|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* e1000_hw.c |
|
30 * Shared functions for accessing and configuring the MAC |
|
31 */ |
|
32 |
|
33 |
|
34 #include "e1000_hw.h" |
|
35 |
|
36 static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask); |
|
37 static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask); |
|
38 static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data); |
|
39 static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data); |
|
40 static s32 e1000_get_software_semaphore(struct e1000_hw *hw); |
|
41 static void e1000_release_software_semaphore(struct e1000_hw *hw); |
|
42 |
|
43 static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw); |
|
44 static s32 e1000_check_downshift(struct e1000_hw *hw); |
|
45 static s32 e1000_check_polarity(struct e1000_hw *hw, |
|
46 e1000_rev_polarity *polarity); |
|
47 static void e1000_clear_hw_cntrs(struct e1000_hw *hw); |
|
48 static void e1000_clear_vfta(struct e1000_hw *hw); |
|
49 static s32 e1000_commit_shadow_ram(struct e1000_hw *hw); |
|
50 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, |
|
51 bool link_up); |
|
52 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); |
|
53 static s32 e1000_detect_gig_phy(struct e1000_hw *hw); |
|
54 static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank); |
|
55 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); |
|
56 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
|
57 u16 *max_length); |
|
58 static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); |
|
59 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); |
|
60 static s32 e1000_get_software_flag(struct e1000_hw *hw); |
|
61 static s32 e1000_ich8_cycle_init(struct e1000_hw *hw); |
|
62 static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout); |
|
63 static s32 e1000_id_led_init(struct e1000_hw *hw); |
|
64 static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, |
|
65 u32 cnf_base_addr, |
|
66 u32 cnf_size); |
|
67 static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw); |
|
68 static void e1000_init_rx_addrs(struct e1000_hw *hw); |
|
69 static void e1000_initialize_hardware_bits(struct e1000_hw *hw); |
|
70 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw); |
|
71 static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw); |
|
72 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw); |
|
73 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, |
|
74 u16 offset, u8 *sum); |
|
75 static s32 e1000_mng_write_cmd_header(struct e1000_hw* hw, |
|
76 struct e1000_host_mng_command_header |
|
77 *hdr); |
|
78 static s32 e1000_mng_write_commit(struct e1000_hw *hw); |
|
79 static s32 e1000_phy_ife_get_info(struct e1000_hw *hw, |
|
80 struct e1000_phy_info *phy_info); |
|
81 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
|
82 struct e1000_phy_info *phy_info); |
|
83 static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, |
|
84 u16 *data); |
|
85 static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words, |
|
86 u16 *data); |
|
87 static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd); |
|
88 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
|
89 struct e1000_phy_info *phy_info); |
|
90 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); |
|
91 static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data); |
|
92 static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, |
|
93 u8 byte); |
|
94 static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte); |
|
95 static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data); |
|
96 static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size, |
|
97 u16 *data); |
|
98 static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size, |
|
99 u16 data); |
|
100 static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, |
|
101 u16 *data); |
|
102 static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, |
|
103 u16 *data); |
|
104 static void e1000_release_software_flag(struct e1000_hw *hw); |
|
105 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); |
|
106 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); |
|
107 static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop); |
|
108 static void e1000_set_pci_express_master_disable(struct e1000_hw *hw); |
|
109 static s32 e1000_wait_autoneg(struct e1000_hw *hw); |
|
110 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); |
|
111 static s32 e1000_set_phy_type(struct e1000_hw *hw); |
|
112 static void e1000_phy_init_script(struct e1000_hw *hw); |
|
113 static s32 e1000_setup_copper_link(struct e1000_hw *hw); |
|
114 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); |
|
115 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); |
|
116 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); |
|
117 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); |
|
118 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
|
119 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
|
120 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, |
|
121 u16 count); |
|
122 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); |
|
123 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); |
|
124 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, |
|
125 u16 words, u16 *data); |
|
126 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
|
127 u16 words, u16 *data); |
|
128 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); |
|
129 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); |
|
130 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); |
|
131 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); |
|
132 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
|
133 u16 phy_data); |
|
134 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr, |
|
135 u16 *phy_data); |
|
136 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); |
|
137 static s32 e1000_acquire_eeprom(struct e1000_hw *hw); |
|
138 static void e1000_release_eeprom(struct e1000_hw *hw); |
|
139 static void e1000_standby_eeprom(struct e1000_hw *hw); |
|
140 static s32 e1000_set_vco_speed(struct e1000_hw *hw); |
|
141 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
|
142 static s32 e1000_set_phy_mode(struct e1000_hw *hw); |
|
143 static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer); |
|
144 static u8 e1000_calculate_mng_checksum(char *buffer, u32 length); |
|
145 static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex); |
|
146 static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw); |
|
147 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); |
|
148 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); |
|
149 |
|
150 /* IGP cable length table */ |
|
151 static const |
|
152 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = |
|
153 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
|
154 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, |
|
155 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, |
|
156 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, |
|
157 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, |
|
158 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, |
|
159 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
|
160 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; |
|
161 |
|
162 static const |
|
163 u16 e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = |
|
164 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, |
|
165 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, |
|
166 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, |
|
167 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, |
|
168 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, |
|
169 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, |
|
170 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, |
|
171 104, 109, 114, 118, 121, 124}; |
|
172 |
|
173 static DEFINE_SPINLOCK(e1000_eeprom_lock); |
|
174 |
|
175 /****************************************************************************** |
|
176 * Set the phy type member in the hw struct. |
|
177 * |
|
178 * hw - Struct containing variables accessed by shared code |
|
179 *****************************************************************************/ |
|
180 static s32 e1000_set_phy_type(struct e1000_hw *hw) |
|
181 { |
|
182 DEBUGFUNC("e1000_set_phy_type"); |
|
183 |
|
184 if (hw->mac_type == e1000_undefined) |
|
185 return -E1000_ERR_PHY_TYPE; |
