|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 vim: noexpandtab |
|
28 |
|
29 *******************************************************************************/ |
|
30 |
|
31 #include "e1000-2.6.27-ethercat.h" |
|
32 #include <net/ip6_checksum.h> |
|
33 |
|
34 char e1000_driver_name[] = "ec_e1000"; |
|
35 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; |
|
36 #define DRV_VERSION "7.3.21-k3-NAPI" |
|
37 const char e1000_driver_version[] = DRV_VERSION; |
|
38 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; |
|
39 |
|
40 /* e1000_pci_tbl - PCI Device ID Table |
|
41 * |
|
42 * Last entry must be all 0s |
|
43 * |
|
44 * Macro expands to... |
|
45 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} |
|
46 */ |
|
47 static struct pci_device_id e1000_pci_tbl[] = { |
|
48 INTEL_E1000_ETHERNET_DEVICE(0x1000), |
|
49 INTEL_E1000_ETHERNET_DEVICE(0x1001), |
|
50 INTEL_E1000_ETHERNET_DEVICE(0x1004), |
|
51 INTEL_E1000_ETHERNET_DEVICE(0x1008), |
|
52 INTEL_E1000_ETHERNET_DEVICE(0x1009), |
|
53 INTEL_E1000_ETHERNET_DEVICE(0x100C), |
|
54 INTEL_E1000_ETHERNET_DEVICE(0x100D), |
|
55 INTEL_E1000_ETHERNET_DEVICE(0x100E), |
|
56 INTEL_E1000_ETHERNET_DEVICE(0x100F), |
|
57 INTEL_E1000_ETHERNET_DEVICE(0x1010), |
|
58 INTEL_E1000_ETHERNET_DEVICE(0x1011), |
|
59 INTEL_E1000_ETHERNET_DEVICE(0x1012), |
|
60 INTEL_E1000_ETHERNET_DEVICE(0x1013), |
|
61 INTEL_E1000_ETHERNET_DEVICE(0x1014), |
|
62 INTEL_E1000_ETHERNET_DEVICE(0x1015), |
|
63 INTEL_E1000_ETHERNET_DEVICE(0x1016), |
|
64 INTEL_E1000_ETHERNET_DEVICE(0x1017), |
|
65 INTEL_E1000_ETHERNET_DEVICE(0x1018), |
|
66 INTEL_E1000_ETHERNET_DEVICE(0x1019), |
|
67 INTEL_E1000_ETHERNET_DEVICE(0x101A), |
|
68 INTEL_E1000_ETHERNET_DEVICE(0x101D), |
|
69 INTEL_E1000_ETHERNET_DEVICE(0x101E), |
|
70 INTEL_E1000_ETHERNET_DEVICE(0x1026), |
|
71 INTEL_E1000_ETHERNET_DEVICE(0x1027), |
|
72 INTEL_E1000_ETHERNET_DEVICE(0x1028), |
|
73 INTEL_E1000_ETHERNET_DEVICE(0x1075), |
|
74 INTEL_E1000_ETHERNET_DEVICE(0x1076), |
|
75 INTEL_E1000_ETHERNET_DEVICE(0x1077), |
|
76 INTEL_E1000_ETHERNET_DEVICE(0x1078), |
|
77 INTEL_E1000_ETHERNET_DEVICE(0x1079), |
|
78 INTEL_E1000_ETHERNET_DEVICE(0x107A), |
|
79 INTEL_E1000_ETHERNET_DEVICE(0x107B), |
|
80 INTEL_E1000_ETHERNET_DEVICE(0x107C), |
|
81 INTEL_E1000_ETHERNET_DEVICE(0x108A), |
|
82 INTEL_E1000_ETHERNET_DEVICE(0x1099), |
|
83 INTEL_E1000_ETHERNET_DEVICE(0x10B5), |
|
84 /* required last entry */ |
|
85 {0,} |
|
86 }; |
|
87 |
|
88 // do not auto-load driver |
|
89 // MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
|
90 |
|
91 int e1000_up(struct e1000_adapter *adapter); |
|
92 void e1000_down(struct e1000_adapter *adapter); |
|
93 void e1000_reinit_locked(struct e1000_adapter *adapter); |
|
94 void e1000_reset(struct e1000_adapter *adapter); |
|
95 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx); |
|
96 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); |
|
97 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); |
|
98 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); |
|
99 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); |
|
100 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
101 struct e1000_tx_ring *txdr); |
|
102 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
103 struct e1000_rx_ring *rxdr); |
|
104 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
105 struct e1000_tx_ring *tx_ring); |
|
106 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
107 struct e1000_rx_ring *rx_ring); |
|
108 void e1000_update_stats(struct e1000_adapter *adapter); |
|
109 |
|
110 static int e1000_init_module(void); |
|
111 static void e1000_exit_module(void); |
|
112 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); |
|
113 static void __devexit e1000_remove(struct pci_dev *pdev); |
|
114 static int e1000_alloc_queues(struct e1000_adapter *adapter); |
|
115 static int e1000_sw_init(struct e1000_adapter *adapter); |
|
116 static int e1000_open(struct net_device *netdev); |
|
117 static int e1000_close(struct net_device *netdev); |
|
118 static void e1000_configure_tx(struct e1000_adapter *adapter); |
|
119 static void e1000_configure_rx(struct e1000_adapter *adapter); |
|
120 static void e1000_setup_rctl(struct e1000_adapter *adapter); |
|
121 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); |
|
122 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); |
|
123 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
124 struct e1000_tx_ring *tx_ring); |
|
125 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
126 struct e1000_rx_ring *rx_ring); |
|
127 static void e1000_set_rx_mode(struct net_device *netdev); |
|
128 static void e1000_update_phy_info(unsigned long data); |
|
129 static void e1000_watchdog(unsigned long data); |
|
130 static void e1000_82547_tx_fifo_stall(unsigned long data); |
|
131 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); |
|
132 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); |
|
133 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); |
|
134 static int e1000_set_mac(struct net_device *netdev, void *p); |
|
135 void ec_poll(struct net_device *); |
|
136 static irqreturn_t e1000_intr(int irq, void *data); |
|
137 static irqreturn_t e1000_intr_msi(int irq, void *data); |
|
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
139 struct e1000_tx_ring *tx_ring); |
|
140 static int e1000_clean(struct napi_struct *napi, int budget); |
|
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
142 struct e1000_rx_ring *rx_ring, |
|
143 int *work_done, int work_to_do); |
|
144 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
|
145 struct e1000_rx_ring *rx_ring, |
|
146 int *work_done, int work_to_do); |
|
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
148 struct e1000_rx_ring *rx_ring, |
|
149 int cleaned_count); |
|
150 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, |
|
151 struct e1000_rx_ring *rx_ring, |
|
152 int cleaned_count); |
|
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); |
|
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
155 int cmd); |
|
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); |
|
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); |
|
158 static void e1000_tx_timeout(struct net_device *dev); |
|
159 static void e1000_reset_task(struct work_struct *work); |
|
160 static void e1000_smartspeed(struct e1000_adapter *adapter); |
|
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
162 struct sk_buff *skb); |
|
163 |
|
164 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); |
|
165 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); |
|
166 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); |
|
167 static void e1000_restore_vlan(struct e1000_adapter *adapter); |
|
168 |
|
169 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); |
|
170 #ifdef CONFIG_PM |
|
171 static int e1000_resume(struct pci_dev *pdev); |
|
172 #endif |
|
173 static void e1000_shutdown(struct pci_dev *pdev); |
|
174 |
|
175 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
176 /* for netdump / net console */ |
|
177 static void e1000_netpoll (struct net_device *netdev); |
|
178 #endif |
|
179 |
|
180 #define COPYBREAK_DEFAULT 256 |
|
181 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; |
|
182 module_param(copybreak, uint, 0644); |
|
183 MODULE_PARM_DESC(copybreak, |
|
184 "Maximum size of packet that is copied to a new buffer on receive"); |
|
185 |
|
186 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
187 pci_channel_state_t state); |
|
188 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); |
|
189 static void e1000_io_resume(struct pci_dev *pdev); |
|
190 |
|
191 static struct pci_error_handlers e1000_err_handler = { |
|
192 .error_detected = e1000_io_error_detected, |
|
193 .slot_reset = e1000_io_slot_reset, |
|
194 .resume = e1000_io_resume, |
|
195 }; |
|
196 |
|
197 static struct pci_driver e1000_driver = { |
|
198 .name = e1000_driver_name, |
|
199 .id_table = e1000_pci_tbl, |
|
200 .probe = e1000_probe, |
|
201 .remove = __devexit_p(e1000_remove), |
|
202 #ifdef CONFIG_PM |
|
203 /* Power Managment Hooks */ |
|
204 .suspend = e1000_suspend, |
|
205 .resume = e1000_resume, |
|
206 #endif |
|
207 .shutdown = e1000_shutdown, |
|
208 .err_handler = &e1000_err_handler |
|
209 }; |
|
210 |
|
211 MODULE_AUTHOR("Florian Pose <fp@igh-essen.com>"); |
|
212 MODULE_DESCRIPTION("EtherCAT-capable Intel(R) PRO/1000 Network Driver"); |
|
213 MODULE_LICENSE("GPL"); |
|
214 MODULE_VERSION(DRV_VERSION); |
|
215 |
|
216 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; |
|
217 module_param(debug, int, 0); |
|
218 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
|
219 |
|
220 /** |
|
221 * e1000_init_module - Driver Registration Routine |
|
222 * |
|
223 * e1000_init_module is the first routine called when the driver is |
|
224 * loaded. All it does is register with the PCI subsystem. |
|
225 **/ |
|
226 |
|
227 static int __init e1000_init_module(void) |
|
228 { |
|
229 int ret; |
|
230 printk(KERN_INFO "%s - version %s\n", |
|
231 e1000_driver_string, e1000_driver_version); |
|
232 |
|
233 printk(KERN_INFO "%s\n", e1000_copyright); |
|
234 |
|
235 ret = pci_register_driver(&e1000_driver); |
|
236 if (copybreak != COPYBREAK_DEFAULT) { |
|
237 if (copybreak == 0) |
|
238 printk(KERN_INFO "e1000: copybreak disabled\n"); |
|
239 else |
|
240 printk(KERN_INFO "e1000: copybreak enabled for " |
|
241 "packets <= %u bytes\n", copybreak); |
|
242 } |
|
243 return ret; |
|
244 } |
|
245 |
|
246 module_init(e1000_init_module); |
|
247 |
|
248 /** |
|
249 * e1000_exit_module - Driver Exit Cleanup Routine |
|
250 * |
|
251 * e1000_exit_module is called just before the driver is removed |
|
252 * from memory. |
|
253 **/ |
|
254 |
|
255 static void __exit e1000_exit_module(void) |
|
256 { |
|
257 pci_unregister_driver(&e1000_driver); |
|
258 } |
|
259 |
|
260 module_exit(e1000_exit_module); |
|
261 |
|
262 static int e1000_request_irq(struct e1000_adapter *adapter) |
|
263 { |
|
264 struct e1000_hw *hw = &adapter->hw; |
|
265 struct net_device *netdev = adapter->netdev; |
|
266 irq_handler_t handler = e1000_intr; |
|
267 int irq_flags = IRQF_SHARED; |
|
268 int err; |
|
269 |
|
270 if (adapter->ecdev) |
|
271 return 0; |
|
272 |
|
273 if (hw->mac_type >= e1000_82571) { |
|
274 adapter->have_msi = !pci_enable_msi(adapter->pdev); |
|
275 if (adapter->have_msi) { |
|
276 handler = e1000_intr_msi; |
|
277 irq_flags = 0; |
|
278 } |
|
279 } |
|
280 |
|
281 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, |
|
282 netdev); |
|
283 if (err) { |
|
284 if (adapter->have_msi) |
|
285 pci_disable_msi(adapter->pdev); |
|
286 DPRINTK(PROBE, ERR, |
|
287 "Unable to allocate interrupt Error: %d\n", err); |
|
288 } |
|
289 |
|
290 return err; |
|
291 } |
|
292 |
|
293 static void e1000_free_irq(struct e1000_adapter *adapter) |
|
294 { |
|
295 struct net_device *netdev = adapter->netdev; |
|
296 |
|
297 if (adapter->ecdev) |
|
298 return; |
|
299 |
|
300 free_irq(adapter->pdev->irq, netdev); |
|
301 |
|
302 if (adapter->have_msi) |
|
303 pci_disable_msi(adapter->pdev); |
|
304 } |
|
305 |
|
306 /** |
|
307 * e1000_irq_disable - Mask off interrupt generation on the NIC |
|
308 * @adapter: board private structure |
|
309 **/ |
|
310 |
|
311 static void e1000_irq_disable(struct e1000_adapter *adapter) |
|
312 { |
|
313 struct e1000_hw *hw = &adapter->hw; |
|
314 |
|
315 if (adapter->ecdev) |
|
316 return; |
|
317 |
|
318 ew32(IMC, ~0); |
|
319 E1000_WRITE_FLUSH(); |
|
320 synchronize_irq(adapter->pdev->irq); |
|
321 } |
|
322 |
|
323 /** |
|
324 * e1000_irq_enable - Enable default interrupt generation settings |
|
325 * @adapter: board private structure |
|
326 **/ |
|
327 |
|
328 static void e1000_irq_enable(struct e1000_adapter *adapter) |
|
329 { |
|
330 struct e1000_hw *hw = &adapter->hw; |
|
331 |
|
332 if (adapter->ecdev) |
|
333 return; |
|
334 |
|
335 ew32(IMS, IMS_ENABLE_MASK); |
|
336 E1000_WRITE_FLUSH(); |
|
337 } |
|
338 |
|
339 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
|
340 { |
|
341 struct e1000_hw *hw = &adapter->hw; |
|
342 struct net_device *netdev = adapter->netdev; |
|
343 u16 vid = hw->mng_cookie.vlan_id; |
|
344 u16 old_vid = adapter->mng_vlan_id; |
|
345 if (adapter->vlgrp) { |
|
346 if (!vlan_group_get_device(adapter->vlgrp, vid)) { |
|
347 if (hw->mng_cookie.status & |
|
348 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { |
|
349 e1000_vlan_rx_add_vid(netdev, vid); |
|
350 adapter->mng_vlan_id = vid; |
|
351 } else |
|
352 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
353 |
|
354 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
|
355 (vid != old_vid) && |
|
356 !vlan_group_get_device(adapter->vlgrp, old_vid)) |
|
357 e1000_vlan_rx_kill_vid(netdev, old_vid); |
|
358 } else |
|
359 adapter->mng_vlan_id = vid; |
|
360 } |
|
361 } |
|
362 |
|
363 /** |
|
364 * e1000_release_hw_control - release control of the h/w to f/w |
|
365 * @adapter: address of board private structure |
|
366 * |
|
367 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. |
|
368 * For ASF and Pass Through versions of f/w this means that the |
|
369 * driver is no longer loaded. For AMT version (only with 82573) i |
|
370 * of the f/w this means that the network i/f is closed. |
|
371 * |
|
372 **/ |
|
373 |
|
374 static void e1000_release_hw_control(struct e1000_adapter *adapter) |
|
375 { |
|
376 u32 ctrl_ext; |
|
377 u32 swsm; |
|
378 struct e1000_hw *hw = &adapter->hw; |
|
379 |
|
380 /* Let firmware taken over control of h/w */ |
|
381 switch (hw->mac_type) { |
|
382 case e1000_82573: |
|
383 swsm = er32(SWSM); |
|
384 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); |
|
385 break; |
|
386 case e1000_82571: |
|
387 case e1000_82572: |
|
388 case e1000_80003es2lan: |
|
389 case e1000_ich8lan: |
|
390 ctrl_ext = er32(CTRL_EXT); |
|
391 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
|
392 break; |
|
393 default: |
|
394 break; |
|
395 } |
|
396 } |
|
397 |
|
398 /** |
|
399 * e1000_get_hw_control - get control of the h/w from f/w |
|
400 * @adapter: address of board private structure |
|
401 * |
|
402 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. |
|
403 * For ASF and Pass Through versions of f/w this means that |
|
404 * the driver is loaded. For AMT version (only with 82573) |
|
405 * of the f/w this means that the network i/f is open. |
|
406 * |
|
407 **/ |
|
408 |
|
409 static void e1000_get_hw_control(struct e1000_adapter *adapter) |
|
410 { |
|
411 u32 ctrl_ext; |
|
412 u32 swsm; |
|
413 struct e1000_hw *hw = &adapter->hw; |
|
414 |
|
415 /* Let firmware know the driver has taken over */ |
|
416 switch (hw->mac_type) { |
|
417 case e1000_82573: |
|
418 swsm = er32(SWSM); |
|
419 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); |
|
420 break; |
|
421 case e1000_82571: |
|
422 case e1000_82572: |
|
423 case e1000_80003es2lan: |
|
424 case e1000_ich8lan: |
|
425 ctrl_ext = er32(CTRL_EXT); |
|
426 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
|
427 break; |
|
428 default: |
|
429 break; |
|
430 } |
|
431 } |
|
432 |
|
433 static void e1000_init_manageability(struct e1000_adapter *adapter) |
|
434 { |
|
435 struct e1000_hw *hw = &adapter->hw; |
|
436 |
|
437 if (adapter->en_mng_pt) { |
|
438 u32 manc = er32(MANC); |
|
439 |
|
440 /* disable hardware interception of ARP */ |
|
441 manc &= ~(E1000_MANC_ARP_EN); |
|
442 |
|
443 /* enable receiving management packets to the host */ |
|
444 /* this will probably generate destination unreachable messages |
|
445 * from the host OS, but the packets will be handled on SMBUS */ |
|
446 if (hw->has_manc2h) { |
|
447 u32 manc2h = er32(MANC2H); |
|
448 |
|
449 manc |= E1000_MANC_EN_MNG2HOST; |
|
450 #define E1000_MNG2HOST_PORT_623 (1 << 5) |
|
451 #define E1000_MNG2HOST_PORT_664 (1 << 6) |
|
452 manc2h |= E1000_MNG2HOST_PORT_623; |
|
453 manc2h |= E1000_MNG2HOST_PORT_664; |
|
454 ew32(MANC2H, manc2h); |
|
455 } |
|
456 |
|
457 ew32(MANC, manc); |
|
458 } |
|
459 } |
|
460 |
|
461 static void e1000_release_manageability(struct e1000_adapter *adapter) |
|
462 { |
|
463 struct e1000_hw *hw = &adapter->hw; |
|
464 |
|
465 if (adapter->en_mng_pt) { |
|
466 u32 manc = er32(MANC); |
|
467 |
|
468 /* re-enable hardware interception of ARP */ |
|
469 manc |= E1000_MANC_ARP_EN; |
|
470 |
|
471 if (hw->has_manc2h) |
|
472 manc &= ~E1000_MANC_EN_MNG2HOST; |
|
473 |
|
474 /* don't explicitly have to mess with MANC2H since |
|
475 * MANC has an enable disable that gates MANC2H */ |
|
476 |
|
477 ew32(MANC, manc); |
|
478 } |
|
479 } |
|
480 |
|
481 /** |
|
482 * e1000_configure - configure the hardware for RX and TX |
|
483 * @adapter = private board structure |
|
484 **/ |
|
485 static void e1000_configure(struct e1000_adapter *adapter) |
|
486 { |
|
487 struct net_device *netdev = adapter->netdev; |
|
488 int i; |
|
489 |
|
490 e1000_set_rx_mode(netdev); |
|
491 |
|
492 e1000_restore_vlan(adapter); |
|
493 e1000_init_manageability(adapter); |
|
494 |
|
495 e1000_configure_tx(adapter); |
|
496 e1000_setup_rctl(adapter); |
|
497 e1000_configure_rx(adapter); |
|
498 /* call E1000_DESC_UNUSED which always leaves |
|
499 * at least 1 descriptor unused to make sure |
|
500 * next_to_use != next_to_clean */ |
|
501 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
502 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; |
|
503 if (adapter->ecdev) { |
|
504 /* fill rx ring completely! */ |
|
505 adapter->alloc_rx_buf(adapter, ring, ring->count); |
|
506 } else { |
|
507 /* this one leaves the last ring element unallocated! */ |
|
508 adapter->alloc_rx_buf(adapter, ring, |
|
509 E1000_DESC_UNUSED(ring)); |
|
510 } |
|
511 } |
|
512 |
|
513 adapter->tx_queue_len = netdev->tx_queue_len; |
|
514 } |
|
515 |
|
516 int e1000_up(struct e1000_adapter *adapter) |
|
517 { |
|
518 struct e1000_hw *hw = &adapter->hw; |
|
519 |
|
520 /* hardware has been reset, we need to reload some things */ |
|
521 e1000_configure(adapter); |
|
522 |
|
523 clear_bit(__E1000_DOWN, &adapter->flags); |
|
524 |
|
525 if (!adapter->ecdev) { |
|
526 napi_enable(&adapter->napi); |
|
527 |
|
528 e1000_irq_enable(adapter); |
|
529 |
|
530 /* fire a link change interrupt to start the watchdog */ |
|
531 ew32(ICS, E1000_ICS_LSC); |
|
532 } |
|
533 return 0; |
|
534 } |
|
535 |
|
536 /** |
|
537 * e1000_power_up_phy - restore link in case the phy was powered down |
|
538 * @adapter: address of board private structure |
|
539 * |
|
540 * The phy may be powered down to save power and turn off link when the |
|
541 * driver is unloaded and wake on lan is not enabled (among others) |
|
542 * *** this routine MUST be followed by a call to e1000_reset *** |
|
543 * |
|
544 **/ |
|
545 |
|
546 void e1000_power_up_phy(struct e1000_adapter *adapter) |
|
547 { |
|
548 struct e1000_hw *hw = &adapter->hw; |
|
549 u16 mii_reg = 0; |
|
550 |
|
551 /* Just clear the power down bit to wake the phy back up */ |
|
552 if (hw->media_type == e1000_media_type_copper) { |
|
553 /* according to the manual, the phy will retain its |
|
554 * settings across a power-down/up cycle */ |
|
555 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
556 mii_reg &= ~MII_CR_POWER_DOWN; |
|
557 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
558 } |
|
559 } |
|
560 |
|
561 static void e1000_power_down_phy(struct e1000_adapter *adapter) |
|
562 { |
|
563 struct e1000_hw *hw = &adapter->hw; |
|
564 |
|
565 /* Power down the PHY so no link is implied when interface is down * |
|
566 * The PHY cannot be powered down if any of the following is true * |
|
567 * (a) WoL is enabled |
|
568 * (b) AMT is active |
|
569 * (c) SoL/IDER session is active */ |
|
570 if (!adapter->wol && hw->mac_type >= e1000_82540 && |
|
571 hw->media_type == e1000_media_type_copper) { |
|
572 u16 mii_reg = 0; |
|
573 |
|
574 switch (hw->mac_type) { |
|
575 case e1000_82540: |
|
576 case e1000_82545: |
|
577 case e1000_82545_rev_3: |
|
578 case e1000_82546: |
|
579 case e1000_82546_rev_3: |
|
580 case e1000_82541: |
|
581 case e1000_82541_rev_2: |
|
582 case e1000_82547: |
|
583 case e1000_82547_rev_2: |
|
584 if (er32(MANC) & E1000_MANC_SMBUS_EN) |
|
585 goto out; |
|
586 break; |
|
587 case e1000_82571: |
|
588 case e1000_82572: |
|
589 case e1000_82573: |
|
590 case e1000_80003es2lan: |
|
591 case e1000_ich8lan: |
|
592 if (e1000_check_mng_mode(hw) || |
|
593 e1000_check_phy_reset_block(hw)) |
|
594 goto out; |
|
595 break; |
|
596 default: |
|
597 goto out; |
|
598 } |
|
599 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
600 mii_reg |= MII_CR_POWER_DOWN; |
|
601 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
602 mdelay(1); |
|
603 } |
|
604 out: |
|
605 return; |
|
606 } |
|
607 |
|
608 void e1000_down(struct e1000_adapter *adapter) |
|
609 { |
|
610 struct net_device *netdev = adapter->netdev; |
|
611 |
|
612 /* signal that we're down so the interrupt handler does not |
|
613 * reschedule our watchdog timer */ |
|
614 set_bit(__E1000_DOWN, &adapter->flags); |
|
615 |
|
616 if (!adapter->ecdev) { |
|
617 napi_disable(&adapter->napi); |
|
618 |
|
619 e1000_irq_disable(adapter); |
|
620 |
|
621 del_timer_sync(&adapter->tx_fifo_stall_timer); |
|
622 del_timer_sync(&adapter->watchdog_timer); |
|
623 del_timer_sync(&adapter->phy_info_timer); |
|
624 } |
|
625 |
|
626 netdev->tx_queue_len = adapter->tx_queue_len; |
|
627 adapter->link_speed = 0; |
|
628 adapter->link_duplex = 0; |
|
629 if (!adapter->ecdev) { |
|
630 netif_carrier_off(netdev); |
|
631 netif_stop_queue(netdev); |
|
632 } |
|
633 |
|
634 e1000_reset(adapter); |
|
635 e1000_clean_all_tx_rings(adapter); |
|
636 e1000_clean_all_rx_rings(adapter); |
|
637 } |
|
638 |
|
639 void e1000_reinit_locked(struct e1000_adapter *adapter) |
|
640 { |
|
641 WARN_ON(in_interrupt()); |
|
642 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
643 msleep(1); |
|
644 e1000_down(adapter); |
|
645 e1000_up(adapter); |
|
646 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
647 } |
|
648 |
|
649 void e1000_reset(struct e1000_adapter *adapter) |
|
650 { |
|
651 struct e1000_hw *hw = &adapter->hw; |
|
652 u32 pba = 0, tx_space, min_tx_space, min_rx_space; |
|
653 u16 fc_high_water_mark = E1000_FC_HIGH_DIFF; |
|
654 bool legacy_pba_adjust = false; |
|
655 |
|
656 /* Repartition Pba for greater than 9k mtu |
|
657 * To take effect CTRL.RST is required. |
|
658 */ |
|
659 |
|
660 switch (hw->mac_type) { |
|
661 case e1000_82542_rev2_0: |
|
662 case e1000_82542_rev2_1: |
|
663 case e1000_82543: |
|
664 case e1000_82544: |
|
665 case e1000_82540: |
|
666 case e1000_82541: |
|
667 case e1000_82541_rev_2: |
|
668 legacy_pba_adjust = true; |
|
669 pba = E1000_PBA_48K; |
|
670 break; |
|
671 case e1000_82545: |
|
672 case e1000_82545_rev_3: |
|
673 case e1000_82546: |
|
674 case e1000_82546_rev_3: |
|
675 pba = E1000_PBA_48K; |
|
676 break; |
|
677 case e1000_82547: |
|
678 case e1000_82547_rev_2: |
|
679 legacy_pba_adjust = true; |
|
680 pba = E1000_PBA_30K; |
|
681 break; |
|
682 case e1000_82571: |
|
683 case e1000_82572: |
|
684 case e1000_80003es2lan: |
|
685 pba = E1000_PBA_38K; |
|
686 break; |
|
687 case e1000_82573: |
|
688 pba = E1000_PBA_20K; |
|
689 break; |
|
690 case e1000_ich8lan: |
|
691 pba = E1000_PBA_8K; |
|
692 case e1000_undefined: |
|
693 case e1000_num_macs: |
|
694 break; |
|
695 } |
|
696 |
|
697 if (legacy_pba_adjust) { |
|
698 if (adapter->netdev->mtu > E1000_RXBUFFER_8192) |
|
699 pba -= 8; /* allocate more FIFO for Tx */ |
|
700 |
|
701 if (hw->mac_type == e1000_82547) { |
