) {
       
  6157         /* Nothing to do */
       
  6158         return E1000_SUCCESS;
       
  6159     }
       
  6160     if (hw->media_type == e1000_media_type_fiber) {
       
  6161         /* always blink LED0 for PCI-E fiber */
       
  6162         ledctl_blink = E1000_LEDCTL_LED0_BLINK |
       
  6163                      (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
       
  6164     } else {
       
  6165         /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
       
  6166         ledctl_blink = hw->ledctl_mode2;
       
  6167         for (i=0; i < 4; i++)
       
  6168             if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
       
  6169                 E1000_LEDCTL_MODE_LED_ON)
       
  6170                 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
       
  6171     }
       
  6172 
       
  6173     E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
       
  6174 
       
  6175     return E1000_SUCCESS;
       
  6176 }
       
  6177 
       
  6178 /******************************************************************************
       
  6179  * Restores the saved state of the SW controlable LED.
       
  6180  *
       
  6181  * hw - Struct containing variables accessed by shared code
       
  6182  *****************************************************************************/
       
  6183 s32
       
  6184 e1000_cleanup_led(struct e1000_hw *hw)
       
  6185 {
       
  6186     s32 ret_val = E1000_SUCCESS;
       
  6187 
       
  6188     DEBUGFUNC("e1000_cleanup_led");
       
  6189 
       
  6190     switch (hw->mac_type) {
       
  6191     case e1000_82542_rev2_0:
       
  6192     case e1000_82542_rev2_1:
       
  6193     case e1000_82543:
       
  6194     case e1000_82544:
       
  6195         /* No cleanup necessary */
       
  6196         break;
       
  6197     case e1000_82541:
       
  6198     case e1000_82547:
       
  6199     case e1000_82541_rev_2:
       
  6200     case e1000_82547_rev_2:
       
  6201         /* Turn on PHY Smart Power Down (if previously enabled) */
       
  6202         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
       
  6203                                       hw->phy_spd_default);
       
  6204         if (ret_val)
       
  6205             return ret_val;
       
  6206         /* Fall Through */
       
  6207     default:
       
  6208         if (hw->phy_type == e1000_phy_ife) {
       
  6209             e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  6210             break;
       
  6211         }
       
  6212         /* Restore LEDCTL settings */
       
  6213         E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
       
  6214         break;
       
  6215     }
       
  6216 
       
  6217     return E1000_SUCCESS;
       
  6218 }
       
  6219 
       
  6220 /******************************************************************************
       
  6221  * Turns on the software controllable LED
       
  6222  *
       
  6223  * hw - Struct containing variables accessed by shared code
       
  6224  *****************************************************************************/
       
  6225 s32
       
  6226 e1000_led_on(struct e1000_hw *hw)
       
  6227 {
       
  6228     u32 ctrl = E1000_READ_REG(hw, CTRL);
       
  6229 
       
  6230     DEBUGFUNC("e1000_led_on");
       
  6231 
       
  6232     switch (hw->mac_type) {
       
  6233     case e1000_82542_rev2_0:
       
  6234     case e1000_82542_rev2_1:
       
  6235     case e1000_82543:
       
  6236         /* Set SW Defineable Pin 0 to turn on the LED */
       
  6237         ctrl |= E1000_CTRL_SWDPIN0;
       
  6238         ctrl |= E1000_CTRL_SWDPIO0;
       
  6239         break;
       
  6240     case e1000_82544:
       
  6241         if (hw->media_type == e1000_media_type_fiber) {
       
  6242             /* Set SW Defineable Pin 0 to turn on the LED */
       
  6243             ctrl |= E1000_CTRL_SWDPIN0;
       
  6244             ctrl |= E1000_CTRL_SWDPIO0;
       
  6245         } else {
       
  6246             /* Clear SW Defineable Pin 0 to turn on the LED */
       
  6247             ctrl &= ~E1000_CTRL_SWDPIN0;
       
  6248             ctrl |= E1000_CTRL_SWDPIO0;
       
  6249         }
       
  6250         break;
       
  6251     default:
       
  6252         if (hw->media_type == e1000_media_type_fiber) {
       
  6253             /* Clear SW Defineable Pin 0 to turn on the LED */
       
  6254             ctrl &= ~E1000_CTRL_SWDPIN0;
       
  6255             ctrl |= E1000_CTRL_SWDPIO0;
       
  6256         } else if (hw->phy_type == e1000_phy_ife) {
       
  6257             e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  6258                  (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
       
  6259         } else if (hw->media_type == e1000_media_type_copper) {
       
  6260             E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
       
  6261             return E1000_SUCCESS;
       
  6262         }
       
  6263         break;
       
  6264     }
       
  6265 
       
  6266     E1000_WRITE_REG(hw, CTRL, ctrl);
       
  6267 
       
  6268     return E1000_SUCCESS;
       
  6269 }
       
  6270 
       
  6271 /******************************************************************************
       
  6272  * Turns off the software controllable LED
       
  6273  *
       
  6274  * hw - Struct containing variables accessed by shared code
       
  6275  *****************************************************************************/
       
  6276 s32
       
  6277 e1000_led_off(struct e1000_hw *hw)
       
  6278 {
       
  6279     u32 ctrl = E1000_READ_REG(hw, CTRL);
       
  6280 
       
  6281     DEBUGFUNC("e1000_led_off");
       
  6282 
       
  6283     switch (hw->mac_type) {
       
  6284     case e1000_82542_rev2_0:
       
  6285     case e1000_82542_rev2_1:
       
  6286     case e1000_82543:
       
  6287         /* Clear SW Defineable Pin 0 to turn off the LED */
       
  6288         ctrl &= ~E1000_CTRL_SWDPIN0;
       
  6289         ctrl |= E1000_CTRL_SWDPIO0;
       
  6290         break;
       
  6291     case e1000_82544:
       
  6292         if (hw->media_type == e1000_media_type_fiber) {
       
  6293             /* Clear SW Defineable Pin 0 to turn off the LED */
       
  6294             ctrl &= ~E1000_CTRL_SWDPIN0;
       
  6295             ctrl |= E1000_CTRL_SWDPIO0;
       
  6296         } else {
       
  6297             /* Set SW Defineable Pin 0 to turn off the LED */
       
  6298             ctrl |= E1000_CTRL_SWDPIN0;
       
  6299             ctrl |= E1000_CTRL_SWDPIO0;
       
  6300         }
       
  6301         break;
       
  6302     default:
       
  6303         if (hw->media_type == e1000_media_type_fiber) {
       
  6304             /* Set SW Defineable Pin 0 to turn off the LED */
       
  6305             ctrl |= E1000_CTRL_SWDPIN0;
       
  6306             ctrl |= E1000_CTRL_SWDPIO0;
       
  6307         } else if (hw->phy_type == e1000_phy_ife) {
       
  6308             e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  6309                  (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
       
  6310         } else if (hw->media_type == e1000_media_type_copper) {
       
  6311             E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
       
  6312             return E1000_SUCCESS;
       
  6313         }
       
  6314         break;
       
  6315     }
       
  6316 
       
  6317     E1000_WRITE_REG(hw, CTRL, ctrl);
       
  6318 
       
  6319     return E1000_SUCCESS;
       
  6320 }
       
  6321 
       
  6322 /******************************************************************************
       
  6323  * Clears all hardware statistics counters.
       
  6324  *
       
  6325  * hw - Struct containing variables accessed by shared code
       
  6326  *****************************************************************************/
       
  6327 static void
       
  6328 e1000_clear_hw_cntrs(struct e1000_hw *hw)
       
  6329 {
       
  6330     volatile u32 temp;
       
  6331 
       
  6332     temp = E1000_READ_REG(hw, CRCERRS);
       
  6333     temp = E1000_READ_REG(hw, SYMERRS);
       
  6334     temp = E1000_READ_REG(hw, MPC);
       
  6335     temp = E1000_READ_REG(hw, SCC);
       
  6336     temp = E1000_READ_REG(hw, ECOL);
       
  6337     temp = E1000_READ_REG(hw, MCC);
       
  6338     temp = E1000_READ_REG(hw, LATECOL);
       
  6339     temp = E1000_READ_REG(hw, COLC);
       
  6340     temp = E1000_READ_REG(hw, DC);
       
  6341     temp = E1000_READ_REG(hw, SEC);
       
  6342     temp = E1000_READ_REG(hw, RLEC);
       
  6343     temp = E1000_READ_REG(hw, XONRXC);
       
  6344     temp = E1000_READ_REG(hw, XONTXC);
       
  6345     temp = E1000_READ_REG(hw, XOFFRXC);
       
  6346     temp = E1000_READ_REG(hw, XOFFTXC);
       
  6347     temp = E1000_READ_REG(hw, FCRUC);
       
  6348 
       
  6349     if (hw->mac_type != e1000_ich8lan) {
       
  6350     temp = E1000_READ_REG(hw, PRC64);
       
  6351     temp = E1000_READ_REG(hw, PRC127);
       
  6352     temp = E1000_READ_REG(hw, PRC255);
       
  6353     temp = E1000_READ_REG(hw, PRC511);
       
  6354     temp = E1000_READ_REG(hw, PRC1023);
       
  6355     temp = E1000_READ_REG(hw, PRC1522);
       
  6356     }
       
  6357 
       
  6358     temp = E1000_READ_REG(hw, GPRC);
       
  6359     temp = E1000_READ_REG(hw, BPRC);
       
  6360     temp = E1000_READ_REG(hw, MPRC);
       
  6361     temp = E1000_READ_REG(hw, GPTC);
       
  6362     temp = E1000_READ_REG(hw, GORCL);
       
  6363     temp = E1000_READ_REG(hw, GORCH);
       
  6364     temp = E1000_READ_REG(hw, GOTCL);
       
  6365     temp = E1000_READ_REG(hw, GOTCH);
       
  6366     temp = E1000_READ_REG(hw, RNBC);
       
  6367     temp = E1000_READ_REG(hw, RUC);
       
  6368     temp = E1000_READ_REG(hw, RFC);
       
  6369     temp = E1000_READ_REG(hw, ROC);
       
  6370     temp = E1000_READ_REG(hw, RJC);
       
  6371     temp = E1000_READ_REG(hw, TORL);
       
  6372     temp = E1000_READ_REG(hw, TORH);
       
  6373     temp = E1000_READ_REG(hw, TOTL);
       
  6374     temp = E1000_READ_REG(hw, TOTH);
       
  6375     temp = E1000_READ_REG(hw, TPR);
       
  6376     temp = E1000_READ_REG(hw, TPT);
       
  6377 
       
  6378     if (hw->mac_type != e1000_ich8lan) {
       
  6379     temp = E1000_READ_REG(hw, PTC64);
       
  6380     temp = E1000_READ_REG(hw, PTC127);
       
  6381     temp = E1000_READ_REG(hw, PTC255);
       
  6382     temp = E1000_READ_REG(hw, PTC511);
       
  6383     temp = E1000_READ_REG(hw, PTC1023);
       
  6384     temp = E1000_READ_REG(hw, PTC1522);
       
  6385     }
       
  6386 
       
  6387     temp = E1000_READ_REG(hw, MPTC);
       
  6388     temp = E1000_READ_REG(hw, BPTC);
       
  6389 
       
  6390     if (hw->mac_type < e1000_82543) return;
       
  6391 
       
  6392     temp = E1000_READ_REG(hw, ALGNERRC);
       
  6393     temp = E1000_READ_REG(hw, RXERRC);
       
  6394     temp = E1000_READ_REG(hw, TNCRS);
       
  6395     temp = E1000_READ_REG(hw, CEXTERR);
       
  6396     temp = E1000_READ_REG(hw, TSCTC);
       
  6397     temp = E1000_READ_REG(hw, TSCTFC);
       
  6398 
       
  6399     if (hw->mac_type <= e1000_82544) return;
       
  6400 
       
  6401     temp = E1000_READ_REG(hw, MGTPRC);
       
  6402     temp = E1000_READ_REG(hw, MGTPDC);
       
  6403     temp = E1000_READ_REG(hw, MGTPTC);
       
  6404 
       
  6405     if (hw->mac_type <= e1000_82547_rev_2) return;
       
  6406 
       
  6407     temp = E1000_READ_REG(hw, IAC);
       
  6408     temp = E1000_READ_REG(hw, ICRXOC);
       
  6409 
       
  6410     if (hw->mac_type == e1000_ich8lan) return;
       
  6411 
       
  6412     temp = E1000_READ_REG(hw, ICRXPTC);
       
  6413     temp = E1000_READ_REG(hw, ICRXATC);
       
  6414     temp = E1000_READ_REG(hw, ICTXPTC);
       
  6415     temp = E1000_READ_REG(hw, ICTXATC);
       
  6416     temp = E1000_READ_REG(hw, ICTXQEC);
       
  6417     temp = E1000_READ_REG(hw, ICTXQMTC);
       
  6418     temp = E1000_READ_REG(hw, ICRXDMTC);
       
  6419 }
       
  6420 
       
  6421 /******************************************************************************
       
  6422  * Resets Adaptive IFS to its default state.
       
  6423  *
       
  6424  * hw - Struct containing variables accessed by shared code
       
  6425  *
       
  6426  * Call this after e1000_init_hw. You may override the IFS defaults by setting
       
  6427  * hw->ifs_params_forced to true. However, you must initialize hw->
       
  6428  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
       
  6429  * before calling this function.
       
  6430  *****************************************************************************/
       
  6431 void
       
  6432 e1000_reset_adaptive(struct e1000_hw *hw)
       
  6433 {
       
  6434     DEBUGFUNC("e1000_reset_adaptive");
       
  6435 
       
  6436     if (hw->adaptive_ifs) {
       
  6437         if (!hw->ifs_params_forced) {
       
  6438             hw->current_ifs_val = 0;
       
  6439             hw->ifs_min_val = IFS_MIN;
       
  6440             hw->ifs_max_val = IFS_MAX;
       
  6441             hw->ifs_step_size = IFS_STEP;
       
  6442             hw->ifs_ratio = IFS_RATIO;
       
  6443         }
       
  6444         hw->in_ifs_mode = false;
       
  6445         E1000_WRITE_REG(hw, AIT, 0);
       
  6446     } else {
       
  6447         DEBUGOUT("Not in Adaptive IFS mode!\n");
       
  6448     }
       
  6449 }
       
  6450 
       
  6451 /******************************************************************************
       
  6452  * Called during the callback/watchdog routine to update IFS value based on
       
  6453  * the ratio of transmits to collisions.
       