|
186 |
|
187 switch (hw->phy_id) { |
|
188 case M88E1000_E_PHY_ID: |
|
189 case M88E1000_I_PHY_ID: |
|
190 case M88E1011_I_PHY_ID: |
|
191 case M88E1111_I_PHY_ID: |
|
192 hw->phy_type = e1000_phy_m88; |
|
193 break; |
|
194 case IGP01E1000_I_PHY_ID: |
|
195 if (hw->mac_type == e1000_82541 || |
|
196 hw->mac_type == e1000_82541_rev_2 || |
|
197 hw->mac_type == e1000_82547 || |
|
198 hw->mac_type == e1000_82547_rev_2) { |
|
199 hw->phy_type = e1000_phy_igp; |
|
200 break; |
|
201 } |
|
202 case IGP03E1000_E_PHY_ID: |
|
203 hw->phy_type = e1000_phy_igp_3; |
|
204 break; |
|
205 case IFE_E_PHY_ID: |
|
206 case IFE_PLUS_E_PHY_ID: |
|
207 case IFE_C_E_PHY_ID: |
|
208 hw->phy_type = e1000_phy_ife; |
|
209 break; |
|
210 case GG82563_E_PHY_ID: |
|
211 if (hw->mac_type == e1000_80003es2lan) { |
|
212 hw->phy_type = e1000_phy_gg82563; |
|
213 break; |
|
214 } |
|
215 /* Fall Through */ |
|
216 default: |
|
217 /* Should never have loaded on this device */ |
|
218 hw->phy_type = e1000_phy_undefined; |
|
219 return -E1000_ERR_PHY_TYPE; |
|
220 } |
|
221 |
|
222 return E1000_SUCCESS; |
|
223 } |
|
224 |
|
225 /****************************************************************************** |
|
226 * IGP phy init script - initializes the GbE PHY |
|
227 * |
|
228 * hw - Struct containing variables accessed by shared code |
|
229 *****************************************************************************/ |
|
230 static void e1000_phy_init_script(struct e1000_hw *hw) |
|
231 { |
|
232 u32 ret_val; |
|
233 u16 phy_saved_data; |
|
234 |
|
235 DEBUGFUNC("e1000_phy_init_script"); |
|
236 |
|
237 if (hw->phy_init_script) { |
|
238 msleep(20); |
|
239 |
|
240 /* Save off the current value of register 0x2F5B to be restored at |
|
241 * the end of this routine. */ |
|
242 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
|
243 |
|
244 /* Disabled the PHY transmitter */ |
|
245 e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
|
246 |
|
247 msleep(20); |
|
248 |
|
249 e1000_write_phy_reg(hw,0x0000,0x0140); |
|
250 |
|
251 msleep(5); |
|
252 |
|
253 switch (hw->mac_type) { |
|
254 case e1000_82541: |
|
255 case e1000_82547: |
|
256 e1000_write_phy_reg(hw, 0x1F95, 0x0001); |
|
257 |
|
258 e1000_write_phy_reg(hw, 0x1F71, 0xBD21); |
|
259 |
|
260 e1000_write_phy_reg(hw, 0x1F79, 0x0018); |
|
261 |
|
262 e1000_write_phy_reg(hw, 0x1F30, 0x1600); |
|
263 |
|
264 e1000_write_phy_reg(hw, 0x1F31, 0x0014); |
|
265 |
|
266 e1000_write_phy_reg(hw, 0x1F32, 0x161C); |
|
267 |
|
268 e1000_write_phy_reg(hw, 0x1F94, 0x0003); |
|
269 |
|
270 e1000_write_phy_reg(hw, 0x1F96, 0x003F); |
|
271 |
|
272 e1000_write_phy_reg(hw, 0x2010, 0x0008); |
|
273 break; |
|
274 |
|
275 case e1000_82541_rev_2: |
|
276 case e1000_82547_rev_2: |
|
277 e1000_write_phy_reg(hw, 0x1F73, 0x0099); |
|
278 break; |
|
279 default: |
|
280 break; |
|
281 } |
|
282 |
|
283 e1000_write_phy_reg(hw, 0x0000, 0x3300); |
|
284 |
|
285 msleep(20); |
|
286 |
|
287 /* Now enable the transmitter */ |
|
288 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
|
289 |
|
290 if (hw->mac_type == e1000_82547) { |
|
291 u16 fused, fine, coarse; |
|
292 |
|
293 /* Move to analog registers page */ |
|
294 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); |
|
295 |
|
296 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { |
|
297 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); |
|
298 |
|
299 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; |
|
300 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; |
|
301 |
|
302 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { |
|
303 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; |
|
304 fine -= IGP01E1000_ANALOG_FUSE_FINE_1; |
|
305 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) |
|
306 fine -= IGP01E1000_ANALOG_FUSE_FINE_10; |
|
307 |
|
308 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | |
|
309 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | |
|
310 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); |
|
311 |
|
312 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); |
|
313 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, |
|
314 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); |
|
315 } |
|
316 } |
|
317 } |
|
318 } |
|
319 |
|
320 /****************************************************************************** |
|
321 * Set the mac type member in the hw struct. |
|
322 * |
|
323 * hw - Struct containing variables accessed by shared code |
|
324 *****************************************************************************/ |
|
325 s32 e1000_set_mac_type(struct e1000_hw *hw) |
|
326 { |
|
327 DEBUGFUNC("e1000_set_mac_type"); |
|
328 |
|
329 switch (hw->device_id) { |
|
330 case E1000_DEV_ID_82542: |
|
331 switch (hw->revision_id) { |
|
332 case E1000_82542_2_0_REV_ID: |
|
333 hw->mac_type = e1000_82542_rev2_0; |
|
334 break; |
|
335 case E1000_82542_2_1_REV_ID: |
|
336 hw->mac_type = e1000_82542_rev2_1; |
|
337 break; |
|
338 default: |
|
339 /* Invalid 82542 revision ID */ |
|
340 return -E1000_ERR_MAC_TYPE; |
|
341 } |
|
342 break; |
|
343 case E1000_DEV_ID_82543GC_FIBER: |
|
344 case E1000_DEV_ID_82543GC_COPPER: |
|
345 hw->mac_type = e1000_82543; |
|
346 break; |
|
347 case E1000_DEV_ID_82544EI_COPPER: |
|
348 case E1000_DEV_ID_82544EI_FIBER: |
|
349 case E1000_DEV_ID_82544GC_COPPER: |
|
350 case E1000_DEV_ID_82544GC_LOM: |
|
351 hw->mac_type = e1000_82544; |
|
352 break; |
|
353 case E1000_DEV_ID_82540EM: |
|
354 case E1000_DEV_ID_82540EM_LOM: |
|
355 case E1000_DEV_ID_82540EP: |
|
356 case E1000_DEV_ID_82540EP_LOM: |
|
357 case E1000_DEV_ID_82540EP_LP: |
|
358 hw->mac_type = e1000_82540; |
|
359 break; |
|
360 case E1000_DEV_ID_82545EM_COPPER: |
|
361 case E1000_DEV_ID_82545EM_FIBER: |
|
362 hw->mac_type = e1000_82545; |
|
363 break; |
|
364 case E1000_DEV_ID_82545GM_COPPER: |
|
365 case E1000_DEV_ID_82545GM_FIBER: |
|
366 case E1000_DEV_ID_82545GM_SERDES: |
|
367 hw->mac_type = e1000_82545_rev_3; |
|
368 break; |
|
369 case E1000_DEV_ID_82546EB_COPPER: |
|
370 case E1000_DEV_ID_82546EB_FIBER: |
|
371 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
372 hw->mac_type = e1000_82546; |
|
373 break; |
|
374 case E1000_DEV_ID_82546GB_COPPER: |
|
375 case E1000_DEV_ID_82546GB_FIBER: |
|
376 case E1000_DEV_ID_82546GB_SERDES: |
|
377 case E1000_DEV_ID_82546GB_PCIE: |
|
378 case E1000_DEV_ID_82546GB_QUAD_COPPER: |
|
379 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
380 hw->mac_type = e1000_82546_rev_3; |
|
381 break; |
|
382 case E1000_DEV_ID_82541EI: |
|
383 case E1000_DEV_ID_82541EI_MOBILE: |
|
384 case E1000_DEV_ID_82541ER_LOM: |
|
385 hw->mac_type = e1000_82541; |
|
386 break; |
|
387 case E1000_DEV_ID_82541ER: |
|
388 case E1000_DEV_ID_82541GI: |
|
389 case E1000_DEV_ID_82541GI_LF: |
|
390 case E1000_DEV_ID_82541GI_MOBILE: |
|
391 hw->mac_type = e1000_82541_rev_2; |
|
392 break; |
|
393 case E1000_DEV_ID_82547EI: |
|
394 case E1000_DEV_ID_82547EI_MOBILE: |
|
395 hw->mac_type = e1000_82547; |
|
396 break; |
|
397 case E1000_DEV_ID_82547GI: |
|
398 hw->mac_type = e1000_82547_rev_2; |
|
399 break; |
|
400 case E1000_DEV_ID_82571EB_COPPER: |
|
401 case E1000_DEV_ID_82571EB_FIBER: |
|
402 case E1000_DEV_ID_82571EB_SERDES: |
|
403 case E1000_DEV_ID_82571EB_SERDES_DUAL: |
|
404 case E1000_DEV_ID_82571EB_SERDES_QUAD: |
|
405 case E1000_DEV_ID_82571EB_QUAD_COPPER: |
|
406 case E1000_DEV_ID_82571PT_QUAD_COPPER: |
|
407 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
408 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: |
|
409 hw->mac_type = e1000_82571; |
|
410 break; |
|
411 case E1000_DEV_ID_82572EI_COPPER: |
|
412 case E1000_DEV_ID_82572EI_FIBER: |
|
413 case E1000_DEV_ID_82572EI_SERDES: |
|
414 case E1000_DEV_ID_82572EI: |
|
415 hw->mac_type = e1000_82572; |
|
416 break; |
|
417 case E1000_DEV_ID_82573E: |
|
418 case E1000_DEV_ID_82573E_IAMT: |
|
419 case E1000_DEV_ID_82573L: |
|
420 hw->mac_type = e1000_82573; |
|
421 break; |
|
422 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: |
|
423 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: |
|
424 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: |
|
425 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
|
426 hw->mac_type = e1000_80003es2lan; |
|
427 break; |
|
428 case E1000_DEV_ID_ICH8_IGP_M_AMT: |
|
429 case E1000_DEV_ID_ICH8_IGP_AMT: |
|
430 case E1000_DEV_ID_ICH8_IGP_C: |
|