|
702 adapter->tx_fifo_head = 0; |
|
703 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; |
|
704 adapter->tx_fifo_size = |
|
705 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; |
|
706 atomic_set(&adapter->tx_fifo_stall, 0); |
|
707 } |
|
708 } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
709 /* adjust PBA for jumbo frames */ |
|
710 ew32(PBA, pba); |
|
711 |
|
712 /* To maintain wire speed transmits, the Tx FIFO should be |
|
713 * large enough to accomodate two full transmit packets, |
|
714 * rounded up to the next 1KB and expressed in KB. Likewise, |
|
715 * the Rx FIFO should be large enough to accomodate at least |
|
716 * one full receive packet and is similarly rounded up and |
|
717 * expressed in KB. */ |
|
718 pba = er32(PBA); |
|
719 /* upper 16 bits has Tx packet buffer allocation size in KB */ |
|
720 tx_space = pba >> 16; |
|
721 /* lower 16 bits has Rx packet buffer allocation size in KB */ |
|
722 pba &= 0xffff; |
|
723 /* don't include ethernet FCS because hardware appends/strips */ |
|
724 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE + |
|
725 VLAN_TAG_SIZE; |
|
726 min_tx_space = min_rx_space; |
|
727 min_tx_space *= 2; |
|
728 min_tx_space = ALIGN(min_tx_space, 1024); |
|
729 min_tx_space >>= 10; |
|
730 min_rx_space = ALIGN(min_rx_space, 1024); |
|
731 min_rx_space >>= 10; |
|
732 |
|
733 /* If current Tx allocation is less than the min Tx FIFO size, |
|
734 * and the min Tx FIFO size is less than the current Rx FIFO |
|
735 * allocation, take space away from current Rx allocation */ |
|
736 if (tx_space < min_tx_space && |
|
737 ((min_tx_space - tx_space) < pba)) { |
|
738 pba = pba - (min_tx_space - tx_space); |
|
739 |
|
740 /* PCI/PCIx hardware has PBA alignment constraints */ |
|
741 switch (hw->mac_type) { |
|
742 case e1000_82545 ... e1000_82546_rev_3: |
|
743 pba &= ~(E1000_PBA_8K - 1); |
|
744 break; |
|
745 default: |
|
746 break; |
|
747 } |
|
748 |
|
749 /* if short on rx space, rx wins and must trump tx |
|
750 * adjustment or use Early Receive if available */ |
|
751 if (pba < min_rx_space) { |
|
752 switch (hw->mac_type) { |
|
753 case e1000_82573: |
|
754 /* ERT enabled in e1000_configure_rx */ |
|
755 break; |
|
756 default: |
|
757 pba = min_rx_space; |
|
758 break; |
|
759 } |
|
760 } |
|
761 } |
|
762 } |
|
763 |
|
764 ew32(PBA, pba); |
|
765 |
|
766 /* flow control settings */ |
|
767 /* Set the FC high water mark to 90% of the FIFO size. |
|
768 * Required to clear last 3 LSB */ |
|
769 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; |
|
770 /* We can't use 90% on small FIFOs because the remainder |
|
771 * would be less than 1 full frame. In this case, we size |
|
772 * it to allow at least a full frame above the high water |
|
773 * mark. */ |
|
774 if (pba < E1000_PBA_16K) |
|
775 fc_high_water_mark = (pba * 1024) - 1600; |
|
776 |
|
777 hw->fc_high_water = fc_high_water_mark; |
|
778 hw->fc_low_water = fc_high_water_mark - 8; |
|
779 if (hw->mac_type == e1000_80003es2lan) |
|
780 hw->fc_pause_time = 0xFFFF; |
|
781 else |
|
782 hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
|
783 hw->fc_send_xon = 1; |
|
784 hw->fc = hw->original_fc; |
|
785 |
|
786 /* Allow time for pending master requests to run */ |
|
787 e1000_reset_hw(hw); |
|
788 if (hw->mac_type >= e1000_82544) |
|
789 ew32(WUC, 0); |
|
790 |
|
791 if (e1000_init_hw(hw)) |
|
792 DPRINTK(PROBE, ERR, "Hardware Error\n"); |
|
793 e1000_update_mng_vlan(adapter); |
|
794 |
|
795 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ |
|
796 if (hw->mac_type >= e1000_82544 && |
|
797 hw->mac_type <= e1000_82547_rev_2 && |
|
798 hw->autoneg == 1 && |
|
799 hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
|
800 u32 ctrl = er32(CTRL); |
|
801 /* clear phy power management bit if we are in gig only mode, |
|
802 * which if enabled will attempt negotiation to 100Mb, which |
|
803 * can cause a loss of link at power off or driver unload */ |
|
804 ctrl &= ~E1000_CTRL_SWDPIN3; |
|
805 ew32(CTRL, ctrl); |
|
806 } |
|
807 |
|
808 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
|
809 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); |
|
810 |
|
811 e1000_reset_adaptive(hw); |
|
812 e1000_phy_get_info(hw, &adapter->phy_info); |
|
813 |
|
814 if (!adapter->smart_power_down && |
|
815 (hw->mac_type == e1000_82571 || |
|
816 hw->mac_type == e1000_82572)) { |
|
817 u16 phy_data = 0; |
|
818 /* speed up time to link by disabling smart power down, ignore |
|
819 * the return value of this function because there is nothing |
|
820 * different we would do if it failed */ |
|
821 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
|
822 &phy_data); |
|
823 phy_data &= ~IGP02E1000_PM_SPD; |
|
824 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
|
825 phy_data); |
|
826 } |
|
827 |
|
828 e1000_release_manageability(adapter); |
|
829 } |
|
830 |
|
831 /** |
|
832 * Dump the eeprom for users having checksum issues |
|
833 **/ |
|
834 static void e1000_dump_eeprom(struct e1000_adapter *adapter) |
|
835 { |
|
836 struct net_device *netdev = adapter->netdev; |
|
837 struct ethtool_eeprom eeprom; |
|
838 const struct ethtool_ops *ops = netdev->ethtool_ops; |
|
839 u8 *data; |
|
840 int i; |
|
841 u16 csum_old, csum_new = 0; |
|
842 |
|
843 eeprom.len = ops->get_eeprom_len(netdev); |
|
844 eeprom.offset = 0; |
|
845 |
|
846 data = kmalloc(eeprom.len, GFP_KERNEL); |
|
847 if (!data) { |
|
848 printk(KERN_ERR "Unable to allocate memory to dump EEPROM" |
|
849 " data\n"); |
|
850 return; |
|
851 } |
|
852 |
|
853 ops->get_eeprom(netdev, &eeprom, data); |
|
854 |
|
855 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + |
|
856 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); |
|
857 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) |
|
858 csum_new += data[i] + (data[i + 1] << 8); |
|
859 csum_new = EEPROM_SUM - csum_new; |
|
860 |
|
861 printk(KERN_ERR "/*********************/\n"); |
|
862 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old); |
|
863 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new); |
|
864 |
|
865 printk(KERN_ERR "Offset Values\n"); |
|
866 printk(KERN_ERR "======== ======\n"); |
|
867 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); |
|
868 |
|
869 printk(KERN_ERR "Include this output when contacting your support " |
|
870 "provider.\n"); |
|
871 printk(KERN_ERR "This is not a software error! Something bad " |
|
872 "happened to your hardware or\n"); |
|
873 printk(KERN_ERR "EEPROM image. Ignoring this " |
|
874 "problem could result in further problems,\n"); |
|
875 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n"); |
|
876 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, " |
|
877 "which is invalid\n"); |
|
878 printk(KERN_ERR "and requires you to set the proper MAC " |
|
879 "address manually before continuing\n"); |
|
880 printk(KERN_ERR "to enable this network device.\n"); |
|
881 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue " |
|
882 "to your hardware vendor\n"); |
|
883 printk(KERN_ERR "or Intel Customer Support.\n"); |
|
884 printk(KERN_ERR "/*********************/\n"); |
|
885 |
|
886 kfree(data); |
|
887 } |
|
888 |
|
889 /** |
|
890 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not |
|
891 * @pdev: PCI device information struct |
|
892 * |
|
893 * Return true if an adapter needs ioport resources |
|
894 **/ |
|
895 static int e1000_is_need_ioport(struct pci_dev *pdev) |
|
896 { |
|
897 switch (pdev->device) { |
|
898 case E1000_DEV_ID_82540EM: |
|
899 case E1000_DEV_ID_82540EM_LOM: |
|
900 case E1000_DEV_ID_82540EP: |
|
901 case E1000_DEV_ID_82540EP_LOM: |
|
902 case E1000_DEV_ID_82540EP_LP: |
|
903 case E1000_DEV_ID_82541EI: |
|
904 case E1000_DEV_ID_82541EI_MOBILE: |
|
905 case E1000_DEV_ID_82541ER: |
|
906 case E1000_DEV_ID_82541ER_LOM: |
|
907 case E1000_DEV_ID_82541GI: |
|
908 case E1000_DEV_ID_82541GI_LF: |
|
909 case E1000_DEV_ID_82541GI_MOBILE: |
|
910 case E1000_DEV_ID_82544EI_COPPER: |
|
911 case E1000_DEV_ID_82544EI_FIBER: |
|
912 case E1000_DEV_ID_82544GC_COPPER: |
|
913 case E1000_DEV_ID_82544GC_LOM: |
|
914 case E1000_DEV_ID_82545EM_COPPER: |
|
915 case E1000_DEV_ID_82545EM_FIBER: |
|
916 case E1000_DEV_ID_82546EB_COPPER: |
|
917 case E1000_DEV_ID_82546EB_FIBER: |
|
918 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
919 return true; |
|
920 default: |
|
921 return false; |
|
922 } |
|
923 } |
|
924 |
|
925 /** |
|
926 * e1000_probe - Device Initialization Routine |
|
927 * @pdev: PCI device information struct |
|
928 * @ent: entry in e1000_pci_tbl |
|
929 * |
|
930 * Returns 0 on success, negative on failure |
|
931 * |
|
932 * e1000_probe initializes an adapter identified by a pci_dev structure. |
|
933 * The OS initialization, configuring of the adapter private structure, |
|
934 * and a hardware reset occur. |
|
935 **/ |
|
936 static int __devinit e1000_probe(struct pci_dev *pdev, |
|
937 const struct pci_device_id *ent) |
|
938 { |
|
939 struct net_device *netdev; |
|
940 struct e1000_adapter *adapter; |
|
941 struct e1000_hw *hw; |
|
942 |
|
943 static int cards_found = 0; |
|
944 static int global_quad_port_a = 0; /* global ksp3 port a indication */ |
|
945 int i, err, pci_using_dac; |
|
946 u16 eeprom_data = 0; |
|
947 u16 eeprom_apme_mask = E1000_EEPROM_APME; |
|
948 int bars, need_ioport; |
|
949 DECLARE_MAC_BUF(mac); |
|
950 |
|
951 /* do not allocate ioport bars when not needed */ |
|
952 need_ioport = e1000_is_need_ioport(pdev); |
|
953 if (need_ioport) { |
|
954 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); |
|
955 err = pci_enable_device(pdev); |
|
956 } else { |
|
957 bars = pci_select_bars(pdev, IORESOURCE_MEM); |
|
958 err = pci_enable_device_mem(pdev); |
|
959 } |
|
960 if (err) |
|
961 return err; |
|
962 |
|
963 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) && |
|
964 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) { |
|
965 pci_using_dac = 1; |
|
966 } else { |
|
967 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
|
968 if (err) { |
|
969 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); |
|
970 if (err) { |
|
971 E1000_ERR("No usable DMA configuration, " |
|
972 "aborting\n"); |
|
973 goto err_dma; |
|
974 } |
|
975 } |
|
976 pci_using_dac = 0; |
|
977 } |
|
978 |
|
979 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); |
|
980 if (err) |
|
981 goto err_pci_reg; |
|
982 |
|
983 pci_set_master(pdev); |
|
984 |
|
985 err = -ENOMEM; |
|
986 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
|
987 if (!netdev) |
|
988 goto err_alloc_etherdev; |
|
989 |
|
990 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
991 |
|
992 pci_set_drvdata(pdev, netdev); |
|
993 adapter = netdev_priv(netdev); |
|
994 adapter->netdev = netdev; |
|
995 adapter->pdev = pdev; |
|
996 adapter->msg_enable = (1 << debug) - 1; |
|
997 adapter->bars = bars; |
|
998 adapter->need_ioport = need_ioport; |
|
999 |
|
1000 hw = &adapter->hw; |
|
1001 hw->back = adapter; |
|
1002 |
|
1003 err = -EIO; |
|
1004 hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0), |
|
1005 pci_resource_len(pdev, BAR_0)); |
|
1006 if (!hw->hw_addr) |
|
1007 goto err_ioremap; |
|
1008 |
|
1009 if (adapter->need_ioport) { |
|
1010 for (i = BAR_1; i <= BAR_5; i++) { |
|
1011 if (pci_resource_len(pdev, i) == 0) |
|
1012 continue; |
|
1013 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { |
|
1014 hw->io_base = pci_resource_start(pdev, i); |
|
1015 break; |
|
1016 } |
|
1017 } |
|
1018 } |
|
1019 |
|
1020 netdev->open = &e1000_open; |
|
1021 netdev->stop = &e1000_close; |
|
1022 netdev->hard_start_xmit = &e1000_xmit_frame; |
|
1023 netdev->get_stats = &e1000_get_stats; |
|
1024 netdev->set_rx_mode = &e1000_set_rx_mode; |
|
1025 netdev->set_mac_address = &e1000_set_mac; |
|
1026 netdev->change_mtu = &e1000_change_mtu; |
|
1027 netdev->do_ioctl = &e1000_ioctl; |
|
1028 e1000_set_ethtool_ops(netdev); |
|
1029 netdev->tx_timeout = &e1000_tx_timeout; |
|
1030 netdev->watchdog_timeo = 5 * HZ; |
|
1031 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
|
1032 netdev->vlan_rx_register = e1000_vlan_rx_register; |
|
1033 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; |
|
1034 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; |
|
1035 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
1036 netdev->poll_controller = e1000_netpoll; |
|
1037 #endif |
|
1038 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
1039 |
|
1040 adapter->bd_number = cards_found; |
|
1041 |
|
1042 /* setup the private structure */ |
|
1043 |
|
1044 err = e1000_sw_init(adapter); |
|
1045 if (err) |
|
1046 goto err_sw_init; |
|
1047 |
|
1048 err = -EIO; |
|
1049 /* Flash BAR mapping must happen after e1000_sw_init |
|
1050 * because it depends on mac_type */ |
|
1051 if ((hw->mac_type == e1000_ich8lan) && |
|
1052 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { |
|
1053 hw->flash_address = |
|
1054 ioremap(pci_resource_start(pdev, 1), |
|
1055 pci_resource_len(pdev, 1)); |
|
1056 if (!hw->flash_address) |
|
1057 goto err_flashmap; |
|
1058 } |
|
1059 |
|
1060 if (e1000_check_phy_reset_block(hw)) |
|
1061 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); |
|
1062 |
|
1063 if (hw->mac_type >= e1000_82543) { |
|
1064 netdev->features = NETIF_F_SG | |
|
1065 NETIF_F_HW_CSUM | |
|
1066 NETIF_F_HW_VLAN_TX | |
|
1067 NETIF_F_HW_VLAN_RX | |
|
1068 NETIF_F_HW_VLAN_FILTER; |
|
1069 if (hw->mac_type == e1000_ich8lan) |
|
1070 netdev->features &= ~NETIF_F_HW_VLAN_FILTER; |
|
1071 } |
|
1072 |
|
1073 if ((hw->mac_type >= e1000_82544) && |
|
1074 (hw->mac_type != e1000_82547)) |
|
1075 netdev->features |= NETIF_F_TSO; |
|
1076 |
|
1077 if (hw->mac_type > e1000_82547_rev_2) |
|
1078 netdev->features |= NETIF_F_TSO6; |
|
1079 if (pci_using_dac) |
|
1080 netdev->features |= NETIF_F_HIGHDMA; |
|
1081 |
|
1082 netdev->features |= NETIF_F_LLTX; |
|
1083 |
|
1084 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); |
|
1085 |
|
1086 /* initialize eeprom parameters */ |
|
1087 if (e1000_init_eeprom_params(hw)) { |
|
1088 E1000_ERR("EEPROM initialization failed\n"); |
|
1089 goto err_eeprom; |
|
1090 } |
|
1091 |
|
1092 /* before reading the EEPROM, reset the controller to |
|
1093 * put the device in a known good starting state */ |
|
1094 |
|
1095 e1000_reset_hw(hw); |
|
1096 |
|
1097 /* make sure the EEPROM is good */ |
|
1098 if (e1000_validate_eeprom_checksum(hw) < 0) { |
|
1099 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); |
|
1100 e1000_dump_eeprom(adapter); |
|
1101 /* |
|
1102 * set MAC address to all zeroes to invalidate and temporary |
|
1103 * disable this device for the user. This blocks regular |
|
1104 * traffic while still permitting ethtool ioctls from reaching |
|
1105 * the hardware as well as allowing the user to run the |
|
1106 * interface after manually setting a hw addr using |
|
1107 * `ip set address` |
|
1108 */ |
|
1109 memset(hw->mac_addr, 0, netdev->addr_len); |
|
1110 } else { |
|
1111 /* copy the MAC address out of the EEPROM */ |
|
1112 if (e1000_read_mac_addr(hw)) |
|
1113 DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); |
|
1114 } |
|
1115 /* don't block initalization here due to bad MAC address */ |
|
1116 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); |
|
1117 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); |
|
1118 |
|
1119 if (!is_valid_ether_addr(netdev->perm_addr)) |
|
1120 DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); |
|
1121 |
|
1122 e1000_get_bus_info(hw); |
|
1123 |
|
1124 init_timer(&adapter->tx_fifo_stall_timer); |
|
1125 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; |
|
1126 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter; |
|
1127 |
|
1128 init_timer(&adapter->watchdog_timer); |
|
1129 adapter->watchdog_timer.function = &e1000_watchdog; |
|
1130 adapter->watchdog_timer.data = (unsigned long) adapter; |
|
1131 |
|
1132 init_timer(&adapter->phy_info_timer); |
|
1133 adapter->phy_info_timer.function = &e1000_update_phy_info; |
|
1134 adapter->phy_info_timer.data = (unsigned long)adapter; |
|
1135 |
|
1136 INIT_WORK(&adapter->reset_task, e1000_reset_task); |
|
1137 |
|
1138 e1000_check_options(adapter); |
|
1139 |
|
1140 /* Initial Wake on LAN setting |
|
1141 * If APM wake is enabled in the EEPROM, |
|
1142 * enable the ACPI Magic Packet filter |
|
1143 */ |
|
1144 |
|
1145 switch (hw->mac_type) { |
|
1146 case e1000_82542_rev2_0: |
|
1147 case e1000_82542_rev2_1: |
|
1148 case e1000_82543: |
|
1149 break; |
|
1150 case e1000_82544: |
|
1151 e1000_read_eeprom(hw, |
|
1152 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
|
1153 eeprom_apme_mask = E1000_EEPROM_82544_APM; |
|
1154 break; |
|
1155 case e1000_ich8lan: |
|
1156 e1000_read_eeprom(hw, |
|
1157 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); |
|
1158 eeprom_apme_mask = E1000_EEPROM_ICH8_APME; |
|
1159 break; |
|
1160 case e1000_82546: |
|
1161 case e1000_82546_rev_3: |
|
1162 case e1000_82571: |
|
1163 case e1000_80003es2lan: |
|
1164 if (er32(STATUS) & E1000_STATUS_FUNC_1){ |
|
1165 e1000_read_eeprom(hw, |
|
1166 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
|
1167 break; |
|
1168 } |
|
1169 /* Fall Through */ |
|
1170 default: |
|
1171 e1000_read_eeprom(hw, |
|
1172 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
|
1173 break; |
|
1174 } |
|
1175 if (eeprom_data & eeprom_apme_mask) |
|
1176 adapter->eeprom_wol |= E1000_WUFC_MAG; |
|
1177 |
|
1178 /* now that we have the eeprom settings, apply the special cases |
|
1179 * where the eeprom may be wrong or the board simply won't support |
|
1180 * wake on lan on a particular port */ |
|
1181 switch (pdev->device) { |
|
1182 case E1000_DEV_ID_82546GB_PCIE: |
|
1183 adapter->eeprom_wol = 0; |
|
1184 break; |
|
1185 case E1000_DEV_ID_82546EB_FIBER: |
|
1186 case E1000_DEV_ID_82546GB_FIBER: |
|
1187 case E1000_DEV_ID_82571EB_FIBER: |
|
1188 /* Wake events only supported on port A for dual fiber |
|
1189 * regardless of eeprom setting */ |
|
1190 if (er32(STATUS) & E1000_STATUS_FUNC_1) |
|
1191 adapter->eeprom_wol = 0; |
|
1192 break; |
|
1193 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1194 case E1000_DEV_ID_82571EB_QUAD_COPPER: |
|
1195 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
1196 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: |
|
1197 case E1000_DEV_ID_82571PT_QUAD_COPPER: |
|
1198 /* if quad port adapter, disable WoL on all but port A */ |
|
1199 if (global_quad_port_a != 0) |
|
1200 adapter->eeprom_wol = 0; |
|
1201 else |
|
1202 adapter->quad_port_a = 1; |
|
1203 /* Reset for multiple quad port adapters */ |
|
1204 if (++global_quad_port_a == 4) |
|
1205 global_quad_port_a = 0; |
|
1206 break; |
|
1207 } |
|
1208 |
|
1209 /* initialize the wol settings based on the eeprom settings */ |
|
1210 adapter->wol = adapter->eeprom_wol; |
|
1211 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
1212 |
|
1213 /* print bus type/speed/width info */ |
|
1214 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ", |
|
1215 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : |
|
1216 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")), |
|
1217 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" : |
|
1218 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" : |
|
1219 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" : |
|
1220 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" : |
|
1221 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"), |
|
1222 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : |
|
1223 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" : |
|
1224 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" : |
|
1225 "32-bit")); |
|
1226 |
|
1227 printk("%s\n", print_mac(mac, netdev->dev_addr)); |
|
1228 |
|
1229 if (hw->bus_type == e1000_bus_type_pci_express) { |
|
1230 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no " |
|
1231 "longer be supported by this driver in the future.\n", |
|
1232 pdev->vendor, pdev->device); |
|
1233 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" " |
|
1234 "driver instead.\n"); |
|
1235 } |
|
1236 |
|
1237 /* reset the hardware with the new settings */ |
|
1238 e1000_reset(adapter); |
|
1239 |
|
1240 /* If the controller is 82573 and f/w is AMT, do not set |
|
1241 * DRV_LOAD until the interface is up. For all other cases, |
|
1242 * let the f/w know that the h/w is now under the control |
|
1243 * of the driver. */ |
|
1244 if (hw->mac_type != e1000_82573 || |
|
1245 !e1000_check_mng_mode(hw)) |
|
1246 e1000_get_hw_control(adapter); |
|
1247 |
|
1248 // offer device to EtherCAT master module |
|
1249 adapter->ecdev = ecdev_offer(netdev, ec_poll, THIS_MODULE); |
|
1250 if (adapter->ecdev) { |
|
1251 if (ecdev_open(adapter->ecdev)) { |
|
1252 ecdev_withdraw(adapter->ecdev); |
|
1253 goto err_register; |
|
1254 } |
|
1255 } else { |
|
1256 /* tell the stack to leave us alone until e1000_open() is called */ |
|
1257 netif_carrier_off(netdev); |
|
1258 netif_stop_queue(netdev); |
|
1259 |
|
1260 strcpy(netdev->name, "eth%d"); |
|
1261 err = register_netdev(netdev); |
|
1262 if (err) |
|
1263 goto err_register; |
|
1264 } |
|
1265 |
|
1266 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); |
|
1267 |
|
1268 cards_found++; |
|
1269 return 0; |
|
1270 |
|
1271 err_register: |
|
1272 e1000_release_hw_control(adapter); |
|
1273 err_eeprom: |
|
1274 if (!e1000_check_phy_reset_block(hw)) |
|
1275 e1000_phy_hw_reset(hw); |
|
1276 |
|
1277 if (hw->flash_address) |
|
1278 iounmap(hw->flash_address); |
|
1279 err_flashmap: |
|
1280 for (i = 0; i < adapter->num_rx_queues; i++) |
|
1281 dev_put(&adapter->polling_netdev[i]); |
|
1282 |
|
1283 kfree(adapter->tx_ring); |
|
1284 kfree(adapter->rx_ring); |
|
1285 kfree(adapter->polling_netdev); |
|
1286 err_sw_init: |
|
1287 iounmap(hw->hw_addr); |
|
1288 err_ioremap: |
|
1289 free_netdev(netdev); |
|
1290 err_alloc_etherdev: |
|
1291 pci_release_selected_regions(pdev, bars); |
|
1292 err_pci_reg: |
|
1293 err_dma: |
|
1294 pci_disable_device(pdev); |
|
1295 return err; |
|
1296 } |
|
1297 |
|
1298 /** |
|
1299 * e1000_remove - Device Removal Routine |
|
1300 * @pdev: PCI device information struct |
|
1301 * |
|
1302 * e1000_remove is called by the PCI subsystem to alert the driver |
|
1303 * that it should release a PCI device. The could be caused by a |
|
1304 * Hot-Plug event, or because the driver is going to be removed from |
|
1305 * memory. |
|
1306 **/ |
|
1307 |
|
1308 static void __devexit e1000_remove(struct pci_dev *pdev) |
|
1309 { |
|
1310 struct net_device *netdev = pci_get_drvdata(pdev); |
|
1311 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1312 struct e1000_hw *hw = &adapter->hw; |
|
1313 int i; |
|
1314 |
|
1315 cancel_work_sync(&adapter->reset_task); |
|
1316 |
|
1317 e1000_release_manageability(adapter); |
|
1318 |
|
1319 /* Release control of h/w to f/w. If f/w is AMT enabled, this |
|
1320 * would have already happened in close and is redundant. */ |
|
1321 e1000_release_hw_control(adapter); |
|
1322 |
|
1323 for (i = 0; i < adapter->num_rx_queues; i++) |
|
1324 dev_put(&adapter->polling_netdev[i]); |
|
1325 |
|
1326 if (adapter->ecdev) { |
|
1327 ecdev_close(adapter->ecdev); |
|
1328 ecdev_withdraw(adapter->ecdev); |
|
1329 } else { |
|
1330 unregister_netdev(netdev); |
|
1331 } |
|
1332 |
|
1333 if (!e1000_check_phy_reset_block(hw)) |
|
1334 e1000_phy_hw_reset(hw); |
|
1335 |
|
1336 kfree(adapter->tx_ring); |
|
1337 kfree(adapter->rx_ring); |
|
1338 kfree(adapter->polling_netdev); |