  6454  *
       
  6455  * hw - Struct containing variables accessed by shared code
       
  6456  * tx_packets - Number of transmits since last callback
       
  6457  * total_collisions - Number of collisions since last callback
       
  6458  *****************************************************************************/
       
  6459 void
       
  6460 e1000_update_adaptive(struct e1000_hw *hw)
       
  6461 {
       
  6462     DEBUGFUNC("e1000_update_adaptive");
       
  6463 
       
  6464     if (hw->adaptive_ifs) {
       
  6465         if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
       
  6466             if (hw->tx_packet_delta > MIN_NUM_XMITS) {
       
  6467                 hw->in_ifs_mode = true;
       
  6468                 if (hw->current_ifs_val < hw->ifs_max_val) {
       
  6469                     if (hw->current_ifs_val == 0)
       
  6470                         hw->current_ifs_val = hw->ifs_min_val;
       
  6471                     else
       
  6472                         hw->current_ifs_val += hw->ifs_step_size;
       
  6473                     E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
       
  6474                 }
       
  6475             }
       
  6476         } else {
       
  6477             if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
       
  6478                 hw->current_ifs_val = 0;
       
  6479                 hw->in_ifs_mode = false;
       
  6480                 E1000_WRITE_REG(hw, AIT, 0);
       
  6481             }
       
  6482         }
       
  6483     } else {
       
  6484         DEBUGOUT("Not in Adaptive IFS mode!\n");
       
  6485     }
       
  6486 }
       
  6487 
       
  6488 /******************************************************************************
       
  6489  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
       
  6490  *
       
  6491  * hw - Struct containing variables accessed by shared code
       
  6492  * frame_len - The length of the frame in question
       
  6493  * mac_addr - The Ethernet destination address of the frame in question
       
  6494  *****************************************************************************/
       
  6495 void
       
  6496 e1000_tbi_adjust_stats(struct e1000_hw *hw,
       
  6497                        struct e1000_hw_stats *stats,
       
  6498                        u32 frame_len,
       
  6499                        u8 *mac_addr)
       
  6500 {
       
  6501     u64 carry_bit;
       
  6502 
       
  6503     /* First adjust the frame length. */
       
  6504     frame_len--;
       
  6505     /* We need to adjust the statistics counters, since the hardware
       
  6506      * counters overcount this packet as a CRC error and undercount
       
  6507      * the packet as a good packet
       
  6508      */
       
  6509     /* This packet should not be counted as a CRC error.    */
       
  6510     stats->crcerrs--;
       
  6511     /* This packet does count as a Good Packet Received.    */
       
  6512     stats->gprc++;
       
  6513 
       
  6514     /* Adjust the Good Octets received counters             */
       
  6515     carry_bit = 0x80000000 & stats->gorcl;
       
  6516     stats->gorcl += frame_len;
       
  6517     /* If the high bit of Gorcl (the low 32 bits of the Good Octets
       
  6518      * Received Count) was one before the addition,
       
  6519      * AND it is zero after, then we lost the carry out,
       
  6520      * need to add one to Gorch (Good Octets Received Count High).
       
  6521      * This could be simplified if all environments supported
       
  6522      * 64-bit integers.
       
  6523      */
       
  6524     if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
       
  6525         stats->gorch++;
       
  6526     /* Is this a broadcast or multicast?  Check broadcast first,
       
  6527      * since the test for a multicast frame will test positive on
       
  6528      * a broadcast frame.
       
  6529      */
       
  6530     if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
       
  6531         /* Broadcast packet */
       
  6532         stats->bprc++;
       
  6533     else if (*mac_addr & 0x01)
       
  6534         /* Multicast packet */
       
  6535         stats->mprc++;
       
  6536 
       
  6537     if (frame_len == hw->max_frame_size) {
       
  6538         /* In this case, the hardware has overcounted the number of
       
  6539          * oversize frames.
       
  6540          */
       
  6541         if (stats->roc > 0)
       
  6542             stats->roc--;
       
  6543     }
       
  6544 
       
  6545     /* Adjust the bin counters when the extra byte put the frame in the
       
  6546      * wrong bin. Remember that the frame_len was adjusted above.
       
  6547      */
       
  6548     if (frame_len == 64) {
       
  6549         stats->prc64++;
       
  6550         stats->prc127--;
       
  6551     } else if (frame_len == 127) {
       
  6552         stats->prc127++;
       
  6553         stats->prc255--;
       
  6554     } else if (frame_len == 255) {
       
  6555         stats->prc255++;
       
  6556         stats->prc511--;
       
  6557     } else if (frame_len == 511) {
       
  6558         stats->prc511++;
       
  6559         stats->prc1023--;
       
  6560     } else if (frame_len == 1023) {
       
  6561         stats->prc1023++;
       
  6562         stats->prc1522--;
       
  6563     } else if (frame_len == 1522) {
       
  6564         stats->prc1522++;
       
  6565     }
       
  6566 }
       
  6567 
       
  6568 /******************************************************************************
       
  6569  * Gets the current PCI bus type, speed, and width of the hardware
       
  6570  *
       
  6571  * hw - Struct containing variables accessed by shared code
       
  6572  *****************************************************************************/
       
  6573 void
       
  6574 e1000_get_bus_info(struct e1000_hw *hw)
       
  6575 {
       
  6576     s32 ret_val;
       
  6577     u16 pci_ex_link_status;
       
  6578     u32 status;
       
  6579 
       
  6580     switch (hw->mac_type) {
       
  6581     case e1000_82542_rev2_0:
       
  6582     case e1000_82542_rev2_1:
       
  6583         hw->bus_type = e1000_bus_type_pci;
       
  6584         hw->bus_speed = e1000_bus_speed_unknown;
       
  6585         hw->bus_width = e1000_bus_width_unknown;
       
  6586         break;
       
  6587     case e1000_82571:
       
  6588     case e1000_82572:
       
  6589     case e1000_82573:
       
  6590     case e1000_80003es2lan:
       
  6591         hw->bus_type = e1000_bus_type_pci_express;
       
  6592         hw->bus_speed = e1000_bus_speed_2500;
       
  6593         ret_val = e1000_read_pcie_cap_reg(hw,
       
  6594                                       PCI_EX_LINK_STATUS,
       
  6595                                       &pci_ex_link_status);
       
  6596         if (ret_val)
       
  6597             hw->bus_width = e1000_bus_width_unknown;
       
  6598         else
       
  6599             hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
       
  6600                           PCI_EX_LINK_WIDTH_SHIFT;
       
  6601         break;
       
  6602     case e1000_ich8lan:
       
  6603         hw->bus_type = e1000_bus_type_pci_express;
       
  6604         hw->bus_speed = e1000_bus_speed_2500;
       
  6605         hw->bus_width = e1000_bus_width_pciex_1;
       
  6606         break;
       
  6607     default:
       
  6608         status = E1000_READ_REG(hw, STATUS);
       
  6609         hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
       
  6610                        e1000_bus_type_pcix : e1000_bus_type_pci;
       
  6611 
       
  6612         if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
       
  6613             hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
       
  6614                             e1000_bus_speed_66 : e1000_bus_speed_120;
       
  6615         } else if (hw->bus_type == e1000_bus_type_pci) {
       
  6616             hw->bus_speed = (status & E1000_STATUS_PCI66) ?
       
  6617                             e1000_bus_speed_66 : e1000_bus_speed_33;
       
  6618         } else {
       
  6619             switch (status & E1000_STATUS_PCIX_SPEED) {
       
  6620             case E1000_STATUS_PCIX_SPEED_66:
       
  6621                 hw->bus_speed = e1000_bus_speed_66;
       
  6622                 break;
       
  6623             case E1000_STATUS_PCIX_SPEED_100:
       
  6624                 hw->bus_speed = e1000_bus_speed_100;
       
  6625                 break;
       
  6626             case E1000_STATUS_PCIX_SPEED_133:
       
  6627                 hw->bus_speed = e1000_bus_speed_133;
       
  6628                 break;
       
  6629             default:
       
  6630                 hw->bus_speed = e1000_bus_speed_reserved;
       
  6631                 break;
       
  6632             }
       
  6633         }
       
  6634         hw->bus_width = (status & E1000_STATUS_BUS64) ?
       
  6635                         e1000_bus_width_64 : e1000_bus_width_32;
       
  6636         break;
       
  6637     }
       
  6638 }
       
  6639 
       
  6640 /******************************************************************************
       
  6641  * Writes a value to one of the devices registers using port I/O (as opposed to
       
  6642  * memory mapped I/O). Only 82544 and newer devices support port I/O.
       
  6643  *
       
  6644  * hw - Struct containing variables accessed by shared code
       
  6645  * offset - offset to write to
       
  6646  * value - value to write
       
  6647  *****************************************************************************/
       
  6648 static void
       
  6649 e1000_write_reg_io(struct e1000_hw *hw,
       
  6650                    u32 offset,
       
  6651                    u32 value)
       
  6652 {
       
  6653     unsigned long io_addr = hw->io_base;
       
  6654     unsigned long io_data = hw->io_base + 4;
       
  6655 
       
  6656     e1000_io_write(hw, io_addr, offset);
       
  6657     e1000_io_write(hw, io_data, value);
       
  6658 }
       
  6659 
       
  6660 /******************************************************************************
       
  6661  * Estimates the cable length.
       
  6662  *
       
  6663  * hw - Struct containing variables accessed by shared code
       
  6664  * min_length - The estimated minimum length
       
  6665  * max_length - The estimated maximum length
       
  6666  *
       
  6667  * returns: - E1000_ERR_XXX
       
  6668  *            E1000_SUCCESS
       
  6669  *
       
  6670  * This function always returns a ranged length (minimum & maximum).
       
  6671  * So for M88 phy's, this function interprets the one value returned from the
       
  6672  * register to the minimum and maximum range.
       
  6673  * For IGP phy's, the function calculates the range by the AGC registers.
       
  6674  *****************************************************************************/
       
  6675 static s32
       
  6676 e1000_get_cable_length(struct e1000_hw *hw,
       
  6677                        u16 *min_length,
       
  6678                        u16 *max_length)
       
  6679 {
       
  6680     s32 ret_val;
       
  6681     u16 agc_value = 0;
       
  6682     u16 i, phy_data;
       
  6683     u16 cable_length;
       
  6684 
       
  6685     DEBUGFUNC("e1000_get_cable_length");
       
  6686 
       
  6687     *min_length = *max_length = 0;
       
  6688 
       
  6689     /* Use old method for Phy older than IGP */
       
  6690     if (hw->phy_type == e1000_phy_m88) {
       
  6691 
       
  6692         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
       
  6693                                      &phy_data);
       
  6694         if (ret_val)
       
  6695             return ret_val;
       
  6696         cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
       
  6697                        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
       
  6698 
       
  6699         /* Convert the enum value to ranged values */
       
  6700         switch (cable_length) {
       
  6701         case e1000_cable_length_50:
       
  6702             *min_length = 0;
       
  6703             *max_length = e1000_igp_cable_length_50;
       
  6704             break;
       
  6705         case e1000_cable_length_50_80:
       
  6706             *min_length = e1000_igp_cable_length_50;
       
  6707             *max_length = e1000_igp_cable_length_80;
       
  6708             break;
       
  6709         case e1000_cable_length_80_110:
       
  6710             *min_length = e1000_igp_cable_length_80;
       
  6711             *max_length = e1000_igp_cable_length_110;
       
  6712             break;
       
  6713         case e1000_cable_length_110_140:
       
  6714             *min_length = e1000_igp_cable_length_110;
       
  6715             *max_length = e1000_igp_cable_length_140;
       
  6716             break;
       
  6717         case e1000_cable_length_140:
       
  6718             *min_length = e1000_igp_cable_length_140;
       
  6719             *max_length = e1000_igp_cable_length_170;
       
  6720             break;
       
  6721         default:
       
  6722             return -E1000_ERR_PHY;
       
  6723             break;
       
  6724         }
       
  6725     } else if (hw->phy_type == e1000_phy_gg82563) {
       
  6726         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
       
  6727                                      &phy_data);
       
  6728         if (ret_val)
       
  6729             return ret_val;
       
  6730         cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
       
  6731 
       
  6732         switch (cable_length) {
       
  6733         case e1000_gg_cable_length_60:
       
  6734             *min_length = 0;
       
  6735             *max_length = e1000_igp_cable_length_60;
       
  6736             break;
       
  6737         case e1000_gg_cable_length_60_115:
       
  6738             *min_length = e1000_igp_cable_length_60;
       
  6739             *max_length = e1000_igp_cable_length_115;
       
  6740             break;
       
  6741         case e1000_gg_cable_length_115_150:
       
  6742             *min_length = e1000_igp_cable_length_115;
       
  6743             *max_length = e1000_igp_cable_length_150;
       
  6744             break;
       
  6745         case e1000_gg_cable_length_150:
       
  6746             *min_length = e1000_igp_cable_length_150;
       
  6747             *max_length = e1000_igp_cable_length_180;
       
  6748             break;
       
  6749         default:
       
  6750             return -E1000_ERR_PHY;
       
  6751             break;
       
  6752         }
       
  6753     } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
       
  6754         u16 cur_agc_value;
       
  6755         u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
       
  6756         u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
       
  6757                                                          {IGP01E1000_PHY_AGC_A,
       
  6758                                                           IGP01E1000_PHY_AGC_B,
       
  6759                                                           IGP01E1000_PHY_AGC_C,
       
  6760                                                           IGP01E1000_PHY_AGC_D};
       
  6761         /* Read the AGC registers for all channels */
       
  6762         for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
       
  6763 
       
  6764             ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
       
  6765             if (ret_val)
       
  6766                 return ret_val;
       
  6767 
       
  6768             cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
       
  6769 
       
  6770             /* Value bound check. */
       
  6771             if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
       
  6772                 (cur_agc_value == 0))
       
  6773                 return -E1000_ERR_PHY;
       
  6774 
       
  6775             agc_value += cur_agc_value;
       