431 case E1000_DEV_ID_ICH8_IFE: |
|
432 case E1000_DEV_ID_ICH8_IFE_GT: |
|
433 case E1000_DEV_ID_ICH8_IFE_G: |
|
434 case E1000_DEV_ID_ICH8_IGP_M: |
|
435 hw->mac_type = e1000_ich8lan; |
|
436 break; |
|
437 default: |
|
438 /* Should never have loaded on this device */ |
|
439 return -E1000_ERR_MAC_TYPE; |
|
440 } |
|
441 |
|
442 switch (hw->mac_type) { |
|
443 case e1000_ich8lan: |
|
444 hw->swfwhw_semaphore_present = true; |
|
445 hw->asf_firmware_present = true; |
|
446 break; |
|
447 case e1000_80003es2lan: |
|
448 hw->swfw_sync_present = true; |
|
449 /* fall through */ |
|
450 case e1000_82571: |
|
451 case e1000_82572: |
|
452 case e1000_82573: |
|
453 hw->eeprom_semaphore_present = true; |
|
454 /* fall through */ |
|
455 case e1000_82541: |
|
456 case e1000_82547: |
|
457 case e1000_82541_rev_2: |
|
458 case e1000_82547_rev_2: |
|
459 hw->asf_firmware_present = true; |
|
460 break; |
|
461 default: |
|
462 break; |
|
463 } |
|
464 |
|
465 /* The 82543 chip does not count tx_carrier_errors properly in |
|
466 * FD mode |
|
467 */ |
|
468 if (hw->mac_type == e1000_82543) |
|
469 hw->bad_tx_carr_stats_fd = true; |
|
470 |
|
471 /* capable of receiving management packets to the host */ |
|
472 if (hw->mac_type >= e1000_82571) |
|
473 hw->has_manc2h = true; |
|
474 |
|
475 /* In rare occasions, ESB2 systems would end up started without |
|
476 * the RX unit being turned on. |
|
477 */ |
|
478 if (hw->mac_type == e1000_80003es2lan) |
|
479 hw->rx_needs_kicking = true; |
|
480 |
|
481 if (hw->mac_type > e1000_82544) |
|
482 hw->has_smbus = true; |
|
483 |
|
484 return E1000_SUCCESS; |
|
485 } |
|
486 |
|
487 /***************************************************************************** |
|
488 * Set media type and TBI compatibility. |
|
489 * |
|
490 * hw - Struct containing variables accessed by shared code |
|
491 * **************************************************************************/ |
|
492 void e1000_set_media_type(struct e1000_hw *hw) |
|
493 { |
|
494 u32 status; |
|
495 |
|
496 DEBUGFUNC("e1000_set_media_type"); |
|
497 |
|
498 if (hw->mac_type != e1000_82543) { |
|
499 /* tbi_compatibility is only valid on 82543 */ |
|
500 hw->tbi_compatibility_en = false; |
|
501 } |
|
502 |
|
503 switch (hw->device_id) { |
|
504 case E1000_DEV_ID_82545GM_SERDES: |
|
505 case E1000_DEV_ID_82546GB_SERDES: |
|
506 case E1000_DEV_ID_82571EB_SERDES: |
|
507 case E1000_DEV_ID_82571EB_SERDES_DUAL: |
|
508 case E1000_DEV_ID_82571EB_SERDES_QUAD: |
|
509 case E1000_DEV_ID_82572EI_SERDES: |
|
510 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
|
511 hw->media_type = e1000_media_type_internal_serdes; |
|
512 break; |
|
513 default: |
|
514 switch (hw->mac_type) { |
|
515 case e1000_82542_rev2_0: |
|
516 case e1000_82542_rev2_1: |
|
517 hw->media_type = e1000_media_type_fiber; |
|
518 break; |
|
519 case e1000_ich8lan: |
|
520 case e1000_82573: |
|
521 /* The STATUS_TBIMODE bit is reserved or reused for the this |
|
522 * device. |
|
523 */ |
|
524 hw->media_type = e1000_media_type_copper; |
|
525 break; |
|
526 default: |
|
527 status = er32(STATUS); |
|
528 if (status & E1000_STATUS_TBIMODE) { |
|
529 hw->media_type = e1000_media_type_fiber; |
|
530 /* tbi_compatibility not valid on fiber */ |
|
531 hw->tbi_compatibility_en = false; |
|
532 } else { |
|
533 hw->media_type = e1000_media_type_copper; |
|
534 } |
|
535 break; |
|
536 } |
|
537 } |
|
538 } |
|
539 |
|
540 /****************************************************************************** |
|
541 * Reset the transmit and receive units; mask and clear all interrupts. |
|
542 * |
|
543 * hw - Struct containing variables accessed by shared code |
|
544 *****************************************************************************/ |
|
545 s32 e1000_reset_hw(struct e1000_hw *hw) |
|
546 { |
|
547 u32 ctrl; |
|
548 u32 ctrl_ext; |
|
549 u32 icr; |
|
550 u32 manc; |
|
551 u32 led_ctrl; |
|
552 u32 timeout; |
|
553 u32 extcnf_ctrl; |
|
554 s32 ret_val; |
|
555 |
|
556 DEBUGFUNC("e1000_reset_hw"); |
|
557 |
|
558 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
|
559 if (hw->mac_type == e1000_82542_rev2_0) { |
|
560 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
|
561 e1000_pci_clear_mwi(hw); |
|
562 } |
|
563 |
|
564 if (hw->bus_type == e1000_bus_type_pci_express) { |
|
565 /* Prevent the PCI-E bus from sticking if there is no TLP connection |
|
566 * on the last TLP read/write transaction when MAC is reset. |
|
567 */ |
|
568 if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) { |
|
569 DEBUGOUT("PCI-E Master disable polling has failed.\n"); |
|
570 } |
|
571 } |
|
572 |
|
573 /* Clear interrupt mask to stop board from generating interrupts */ |
|
574 DEBUGOUT("Masking off all interrupts\n"); |
|
575 ew32(IMC, 0xffffffff); |
|
576 |
|
577 /* Disable the Transmit and Receive units. Then delay to allow |
|
578 * any pending transactions to complete before we hit the MAC with |
|
579 * the global reset. |
|
580 */ |
|
581 ew32(RCTL, 0); |
|
582 ew32(TCTL, E1000_TCTL_PSP); |
|
583 E1000_WRITE_FLUSH(); |
|
584 |
|
585 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
|
586 hw->tbi_compatibility_on = false; |
|
587 |
|
588 /* Delay to allow any outstanding PCI transactions to complete before |
|
589 * resetting the device |
|
590 */ |
|
591 msleep(10); |
|
592 |
|
593 ctrl = er32(CTRL); |
|
594 |
|
595 /* Must reset the PHY before resetting the MAC */ |
|
596 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
597 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); |
|
598 msleep(5); |
|
599 } |
|
600 |
|
601 /* Must acquire the MDIO ownership before MAC reset. |
|
602 * Ownership defaults to firmware after a reset. */ |
|
603 if (hw->mac_type == e1000_82573) { |
|
604 timeout = 10; |
|
605 |
|
606 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
607 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
|
608 |
|
609 do { |
|
610 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
611 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
612 |
|
613 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) |
|
614 break; |
|
615 else |
|
616 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
|
617 |
|
618 msleep(2); |
|
619 timeout--; |
|
620 } while (timeout); |
|
621 } |
|
622 |
|
623 /* Workaround for ICH8 bit corruption issue in FIFO memory */ |
|
624 if (hw->mac_type == e1000_ich8lan) { |
|
625 /* Set Tx and Rx buffer allocation to 8k apiece. */ |
|
626 ew32(PBA, E1000_PBA_8K); |
|
627 /* Set Packet Buffer Size to 16k. */ |
|
628 ew32(PBS, E1000_PBS_16K); |
|
629 } |
|
630 |
|
631 /* Issue a global reset to the MAC. This will reset the chip's |
|
632 * transmit, receive, DMA, and link units. It will not effect |
|
633 * the current PCI configuration. The global reset bit is self- |
|
634 * clearing, and should clear within a microsecond. |
|
635 */ |
|
636 DEBUGOUT("Issuing a global reset to MAC\n"); |
|
637 |
|
638 switch (hw->mac_type) { |
|
639 case e1000_82544: |
|
640 case e1000_82540: |
|
641 case e1000_82545: |
|
642 case e1000_82546: |
|
643 case e1000_82541: |
|
644 case e1000_82541_rev_2: |
|
645 /* These controllers can't ack the 64-bit write when issuing the |
|
646 * reset, so use IO-mapping as a workaround to issue the reset */ |
|
647 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
|
648 break; |
|
649 case e1000_82545_rev_3: |
|
650 case e1000_82546_rev_3: |
|
651 /* Reset is performed on a shadow of the control register */ |
|
652 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
|
653 break; |
|
654 case e1000_ich8lan: |
|
655 if (!hw->phy_reset_disable && |
|
656 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) { |
|
657 /* e1000_ich8lan PHY HW reset requires MAC CORE reset |
|
658 * at the same time to make sure the interface between |
|
659 * MAC and the external PHY is reset. |
|
660 */ |
|
661 ctrl |= E1000_CTRL_PHY_RST; |
|
662 } |
|
663 |
|
664 e1000_get_software_flag(hw); |
|
665 ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
|
666 msleep(5); |
|
667 break; |
|
668 default: |
|
669 ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
|
670 break; |
|
671 } |
|
672 |
|
673 /* After MAC reset, force reload of EEPROM to restore power-on settings to |
|
674 * device. Later controllers reload the EEPROM automatically, so just wait |
|
675 * for reload to complete. |
|
676 */ |
|
677 switch (hw->mac_type) { |
|
678 case e1000_82542_rev2_0: |