|
1339 |
|
1340 iounmap(hw->hw_addr); |
|
1341 if (hw->flash_address) |
|
1342 iounmap(hw->flash_address); |
|
1343 pci_release_selected_regions(pdev, adapter->bars); |
|
1344 |
|
1345 free_netdev(netdev); |
|
1346 |
|
1347 pci_disable_device(pdev); |
|
1348 } |
|
1349 |
|
1350 /** |
|
1351 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
|
1352 * @adapter: board private structure to initialize |
|
1353 * |
|
1354 * e1000_sw_init initializes the Adapter private data structure. |
|
1355 * Fields are initialized based on PCI device information and |
|
1356 * OS network device settings (MTU size). |
|
1357 **/ |
|
1358 |
|
1359 static int __devinit e1000_sw_init(struct e1000_adapter *adapter) |
|
1360 { |
|
1361 struct e1000_hw *hw = &adapter->hw; |
|
1362 struct net_device *netdev = adapter->netdev; |
|
1363 struct pci_dev *pdev = adapter->pdev; |
|
1364 int i; |
|
1365 |
|
1366 /* PCI config space info */ |
|
1367 |
|
1368 hw->vendor_id = pdev->vendor; |
|
1369 hw->device_id = pdev->device; |
|
1370 hw->subsystem_vendor_id = pdev->subsystem_vendor; |
|
1371 hw->subsystem_id = pdev->subsystem_device; |
|
1372 hw->revision_id = pdev->revision; |
|
1373 |
|
1374 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
|
1375 |
|
1376 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
1377 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128; |
|
1378 hw->max_frame_size = netdev->mtu + |
|
1379 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
1380 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; |
|
1381 |
|
1382 /* identify the MAC */ |
|
1383 |
|
1384 if (e1000_set_mac_type(hw)) { |
|
1385 DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); |
|
1386 return -EIO; |
|
1387 } |
|
1388 |
|
1389 switch (hw->mac_type) { |
|
1390 default: |
|
1391 break; |
|
1392 case e1000_82541: |
|
1393 case e1000_82547: |
|
1394 case e1000_82541_rev_2: |
|
1395 case e1000_82547_rev_2: |
|
1396 hw->phy_init_script = 1; |
|
1397 break; |
|
1398 } |
|
1399 |
|
1400 e1000_set_media_type(hw); |
|
1401 |
|
1402 hw->wait_autoneg_complete = false; |
|
1403 hw->tbi_compatibility_en = true; |
|
1404 hw->adaptive_ifs = true; |
|
1405 |
|
1406 /* Copper options */ |
|
1407 |
|
1408 if (hw->media_type == e1000_media_type_copper) { |
|
1409 hw->mdix = AUTO_ALL_MODES; |
|
1410 hw->disable_polarity_correction = false; |
|
1411 hw->master_slave = E1000_MASTER_SLAVE; |
|
1412 } |
|
1413 |
|
1414 adapter->num_tx_queues = 1; |
|
1415 adapter->num_rx_queues = 1; |
|
1416 |
|
1417 if (e1000_alloc_queues(adapter)) { |
|
1418 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n"); |
|
1419 return -ENOMEM; |
|
1420 } |
|
1421 |
|
1422 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
1423 adapter->polling_netdev[i].priv = adapter; |
|
1424 dev_hold(&adapter->polling_netdev[i]); |
|
1425 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state); |
|
1426 } |
|
1427 spin_lock_init(&adapter->tx_queue_lock); |
|
1428 |
|
1429 /* Explicitly disable IRQ since the NIC can be in any state. */ |
|
1430 e1000_irq_disable(adapter); |
|
1431 |
|
1432 spin_lock_init(&adapter->stats_lock); |
|
1433 |
|
1434 set_bit(__E1000_DOWN, &adapter->flags); |
|
1435 |
|
1436 return 0; |
|
1437 } |
|
1438 |
|
1439 /** |
|
1440 * e1000_alloc_queues - Allocate memory for all rings |
|
1441 * @adapter: board private structure to initialize |
|
1442 * |
|
1443 * We allocate one ring per queue at run-time since we don't know the |
|
1444 * number of queues at compile-time. The polling_netdev array is |
|
1445 * intended for Multiqueue, but should work fine with a single queue. |
|
1446 **/ |
|
1447 |
|
1448 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) |
|
1449 { |
|
1450 adapter->tx_ring = kcalloc(adapter->num_tx_queues, |
|
1451 sizeof(struct e1000_tx_ring), GFP_KERNEL); |
|
1452 if (!adapter->tx_ring) |
|
1453 return -ENOMEM; |
|
1454 |
|
1455 adapter->rx_ring = kcalloc(adapter->num_rx_queues, |
|
1456 sizeof(struct e1000_rx_ring), GFP_KERNEL); |
|
1457 if (!adapter->rx_ring) { |
|
1458 kfree(adapter->tx_ring); |
|
1459 return -ENOMEM; |
|
1460 } |
|
1461 |
|
1462 adapter->polling_netdev = kcalloc(adapter->num_rx_queues, |
|
1463 sizeof(struct net_device), |
|
1464 GFP_KERNEL); |
|
1465 if (!adapter->polling_netdev) { |
|
1466 kfree(adapter->tx_ring); |
|
1467 kfree(adapter->rx_ring); |
|
1468 return -ENOMEM; |
|
1469 } |
|
1470 |
|
1471 return E1000_SUCCESS; |
|
1472 } |
|
1473 |
|
1474 /** |
|
1475 * e1000_open - Called when a network interface is made active |
|
1476 * @netdev: network interface device structure |
|
1477 * |
|
1478 * Returns 0 on success, negative value on failure |
|
1479 * |
|
1480 * The open entry point is called when a network interface is made |
|
1481 * active by the system (IFF_UP). At this point all resources needed |
|
1482 * for transmit and receive operations are allocated, the interrupt |
|
1483 * handler is registered with the OS, the watchdog timer is started, |
|
1484 * and the stack is notified that the interface is ready. |
|
1485 **/ |
|
1486 |
|
1487 static int e1000_open(struct net_device *netdev) |
|
1488 { |
|
1489 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1490 struct e1000_hw *hw = &adapter->hw; |
|
1491 int err; |
|
1492 |
|
1493 /* disallow open during test */ |
|
1494 if (test_bit(__E1000_TESTING, &adapter->flags)) |
|
1495 return -EBUSY; |
|
1496 |
|
1497 /* allocate transmit descriptors */ |
|
1498 err = e1000_setup_all_tx_resources(adapter); |
|
1499 if (err) |
|
1500 goto err_setup_tx; |
|
1501 |
|
1502 /* allocate receive descriptors */ |
|
1503 err = e1000_setup_all_rx_resources(adapter); |
|
1504 if (err) |
|
1505 goto err_setup_rx; |
|
1506 |
|
1507 e1000_power_up_phy(adapter); |
|
1508 |
|
1509 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
1510 if ((hw->mng_cookie.status & |
|
1511 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { |
|
1512 e1000_update_mng_vlan(adapter); |
|
1513 } |
|
1514 |
|
1515 /* If AMT is enabled, let the firmware know that the network |
|
1516 * interface is now open */ |
|
1517 if (hw->mac_type == e1000_82573 && |
|
1518 e1000_check_mng_mode(hw)) |
|
1519 e1000_get_hw_control(adapter); |
|
1520 |
|
1521 /* before we allocate an interrupt, we must be ready to handle it. |
|
1522 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
|
1523 * as soon as we call pci_request_irq, so we have to setup our |
|
1524 * clean_rx handler before we do so. */ |
|
1525 e1000_configure(adapter); |
|
1526 |
|
1527 err = e1000_request_irq(adapter); |
|
1528 if (err) |
|
1529 goto err_req_irq; |
|
1530 |
|
1531 /* From here on the code is the same as e1000_up() */ |
|
1532 clear_bit(__E1000_DOWN, &adapter->flags); |
|
1533 |
|
1534 napi_enable(&adapter->napi); |
|
1535 |
|
1536 e1000_irq_enable(adapter); |
|
1537 |
|
1538 netif_start_queue(netdev); |
|
1539 |
|
1540 /* fire a link status change interrupt to start the watchdog */ |
|
1541 ew32(ICS, E1000_ICS_LSC); |
|
1542 |
|
1543 return E1000_SUCCESS; |
|
1544 |
|
1545 err_req_irq: |
|
1546 e1000_release_hw_control(adapter); |
|
1547 e1000_power_down_phy(adapter); |
|
1548 e1000_free_all_rx_resources(adapter); |
|
1549 err_setup_rx: |
|
1550 e1000_free_all_tx_resources(adapter); |
|
1551 err_setup_tx: |
|
1552 e1000_reset(adapter); |
|
1553 |
|
1554 return err; |
|
1555 } |
|
1556 |
|
1557 /** |
|
1558 * e1000_close - Disables a network interface |
|
1559 * @netdev: network interface device structure |
|
1560 * |
|
1561 * Returns 0, this is not allowed to fail |
|
1562 * |
|
1563 * The close entry point is called when an interface is de-activated |
|
1564 * by the OS. The hardware is still under the drivers control, but |
|
1565 * needs to be disabled. A global MAC reset is issued to stop the |
|
1566 * hardware, and all transmit and receive resources are freed. |
|
1567 **/ |
|
1568 |
|
1569 static int e1000_close(struct net_device *netdev) |
|
1570 { |
|
1571 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1572 struct e1000_hw *hw = &adapter->hw; |
|
1573 |
|
1574 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
1575 e1000_down(adapter); |
|
1576 e1000_power_down_phy(adapter); |
|
1577 e1000_free_irq(adapter); |
|
1578 |
|
1579 e1000_free_all_tx_resources(adapter); |
|
1580 e1000_free_all_rx_resources(adapter); |
|
1581 |
|
1582 /* kill manageability vlan ID if supported, but not if a vlan with |
|
1583 * the same ID is registered on the host OS (let 8021q kill it) */ |
|
1584 if ((hw->mng_cookie.status & |
|
1585 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
1586 !(adapter->vlgrp && |
|
1587 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) { |
|
1588 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
|
1589 } |
|
1590 |
|
1591 /* If AMT is enabled, let the firmware know that the network |
|
1592 * interface is now closed */ |
|
1593 if (hw->mac_type == e1000_82573 && |
|
1594 e1000_check_mng_mode(hw)) |
|
1595 e1000_release_hw_control(adapter); |
|
1596 |
|
1597 return 0; |
|
1598 } |
|
1599 |
|
1600 /** |
|
1601 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary |
|
1602 * @adapter: address of board private structure |
|
1603 * @start: address of beginning of memory |
|
1604 * @len: length of memory |
|
1605 **/ |
|
1606 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, |
|
1607 unsigned long len) |
|
1608 { |
|
1609 struct e1000_hw *hw = &adapter->hw; |
|
1610 unsigned long begin = (unsigned long)start; |
|
1611 unsigned long end = begin + len; |
|
1612 |
|
1613 /* First rev 82545 and 82546 need to not allow any memory |
|
1614 * write location to cross 64k boundary due to errata 23 */ |
|
1615 if (hw->mac_type == e1000_82545 || |
|
1616 hw->mac_type == e1000_82546) { |
|
1617 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; |
|
1618 } |
|
1619 |
|
1620 return true; |
|
1621 } |
|
1622 |
|
1623 /** |
|
1624 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) |
|
1625 * @adapter: board private structure |
|
1626 * @txdr: tx descriptor ring (for a specific queue) to setup |
|
1627 * |
|
1628 * Return 0 on success, negative on failure |
|
1629 **/ |
|
1630 |
|
1631 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
1632 struct e1000_tx_ring *txdr) |
|
1633 { |
|
1634 struct pci_dev *pdev = adapter->pdev; |
|
1635 int size; |
|
1636 |
|
1637 size = sizeof(struct e1000_buffer) * txdr->count; |
|
1638 txdr->buffer_info = vmalloc(size); |
|
1639 if (!txdr->buffer_info) { |
|
1640 DPRINTK(PROBE, ERR, |
|
1641 "Unable to allocate memory for the transmit descriptor ring\n"); |
|
1642 return -ENOMEM; |
|
1643 } |
|
1644 memset(txdr->buffer_info, 0, size); |
|
1645 |
|
1646 /* round up to nearest 4K */ |
|
1647 |
|
1648 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
|
1649 txdr->size = ALIGN(txdr->size, 4096); |
|
1650 |
|
1651 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
|
1652 if (!txdr->desc) { |
|
1653 setup_tx_desc_die: |
|
1654 vfree(txdr->buffer_info); |
|
1655 DPRINTK(PROBE, ERR, |
|
1656 "Unable to allocate memory for the transmit descriptor ring\n"); |
|
1657 return -ENOMEM; |
|
1658 } |
|
1659 |
|
1660 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1661 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1662 void *olddesc = txdr->desc; |
|
1663 dma_addr_t olddma = txdr->dma; |
|
1664 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " |
|
1665 "at %p\n", txdr->size, txdr->desc); |
|
1666 /* Try again, without freeing the previous */ |
|
1667 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
|
1668 /* Failed allocation, critical failure */ |
|
1669 if (!txdr->desc) { |
|
1670 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1671 goto setup_tx_desc_die; |
|
1672 } |
|
1673 |
|
1674 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1675 /* give up */ |
|
1676 pci_free_consistent(pdev, txdr->size, txdr->desc, |
|
1677 txdr->dma); |
|
1678 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1679 DPRINTK(PROBE, ERR, |
|
1680 "Unable to allocate aligned memory " |
|
1681 "for the transmit descriptor ring\n"); |
|
1682 vfree(txdr->buffer_info); |
|
1683 return -ENOMEM; |
|
1684 } else { |
|
1685 /* Free old allocation, new allocation was successful */ |
|
1686 pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
|
1687 } |
|
1688 } |
|
1689 memset(txdr->desc, 0, txdr->size); |
|
1690 |
|
1691 txdr->next_to_use = 0; |
|
1692 txdr->next_to_clean = 0; |
|
1693 spin_lock_init(&txdr->tx_lock); |
|
1694 |
|
1695 return 0; |
|
1696 } |
|
1697 |
|
1698 /** |
|
1699 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources |
|
1700 * (Descriptors) for all queues |
|
1701 * @adapter: board private structure |
|
1702 * |
|
1703 * Return 0 on success, negative on failure |
|
1704 **/ |
|
1705 |
|
1706 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) |
|
1707 { |
|
1708 int i, err = 0; |
|
1709 |
|
1710 for (i = 0; i < adapter->num_tx_queues; i++) { |
|
1711 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); |
|
1712 if (err) { |
|
1713 DPRINTK(PROBE, ERR, |
|
1714 "Allocation for Tx Queue %u failed\n", i); |
|
1715 for (i-- ; i >= 0; i--) |
|
1716 e1000_free_tx_resources(adapter, |
|
1717 &adapter->tx_ring[i]); |
|
1718 break; |
|
1719 } |
|
1720 } |
|
1721 |
|
1722 return err; |
|
1723 } |
|
1724 |
|
1725 /** |
|
1726 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
|
1727 * @adapter: board private structure |
|
1728 * |
|
1729 * Configure the Tx unit of the MAC after a reset. |
|
1730 **/ |
|
1731 |
|
1732 static void e1000_configure_tx(struct e1000_adapter *adapter) |
|
1733 { |
|
1734 u64 tdba; |
|
1735 struct e1000_hw *hw = &adapter->hw; |
|
1736 u32 tdlen, tctl, tipg, tarc; |
|
1737 u32 ipgr1, ipgr2; |
|
1738 |
|
1739 /* Setup the HW Tx Head and Tail descriptor pointers */ |
|
1740 |
|
1741 switch (adapter->num_tx_queues) { |
|
1742 case 1: |
|
1743 default: |
|
1744 tdba = adapter->tx_ring[0].dma; |
|
1745 tdlen = adapter->tx_ring[0].count * |
|
1746 sizeof(struct e1000_tx_desc); |
|
1747 ew32(TDLEN, tdlen); |
|
1748 ew32(TDBAH, (tdba >> 32)); |
|
1749 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); |
|
1750 ew32(TDT, 0); |
|
1751 ew32(TDH, 0); |
|
1752 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); |
|
1753 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); |
|
1754 break; |
|
1755 } |
|
1756 |
|
1757 /* Set the default values for the Tx Inter Packet Gap timer */ |
|
1758 if (hw->mac_type <= e1000_82547_rev_2 && |
|
1759 (hw->media_type == e1000_media_type_fiber || |
|
1760 hw->media_type == e1000_media_type_internal_serdes)) |
|
1761 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
|
1762 else |
|
1763 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
|
1764 |
|
1765 switch (hw->mac_type) { |
|
1766 case e1000_82542_rev2_0: |
|
1767 case e1000_82542_rev2_1: |
|
1768 tipg = DEFAULT_82542_TIPG_IPGT; |
|
1769 ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
|
1770 ipgr2 = DEFAULT_82542_TIPG_IPGR2; |
|
1771 break; |
|
1772 case e1000_80003es2lan: |
|
1773 ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
|
1774 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; |
|
1775 break; |
|
1776 default: |
|
1777 ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
|
1778 ipgr2 = DEFAULT_82543_TIPG_IPGR2; |
|
1779 break; |
|
1780 } |
|
1781 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
|
1782 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
|
1783 ew32(TIPG, tipg); |
|
1784 |
|
1785 /* Set the Tx Interrupt Delay register */ |
|
1786 |
|
1787 ew32(TIDV, adapter->tx_int_delay); |
|
1788 if (hw->mac_type >= e1000_82540) |
|
1789 ew32(TADV, adapter->tx_abs_int_delay); |
|
1790 |
|
1791 /* Program the Transmit Control Register */ |
|
1792 |
|
1793 tctl = er32(TCTL); |
|
1794 tctl &= ~E1000_TCTL_CT; |
|
1795 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
|
1796 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
|
1797 |
|
1798 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { |
|
1799 tarc = er32(TARC0); |
|
1800 /* set the speed mode bit, we'll clear it if we're not at |
|
1801 * gigabit link later */ |
|
1802 tarc |= (1 << 21); |
|
1803 ew32(TARC0, tarc); |
|
1804 } else if (hw->mac_type == e1000_80003es2lan) { |
|
1805 tarc = er32(TARC0); |
|
1806 tarc |= 1; |
|
1807 ew32(TARC0, tarc); |
|
1808 tarc = er32(TARC1); |
|
1809 tarc |= 1; |
|
1810 ew32(TARC1, tarc); |
|
1811 } |
|
1812 |
|
1813 e1000_config_collision_dist(hw); |
|
1814 |
|
1815 /* Setup Transmit Descriptor Settings for eop descriptor */ |
|
1816 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
|
1817 |
|
1818 /* only set IDE if we are delaying interrupts using the timers */ |
|
1819 if (adapter->tx_int_delay) |
|
1820 adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
|
1821 |
|
1822 if (hw->mac_type < e1000_82543) |
|
1823 adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
|
1824 else |
|
1825 adapter->txd_cmd |= E1000_TXD_CMD_RS; |
|
1826 |
|
1827 /* Cache if we're 82544 running in PCI-X because we'll |
|
1828 * need this to apply a workaround later in the send path. */ |
|
1829 if (hw->mac_type == e1000_82544 && |
|
1830 hw->bus_type == e1000_bus_type_pcix) |
|
1831 adapter->pcix_82544 = 1; |
|
1832 |
|
1833 ew32(TCTL, tctl); |
|
1834 |
|
1835 } |
|
1836 |
|
1837 /** |
|
1838 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) |
|
1839 * @adapter: board private structure |
|
1840 * @rxdr: rx descriptor ring (for a specific queue) to setup |
|
1841 * |
|
1842 * Returns 0 on success, negative on failure |
|
1843 **/ |
|
1844 |
|
1845 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
1846 struct e1000_rx_ring *rxdr) |
|
1847 { |
|
1848 struct e1000_hw *hw = &adapter->hw; |
|
1849 struct pci_dev *pdev = adapter->pdev; |
|
1850 int size, desc_len; |
|
1851 |
|
1852 size = sizeof(struct e1000_buffer) * rxdr->count; |
|
1853 rxdr->buffer_info = vmalloc(size); |
|
1854 if (!rxdr->buffer_info) { |
|
1855 DPRINTK(PROBE, ERR, |
|
1856 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1857 return -ENOMEM; |
|
1858 } |
|
1859 memset(rxdr->buffer_info, 0, size); |
|
1860 |
|
1861 rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page), |
|
1862 GFP_KERNEL); |
|
1863 if (!rxdr->ps_page) { |
|
1864 vfree(rxdr->buffer_info); |
|
1865 DPRINTK(PROBE, ERR, |
|
1866 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1867 return -ENOMEM; |
|
1868 } |
|
1869 |
|
1870 rxdr->ps_page_dma = kcalloc(rxdr->count, |
|
1871 sizeof(struct e1000_ps_page_dma), |
|
1872 GFP_KERNEL); |
|
1873 if (!rxdr->ps_page_dma) { |
|
1874 vfree(rxdr->buffer_info); |
|
1875 kfree(rxdr->ps_page); |
|
1876 DPRINTK(PROBE, ERR, |
|
1877 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1878 return -ENOMEM; |
|
1879 } |
|
1880 |
|
1881 if (hw->mac_type <= e1000_82547_rev_2) |
|
1882 desc_len = sizeof(struct e1000_rx_desc); |
|
1883 else |
|
1884 desc_len = sizeof(union e1000_rx_desc_packet_split); |
|
1885 |
|
1886 /* Round up to nearest 4K */ |
|
1887 |
|
1888 rxdr->size = rxdr->count * desc_len; |
|
1889 rxdr->size = ALIGN(rxdr->size, 4096); |
|
1890 |
|
1891 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
|
1892 |
|
1893 if (!rxdr->desc) { |
|
1894 DPRINTK(PROBE, ERR, |
|
1895 "Unable to allocate memory for the receive descriptor ring\n"); |
|
1896 setup_rx_desc_die: |
|
1897 vfree(rxdr->buffer_info); |
|
1898 kfree(rxdr->ps_page); |
|
1899 kfree(rxdr->ps_page_dma); |
|
1900 return -ENOMEM; |
|
1901 } |
|
1902 |
|
1903 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1904 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1905 void *olddesc = rxdr->desc; |
|
1906 dma_addr_t olddma = rxdr->dma; |
|
1907 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " |
|
1908 "at %p\n", rxdr->size, rxdr->desc); |
|
1909 /* Try again, without freeing the previous */ |
|
1910 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
|
1911 /* Failed allocation, critical failure */ |
|
1912 if (!rxdr->desc) { |
|
1913 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1914 DPRINTK(PROBE, ERR, |
|
1915 "Unable to allocate memory " |
|
1916 "for the receive descriptor ring\n"); |
|
1917 goto setup_rx_desc_die; |
|
1918 } |
|
1919 |
|
1920 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1921 /* give up */ |
|
1922 pci_free_consistent(pdev, rxdr->size, rxdr->desc, |
|
1923 rxdr->dma); |
|
1924 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1925 DPRINTK(PROBE, ERR, |
|
1926 "Unable to allocate aligned memory " |
|
1927 "for the receive descriptor ring\n"); |
|
1928 goto setup_rx_desc_die; |
|
1929 } else { |
|
1930 /* Free old allocation, new allocation was successful */ |
|
1931 pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
|
1932 } |
|
1933 } |
|
1934 memset(rxdr->desc, 0, rxdr->size); |
|
1935 |
|
1936 rxdr->next_to_clean = 0; |
|
1937 rxdr->next_to_use = 0; |
|
1938 |
|
1939 return 0; |
|
1940 } |
|
1941 |
|
1942 /** |
|
1943 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources |
|
1944 * (Descriptors) for all queues |
|
1945 * @adapter: board private structure |
|
1946 * |
|
1947 * Return 0 on success, negative on failure |
|
1948 **/ |
|
1949 |
|
1950 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) |
|
1951 { |
|
1952 int i, err = 0; |
|
1953 |
|
1954 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
1955 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); |
|
1956 if (err) { |
|
1957 DPRINTK(PROBE, ERR, |
|
1958 "Allocation for Rx Queue %u failed\n", i); |
|
1959 for (i-- ; i >= 0; i--) |
|
1960 e1000_free_rx_resources(adapter, |
|
1961 &adapter->rx_ring[i]); |
|
1962 break; |
|
1963 } |
|
1964 } |
|
1965 |
|
1966 return err; |
|
1967 } |
|
1968 |
|
1969 /** |
|
1970 * e1000_setup_rctl - configure the receive control registers |
|
1971 * @adapter: Board private structure |
|
1972 **/ |
|
1973 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ |
|
1974 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) |
|
1975 static void e1000_setup_rctl(struct e1000_adapter *adapter) |
|
1976 { |
|
1977 struct e1000_hw *hw = &adapter->hw; |
|
1978 u32 rctl, rfctl; |
|
1979 u32 psrctl = 0; |
|
1980 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT |
|
1981 u32 pages = 0; |
|
1982 #endif |
|
1983 |
|
1984 rctl = er32(RCTL); |
|
1985 |
|
1986 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
|
1987 |
|
1988 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
|
1989 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
1990 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
1991 |
|
1992 if (hw->tbi_compatibility_on == 1) |
|
1993 rctl |= E1000_RCTL_SBP; |
|
1994 else |
|
1995 rctl &= ~E1000_RCTL_SBP; |
|
1996 |
|
1997 if (adapter->netdev->mtu <= ETH_DATA_LEN) |
|
1998 rctl &= ~E1000_RCTL_LPE; |
|
1999 else |
|
2000 rctl |= E1000_RCTL_LPE; |
|
2001 |
|
2002 /* Setup buffer sizes */ |
|
2003 rctl &= ~E1000_RCTL_SZ_4096; |
|
2004 rctl |= E1000_RCTL_BSEX; |
|
2005 switch (adapter->rx_buffer_len) { |
|
2006 case E1000_RXBUFFER_256: |
|
2007 rctl |= E1000_RCTL_SZ_256; |
|
2008 rctl &= ~E1000_RCTL_BSEX; |
|
2009 break; |
|
2010 case E1000_RXBUFFER_512: |
|
2011 rctl |= E1000_RCTL_SZ_512; |
|
2012 rctl &= ~E1000_RCTL_BSEX; |
|
2013 break; |
|
2014 case E1000_RXBUFFER_1024: |
|
2015 rctl |= E1000_RCTL_SZ_1024; |
|
2016 rctl &= ~E1000_RCTL_BSEX; |
|
2017 break; |
|
2018 case E1000_RXBUFFER_2048: |
|
2019 default: |
|
2020 rctl |= E1000_RCTL_SZ_2048; |
|
2021 rctl &= ~E1000_RCTL_BSEX; |
|
2022 break; |
|
2023 case E1000_RXBUFFER_4096: |
|
2024 rctl |= E1000_RCTL_SZ_4096; |
|
2025 break; |
|