  6776 
       
  6777             /* Update minimal AGC value. */
       
  6778             if (min_agc_value > cur_agc_value)
       
  6779                 min_agc_value = cur_agc_value;
       
  6780         }
       
  6781 
       
  6782         /* Remove the minimal AGC result for length < 50m */
       
  6783         if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
       
  6784             agc_value -= min_agc_value;
       
  6785 
       
  6786             /* Get the average length of the remaining 3 channels */
       
  6787             agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
       
  6788         } else {
       
  6789             /* Get the average length of all the 4 channels. */
       
  6790             agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
       
  6791         }
       
  6792 
       
  6793         /* Set the range of the calculated length. */
       
  6794         *min_length = ((e1000_igp_cable_length_table[agc_value] -
       
  6795                        IGP01E1000_AGC_RANGE) > 0) ?
       
  6796                        (e1000_igp_cable_length_table[agc_value] -
       
  6797                        IGP01E1000_AGC_RANGE) : 0;
       
  6798         *max_length = e1000_igp_cable_length_table[agc_value] +
       
  6799                       IGP01E1000_AGC_RANGE;
       
  6800     } else if (hw->phy_type == e1000_phy_igp_2 ||
       
  6801                hw->phy_type == e1000_phy_igp_3) {
       
  6802         u16 cur_agc_index, max_agc_index = 0;
       
  6803         u16 min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
       
  6804         u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
       
  6805                                                          {IGP02E1000_PHY_AGC_A,
       
  6806                                                           IGP02E1000_PHY_AGC_B,
       
  6807                                                           IGP02E1000_PHY_AGC_C,
       
  6808                                                           IGP02E1000_PHY_AGC_D};
       
  6809         /* Read the AGC registers for all channels */
       
  6810         for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
       
  6811             ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
       
  6812             if (ret_val)
       
  6813                 return ret_val;
       
  6814 
       
  6815             /* Getting bits 15:9, which represent the combination of course and
       
  6816              * fine gain values.  The result is a number that can be put into
       
  6817              * the lookup table to obtain the approximate cable length. */
       
  6818             cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
       
  6819                             IGP02E1000_AGC_LENGTH_MASK;
       
  6820 
       
  6821             /* Array index bound check. */
       
  6822             if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
       
  6823                 (cur_agc_index == 0))
       
  6824                 return -E1000_ERR_PHY;
       
  6825 
       
  6826             /* Remove min & max AGC values from calculation. */
       
  6827             if (e1000_igp_2_cable_length_table[min_agc_index] >
       
  6828                 e1000_igp_2_cable_length_table[cur_agc_index])
       
  6829                 min_agc_index = cur_agc_index;
       
  6830             if (e1000_igp_2_cable_length_table[max_agc_index] <
       
  6831                 e1000_igp_2_cable_length_table[cur_agc_index])
       
  6832                 max_agc_index = cur_agc_index;
       
  6833 
       
  6834             agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
       
  6835         }
       
  6836 
       
  6837         agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
       
  6838                       e1000_igp_2_cable_length_table[max_agc_index]);
       
  6839         agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
       
  6840 
       
  6841         /* Calculate cable length with the error range of +/- 10 meters. */
       
  6842         *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
       
  6843                        (agc_value - IGP02E1000_AGC_RANGE) : 0;
       
  6844         *max_length = agc_value + IGP02E1000_AGC_RANGE;
       
  6845     }
       
  6846 
       
  6847     return E1000_SUCCESS;
       
  6848 }
       
  6849 
       
  6850 /******************************************************************************
       
  6851  * Check the cable polarity
       
  6852  *
       
  6853  * hw - Struct containing variables accessed by shared code
       
  6854  * polarity - output parameter : 0 - Polarity is not reversed
       
  6855  *                               1 - Polarity is reversed.
       
  6856  *
       
  6857  * returns: - E1000_ERR_XXX
       
  6858  *            E1000_SUCCESS
       
  6859  *
       
  6860  * For phy's older then IGP, this function simply reads the polarity bit in the
       
  6861  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
       
  6862  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
       
  6863  * return 0.  If the link speed is 1000 Mbps the polarity status is in the
       
  6864  * IGP01E1000_PHY_PCS_INIT_REG.
       
  6865  *****************************************************************************/
       
  6866 static s32
       
  6867 e1000_check_polarity(struct e1000_hw *hw,
       
  6868                      e1000_rev_polarity *polarity)
       
  6869 {
       
  6870     s32 ret_val;
       
  6871     u16 phy_data;
       
  6872 
       
  6873     DEBUGFUNC("e1000_check_polarity");
       
  6874 
       
  6875     if ((hw->phy_type == e1000_phy_m88) ||
       
  6876         (hw->phy_type == e1000_phy_gg82563)) {
       
  6877         /* return the Polarity bit in the Status register. */
       
  6878         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
       
  6879                                      &phy_data);
       
  6880         if (ret_val)
       
  6881             return ret_val;
       
  6882         *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
       
  6883                      M88E1000_PSSR_REV_POLARITY_SHIFT) ?
       
  6884                      e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
       
  6885 
       
  6886     } else if (hw->phy_type == e1000_phy_igp ||
       
  6887               hw->phy_type == e1000_phy_igp_3 ||
       
  6888               hw->phy_type == e1000_phy_igp_2) {
       
  6889         /* Read the Status register to check the speed */
       
  6890         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
       
  6891                                      &phy_data);
       
  6892         if (ret_val)
       
  6893             return ret_val;
       
  6894 
       
  6895         /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
       
  6896          * find the polarity status */
       
  6897         if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  6898            IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  6899 
       
  6900             /* Read the GIG initialization PCS register (0x00B4) */
       
  6901             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
       
  6902                                          &phy_data);
       
  6903             if (ret_val)
       
  6904                 return ret_val;
       
  6905 
       
  6906             /* Check the polarity bits */
       
  6907             *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
       
  6908                          e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
       
  6909         } else {
       
  6910             /* For 10 Mbps, read the polarity bit in the status register. (for
       
  6911              * 100 Mbps this bit is always 0) */
       
  6912             *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
       
  6913                          e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
       
  6914         }
       
  6915     } else if (hw->phy_type == e1000_phy_ife) {
       
  6916         ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
       
  6917                                      &phy_data);
       
  6918         if (ret_val)
       
  6919             return ret_val;
       
  6920         *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
       
  6921                      IFE_PESC_POLARITY_REVERSED_SHIFT) ?
       
  6922                      e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
       
  6923     }
       
  6924     return E1000_SUCCESS;
       
  6925 }
       
  6926 
       
  6927 /******************************************************************************
       
  6928  * Check if Downshift occured
       
  6929  *
       
  6930  * hw - Struct containing variables accessed by shared code
       
  6931  * downshift - output parameter : 0 - No Downshift ocured.
       
  6932  *                                1 - Downshift ocured.
       
  6933  *
       
  6934  * returns: - E1000_ERR_XXX
       
  6935  *            E1000_SUCCESS
       
  6936  *
       
  6937  * For phy's older then IGP, this function reads the Downshift bit in the Phy
       
  6938  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
       
  6939  * Link Health register.  In IGP this bit is latched high, so the driver must
       
  6940  * read it immediately after link is established.
       
  6941  *****************************************************************************/
       
  6942 static s32
       
  6943 e1000_check_downshift(struct e1000_hw *hw)
       
  6944 {
       
  6945     s32 ret_val;
       
  6946     u16 phy_data;
       
  6947 
       
  6948     DEBUGFUNC("e1000_check_downshift");
       
  6949 
       
  6950     if (hw->phy_type == e1000_phy_igp ||
       
  6951         hw->phy_type == e1000_phy_igp_3 ||
       
  6952         hw->phy_type == e1000_phy_igp_2) {
       
  6953         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
       
  6954                                      &phy_data);
       
  6955         if (ret_val)
       
  6956             return ret_val;
       
  6957 
       
  6958         hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
       
  6959     } else if ((hw->phy_type == e1000_phy_m88) ||
       
  6960                (hw->phy_type == e1000_phy_gg82563)) {
       
  6961         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
       
  6962                                      &phy_data);
       
  6963         if (ret_val)
       
  6964             return ret_val;
       
  6965 
       
  6966         hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
       
  6967                                M88E1000_PSSR_DOWNSHIFT_SHIFT;
       
  6968     } else if (hw->phy_type == e1000_phy_ife) {
       
  6969         /* e1000_phy_ife supports 10/100 speed only */
       
  6970         hw->speed_downgraded = false;
       
  6971     }
       
  6972 
       
  6973     return E1000_SUCCESS;
       
  6974 }
       
  6975 
       
  6976 /*****************************************************************************
       
  6977  *
       
  6978  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
       
  6979  * gigabit link is achieved to improve link quality.
       
  6980  *
       
  6981  * hw: Struct containing variables accessed by shared code
       
  6982  *
       
  6983  * returns: - E1000_ERR_PHY if fail to read/write the PHY
       
  6984  *            E1000_SUCCESS at any other case.
       
  6985  *
       
  6986  ****************************************************************************/
       
  6987 
       
  6988 static s32
       
  6989 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
       
  6990                                    bool link_up)
       
  6991 {
       
  6992     s32 ret_val;
       
  6993     u16 phy_data, phy_saved_data, speed, duplex, i;
       
  6994     u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
       
  6995                                         {IGP01E1000_PHY_AGC_PARAM_A,
       
  6996                                         IGP01E1000_PHY_AGC_PARAM_B,
       
  6997                                         IGP01E1000_PHY_AGC_PARAM_C,
       
  6998                                         IGP01E1000_PHY_AGC_PARAM_D};
       
  6999     u16 min_length, max_length;
       
  7000 
       
  7001     DEBUGFUNC("e1000_config_dsp_after_link_change");
       
  7002 
       
  7003     if (hw->phy_type != e1000_phy_igp)
       
  7004         return E1000_SUCCESS;
       
  7005 
       
  7006     if (link_up) {
       
  7007         ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
       
  7008         if (ret_val) {
       
  7009             DEBUGOUT("Error getting link speed and duplex\n");
       
  7010             return ret_val;
       
  7011         }
       
  7012 
       
  7013         if (speed == SPEED_1000) {
       
  7014 
       
  7015             ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
       
  7016             if (ret_val)
       
  7017                 return ret_val;
       
  7018 
       
  7019             if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
       
  7020                 min_length >= e1000_igp_cable_length_50) {
       
  7021 
       
  7022                 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
       
  7023                     ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
       
  7024                                                  &phy_data);
       
  7025                     if (ret_val)
       
  7026                         return ret_val;
       
  7027 
       
  7028                     phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
       
  7029 
       
  7030                     ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
       
  7031                                                   phy_data);
       
  7032                     if (ret_val)
       
  7033                         return ret_val;
       
  7034                 }
       
  7035                 hw->dsp_config_state = e1000_dsp_config_activated;
       
  7036             }
       
  7037 
       
  7038             if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
       
  7039                (min_length < e1000_igp_cable_length_50)) {
       
  7040 
       
  7041                 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
       
  7042                 u32 idle_errs = 0;
       
  7043 
       
  7044                 /* clear previous idle error counts */
       
  7045                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
       
  7046                                              &phy_data);
       
  7047                 if (ret_val)
       
  7048                     return ret_val;
       
  7049 
       
  7050                 for (i = 0; i < ffe_idle_err_timeout; i++) {
       
  7051                     udelay(1000);
       
  7052                     ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
       
  7053                                                  &phy_data);
       
  7054                     if (ret_val)
       
  7055                         return ret_val;
       
  7056 
       
  7057                     idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
       
  7058                     if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
       
  7059                         hw->ffe_config_state = e1000_ffe_config_active;
       
  7060 
       
  7061                         ret_val = e1000_write_phy_reg(hw,
       
  7062                                     IGP01E1000_PHY_DSP_FFE,
       
  7063                                     IGP01E1000_PHY_DSP_FFE_CM_CP);
       
  7064                         if (ret_val)
       
  7065                             return ret_val;
       
  7066                         break;
       
  7067                     }
       
  7068 
       
  7069                     if (idle_errs)
       
  7070                         ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
       
  7071                 }
       
  7072             }
       
  7073         }
       
  7074     } else {
       
  7075         if (hw->dsp_config_state == e1000_dsp_config_activated) {
       
  7076             /* Save off the current value of register 0x2F5B to be restored at
       
  7077              * the end of the routines. */
       
  7078             ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
       
  7079 
       
  7080             if (ret_val)
       
  7081                 return ret_val;
       
  7082 
       
  7083             /* Disable the PHY transmitter */
       
  7084             ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
       
  7085 
       
  7086             if (ret_val)
       
  7087                 return ret_val;
       
  7088 
       
  7089             mdelay(20);
       
  7090 
       
  7091             ret_val = e1000_write_phy_reg(hw, 0x0000,
       
  7092                                           IGP01E1000_IEEE_FORCE_GIGA);
       
  7093             if (ret_val)
       
  7094                 return ret_val;
       
  7095             for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
       
  7096                 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
       
  7097                 if (ret_val)
       
  7098                     return ret_val;
       
  7099 
       
  7100                 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
       
  7101                 phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
       
  7102 
       
  7103                 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
       
  7104                 if (ret_val)
       
  7105                     return ret_val;
       
  7106             }
       
  7107 
       
  7108             ret_val = e1000_write_phy_reg(hw, 0x0000,
       
  7109                                           IGP01E1000_IEEE_RESTART_AUTONEG);
       
  7110             if (ret_val)
       
  7111                 return ret_val;
       
  7112 
       
  7113             mdelay(20);
       
  7114 
       
  7115             /* Now enable the transmitter */
       
  7116             ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
       
  7117 
       
  7118             if (ret_val)
       
  7119                 return ret_val;
       
  7120 
       
  7121             hw->dsp_config_state = e1000_dsp_config_enabled;
       
  7122         }
       
  7123 
       
  7124         if (hw->ffe_config_state == e1000_ffe_config_active) {
       
  7125             /* Save off the current value of register 0x2F5B to be restored at
       
  7126              * the end of the routines. */
       
  7127             ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
       
  7128 
       
  7129             if (ret_val)
       
  7130                 return ret_val;
       
  7131 
       
  7132             /* Disable the PHY transmitter */
       
  7133             ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
       
  7134 
       
  7135             if (ret_val)
       
  7136                 return ret_val;
       
  7137 
       
  7138             mdelay(20);
       
  7139 
       
  7140             ret_val = e1000_write_phy_reg(hw, 0x0000,
       
  7141                                           IGP01E1000_IEEE_FORCE_GIGA);
       
  7142             if (ret_val)
       
  7143                 return ret_val;
       
  7144             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
       
  7145                                           IGP01E1000_PHY_DSP_FFE_DEFAULT);
       
  7146             if (ret_val)
       
  7147                 return ret_val;
       
  7148 
       
  7149             ret_val = e1000_write_phy_reg(hw, 0x0000,
       
  7150                                           IGP01E1000_IEEE_RESTART_AUTONEG);
       
  7151             if (ret_val)
       
  7152                 return ret_val;
       
  7153 
       
  7154             mdelay(20);
       
  7155 
       
  7156             /* Now enable the transmitter */
       
  7157             ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
       
  7158 
       
  7159             if (ret_val)
       
  7160                 return ret_val;
       
  7161 
       
  7162             hw->ffe_config_state = e1000_ffe_config_enabled;
       
  7163         }
       
  7164     }
       
  7165     return E1000_SUCCESS;
       
  7166 }
       
  7167 
       
  7168 /*****************************************************************************
       
  7169  * Set PHY to class A mode
       
  7170  * Assumes the following operations will follow to enable the new class mode.
       