|
679 case e1000_82542_rev2_1: |
|
680 case e1000_82543: |
|
681 case e1000_82544: |
|
682 /* Wait for reset to complete */ |
|
683 udelay(10); |
|
684 ctrl_ext = er32(CTRL_EXT); |
|
685 ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
|
686 ew32(CTRL_EXT, ctrl_ext); |
|
687 E1000_WRITE_FLUSH(); |
|
688 /* Wait for EEPROM reload */ |
|
689 msleep(2); |
|
690 break; |
|
691 case e1000_82541: |
|
692 case e1000_82541_rev_2: |
|
693 case e1000_82547: |
|
694 case e1000_82547_rev_2: |
|
695 /* Wait for EEPROM reload */ |
|
696 msleep(20); |
|
697 break; |
|
698 case e1000_82573: |
|
699 if (!e1000_is_onboard_nvm_eeprom(hw)) { |
|
700 udelay(10); |
|
701 ctrl_ext = er32(CTRL_EXT); |
|
702 ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
|
703 ew32(CTRL_EXT, ctrl_ext); |
|
704 E1000_WRITE_FLUSH(); |
|
705 } |
|
706 /* fall through */ |
|
707 default: |
|
708 /* Auto read done will delay 5ms or poll based on mac type */ |
|
709 ret_val = e1000_get_auto_rd_done(hw); |
|
710 if (ret_val) |
|
711 return ret_val; |
|
712 break; |
|
713 } |
|
714 |
|
715 /* Disable HW ARPs on ASF enabled adapters */ |
|
716 if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { |
|
717 manc = er32(MANC); |
|
718 manc &= ~(E1000_MANC_ARP_EN); |
|
719 ew32(MANC, manc); |
|
720 } |
|
721 |
|
722 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
723 e1000_phy_init_script(hw); |
|
724 |
|
725 /* Configure activity LED after PHY reset */ |
|
726 led_ctrl = er32(LEDCTL); |
|
727 led_ctrl &= IGP_ACTIVITY_LED_MASK; |
|
728 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
|
729 ew32(LEDCTL, led_ctrl); |
|
730 } |
|
731 |
|
732 /* Clear interrupt mask to stop board from generating interrupts */ |
|
733 DEBUGOUT("Masking off all interrupts\n"); |
|
734 ew32(IMC, 0xffffffff); |
|
735 |
|
736 /* Clear any pending interrupt events. */ |
|
737 icr = er32(ICR); |
|
738 |
|
739 /* If MWI was previously enabled, reenable it. */ |
|
740 if (hw->mac_type == e1000_82542_rev2_0) { |
|
741 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
742 e1000_pci_set_mwi(hw); |
|
743 } |
|
744 |
|
745 if (hw->mac_type == e1000_ich8lan) { |
|
746 u32 kab = er32(KABGTXD); |
|
747 kab |= E1000_KABGTXD_BGSQLBIAS; |
|
748 ew32(KABGTXD, kab); |
|
749 } |
|
750 |
|
751 return E1000_SUCCESS; |
|
752 } |
|
753 |
|
754 /****************************************************************************** |
|
755 * |
|
756 * Initialize a number of hardware-dependent bits |
|
757 * |
|
758 * hw: Struct containing variables accessed by shared code |
|
759 * |
|
760 * This function contains hardware limitation workarounds for PCI-E adapters |
|
761 * |
|
762 *****************************************************************************/ |
|
763 static void e1000_initialize_hardware_bits(struct e1000_hw *hw) |
|
764 { |
|
765 if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) { |
|
766 /* Settings common to all PCI-express silicon */ |
|
767 u32 reg_ctrl, reg_ctrl_ext; |
|
768 u32 reg_tarc0, reg_tarc1; |
|
769 u32 reg_tctl; |
|
770 u32 reg_txdctl, reg_txdctl1; |
|
771 |
|
772 /* link autonegotiation/sync workarounds */ |
|
773 reg_tarc0 = er32(TARC0); |
|
774 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27)); |
|
775 |
|
776 /* Enable not-done TX descriptor counting */ |
|
777 reg_txdctl = er32(TXDCTL); |
|
778 reg_txdctl |= E1000_TXDCTL_COUNT_DESC; |
|
779 ew32(TXDCTL, reg_txdctl); |
|
780 reg_txdctl1 = er32(TXDCTL1); |
|
781 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; |
|
782 ew32(TXDCTL1, reg_txdctl1); |
|
783 |
|
784 switch (hw->mac_type) { |
|
785 case e1000_82571: |
|
786 case e1000_82572: |
|
787 /* Clear PHY TX compatible mode bits */ |
|
788 reg_tarc1 = er32(TARC1); |
|
789 reg_tarc1 &= ~((1 << 30)|(1 << 29)); |
|
790 |
|
791 /* link autonegotiation/sync workarounds */ |
|
792 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23)); |
|
793 |
|
794 /* TX ring control fixes */ |
|
795 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24)); |
|
796 |
|
797 /* Multiple read bit is reversed polarity */ |
|
798 reg_tctl = er32(TCTL); |
|
799 if (reg_tctl & E1000_TCTL_MULR) |
|
800 reg_tarc1 &= ~(1 << 28); |
|
801 else |
|
802 reg_tarc1 |= (1 << 28); |
|
803 |
|
804 ew32(TARC1, reg_tarc1); |
|
805 break; |
|
806 case e1000_82573: |
|
807 reg_ctrl_ext = er32(CTRL_EXT); |
|
808 reg_ctrl_ext &= ~(1 << 23); |
|
809 reg_ctrl_ext |= (1 << 22); |
|
810 |
|
811 /* TX byte count fix */ |
|
812 reg_ctrl = er32(CTRL); |
|
813 reg_ctrl &= ~(1 << 29); |
|
814 |
|
815 ew32(CTRL_EXT, reg_ctrl_ext); |
|
816 ew32(CTRL, reg_ctrl); |
|
817 break; |
|
818 case e1000_80003es2lan: |
|
819 /* improve small packet performace for fiber/serdes */ |
|
820 if ((hw->media_type == e1000_media_type_fiber) || |
|
821 (hw->media_type == e1000_media_type_internal_serdes)) { |
|
822 reg_tarc0 &= ~(1 << 20); |
|
823 } |
|
824 |
|
825 /* Multiple read bit is reversed polarity */ |
|
826 reg_tctl = er32(TCTL); |
|
827 reg_tarc1 = er32(TARC1); |
|
828 if (reg_tctl & E1000_TCTL_MULR) |
|
829 reg_tarc1 &= ~(1 << 28); |
|
830 else |
|
831 reg_tarc1 |= (1 << 28); |
|
832 |
|
833 ew32(TARC1, reg_tarc1); |
|
834 break; |
|
835 case e1000_ich8lan: |
|
836 /* Reduce concurrent DMA requests to 3 from 4 */ |
|
837 if ((hw->revision_id < 3) || |
|
838 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && |
|
839 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) |
|
840 reg_tarc0 |= ((1 << 29)|(1 << 28)); |
|
841 |
|
842 reg_ctrl_ext = er32(CTRL_EXT); |
|
843 reg_ctrl_ext |= (1 << 22); |
|
844 ew32(CTRL_EXT, reg_ctrl_ext); |
|
845 |
|
846 /* workaround TX hang with TSO=on */ |
|
847 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23)); |
|
848 |
|
849 /* Multiple read bit is reversed polarity */ |
|
850 reg_tctl = er32(TCTL); |
|
851 reg_tarc1 = er32(TARC1); |
|
852 if (reg_tctl & E1000_TCTL_MULR) |
|
853 reg_tarc1 &= ~(1 << 28); |
|
854 else |
|
855 reg_tarc1 |= (1 << 28); |
|
856 |
|
857 /* workaround TX hang with TSO=on */ |
|
858 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24)); |
|
859 |
|
860 ew32(TARC1, reg_tarc1); |
|
861 break; |
|
862 default: |
|
863 break; |
|
864 } |
|
865 |
|
866 ew32(TARC0, reg_tarc0); |
|
867 } |
|
868 } |
|
869 |
|
870 /****************************************************************************** |
|
871 * Performs basic configuration of the adapter. |
|
872 * |
|
873 * hw - Struct containing variables accessed by shared code |
|
874 * |
|
875 * Assumes that the controller has previously been reset and is in a |
|
876 * post-reset uninitialized state. Initializes the receive address registers, |
|
877 * multicast table, and VLAN filter table. Calls routines to setup link |
|
878 * configuration and flow control settings. Clears all on-chip counters. Leaves |
|
879 * the transmit and receive units disabled and uninitialized. |
|
880 *****************************************************************************/ |
|
881 s32 e1000_init_hw(struct e1000_hw *hw) |
|
882 { |
|
883 u32 ctrl; |
|
884 u32 i; |
|
885 s32 ret_val; |
|
886 u32 mta_size; |
|
887 u32 reg_data; |
|
888 u32 ctrl_ext; |
|
889 |
|
890 DEBUGFUNC("e1000_init_hw"); |
|
891 |
|
892 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ |
|
893 if ((hw->mac_type == e1000_ich8lan) && |
|
894 ((hw->revision_id < 3) || |
|
895 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && |
|
896 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { |
|
897 reg_data = er32(STATUS); |
|
898 reg_data &= ~0x80000000; |
|
899 ew32(STATUS, reg_data); |
|
900 } |
|
901 |
|
902 /* Initialize Identification LED */ |
|
903 ret_val = e1000_id_led_init(hw); |
|
904 if (ret_val) { |
|
905 DEBUGOUT("Error Initializing Identification LED\n"); |
|
906 return ret_val; |
|
907 } |
|
908 |
|
909 /* Set the media type and TBI compatibility */ |
|
910 e1000_set_media_type(hw); |
|
911 |
|
912 /* Must be called after e1000_set_media_type because media_type is used */ |
|
913 e1000_initialize_hardware_bits(hw); |
|
914 |
|
915 /* Disabling VLAN filtering. */ |
|
916 DEBUGOUT("Initializing the IEEE VLAN\n"); |
|
917 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ |
|
918 if (hw->mac_type != e1000_ich8lan) { |
|
919 if (hw->mac_type < e1000_82545_rev_3) |
|
920 ew32(VET, 0); |
|
921 e1000_clear_vfta(hw); |
|
922 } |
|
923 |
|
924 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
|
925 if (hw->mac_type == e1000_82542_rev2_0) { |