2026 case E1000_RXBUFFER_8192: |
|
2027 rctl |= E1000_RCTL_SZ_8192; |
|
2028 break; |
|
2029 case E1000_RXBUFFER_16384: |
|
2030 rctl |= E1000_RCTL_SZ_16384; |
|
2031 break; |
|
2032 } |
|
2033 |
|
2034 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT |
|
2035 /* 82571 and greater support packet-split where the protocol |
|
2036 * header is placed in skb->data and the packet data is |
|
2037 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. |
|
2038 * In the case of a non-split, skb->data is linearly filled, |
|
2039 * followed by the page buffers. Therefore, skb->data is |
|
2040 * sized to hold the largest protocol header. |
|
2041 */ |
|
2042 /* allocations using alloc_page take too long for regular MTU |
|
2043 * so only enable packet split for jumbo frames */ |
|
2044 pages = PAGE_USE_COUNT(adapter->netdev->mtu); |
|
2045 if ((hw->mac_type >= e1000_82571) && (pages <= 3) && |
|
2046 PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE)) |
|
2047 adapter->rx_ps_pages = pages; |
|
2048 else |
|
2049 adapter->rx_ps_pages = 0; |
|
2050 #endif |
|
2051 if (adapter->rx_ps_pages) { |
|
2052 /* Configure extra packet-split registers */ |
|
2053 rfctl = er32(RFCTL); |
|
2054 rfctl |= E1000_RFCTL_EXTEN; |
|
2055 /* disable packet split support for IPv6 extension headers, |
|
2056 * because some malformed IPv6 headers can hang the RX */ |
|
2057 rfctl |= (E1000_RFCTL_IPV6_EX_DIS | |
|
2058 E1000_RFCTL_NEW_IPV6_EXT_DIS); |
|
2059 |
|
2060 ew32(RFCTL, rfctl); |
|
2061 |
|
2062 rctl |= E1000_RCTL_DTYP_PS; |
|
2063 |
|
2064 psrctl |= adapter->rx_ps_bsize0 >> |
|
2065 E1000_PSRCTL_BSIZE0_SHIFT; |
|
2066 |
|
2067 switch (adapter->rx_ps_pages) { |
|
2068 case 3: |
|
2069 psrctl |= PAGE_SIZE << |
|
2070 E1000_PSRCTL_BSIZE3_SHIFT; |
|
2071 case 2: |
|
2072 psrctl |= PAGE_SIZE << |
|
2073 E1000_PSRCTL_BSIZE2_SHIFT; |
|
2074 case 1: |
|
2075 psrctl |= PAGE_SIZE >> |
|
2076 E1000_PSRCTL_BSIZE1_SHIFT; |
|
2077 break; |
|
2078 } |
|
2079 |
|
2080 ew32(PSRCTL, psrctl); |
|
2081 } |
|
2082 |
|
2083 ew32(RCTL, rctl); |
|
2084 } |
|
2085 |
|
2086 /** |
|
2087 * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
|
2088 * @adapter: board private structure |
|
2089 * |
|
2090 * Configure the Rx unit of the MAC after a reset. |
|
2091 **/ |
|
2092 |
|
2093 static void e1000_configure_rx(struct e1000_adapter *adapter) |
|
2094 { |
|
2095 u64 rdba; |
|
2096 struct e1000_hw *hw = &adapter->hw; |
|
2097 u32 rdlen, rctl, rxcsum, ctrl_ext; |
|
2098 |
|
2099 if (adapter->rx_ps_pages) { |
|
2100 /* this is a 32 byte descriptor */ |
|
2101 rdlen = adapter->rx_ring[0].count * |
|
2102 sizeof(union e1000_rx_desc_packet_split); |
|
2103 adapter->clean_rx = e1000_clean_rx_irq_ps; |
|
2104 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; |
|
2105 } else { |
|
2106 rdlen = adapter->rx_ring[0].count * |
|
2107 sizeof(struct e1000_rx_desc); |
|
2108 adapter->clean_rx = e1000_clean_rx_irq; |
|
2109 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
|
2110 } |
|
2111 |
|
2112 /* disable receives while setting up the descriptors */ |
|
2113 rctl = er32(RCTL); |
|
2114 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
2115 |
|
2116 /* set the Receive Delay Timer Register */ |
|
2117 ew32(RDTR, adapter->rx_int_delay); |
|
2118 |
|
2119 if (hw->mac_type >= e1000_82540) { |
|
2120 ew32(RADV, adapter->rx_abs_int_delay); |
|
2121 if (adapter->itr_setting != 0) |
|
2122 ew32(ITR, 1000000000 / (adapter->itr * 256)); |
|
2123 } |
|
2124 |
|
2125 if (hw->mac_type >= e1000_82571) { |
|
2126 ctrl_ext = er32(CTRL_EXT); |
|
2127 /* Reset delay timers after every interrupt */ |
|
2128 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; |
|
2129 /* Auto-Mask interrupts upon ICR access */ |
|
2130 ctrl_ext |= E1000_CTRL_EXT_IAME; |
|
2131 ew32(IAM, 0xffffffff); |
|
2132 ew32(CTRL_EXT, ctrl_ext); |
|
2133 E1000_WRITE_FLUSH(); |
|
2134 } |
|
2135 |
|
2136 /* Setup the HW Rx Head and Tail Descriptor Pointers and |
|
2137 * the Base and Length of the Rx Descriptor Ring */ |
|
2138 switch (adapter->num_rx_queues) { |
|
2139 case 1: |
|
2140 default: |
|
2141 rdba = adapter->rx_ring[0].dma; |
|
2142 ew32(RDLEN, rdlen); |
|
2143 ew32(RDBAH, (rdba >> 32)); |
|
2144 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); |
|
2145 ew32(RDT, 0); |
|
2146 ew32(RDH, 0); |
|
2147 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); |
|
2148 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); |
|
2149 break; |
|
2150 } |
|
2151 |
|
2152 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
|
2153 if (hw->mac_type >= e1000_82543) { |
|
2154 rxcsum = er32(RXCSUM); |
|
2155 if (adapter->rx_csum) { |
|
2156 rxcsum |= E1000_RXCSUM_TUOFL; |
|
2157 |
|
2158 /* Enable 82571 IPv4 payload checksum for UDP fragments |
|
2159 * Must be used in conjunction with packet-split. */ |
|
2160 if ((hw->mac_type >= e1000_82571) && |
|
2161 (adapter->rx_ps_pages)) { |
|
2162 rxcsum |= E1000_RXCSUM_IPPCSE; |
|
2163 } |
|
2164 } else { |
|
2165 rxcsum &= ~E1000_RXCSUM_TUOFL; |
|
2166 /* don't need to clear IPPCSE as it defaults to 0 */ |
|
2167 } |
|
2168 ew32(RXCSUM, rxcsum); |
|
2169 } |
|
2170 |
|
2171 /* enable early receives on 82573, only takes effect if using > 2048 |
|
2172 * byte total frame size. for example only for jumbo frames */ |
|
2173 #define E1000_ERT_2048 0x100 |
|
2174 if (hw->mac_type == e1000_82573) |
|
2175 ew32(ERT, E1000_ERT_2048); |
|
2176 |
|
2177 /* Enable Receives */ |
|
2178 ew32(RCTL, rctl); |
|
2179 } |
|
2180 |
|
2181 /** |
|
2182 * e1000_free_tx_resources - Free Tx Resources per Queue |
|
2183 * @adapter: board private structure |
|
2184 * @tx_ring: Tx descriptor ring for a specific queue |
|
2185 * |
|
2186 * Free all transmit software resources |
|
2187 **/ |
|
2188 |
|
2189 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
2190 struct e1000_tx_ring *tx_ring) |
|
2191 { |
|
2192 struct pci_dev *pdev = adapter->pdev; |
|
2193 |
|
2194 e1000_clean_tx_ring(adapter, tx_ring); |
|
2195 |
|
2196 vfree(tx_ring->buffer_info); |
|
2197 tx_ring->buffer_info = NULL; |
|
2198 |
|
2199 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); |
|
2200 |
|
2201 tx_ring->desc = NULL; |
|
2202 } |
|
2203 |
|
2204 /** |
|
2205 * e1000_free_all_tx_resources - Free Tx Resources for All Queues |
|
2206 * @adapter: board private structure |
|
2207 * |
|
2208 * Free all transmit software resources |
|
2209 **/ |
|
2210 |
|
2211 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) |
|
2212 { |
|
2213 int i; |
|
2214 |
|
2215 for (i = 0; i < adapter->num_tx_queues; i++) |
|
2216 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); |
|
2217 } |
|
2218 |
|
2219 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, |
|
2220 struct e1000_buffer *buffer_info) |
|
2221 { |
|
2222 if (adapter->ecdev) |
|
2223 return; |
|
2224 |
|
2225 if (buffer_info->dma) { |
|
2226 pci_unmap_page(adapter->pdev, |
|
2227 buffer_info->dma, |
|
2228 buffer_info->length, |
|
2229 PCI_DMA_TODEVICE); |
|
2230 buffer_info->dma = 0; |
|
2231 } |
|
2232 if (buffer_info->skb) { |
|
2233 dev_kfree_skb_any(buffer_info->skb); |
|
2234 buffer_info->skb = NULL; |
|
2235 } |
|
2236 /* buffer_info must be completely set up in the transmit path */ |
|
2237 } |
|
2238 |
|
2239 /** |
|
2240 * e1000_clean_tx_ring - Free Tx Buffers |
|
2241 * @adapter: board private structure |
|
2242 * @tx_ring: ring to be cleaned |
|
2243 **/ |
|
2244 |
|
2245 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
2246 struct e1000_tx_ring *tx_ring) |
|
2247 { |
|
2248 struct e1000_hw *hw = &adapter->hw; |
|
2249 struct e1000_buffer *buffer_info; |
|
2250 unsigned long size; |
|
2251 unsigned int i; |
|
2252 |
|
2253 /* Free all the Tx ring sk_buffs */ |
|
2254 |
|
2255 for (i = 0; i < tx_ring->count; i++) { |
|
2256 buffer_info = &tx_ring->buffer_info[i]; |
|
2257 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
2258 } |
|
2259 |
|
2260 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
2261 memset(tx_ring->buffer_info, 0, size); |
|
2262 |
|
2263 /* Zero out the descriptor ring */ |
|
2264 |
|
2265 memset(tx_ring->desc, 0, tx_ring->size); |
|
2266 |
|
2267 tx_ring->next_to_use = 0; |
|
2268 tx_ring->next_to_clean = 0; |
|
2269 tx_ring->last_tx_tso = 0; |
|
2270 |
|
2271 writel(0, hw->hw_addr + tx_ring->tdh); |
|
2272 writel(0, hw->hw_addr + tx_ring->tdt); |
|
2273 } |
|
2274 |
|
2275 /** |
|
2276 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues |
|
2277 * @adapter: board private structure |
|
2278 **/ |
|
2279 |
|
2280 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) |
|
2281 { |
|
2282 int i; |
|
2283 |
|
2284 for (i = 0; i < adapter->num_tx_queues; i++) |
|
2285 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); |
|
2286 } |
|
2287 |
|
2288 /** |
|
2289 * e1000_free_rx_resources - Free Rx Resources |
|
2290 * @adapter: board private structure |
|
2291 * @rx_ring: ring to clean the resources from |
|
2292 * |
|
2293 * Free all receive software resources |
|
2294 **/ |
|
2295 |
|
2296 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
2297 struct e1000_rx_ring *rx_ring) |
|
2298 { |
|
2299 struct pci_dev *pdev = adapter->pdev; |
|
2300 |
|
2301 e1000_clean_rx_ring(adapter, rx_ring); |
|
2302 |
|
2303 vfree(rx_ring->buffer_info); |
|
2304 rx_ring->buffer_info = NULL; |
|
2305 kfree(rx_ring->ps_page); |
|
2306 rx_ring->ps_page = NULL; |
|
2307 kfree(rx_ring->ps_page_dma); |
|
2308 rx_ring->ps_page_dma = NULL; |
|
2309 |
|
2310 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); |
|
2311 |
|
2312 rx_ring->desc = NULL; |
|
2313 } |
|
2314 |
|
2315 /** |
|
2316 * e1000_free_all_rx_resources - Free Rx Resources for All Queues |
|
2317 * @adapter: board private structure |
|
2318 * |
|
2319 * Free all receive software resources |
|
2320 **/ |
|
2321 |
|
2322 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) |
|
2323 { |
|
2324 int i; |
|
2325 |
|
2326 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2327 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); |
|
2328 } |
|
2329 |
|
2330 /** |
|
2331 * e1000_clean_rx_ring - Free Rx Buffers per Queue |
|
2332 * @adapter: board private structure |
|
2333 * @rx_ring: ring to free buffers from |
|
2334 **/ |
|
2335 |
|
2336 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
2337 struct e1000_rx_ring *rx_ring) |
|
2338 { |
|
2339 struct e1000_hw *hw = &adapter->hw; |
|
2340 struct e1000_buffer *buffer_info; |
|
2341 struct e1000_ps_page *ps_page; |
|
2342 struct e1000_ps_page_dma *ps_page_dma; |
|
2343 struct pci_dev *pdev = adapter->pdev; |
|
2344 unsigned long size; |
|
2345 unsigned int i, j; |
|
2346 |
|
2347 /* Free all the Rx ring sk_buffs */ |
|
2348 for (i = 0; i < rx_ring->count; i++) { |
|
2349 buffer_info = &rx_ring->buffer_info[i]; |
|
2350 if (buffer_info->skb) { |
|
2351 pci_unmap_single(pdev, |
|
2352 buffer_info->dma, |
|
2353 buffer_info->length, |
|
2354 PCI_DMA_FROMDEVICE); |
|
2355 |
|
2356 dev_kfree_skb(buffer_info->skb); |
|
2357 buffer_info->skb = NULL; |
|
2358 } |
|
2359 ps_page = &rx_ring->ps_page[i]; |
|
2360 ps_page_dma = &rx_ring->ps_page_dma[i]; |
|
2361 for (j = 0; j < adapter->rx_ps_pages; j++) { |
|
2362 if (!ps_page->ps_page[j]) break; |
|
2363 pci_unmap_page(pdev, |
|
2364 ps_page_dma->ps_page_dma[j], |
|
2365 PAGE_SIZE, PCI_DMA_FROMDEVICE); |
|
2366 ps_page_dma->ps_page_dma[j] = 0; |
|
2367 put_page(ps_page->ps_page[j]); |
|
2368 ps_page->ps_page[j] = NULL; |
|
2369 } |
|
2370 } |
|
2371 |
|
2372 size = sizeof(struct e1000_buffer) * rx_ring->count; |
|
2373 memset(rx_ring->buffer_info, 0, size); |
|
2374 size = sizeof(struct e1000_ps_page) * rx_ring->count; |
|
2375 memset(rx_ring->ps_page, 0, size); |
|
2376 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count; |
|
2377 memset(rx_ring->ps_page_dma, 0, size); |
|
2378 |
|
2379 /* Zero out the descriptor ring */ |
|
2380 |
|
2381 memset(rx_ring->desc, 0, rx_ring->size); |
|
2382 |
|
2383 rx_ring->next_to_clean = 0; |
|
2384 rx_ring->next_to_use = 0; |
|
2385 |
|
2386 writel(0, hw->hw_addr + rx_ring->rdh); |
|
2387 writel(0, hw->hw_addr + rx_ring->rdt); |
|
2388 } |
|
2389 |
|
2390 /** |
|
2391 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues |
|
2392 * @adapter: board private structure |
|
2393 **/ |
|
2394 |
|
2395 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) |
|
2396 { |
|
2397 int i; |
|
2398 |
|
2399 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2400 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); |
|
2401 } |
|
2402 |
|
2403 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset |
|
2404 * and memory write and invalidate disabled for certain operations |
|
2405 */ |
|
2406 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) |
|
2407 { |
|
2408 struct e1000_hw *hw = &adapter->hw; |
|
2409 struct net_device *netdev = adapter->netdev; |
|
2410 u32 rctl; |
|
2411 |
|
2412 e1000_pci_clear_mwi(hw); |
|
2413 |
|
2414 rctl = er32(RCTL); |
|
2415 rctl |= E1000_RCTL_RST; |
|
2416 ew32(RCTL, rctl); |
|
2417 E1000_WRITE_FLUSH(); |
|
2418 mdelay(5); |
|
2419 |
|
2420 if (!adapter->ecdev && netif_running(netdev)) |
|
2421 e1000_clean_all_rx_rings(adapter); |
|
2422 } |
|
2423 |
|
2424 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) |
|
2425 { |
|
2426 struct e1000_hw *hw = &adapter->hw; |
|
2427 struct net_device *netdev = adapter->netdev; |
|
2428 u32 rctl; |
|
2429 |
|
2430 rctl = er32(RCTL); |
|
2431 rctl &= ~E1000_RCTL_RST; |
|
2432 ew32(RCTL, rctl); |
|
2433 E1000_WRITE_FLUSH(); |
|
2434 mdelay(5); |
|
2435 |
|
2436 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
2437 e1000_pci_set_mwi(hw); |
|
2438 |
|
2439 if (!adapter->netdev && netif_running(netdev)) { |
|
2440 /* No need to loop, because 82542 supports only 1 queue */ |
|
2441 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; |
|
2442 e1000_configure_rx(adapter); |
|
2443 if (adapter->ecdev) { |
|
2444 /* fill rx ring completely! */ |
|
2445 adapter->alloc_rx_buf(adapter, ring, ring->count); |
|
2446 } else { |
|
2447 /* this one leaves the last ring element unallocated! */ |
|
2448 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); |
|
2449 } |
|
2450 |
|
2451 } |
|
2452 } |
|
2453 |
|
2454 /** |
|
2455 * e1000_set_mac - Change the Ethernet Address of the NIC |
|
2456 * @netdev: network interface device structure |
|
2457 * @p: pointer to an address structure |
|
2458 * |
|
2459 * Returns 0 on success, negative on failure |
|
2460 **/ |
|
2461 |
|
2462 static int e1000_set_mac(struct net_device *netdev, void *p) |
|
2463 { |
|
2464 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2465 struct e1000_hw *hw = &adapter->hw; |
|
2466 struct sockaddr *addr = p; |
|
2467 |
|
2468 if (!is_valid_ether_addr(addr->sa_data)) |
|
2469 return -EADDRNOTAVAIL; |
|
2470 |
|
2471 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2472 |
|
2473 if (hw->mac_type == e1000_82542_rev2_0) |
|
2474 e1000_enter_82542_rst(adapter); |
|
2475 |
|
2476 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
2477 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); |
|
2478 |
|
2479 e1000_rar_set(hw, hw->mac_addr, 0); |
|
2480 |
|
2481 /* With 82571 controllers, LAA may be overwritten (with the default) |
|
2482 * due to controller reset from the other port. */ |
|
2483 if (hw->mac_type == e1000_82571) { |
|
2484 /* activate the work around */ |
|
2485 hw->laa_is_present = 1; |
|
2486 |
|
2487 /* Hold a copy of the LAA in RAR[14] This is done so that |
|
2488 * between the time RAR[0] gets clobbered and the time it |
|
2489 * gets fixed (in e1000_watchdog), the actual LAA is in one |
|
2490 * of the RARs and no incoming packets directed to this port |
|
2491 * are dropped. Eventaully the LAA will be in RAR[0] and |
|
2492 * RAR[14] */ |
|
2493 e1000_rar_set(hw, hw->mac_addr, |
|
2494 E1000_RAR_ENTRIES - 1); |
|
2495 } |
|
2496 |
|
2497 if (hw->mac_type == e1000_82542_rev2_0) |
|
2498 e1000_leave_82542_rst(adapter); |
|
2499 |
|
2500 return 0; |
|
2501 } |
|
2502 |
|
2503 /** |
|
2504 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set |
|
2505 * @netdev: network interface device structure |
|
2506 * |
|
2507 * The set_rx_mode entry point is called whenever the unicast or multicast |
|
2508 * address lists or the network interface flags are updated. This routine is |
|
2509 * responsible for configuring the hardware for proper unicast, multicast, |
|
2510 * promiscuous mode, and all-multi behavior. |
|
2511 **/ |
|
2512 |
|
2513 static void e1000_set_rx_mode(struct net_device *netdev) |
|
2514 { |
|
2515 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2516 struct e1000_hw *hw = &adapter->hw; |
|
2517 struct dev_addr_list *uc_ptr; |
|
2518 struct dev_addr_list *mc_ptr; |
|
2519 u32 rctl; |
|
2520 u32 hash_value; |
|
2521 int i, rar_entries = E1000_RAR_ENTRIES; |
|
2522 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ? |
|
2523 E1000_NUM_MTA_REGISTERS_ICH8LAN : |
|
2524 E1000_NUM_MTA_REGISTERS; |
|
2525 |
|
2526 if (hw->mac_type == e1000_ich8lan) |
|
2527 rar_entries = E1000_RAR_ENTRIES_ICH8LAN; |
|
2528 |
|
2529 /* reserve RAR[14] for LAA over-write work-around */ |
|
2530 if (hw->mac_type == e1000_82571) |
|
2531 rar_entries--; |
|
2532 |
|
2533 /* Check for Promiscuous and All Multicast modes */ |
|
2534 |
|
2535 rctl = er32(RCTL); |
|
2536 |
|
2537 if (netdev->flags & IFF_PROMISC) { |
|
2538 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
2539 rctl &= ~E1000_RCTL_VFE; |
|
2540 } else { |
|
2541 if (netdev->flags & IFF_ALLMULTI) { |
|
2542 rctl |= E1000_RCTL_MPE; |
|
2543 } else { |
|
2544 rctl &= ~E1000_RCTL_MPE; |
|
2545 } |
|
2546 if (adapter->hw.mac_type != e1000_ich8lan) |
|
2547 rctl |= E1000_RCTL_VFE; |
|
2548 } |
|
2549 |
|
2550 uc_ptr = NULL; |
|
2551 if (netdev->uc_count > rar_entries - 1) { |
|
2552 rctl |= E1000_RCTL_UPE; |
|
2553 } else if (!(netdev->flags & IFF_PROMISC)) { |
|
2554 rctl &= ~E1000_RCTL_UPE; |
|
2555 uc_ptr = netdev->uc_list; |
|
2556 } |
|
2557 |
|
2558 ew32(RCTL, rctl); |
|
2559 |
|
2560 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2561 |
|
2562 if (hw->mac_type == e1000_82542_rev2_0) |
|
2563 e1000_enter_82542_rst(adapter); |
|
2564 |
|
2565 /* load the first 14 addresses into the exact filters 1-14. Unicast |
|
2566 * addresses take precedence to avoid disabling unicast filtering |
|
2567 * when possible. |
|
2568 * |
|
2569 * RAR 0 is used for the station MAC adddress |
|
2570 * if there are not 14 addresses, go ahead and clear the filters |
|
2571 * -- with 82571 controllers only 0-13 entries are filled here |
|
2572 */ |
|
2573 mc_ptr = netdev->mc_list; |
|
2574 |
|
2575 for (i = 1; i < rar_entries; i++) { |
|
2576 if (uc_ptr) { |
|
2577 e1000_rar_set(hw, uc_ptr->da_addr, i); |
|
2578 uc_ptr = uc_ptr->next; |
|
2579 } else if (mc_ptr) { |
|
2580 e1000_rar_set(hw, mc_ptr->da_addr, i); |
|
2581 mc_ptr = mc_ptr->next; |
|
2582 } else { |
|
2583 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); |
|
2584 E1000_WRITE_FLUSH(); |
|
2585 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); |
|
2586 E1000_WRITE_FLUSH(); |
|
2587 } |
|
2588 } |
|
2589 WARN_ON(uc_ptr != NULL); |
|
2590 |
|
2591 /* clear the old settings from the multicast hash table */ |
|
2592 |
|
2593 for (i = 0; i < mta_reg_count; i++) { |
|
2594 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
|
2595 E1000_WRITE_FLUSH(); |
|
2596 } |
|
2597 |
|
2598 /* load any remaining addresses into the hash table */ |
|
2599 |
|
2600 for (; mc_ptr; mc_ptr = mc_ptr->next) { |
|
2601 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr); |
|
2602 e1000_mta_set(hw, hash_value); |
|
2603 } |
|
2604 |
|
2605 if (hw->mac_type == e1000_82542_rev2_0) |
|
2606 e1000_leave_82542_rst(adapter); |
|
2607 } |
|
2608 |
|
2609 /* Need to wait a few seconds after link up to get diagnostic information from |
|
2610 * the phy */ |
|
2611 |
|
2612 static void e1000_update_phy_info(unsigned long data) |
|
2613 { |
|
2614 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2615 struct e1000_hw *hw = &adapter->hw; |
|
2616 e1000_phy_get_info(hw, &adapter->phy_info); |
|
2617 } |
|
2618 |
|
2619 /** |
|
2620 * e1000_82547_tx_fifo_stall - Timer Call-back |
|
2621 * @data: pointer to adapter cast into an unsigned long |
|
2622 **/ |
|
2623 |
|
2624 static void e1000_82547_tx_fifo_stall(unsigned long data) |
|
2625 { |
|
2626 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2627 struct e1000_hw *hw = &adapter->hw; |
|
2628 struct net_device *netdev = adapter->netdev; |
|
2629 u32 tctl; |
|
2630 |
|
2631 if (atomic_read(&adapter->tx_fifo_stall)) { |
|
2632 if ((er32(TDT) == er32(TDH)) && |
|
2633 (er32(TDFT) == er32(TDFH)) && |
|
2634 (er32(TDFTS) == er32(TDFHS))) { |
|
2635 tctl = er32(TCTL); |
|
2636 ew32(TCTL, tctl & ~E1000_TCTL_EN); |
|
2637 ew32(TDFT, adapter->tx_head_addr); |
|
2638 ew32(TDFH, adapter->tx_head_addr); |
|
2639 ew32(TDFTS, adapter->tx_head_addr); |
|
2640 ew32(TDFHS, adapter->tx_head_addr); |
|
2641 ew32(TCTL, tctl); |
|
2642 E1000_WRITE_FLUSH(); |
|
2643 |
|
2644 adapter->tx_fifo_head = 0; |
|
2645 atomic_set(&adapter->tx_fifo_stall, 0); |
|
2646 if (!adapter->ecdev) netif_wake_queue(netdev); |
|
2647 } else { |
|
2648 if (!adapter->ecdev) |
|
2649 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); |
|
2650 } |
|
2651 } |
|
2652 } |
|
2653 |
|
2654 /** |
|
2655 * e1000_watchdog - Timer Call-back |
|
2656 * @data: pointer to adapter cast into an unsigned long |
|
2657 **/ |
|
2658 static void e1000_watchdog(unsigned long data) |
|
2659 { |
|
2660 struct e1000_adapter *adapter = (struct e1000_adapter *)data; |
|
2661 struct e1000_hw *hw = &adapter->hw; |
|
2662 struct net_device *netdev = adapter->netdev; |
|
2663 struct e1000_tx_ring *txdr = adapter->tx_ring; |
|
2664 u32 link, tctl; |
|
2665 s32 ret_val; |
|
2666 |
|
2667 ret_val = e1000_check_for_link(hw); |
|
2668 if ((ret_val == E1000_ERR_PHY) && |
|
2669 (hw->phy_type == e1000_phy_igp_3) && |
|
2670 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { |
|
2671 /* See e1000_kumeran_lock_loss_workaround() */ |
|
2672 DPRINTK(LINK, INFO, |
|
2673 "Gigabit has been disabled, downgrading speed\n"); |
|
2674 } |
|
2675 |
|
2676 if (hw->mac_type == e1000_82573) { |
|
2677 e1000_enable_tx_pkt_filtering(hw); |
|
2678 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id) |
|
2679 e1000_update_mng_vlan(adapter); |
|
2680 } |
|
2681 |
|
2682 if ((hw->media_type == e1000_media_type_internal_serdes) && |
|
2683 !(er32(TXCW) & E1000_TXCW_ANE)) |
|
2684 link = !hw->serdes_link_down; |
|
2685 else |
|
2686 link = er32(STATUS) & E1000_STATUS_LU; |
|
2687 |
|
2688 if (link) { |
|
2689 if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev)) |
|
2690 || (!adapter->ecdev && !netif_carrier_ok(netdev))) { |
|
2691 u32 ctrl; |
|
2692 bool txb2b = true; |
|
2693 e1000_get_speed_and_duplex(hw, |
|
2694 &adapter->link_speed, |
|
2695 &adapter->link_duplex); |
|
2696 |
|
2697 ctrl = er32(CTRL); |
|
2698 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, " |
|
2699 "Flow Control: %s\n", |
|
2700 adapter->link_speed, |
|
2701 adapter->link_duplex == FULL_DUPLEX ? |
|
2702 "Full Duplex" : "Half Duplex", |
|
2703 ((ctrl & E1000_CTRL_TFCE) && (ctrl & |
|
2704 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & |
|
2705 E1000_CTRL_RFCE) ? "RX" : ((ctrl & |
|
2706 E1000_CTRL_TFCE) ? "TX" : "None" ))); |
|
2707 |
|
2708 /* tweak tx_queue_len according to speed/duplex |
|
2709 * and adjust the timeout factor */ |
|
2710 netdev->tx_queue_len = adapter->tx_queue_len; |
|
2711 adapter->tx_timeout_factor = 1; |
|
2712 switch (adapter->link_speed) { |