  7171  *  1. Do a PHY soft reset
       
  7172  *  2. Restart auto-negotiation or force link.
       
  7173  *
       
  7174  * hw - Struct containing variables accessed by shared code
       
  7175  ****************************************************************************/
       
  7176 static s32
       
  7177 e1000_set_phy_mode(struct e1000_hw *hw)
       
  7178 {
       
  7179     s32 ret_val;
       
  7180     u16 eeprom_data;
       
  7181 
       
  7182     DEBUGFUNC("e1000_set_phy_mode");
       
  7183 
       
  7184     if ((hw->mac_type == e1000_82545_rev_3) &&
       
  7185         (hw->media_type == e1000_media_type_copper)) {
       
  7186         ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
       
  7187         if (ret_val) {
       
  7188             return ret_val;
       
  7189         }
       
  7190 
       
  7191         if ((eeprom_data != EEPROM_RESERVED_WORD) &&
       
  7192             (eeprom_data & EEPROM_PHY_CLASS_A)) {
       
  7193             ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
       
  7194             if (ret_val)
       
  7195                 return ret_val;
       
  7196             ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
       
  7197             if (ret_val)
       
  7198                 return ret_val;
       
  7199 
       
  7200             hw->phy_reset_disable = false;
       
  7201         }
       
  7202     }
       
  7203 
       
  7204     return E1000_SUCCESS;
       
  7205 }
       
  7206 
       
  7207 /*****************************************************************************
       
  7208  *
       
  7209  * This function sets the lplu state according to the active flag.  When
       
  7210  * activating lplu this function also disables smart speed and vise versa.
       
  7211  * lplu will not be activated unless the device autonegotiation advertisment
       
  7212  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  7213  * hw: Struct containing variables accessed by shared code
       
  7214  * active - true to enable lplu false to disable lplu.
       
  7215  *
       
  7216  * returns: - E1000_ERR_PHY if fail to read/write the PHY
       
  7217  *            E1000_SUCCESS at any other case.
       
  7218  *
       
  7219  ****************************************************************************/
       
  7220 
       
  7221 static s32
       
  7222 e1000_set_d3_lplu_state(struct e1000_hw *hw,
       
  7223                         bool active)
       
  7224 {
       
  7225     u32 phy_ctrl = 0;
       
  7226     s32 ret_val;
       
  7227     u16 phy_data;
       
  7228     DEBUGFUNC("e1000_set_d3_lplu_state");
       
  7229 
       
  7230     if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
       
  7231         && hw->phy_type != e1000_phy_igp_3)
       
  7232         return E1000_SUCCESS;
       
  7233 
       
  7234     /* During driver activity LPLU should not be used or it will attain link
       
  7235      * from the lowest speeds starting from 10Mbps. The capability is used for
       
  7236      * Dx transitions and states */
       
  7237     if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
       
  7238         ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
       
  7239         if (ret_val)
       
  7240             return ret_val;
       
  7241     } else if (hw->mac_type == e1000_ich8lan) {
       
  7242         /* MAC writes into PHY register based on the state transition
       
  7243          * and start auto-negotiation. SW driver can overwrite the settings
       
  7244          * in CSR PHY power control E1000_PHY_CTRL register. */
       
  7245         phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
       
  7246     } else {
       
  7247         ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
       
  7248         if (ret_val)
       
  7249             return ret_val;
       
  7250     }
       
  7251 
       
  7252     if (!active) {
       
  7253         if (hw->mac_type == e1000_82541_rev_2 ||
       
  7254             hw->mac_type == e1000_82547_rev_2) {
       
  7255             phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
       
  7256             ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
       
  7257             if (ret_val)
       
  7258                 return ret_val;
       
  7259         } else {
       
  7260             if (hw->mac_type == e1000_ich8lan) {
       
  7261                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
       
  7262                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
       
  7263             } else {
       
  7264                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
       
  7265                 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
       
  7266                                               phy_data);
       
  7267                 if (ret_val)
       
  7268                     return ret_val;
       
  7269             }
       
  7270         }
       
  7271 
       
  7272         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
       
  7273          * Dx states where the power conservation is most important.  During
       
  7274          * driver activity we should enable SmartSpeed, so performance is
       
  7275          * maintained. */
       
  7276         if (hw->smart_speed == e1000_smart_speed_on) {
       
  7277             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  7278                                          &phy_data);
       
  7279             if (ret_val)
       
  7280                 return ret_val;
       
  7281 
       
  7282             phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  7283             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  7284                                           phy_data);
       
  7285             if (ret_val)
       
  7286                 return ret_val;
       
  7287         } else if (hw->smart_speed == e1000_smart_speed_off) {
       
  7288             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  7289                                          &phy_data);
       
  7290             if (ret_val)
       
  7291                 return ret_val;
       
  7292 
       
  7293             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  7294             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  7295                                           phy_data);
       
  7296             if (ret_val)
       
  7297                 return ret_val;
       
  7298         }
       
  7299 
       
  7300     } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
       
  7301                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
       
  7302                (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
       
  7303 
       
  7304         if (hw->mac_type == e1000_82541_rev_2 ||
       
  7305             hw->mac_type == e1000_82547_rev_2) {
       
  7306             phy_data |= IGP01E1000_GMII_FLEX_SPD;
       
  7307             ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
       
  7308             if (ret_val)
       
  7309                 return ret_val;
       
  7310         } else {
       
  7311             if (hw->mac_type == e1000_ich8lan) {
       
  7312                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
       
  7313                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
       
  7314             } else {
       
  7315                 phy_data |= IGP02E1000_PM_D3_LPLU;
       
  7316                 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
       
  7317                                               phy_data);
       
  7318                 if (ret_val)
       
  7319                     return ret_val;
       
  7320             }
       
  7321         }
       
  7322 
       
  7323         /* When LPLU is enabled we should disable SmartSpeed */
       
  7324         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
       
  7325         if (ret_val)
       
  7326             return ret_val;
       
  7327 
       
  7328         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  7329         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
       
  7330         if (ret_val)
       
  7331             return ret_val;
       
  7332 
       
  7333     }
       
  7334     return E1000_SUCCESS;
       
  7335 }
       
  7336 
       
  7337 /*****************************************************************************
       
  7338  *
       
  7339  * This function sets the lplu d0 state according to the active flag.  When
       
  7340  * activating lplu this function also disables smart speed and vise versa.
       
  7341  * lplu will not be activated unless the device autonegotiation advertisment
       
  7342  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  7343  * hw: Struct containing variables accessed by shared code
       
  7344  * active - true to enable lplu false to disable lplu.
       
  7345  *
       
  7346  * returns: - E1000_ERR_PHY if fail to read/write the PHY
       
  7347  *            E1000_SUCCESS at any other case.
       
  7348  *
       
  7349  ****************************************************************************/
       
  7350 
       
  7351 static s32
       
  7352 e1000_set_d0_lplu_state(struct e1000_hw *hw,
       
  7353                         bool active)
       
  7354 {
       
  7355     u32 phy_ctrl = 0;
       
  7356     s32 ret_val;
       
  7357     u16 phy_data;
       
  7358     DEBUGFUNC("e1000_set_d0_lplu_state");
       
  7359 
       
  7360     if (hw->mac_type <= e1000_82547_rev_2)
       
  7361         return E1000_SUCCESS;
       
  7362 
       
  7363     if (hw->mac_type == e1000_ich8lan) {
       
  7364         phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
       
  7365     } else {
       
  7366         ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
       
  7367         if (ret_val)
       
  7368             return ret_val;
       
  7369     }
       
  7370 
       
  7371     if (!active) {
       
  7372         if (hw->mac_type == e1000_ich8lan) {
       
  7373             phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
       
  7374             E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
       
  7375         } else {
       
  7376             phy_data &= ~IGP02E1000_PM_D0_LPLU;
       
  7377             ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
       
  7378             if (ret_val)
       
  7379                 return ret_val;
       
  7380         }
       
  7381 
       
  7382         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
       
  7383          * Dx states where the power conservation is most important.  During
       
  7384          * driver activity we should enable SmartSpeed, so performance is
       
  7385          * maintained. */
       
  7386         if (hw->smart_speed == e1000_smart_speed_on) {
       
  7387             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  7388                                          &phy_data);
       
  7389             if (ret_val)
       
  7390                 return ret_val;
       
  7391 
       
  7392             phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  7393             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  7394                                           phy_data);
       
  7395             if (ret_val)
       
  7396                 return ret_val;
       
  7397         } else if (hw->smart_speed == e1000_smart_speed_off) {
       
  7398             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  7399                                          &phy_data);
       
  7400             if (ret_val)
       
  7401                 return ret_val;
       
  7402 
       
  7403             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  7404             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  7405                                           phy_data);
       
  7406             if (ret_val)
       
  7407                 return ret_val;
       
  7408         }
       
  7409 
       
  7410 
       
  7411     } else {
       
  7412 
       
  7413         if (hw->mac_type == e1000_ich8lan) {
       
  7414             phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
       
  7415             E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
       
  7416         } else {
       
  7417             phy_data |= IGP02E1000_PM_D0_LPLU;
       
  7418             ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
       
  7419             if (ret_val)
       
  7420                 return ret_val;
       
  7421         }
       
  7422 
       
  7423         /* When LPLU is enabled we should disable SmartSpeed */
       
  7424         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
       
  7425         if (ret_val)
       
  7426             return ret_val;
       
  7427 
       
  7428         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  7429         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
       
  7430         if (ret_val)
       
  7431             return ret_val;
       
  7432 
       
  7433     }
       
  7434     return E1000_SUCCESS;
       
  7435 }
       
  7436 
       
  7437 /******************************************************************************
       
  7438  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
       
  7439  *
       
  7440  * hw - Struct containing variables accessed by shared code
       
  7441  *****************************************************************************/
       
  7442 static s32
       
  7443 e1000_set_vco_speed(struct e1000_hw *hw)
       
  7444 {
       
  7445     s32  ret_val;
       
  7446     u16 default_page = 0;
       
  7447     u16 phy_data;
       
  7448 
       
  7449     DEBUGFUNC("e1000_set_vco_speed");
       
  7450 
       
  7451     switch (hw->mac_type) {
       
  7452     case e1000_82545_rev_3:
       
  7453     case e1000_82546_rev_3:
       
  7454        break;
       
  7455     default:
       
  7456         return E1000_SUCCESS;
       
  7457     }
       
  7458 
       
  7459     /* Set PHY register 30, page 5, bit 8 to 0 */
       
  7460 
       
  7461     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
       
  7462     if (ret_val)
       
  7463         return ret_val;
       
  7464 
       
  7465     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
       
  7466     if (ret_val)
       
  7467         return ret_val;
       
  7468 
       
  7469     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
       
  7470     if (ret_val)
       
  7471         return ret_val;
       
  7472 
       
  7473     phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
       
  7474     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
       
  7475     if (ret_val)
       
  7476         return ret_val;
       
  7477 
       
  7478     /* Set PHY register 30, page 4, bit 11 to 1 */
       
  7479 
       
  7480     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
       
  7481     if (ret_val)
       
  7482         return ret_val;
       
  7483 
       
  7484     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
       
  7485     if (ret_val)
       
  7486         return ret_val;
       
  7487 
       
  7488     phy_data |= M88E1000_PHY_VCO_REG_BIT11;
       
  7489     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
       
  7490     if (ret_val)
       
  7491         return ret_val;
       
  7492 
       
  7493     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
       
  7494     if (ret_val)
       
  7495         return ret_val;
       
  7496 
       
  7497     return E1000_SUCCESS;
       
  7498 }
       
  7499 
       
  7500 
       
  7501 /*****************************************************************************
       
  7502  * This function reads the cookie from ARC ram.
       
  7503  *
       
  7504  * returns: - E1000_SUCCESS .
       
  7505  ****************************************************************************/
       
  7506 static s32
       
  7507 e1000_host_if_read_cookie(struct e1000_hw * hw, u8 *buffer)
       
  7508 {
       
  7509     u8 i;
       
  7510     u32 offset = E1000_MNG_DHCP_COOKIE_OFFSET;
       
  7511     u8 length = E1000_MNG_DHCP_COOKIE_LENGTH;
       
  7512 
       
  7513     length = (length >> 2);
       
  7514     offset = (offset >> 2);
       
  7515 
       
  7516     for (i = 0; i < length; i++) {
       
  7517         *((u32 *) buffer + i) =
       
  7518             E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
       
  7519     }
       
  7520     return E1000_SUCCESS;
       
  7521 }
       
  7522 
       
  7523 
       
  7524 /*****************************************************************************
       
  7525  * This function checks whether the HOST IF is enabled for command operaton
       
  7526  * and also checks whether the previous command is completed.
       
  7527  * It busy waits in case of previous command is not completed.
       
  7528  *
       
  7529  * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
       
  7530  *            timeout
       
  7531  *          - E1000_SUCCESS for success.
       