|
926 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
|
927 e1000_pci_clear_mwi(hw); |
|
928 ew32(RCTL, E1000_RCTL_RST); |
|
929 E1000_WRITE_FLUSH(); |
|
930 msleep(5); |
|
931 } |
|
932 |
|
933 /* Setup the receive address. This involves initializing all of the Receive |
|
934 * Address Registers (RARs 0 - 15). |
|
935 */ |
|
936 e1000_init_rx_addrs(hw); |
|
937 |
|
938 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
|
939 if (hw->mac_type == e1000_82542_rev2_0) { |
|
940 ew32(RCTL, 0); |
|
941 E1000_WRITE_FLUSH(); |
|
942 msleep(1); |
|
943 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
944 e1000_pci_set_mwi(hw); |
|
945 } |
|
946 |
|
947 /* Zero out the Multicast HASH table */ |
|
948 DEBUGOUT("Zeroing the MTA\n"); |
|
949 mta_size = E1000_MC_TBL_SIZE; |
|
950 if (hw->mac_type == e1000_ich8lan) |
|
951 mta_size = E1000_MC_TBL_SIZE_ICH8LAN; |
|
952 for (i = 0; i < mta_size; i++) { |
|
953 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
|
954 /* use write flush to prevent Memory Write Block (MWB) from |
|
955 * occuring when accessing our register space */ |
|
956 E1000_WRITE_FLUSH(); |
|
957 } |
|
958 |
|
959 /* Set the PCI priority bit correctly in the CTRL register. This |
|
960 * determines if the adapter gives priority to receives, or if it |
|
961 * gives equal priority to transmits and receives. Valid only on |
|
962 * 82542 and 82543 silicon. |
|
963 */ |
|
964 if (hw->dma_fairness && hw->mac_type <= e1000_82543) { |
|
965 ctrl = er32(CTRL); |
|
966 ew32(CTRL, ctrl | E1000_CTRL_PRIOR); |
|
967 } |
|
968 |
|
969 switch (hw->mac_type) { |
|
970 case e1000_82545_rev_3: |
|
971 case e1000_82546_rev_3: |
|
972 break; |
|
973 default: |
|
974 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
|
975 if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048) |
|
976 e1000_pcix_set_mmrbc(hw, 2048); |
|
977 break; |
|
978 } |
|
979 |
|
980 /* More time needed for PHY to initialize */ |
|
981 if (hw->mac_type == e1000_ich8lan) |
|
982 msleep(15); |
|
983 |
|
984 /* Call a subroutine to configure the link and setup flow control. */ |
|
985 ret_val = e1000_setup_link(hw); |
|
986 |
|
987 /* Set the transmit descriptor write-back policy */ |
|
988 if (hw->mac_type > e1000_82544) { |
|
989 ctrl = er32(TXDCTL); |
|
990 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; |
|
991 ew32(TXDCTL, ctrl); |
|
992 } |
|
993 |
|
994 if (hw->mac_type == e1000_82573) { |
|
995 e1000_enable_tx_pkt_filtering(hw); |
|
996 } |
|
997 |
|
998 switch (hw->mac_type) { |
|
999 default: |
|
1000 break; |
|
1001 case e1000_80003es2lan: |
|
1002 /* Enable retransmit on late collisions */ |
|
1003 reg_data = er32(TCTL); |
|
1004 reg_data |= E1000_TCTL_RTLC; |
|
1005 ew32(TCTL, reg_data); |
|
1006 |
|
1007 /* Configure Gigabit Carry Extend Padding */ |
|
1008 reg_data = er32(TCTL_EXT); |
|
1009 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; |
|
1010 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; |
|
1011 ew32(TCTL_EXT, reg_data); |
|
1012 |
|
1013 /* Configure Transmit Inter-Packet Gap */ |
|
1014 reg_data = er32(TIPG); |
|
1015 reg_data &= ~E1000_TIPG_IPGT_MASK; |
|
1016 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; |
|
1017 ew32(TIPG, reg_data); |
|
1018 |
|
1019 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); |
|
1020 reg_data &= ~0x00100000; |
|
1021 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); |
|
1022 /* Fall through */ |
|
1023 case e1000_82571: |
|
1024 case e1000_82572: |
|
1025 case e1000_ich8lan: |
|
1026 ctrl = er32(TXDCTL1); |
|
1027 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; |
|
1028 ew32(TXDCTL1, ctrl); |
|
1029 break; |
|
1030 } |
|
1031 |
|
1032 |
|
1033 if (hw->mac_type == e1000_82573) { |
|
1034 u32 gcr = er32(GCR); |
|
1035 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; |
|
1036 ew32(GCR, gcr); |
|
1037 } |
|
1038 |
|
1039 /* Clear all of the statistics registers (clear on read). It is |
|
1040 * important that we do this after we have tried to establish link |
|
1041 * because the symbol error count will increment wildly if there |
|
1042 * is no link. |
|
1043 */ |
|
1044 e1000_clear_hw_cntrs(hw); |
|
1045 |
|
1046 /* ICH8 No-snoop bits are opposite polarity. |
|
1047 * Set to snoop by default after reset. */ |
|
1048 if (hw->mac_type == e1000_ich8lan) |
|
1049 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); |
|
1050 |
|
1051 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
|
1052 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
|
1053 ctrl_ext = er32(CTRL_EXT); |
|
1054 /* Relaxed ordering must be disabled to avoid a parity |
|
1055 * error crash in a PCI slot. */ |
|
1056 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
|
1057 ew32(CTRL_EXT, ctrl_ext); |
|
1058 } |
|
1059 |
|
1060 return ret_val; |
|
1061 } |
|
1062 |
|
1063 /****************************************************************************** |
|
1064 * Adjust SERDES output amplitude based on EEPROM setting. |
|
1065 * |
|
1066 * hw - Struct containing variables accessed by shared code. |
|
1067 *****************************************************************************/ |
|
1068 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) |
|
1069 { |
|
1070 u16 eeprom_data; |
|
1071 s32 ret_val; |
|
1072 |
|
1073 DEBUGFUNC("e1000_adjust_serdes_amplitude"); |
|
1074 |
|
1075 if (hw->media_type != e1000_media_type_internal_serdes) |
|
1076 return E1000_SUCCESS; |
|
1077 |
|
1078 switch (hw->mac_type) { |
|
1079 case e1000_82545_rev_3: |
|
1080 case e1000_82546_rev_3: |
|
1081 break; |
|
1082 default: |
|
1083 return E1000_SUCCESS; |
|
1084 } |
|
1085 |
|
1086 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); |
|
1087 if (ret_val) { |
|
1088 return ret_val; |
|
1089 } |
|
1090 |
|
1091 if (eeprom_data != EEPROM_RESERVED_WORD) { |
|
1092 /* Adjust SERDES output amplitude only. */ |
|
1093 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; |
|
1094 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); |
|
1095 if (ret_val) |
|
1096 return ret_val; |
|
1097 } |
|
1098 |
|
1099 return E1000_SUCCESS; |
|
1100 } |
|
1101 |
|
1102 /****************************************************************************** |
|
1103 * Configures flow control and link settings. |
|
1104 * |
|
1105 * hw - Struct containing variables accessed by shared code |
|
1106 * |
|
1107 * Determines which flow control settings to use. Calls the apropriate media- |
|
1108 * specific link configuration function. Configures the flow control settings. |
|
1109 * Assuming the adapter has a valid link partner, a valid link should be |
|
1110 * established. Assumes the hardware has previously been reset and the |
|
1111 * transmitter and receiver are not enabled. |
|
1112 *****************************************************************************/ |
|
1113 s32 e1000_setup_link(struct e1000_hw *hw) |
|
1114 { |
|
1115 u32 ctrl_ext; |
|
1116 s32 ret_val; |
|
1117 u16 eeprom_data; |
|
1118 |
|
1119 DEBUGFUNC("e1000_setup_link"); |
|
1120 |
|
1121 /* In the case of the phy reset being blocked, we already have a link. |
|
1122 * We do not have to set it up again. */ |
|
1123 if (e1000_check_phy_reset_block(hw)) |
|
1124 return E1000_SUCCESS; |
|
1125 |
|
1126 /* Read and store word 0x0F of the EEPROM. This word contains bits |
|
1127 * that determine the hardware's default PAUSE (flow control) mode, |
|
1128 * a bit that determines whether the HW defaults to enabling or |
|
1129 * disabling auto-negotiation, and the direction of the |
|
1130 * SW defined pins. If there is no SW over-ride of the flow |
|
1131 * control setting, then the variable hw->fc will |
|
1132 * be initialized based on a value in the EEPROM. |
|
1133 */ |
|
1134 if (hw->fc == E1000_FC_DEFAULT) { |
|
1135 switch (hw->mac_type) { |
|
1136 case e1000_ich8lan: |
|
1137 case e1000_82573: |
|
1138 hw->fc = E1000_FC_FULL; |
|
1139 break; |
|
1140 default: |
|
1141 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
|
1142 1, &eeprom_data); |
|
1143 if (ret_val) { |
|
1144 DEBUGOUT("EEPROM Read Error\n"); |
|
1145 return -E1000_ERR_EEPROM; |
|
1146 } |
|
1147 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
|
1148 hw->fc = E1000_FC_NONE; |
|
1149 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
|
1150 EEPROM_WORD0F_ASM_DIR) |
|
1151 hw->fc = E1000_FC_TX_PAUSE; |
|
1152 else |
|
1153 hw->fc = E1000_FC_FULL; |
|
1154 break; |
|