|
2713 case SPEED_10: |
|
2714 txb2b = false; |
|
2715 netdev->tx_queue_len = 10; |
|
2716 adapter->tx_timeout_factor = 8; |
|
2717 break; |
|
2718 case SPEED_100: |
|
2719 txb2b = false; |
|
2720 netdev->tx_queue_len = 100; |
|
2721 /* maybe add some timeout factor ? */ |
|
2722 break; |
|
2723 } |
|
2724 |
|
2725 if ((hw->mac_type == e1000_82571 || |
|
2726 hw->mac_type == e1000_82572) && |
|
2727 !txb2b) { |
|
2728 u32 tarc0; |
|
2729 tarc0 = er32(TARC0); |
|
2730 tarc0 &= ~(1 << 21); |
|
2731 ew32(TARC0, tarc0); |
|
2732 } |
|
2733 |
|
2734 /* disable TSO for pcie and 10/100 speeds, to avoid |
|
2735 * some hardware issues */ |
|
2736 if (!adapter->tso_force && |
|
2737 hw->bus_type == e1000_bus_type_pci_express){ |
|
2738 switch (adapter->link_speed) { |
|
2739 case SPEED_10: |
|
2740 case SPEED_100: |
|
2741 DPRINTK(PROBE,INFO, |
|
2742 "10/100 speed: disabling TSO\n"); |
|
2743 netdev->features &= ~NETIF_F_TSO; |
|
2744 netdev->features &= ~NETIF_F_TSO6; |
|
2745 break; |
|
2746 case SPEED_1000: |
|
2747 netdev->features |= NETIF_F_TSO; |
|
2748 netdev->features |= NETIF_F_TSO6; |
|
2749 break; |
|
2750 default: |
|
2751 /* oops */ |
|
2752 break; |
|
2753 } |
|
2754 } |
|
2755 |
|
2756 /* enable transmits in the hardware, need to do this |
|
2757 * after setting TARC0 */ |
|
2758 tctl = er32(TCTL); |
|
2759 tctl |= E1000_TCTL_EN; |
|
2760 ew32(TCTL, tctl); |
|
2761 |
|
2762 if (adapter->ecdev) { |
|
2763 ecdev_set_link(adapter->ecdev, 1); |
|
2764 } else { |
|
2765 netif_carrier_on(netdev); |
|
2766 netif_wake_queue(netdev); |
|
2767 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2768 } |
|
2769 adapter->smartspeed = 0; |
|
2770 } else { |
|
2771 /* make sure the receive unit is started */ |
|
2772 if (hw->rx_needs_kicking) { |
|
2773 u32 rctl = er32(RCTL); |
|
2774 ew32(RCTL, rctl | E1000_RCTL_EN); |
|
2775 } |
|
2776 } |
|
2777 } else { |
|
2778 if ((adapter->ecdev && ecdev_get_link(adapter->ecdev)) |
|
2779 || (!adapter->ecdev && netif_carrier_ok(netdev))) { |
|
2780 adapter->link_speed = 0; |
|
2781 adapter->link_duplex = 0; |
|
2782 DPRINTK(LINK, INFO, "NIC Link is Down\n"); |
|
2783 if (adapter->ecdev) { |
|
2784 ecdev_set_link(adapter->ecdev, 0); |
|
2785 } else { |
|
2786 netif_carrier_off(netdev); |
|
2787 netif_stop_queue(netdev); |
|
2788 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2789 } |
|
2790 |
|
2791 /* 80003ES2LAN workaround-- |
|
2792 * For packet buffer work-around on link down event; |
|
2793 * disable receives in the ISR and |
|
2794 * reset device here in the watchdog |
|
2795 */ |
|
2796 if (hw->mac_type == e1000_80003es2lan) |
|
2797 /* reset device */ |
|
2798 schedule_work(&adapter->reset_task); |
|
2799 } |
|
2800 |
|
2801 e1000_smartspeed(adapter); |
|
2802 } |
|
2803 |
|
2804 e1000_update_stats(adapter); |
|
2805 |
|
2806 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
|
2807 adapter->tpt_old = adapter->stats.tpt; |
|
2808 hw->collision_delta = adapter->stats.colc - adapter->colc_old; |
|
2809 adapter->colc_old = adapter->stats.colc; |
|
2810 |
|
2811 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; |
|
2812 adapter->gorcl_old = adapter->stats.gorcl; |
|
2813 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; |
|
2814 adapter->gotcl_old = adapter->stats.gotcl; |
|
2815 |
|
2816 e1000_update_adaptive(hw); |
|
2817 |
|
2818 if (!adapter->ecdev && !netif_carrier_ok(netdev)) { |
|
2819 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { |
|
2820 /* We've lost link, so the controller stops DMA, |
|
2821 * but we've got queued Tx work that's never going |
|
2822 * to get done, so reset controller to flush Tx. |
|
2823 * (Do the reset outside of interrupt context). */ |
|
2824 adapter->tx_timeout_count++; |
|
2825 schedule_work(&adapter->reset_task); |
|
2826 } |
|
2827 } |
|
2828 |
|
2829 /* Cause software interrupt to ensure rx ring is cleaned */ |
|
2830 ew32(ICS, E1000_ICS_RXDMT0); |
|
2831 |
|
2832 /* Force detection of hung controller every watchdog period */ |
|
2833 if (!adapter->ecdev) adapter->detect_tx_hung = true; |
|
2834 |
|
2835 /* With 82571 controllers, LAA may be overwritten due to controller |
|
2836 * reset from the other port. Set the appropriate LAA in RAR[0] */ |
|
2837 if (hw->mac_type == e1000_82571 && hw->laa_is_present) |
|
2838 e1000_rar_set(hw, hw->mac_addr, 0); |
|
2839 |
|
2840 /* Reset the timer */ |
|
2841 if (!adapter->ecdev) |
|
2842 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ)); |
|
2843 } |
|
2844 |
|
2845 enum latency_range { |
|
2846 lowest_latency = 0, |
|
2847 low_latency = 1, |
|
2848 bulk_latency = 2, |
|
2849 latency_invalid = 255 |
|
2850 }; |
|
2851 |
|
2852 /** |
|
2853 * e1000_update_itr - update the dynamic ITR value based on statistics |
|
2854 * Stores a new ITR value based on packets and byte |
|
2855 * counts during the last interrupt. The advantage of per interrupt |
|
2856 * computation is faster updates and more accurate ITR for the current |
|
2857 * traffic pattern. Constants in this function were computed |
|
2858 * based on theoretical maximum wire speed and thresholds were set based |
|
2859 * on testing data as well as attempting to minimize response time |
|
2860 * while increasing bulk throughput. |
|
2861 * this functionality is controlled by the InterruptThrottleRate module |
|
2862 * parameter (see e1000_param.c) |
|
2863 * @adapter: pointer to adapter |
|
2864 * @itr_setting: current adapter->itr |
|
2865 * @packets: the number of packets during this measurement interval |
|
2866 * @bytes: the number of bytes during this measurement interval |
|
2867 **/ |
|
2868 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
|
2869 u16 itr_setting, int packets, int bytes) |
|
2870 { |
|
2871 unsigned int retval = itr_setting; |
|
2872 struct e1000_hw *hw = &adapter->hw; |
|
2873 |
|
2874 if (unlikely(hw->mac_type < e1000_82540)) |
|
2875 goto update_itr_done; |
|
2876 |
|
2877 if (packets == 0) |
|
2878 goto update_itr_done; |
|
2879 |
|
2880 switch (itr_setting) { |
|
2881 case lowest_latency: |
|
2882 /* jumbo frames get bulk treatment*/ |
|
2883 if (bytes/packets > 8000) |
|
2884 retval = bulk_latency; |
|
2885 else if ((packets < 5) && (bytes > 512)) |
|
2886 retval = low_latency; |
|
2887 break; |
|
2888 case low_latency: /* 50 usec aka 20000 ints/s */ |
|
2889 if (bytes > 10000) { |
|
2890 /* jumbo frames need bulk latency setting */ |
|
2891 if (bytes/packets > 8000) |
|
2892 retval = bulk_latency; |
|
2893 else if ((packets < 10) || ((bytes/packets) > 1200)) |
|
2894 retval = bulk_latency; |
|
2895 else if ((packets > 35)) |
|
2896 retval = lowest_latency; |
|
2897 } else if (bytes/packets > 2000) |
|
2898 retval = bulk_latency; |
|
2899 else if (packets <= 2 && bytes < 512) |
|
2900 retval = lowest_latency; |
|
2901 break; |
|
2902 case bulk_latency: /* 250 usec aka 4000 ints/s */ |
|
2903 if (bytes > 25000) { |
|
2904 if (packets > 35) |
|
2905 retval = low_latency; |
|
2906 } else if (bytes < 6000) { |
|
2907 retval = low_latency; |
|
2908 } |
|
2909 break; |
|
2910 } |
|
2911 |
|
2912 update_itr_done: |
|
2913 return retval; |
|
2914 } |
|
2915 |
|
2916 static void e1000_set_itr(struct e1000_adapter *adapter) |
|
2917 { |
|
2918 struct e1000_hw *hw = &adapter->hw; |
|
2919 u16 current_itr; |
|
2920 u32 new_itr = adapter->itr; |
|
2921 |
|
2922 if (unlikely(hw->mac_type < e1000_82540)) |
|
2923 return; |
|
2924 |
|
2925 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
|
2926 if (unlikely(adapter->link_speed != SPEED_1000)) { |
|
2927 current_itr = 0; |
|
2928 new_itr = 4000; |
|
2929 goto set_itr_now; |
|
2930 } |
|
2931 |
|
2932 adapter->tx_itr = e1000_update_itr(adapter, |
|
2933 adapter->tx_itr, |
|
2934 adapter->total_tx_packets, |
|
2935 adapter->total_tx_bytes); |
|
2936 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2937 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
|
2938 adapter->tx_itr = low_latency; |
|
2939 |
|
2940 adapter->rx_itr = e1000_update_itr(adapter, |
|
2941 adapter->rx_itr, |
|
2942 adapter->total_rx_packets, |
|
2943 adapter->total_rx_bytes); |
|
2944 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2945 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
|
2946 adapter->rx_itr = low_latency; |
|
2947 |
|
2948 current_itr = max(adapter->rx_itr, adapter->tx_itr); |
|
2949 |
|
2950 switch (current_itr) { |
|
2951 /* counts and packets in update_itr are dependent on these numbers */ |
|
2952 case lowest_latency: |
|
2953 new_itr = 70000; |
|
2954 break; |
|
2955 case low_latency: |
|
2956 new_itr = 20000; /* aka hwitr = ~200 */ |
|
2957 break; |
|
2958 case bulk_latency: |
|
2959 new_itr = 4000; |
|
2960 break; |
|
2961 default: |
|
2962 break; |
|
2963 } |
|
2964 |
|
2965 set_itr_now: |
|
2966 if (new_itr != adapter->itr) { |
|
2967 /* this attempts to bias the interrupt rate towards Bulk |
|
2968 * by adding intermediate steps when interrupt rate is |
|
2969 * increasing */ |
|
2970 new_itr = new_itr > adapter->itr ? |
|
2971 min(adapter->itr + (new_itr >> 2), new_itr) : |
|
2972 new_itr; |
|
2973 adapter->itr = new_itr; |
|
2974 ew32(ITR, 1000000000 / (new_itr * 256)); |
|
2975 } |
|
2976 |
|
2977 return; |
|
2978 } |
|
2979 |
|
2980 #define E1000_TX_FLAGS_CSUM 0x00000001 |
|
2981 #define E1000_TX_FLAGS_VLAN 0x00000002 |
|
2982 #define E1000_TX_FLAGS_TSO 0x00000004 |
|
2983 #define E1000_TX_FLAGS_IPV4 0x00000008 |
|
2984 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
|
2985 #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
|
2986 |
|
2987 static int e1000_tso(struct e1000_adapter *adapter, |
|
2988 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2989 { |
|
2990 struct e1000_context_desc *context_desc; |
|
2991 struct e1000_buffer *buffer_info; |
|
2992 unsigned int i; |
|
2993 u32 cmd_length = 0; |
|
2994 u16 ipcse = 0, tucse, mss; |
|
2995 u8 ipcss, ipcso, tucss, tucso, hdr_len; |
|
2996 int err; |
|
2997 |
|
2998 if (skb_is_gso(skb)) { |
|
2999 if (skb_header_cloned(skb)) { |
|
3000 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
|
3001 if (err) |
|
3002 return err; |
|
3003 } |
|
3004 |
|
3005 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
3006 mss = skb_shinfo(skb)->gso_size; |
|
3007 if (skb->protocol == htons(ETH_P_IP)) { |
|
3008 struct iphdr *iph = ip_hdr(skb); |
|
3009 iph->tot_len = 0; |
|
3010 iph->check = 0; |
|
3011 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
|
3012 iph->daddr, 0, |
|
3013 IPPROTO_TCP, |
|
3014 0); |
|
3015 cmd_length = E1000_TXD_CMD_IP; |
|
3016 ipcse = skb_transport_offset(skb) - 1; |
|
3017 } else if (skb->protocol == htons(ETH_P_IPV6)) { |
|
3018 ipv6_hdr(skb)->payload_len = 0; |
|
3019 tcp_hdr(skb)->check = |
|
3020 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
|
3021 &ipv6_hdr(skb)->daddr, |
|
3022 0, IPPROTO_TCP, 0); |
|
3023 ipcse = 0; |
|
3024 } |
|
3025 ipcss = skb_network_offset(skb); |
|
3026 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
|
3027 tucss = skb_transport_offset(skb); |
|
3028 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
|
3029 tucse = 0; |
|
3030 |
|
3031 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
|
3032 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
|
3033 |
|
3034 i = tx_ring->next_to_use; |
|
3035 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
3036 buffer_info = &tx_ring->buffer_info[i]; |
|
3037 |
|
3038 context_desc->lower_setup.ip_fields.ipcss = ipcss; |
|
3039 context_desc->lower_setup.ip_fields.ipcso = ipcso; |
|
3040 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
|
3041 context_desc->upper_setup.tcp_fields.tucss = tucss; |
|
3042 context_desc->upper_setup.tcp_fields.tucso = tucso; |
|
3043 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
|
3044 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
|
3045 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
|
3046 context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
|
3047 |
|
3048 buffer_info->time_stamp = jiffies; |
|
3049 buffer_info->next_to_watch = i; |
|
3050 |
|
3051 if (++i == tx_ring->count) i = 0; |
|
3052 tx_ring->next_to_use = i; |
|
3053 |
|
3054 return true; |
|
3055 } |
|
3056 return false; |
|
3057 } |
|
3058 |
|
3059 static bool e1000_tx_csum(struct e1000_adapter *adapter, |
|
3060 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
3061 { |
|
3062 struct e1000_context_desc *context_desc; |
|
3063 struct e1000_buffer *buffer_info; |
|
3064 unsigned int i; |
|
3065 u8 css; |
|
3066 |
|
3067 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { |
|
3068 css = skb_transport_offset(skb); |
|
3069 |
|
3070 i = tx_ring->next_to_use; |
|
3071 buffer_info = &tx_ring->buffer_info[i]; |
|
3072 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
3073 |
|
3074 context_desc->lower_setup.ip_config = 0; |
|
3075 context_desc->upper_setup.tcp_fields.tucss = css; |
|
3076 context_desc->upper_setup.tcp_fields.tucso = |
|
3077 css + skb->csum_offset; |
|
3078 context_desc->upper_setup.tcp_fields.tucse = 0; |
|
3079 context_desc->tcp_seg_setup.data = 0; |
|
3080 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); |
|
3081 |
|
3082 buffer_info->time_stamp = jiffies; |
|
3083 buffer_info->next_to_watch = i; |
|
3084 |
|
3085 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3086 tx_ring->next_to_use = i; |
|
3087 |
|
3088 return true; |
|
3089 } |
|
3090 |
|
3091 return false; |
|
3092 } |
|
3093 |
|
3094 #define E1000_MAX_TXD_PWR 12 |
|
3095 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) |
|
3096 |
|
3097 static int e1000_tx_map(struct e1000_adapter *adapter, |
|
3098 struct e1000_tx_ring *tx_ring, |
|
3099 struct sk_buff *skb, unsigned int first, |
|
3100 unsigned int max_per_txd, unsigned int nr_frags, |
|
3101 unsigned int mss) |
|
3102 { |
|
3103 struct e1000_hw *hw = &adapter->hw; |
|
3104 struct e1000_buffer *buffer_info; |
|
3105 unsigned int len = skb->len; |
|
3106 unsigned int offset = 0, size, count = 0, i; |
|
3107 unsigned int f; |
|
3108 len -= skb->data_len; |
|
3109 |
|
3110 i = tx_ring->next_to_use; |
|
3111 |
|
3112 while (len) { |
|
3113 buffer_info = &tx_ring->buffer_info[i]; |
|
3114 size = min(len, max_per_txd); |
|
3115 /* Workaround for Controller erratum -- |
|
3116 * descriptor for non-tso packet in a linear SKB that follows a |
|
3117 * tso gets written back prematurely before the data is fully |
|
3118 * DMA'd to the controller */ |
|
3119 if (!skb->data_len && tx_ring->last_tx_tso && |
|
3120 !skb_is_gso(skb)) { |
|
3121 tx_ring->last_tx_tso = 0; |
|
3122 size -= 4; |
|
3123 } |
|
3124 |
|
3125 /* Workaround for premature desc write-backs |
|
3126 * in TSO mode. Append 4-byte sentinel desc */ |
|
3127 if (unlikely(mss && !nr_frags && size == len && size > 8)) |
|
3128 size -= 4; |
|
3129 /* work-around for errata 10 and it applies |
|
3130 * to all controllers in PCI-X mode |
|
3131 * The fix is to make sure that the first descriptor of a |
|
3132 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes |
|
3133 */ |
|
3134 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
3135 (size > 2015) && count == 0)) |
|
3136 size = 2015; |
|
3137 |
|
3138 /* Workaround for potential 82544 hang in PCI-X. Avoid |
|
3139 * terminating buffers within evenly-aligned dwords. */ |
|
3140 if (unlikely(adapter->pcix_82544 && |
|
3141 !((unsigned long)(skb->data + offset + size - 1) & 4) && |
|
3142 size > 4)) |
|
3143 size -= 4; |
|
3144 |
|
3145 buffer_info->length = size; |
|
3146 buffer_info->dma = |
|
3147 pci_map_single(adapter->pdev, |
|
3148 skb->data + offset, |
|
3149 size, |
|
3150 PCI_DMA_TODEVICE); |
|
3151 buffer_info->time_stamp = jiffies; |
|
3152 buffer_info->next_to_watch = i; |
|
3153 |
|
3154 len -= size; |
|
3155 offset += size; |
|
3156 count++; |
|
3157 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3158 } |
|
3159 |
|
3160 for (f = 0; f < nr_frags; f++) { |
|
3161 struct skb_frag_struct *frag; |
|
3162 |
|
3163 frag = &skb_shinfo(skb)->frags[f]; |
|
3164 len = frag->size; |
|
3165 offset = frag->page_offset; |
|
3166 |
|
3167 while (len) { |
|
3168 buffer_info = &tx_ring->buffer_info[i]; |
|
3169 size = min(len, max_per_txd); |
|
3170 /* Workaround for premature desc write-backs |
|
3171 * in TSO mode. Append 4-byte sentinel desc */ |
|
3172 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) |
|
3173 size -= 4; |
|
3174 /* Workaround for potential 82544 hang in PCI-X. |
|
3175 * Avoid terminating buffers within evenly-aligned |
|
3176 * dwords. */ |
|
3177 if (unlikely(adapter->pcix_82544 && |
|
3178 !((unsigned long)(frag->page+offset+size-1) & 4) && |
|
3179 size > 4)) |
|
3180 size -= 4; |
|
3181 |
|
3182 buffer_info->length = size; |
|
3183 buffer_info->dma = |
|
3184 pci_map_page(adapter->pdev, |
|
3185 frag->page, |
|
3186 offset, |
|
3187 size, |
|
3188 PCI_DMA_TODEVICE); |
|
3189 buffer_info->time_stamp = jiffies; |
|
3190 buffer_info->next_to_watch = i; |
|
3191 |
|
3192 len -= size; |
|
3193 offset += size; |
|
3194 count++; |
|
3195 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3196 } |
|
3197 } |
|
3198 |
|
3199 i = (i == 0) ? tx_ring->count - 1 : i - 1; |
|
3200 tx_ring->buffer_info[i].skb = skb; |
|
3201 tx_ring->buffer_info[first].next_to_watch = i; |
|
3202 |
|
3203 return count; |
|
3204 } |
|
3205 |
|
3206 static void e1000_tx_queue(struct e1000_adapter *adapter, |
|
3207 struct e1000_tx_ring *tx_ring, int tx_flags, |
|
3208 int count) |
|
3209 { |
|
3210 struct e1000_hw *hw = &adapter->hw; |
|
3211 struct e1000_tx_desc *tx_desc = NULL; |
|
3212 struct e1000_buffer *buffer_info; |
|
3213 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
|
3214 unsigned int i; |
|
3215 |
|
3216 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { |
|
3217 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
|
3218 E1000_TXD_CMD_TSE; |
|
3219 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
3220 |
|
3221 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) |
|
3222 txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
|
3223 } |
|
3224 |
|
3225 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { |
|
3226 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
|
3227 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
3228 } |
|
3229 |
|
3230 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { |
|
3231 txd_lower |= E1000_TXD_CMD_VLE; |
|
3232 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
|
3233 } |
|
3234 |
|
3235 i = tx_ring->next_to_use; |
|
3236 |
|
3237 while (count--) { |
|
3238 buffer_info = &tx_ring->buffer_info[i]; |
|
3239 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3240 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
3241 tx_desc->lower.data = |
|
3242 cpu_to_le32(txd_lower | buffer_info->length); |
|
3243 tx_desc->upper.data = cpu_to_le32(txd_upper); |
|
3244 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3245 } |
|
3246 |
|
3247 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
|
3248 |
|
3249 /* Force memory writes to complete before letting h/w |
|
3250 * know there are new descriptors to fetch. (Only |
|
3251 * applicable for weak-ordered memory model archs, |
|
3252 * such as IA-64). */ |
|
3253 wmb(); |
|
3254 |
|
3255 tx_ring->next_to_use = i; |
|
3256 writel(i, hw->hw_addr + tx_ring->tdt); |
|
3257 /* we need this if more than one processor can write to our tail |
|
3258 * at a time, it syncronizes IO on IA64/Altix systems */ |
|
3259 mmiowb(); |
|
3260 } |
|
3261 |
|
3262 /** |
|
3263 * 82547 workaround to avoid controller hang in half-duplex environment. |
|
3264 * The workaround is to avoid queuing a large packet that would span |
|
3265 * the internal Tx FIFO ring boundary by notifying the stack to resend |
|
3266 * the packet at a later time. This gives the Tx FIFO an opportunity to |
|
3267 * flush all packets. When that occurs, we reset the Tx FIFO pointers |
|
3268 * to the beginning of the Tx FIFO. |
|
3269 **/ |
|
3270 |
|
3271 #define E1000_FIFO_HDR 0x10 |
|
3272 #define E1000_82547_PAD_LEN 0x3E0 |
|
3273 |
|
3274 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
3275 struct sk_buff *skb) |
|
3276 { |
|
3277 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; |
|
3278 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; |
|
3279 |
|
3280 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); |
|
3281 |
|
3282 if (adapter->link_duplex != HALF_DUPLEX) |
|
3283 goto no_fifo_stall_required; |
|
3284 |
|
3285 if (atomic_read(&adapter->tx_fifo_stall)) |
|
3286 return 1; |
|
3287 |
|
3288 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { |
|
3289 atomic_set(&adapter->tx_fifo_stall, 1); |
|
3290 return 1; |
|
3291 } |
|
3292 |
|
3293 no_fifo_stall_required: |
|
3294 adapter->tx_fifo_head += skb_fifo_len; |
|
3295 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) |
|
3296 adapter->tx_fifo_head -= adapter->tx_fifo_size; |
|
3297 return 0; |
|
3298 } |
|
3299 |
|
3300 #define MINIMUM_DHCP_PACKET_SIZE 282 |
|
3301 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, |
|
3302 struct sk_buff *skb) |
|
3303 { |
|
3304 struct e1000_hw *hw = &adapter->hw; |
|
3305 u16 length, offset; |
|
3306 if (vlan_tx_tag_present(skb)) { |
|
3307 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) && |
|
3308 ( hw->mng_cookie.status & |
|
3309 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) |
|
3310 return 0; |
|
3311 } |
|
3312 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) { |
|
3313 struct ethhdr *eth = (struct ethhdr *)skb->data; |
|
3314 if ((htons(ETH_P_IP) == eth->h_proto)) { |
|
3315 const struct iphdr *ip = |
|
3316 (struct iphdr *)((u8 *)skb->data+14); |
|
3317 if (IPPROTO_UDP == ip->protocol) { |
|
3318 struct udphdr *udp = |
|
3319 (struct udphdr *)((u8 *)ip + |
|
3320 (ip->ihl << 2)); |
|
3321 if (ntohs(udp->dest) == 67) { |
|
3322 offset = (u8 *)udp + 8 - skb->data; |
|
3323 length = skb->len - offset; |
|
3324 |
|
3325 return e1000_mng_write_dhcp_info(hw, |
|
3326 (u8 *)udp + 8, |
|
3327 length); |
|
3328 } |
|
3329 } |
|
3330 } |
|
3331 } |
|
3332 return 0; |
|
3333 } |
|
3334 |
|
3335 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
3336 { |
|
3337 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3338 struct e1000_tx_ring *tx_ring = adapter->tx_ring; |
|
3339 |
|
3340 netif_stop_queue(netdev); |
|
3341 /* Herbert's original patch had: |
|
3342 * smp_mb__after_netif_stop_queue(); |
|
3343 * but since that doesn't exist yet, just open code it. */ |
|
3344 smp_mb(); |
|
3345 |
|
3346 /* We need to check again in a case another CPU has just |
|
3347 * made room available. */ |
|
3348 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) |
|
3349 return -EBUSY; |
|
3350 |
|
3351 /* A reprieve! */ |
|
3352 netif_start_queue(netdev); |
|
3353 ++adapter->restart_queue; |
|
3354 return 0; |
|
3355 } |
|
3356 |
|
3357 static int e1000_maybe_stop_tx(struct net_device *netdev, |
|
3358 struct e1000_tx_ring *tx_ring, int size) |
|
3359 { |
|
3360 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) |
|
3361 return 0; |
|
3362 return __e1000_maybe_stop_tx(netdev, size); |
|
3363 } |
|
3364 |
|
3365 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
|
3366 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
|
3367 { |
|
3368 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3369 struct e1000_hw *hw = &adapter->hw; |
|
3370 struct e1000_tx_ring *tx_ring; |
|
3371 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; |
|
3372 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
|
3373 unsigned int tx_flags = 0; |
|
3374 unsigned int len = skb->len - skb->data_len; |