  7532  ****************************************************************************/
       
  7533 static s32
       
  7534 e1000_mng_enable_host_if(struct e1000_hw * hw)
       
  7535 {
       
  7536     u32 hicr;
       
  7537     u8 i;
       
  7538 
       
  7539     /* Check that the host interface is enabled. */
       
  7540     hicr = E1000_READ_REG(hw, HICR);
       
  7541     if ((hicr & E1000_HICR_EN) == 0) {
       
  7542         DEBUGOUT("E1000_HOST_EN bit disabled.\n");
       
  7543         return -E1000_ERR_HOST_INTERFACE_COMMAND;
       
  7544     }
       
  7545     /* check the previous command is completed */
       
  7546     for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
       
  7547         hicr = E1000_READ_REG(hw, HICR);
       
  7548         if (!(hicr & E1000_HICR_C))
       
  7549             break;
       
  7550         mdelay(1);
       
  7551     }
       
  7552 
       
  7553     if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
       
  7554         DEBUGOUT("Previous command timeout failed .\n");
       
  7555         return -E1000_ERR_HOST_INTERFACE_COMMAND;
       
  7556     }
       
  7557     return E1000_SUCCESS;
       
  7558 }
       
  7559 
       
  7560 /*****************************************************************************
       
  7561  * This function writes the buffer content at the offset given on the host if.
       
  7562  * It also does alignment considerations to do the writes in most efficient way.
       
  7563  * Also fills up the sum of the buffer in *buffer parameter.
       
  7564  *
       
  7565  * returns  - E1000_SUCCESS for success.
       
  7566  ****************************************************************************/
       
  7567 static s32
       
  7568 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer,
       
  7569                         u16 length, u16 offset, u8 *sum)
       
  7570 {
       
  7571     u8 *tmp;
       
  7572     u8 *bufptr = buffer;
       
  7573     u32 data = 0;
       
  7574     u16 remaining, i, j, prev_bytes;
       
  7575 
       
  7576     /* sum = only sum of the data and it is not checksum */
       
  7577 
       
  7578     if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
       
  7579         return -E1000_ERR_PARAM;
       
  7580     }
       
  7581 
       
  7582     tmp = (u8 *)&data;
       
  7583     prev_bytes = offset & 0x3;
       
  7584     offset &= 0xFFFC;
       
  7585     offset >>= 2;
       
  7586 
       
  7587     if (prev_bytes) {
       
  7588         data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
       
  7589         for (j = prev_bytes; j < sizeof(u32); j++) {
       
  7590             *(tmp + j) = *bufptr++;
       
  7591             *sum += *(tmp + j);
       
  7592         }
       
  7593         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
       
  7594         length -= j - prev_bytes;
       
  7595         offset++;
       
  7596     }
       
  7597 
       
  7598     remaining = length & 0x3;
       
  7599     length -= remaining;
       
  7600 
       
  7601     /* Calculate length in DWORDs */
       
  7602     length >>= 2;
       
  7603 
       
  7604     /* The device driver writes the relevant command block into the
       
  7605      * ram area. */
       
  7606     for (i = 0; i < length; i++) {
       
  7607         for (j = 0; j < sizeof(u32); j++) {
       
  7608             *(tmp + j) = *bufptr++;
       
  7609             *sum += *(tmp + j);
       
  7610         }
       
  7611 
       
  7612         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
       
  7613     }
       
  7614     if (remaining) {
       
  7615         for (j = 0; j < sizeof(u32); j++) {
       
  7616             if (j < remaining)
       
  7617                 *(tmp + j) = *bufptr++;
       
  7618             else
       
  7619                 *(tmp + j) = 0;
       
  7620 
       
  7621             *sum += *(tmp + j);
       
  7622         }
       
  7623         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
       
  7624     }
       
  7625 
       
  7626     return E1000_SUCCESS;
       
  7627 }
       
  7628 
       
  7629 
       
  7630 /*****************************************************************************
       
  7631  * This function writes the command header after does the checksum calculation.
       
  7632  *
       
  7633  * returns  - E1000_SUCCESS for success.
       
  7634  ****************************************************************************/
       
  7635 static s32
       
  7636 e1000_mng_write_cmd_header(struct e1000_hw * hw,
       
  7637                            struct e1000_host_mng_command_header * hdr)
       
  7638 {
       
  7639     u16 i;
       
  7640     u8 sum;
       
  7641     u8 *buffer;
       
  7642 
       
  7643     /* Write the whole command header structure which includes sum of
       
  7644      * the buffer */
       
  7645 
       
  7646     u16 length = sizeof(struct e1000_host_mng_command_header);
       
  7647 
       
  7648     sum = hdr->checksum;
       
  7649     hdr->checksum = 0;
       
  7650 
       
  7651     buffer = (u8 *) hdr;
       
  7652     i = length;
       
  7653     while (i--)
       
  7654         sum += buffer[i];
       
  7655 
       
  7656     hdr->checksum = 0 - sum;
       
  7657 
       
  7658     length >>= 2;
       
  7659     /* The device driver writes the relevant command block into the ram area. */
       
  7660     for (i = 0; i < length; i++) {
       
  7661         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *) hdr + i));
       
  7662         E1000_WRITE_FLUSH(hw);
       
  7663     }
       
  7664 
       
  7665     return E1000_SUCCESS;
       
  7666 }
       
  7667 
       
  7668 
       
  7669 /*****************************************************************************
       
  7670  * This function indicates to ARC that a new command is pending which completes
       
  7671  * one write operation by the driver.
       
  7672  *
       
  7673  * returns  - E1000_SUCCESS for success.
       
  7674  ****************************************************************************/
       
  7675 static s32
       
  7676 e1000_mng_write_commit(struct e1000_hw * hw)
       
  7677 {
       
  7678     u32 hicr;
       
  7679 
       
  7680     hicr = E1000_READ_REG(hw, HICR);
       
  7681     /* Setting this bit tells the ARC that a new command is pending. */
       
  7682     E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
       
  7683 
       
  7684     return E1000_SUCCESS;
       
  7685 }
       
  7686 
       
  7687 
       
  7688 /*****************************************************************************
       
  7689  * This function checks the mode of the firmware.
       
  7690  *
       
  7691  * returns  - true when the mode is IAMT or false.
       
  7692  ****************************************************************************/
       
  7693 bool
       
  7694 e1000_check_mng_mode(struct e1000_hw *hw)
       
  7695 {
       
  7696     u32 fwsm;
       
  7697 
       
  7698     fwsm = E1000_READ_REG(hw, FWSM);
       
  7699 
       
  7700     if (hw->mac_type == e1000_ich8lan) {
       
  7701         if ((fwsm & E1000_FWSM_MODE_MASK) ==
       
  7702             (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
       
  7703             return true;
       
  7704     } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
       
  7705                (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
       
  7706         return true;
       
  7707 
       
  7708     return false;
       
  7709 }
       
  7710 
       
  7711 
       
  7712 /*****************************************************************************
       
  7713  * This function writes the dhcp info .
       
  7714  ****************************************************************************/
       
  7715 s32
       
  7716 e1000_mng_write_dhcp_info(struct e1000_hw * hw, u8 *buffer,
       
  7717                           u16 length)
       
  7718 {
       
  7719     s32 ret_val;
       
  7720     struct e1000_host_mng_command_header hdr;
       
  7721 
       
  7722     hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
       
  7723     hdr.command_length = length;
       
  7724     hdr.reserved1 = 0;
       
  7725     hdr.reserved2 = 0;
       
  7726     hdr.checksum = 0;
       
  7727 
       
  7728     ret_val = e1000_mng_enable_host_if(hw);
       
  7729     if (ret_val == E1000_SUCCESS) {
       
  7730         ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
       
  7731                                           &(hdr.checksum));
       
  7732         if (ret_val == E1000_SUCCESS) {
       
  7733             ret_val = e1000_mng_write_cmd_header(hw, &hdr);
       
  7734             if (ret_val == E1000_SUCCESS)
       
  7735                 ret_val = e1000_mng_write_commit(hw);
       
  7736         }
       
  7737     }
       
  7738     return ret_val;
       
  7739 }
       
  7740 
       
  7741 
       
  7742 /*****************************************************************************
       
  7743  * This function calculates the checksum.
       
  7744  *
       
  7745  * returns  - checksum of buffer contents.
       
  7746  ****************************************************************************/
       
  7747 static u8
       
  7748 e1000_calculate_mng_checksum(char *buffer, u32 length)
       
  7749 {
       
  7750     u8 sum = 0;
       
  7751     u32 i;
       
  7752 
       
  7753     if (!buffer)
       
  7754         return 0;
       
  7755 
       
  7756     for (i=0; i < length; i++)
       
  7757         sum += buffer[i];
       
  7758 
       
  7759     return (u8) (0 - sum);
       
  7760 }
       
  7761 
       
  7762 /*****************************************************************************
       
  7763  * This function checks whether tx pkt filtering needs to be enabled or not.
       
  7764  *
       
  7765  * returns  - true for packet filtering or false.
       
  7766  ****************************************************************************/
       
  7767 bool
       
  7768 e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
       
  7769 {
       
  7770     /* called in init as well as watchdog timer functions */
       
  7771 
       
  7772     s32 ret_val, checksum;
       
  7773     bool tx_filter = false;
       
  7774     struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
       
  7775     u8 *buffer = (u8 *) &(hw->mng_cookie);
       
  7776 
       
  7777     if (e1000_check_mng_mode(hw)) {
       
  7778         ret_val = e1000_mng_enable_host_if(hw);
       
  7779         if (ret_val == E1000_SUCCESS) {
       
  7780             ret_val = e1000_host_if_read_cookie(hw, buffer);
       
  7781             if (ret_val == E1000_SUCCESS) {
       
  7782                 checksum = hdr->checksum;
       
  7783                 hdr->checksum = 0;
       
  7784                 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
       
  7785                     checksum == e1000_calculate_mng_checksum((char *)buffer,
       
  7786                                                E1000_MNG_DHCP_COOKIE_LENGTH)) {
       
  7787                     if (hdr->status &
       
  7788                         E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
       
  7789                         tx_filter = true;
       
  7790                 } else
       
  7791                     tx_filter = true;
       
  7792             } else
       
  7793                 tx_filter = true;
       
  7794         }
       
  7795     }
       
  7796 
       
  7797     hw->tx_pkt_filtering = tx_filter;
       
  7798     return tx_filter;
       
  7799 }
       
  7800 
       
  7801 /******************************************************************************
       
  7802  * Verifies the hardware needs to allow ARPs to be processed by the host
       
  7803  *
       
  7804  * hw - Struct containing variables accessed by shared code
       
  7805  *
       
  7806  * returns: - true/false
       
  7807  *
       
  7808  *****************************************************************************/
       
  7809 u32
       
  7810 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
       
  7811 {
       
  7812     u32 manc;
       
  7813     u32 fwsm, factps;
       
  7814 
       
  7815     if (hw->asf_firmware_present) {
       
  7816         manc = E1000_READ_REG(hw, MANC);
       
  7817 
       
  7818         if (!(manc & E1000_MANC_RCV_TCO_EN) ||
       
  7819             !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
       
  7820             return false;
       
  7821         if (e1000_arc_subsystem_valid(hw)) {
       
  7822             fwsm = E1000_READ_REG(hw, FWSM);
       
  7823             factps = E1000_READ_REG(hw, FACTPS);
       
  7824 
       
  7825             if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) ==
       
  7826                    e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG))
       
  7827                 return true;
       
  7828         } else
       
  7829             if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
       
  7830                 return true;
       
  7831     }
       
  7832     return false;
       
  7833 }
       
  7834 
       
  7835 static s32
       
  7836 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
       
  7837 {
       
  7838     s32 ret_val;
       
  7839     u16 mii_status_reg;
       
  7840     u16 i;
       
  7841 
       
  7842     /* Polarity reversal workaround for forced 10F/10H links. */
       
  7843 
       
  7844     /* Disable the transmitter on the PHY */
       
  7845 
       
  7846     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
       
  7847     if (ret_val)
       
  7848         return ret_val;
       
  7849     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
       
  7850     if (ret_val)
       
  7851         return ret_val;
       
  7852 
       
  7853     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
       
  7854     if (ret_val)
       
  7855         return ret_val;
       
  7856 
       
  7857     /* This loop will early-out if the NO link condition has been met. */
       
  7858     for (i = PHY_FORCE_TIME; i > 0; i--) {
       
  7859         /* Read the MII Status Register and wait for Link Status bit
       
  7860          * to be clear.
       
  7861          */
       
  7862 
       
  7863         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  7864         if (ret_val)
       
  7865             return ret_val;
       
  7866 
       
  7867         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  7868         if (ret_val)
       
  7869             return ret_val;
       
  7870 
       
  7871         if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
       
  7872         mdelay(100);
       
  7873     }
       
  7874 
       
  7875     /* Recommended delay time after link has been lost */
       
  7876     mdelay(1000);
       
  7877 
       
  7878     /* Now we will re-enable th transmitter on the PHY */
       
  7879 
       
  7880     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
       
  7881     if (ret_val)
       
  7882         return ret_val;
       
  7883     mdelay(50);
       
  7884     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
       
  7885     if (ret_val)
       
  7886         return ret_val;
       
  7887     mdelay(50);
       
  7888     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
       
  7889     if (ret_val)
       
  7890         return ret_val;
       
  7891     mdelay(50);
       
  7892     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
       
  7893     if (ret_val)
       
  7894         return ret_val;
       
  7895 
       
  7896     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
       
  7897     if (ret_val)
       
  7898         return ret_val;
       
  7899 
       
  7900     /* This loop will early-out if the link condition has been met. */
       
  7901     for (i = PHY_FORCE_TIME; i > 0; i--) {
       
  7902         /* Read the MII Status Register and wait for Link Status bit
       
  7903          * to be set.
       
  7904          */
       
  7905 
       
  7906         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  7907         if (ret_val)
       
  7908             return ret_val;
       
  7909 
       
  7910         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  7911         if (ret_val)
       
  7912             return ret_val;
       
  7913 
       
  7914         if (mii_status_reg & MII_SR_LINK_STATUS) break;
       
  7915         mdelay(100);
       
  7916     }
       
  7917     return E1000_SUCCESS;
       
  7918 }
       
  7919 
       
  7920 /***************************************************************************
       
  7921  *
       
  7922  * Disables PCI-Express master access.
       