1155 } |
|
1156 } |
|
1157 |
|
1158 /* We want to save off the original Flow Control configuration just |
|
1159 * in case we get disconnected and then reconnected into a different |
|
1160 * hub or switch with different Flow Control capabilities. |
|
1161 */ |
|
1162 if (hw->mac_type == e1000_82542_rev2_0) |
|
1163 hw->fc &= (~E1000_FC_TX_PAUSE); |
|
1164 |
|
1165 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
|
1166 hw->fc &= (~E1000_FC_RX_PAUSE); |
|
1167 |
|
1168 hw->original_fc = hw->fc; |
|
1169 |
|
1170 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); |
|
1171 |
|
1172 /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
|
1173 * polarity value for the SW controlled pins, and setup the |
|
1174 * Extended Device Control reg with that info. |
|
1175 * This is needed because one of the SW controlled pins is used for |
|
1176 * signal detection. So this should be done before e1000_setup_pcs_link() |
|
1177 * or e1000_phy_setup() is called. |
|
1178 */ |
|
1179 if (hw->mac_type == e1000_82543) { |
|
1180 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
|
1181 1, &eeprom_data); |
|
1182 if (ret_val) { |
|
1183 DEBUGOUT("EEPROM Read Error\n"); |
|
1184 return -E1000_ERR_EEPROM; |
|
1185 } |
|
1186 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
|
1187 SWDPIO__EXT_SHIFT); |
|
1188 ew32(CTRL_EXT, ctrl_ext); |
|
1189 } |
|
1190 |
|
1191 /* Call the necessary subroutine to configure the link. */ |
|
1192 ret_val = (hw->media_type == e1000_media_type_copper) ? |
|
1193 e1000_setup_copper_link(hw) : |
|
1194 e1000_setup_fiber_serdes_link(hw); |
|
1195 |
|
1196 /* Initialize the flow control address, type, and PAUSE timer |
|
1197 * registers to their default values. This is done even if flow |
|
1198 * control is disabled, because it does not hurt anything to |
|
1199 * initialize these registers. |
|
1200 */ |
|
1201 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); |
|
1202 |
|
1203 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ |
|
1204 if (hw->mac_type != e1000_ich8lan) { |
|
1205 ew32(FCT, FLOW_CONTROL_TYPE); |
|
1206 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
|
1207 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); |
|
1208 } |
|
1209 |
|
1210 ew32(FCTTV, hw->fc_pause_time); |
|
1211 |
|
1212 /* Set the flow control receive threshold registers. Normally, |
|
1213 * these registers will be set to a default threshold that may be |
|
1214 * adjusted later by the driver's runtime code. However, if the |
|
1215 * ability to transmit pause frames in not enabled, then these |
|
1216 * registers will be set to 0. |
|
1217 */ |
|
1218 if (!(hw->fc & E1000_FC_TX_PAUSE)) { |
|
1219 ew32(FCRTL, 0); |
|
1220 ew32(FCRTH, 0); |
|
1221 } else { |
|
1222 /* We need to set up the Receive Threshold high and low water marks |
|
1223 * as well as (optionally) enabling the transmission of XON frames. |
|
1224 */ |
|
1225 if (hw->fc_send_xon) { |
|
1226 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); |
|
1227 ew32(FCRTH, hw->fc_high_water); |
|
1228 } else { |
|
1229 ew32(FCRTL, hw->fc_low_water); |
|
1230 ew32(FCRTH, hw->fc_high_water); |
|
1231 } |
|
1232 } |
|
1233 return ret_val; |
|
1234 } |
|
1235 |
|
1236 /****************************************************************************** |
|
1237 * Sets up link for a fiber based or serdes based adapter |
|
1238 * |
|
1239 * hw - Struct containing variables accessed by shared code |
|
1240 * |
|
1241 * Manipulates Physical Coding Sublayer functions in order to configure |
|
1242 * link. Assumes the hardware has been previously reset and the transmitter |
|
1243 * and receiver are not enabled. |
|
1244 *****************************************************************************/ |
|
1245 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) |
|
1246 { |
|
1247 u32 ctrl; |
|
1248 u32 status; |
|
1249 u32 txcw = 0; |
|
1250 u32 i; |
|
1251 u32 signal = 0; |
|
1252 s32 ret_val; |
|
1253 |
|
1254 DEBUGFUNC("e1000_setup_fiber_serdes_link"); |
|
1255 |
|
1256 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists |
|
1257 * until explicitly turned off or a power cycle is performed. A read to |
|
1258 * the register does not indicate its status. Therefore, we ensure |
|
1259 * loopback mode is disabled during initialization. |
|
1260 */ |
|
1261 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) |
|
1262 ew32(SCTL, E1000_DISABLE_SERDES_LOOPBACK); |
|
1263 |
|
1264 /* On adapters with a MAC newer than 82544, SWDP 1 will be |
|
1265 * set when the optics detect a signal. On older adapters, it will be |
|
1266 * cleared when there is a signal. This applies to fiber media only. |
|
1267 * If we're on serdes media, adjust the output amplitude to value |
|
1268 * set in the EEPROM. |
|
1269 */ |
|
1270 ctrl = er32(CTRL); |
|
1271 if (hw->media_type == e1000_media_type_fiber) |
|
1272 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
|
1273 |
|
1274 ret_val = e1000_adjust_serdes_amplitude(hw); |
|
1275 if (ret_val) |
|
1276 return ret_val; |
|
1277 |
|
1278 /* Take the link out of reset */ |
|
1279 ctrl &= ~(E1000_CTRL_LRST); |
|
1280 |
|
1281 /* Adjust VCO speed to improve BER performance */ |
|
1282 ret_val = e1000_set_vco_speed(hw); |
|
1283 if (ret_val) |
|
1284 return ret_val; |
|
1285 |
|
1286 e1000_config_collision_dist(hw); |
|
1287 |
|
1288 /* Check for a software override of the flow control settings, and setup |
|
1289 * the device accordingly. If auto-negotiation is enabled, then software |
|
1290 * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
|
1291 * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
|
1292 * auto-negotiation is disabled, then software will have to manually |
|
1293 * configure the two flow control enable bits in the CTRL register. |
|
1294 * |
|
1295 * The possible values of the "fc" parameter are: |
|
1296 * 0: Flow control is completely disabled |
|
1297 * 1: Rx flow control is enabled (we can receive pause frames, but |
|
1298 * not send pause frames). |
|
1299 * 2: Tx flow control is enabled (we can send pause frames but we do |
|
1300 * not support receiving pause frames). |
|
1301 * 3: Both Rx and TX flow control (symmetric) are enabled. |
|
1302 */ |
|
1303 switch (hw->fc) { |
|
1304 case E1000_FC_NONE: |
|
1305 /* Flow control is completely disabled by a software over-ride. */ |
|
1306 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
|
1307 break; |
|
1308 case E1000_FC_RX_PAUSE: |
|
1309 /* RX Flow control is enabled and TX Flow control is disabled by a |
|
1310 * software over-ride. Since there really isn't a way to advertise |
|
1311 * that we are capable of RX Pause ONLY, we will advertise that we |
|
1312 * support both symmetric and asymmetric RX PAUSE. Later, we will |
|
1313 * disable the adapter's ability to send PAUSE frames. |
|
1314 */ |
|
1315 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
|
1316 break; |
|
1317 case E1000_FC_TX_PAUSE: |
|
1318 /* TX Flow control is enabled, and RX Flow control is disabled, by a |
|
1319 * software over-ride. |
|
1320 */ |
|
1321 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
|
1322 break; |
|
1323 case E1000_FC_FULL: |
|
1324 /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
|
1325 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
|
1326 break; |
|
1327 default: |
|
1328 DEBUGOUT("Flow control param set incorrectly\n"); |
|
1329 return -E1000_ERR_CONFIG; |
|
1330 break; |
|
1331 } |
|
1332 |
|
1333 /* Since auto-negotiation is enabled, take the link out of reset (the link |
|
1334 * will be in reset, because we previously reset the chip). This will |
|
1335 * restart auto-negotiation. If auto-neogtiation is successful then the |
|
1336 * link-up status bit will be set and the flow control enable bits (RFCE |
|
1337 * and TFCE) will be set according to their negotiated value. |
|
1338 */ |
|
1339 DEBUGOUT("Auto-negotiation enabled\n"); |
|
1340 |
|
1341 ew32(TXCW, txcw); |
|
1342 ew32(CTRL, ctrl); |
|
1343 E1000_WRITE_FLUSH(); |
|
1344 |
|
1345 hw->txcw = txcw; |
|
1346 msleep(1); |
|
1347 |
|
1348 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" |
|
1349 * indication in the Device Status Register. Time-out if a link isn't |
|
1350 * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
|
1351 * less than 500 milliseconds even if the other end is doing it in SW). |
|
1352 * For internal serdes, we just assume a signal is present, then poll. |