|
3375 unsigned long flags = 0; |
|
3376 unsigned int nr_frags = 0; |
|
3377 unsigned int mss = 0; |
|
3378 int count = 0; |
|
3379 int tso; |
|
3380 unsigned int f; |
|
3381 |
|
3382 /* This goes back to the question of how to logically map a tx queue |
|
3383 * to a flow. Right now, performance is impacted slightly negatively |
|
3384 * if using multiple tx queues. If the stack breaks away from a |
|
3385 * single qdisc implementation, we can look at this again. */ |
|
3386 tx_ring = adapter->tx_ring; |
|
3387 |
|
3388 if (unlikely(skb->len <= 0)) { |
|
3389 if (!adapter->ecdev) |
|
3390 dev_kfree_skb_any(skb); |
|
3391 return NETDEV_TX_OK; |
|
3392 } |
|
3393 |
|
3394 /* 82571 and newer doesn't need the workaround that limited descriptor |
|
3395 * length to 4kB */ |
|
3396 if (hw->mac_type >= e1000_82571) |
|
3397 max_per_txd = 8192; |
|
3398 |
|
3399 mss = skb_shinfo(skb)->gso_size; |
|
3400 /* The controller does a simple calculation to |
|
3401 * make sure there is enough room in the FIFO before |
|
3402 * initiating the DMA for each buffer. The calc is: |
|
3403 * 4 = ceil(buffer len/mss). To make sure we don't |
|
3404 * overrun the FIFO, adjust the max buffer len if mss |
|
3405 * drops. */ |
|
3406 if (mss) { |
|
3407 u8 hdr_len; |
|
3408 max_per_txd = min(mss << 2, max_per_txd); |
|
3409 max_txd_pwr = fls(max_per_txd) - 1; |
|
3410 |
|
3411 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data |
|
3412 * points to just header, pull a few bytes of payload from |
|
3413 * frags into skb->data */ |
|
3414 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
3415 if (skb->data_len && hdr_len == len) { |
|
3416 switch (hw->mac_type) { |
|
3417 unsigned int pull_size; |
|
3418 case e1000_82544: |
|
3419 /* Make sure we have room to chop off 4 bytes, |
|
3420 * and that the end alignment will work out to |
|
3421 * this hardware's requirements |
|
3422 * NOTE: this is a TSO only workaround |
|
3423 * if end byte alignment not correct move us |
|
3424 * into the next dword */ |
|
3425 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) |
|
3426 break; |
|
3427 /* fall through */ |
|
3428 case e1000_82571: |
|
3429 case e1000_82572: |
|
3430 case e1000_82573: |
|
3431 case e1000_ich8lan: |
|
3432 pull_size = min((unsigned int)4, skb->data_len); |
|
3433 if (!__pskb_pull_tail(skb, pull_size)) { |
|
3434 DPRINTK(DRV, ERR, |
|
3435 "__pskb_pull_tail failed.\n"); |
|
3436 dev_kfree_skb_any(skb); |
|
3437 return NETDEV_TX_OK; |
|
3438 } |
|
3439 len = skb->len - skb->data_len; |
|
3440 break; |
|
3441 default: |
|
3442 /* do nothing */ |
|
3443 break; |
|
3444 } |
|
3445 } |
|
3446 } |
|
3447 |
|
3448 /* reserve a descriptor for the offload context */ |
|
3449 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
|
3450 count++; |
|
3451 count++; |
|
3452 |
|
3453 /* Controller Erratum workaround */ |
|
3454 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) |
|
3455 count++; |
|
3456 |
|
3457 count += TXD_USE_COUNT(len, max_txd_pwr); |
|
3458 |
|
3459 if (adapter->pcix_82544) |
|
3460 count++; |
|
3461 |
|
3462 /* work-around for errata 10 and it applies to all controllers |
|
3463 * in PCI-X mode, so add one more descriptor to the count |
|
3464 */ |
|
3465 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
3466 (len > 2015))) |
|
3467 count++; |
|
3468 |
|
3469 nr_frags = skb_shinfo(skb)->nr_frags; |
|
3470 for (f = 0; f < nr_frags; f++) |
|
3471 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
|
3472 max_txd_pwr); |
|
3473 if (adapter->pcix_82544) |
|
3474 count += nr_frags; |
|
3475 |
|
3476 |
|
3477 if (hw->tx_pkt_filtering && |
|
3478 (hw->mac_type == e1000_82573)) |
|
3479 e1000_transfer_dhcp_info(adapter, skb); |
|
3480 |
|
3481 if (!adapter->ecdev && |
|
3482 !spin_trylock_irqsave(&tx_ring->tx_lock, flags)) |
|
3483 /* Collision - tell upper layer to requeue */ |
|
3484 return NETDEV_TX_LOCKED; |
|
3485 |
|
3486 /* need: count + 2 desc gap to keep tail from touching |
|
3487 * head, otherwise try next time */ |
|
3488 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) { |
|
3489 if (!adapter->ecdev) { |
|
3490 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3491 } |
|
3492 return NETDEV_TX_BUSY; |
|
3493 } |
|
3494 |
|
3495 if (unlikely(hw->mac_type == e1000_82547)) { |
|
3496 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { |
|
3497 if (!adapter->ecdev) { |
|
3498 netif_stop_queue(netdev); |
|
3499 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); |
|
3500 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3501 } |
|
3502 return NETDEV_TX_BUSY; |
|
3503 } |
|
3504 } |
|
3505 |
|
3506 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { |
|
3507 tx_flags |= E1000_TX_FLAGS_VLAN; |
|
3508 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
|
3509 } |
|
3510 |
|
3511 first = tx_ring->next_to_use; |
|
3512 |
|
3513 tso = e1000_tso(adapter, tx_ring, skb); |
|
3514 if (tso < 0) { |
|
3515 if (!adapter->ecdev) { |
|
3516 dev_kfree_skb_any(skb); |
|
3517 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3518 } |
|
3519 return NETDEV_TX_OK; |
|
3520 } |
|
3521 |
|
3522 if (likely(tso)) { |
|
3523 tx_ring->last_tx_tso = 1; |
|
3524 tx_flags |= E1000_TX_FLAGS_TSO; |
|
3525 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) |
|
3526 tx_flags |= E1000_TX_FLAGS_CSUM; |
|
3527 |
|
3528 /* Old method was to assume IPv4 packet by default if TSO was enabled. |
|
3529 * 82571 hardware supports TSO capabilities for IPv6 as well... |
|
3530 * no longer assume, we must. */ |
|
3531 if (likely(skb->protocol == htons(ETH_P_IP))) |
|
3532 tx_flags |= E1000_TX_FLAGS_IPV4; |
|
3533 |
|
3534 e1000_tx_queue(adapter, tx_ring, tx_flags, |
|
3535 e1000_tx_map(adapter, tx_ring, skb, first, |
|
3536 max_per_txd, nr_frags, mss)); |
|
3537 |
|
3538 netdev->trans_start = jiffies; |
|
3539 |
|
3540 if (!adapter->ecdev) { |
|
3541 /* Make sure there is space in the ring for the next send. */ |
|
3542 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); |
|
3543 |
|
3544 spin_unlock_irqrestore(&tx_ring->tx_lock, flags); |
|
3545 } |
|
3546 return NETDEV_TX_OK; |
|
3547 } |
|
3548 |
|
3549 /** |
|
3550 * e1000_tx_timeout - Respond to a Tx Hang |
|
3551 * @netdev: network interface device structure |
|
3552 **/ |
|
3553 |
|
3554 static void e1000_tx_timeout(struct net_device *netdev) |
|
3555 { |
|
3556 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3557 |
|
3558 /* Do the reset outside of interrupt context */ |
|
3559 adapter->tx_timeout_count++; |
|
3560 schedule_work(&adapter->reset_task); |
|
3561 } |
|
3562 |
|
3563 static void e1000_reset_task(struct work_struct *work) |
|
3564 { |
|
3565 struct e1000_adapter *adapter = |
|
3566 container_of(work, struct e1000_adapter, reset_task); |
|
3567 |
|
3568 e1000_reinit_locked(adapter); |
|
3569 } |
|
3570 |
|
3571 /** |
|
3572 * e1000_get_stats - Get System Network Statistics |
|
3573 * @netdev: network interface device structure |
|
3574 * |
|
3575 * Returns the address of the device statistics structure. |
|
3576 * The statistics are actually updated from the timer callback. |
|
3577 **/ |
|
3578 |
|
3579 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
|
3580 { |
|
3581 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3582 |
|
3583 /* only return the current stats */ |
|
3584 return &adapter->net_stats; |
|
3585 } |
|
3586 |
|
3587 /** |
|
3588 * e1000_change_mtu - Change the Maximum Transfer Unit |
|
3589 * @netdev: network interface device structure |
|
3590 * @new_mtu: new value for maximum frame size |
|
3591 * |
|
3592 * Returns 0 on success, negative on failure |
|
3593 **/ |
|
3594 |
|
3595 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
|
3596 { |
|
3597 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3598 struct e1000_hw *hw = &adapter->hw; |
|
3599 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
3600 u16 eeprom_data = 0; |
|
3601 |
|
3602 if (adapter->ecdev) |
|
3603 return -EBUSY; |
|
3604 |
|
3605 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || |
|
3606 (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
|
3607 DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); |
|
3608 return -EINVAL; |
|
3609 } |
|
3610 |
|
3611 /* Adapter-specific max frame size limits. */ |
|
3612 switch (hw->mac_type) { |
|
3613 case e1000_undefined ... e1000_82542_rev2_1: |
|
3614 case e1000_ich8lan: |
|
3615 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
3616 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); |
|
3617 return -EINVAL; |
|
3618 } |
|
3619 break; |
|
3620 case e1000_82573: |
|
3621 /* Jumbo Frames not supported if: |
|
3622 * - this is not an 82573L device |
|
3623 * - ASPM is enabled in any way (0x1A bits 3:2) */ |
|
3624 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1, |
|
3625 &eeprom_data); |
|
3626 if ((hw->device_id != E1000_DEV_ID_82573L) || |
|
3627 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) { |
|
3628 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
|
3629 DPRINTK(PROBE, ERR, |
|
3630 "Jumbo Frames not supported.\n"); |
|
3631 return -EINVAL; |
|
3632 } |
|
3633 break; |
|
3634 } |
|
3635 /* ERT will be enabled later to enable wire speed receives */ |
|
3636 |
|
3637 /* fall through to get support */ |
|
3638 case e1000_82571: |
|
3639 case e1000_82572: |
|
3640 case e1000_80003es2lan: |
|
3641 #define MAX_STD_JUMBO_FRAME_SIZE 9234 |
|
3642 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { |
|
3643 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n"); |
|
3644 return -EINVAL; |
|
3645 } |
|
3646 break; |
|
3647 default: |
|
3648 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ |
|
3649 break; |
|
3650 } |
|
3651 |
|
3652 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
|
3653 * means we reserve 2 more, this pushes us to allocate from the next |
|
3654 * larger slab size |
|
3655 * i.e. RXBUFFER_2048 --> size-4096 slab */ |
|
3656 |
|
3657 if (max_frame <= E1000_RXBUFFER_256) |
|
3658 adapter->rx_buffer_len = E1000_RXBUFFER_256; |
|
3659 else if (max_frame <= E1000_RXBUFFER_512) |
|
3660 adapter->rx_buffer_len = E1000_RXBUFFER_512; |
|
3661 else if (max_frame <= E1000_RXBUFFER_1024) |
|
3662 adapter->rx_buffer_len = E1000_RXBUFFER_1024; |
|
3663 else if (max_frame <= E1000_RXBUFFER_2048) |
|
3664 adapter->rx_buffer_len = E1000_RXBUFFER_2048; |
|
3665 else if (max_frame <= E1000_RXBUFFER_4096) |
|
3666 adapter->rx_buffer_len = E1000_RXBUFFER_4096; |
|
3667 else if (max_frame <= E1000_RXBUFFER_8192) |
|
3668 adapter->rx_buffer_len = E1000_RXBUFFER_8192; |
|
3669 else if (max_frame <= E1000_RXBUFFER_16384) |
|
3670 adapter->rx_buffer_len = E1000_RXBUFFER_16384; |
|
3671 |
|
3672 /* adjust allocation if LPE protects us, and we aren't using SBP */ |
|
3673 if (!hw->tbi_compatibility_on && |
|
3674 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || |
|
3675 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) |
|
3676 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
3677 |
|
3678 netdev->mtu = new_mtu; |
|
3679 hw->max_frame_size = max_frame; |
|
3680 |
|
3681 if (netif_running(netdev)) |
|
3682 e1000_reinit_locked(adapter); |
|
3683 |
|
3684 return 0; |
|
3685 } |
|
3686 |
|
3687 /** |
|
3688 * e1000_update_stats - Update the board statistics counters |
|
3689 * @adapter: board private structure |
|
3690 **/ |
|
3691 |
|
3692 void e1000_update_stats(struct e1000_adapter *adapter) |
|
3693 { |
|
3694 struct e1000_hw *hw = &adapter->hw; |
|
3695 struct pci_dev *pdev = adapter->pdev; |
|
3696 unsigned long flags = 0; |
|
3697 u16 phy_tmp; |
|
3698 |
|
3699 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
|
3700 |
|
3701 /* |
|
3702 * Prevent stats update while adapter is being reset, or if the pci |
|
3703 * connection is down. |
|
3704 */ |
|
3705 if (adapter->link_speed == 0) |
|
3706 return; |
|
3707 if (pci_channel_offline(pdev)) |
|
3708 return; |
|
3709 |
|
3710 if (!adapter->ecdev) |
|
3711 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
3712 |
|
3713 /* these counters are modified from e1000_tbi_adjust_stats, |
|
3714 * called from the interrupt context, so they must only |
|
3715 * be written while holding adapter->stats_lock |
|
3716 */ |
|
3717 |
|
3718 adapter->stats.crcerrs += er32(CRCERRS); |
|
3719 adapter->stats.gprc += er32(GPRC); |
|
3720 adapter->stats.gorcl += er32(GORCL); |
|
3721 adapter->stats.gorch += er32(GORCH); |
|
3722 adapter->stats.bprc += er32(BPRC); |
|
3723 adapter->stats.mprc += er32(MPRC); |
|
3724 adapter->stats.roc += er32(ROC); |
|
3725 |
|
3726 if (hw->mac_type != e1000_ich8lan) { |
|
3727 adapter->stats.prc64 += er32(PRC64); |
|
3728 adapter->stats.prc127 += er32(PRC127); |
|
3729 adapter->stats.prc255 += er32(PRC255); |
|
3730 adapter->stats.prc511 += er32(PRC511); |
|
3731 adapter->stats.prc1023 += er32(PRC1023); |
|
3732 adapter->stats.prc1522 += er32(PRC1522); |
|
3733 } |
|
3734 |
|
3735 adapter->stats.symerrs += er32(SYMERRS); |
|
3736 adapter->stats.mpc += er32(MPC); |
|
3737 adapter->stats.scc += er32(SCC); |
|
3738 adapter->stats.ecol += er32(ECOL); |
|
3739 adapter->stats.mcc += er32(MCC); |
|
3740 adapter->stats.latecol += er32(LATECOL); |
|
3741 adapter->stats.dc += er32(DC); |
|
3742 adapter->stats.sec += er32(SEC); |
|
3743 adapter->stats.rlec += er32(RLEC); |
|
3744 adapter->stats.xonrxc += er32(XONRXC); |
|
3745 adapter->stats.xontxc += er32(XONTXC); |
|
3746 adapter->stats.xoffrxc += er32(XOFFRXC); |
|
3747 adapter->stats.xofftxc += er32(XOFFTXC); |
|
3748 adapter->stats.fcruc += er32(FCRUC); |
|
3749 adapter->stats.gptc += er32(GPTC); |
|
3750 adapter->stats.gotcl += er32(GOTCL); |
|
3751 adapter->stats.gotch += er32(GOTCH); |
|
3752 adapter->stats.rnbc += er32(RNBC); |
|
3753 adapter->stats.ruc += er32(RUC); |
|
3754 adapter->stats.rfc += er32(RFC); |
|
3755 adapter->stats.rjc += er32(RJC); |
|
3756 adapter->stats.torl += er32(TORL); |
|
3757 adapter->stats.torh += er32(TORH); |
|
3758 adapter->stats.totl += er32(TOTL); |
|
3759 adapter->stats.toth += er32(TOTH); |
|
3760 adapter->stats.tpr += er32(TPR); |
|
3761 |
|
3762 if (hw->mac_type != e1000_ich8lan) { |
|
3763 adapter->stats.ptc64 += er32(PTC64); |
|
3764 adapter->stats.ptc127 += er32(PTC127); |
|
3765 adapter->stats.ptc255 += er32(PTC255); |
|
3766 adapter->stats.ptc511 += er32(PTC511); |
|
3767 adapter->stats.ptc1023 += er32(PTC1023); |
|
3768 adapter->stats.ptc1522 += er32(PTC1522); |
|
3769 } |
|
3770 |
|
3771 adapter->stats.mptc += er32(MPTC); |
|
3772 adapter->stats.bptc += er32(BPTC); |
|
3773 |
|
3774 /* used for adaptive IFS */ |
|
3775 |
|
3776 hw->tx_packet_delta = er32(TPT); |
|
3777 adapter->stats.tpt += hw->tx_packet_delta; |
|
3778 hw->collision_delta = er32(COLC); |
|
3779 adapter->stats.colc += hw->collision_delta; |
|
3780 |
|
3781 if (hw->mac_type >= e1000_82543) { |
|
3782 adapter->stats.algnerrc += er32(ALGNERRC); |
|
3783 adapter->stats.rxerrc += er32(RXERRC); |
|
3784 adapter->stats.tncrs += er32(TNCRS); |
|
3785 adapter->stats.cexterr += er32(CEXTERR); |
|
3786 adapter->stats.tsctc += er32(TSCTC); |
|
3787 adapter->stats.tsctfc += er32(TSCTFC); |
|
3788 } |
|
3789 if (hw->mac_type > e1000_82547_rev_2) { |
|
3790 adapter->stats.iac += er32(IAC); |
|
3791 adapter->stats.icrxoc += er32(ICRXOC); |
|
3792 |
|
3793 if (hw->mac_type != e1000_ich8lan) { |
|
3794 adapter->stats.icrxptc += er32(ICRXPTC); |
|
3795 adapter->stats.icrxatc += er32(ICRXATC); |
|
3796 adapter->stats.ictxptc += er32(ICTXPTC); |
|
3797 adapter->stats.ictxatc += er32(ICTXATC); |
|
3798 adapter->stats.ictxqec += er32(ICTXQEC); |
|
3799 adapter->stats.ictxqmtc += er32(ICTXQMTC); |
|
3800 adapter->stats.icrxdmtc += er32(ICRXDMTC); |
|
3801 } |
|
3802 } |
|
3803 |
|
3804 /* Fill out the OS statistics structure */ |
|
3805 adapter->net_stats.multicast = adapter->stats.mprc; |
|
3806 adapter->net_stats.collisions = adapter->stats.colc; |
|
3807 |
|
3808 /* Rx Errors */ |
|
3809 |
|
3810 /* RLEC on some newer hardware can be incorrect so build |
|
3811 * our own version based on RUC and ROC */ |
|
3812 adapter->net_stats.rx_errors = adapter->stats.rxerrc + |
|
3813 adapter->stats.crcerrs + adapter->stats.algnerrc + |
|
3814 adapter->stats.ruc + adapter->stats.roc + |
|
3815 adapter->stats.cexterr; |
|
3816 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; |
|
3817 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc; |
|
3818 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; |
|
3819 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; |
|
3820 adapter->net_stats.rx_missed_errors = adapter->stats.mpc; |
|
3821 |
|
3822 /* Tx Errors */ |
|
3823 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; |
|
3824 adapter->net_stats.tx_errors = adapter->stats.txerrc; |
|
3825 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; |
|
3826 adapter->net_stats.tx_window_errors = adapter->stats.latecol; |
|
3827 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; |
|
3828 if (hw->bad_tx_carr_stats_fd && |
|
3829 adapter->link_duplex == FULL_DUPLEX) { |
|
3830 adapter->net_stats.tx_carrier_errors = 0; |
|
3831 adapter->stats.tncrs = 0; |
|
3832 } |
|
3833 |
|
3834 /* Tx Dropped needs to be maintained elsewhere */ |
|
3835 |
|
3836 /* Phy Stats */ |
|
3837 if (hw->media_type == e1000_media_type_copper) { |
|
3838 if ((adapter->link_speed == SPEED_1000) && |
|
3839 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { |
|
3840 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
|
3841 adapter->phy_stats.idle_errors += phy_tmp; |
|
3842 } |
|
3843 |
|
3844 if ((hw->mac_type <= e1000_82546) && |
|
3845 (hw->phy_type == e1000_phy_m88) && |
|
3846 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) |
|
3847 adapter->phy_stats.receive_errors += phy_tmp; |
|
3848 } |
|
3849 |
|
3850 /* Management Stats */ |
|
3851 if (hw->has_smbus) { |
|
3852 adapter->stats.mgptc += er32(MGTPTC); |
|
3853 adapter->stats.mgprc += er32(MGTPRC); |
|
3854 adapter->stats.mgpdc += er32(MGTPDC); |
|
3855 } |
|
3856 |
|
3857 if (!adapter->ecdev) |
|
3858 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
3859 } |
|
3860 |
|
3861 void ec_poll(struct net_device *netdev) |
|
3862 { |
|
3863 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3864 |
|
3865 if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) { |
|
3866 e1000_watchdog((unsigned long) adapter); |
|
3867 adapter->ec_watchdog_jiffies = jiffies; |
|
3868 } |
|
3869 |
|
3870 #ifdef CONFIG_PCI_MSI |
|
3871 e1000_intr_msi(0, netdev); |
|
3872 #else |
|
3873 e1000_intr(0, netdev); |
|
3874 #endif |
|
3875 } |
|
3876 |
|
3877 /** |
|
3878 * e1000_intr_msi - Interrupt Handler |
|
3879 * @irq: interrupt number |
|
3880 * @data: pointer to a network interface device structure |
|
3881 **/ |
|
3882 |
|
3883 static irqreturn_t e1000_intr_msi(int irq, void *data) |
|
3884 { |
|
3885 struct net_device *netdev = data; |
|
3886 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3887 struct e1000_hw *hw = &adapter->hw; |
|
3888 u32 icr = er32(ICR); |
|
3889 |
|
3890 if (adapter->ecdev) { |
|
3891 int i, ec_work_done = 0; |
|
3892 for (i = 0; i < E1000_MAX_INTR; i++) { |
|
3893 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring, |
|
3894 &ec_work_done, 100) & |
|
3895 !e1000_clean_tx_irq(adapter, adapter->tx_ring))) { |
|
3896 break; |
|
3897 } |
|
3898 } |
|
3899 } else { |
|
3900 /* in NAPI mode read ICR disables interrupts using IAM */ |
|
3901 |
|
3902 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
|
3903 hw->get_link_status = 1; |
|
3904 /* 80003ES2LAN workaround-- For packet buffer work-around on |
|
3905 * link down event; disable receives here in the ISR and reset |
|
3906 * adapter in watchdog */ |
|
3907 if (netif_carrier_ok(netdev) && |
|
3908 (hw->mac_type == e1000_80003es2lan)) { |
|
3909 /* disable receives */ |
|
3910 u32 rctl = er32(RCTL); |
|
3911 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
3912 } |
|
3913 /* guard against interrupt when we're going down */ |
|
3914 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3915 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
3916 } |
|
3917 |
|
3918 if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) { |
|
3919 adapter->total_tx_bytes = 0; |
|
3920 adapter->total_tx_packets = 0; |
|
3921 adapter->total_rx_bytes = 0; |
|
3922 adapter->total_rx_packets = 0; |
|
3923 __netif_rx_schedule(netdev, &adapter->napi); |
|
3924 } else |
|
3925 e1000_irq_enable(adapter); |
|
3926 } |
|
3927 |
|
3928 return IRQ_HANDLED; |
|
3929 } |
|
3930 |
|
3931 /** |
|
3932 * e1000_intr - Interrupt Handler |
|
3933 * @irq: interrupt number |
|
3934 * @data: pointer to a network interface device structure |
|
3935 **/ |
|
3936 |
|
3937 static irqreturn_t e1000_intr(int irq, void *data) |
|
3938 { |
|
3939 struct net_device *netdev = data; |
|
3940 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3941 struct e1000_hw *hw = &adapter->hw; |
|
3942 u32 rctl, icr = er32(ICR); |
|
3943 |
|
3944 if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags))) |
|
3945 return IRQ_NONE; /* Not our interrupt */ |
|
3946 |
|
3947 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
|
3948 * not set, then the adapter didn't send an interrupt */ |
|
3949 if (unlikely(hw->mac_type >= e1000_82571 && |
|
3950 !(icr & E1000_ICR_INT_ASSERTED))) |
|
3951 return IRQ_NONE; |
|
3952 |
|
3953 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No |
|
3954 * need for the IMC write */ |
|
3955 |
|
3956 if (!adapter->ecdev && unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { |
|
3957 hw->get_link_status = 1; |
|
3958 /* 80003ES2LAN workaround-- |
|
3959 * For packet buffer work-around on link down event; |
|
3960 * disable receives here in the ISR and |
|
3961 * reset adapter in watchdog |
|
3962 */ |
|
3963 if (netif_carrier_ok(netdev) && |
|
3964 (hw->mac_type == e1000_80003es2lan)) { |
|
3965 /* disable receives */ |
|
3966 rctl = er32(RCTL); |
|
3967 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
3968 } |
|
3969 /* guard against interrupt when we're going down */ |
|
3970 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3971 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
3972 } |
|
3973 |
|
3974 if (adapter->ecdev) { |
|
3975 int i, ec_work_done = 0; |
|
3976 for (i = 0; i < E1000_MAX_INTR; i++) { |
|
3977 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring, |
|
3978 &ec_work_done, 100) & |
|
3979 !e1000_clean_tx_irq(adapter, adapter->tx_ring))) { |
|
3980 break; |
|
3981 } |
|
3982 } |
|
3983 } else { |
|
3984 if (unlikely(hw->mac_type < e1000_82571)) { |
|
3985 /* disable interrupts, without the synchronize_irq bit */ |
|
3986 ew32(IMC, ~0); |
|
3987 E1000_WRITE_FLUSH(); |
|
3988 } |
|
3989 if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) { |
|
3990 adapter->total_tx_bytes = 0; |
|
3991 adapter->total_tx_packets = 0; |
|
3992 adapter->total_rx_bytes = 0; |
|
3993 adapter->total_rx_packets = 0; |
|
3994 __netif_rx_schedule(netdev, &adapter->napi); |
|
3995 } else |
|
3996 /* this really should not happen! if it does it is basically a |
|
3997 * bug, but not a hard error, so enable ints and continue */ |
|
3998 e1000_irq_enable(adapter); |
|
3999 } |
|
4000 |
|
4001 return IRQ_HANDLED; |
|
4002 } |
|
4003 |
|
4004 /** |
|
4005 * e1000_clean - NAPI Rx polling callback |
|
4006 * @adapter: board private structure |
|
4007 * EtherCAT: never called |
|
4008 **/ |
|
4009 static int e1000_clean(struct napi_struct *napi, int budget) |
|
4010 { |
|
4011 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); |
|