  7923  *
       
  7924  * hw: Struct containing variables accessed by shared code
       
  7925  *
       
  7926  * returns: - none.
       
  7927  *
       
  7928  ***************************************************************************/
       
  7929 static void
       
  7930 e1000_set_pci_express_master_disable(struct e1000_hw *hw)
       
  7931 {
       
  7932     u32 ctrl;
       
  7933 
       
  7934     DEBUGFUNC("e1000_set_pci_express_master_disable");
       
  7935 
       
  7936     if (hw->bus_type != e1000_bus_type_pci_express)
       
  7937         return;
       
  7938 
       
  7939     ctrl = E1000_READ_REG(hw, CTRL);
       
  7940     ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
       
  7941     E1000_WRITE_REG(hw, CTRL, ctrl);
       
  7942 }
       
  7943 
       
  7944 /*******************************************************************************
       
  7945  *
       
  7946  * Disables PCI-Express master access and verifies there are no pending requests
       
  7947  *
       
  7948  * hw: Struct containing variables accessed by shared code
       
  7949  *
       
  7950  * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
       
  7951  *            caused the master requests to be disabled.
       
  7952  *            E1000_SUCCESS master requests disabled.
       
  7953  *
       
  7954  ******************************************************************************/
       
  7955 s32
       
  7956 e1000_disable_pciex_master(struct e1000_hw *hw)
       
  7957 {
       
  7958     s32 timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */
       
  7959 
       
  7960     DEBUGFUNC("e1000_disable_pciex_master");
       
  7961 
       
  7962     if (hw->bus_type != e1000_bus_type_pci_express)
       
  7963         return E1000_SUCCESS;
       
  7964 
       
  7965     e1000_set_pci_express_master_disable(hw);
       
  7966 
       
  7967     while (timeout) {
       
  7968         if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
       
  7969             break;
       
  7970         else
       
  7971             udelay(100);
       
  7972         timeout--;
       
  7973     }
       
  7974 
       
  7975     if (!timeout) {
       
  7976         DEBUGOUT("Master requests are pending.\n");
       
  7977         return -E1000_ERR_MASTER_REQUESTS_PENDING;
       
  7978     }
       
  7979 
       
  7980     return E1000_SUCCESS;
       
  7981 }
       
  7982 
       
  7983 /*******************************************************************************
       
  7984  *
       
  7985  * Check for EEPROM Auto Read bit done.
       
  7986  *
       
  7987  * hw: Struct containing variables accessed by shared code
       
  7988  *
       
  7989  * returns: - E1000_ERR_RESET if fail to reset MAC
       
  7990  *            E1000_SUCCESS at any other case.
       
  7991  *
       
  7992  ******************************************************************************/
       
  7993 static s32
       
  7994 e1000_get_auto_rd_done(struct e1000_hw *hw)
       
  7995 {
       
  7996     s32 timeout = AUTO_READ_DONE_TIMEOUT;
       
  7997 
       
  7998     DEBUGFUNC("e1000_get_auto_rd_done");
       
  7999 
       
  8000     switch (hw->mac_type) {
       
  8001     default:
       
  8002         msleep(5);
       
  8003         break;
       
  8004     case e1000_82571:
       
  8005     case e1000_82572:
       
  8006     case e1000_82573:
       
  8007     case e1000_80003es2lan:
       
  8008     case e1000_ich8lan:
       
  8009         while (timeout) {
       
  8010             if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
       
  8011                 break;
       
  8012             else msleep(1);
       
  8013             timeout--;
       
  8014         }
       
  8015 
       
  8016         if (!timeout) {
       
  8017             DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
       
  8018             return -E1000_ERR_RESET;
       
  8019         }
       
  8020         break;
       
  8021     }
       
  8022 
       
  8023     /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
       
  8024      * Need to wait for PHY configuration completion before accessing NVM
       
  8025      * and PHY. */
       
  8026     if (hw->mac_type == e1000_82573)
       
  8027         msleep(25);
       
  8028 
       
  8029     return E1000_SUCCESS;
       
  8030 }
       
  8031 
       
  8032 /***************************************************************************
       
  8033  * Checks if the PHY configuration is done
       
  8034  *
       
  8035  * hw: Struct containing variables accessed by shared code
       
  8036  *
       
  8037  * returns: - E1000_ERR_RESET if fail to reset MAC
       
  8038  *            E1000_SUCCESS at any other case.
       
  8039  *
       
  8040  ***************************************************************************/
       
  8041 static s32
       
  8042 e1000_get_phy_cfg_done(struct e1000_hw *hw)
       
  8043 {
       
  8044     s32 timeout = PHY_CFG_TIMEOUT;
       
  8045     u32 cfg_mask = E1000_EEPROM_CFG_DONE;
       
  8046 
       
  8047     DEBUGFUNC("e1000_get_phy_cfg_done");
       
  8048 
       
  8049     switch (hw->mac_type) {
       
  8050     default:
       
  8051         mdelay(10);
       
  8052         break;
       
  8053     case e1000_80003es2lan:
       
  8054         /* Separate *_CFG_DONE_* bit for each port */
       
  8055         if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
       
  8056             cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
       
  8057         /* Fall Through */
       
  8058     case e1000_82571:
       
  8059     case e1000_82572:
       
  8060         while (timeout) {
       
  8061             if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
       
  8062                 break;
       
  8063             else
       
  8064                 msleep(1);
       
  8065             timeout--;
       
  8066         }
       
  8067         if (!timeout) {
       
  8068             DEBUGOUT("MNG configuration cycle has not completed.\n");
       
  8069             return -E1000_ERR_RESET;
       
  8070         }
       
  8071         break;
       
  8072     }
       
  8073 
       
  8074     return E1000_SUCCESS;
       
  8075 }
       
  8076 
       
  8077 /***************************************************************************
       
  8078  *
       
  8079  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
       
  8080  * adapter or Eeprom access.
       
  8081  *
       
  8082  * hw: Struct containing variables accessed by shared code
       
  8083  *
       
  8084  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
       
  8085  *            E1000_SUCCESS at any other case.
       
  8086  *
       
  8087  ***************************************************************************/
       
  8088 static s32
       
  8089 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
       
  8090 {
       
  8091     s32 timeout;
       
  8092     u32 swsm;
       
  8093 
       
  8094     DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
       
  8095 
       
  8096     if (!hw->eeprom_semaphore_present)
       
  8097         return E1000_SUCCESS;
       
  8098 
       
  8099     if (hw->mac_type == e1000_80003es2lan) {
       
  8100         /* Get the SW semaphore. */
       
  8101         if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
       
  8102             return -E1000_ERR_EEPROM;
       
  8103     }
       
  8104 
       
  8105     /* Get the FW semaphore. */
       
  8106     timeout = hw->eeprom.word_size + 1;
       
  8107     while (timeout) {
       
  8108         swsm = E1000_READ_REG(hw, SWSM);
       
  8109         swsm |= E1000_SWSM_SWESMBI;
       
  8110         E1000_WRITE_REG(hw, SWSM, swsm);
       
  8111         /* if we managed to set the bit we got the semaphore. */
       
  8112         swsm = E1000_READ_REG(hw, SWSM);
       
  8113         if (swsm & E1000_SWSM_SWESMBI)
       
  8114             break;
       
  8115 
       
  8116         udelay(50);
       
  8117         timeout--;
       
  8118     }
       
  8119 
       
  8120     if (!timeout) {
       
  8121         /* Release semaphores */
       
  8122         e1000_put_hw_eeprom_semaphore(hw);
       
  8123         DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
       
  8124         return -E1000_ERR_EEPROM;
       
  8125     }
       
  8126 
       
  8127     return E1000_SUCCESS;
       
  8128 }
       
  8129 
       
  8130 /***************************************************************************
       
  8131  * This function clears HW semaphore bits.
       
  8132  *
       
  8133  * hw: Struct containing variables accessed by shared code
       
  8134  *
       
  8135  * returns: - None.
       
  8136  *
       
  8137  ***************************************************************************/
       
  8138 static void
       
  8139 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
       
  8140 {
       
  8141     u32 swsm;
       
  8142 
       
  8143     DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
       
  8144 
       
  8145     if (!hw->eeprom_semaphore_present)
       
  8146         return;
       
  8147 
       
  8148     swsm = E1000_READ_REG(hw, SWSM);
       
  8149     if (hw->mac_type == e1000_80003es2lan) {
       
  8150         /* Release both semaphores. */
       
  8151         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
  8152     } else
       
  8153         swsm &= ~(E1000_SWSM_SWESMBI);
       
  8154     E1000_WRITE_REG(hw, SWSM, swsm);
       
  8155 }
       
  8156 
       
  8157 /***************************************************************************
       
  8158  *
       
  8159  * Obtaining software semaphore bit (SMBI) before resetting PHY.
       
  8160  *
       
  8161  * hw: Struct containing variables accessed by shared code
       
  8162  *
       
  8163  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
       
  8164  *            E1000_SUCCESS at any other case.
       
  8165  *
       
  8166  ***************************************************************************/
       
  8167 static s32
       
  8168 e1000_get_software_semaphore(struct e1000_hw *hw)
       
  8169 {
       
  8170     s32 timeout = hw->eeprom.word_size + 1;
       
  8171     u32 swsm;
       
  8172 
       
  8173     DEBUGFUNC("e1000_get_software_semaphore");
       
  8174 
       
  8175     if (hw->mac_type != e1000_80003es2lan) {
       
  8176         return E1000_SUCCESS;
       
  8177     }
       
  8178 
       
  8179     while (timeout) {
       
  8180         swsm = E1000_READ_REG(hw, SWSM);
       
  8181         /* If SMBI bit cleared, it is now set and we hold the semaphore */
       
  8182         if (!(swsm & E1000_SWSM_SMBI))
       
  8183             break;
       
  8184         mdelay(1);
       
  8185         timeout--;
       
  8186     }
       
  8187 
       
  8188     if (!timeout) {
       
  8189         DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
       
  8190         return -E1000_ERR_RESET;
       
  8191     }
       
  8192 
       
  8193     return E1000_SUCCESS;
       
  8194 }
       
  8195 
       
  8196 /***************************************************************************
       
  8197  *
       
  8198  * Release semaphore bit (SMBI).
       
  8199  *
       
  8200  * hw: Struct containing variables accessed by shared code
       
  8201  *
       
  8202  ***************************************************************************/
       
  8203 static void
       
  8204 e1000_release_software_semaphore(struct e1000_hw *hw)
       
  8205 {
       
  8206     u32 swsm;
       
  8207 
       
  8208     DEBUGFUNC("e1000_release_software_semaphore");
       
  8209 
       
  8210     if (hw->mac_type != e1000_80003es2lan) {
       
  8211         return;
       
  8212     }
       
  8213 
       
  8214     swsm = E1000_READ_REG(hw, SWSM);
       
  8215     /* Release the SW semaphores.*/
       
  8216     swsm &= ~E1000_SWSM_SMBI;
       
  8217     E1000_WRITE_REG(hw, SWSM, swsm);
       
  8218 }
       
  8219 
       
  8220 /******************************************************************************
       
  8221  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
       
  8222  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
       
  8223  * the caller to figure out how to deal with it.
       
  8224  *
       
  8225  * hw - Struct containing variables accessed by shared code
       
  8226  *
       
  8227  * returns: - E1000_BLK_PHY_RESET
       
  8228  *            E1000_SUCCESS
       
  8229  *
       
  8230  *****************************************************************************/
       
  8231 s32
       
  8232 e1000_check_phy_reset_block(struct e1000_hw *hw)
       
  8233 {
       
  8234     u32 manc = 0;
       
  8235     u32 fwsm = 0;
       
  8236 
       
  8237     if (hw->mac_type == e1000_ich8lan) {
       
  8238         fwsm = E1000_READ_REG(hw, FWSM);
       
  8239         return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
       
  8240                                             : E1000_BLK_PHY_RESET;
       
  8241     }
       
  8242 
       
  8243     if (hw->mac_type > e1000_82547_rev_2)
       
  8244         manc = E1000_READ_REG(hw, MANC);
       
  8245     return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
       
  8246         E1000_BLK_PHY_RESET : E1000_SUCCESS;
       
  8247 }
       
  8248 
       
  8249 static u8
       
  8250 e1000_arc_subsystem_valid(struct e1000_hw *hw)
       
  8251 {
       
  8252     u32 fwsm;
       
  8253 
       
  8254     /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
       
  8255      * may not be provided a DMA clock when no manageability features are
       
  8256      * enabled.  We do not want to perform any reads/writes to these registers
       
  8257      * if this is the case.  We read FWSM to determine the manageability mode.
       
  8258      */
       
  8259     switch (hw->mac_type) {
       
  8260     case e1000_82571:
       
  8261     case e1000_82572:
       
  8262     case e1000_82573:
       
  8263     case e1000_80003es2lan:
       
  8264         fwsm = E1000_READ_REG(hw, FWSM);
       
  8265         if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
       
  8266             return true;
       
  8267         break;
       
  8268     case e1000_ich8lan:
       
  8269         return true;
       
  8270     default:
       
  8271         break;
       
  8272     }
       
  8273     return false;
       
  8274 }
       
  8275 
       
  8276 
       
  8277 /******************************************************************************
       
  8278  * Configure PCI-Ex no-snoop
       
  8279  *
       
  8280  * hw - Struct containing variables accessed by shared code.
       
  8281  * no_snoop - Bitmap of no-snoop events.
       
  8282  *
       
  8283  * returns: E1000_SUCCESS
       
  8284  *
       
  8285  *****************************************************************************/
       
  8286 static s32
       
  8287 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop)
       
  8288 {
       
  8289     u32 gcr_reg = 0;
       
  8290 
       
  8291     DEBUGFUNC("e1000_set_pci_ex_no_snoop");
       
  8292 
       
  8293     if (hw->bus_type == e1000_bus_type_unknown)
       
  8294         e1000_get_bus_info(hw);
       
  8295 
       
  8296     if (hw->bus_type != e1000_bus_type_pci_express)
       
  8297         return E1000_SUCCESS;
       
  8298 
       
  8299     if (no_snoop) {
       
  8300         gcr_reg = E1000_READ_REG(hw, GCR);
       
  8301         gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
       
  8302         gcr_reg |= no_snoop;
       
  8303         E1000_WRITE_REG(hw, GCR, gcr_reg);
       
  8304     }
       
  8305     if (hw->mac_type == e1000_ich8lan) {
       
  8306         u32 ctrl_ext;
       
  8307 
       
  8308         E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
       
  8309 
       
  8310         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
  8311         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
       
  8312         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
  8313     }
       
  8314 
       
  8315     return E1000_SUCCESS;
       
  8316 }
       
  8317 
       
  8318 /***************************************************************************
       
  8319  *
       
  8320  * Get software semaphore FLAG bit (SWFLAG).
       