|
1353 */ |
|
1354 if (hw->media_type == e1000_media_type_internal_serdes || |
|
1355 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
|
1356 DEBUGOUT("Looking for Link\n"); |
|
1357 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
|
1358 msleep(10); |
|
1359 status = er32(STATUS); |
|
1360 if (status & E1000_STATUS_LU) break; |
|
1361 } |
|
1362 if (i == (LINK_UP_TIMEOUT / 10)) { |
|
1363 DEBUGOUT("Never got a valid link from auto-neg!!!\n"); |
|
1364 hw->autoneg_failed = 1; |
|
1365 /* AutoNeg failed to achieve a link, so we'll call |
|
1366 * e1000_check_for_link. This routine will force the link up if |
|
1367 * we detect a signal. This will allow us to communicate with |
|
1368 * non-autonegotiating link partners. |
|
1369 */ |
|
1370 ret_val = e1000_check_for_link(hw); |
|
1371 if (ret_val) { |
|
1372 DEBUGOUT("Error while checking for link\n"); |
|
1373 return ret_val; |
|
1374 } |
|
1375 hw->autoneg_failed = 0; |
|
1376 } else { |
|
1377 hw->autoneg_failed = 0; |
|
1378 DEBUGOUT("Valid Link Found\n"); |
|
1379 } |
|
1380 } else { |
|
1381 DEBUGOUT("No Signal Detected\n"); |
|
1382 } |
|
1383 return E1000_SUCCESS; |
|
1384 } |
|
1385 |
|
1386 /****************************************************************************** |
|
1387 * Make sure we have a valid PHY and change PHY mode before link setup. |
|
1388 * |
|
1389 * hw - Struct containing variables accessed by shared code |
|
1390 ******************************************************************************/ |
|
1391 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) |
|
1392 { |
|
1393 u32 ctrl; |
|
1394 s32 ret_val; |
|
1395 u16 phy_data; |
|
1396 |
|
1397 DEBUGFUNC("e1000_copper_link_preconfig"); |
|
1398 |
|
1399 ctrl = er32(CTRL); |
|
1400 /* With 82543, we need to force speed and duplex on the MAC equal to what |
|
1401 * the PHY speed and duplex configuration is. In addition, we need to |
|
1402 * perform a hardware reset on the PHY to take it out of reset. |
|
1403 */ |
|
1404 if (hw->mac_type > e1000_82543) { |
|
1405 ctrl |= E1000_CTRL_SLU; |
|
1406 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1407 ew32(CTRL, ctrl); |
|
1408 } else { |
|
1409 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
|
1410 ew32(CTRL, ctrl); |
|
1411 ret_val = e1000_phy_hw_reset(hw); |
|
1412 if (ret_val) |
|
1413 return ret_val; |
|
1414 } |
|
1415 |
|
1416 /* Make sure we have a valid PHY */ |
|
1417 ret_val = e1000_detect_gig_phy(hw); |
|
1418 if (ret_val) { |
|
1419 DEBUGOUT("Error, did not detect valid phy.\n"); |
|
1420 return ret_val; |
|
1421 } |
|
1422 DEBUGOUT1("Phy ID = %x \n", hw->phy_id); |
|
1423 |
|
1424 /* Set PHY to class A mode (if necessary) */ |
|
1425 ret_val = e1000_set_phy_mode(hw); |
|
1426 if (ret_val) |
|
1427 return ret_val; |
|
1428 |
|
1429 if ((hw->mac_type == e1000_82545_rev_3) || |
|
1430 (hw->mac_type == e1000_82546_rev_3)) { |
|
1431 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
1432 phy_data |= 0x00000008; |
|
1433 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
1434 } |
|
1435 |
|
1436 if (hw->mac_type <= e1000_82543 || |
|
1437 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || |
|
1438 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) |
|
1439 hw->phy_reset_disable = false; |
|
1440 |
|
1441 return E1000_SUCCESS; |
|
1442 } |
|
1443 |
|
1444 |
|
1445 /******************************************************************** |
|
1446 * Copper link setup for e1000_phy_igp series. |
|
1447 * |
|
1448 * hw - Struct containing variables accessed by shared code |
|
1449 *********************************************************************/ |
|
1450 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) |
|
1451 { |
|
1452 u32 led_ctrl; |
|
1453 s32 ret_val; |
|
1454 u16 phy_data; |
|
1455 |
|
1456 DEBUGFUNC("e1000_copper_link_igp_setup"); |
|
1457 |
|
1458 if (hw->phy_reset_disable) |
|
1459 return E1000_SUCCESS; |
|
1460 |
|
1461 ret_val = e1000_phy_reset(hw); |
|
1462 if (ret_val) { |
|
1463 DEBUGOUT("Error Resetting the PHY\n"); |
|
1464 return ret_val; |
|
1465 } |
|
1466 |
|
1467 /* Wait 15ms for MAC to configure PHY from eeprom settings */ |
|
1468 msleep(15); |
|
1469 if (hw->mac_type != e1000_ich8lan) { |
|
1470 /* Configure activity LED after PHY reset */ |
|
1471 led_ctrl = er32(LEDCTL); |
|
1472 led_ctrl &= IGP_ACTIVITY_LED_MASK; |
|
1473 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
|
1474 ew32(LEDCTL, led_ctrl); |
|
1475 } |
|
1476 |
|
1477 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ |
|
1478 if (hw->phy_type == e1000_phy_igp) { |
|
1479 /* disable lplu d3 during driver init */ |
|
1480 ret_val = e1000_set_d3_lplu_state(hw, false); |
|
1481 if (ret_val) { |
|
1482 DEBUGOUT("Error Disabling LPLU D3\n"); |
|
1483 return ret_val; |
|
1484 } |
|
1485 } |
|
1486 |
|
1487 /* disable lplu d0 during driver init */ |
|
1488 ret_val = e1000_set_d0_lplu_state(hw, false); |
|
1489 if (ret_val) { |
|
1490 DEBUGOUT("Error Disabling LPLU D0\n"); |
|
1491 return ret_val; |
|
1492 } |
|
1493 /* Configure mdi-mdix settings */ |
|
1494 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
|
1495 if (ret_val) |
|
1496 return ret_val; |
|
1497 |
|
1498 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
1499 hw->dsp_config_state = e1000_dsp_config_disabled; |
|
1500 /* Force MDI for earlier revs of the IGP PHY */ |
|
1501 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); |
|
1502 hw->mdix = 1; |
|
1503 |
|
1504 } else { |
|
1505 hw->dsp_config_state = e1000_dsp_config_enabled; |
|
1506 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
|
1507 |
|
1508 switch (hw->mdix) { |
|
1509 case 1: |
|
1510 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
|
1511 break; |
|
1512 case 2: |
|
1513 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
|
1514 break; |
|
1515 case 0: |
|
1516 default: |
|
1517 phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
|
1518 break; |
|
1519 } |
|
1520 } |
|
1521 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
|
1522 if (ret_val) |
|
1523 return ret_val; |
|
1524 |
|
1525 /* set auto-master slave resolution settings */ |
|
1526 if (hw->autoneg) { |
|
1527 e1000_ms_type phy_ms_setting = hw->master_slave; |
|
1528 |
|
1529 if (hw->ffe_config_state == e1000_ffe_config_active) |
|
1530 hw->ffe_config_state = e1000_ffe_config_enabled; |
|
1531 |
|
1532 if (hw->dsp_config_state == e1000_dsp_config_activated) |
|
1533 hw->dsp_config_state = e1000_dsp_config_enabled; |
|
1534 |
|
1535 /* when autonegotiation advertisment is only 1000Mbps then we |
|
1536 * should disable SmartSpeed and enable Auto MasterSlave |
|
1537 * resolution as hardware default. */ |
|
1538 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
|
1539 /* Disable SmartSpeed */ |
|
1540 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1541 &phy_data); |
|
1542 if (ret_val) |
|
1543 return ret_val; |
|
1544 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
1545 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1546 phy_data); |
|
1547 if (ret_val) |
|
1548 return ret_val; |
|
1549 /* Set auto Master/Slave resolution process */ |
|
1550 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
|
1551 if (ret_val) |
|
1552 return ret_val; |
|
1553 phy_data &= ~CR_1000T_MS_ENABLE; |
|
1554 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
|
1555 if (ret_val) |
|
1556 return ret_val; |
|
1557 } |
|
1558 |
|
1559 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
|
1560 if (ret_val) |
|
1561 return ret_val; |
|
1562 |
|
1563 /* load defaults for future use */ |
|
1564 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
|
1565 ((phy_data & CR_1000T_MS_VALUE) ? |
|
1566 e1000_ms_force_master : |
|
1567 e1000_ms_force_slave) : |
|
1568 e1000_ms_auto; |
|
1569 |
|
1570 switch (phy_ms_setting) { |
|
1571 case e1000_ms_force_master: |
|
1572 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
|
1573 break; |
|
1574 case e1000_ms_force_slave: |
|
1575 phy_data |= CR_1000T_MS_ENABLE; |
|
1576 phy_data &= ~(CR_1000T_MS_VALUE); |
|
1577 break; |
|
1578 case e1000_ms_auto: |
|
1579 phy_data &= ~CR_1000T_MS_ENABLE; |
|
1580 default: |
|
1581 break; |
|
1582 } |
|
1583 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
|
1584 if (ret_val) |
|
1585 return ret_val; |
|
1586 } |
|
1587 |
|
1588 return E1000_SUCCESS; |
|
1589 } |
|
1590 |
|