4012 struct net_device *poll_dev = adapter->netdev; |
|
4013 int tx_cleaned = 0, work_done = 0; |
|
4014 |
|
4015 /* Must NOT use netdev_priv macro here. */ |
|
4016 adapter = poll_dev->priv; |
|
4017 |
|
4018 /* e1000_clean is called per-cpu. This lock protects |
|
4019 * tx_ring[0] from being cleaned by multiple cpus |
|
4020 * simultaneously. A failure obtaining the lock means |
|
4021 * tx_ring[0] is currently being cleaned anyway. */ |
|
4022 if (spin_trylock(&adapter->tx_queue_lock)) { |
|
4023 tx_cleaned = e1000_clean_tx_irq(adapter, |
|
4024 &adapter->tx_ring[0]); |
|
4025 spin_unlock(&adapter->tx_queue_lock); |
|
4026 } |
|
4027 |
|
4028 adapter->clean_rx(adapter, &adapter->rx_ring[0], |
|
4029 &work_done, budget); |
|
4030 |
|
4031 if (tx_cleaned) |
|
4032 work_done = budget; |
|
4033 |
|
4034 /* If budget not fully consumed, exit the polling mode */ |
|
4035 if (work_done < budget) { |
|
4036 if (likely(adapter->itr_setting & 3)) |
|
4037 e1000_set_itr(adapter); |
|
4038 netif_rx_complete(poll_dev, napi); |
|
4039 e1000_irq_enable(adapter); |
|
4040 } |
|
4041 |
|
4042 return work_done; |
|
4043 } |
|
4044 |
|
4045 /** |
|
4046 * e1000_clean_tx_irq - Reclaim resources after transmit completes |
|
4047 * @adapter: board private structure |
|
4048 **/ |
|
4049 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
4050 struct e1000_tx_ring *tx_ring) |
|
4051 { |
|
4052 struct e1000_hw *hw = &adapter->hw; |
|
4053 struct net_device *netdev = adapter->netdev; |
|
4054 struct e1000_tx_desc *tx_desc, *eop_desc; |
|
4055 struct e1000_buffer *buffer_info; |
|
4056 unsigned int i, eop; |
|
4057 unsigned int count = 0; |
|
4058 bool cleaned = false; |
|
4059 unsigned int total_tx_bytes=0, total_tx_packets=0; |
|
4060 |
|
4061 i = tx_ring->next_to_clean; |
|
4062 eop = tx_ring->buffer_info[i].next_to_watch; |
|
4063 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
4064 |
|
4065 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { |
|
4066 for (cleaned = false; !cleaned; ) { |
|
4067 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
4068 buffer_info = &tx_ring->buffer_info[i]; |
|
4069 cleaned = (i == eop); |
|
4070 |
|
4071 if (cleaned) { |
|
4072 struct sk_buff *skb = buffer_info->skb; |
|
4073 unsigned int segs, bytecount; |
|
4074 segs = skb_shinfo(skb)->gso_segs ?: 1; |
|
4075 /* multiply data chunks by size of headers */ |
|
4076 bytecount = ((segs - 1) * skb_headlen(skb)) + |
|
4077 skb->len; |
|
4078 total_tx_packets += segs; |
|
4079 total_tx_bytes += bytecount; |
|
4080 } |
|
4081 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
4082 tx_desc->upper.data = 0; |
|
4083 |
|
4084 if (unlikely(++i == tx_ring->count)) i = 0; |
|
4085 } |
|
4086 |
|
4087 eop = tx_ring->buffer_info[i].next_to_watch; |
|
4088 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
4089 #define E1000_TX_WEIGHT 64 |
|
4090 /* weight of a sort for tx, to avoid endless transmit cleanup */ |
|
4091 if (count++ == E1000_TX_WEIGHT) |
|
4092 break; |
|
4093 } |
|
4094 |
|
4095 tx_ring->next_to_clean = i; |
|
4096 |
|
4097 #define TX_WAKE_THRESHOLD 32 |
|
4098 if (!adapter->ecdev && unlikely(cleaned && netif_carrier_ok(netdev) && |
|
4099 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { |
|
4100 /* Make sure that anybody stopping the queue after this |
|
4101 * sees the new next_to_clean. |
|
4102 */ |
|
4103 smp_mb(); |
|
4104 if (netif_queue_stopped(netdev)) { |
|
4105 netif_wake_queue(netdev); |
|
4106 ++adapter->restart_queue; |
|
4107 } |
|
4108 } |
|
4109 |
|
4110 if (!adapter->ecdev && adapter->detect_tx_hung) { |
|
4111 /* Detect a transmit hang in hardware, this serializes the |
|
4112 * check with the clearing of time_stamp and movement of i */ |
|
4113 adapter->detect_tx_hung = false; |
|
4114 if (tx_ring->buffer_info[eop].dma && |
|
4115 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + |
|
4116 (adapter->tx_timeout_factor * HZ)) |
|
4117 && !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
|
4118 |
|
4119 /* detected Tx unit hang */ |
|
4120 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" |
|
4121 " Tx Queue <%lu>\n" |
|
4122 " TDH <%x>\n" |
|
4123 " TDT <%x>\n" |
|
4124 " next_to_use <%x>\n" |
|
4125 " next_to_clean <%x>\n" |
|
4126 "buffer_info[next_to_clean]\n" |
|
4127 " time_stamp <%lx>\n" |
|
4128 " next_to_watch <%x>\n" |
|
4129 " jiffies <%lx>\n" |
|
4130 " next_to_watch.status <%x>\n", |
|
4131 (unsigned long)((tx_ring - adapter->tx_ring) / |
|
4132 sizeof(struct e1000_tx_ring)), |
|
4133 readl(hw->hw_addr + tx_ring->tdh), |
|
4134 readl(hw->hw_addr + tx_ring->tdt), |
|
4135 tx_ring->next_to_use, |
|
4136 tx_ring->next_to_clean, |
|
4137 tx_ring->buffer_info[eop].time_stamp, |
|
4138 eop, |
|
4139 jiffies, |
|
4140 eop_desc->upper.fields.status); |
|
4141 netif_stop_queue(netdev); |
|
4142 } |
|
4143 } |
|
4144 adapter->total_tx_bytes += total_tx_bytes; |
|
4145 adapter->total_tx_packets += total_tx_packets; |
|
4146 adapter->net_stats.tx_bytes += total_tx_bytes; |
|
4147 adapter->net_stats.tx_packets += total_tx_packets; |
|
4148 return cleaned; |
|
4149 } |
|
4150 |
|
4151 /** |
|
4152 * e1000_rx_checksum - Receive Checksum Offload for 82543 |
|
4153 * @adapter: board private structure |
|
4154 * @status_err: receive descriptor status and error fields |
|
4155 * @csum: receive descriptor csum field |
|
4156 * @sk_buff: socket buffer with received data |
|
4157 **/ |
|
4158 |
|
4159 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
|
4160 u32 csum, struct sk_buff *skb) |
|
4161 { |
|
4162 struct e1000_hw *hw = &adapter->hw; |
|
4163 u16 status = (u16)status_err; |
|
4164 u8 errors = (u8)(status_err >> 24); |
|
4165 skb->ip_summed = CHECKSUM_NONE; |
|
4166 |
|
4167 /* 82543 or newer only */ |
|
4168 if (unlikely(hw->mac_type < e1000_82543)) return; |
|
4169 /* Ignore Checksum bit is set */ |
|
4170 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; |
|
4171 /* TCP/UDP checksum error bit is set */ |
|
4172 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { |
|
4173 /* let the stack verify checksum errors */ |
|
4174 adapter->hw_csum_err++; |
|
4175 return; |
|
4176 } |
|
4177 /* TCP/UDP Checksum has not been calculated */ |
|
4178 if (hw->mac_type <= e1000_82547_rev_2) { |
|
4179 if (!(status & E1000_RXD_STAT_TCPCS)) |
|
4180 return; |
|
4181 } else { |
|
4182 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) |
|
4183 return; |
|
4184 } |
|
4185 /* It must be a TCP or UDP packet with a valid checksum */ |
|
4186 if (likely(status & E1000_RXD_STAT_TCPCS)) { |
|
4187 /* TCP checksum is good */ |
|
4188 skb->ip_summed = CHECKSUM_UNNECESSARY; |
|
4189 } else if (hw->mac_type > e1000_82547_rev_2) { |
|
4190 /* IP fragment with UDP payload */ |
|
4191 /* Hardware complements the payload checksum, so we undo it |
|
4192 * and then put the value in host order for further stack use. |
|
4193 */ |
|
4194 __sum16 sum = (__force __sum16)htons(csum); |
|
4195 skb->csum = csum_unfold(~sum); |
|
4196 skb->ip_summed = CHECKSUM_COMPLETE; |
|
4197 } |
|
4198 adapter->hw_csum_good++; |
|
4199 } |
|
4200 |
|
4201 /** |
|
4202 * e1000_clean_rx_irq - Send received data up the network stack; legacy |
|
4203 * @adapter: board private structure |
|
4204 **/ |
|
4205 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
4206 struct e1000_rx_ring *rx_ring, |
|
4207 int *work_done, int work_to_do) |
|
4208 { |
|
4209 struct e1000_hw *hw = &adapter->hw; |
|
4210 struct net_device *netdev = adapter->netdev; |
|
4211 struct pci_dev *pdev = adapter->pdev; |
|
4212 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
4213 struct e1000_buffer *buffer_info, *next_buffer; |
|
4214 unsigned long flags; |
|
4215 u32 length; |
|
4216 u8 last_byte; |
|
4217 unsigned int i; |
|
4218 int cleaned_count = 0; |
|
4219 bool cleaned = false; |
|
4220 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
4221 |
|
4222 i = rx_ring->next_to_clean; |
|
4223 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4224 buffer_info = &rx_ring->buffer_info[i]; |
|
4225 |
|
4226 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
4227 struct sk_buff *skb; |
|
4228 u8 status; |
|
4229 |
|
4230 if (*work_done >= work_to_do) |
|
4231 break; |
|
4232 (*work_done)++; |
|
4233 |
|
4234 status = rx_desc->status; |
|
4235 skb = buffer_info->skb; |
|
4236 if (!adapter->ecdev) buffer_info->skb = NULL; |
|
4237 |
|
4238 prefetch(skb->data - NET_IP_ALIGN); |
|
4239 |
|
4240 if (++i == rx_ring->count) i = 0; |
|
4241 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
4242 prefetch(next_rxd); |
|
4243 |
|
4244 next_buffer = &rx_ring->buffer_info[i]; |
|
4245 |
|
4246 cleaned = true; |
|
4247 cleaned_count++; |
|
4248 pci_unmap_single(pdev, |
|
4249 buffer_info->dma, |
|
4250 buffer_info->length, |
|
4251 PCI_DMA_FROMDEVICE); |
|
4252 |
|
4253 length = le16_to_cpu(rx_desc->length); |
|
4254 /* !EOP means multiple descriptors were used to store a single |
|
4255 * packet, if thats the case we need to toss it. In fact, we |
|
4256 * to toss every packet with the EOP bit clear and the next |
|
4257 * frame that _does_ have the EOP bit set, as it is by |
|
4258 * definition only a frame fragment |
|
4259 */ |
|
4260 if (unlikely(!(status & E1000_RXD_STAT_EOP))) |
|
4261 set_bit(__E1000_DISCARDING, &adapter->flags); |
|
4262 |
|
4263 if (test_bit(__E1000_DISCARDING, &adapter->flags)) { |
|
4264 /* All receives must fit into a single buffer */ |
|
4265 E1000_DBG("%s: Receive packet consumed multiple" |
|
4266 " buffers\n", netdev->name); |
|
4267 /* recycle */ |
|
4268 buffer_info->skb = skb; |
|
4269 if (status & E1000_RXD_STAT_EOP) |
|
4270 clear_bit(__E1000_DISCARDING, &adapter->flags); |
|
4271 goto next_desc; |
|
4272 } |
|
4273 |
|
4274 if (!adapter->ecdev && |
|
4275 unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { |
|
4276 last_byte = *(skb->data + length - 1); |
|
4277 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
|
4278 last_byte)) { |
|
4279 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4280 e1000_tbi_adjust_stats(hw, &adapter->stats, |
|
4281 length, skb->data); |
|
4282 spin_unlock_irqrestore(&adapter->stats_lock, |
|
4283 flags); |
|
4284 length--; |
|
4285 } else { |
|
4286 /* recycle */ |
|
4287 buffer_info->skb = skb; |
|
4288 goto next_desc; |
|
4289 } |
|
4290 } |
|
4291 |
|
4292 /* adjust length to remove Ethernet CRC, this must be |
|
4293 * done after the TBI_ACCEPT workaround above */ |
|
4294 length -= 4; |
|
4295 |
|
4296 /* probably a little skewed due to removing CRC */ |
|
4297 total_rx_bytes += length; |
|
4298 total_rx_packets++; |
|
4299 |
|
4300 /* code added for copybreak, this should improve |
|
4301 * performance for small packets with large amounts |
|
4302 * of reassembly being done in the stack */ |
|
4303 if (!adapter->ecdev && length < copybreak) { |
|
4304 struct sk_buff *new_skb = |
|
4305 netdev_alloc_skb(netdev, length + NET_IP_ALIGN); |
|
4306 if (new_skb) { |
|
4307 skb_reserve(new_skb, NET_IP_ALIGN); |
|
4308 skb_copy_to_linear_data_offset(new_skb, |
|
4309 -NET_IP_ALIGN, |
|
4310 (skb->data - |
|
4311 NET_IP_ALIGN), |
|
4312 (length + |
|
4313 NET_IP_ALIGN)); |
|
4314 /* save the skb in buffer_info as good */ |
|
4315 buffer_info->skb = skb; |
|
4316 skb = new_skb; |
|
4317 } |
|
4318 /* else just continue with the old one */ |
|
4319 } |
|
4320 /* end copybreak code */ |
|
4321 skb_put(skb, length); |
|
4322 |
|
4323 /* Receive Checksum Offload */ |
|
4324 e1000_rx_checksum(adapter, |
|
4325 (u32)(status) | |
|
4326 ((u32)(rx_desc->errors) << 24), |
|
4327 le16_to_cpu(rx_desc->csum), skb); |
|
4328 |
|
4329 if (adapter->ecdev) { |
|
4330 ecdev_receive(adapter->ecdev, skb->data, length); |
|
4331 |
|
4332 // No need to detect link status as |
|
4333 // long as frames are received: Reset watchdog. |
|
4334 adapter->ec_watchdog_jiffies = jiffies; |
|
4335 } else { |
|
4336 skb->protocol = eth_type_trans(skb, netdev); |
|
4337 |
|
4338 if (unlikely(adapter->vlgrp && |
|
4339 (status & E1000_RXD_STAT_VP))) { |
|
4340 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
|
4341 le16_to_cpu(rx_desc->special)); |
|
4342 } else { |
|
4343 netif_receive_skb(skb); |
|
4344 } |
|
4345 } |
|
4346 |
|
4347 netdev->last_rx = jiffies; |
|
4348 |
|
4349 next_desc: |
|
4350 rx_desc->status = 0; |
|
4351 |
|
4352 /* return some buffers to hardware, one at a time is too slow */ |
|
4353 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
4354 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4355 cleaned_count = 0; |
|
4356 } |
|
4357 |
|
4358 /* use prefetched values */ |
|
4359 rx_desc = next_rxd; |
|
4360 buffer_info = next_buffer; |
|
4361 } |
|
4362 rx_ring->next_to_clean = i; |
|
4363 |
|
4364 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
4365 if (cleaned_count) |
|
4366 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4367 |
|
4368 adapter->total_rx_packets += total_rx_packets; |
|
4369 adapter->total_rx_bytes += total_rx_bytes; |
|
4370 adapter->net_stats.rx_bytes += total_rx_bytes; |
|
4371 adapter->net_stats.rx_packets += total_rx_packets; |
|
4372 return cleaned; |
|
4373 } |
|
4374 |
|
4375 /** |
|
4376 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split |
|
4377 * @adapter: board private structure |
|
4378 **/ |
|
4379 |
|
4380 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
|
4381 struct e1000_rx_ring *rx_ring, |
|
4382 int *work_done, int work_to_do) |
|
4383 { |
|
4384 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; |
|
4385 struct net_device *netdev = adapter->netdev; |
|
4386 struct pci_dev *pdev = adapter->pdev; |
|
4387 struct e1000_buffer *buffer_info, *next_buffer; |
|
4388 struct e1000_ps_page *ps_page; |
|
4389 struct e1000_ps_page_dma *ps_page_dma; |
|
4390 struct sk_buff *skb; |
|
4391 unsigned int i, j; |
|
4392 u32 length, staterr; |
|
4393 int cleaned_count = 0; |
|
4394 bool cleaned = false; |
|
4395 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
4396 |
|
4397 i = rx_ring->next_to_clean; |
|
4398 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
|
4399 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
|
4400 buffer_info = &rx_ring->buffer_info[i]; |
|
4401 |
|
4402 while (staterr & E1000_RXD_STAT_DD) { |
|
4403 ps_page = &rx_ring->ps_page[i]; |
|
4404 ps_page_dma = &rx_ring->ps_page_dma[i]; |
|
4405 |
|
4406 if (unlikely(*work_done >= work_to_do)) |
|
4407 break; |
|
4408 (*work_done)++; |
|
4409 |
|
4410 skb = buffer_info->skb; |
|
4411 |
|
4412 /* in the packet split case this is header only */ |
|
4413 prefetch(skb->data - NET_IP_ALIGN); |
|
4414 |
|
4415 if (++i == rx_ring->count) i = 0; |
|
4416 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); |
|
4417 prefetch(next_rxd); |
|
4418 |
|
4419 next_buffer = &rx_ring->buffer_info[i]; |
|
4420 |
|
4421 cleaned = true; |
|
4422 cleaned_count++; |
|
4423 pci_unmap_single(pdev, buffer_info->dma, |
|
4424 buffer_info->length, |
|
4425 PCI_DMA_FROMDEVICE); |
|
4426 |
|
4427 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) { |
|
4428 E1000_DBG("%s: Packet Split buffers didn't pick up" |
|
4429 " the full packet\n", netdev->name); |
|
4430 if (!adapter->ecdev) dev_kfree_skb_irq(skb); |
|
4431 goto next_desc; |
|
4432 } |
|
4433 |
|
4434 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) { |
|
4435 if (!adapter->ecdev) dev_kfree_skb_irq(skb); |
|
4436 goto next_desc; |
|
4437 } |
|
4438 |
|
4439 length = le16_to_cpu(rx_desc->wb.middle.length0); |
|
4440 |
|
4441 if (unlikely(!length)) { |
|
4442 E1000_DBG("%s: Last part of the packet spanning" |
|
4443 " multiple descriptors\n", netdev->name); |
|
4444 if (!adapter->ecdev) dev_kfree_skb_irq(skb); |
|
4445 goto next_desc; |
|
4446 } |
|
4447 |
|
4448 /* Good Receive */ |
|
4449 skb_put(skb, length); |
|
4450 |
|
4451 { |
|
4452 /* this looks ugly, but it seems compiler issues make it |
|
4453 more efficient than reusing j */ |
|
4454 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); |
|
4455 |
|
4456 /* page alloc/put takes too long and effects small packet |
|
4457 * throughput, so unsplit small packets and save the alloc/put*/ |
|
4458 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) { |
|
4459 u8 *vaddr; |
|
4460 /* there is no documentation about how to call |
|
4461 * kmap_atomic, so we can't hold the mapping |
|
4462 * very long */ |
|
4463 pci_dma_sync_single_for_cpu(pdev, |
|
4464 ps_page_dma->ps_page_dma[0], |
|
4465 PAGE_SIZE, |
|
4466 PCI_DMA_FROMDEVICE); |
|
4467 vaddr = kmap_atomic(ps_page->ps_page[0], |
|
4468 KM_SKB_DATA_SOFTIRQ); |
|
4469 memcpy(skb_tail_pointer(skb), vaddr, l1); |
|
4470 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); |
|
4471 pci_dma_sync_single_for_device(pdev, |
|
4472 ps_page_dma->ps_page_dma[0], |
|
4473 PAGE_SIZE, PCI_DMA_FROMDEVICE); |
|
4474 /* remove the CRC */ |
|
4475 l1 -= 4; |
|
4476 skb_put(skb, l1); |
|
4477 goto copydone; |
|
4478 } /* if */ |
|
4479 } |
|
4480 |
|
4481 for (j = 0; j < adapter->rx_ps_pages; j++) { |
|
4482 length = le16_to_cpu(rx_desc->wb.upper.length[j]); |
|
4483 if (!length) |
|
4484 break; |
|
4485 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j], |
|
4486 PAGE_SIZE, PCI_DMA_FROMDEVICE); |
|
4487 ps_page_dma->ps_page_dma[j] = 0; |
|
4488 skb_add_rx_frag(skb, j, ps_page->ps_page[j], 0, length); |
|
4489 ps_page->ps_page[j] = NULL; |
|
4490 } |
|
4491 |
|
4492 /* strip the ethernet crc, problem is we're using pages now so |
|
4493 * this whole operation can get a little cpu intensive */ |
|
4494 pskb_trim(skb, skb->len - 4); |
|
4495 |
|
4496 copydone: |
|
4497 total_rx_bytes += skb->len; |
|
4498 total_rx_packets++; |
|
4499 |
|
4500 e1000_rx_checksum(adapter, staterr, |
|
4501 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); |
|
4502 if (adapter->ecdev) { |
|
4503 ecdev_receive(adapter->ecdev, skb->data, length); |
|
4504 } else { |
|
4505 skb->protocol = eth_type_trans(skb, netdev); |
|
4506 |
|
4507 if (likely(rx_desc->wb.upper.header_status & |
|
4508 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))) |
|
4509 adapter->rx_hdr_split++; |
|
4510 |
|
4511 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { |
|
4512 vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
|
4513 le16_to_cpu(rx_desc->wb.middle.vlan)); |
|
4514 } else { |
|
4515 netif_receive_skb(skb); |
|
4516 } |
|
4517 } |
|
4518 |
|
4519 netdev->last_rx = jiffies; |
|
4520 |
|
4521 next_desc: |
|
4522 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); |
|
4523 if (!adapter->ecdev) buffer_info->skb = NULL; |
|
4524 |
|
4525 /* return some buffers to hardware, one at a time is too slow */ |
|
4526 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
4527 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4528 cleaned_count = 0; |
|
4529 } |
|
4530 |
|
4531 /* use prefetched values */ |
|
4532 rx_desc = next_rxd; |
|
4533 buffer_info = next_buffer; |
|
4534 |
|
4535 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
|
4536 } |
|
4537 rx_ring->next_to_clean = i; |
|
4538 |
|
4539 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
4540 if (cleaned_count) |
|
4541 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4542 |
|
4543 adapter->total_rx_packets += total_rx_packets; |
|
4544 adapter->total_rx_bytes += total_rx_bytes; |
|
4545 adapter->net_stats.rx_bytes += total_rx_bytes; |
|
4546 adapter->net_stats.rx_packets += total_rx_packets; |
|
4547 return cleaned; |
|
4548 } |
|
4549 |
|
4550 /** |
|
4551 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
|
4552 * @adapter: address of board private structure |
|
4553 **/ |
|
4554 |
|
4555 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
4556 struct e1000_rx_ring *rx_ring, |
|
4557 int cleaned_count) |
|
4558 { |
|
4559 struct e1000_hw *hw = &adapter->hw; |
|
4560 struct net_device *netdev = adapter->netdev; |
|
4561 struct pci_dev *pdev = adapter->pdev; |
|
4562 struct e1000_rx_desc *rx_desc; |
|
4563 struct e1000_buffer *buffer_info; |
|
4564 struct sk_buff *skb; |
|
4565 unsigned int i; |
|
4566 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; |
|
4567 |
|
4568 i = rx_ring->next_to_use; |
|
4569 buffer_info = &rx_ring->buffer_info[i]; |
|
4570 |
|
4571 while (cleaned_count--) { |
|
4572 skb = buffer_info->skb; |
|
4573 if (skb) { |
|
4574 skb_trim(skb, 0); |
|
4575 goto map_skb; |
|
4576 } |
|
4577 |
|
4578 skb = netdev_alloc_skb(netdev, bufsz); |
|
4579 if (unlikely(!skb)) { |
|
4580 /* Better luck next round */ |
|
4581 adapter->alloc_rx_buff_failed++; |
|
4582 break; |
|
4583 } |
|
4584 |
|
4585 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4586 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4587 struct sk_buff *oldskb = skb; |
|
4588 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " |
|
4589 "at %p\n", bufsz, skb->data); |
|
4590 /* Try again, without freeing the previous */ |
|
4591 skb = netdev_alloc_skb(netdev, bufsz); |
|
4592 /* Failed allocation, critical failure */ |
|
4593 if (!skb) { |
|
4594 dev_kfree_skb(oldskb); |
|
4595 break; |
|
4596 } |
|
4597 |
|
4598 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4599 /* give up */ |
|
4600 dev_kfree_skb(skb); |
|
4601 dev_kfree_skb(oldskb); |
|
4602 break; /* while !buffer_info->skb */ |
|
4603 } |
|
4604 |
|
4605 /* Use new allocation */ |
|
4606 dev_kfree_skb(oldskb); |
|
4607 } |
|
4608 /* Make buffer alignment 2 beyond a 16 byte boundary |
|
4609 * this will result in a 16 byte aligned IP header after |
|
4610 * the 14 byte MAC header is removed |
|
4611 */ |
|
4612 skb_reserve(skb, NET_IP_ALIGN); |
|
4613 |
|
4614 buffer_info->skb = skb; |
|
4615 buffer_info->length = adapter->rx_buffer_len; |
|
4616 map_skb: |
|
4617 buffer_info->dma = pci_map_single(pdev, |
|
4618 skb->data, |
|
4619 adapter->rx_buffer_len, |
|
4620 PCI_DMA_FROMDEVICE); |
|
4621 |
|
4622 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4623 if (!e1000_check_64k_bound(adapter, |
|
4624 (void *)(unsigned long)buffer_info->dma, |
|
4625 adapter->rx_buffer_len)) { |
|
4626 DPRINTK(RX_ERR, ERR, |
|
4627 "dma align check failed: %u bytes at %p\n", |
|
4628 adapter->rx_buffer_len, |
|
4629 (void *)(unsigned long)buffer_info->dma); |
|
4630 if (!adapter->ecdev) { |
|
4631 dev_kfree_skb(skb); |
|
4632 buffer_info->skb = NULL; |
|
4633 } |
|
4634 |
|
4635 pci_unmap_single(pdev, buffer_info->dma, |
|
4636 adapter->rx_buffer_len, |
|
4637 PCI_DMA_FROMDEVICE); |
|
4638 |
|
4639 break; /* while !buffer_info->skb */ |
|
4640 } |
|
4641 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4642 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4643 |
|
4644 if (unlikely(++i == rx_ring->count)) |
|
4645 i = 0; |
|
4646 buffer_info = &rx_ring->buffer_info[i]; |
|
4647 } |
|
4648 |
|
4649 if (likely(rx_ring->next_to_use != i)) { |
|
4650 rx_ring->next_to_use = i; |
|
4651 if (unlikely(i-- == 0)) |
|
4652 i = (rx_ring->count - 1); |
|
4653 |
|
4654 /* Force memory writes to complete before letting h/w |
|
4655 * know there are new descriptors to fetch. (Only |
|
4656 * applicable for weak-ordered memory model archs, |
|
4657 * such as IA-64). */ |
|
4658 wmb(); |
|
4659 writel(i, hw->hw_addr + rx_ring->rdt); |
|
4660 } |
|
4661 } |
|
4662 |
|
4663 /** |
|
4664 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split |
|
4665 * @adapter: address of board private structure |
|
4666 **/ |
|
4667 |
|
4668 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, |
|
4669 struct e1000_rx_ring *rx_ring, |
|
4670 int cleaned_count) |
|
4671 { |
|
4672 struct e1000_hw *hw = &adapter->hw; |
|
4673 struct net_device *netdev = adapter->netdev; |
|