  8321  * SWFLAG is used to synchronize the access to all shared resource between
       
  8322  * SW, FW and HW.
       
  8323  *
       
  8324  * hw: Struct containing variables accessed by shared code
       
  8325  *
       
  8326  ***************************************************************************/
       
  8327 static s32
       
  8328 e1000_get_software_flag(struct e1000_hw *hw)
       
  8329 {
       
  8330     s32 timeout = PHY_CFG_TIMEOUT;
       
  8331     u32 extcnf_ctrl;
       
  8332 
       
  8333     DEBUGFUNC("e1000_get_software_flag");
       
  8334 
       
  8335     if (hw->mac_type == e1000_ich8lan) {
       
  8336         while (timeout) {
       
  8337             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
       
  8338             extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
       
  8339             E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
       
  8340 
       
  8341             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
       
  8342             if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
       
  8343                 break;
       
  8344             mdelay(1);
       
  8345             timeout--;
       
  8346         }
       
  8347 
       
  8348         if (!timeout) {
       
  8349             DEBUGOUT("FW or HW locks the resource too long.\n");
       
  8350             return -E1000_ERR_CONFIG;
       
  8351         }
       
  8352     }
       
  8353 
       
  8354     return E1000_SUCCESS;
       
  8355 }
       
  8356 
       
  8357 /***************************************************************************
       
  8358  *
       
  8359  * Release software semaphore FLAG bit (SWFLAG).
       
  8360  * SWFLAG is used to synchronize the access to all shared resource between
       
  8361  * SW, FW and HW.
       
  8362  *
       
  8363  * hw: Struct containing variables accessed by shared code
       
  8364  *
       
  8365  ***************************************************************************/
       
  8366 static void
       
  8367 e1000_release_software_flag(struct e1000_hw *hw)
       
  8368 {
       
  8369     u32 extcnf_ctrl;
       
  8370 
       
  8371     DEBUGFUNC("e1000_release_software_flag");
       
  8372 
       
  8373     if (hw->mac_type == e1000_ich8lan) {
       
  8374         extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
       
  8375         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
       
  8376         E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
       
  8377     }
       
  8378 
       
  8379     return;
       
  8380 }
       
  8381 
       
  8382 /******************************************************************************
       
  8383  * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
       
  8384  * register.
       
  8385  *
       
  8386  * hw - Struct containing variables accessed by shared code
       
  8387  * offset - offset of word in the EEPROM to read
       
  8388  * data - word read from the EEPROM
       
  8389  * words - number of words to read
       
  8390  *****************************************************************************/
       
  8391 static s32
       
  8392 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
       
  8393                        u16 *data)
       
  8394 {
       
  8395     s32  error = E1000_SUCCESS;
       
  8396     u32 flash_bank = 0;
       
  8397     u32 act_offset = 0;
       
  8398     u32 bank_offset = 0;
       
  8399     u16 word = 0;
       
  8400     u16 i = 0;
       
  8401 
       
  8402     /* We need to know which is the valid flash bank.  In the event
       
  8403      * that we didn't allocate eeprom_shadow_ram, we may not be
       
  8404      * managing flash_bank.  So it cannot be trusted and needs
       
  8405      * to be updated with each read.
       
  8406      */
       
  8407     /* Value of bit 22 corresponds to the flash bank we're on. */
       
  8408     flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
       
  8409 
       
  8410     /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
       
  8411     bank_offset = flash_bank * (hw->flash_bank_size * 2);
       
  8412 
       
  8413     error = e1000_get_software_flag(hw);
       
  8414     if (error != E1000_SUCCESS)
       
  8415         return error;
       
  8416 
       
  8417     for (i = 0; i < words; i++) {
       
  8418         if (hw->eeprom_shadow_ram != NULL &&
       
  8419             hw->eeprom_shadow_ram[offset+i].modified) {
       
  8420             data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
       
  8421         } else {
       
  8422             /* The NVM part needs a byte offset, hence * 2 */
       
  8423             act_offset = bank_offset + ((offset + i) * 2);
       
  8424             error = e1000_read_ich8_word(hw, act_offset, &word);
       
  8425             if (error != E1000_SUCCESS)
       
  8426                 break;
       
  8427             data[i] = word;
       
  8428         }
       
  8429     }
       
  8430 
       
  8431     e1000_release_software_flag(hw);
       
  8432 
       
  8433     return error;
       
  8434 }
       
  8435 
       
  8436 /******************************************************************************
       
  8437  * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
       
  8438  * register.  Actually, writes are written to the shadow ram cache in the hw
       
  8439  * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to
       
  8440  * the NVM, which occurs when the NVM checksum is updated.
       
  8441  *
       
  8442  * hw - Struct containing variables accessed by shared code
       
  8443  * offset - offset of word in the EEPROM to write
       
  8444  * words - number of words to write
       
  8445  * data - words to write to the EEPROM
       
  8446  *****************************************************************************/
       
  8447 static s32
       
  8448 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
       
  8449                         u16 *data)
       
  8450 {
       
  8451     u32 i = 0;
       
  8452     s32 error = E1000_SUCCESS;
       
  8453 
       
  8454     error = e1000_get_software_flag(hw);
       
  8455     if (error != E1000_SUCCESS)
       
  8456         return error;
       
  8457 
       
  8458     /* A driver can write to the NVM only if it has eeprom_shadow_ram
       
  8459      * allocated.  Subsequent reads to the modified words are read from
       
  8460      * this cached structure as well.  Writes will only go into this
       
  8461      * cached structure unless it's followed by a call to
       
  8462      * e1000_update_eeprom_checksum() where it will commit the changes
       
  8463      * and clear the "modified" field.
       
  8464      */
       
  8465     if (hw->eeprom_shadow_ram != NULL) {
       
  8466         for (i = 0; i < words; i++) {
       
  8467             if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
       
  8468                 hw->eeprom_shadow_ram[offset+i].modified = true;
       
  8469                 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
       
  8470             } else {
       
  8471                 error = -E1000_ERR_EEPROM;
       
  8472                 break;
       
  8473             }
       
  8474         }
       
  8475     } else {
       
  8476         /* Drivers have the option to not allocate eeprom_shadow_ram as long
       
  8477          * as they don't perform any NVM writes.  An attempt in doing so
       
  8478          * will result in this error.
       
  8479          */
       
  8480         error = -E1000_ERR_EEPROM;
       
  8481     }
       
  8482 
       
  8483     e1000_release_software_flag(hw);
       
  8484 
       
  8485     return error;
       
  8486 }
       
  8487 
       
  8488 /******************************************************************************
       
  8489  * This function does initial flash setup so that a new read/write/erase cycle
       
  8490  * can be started.
       
  8491  *
       
  8492  * hw - The pointer to the hw structure
       
  8493  ****************************************************************************/
       
  8494 static s32
       
  8495 e1000_ich8_cycle_init(struct e1000_hw *hw)
       
  8496 {
       
  8497     union ich8_hws_flash_status hsfsts;
       
  8498     s32 error = E1000_ERR_EEPROM;
       
  8499     s32 i     = 0;
       
  8500 
       
  8501     DEBUGFUNC("e1000_ich8_cycle_init");
       
  8502 
       
  8503     hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
       
  8504 
       
  8505     /* May be check the Flash Des Valid bit in Hw status */
       
  8506     if (hsfsts.hsf_status.fldesvalid == 0) {
       
  8507         DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
       
  8508         return error;
       
  8509     }
       
  8510 
       
  8511     /* Clear FCERR in Hw status by writing 1 */
       
  8512     /* Clear DAEL in Hw status by writing a 1 */
       
  8513     hsfsts.hsf_status.flcerr = 1;
       
  8514     hsfsts.hsf_status.dael = 1;
       
  8515 
       
  8516     E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
       
  8517 
       
  8518     /* Either we should have a hardware SPI cycle in progress bit to check
       
  8519      * against, in order to start a new cycle or FDONE bit should be changed
       
  8520      * in the hardware so that it is 1 after harware reset, which can then be
       
  8521      * used as an indication whether a cycle is in progress or has been
       
  8522      * completed .. we should also have some software semaphore mechanism to
       
  8523      * guard FDONE or the cycle in progress bit so that two threads access to
       
  8524      * those bits can be sequentiallized or a way so that 2 threads dont
       
  8525      * start the cycle at the same time */
       
  8526 
       
  8527     if (hsfsts.hsf_status.flcinprog == 0) {
       
  8528         /* There is no cycle running at present, so we can start a cycle */
       
  8529         /* Begin by setting Flash Cycle Done. */
       
  8530         hsfsts.hsf_status.flcdone = 1;
       
  8531         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
       
  8532         error = E1000_SUCCESS;
       
  8533     } else {
       
  8534         /* otherwise poll for sometime so the current cycle has a chance
       
  8535          * to end before giving up. */
       
  8536         for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
       
  8537             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
       
  8538             if (hsfsts.hsf_status.flcinprog == 0) {
       
  8539                 error = E1000_SUCCESS;
       
  8540                 break;
       
  8541             }
       
  8542             udelay(1);
       
  8543         }
       
  8544         if (error == E1000_SUCCESS) {
       
  8545             /* Successful in waiting for previous cycle to timeout,
       
  8546              * now set the Flash Cycle Done. */
       
  8547             hsfsts.hsf_status.flcdone = 1;
       
  8548             E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
       
  8549         } else {
       
  8550             DEBUGOUT("Flash controller busy, cannot get access");
       
  8551         }
       
  8552     }
       
  8553     return error;
       
  8554 }
       
  8555 
       
  8556 /******************************************************************************
       
  8557  * This function starts a flash cycle and waits for its completion
       
  8558  *
       
  8559  * hw - The pointer to the hw structure
       
  8560  ****************************************************************************/
       
  8561 static s32
       
  8562 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout)
       
  8563 {
       
  8564     union ich8_hws_flash_ctrl hsflctl;
       
  8565     union ich8_hws_flash_status hsfsts;
       
  8566     s32 error = E1000_ERR_EEPROM;
       
  8567     u32 i = 0;
       
  8568 
       
  8569     /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
       
  8570     hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
       
  8571     hsflctl.hsf_ctrl.flcgo = 1;
       
  8572     E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
       
  8573 
       
  8574     /* wait till FDONE bit is set to 1 */
       
  8575     do {
       
  8576         hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
       
  8577         if (hsfsts.hsf_status.flcdone == 1)
       
  8578             break;
       
  8579         udelay(1);
       
  8580         i++;
       
  8581     } while (i < timeout);
       
  8582     if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
       
  8583         error = E1000_SUCCESS;
       
  8584     }
       
  8585     return error;
       
  8586 }
       
  8587 
       
  8588 /******************************************************************************
       
  8589  * Reads a byte or word from the NVM using the ICH8 flash access registers.
       
  8590  *
       
  8591  * hw - The pointer to the hw structure
       
  8592  * index - The index of the byte or word to read.
       
  8593  * size - Size of data to read, 1=byte 2=word
       
  8594  * data - Pointer to the word to store the value read.
       
  8595  *****************************************************************************/
       
  8596 static s32
       
  8597 e1000_read_ich8_data(struct e1000_hw *hw, u32 index,
       
  8598                      u32 size, u16* data)
       
  8599 {
       
  8600     union ich8_hws_flash_status hsfsts;
       
  8601     union ich8_hws_flash_ctrl hsflctl;
       
  8602     u32 flash_linear_address;
       
  8603     u32 flash_data = 0;
       
  8604     s32 error = -E1000_ERR_EEPROM;
       
  8605     s32 count = 0;
       
  8606 
       
  8607     DEBUGFUNC("e1000_read_ich8_data");
       
  8608 
       
  8609     if (size < 1  || size > 2 || data == NULL ||
       
  8610         index > ICH_FLASH_LINEAR_ADDR_MASK)
       
  8611         return error;
       
  8612 
       
  8613     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
       
  8614                            hw->flash_base_addr;
       
  8615 
       
  8616     do {
       
  8617         udelay(1);
       
  8618         /* Steps */
       
  8619         error = e1000_ich8_cycle_init(hw);
       
  8620         if (error != E1000_SUCCESS)
       
  8621             break;
       
  8622 
       
  8623         hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
       
  8624         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  8625         hsflctl.hsf_ctrl.fldbcount = size - 1;
       
  8626         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
       
  8627         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
       
  8628 
       
  8629         /* Write the last 24 bits of index into Flash Linear address field in
       
  8630          * Flash Address */
       
  8631         /* TODO: TBD maybe check the index against the size of flash */
       
  8632 
       
  8633         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
       
  8634 
       
  8635         error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
       
  8636 
       
  8637         /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
       
  8638          * sequence a few more times, else read in (shift in) the Flash Data0,
       
  8639          * the order is least significant byte first msb to lsb */
       
  8640         if (error == E1000_SUCCESS) {
       
  8641             flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
       
  8642             if (size == 1) {
       
  8643                 *data = (u8)(flash_data & 0x000000FF);
       
  8644             } else if (size == 2) {
       
  8645                 *data = (u16)(flash_data & 0x0000FFFF);
       
  8646             }
       
  8647             break;
       
  8648         } else {
       
  8649             /* If we've gotten here, then things are probably completely hosed,
       
  8650              * but if the error condition is detected, it won't hurt to give
       
  8651              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  8652              */
       
  8653             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
       
  8654             if (hsfsts.hsf_status.flcerr == 1) {
       
  8655                 /* Repeat for some time before giving up. */
       
  8656                 continue;
       
  8657             } else if (hsfsts.hsf_status.flcdone == 0) {
       
  8658                 DEBUGOUT("Timeout error - flash cycle did not complete.");
       
  8659                 break;
       
  8660             }
       
  8661         }
       
  8662     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  8663 
       
  8664     return error;
       
  8665 }
       
  8666 
       
  8667 /******************************************************************************
       
  8668  * Writes One /two bytes to the NVM using the ICH8 flash access registers.
       
  8669  *
       
  8670  * hw - The pointer to the hw structure
       
  8671  * index - The index of the byte/word to read.
       
  8672  * size - Size of data to read, 1=byte 2=word
       
  8673  * data - The byte(s) to write to the NVM.
       
  8674  *****************************************************************************/
       
  8675 static s32
       
  8676 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
       
  8677                       u16 data)
       
  8678 {
       
  8679     union ich8_hws_flash_status hsfsts;
       
  8680     union ich8_hws_flash_ctrl hsflctl;
       
  8681     u32 flash_linear_address;
       
  8682     u32 flash_data = 0;
       
  8683     s32 error = -E1000_ERR_EEPROM;
       
  8684     s32 count = 0;
       
  8685 
       
  8686     DEBUGFUNC("e1000_write_ich8_data");
       
  8687 
       
  8688     if (size < 1  || size > 2 || data > size * 0xff ||
       
  8689         index > ICH_FLASH_LINEAR_ADDR_MASK)
       
  8690         return error;
       
  8691 
       
  8692     flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
       
  8693                            hw->flash_base_addr;
       
  8694 
       
  8695     do {
       
  8696         udelay(1);
       
  8697         /* Steps */
       
  8698         error = e1000_ich8_cycle_init(hw);
       
  8699         if (error != E1000_SUCCESS)
       
  8700             break;
       
  8701 
       
  8702         hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
       
  8703         /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  8704         hsflctl.hsf_ctrl.fldbcount = size -1;
       
  8705         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
       
  8706         E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
       
  8707 
       
  8708         /* Write the last 24 bits of index into Flash Linear address field in
       
  8709          * Flash Address */
       
  8710         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
       
  8711 
       
  8712         if (size == 1)
       
  8713             flash_data = (u32)data & 0x00FF;
       
  8714         else
       
  8715             flash_data = (u32)data;
       
  8716 
       
  8717         E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
       
  8718 
       
  8719         /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
       
  8720          * sequence a few more times else done */
       
  8721         error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
       
  8722         if (error == E1000_SUCCESS) {
       
  8723             break;
       
  8724         } else {
       
  8725             /* If we're here, then things are most likely completely hosed,
       
  8726              * but if the error condition is detected, it won't hurt to give
       
  8727              * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  8728              */
       
  8729             hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
       
  8730             if (hsfsts.hsf_status.flcerr == 1) {
       
  8731                 /* Repeat for some time before giving up. */
       
  8732                 continue;
       
  8733             } else if (hsfsts.hsf_status.flcdone == 0) {
       
  8734                 DEBUGOUT("Timeout error - flash cycle did not complete.");
       
  8735                 break;
       
  8736             }
       
  8737         }
       
  8738     } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  8739 
       
  8740     return error;
       
  8741 }
       
  8742 
       
  8743 /******************************************************************************
       
  8744  * Reads a single byte from the NVM using the ICH8 flash access registers.
       
  8745  *
       
  8746  * hw - pointer to e1000_hw structure
       
  8747  * index - The index of the byte to read.
       
  8748  * data - Pointer to a byte to store the value read.
       
  8749  *****************************************************************************/
       
  8750 static s32
       
  8751 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8* data)
       
  8752 {
       
  8753     s32 status = E1000_SUCCESS;
       
  8754     u16 word = 0;
       
  8755 
       
  8756     status = e1000_read_ich8_data(hw, index, 1, &word);
       
  8757     if (status == E1000_SUCCESS) {
       
  8758         *data = (u8)word;
       
  8759     }
       
  8760 
       
  8761     return status;
       
  8762 }
       
  8763 
       
  8764 /******************************************************************************
       
  8765  * Writes a single byte to the NVM using the ICH8 flash access registers.
       
  8766  * Performs verification by reading back the value and then going through
       
  8767  * a retry algorithm before giving up.
       
  8768  *
       
  8769  * hw - pointer to e1000_hw structure
       
  8770  * index - The index of the byte to write.
       
  8771  * byte - The byte to write to the NVM.
       
  8772  *****************************************************************************/
       
  8773 static s32
       
  8774 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte)
       
  8775 {
       
  8776     s32 error = E1000_SUCCESS;
       
  8777     s32 program_retries = 0;
       
  8778 
       
  8779     DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
       
  8780 
       
  8781     error = e1000_write_ich8_byte(hw, index, byte);
       
  8782 
       
  8783     if (error != E1000_SUCCESS) {
       
  8784         for (program_retries = 0; program_retries < 100; program_retries++) {
       
  8785             DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
       
  8786             error = e1000_write_ich8_byte(hw, index, byte);
       
  8787             udelay(100);
       
  8788             if (error == E1000_SUCCESS)
       
  8789                 break;
       
  8790         }
       
  8791     }
       
  8792 
       
  8793     if (program_retries == 100)
       
  8794         error = E1000_ERR_EEPROM;
       
  8795 
       
  8796     return error;
       
  8797 }
       
  8798 
       
  8799 /******************************************************************************
       
  8800  * Writes a single byte to the NVM using the ICH8 flash access registers.
       
  8801  *
       
  8802  * hw - pointer to e1000_hw structure
       
  8803  * index - The index of the byte to read.
       
  8804  * data - The byte to write to the NVM.
       
  8805  *****************************************************************************/
       
  8806 static s32
       
  8807 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 data)
       
  8808 {
       
  8809     s32 status = E1000_SUCCESS;
       
  8810     u16 word = (u16)data;
       
  8811 
       
  8812     status = e1000_write_ich8_data(hw, index, 1, word);
       
  8813 
       
  8814     return status;
       
  8815 }
       
  8816 
       
  8817 /******************************************************************************
       
  8818  * Reads a word from the NVM using the ICH8 flash access registers.
       
  8819  *
       
  8820  * hw - pointer to e1000_hw structure
       
  8821  * index - The starting byte index of the word to read.
       
  8822  * data - Pointer to a word to store the value read.
       
  8823  *****************************************************************************/
       
  8824 static s32
       
  8825 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data)
       
  8826 {
       
  8827     s32 status = E1000_SUCCESS;
       
  8828     status = e1000_read_ich8_data(hw, index, 2, data);
       
  8829     return status;
       
  8830 }
       
  8831 
       
  8832 /******************************************************************************
       
  8833  * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
       
  8834  * based.
       
  8835  *
       
  8836  * hw - pointer to e1000_hw structure
       
  8837  * bank - 0 for first bank, 1 for second bank
       
  8838  *
       
  8839  * Note that this function may actually erase as much as 8 or 64 KBytes.  The
       
  8840  * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
       
  8841  * bank size may be 4, 8 or 64 KBytes
       
  8842  *****************************************************************************/
       
  8843 static s32
       
  8844 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank)
       
  8845 {
       
  8846     union ich8_hws_flash_status hsfsts;
       
  8847     union ich8_hws_flash_ctrl hsflctl;
       
  8848     u32 flash_linear_address;
       
  8849     s32  count = 0;
       
  8850     s32  error = E1000_ERR_EEPROM;
       
  8851     s32  iteration;
       
  8852     s32  sub_sector_size = 0;
       
  8853     s32  bank_size;
       
  8854     s32  j = 0;
       
  8855     s32  error_flag = 0;
       
  8856 
       
  8857     hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
       
  8858 
       
  8859     /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
       
  8860     /* 00: The Hw sector is 256 bytes, hence we need to erase 16
       
  8861      *     consecutive sectors.  The start index for the nth Hw sector can be
       
  8862      *     calculated as bank * 4096 + n * 256
       
  8863      * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
       
  8864      *     The start index for the nth Hw sector can be calculated
       
  8865      *     as bank * 4096
       
  8866      * 10: The HW sector is 8K bytes
       
  8867      * 11: The Hw sector size is 64K bytes */
       
  8868     if (hsfsts.hsf_status.berasesz == 0x0) {
       
  8869         /* Hw sector size 256 */
       
  8870         sub_sector_size = ICH_FLASH_SEG_SIZE_256;
       
  8871         bank_size = ICH_FLASH_SECTOR_SIZE;
       
  8872         iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
       
  8873     } else if (hsfsts.hsf_status.berasesz == 0x1) {
       
  8874         bank_size = ICH_FLASH_SEG_SIZE_4K;
       
  8875         iteration = 1;
       
  8876     } else if (hsfsts.hsf_status.berasesz == 0x3) {
       
  8877         bank_size = ICH_FLASH_SEG_SIZE_64K;
       
  8878         iteration = 1;
       
  8879     } else {
       
  8880         return error;
       
  8881     }
       
  8882 
       
  8883     for (j = 0; j < iteration ; j++) {
       
  8884         do {
       
  8885             count++;
       
  8886             /* Steps */
       
  8887             error = e1000_ich8_cycle_init(hw);
       
  8888             if (error != E1000_SUCCESS) {
       
  8889                 error_flag = 1;
       
  8890                 break;
       
  8891             }
       
  8892 
       
  8893             /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
       
  8894              * Control */
       
  8895             hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
       
  8896             hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
       
  8897             E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
       
  8898 
       
  8899             /* Write the last 24 bits of an index within the block into Flash
       
  8900              * Linear address field in Flash Address.  This probably needs to
       
  8901              * be calculated here based off the on-chip erase sector size and
       
  8902              * the software bank size (4, 8 or 64 KBytes) */
       
  8903             flash_linear_address = bank * bank_size + j * sub_sector_size;
       
  8904             flash_linear_address += hw->flash_base_addr;
       
  8905             flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
       
  8906 
       
  8907             E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
       
  8908 
       
  8909             error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
       
  8910             /* Check if FCERR is set to 1.  If 1, clear it and try the whole
       
  8911              * sequence a few more times else Done */
       
  8912             if (error == E1000_SUCCESS) {
       
  8913                 break;
       
  8914             } else {
       
  8915                 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
       
  8916                 if (hsfsts.hsf_status.flcerr == 1) {
       
  8917                     /* repeat for some time before giving up */
       
  8918                     continue;
       
  8919                 } else if (hsfsts.hsf_status.flcdone == 0) {
       
  8920                     error_flag = 1;
       
  8921                     break;
       
  8922                 }
       
  8923             }
       
  8924         } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
       
  8925         if (error_flag == 1)
       
  8926             break;
       
  8927     }
       
  8928     if (error_flag != 1)
       
  8929         error = E1000_SUCCESS;
       
  8930     return error;
       
  8931 }
       
  8932 
       
  8933 static s32
       
  8934 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
       
  8935                                       u32 cnf_base_addr, u32 cnf_size)
       
  8936 {
       
  8937     u32 ret_val = E1000_SUCCESS;
       
  8938     u16 word_addr, reg_data, reg_addr;
       
  8939     u16 i;
       
  8940 
       
  8941     /* cnf_base_addr is in DWORD */
       
  8942     word_addr = (u16)(cnf_base_addr << 1);
       
  8943 
       
  8944     /* cnf_size is returned in size of dwords */
       
  8945     for (i = 0; i < cnf_size; i++) {
       
  8946         ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
       
  8947         if (ret_val)
       
  8948             return ret_val;
       
  8949 
       
  8950         ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
       
  8951         if (ret_val)
       
  8952             return ret_val;
       
  8953 
       
  8954         ret_val = e1000_get_software_flag(hw);
       
  8955         if (ret_val != E1000_SUCCESS)
       
  8956             return ret_val;
       
  8957 
       
  8958         ret_val = e1000_write_phy_reg_ex(hw, (u32)reg_addr, reg_data);
       
  8959 
       
  8960         e1000_release_software_flag(hw);
       
  8961     }
       
  8962 
       
  8963     return ret_val;
       
  8964 }
       
  8965 
       
  8966 
       
  8967 /******************************************************************************
       
  8968  * This function initializes the PHY from the NVM on ICH8 platforms. This
       
  8969  * is needed due to an issue where the NVM configuration is not properly
       
  8970  * autoloaded after power transitions. Therefore, after each PHY reset, we
       
  8971  * will load the configuration data out of the NVM manually.
       
  8972  *
       
  8973  * hw: Struct containing variables accessed by shared code
       
  8974  *****************************************************************************/
       
  8975 static s32
       
  8976 e1000_init_lcd_from_nvm(struct e1000_hw *hw)
       
  8977 {
       
  8978     u32 reg_data, cnf_base_addr, cnf_size, ret_val, loop;
       
  8979 
       
  8980     if (hw->phy_type != e1000_phy_igp_3)
       
  8981           return E1000_SUCCESS;
       
  8982 
       
  8983     /* Check if SW needs configure the PHY */
       
  8984     reg_data = E1000_READ_REG(hw, FEXTNVM);
       
  8985     if (!(reg_data & FEXTNVM_SW_CONFIG))
       
  8986         return E1000_SUCCESS;
       
  8987 
       
  8988     /* Wait for basic configuration completes before proceeding*/
       
  8989     loop = 0;
       
  8990     do {
       
  8991         reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
       
  8992         udelay(100);
       
  8993         loop++;
       
  8994     } while ((!reg_data) && (loop < 50));
       
  8995 
       
  8996     /* Clear the Init Done bit for the next init event */
       
  8997     reg_data = E1000_READ_REG(hw, STATUS);
       
  8998     reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
       
  8999     E1000_WRITE_REG(hw, STATUS, reg_data);
       
  9000 
       
  9001     /* Make sure HW does not configure LCD from PHY extended configuration
       
  9002        before SW configuration */
       
  9003     reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
       
  9004     if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
       
  9005         reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
       
  9006         cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
       
  9007         cnf_size >>= 16;
       
  9008         if (cnf_size) {
       
  9009             reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
       
  9010             cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
       
  9011             /* cnf_base_addr is in DWORD */
       
  9012             cnf_base_addr >>= 16;
       
  9013 
       
  9014             /* Configure LCD from extended configuration region. */
       
  9015             ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
       
  9016                                                             cnf_size);
       
  9017             if (ret_val)
       
  9018                 return ret_val;
       
  9019         }
       
  9020     }
       
  9021 
       
  9022     return E1000_SUCCESS;
       
  9023 }
       
  9024