4674 struct pci_dev *pdev = adapter->pdev; |
|
4675 union e1000_rx_desc_packet_split *rx_desc; |
|
4676 struct e1000_buffer *buffer_info; |
|
4677 struct e1000_ps_page *ps_page; |
|
4678 struct e1000_ps_page_dma *ps_page_dma; |
|
4679 struct sk_buff *skb; |
|
4680 unsigned int i, j; |
|
4681 |
|
4682 i = rx_ring->next_to_use; |
|
4683 buffer_info = &rx_ring->buffer_info[i]; |
|
4684 ps_page = &rx_ring->ps_page[i]; |
|
4685 ps_page_dma = &rx_ring->ps_page_dma[i]; |
|
4686 |
|
4687 while (cleaned_count--) { |
|
4688 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
|
4689 |
|
4690 for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
|
4691 if (j < adapter->rx_ps_pages) { |
|
4692 if (likely(!ps_page->ps_page[j])) { |
|
4693 ps_page->ps_page[j] = |
|
4694 netdev_alloc_page(netdev); |
|
4695 if (unlikely(!ps_page->ps_page[j])) { |
|
4696 adapter->alloc_rx_buff_failed++; |
|
4697 goto no_buffers; |
|
4698 } |
|
4699 ps_page_dma->ps_page_dma[j] = |
|
4700 pci_map_page(pdev, |
|
4701 ps_page->ps_page[j], |
|
4702 0, PAGE_SIZE, |
|
4703 PCI_DMA_FROMDEVICE); |
|
4704 } |
|
4705 /* Refresh the desc even if buffer_addrs didn't |
|
4706 * change because each write-back erases |
|
4707 * this info. |
|
4708 */ |
|
4709 rx_desc->read.buffer_addr[j+1] = |
|
4710 cpu_to_le64(ps_page_dma->ps_page_dma[j]); |
|
4711 } else |
|
4712 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); |
|
4713 } |
|
4714 |
|
4715 skb = netdev_alloc_skb(netdev, |
|
4716 adapter->rx_ps_bsize0 + NET_IP_ALIGN); |
|
4717 |
|
4718 if (unlikely(!skb)) { |
|
4719 adapter->alloc_rx_buff_failed++; |
|
4720 break; |
|
4721 } |
|
4722 |
|
4723 /* Make buffer alignment 2 beyond a 16 byte boundary |
|
4724 * this will result in a 16 byte aligned IP header after |
|
4725 * the 14 byte MAC header is removed |
|
4726 */ |
|
4727 skb_reserve(skb, NET_IP_ALIGN); |
|
4728 |
|
4729 buffer_info->skb = skb; |
|
4730 buffer_info->length = adapter->rx_ps_bsize0; |
|
4731 buffer_info->dma = pci_map_single(pdev, skb->data, |
|
4732 adapter->rx_ps_bsize0, |
|
4733 PCI_DMA_FROMDEVICE); |
|
4734 |
|
4735 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); |
|
4736 |
|
4737 if (unlikely(++i == rx_ring->count)) i = 0; |
|
4738 buffer_info = &rx_ring->buffer_info[i]; |
|
4739 ps_page = &rx_ring->ps_page[i]; |
|
4740 ps_page_dma = &rx_ring->ps_page_dma[i]; |
|
4741 } |
|
4742 |
|
4743 no_buffers: |
|
4744 if (likely(rx_ring->next_to_use != i)) { |
|
4745 rx_ring->next_to_use = i; |
|
4746 if (unlikely(i-- == 0)) i = (rx_ring->count - 1); |
|
4747 |
|
4748 /* Force memory writes to complete before letting h/w |
|
4749 * know there are new descriptors to fetch. (Only |
|
4750 * applicable for weak-ordered memory model archs, |
|
4751 * such as IA-64). */ |
|
4752 wmb(); |
|
4753 /* Hardware increments by 16 bytes, but packet split |
|
4754 * descriptors are 32 bytes...so we increment tail |
|
4755 * twice as much. |
|
4756 */ |
|
4757 writel(i<<1, hw->hw_addr + rx_ring->rdt); |
|
4758 } |
|
4759 } |
|
4760 |
|
4761 /** |
|
4762 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. |
|
4763 * @adapter: |
|
4764 **/ |
|
4765 |
|
4766 static void e1000_smartspeed(struct e1000_adapter *adapter) |
|
4767 { |
|
4768 struct e1000_hw *hw = &adapter->hw; |
|
4769 u16 phy_status; |
|
4770 u16 phy_ctrl; |
|
4771 |
|
4772 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || |
|
4773 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) |
|
4774 return; |
|
4775 |
|
4776 if (adapter->smartspeed == 0) { |
|
4777 /* If Master/Slave config fault is asserted twice, |
|
4778 * we assume back-to-back */ |
|
4779 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4780 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4781 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4782 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4783 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4784 if (phy_ctrl & CR_1000T_MS_ENABLE) { |
|
4785 phy_ctrl &= ~CR_1000T_MS_ENABLE; |
|
4786 e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
|
4787 phy_ctrl); |
|
4788 adapter->smartspeed++; |
|
4789 if (!e1000_phy_setup_autoneg(hw) && |
|
4790 !e1000_read_phy_reg(hw, PHY_CTRL, |
|
4791 &phy_ctrl)) { |
|
4792 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4793 MII_CR_RESTART_AUTO_NEG); |
|
4794 e1000_write_phy_reg(hw, PHY_CTRL, |
|
4795 phy_ctrl); |
|
4796 } |
|
4797 } |
|
4798 return; |
|
4799 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { |
|
4800 /* If still no link, perhaps using 2/3 pair cable */ |
|
4801 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4802 phy_ctrl |= CR_1000T_MS_ENABLE; |
|
4803 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); |
|
4804 if (!e1000_phy_setup_autoneg(hw) && |
|
4805 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { |
|
4806 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4807 MII_CR_RESTART_AUTO_NEG); |
|
4808 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); |
|
4809 } |
|
4810 } |
|
4811 /* Restart process after E1000_SMARTSPEED_MAX iterations */ |
|
4812 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) |
|
4813 adapter->smartspeed = 0; |
|
4814 } |
|
4815 |
|
4816 /** |
|
4817 * e1000_ioctl - |
|
4818 * @netdev: |
|
4819 * @ifreq: |
|
4820 * @cmd: |
|
4821 **/ |
|
4822 |
|
4823 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
4824 { |
|
4825 switch (cmd) { |
|
4826 case SIOCGMIIPHY: |
|
4827 case SIOCGMIIREG: |
|
4828 case SIOCSMIIREG: |
|
4829 return e1000_mii_ioctl(netdev, ifr, cmd); |
|
4830 default: |
|
4831 return -EOPNOTSUPP; |
|
4832 } |
|
4833 } |
|
4834 |
|
4835 /** |
|
4836 * e1000_mii_ioctl - |
|
4837 * @netdev: |
|
4838 * @ifreq: |
|
4839 * @cmd: |
|
4840 **/ |
|
4841 |
|
4842 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
4843 int cmd) |
|
4844 { |
|
4845 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4846 struct e1000_hw *hw = &adapter->hw; |
|
4847 struct mii_ioctl_data *data = if_mii(ifr); |
|
4848 int retval; |
|
4849 u16 mii_reg; |
|
4850 u16 spddplx; |
|
4851 unsigned long flags; |
|
4852 |
|
4853 if (hw->media_type != e1000_media_type_copper) |
|
4854 return -EOPNOTSUPP; |
|
4855 |
|
4856 switch (cmd) { |
|
4857 case SIOCGMIIPHY: |
|
4858 data->phy_id = hw->phy_addr; |
|
4859 break; |
|
4860 case SIOCGMIIREG: |
|
4861 if (adapter->ecdev || !capable(CAP_NET_ADMIN)) |
|
4862 return -EPERM; |
|
4863 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4864 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, |
|
4865 &data->val_out)) { |
|
4866 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4867 return -EIO; |
|
4868 } |
|
4869 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4870 break; |
|
4871 case SIOCSMIIREG: |
|
4872 if (adapter->ecdev || !capable(CAP_NET_ADMIN)) |
|
4873 return -EPERM; |
|
4874 if (data->reg_num & ~(0x1F)) |
|
4875 return -EFAULT; |
|
4876 mii_reg = data->val_in; |
|
4877 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4878 if (e1000_write_phy_reg(hw, data->reg_num, |
|
4879 mii_reg)) { |
|
4880 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4881 return -EIO; |
|
4882 } |
|
4883 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4884 if (hw->media_type == e1000_media_type_copper) { |
|
4885 switch (data->reg_num) { |
|
4886 case PHY_CTRL: |
|
4887 if (mii_reg & MII_CR_POWER_DOWN) |
|
4888 break; |
|
4889 if (mii_reg & MII_CR_AUTO_NEG_EN) { |
|
4890 hw->autoneg = 1; |
|
4891 hw->autoneg_advertised = 0x2F; |
|
4892 } else { |
|
4893 if (mii_reg & 0x40) |
|
4894 spddplx = SPEED_1000; |
|
4895 else if (mii_reg & 0x2000) |
|
4896 spddplx = SPEED_100; |
|
4897 else |
|
4898 spddplx = SPEED_10; |
|
4899 spddplx += (mii_reg & 0x100) |
|
4900 ? DUPLEX_FULL : |
|
4901 DUPLEX_HALF; |
|
4902 retval = e1000_set_spd_dplx(adapter, |
|
4903 spddplx); |
|
4904 if (retval) |
|
4905 return retval; |
|
4906 } |
|
4907 if (netif_running(adapter->netdev)) |
|
4908 e1000_reinit_locked(adapter); |
|
4909 else |
|
4910 e1000_reset(adapter); |
|
4911 break; |
|
4912 case M88E1000_PHY_SPEC_CTRL: |
|
4913 case M88E1000_EXT_PHY_SPEC_CTRL: |
|
4914 if (e1000_phy_reset(hw)) |
|
4915 return -EIO; |
|
4916 break; |
|
4917 } |
|
4918 } else { |
|
4919 switch (data->reg_num) { |
|
4920 case PHY_CTRL: |
|
4921 if (mii_reg & MII_CR_POWER_DOWN) |
|
4922 break; |
|
4923 if (netif_running(adapter->netdev)) |
|
4924 e1000_reinit_locked(adapter); |
|
4925 else |
|
4926 e1000_reset(adapter); |
|
4927 break; |
|
4928 } |
|
4929 } |
|
4930 break; |
|
4931 default: |
|
4932 return -EOPNOTSUPP; |
|
4933 } |
|
4934 return E1000_SUCCESS; |
|
4935 } |
|
4936 |
|
4937 void e1000_pci_set_mwi(struct e1000_hw *hw) |
|
4938 { |
|
4939 struct e1000_adapter *adapter = hw->back; |
|
4940 int ret_val = pci_set_mwi(adapter->pdev); |
|
4941 |
|
4942 if (ret_val) |
|
4943 DPRINTK(PROBE, ERR, "Error in setting MWI\n"); |
|
4944 } |
|
4945 |
|
4946 void e1000_pci_clear_mwi(struct e1000_hw *hw) |
|
4947 { |
|
4948 struct e1000_adapter *adapter = hw->back; |
|
4949 |
|
4950 pci_clear_mwi(adapter->pdev); |
|
4951 } |
|
4952 |
|
4953 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) |
|
4954 { |
|
4955 struct e1000_adapter *adapter = hw->back; |
|
4956 return pcix_get_mmrbc(adapter->pdev); |
|
4957 } |
|
4958 |
|
4959 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) |
|
4960 { |
|
4961 struct e1000_adapter *adapter = hw->back; |
|
4962 pcix_set_mmrbc(adapter->pdev, mmrbc); |
|
4963 } |
|
4964 |
|
4965 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) |
|
4966 { |
|
4967 struct e1000_adapter *adapter = hw->back; |
|
4968 u16 cap_offset; |
|
4969 |
|
4970 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); |
|
4971 if (!cap_offset) |
|
4972 return -E1000_ERR_CONFIG; |
|
4973 |
|
4974 pci_read_config_word(adapter->pdev, cap_offset + reg, value); |
|
4975 |
|
4976 return E1000_SUCCESS; |
|
4977 } |
|
4978 |
|
4979 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) |
|
4980 { |
|
4981 outl(value, port); |
|
4982 } |
|
4983 |
|
4984 static void e1000_vlan_rx_register(struct net_device *netdev, |
|
4985 struct vlan_group *grp) |
|
4986 { |
|
4987 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4988 struct e1000_hw *hw = &adapter->hw; |
|
4989 u32 ctrl, rctl; |
|
4990 |
|
4991 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4992 e1000_irq_disable(adapter); |
|
4993 adapter->vlgrp = grp; |
|
4994 |
|
4995 if (grp) { |
|
4996 /* enable VLAN tag insert/strip */ |
|
4997 ctrl = er32(CTRL); |
|
4998 ctrl |= E1000_CTRL_VME; |
|
4999 ew32(CTRL, ctrl); |
|
5000 |
|
5001 if (adapter->hw.mac_type != e1000_ich8lan) { |
|
5002 /* enable VLAN receive filtering */ |
|
5003 rctl = er32(RCTL); |
|
5004 rctl &= ~E1000_RCTL_CFIEN; |
|
5005 ew32(RCTL, rctl); |
|
5006 e1000_update_mng_vlan(adapter); |
|
5007 } |
|
5008 } else { |
|
5009 /* disable VLAN tag insert/strip */ |
|
5010 ctrl = er32(CTRL); |
|
5011 ctrl &= ~E1000_CTRL_VME; |
|
5012 ew32(CTRL, ctrl); |
|
5013 |
|
5014 if (adapter->hw.mac_type != e1000_ich8lan) { |
|
5015 if (adapter->mng_vlan_id != |
|
5016 (u16)E1000_MNG_VLAN_NONE) { |
|
5017 e1000_vlan_rx_kill_vid(netdev, |
|
5018 adapter->mng_vlan_id); |
|
5019 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
5020 } |
|
5021 } |
|
5022 } |
|
5023 |
|
5024 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
5025 e1000_irq_enable(adapter); |
|
5026 } |
|
5027 |
|
5028 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
|
5029 { |
|
5030 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5031 struct e1000_hw *hw = &adapter->hw; |
|
5032 u32 vfta, index; |
|
5033 |
|
5034 if ((hw->mng_cookie.status & |
|
5035 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
5036 (vid == adapter->mng_vlan_id)) |
|
5037 return; |
|
5038 /* add VID to filter table */ |
|
5039 index = (vid >> 5) & 0x7F; |
|
5040 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
5041 vfta |= (1 << (vid & 0x1F)); |
|
5042 e1000_write_vfta(hw, index, vfta); |
|
5043 } |
|
5044 |
|
5045 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
|
5046 { |
|
5047 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5048 struct e1000_hw *hw = &adapter->hw; |
|
5049 u32 vfta, index; |
|
5050 |
|
5051 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
5052 e1000_irq_disable(adapter); |
|
5053 vlan_group_set_device(adapter->vlgrp, vid, NULL); |
|
5054 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
5055 e1000_irq_enable(adapter); |
|
5056 |
|
5057 if ((hw->mng_cookie.status & |
|
5058 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
5059 (vid == adapter->mng_vlan_id)) { |
|
5060 /* release control to f/w */ |
|
5061 e1000_release_hw_control(adapter); |
|
5062 return; |
|
5063 } |
|
5064 |
|
5065 /* remove VID from filter table */ |
|
5066 index = (vid >> 5) & 0x7F; |
|
5067 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
5068 vfta &= ~(1 << (vid & 0x1F)); |
|
5069 e1000_write_vfta(hw, index, vfta); |
|
5070 } |
|
5071 |
|
5072 static void e1000_restore_vlan(struct e1000_adapter *adapter) |
|
5073 { |
|
5074 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
|
5075 |
|
5076 if (adapter->vlgrp) { |
|
5077 u16 vid; |
|
5078 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
|
5079 if (!vlan_group_get_device(adapter->vlgrp, vid)) |
|
5080 continue; |
|
5081 e1000_vlan_rx_add_vid(adapter->netdev, vid); |
|
5082 } |
|
5083 } |
|
5084 } |
|
5085 |
|
5086 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) |
|
5087 { |
|
5088 struct e1000_hw *hw = &adapter->hw; |
|
5089 |
|
5090 hw->autoneg = 0; |
|
5091 |
|
5092 /* Fiber NICs only allow 1000 gbps Full duplex */ |
|
5093 if ((hw->media_type == e1000_media_type_fiber) && |
|
5094 spddplx != (SPEED_1000 + DUPLEX_FULL)) { |
|
5095 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); |
|
5096 return -EINVAL; |
|
5097 } |
|
5098 |
|
5099 switch (spddplx) { |
|
5100 case SPEED_10 + DUPLEX_HALF: |
|
5101 hw->forced_speed_duplex = e1000_10_half; |
|
5102 break; |
|
5103 case SPEED_10 + DUPLEX_FULL: |
|
5104 hw->forced_speed_duplex = e1000_10_full; |
|
5105 break; |
|
5106 case SPEED_100 + DUPLEX_HALF: |
|
5107 hw->forced_speed_duplex = e1000_100_half; |
|
5108 break; |
|
5109 case SPEED_100 + DUPLEX_FULL: |
|
5110 hw->forced_speed_duplex = e1000_100_full; |
|
5111 break; |
|
5112 case SPEED_1000 + DUPLEX_FULL: |
|
5113 hw->autoneg = 1; |
|
5114 hw->autoneg_advertised = ADVERTISE_1000_FULL; |
|
5115 break; |
|
5116 case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
|
5117 default: |
|
5118 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); |
|
5119 return -EINVAL; |
|
5120 } |
|
5121 return 0; |
|
5122 } |
|
5123 |
|
5124 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
|
5125 { |
|
5126 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5127 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5128 struct e1000_hw *hw = &adapter->hw; |
|
5129 u32 ctrl, ctrl_ext, rctl, status; |
|
5130 u32 wufc = adapter->wol; |
|
5131 #ifdef CONFIG_PM |
|
5132 int retval = 0; |
|
5133 #endif |
|
5134 |
|
5135 if (adapter->ecdev) |
|
5136 return -EBUSY; |
|
5137 |
|
5138 netif_device_detach(netdev); |
|
5139 |
|
5140 if (netif_running(netdev)) { |
|
5141 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
5142 e1000_down(adapter); |
|
5143 } |
|
5144 |
|
5145 #ifdef CONFIG_PM |
|
5146 retval = pci_save_state(pdev); |
|
5147 if (retval) |
|
5148 return retval; |
|
5149 #endif |
|
5150 |
|
5151 status = er32(STATUS); |
|
5152 if (status & E1000_STATUS_LU) |
|
5153 wufc &= ~E1000_WUFC_LNKC; |
|
5154 |
|
5155 if (wufc) { |
|
5156 e1000_setup_rctl(adapter); |
|
5157 e1000_set_rx_mode(netdev); |
|
5158 |
|
5159 /* turn on all-multi mode if wake on multicast is enabled */ |
|
5160 if (wufc & E1000_WUFC_MC) { |
|
5161 rctl = er32(RCTL); |
|
5162 rctl |= E1000_RCTL_MPE; |
|
5163 ew32(RCTL, rctl); |
|
5164 } |
|
5165 |
|
5166 if (hw->mac_type >= e1000_82540) { |
|
5167 ctrl = er32(CTRL); |
|
5168 /* advertise wake from D3Cold */ |
|
5169 #define E1000_CTRL_ADVD3WUC 0x00100000 |
|
5170 /* phy power management enable */ |
|
5171 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
|
5172 ctrl |= E1000_CTRL_ADVD3WUC | |
|
5173 E1000_CTRL_EN_PHY_PWR_MGMT; |
|
5174 ew32(CTRL, ctrl); |
|
5175 } |
|
5176 |
|
5177 if (hw->media_type == e1000_media_type_fiber || |
|
5178 hw->media_type == e1000_media_type_internal_serdes) { |
|
5179 /* keep the laser running in D3 */ |
|
5180 ctrl_ext = er32(CTRL_EXT); |
|
5181 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; |
|
5182 ew32(CTRL_EXT, ctrl_ext); |
|
5183 } |
|
5184 |
|
5185 /* Allow time for pending master requests to run */ |
|
5186 e1000_disable_pciex_master(hw); |
|
5187 |
|
5188 ew32(WUC, E1000_WUC_PME_EN); |
|
5189 ew32(WUFC, wufc); |
|
5190 pci_enable_wake(pdev, PCI_D3hot, 1); |
|
5191 pci_enable_wake(pdev, PCI_D3cold, 1); |
|
5192 } else { |
|
5193 ew32(WUC, 0); |
|
5194 ew32(WUFC, 0); |
|
5195 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
5196 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
5197 } |
|
5198 |
|
5199 e1000_release_manageability(adapter); |
|
5200 |
|
5201 /* make sure adapter isn't asleep if manageability is enabled */ |
|
5202 if (adapter->en_mng_pt) { |
|
5203 pci_enable_wake(pdev, PCI_D3hot, 1); |
|
5204 pci_enable_wake(pdev, PCI_D3cold, 1); |
|
5205 } |
|
5206 |
|
5207 if (hw->phy_type == e1000_phy_igp_3) |
|
5208 e1000_phy_powerdown_workaround(hw); |
|
5209 |
|
5210 if (netif_running(netdev)) |
|
5211 e1000_free_irq(adapter); |
|
5212 |
|
5213 /* Release control of h/w to f/w. If f/w is AMT enabled, this |
|
5214 * would have already happened in close and is redundant. */ |
|
5215 e1000_release_hw_control(adapter); |
|
5216 |
|
5217 pci_disable_device(pdev); |
|
5218 |
|
5219 pci_set_power_state(pdev, pci_choose_state(pdev, state)); |
|
5220 |
|
5221 return 0; |
|
5222 } |
|
5223 |
|
5224 #ifdef CONFIG_PM |
|
5225 static int e1000_resume(struct pci_dev *pdev) |
|
5226 { |
|
5227 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5228 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5229 struct e1000_hw *hw = &adapter->hw; |
|
5230 u32 err; |
|
5231 |
|
5232 if (adapter->ecdev) |
|
5233 return -EBUSY; |
|
5234 |
|
5235 pci_set_power_state(pdev, PCI_D0); |
|
5236 pci_restore_state(pdev); |
|
5237 |
|
5238 if (adapter->need_ioport) |
|
5239 err = pci_enable_device(pdev); |
|
5240 else |
|
5241 err = pci_enable_device_mem(pdev); |
|
5242 if (err) { |
|
5243 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n"); |
|
5244 return err; |
|
5245 } |
|
5246 pci_set_master(pdev); |
|
5247 |
|
5248 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
5249 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
5250 |
|
5251 if (netif_running(netdev)) { |
|
5252 err = e1000_request_irq(adapter); |
|
5253 if (err) |
|
5254 return err; |
|
5255 } |
|
5256 |
|
5257 e1000_power_up_phy(adapter); |
|
5258 e1000_reset(adapter); |
|
5259 ew32(WUS, ~0); |
|
5260 |
|
5261 e1000_init_manageability(adapter); |
|
5262 |
|
5263 if (netif_running(netdev)) |
|
5264 e1000_up(adapter); |
|
5265 |
|
5266 if (!adapter->ecdev) netif_device_attach(netdev); |
|
5267 |
|
5268 /* If the controller is 82573 and f/w is AMT, do not set |
|
5269 * DRV_LOAD until the interface is up. For all other cases, |
|
5270 * let the f/w know that the h/w is now under the control |
|
5271 * of the driver. */ |
|
5272 if (hw->mac_type != e1000_82573 || |
|
5273 !e1000_check_mng_mode(hw)) |
|
5274 e1000_get_hw_control(adapter); |
|
5275 |
|
5276 return 0; |
|
5277 } |
|
5278 #endif |
|
5279 |
|
5280 static void e1000_shutdown(struct pci_dev *pdev) |
|
5281 { |
|
5282 e1000_suspend(pdev, PMSG_SUSPEND); |
|
5283 } |
|
5284 |
|
5285 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
5286 /* |
|
5287 * Polling 'interrupt' - used by things like netconsole to send skbs |
|
5288 * without having to re-enable interrupts. It's not called while |
|
5289 * the interrupt routine is executing. |
|
5290 */ |
|
5291 static void e1000_netpoll(struct net_device *netdev) |
|
5292 { |
|
5293 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5294 |
|
5295 disable_irq(adapter->pdev->irq); |
|
5296 e1000_intr(adapter->pdev->irq, netdev); |
|
5297 enable_irq(adapter->pdev->irq); |
|
5298 } |
|
5299 #endif |
|
5300 |
|
5301 /** |
|
5302 * e1000_io_error_detected - called when PCI error is detected |
|
5303 * @pdev: Pointer to PCI device |
|
5304 * @state: The current pci conneection state |
|
5305 * |
|
5306 * This function is called after a PCI bus error affecting |
|
5307 * this device has been detected. |
|
5308 */ |
|
5309 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
5310 pci_channel_state_t state) |
|
5311 { |
|
5312 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5313 struct e1000_adapter *adapter = netdev->priv; |
|
5314 |
|
5315 netif_device_detach(netdev); |
|
5316 |
|
5317 if (state == pci_channel_io_perm_failure) |
|
5318 return PCI_ERS_RESULT_DISCONNECT; |
|
5319 |
|
5320 if (netif_running(netdev)) |
|
5321 e1000_down(adapter); |
|
5322 pci_disable_device(pdev); |
|
5323 |
|
5324 /* Request a slot slot reset. */ |
|
5325 return PCI_ERS_RESULT_NEED_RESET; |
|
5326 } |
|
5327 |
|
5328 /** |
|
5329 * e1000_io_slot_reset - called after the pci bus has been reset. |
|
5330 * @pdev: Pointer to PCI device |
|
5331 * |
|
5332 * Restart the card from scratch, as if from a cold-boot. Implementation |
|
5333 * resembles the first-half of the e1000_resume routine. |
|
5334 */ |
|
5335 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
|
5336 { |
|
5337 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5338 struct e1000_adapter *adapter = netdev->priv; |
|
5339 struct e1000_hw *hw = &adapter->hw; |
|
5340 int err; |
|
5341 |
|
5342 if (adapter->need_ioport) |
|
5343 err = pci_enable_device(pdev); |
|
5344 else |
|
5345 err = pci_enable_device_mem(pdev); |
|
5346 if (err) { |
|
5347 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n"); |
|
5348 return PCI_ERS_RESULT_DISCONNECT; |
|
5349 } |
|
5350 pci_set_master(pdev); |
|
5351 |
|
5352 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
5353 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
5354 |
|
5355 e1000_reset(adapter); |
|
5356 ew32(WUS, ~0); |
|
5357 |
|
5358 return PCI_ERS_RESULT_RECOVERED; |
|
5359 } |
|
5360 |
|
5361 /** |
|
5362 * e1000_io_resume - called when traffic can start flowing again. |
|
5363 * @pdev: Pointer to PCI device |
|
5364 * |
|
5365 * This callback is called when the error recovery driver tells us that |
|
5366 * its OK to resume normal operation. Implementation resembles the |
|
5367 * second-half of the e1000_resume routine. |
|
5368 */ |
|
5369 static void e1000_io_resume(struct pci_dev *pdev) |
|
5370 { |
|
5371 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5372 struct e1000_adapter *adapter = netdev->priv; |
|
5373 struct e1000_hw *hw = &adapter->hw; |
|
5374 |
|
5375 e1000_init_manageability(adapter); |
|
5376 |
|
5377 if (netif_running(netdev)) { |
|
5378 if (e1000_up(adapter)) { |
|
5379 printk("e1000: can't bring device back up after reset\n"); |
|
5380 return; |
|
5381 } |
|
5382 } |
|
5383 |
|
5384 netif_device_attach(netdev); |
|
5385 |
|
5386 /* If the controller is 82573 and f/w is AMT, do not set |
|
5387 * DRV_LOAD until the interface is up. For all other cases, |
|
5388 * let the f/w know that the h/w is now under the control |
|
5389 * of the driver. */ |
|
5390 if (hw->mac_type != e1000_82573 || |
|
5391 !e1000_check_mng_mode(hw)) |
|
5392 e1000_get_hw_control(adapter); |
|
5393 |
|
5394 } |
|
5395 |
|
5396 /* e1000_main.c */ |