1591 /******************************************************************** |
|
1592 * Copper link setup for e1000_phy_gg82563 series. |
|
1593 * |
|
1594 * hw - Struct containing variables accessed by shared code |
|
1595 *********************************************************************/ |
|
1596 static s32 e1000_copper_link_ggp_setup(struct e1000_hw *hw) |
|
1597 { |
|
1598 s32 ret_val; |
|
1599 u16 phy_data; |
|
1600 u32 reg_data; |
|
1601 |
|
1602 DEBUGFUNC("e1000_copper_link_ggp_setup"); |
|
1603 |
|
1604 if (!hw->phy_reset_disable) { |
|
1605 |
|
1606 /* Enable CRS on TX for half-duplex operation. */ |
|
1607 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, |
|
1608 &phy_data); |
|
1609 if (ret_val) |
|
1610 return ret_val; |
|
1611 |
|
1612 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
|
1613 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ |
|
1614 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; |
|
1615 |
|
1616 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, |
|
1617 phy_data); |
|
1618 if (ret_val) |
|
1619 return ret_val; |
|
1620 |
|
1621 /* Options: |
|
1622 * MDI/MDI-X = 0 (default) |
|
1623 * 0 - Auto for all speeds |
|
1624 * 1 - MDI mode |
|
1625 * 2 - MDI-X mode |
|
1626 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
|
1627 */ |
|
1628 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); |
|
1629 if (ret_val) |
|
1630 return ret_val; |
|
1631 |
|
1632 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; |
|
1633 |
|
1634 switch (hw->mdix) { |
|
1635 case 1: |
|
1636 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; |
|
1637 break; |
|
1638 case 2: |
|
1639 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; |
|
1640 break; |
|
1641 case 0: |
|
1642 default: |
|
1643 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; |
|
1644 break; |
|
1645 } |
|
1646 |
|
1647 /* Options: |
|
1648 * disable_polarity_correction = 0 (default) |
|
1649 * Automatic Correction for Reversed Cable Polarity |
|
1650 * 0 - Disabled |
|
1651 * 1 - Enabled |
|
1652 */ |
|
1653 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
|
1654 if (hw->disable_polarity_correction == 1) |
|
1655 phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
|
1656 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); |
|
1657 |
|
1658 if (ret_val) |
|
1659 return ret_val; |
|
1660 |
|
1661 /* SW Reset the PHY so all changes take effect */ |
|
1662 ret_val = e1000_phy_reset(hw); |
|
1663 if (ret_val) { |
|
1664 DEBUGOUT("Error Resetting the PHY\n"); |
|
1665 return ret_val; |
|
1666 } |
|
1667 } /* phy_reset_disable */ |
|
1668 |
|
1669 if (hw->mac_type == e1000_80003es2lan) { |
|
1670 /* Bypass RX and TX FIFO's */ |
|
1671 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, |
|
1672 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | |
|
1673 E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); |
|
1674 if (ret_val) |
|
1675 return ret_val; |
|
1676 |
|
1677 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data); |
|
1678 if (ret_val) |
|
1679 return ret_val; |
|
1680 |
|
1681 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; |
|
1682 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data); |
|
1683 |
|
1684 if (ret_val) |
|
1685 return ret_val; |
|
1686 |
|
1687 reg_data = er32(CTRL_EXT); |
|
1688 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); |
|
1689 ew32(CTRL_EXT, reg_data); |
|
1690 |
|
1691 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, |
|
1692 &phy_data); |
|
1693 if (ret_val) |
|
1694 return ret_val; |
|
1695 |
|
1696 /* Do not init these registers when the HW is in IAMT mode, since the |
|
1697 * firmware will have already initialized them. We only initialize |
|
1698 * them if the HW is not in IAMT mode. |
|
1699 */ |
|
1700 if (!e1000_check_mng_mode(hw)) { |
|
1701 /* Enable Electrical Idle on the PHY */ |
|
1702 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; |
|
1703 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, |
|
1704 phy_data); |
|
1705 if (ret_val) |
|
1706 return ret_val; |
|
1707 |
|
1708 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
|
1709 &phy_data); |
|
1710 if (ret_val) |
|
1711 return ret_val; |
|
1712 |
|
1713 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1714 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, |
|
1715 phy_data); |
|
1716 |
|
1717 if (ret_val) |
|
1718 return ret_val; |
|
1719 } |
|
1720 |
|
1721 /* Workaround: Disable padding in Kumeran interface in the MAC |
|
1722 * and in the PHY to avoid CRC errors. |
|
1723 */ |
|
1724 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, |
|
1725 &phy_data); |
|
1726 if (ret_val) |
|
1727 return ret_val; |
|
1728 phy_data |= GG82563_ICR_DIS_PADDING; |
|
1729 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, |
|
1730 phy_data); |
|
1731 if (ret_val) |
|
1732 return ret_val; |
|
1733 } |
|
1734 |
|
1735 return E1000_SUCCESS; |
|
1736 } |
|
1737 |
|
1738 /******************************************************************** |
|
1739 * Copper link setup for e1000_phy_m88 series. |
|
1740 * |
|
1741 * hw - Struct containing variables accessed by shared code |
|
1742 *********************************************************************/ |
|
1743 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) |
|
1744 { |
|
1745 s32 ret_val; |
|
1746 u16 phy_data; |
|
1747 |
|
1748 DEBUGFUNC("e1000_copper_link_mgp_setup"); |
|
1749 |
|
1750 if (hw->phy_reset_disable) |
|
1751 return E1000_SUCCESS; |
|
1752 |
|
1753 /* Enable CRS on TX. This must be set for half-duplex operation. */ |
|
1754 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
1755 if (ret_val) |
|
1756 return ret_val; |
|
1757 |
|
1758 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
|
1759 |
|
1760 /* Options: |
|
1761 * MDI/MDI-X = 0 (default) |
|
1762 * 0 - Auto for all speeds |
|
1763 * 1 - MDI mode |
|
1764 * 2 - MDI-X mode |
|
1765 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
|
1766 */ |
|
1767 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
|
1768 |
|
1769 switch (hw->mdix) { |
|
1770 case 1: |
|
1771 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
|
1772 break; |
|
1773 case 2: |
|
1774 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
|
1775 break; |
|
1776 case 3: |
|
1777 phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
|
1778 break; |
|
1779 case 0: |
|
1780 default: |
|
1781 phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
|
1782 break; |
|
1783 } |
|
1784 |
|
1785 /* Options: |
|
1786 * disable_polarity_correction = 0 (default) |
|
1787 * Automatic Correction for Reversed Cable Polarity |
|
1788 * 0 - Disabled |
|
1789 * 1 - Enabled |
|
1790 */ |
|
1791 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
|
1792 if (hw->disable_polarity_correction == 1) |
|
1793 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
|
1794 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
1795 if (ret_val) |
|
1796 return ret_val; |
|
1797 |
|
1798 if (hw->phy_revision < M88E1011_I_REV_4) { |
|
1799 /* Force TX_CLK in the Extended PHY Specific Control Register |
|
1800 * to 25MHz clock. |
|
1801 */ |
|
1802 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
|
1803 if (ret_val) |
|
1804 return ret_val; |
|
1805 |
|
1806 phy_data |= M88E1000_EPSCR_TX_CLK_25; |
|
1807 |
|
1808 if ((hw->phy_revision == E1000_REVISION_2) && |
|
1809 (hw->phy_id == M88E1111_I_PHY_ID)) { |
|
1810 /* Vidalia Phy, set the downshift counter to 5x */ |
|
1811 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); |
|
1812 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
|
1813 ret_val = e1000_write_phy_reg(hw, |
|
1814 M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
|
1815 if (ret_val) |
|
1816 return ret_val; |
|
1817 } else { |
|
1818 /* Configure Master and Slave downshift values */ |
|
1819 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
|
1820 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
|
1821 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
|
1822 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
|
1823 ret_val = e1000_write_phy_reg(hw, |
|
1824 M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
|
1825 if (ret_val) |
|
1826 return ret_val; |
|
1827 } |
|
1828 } |
|
1829 |
|
1830 /* SW Reset the PHY so all changes take effect */ |
|
1831 ret_val = e1000_phy_reset(hw); |
|
1832 if (ret_val) { |
|
1833 DEBUGOUT("Error Resetting the PHY\n"); |
|
1834 return ret_val; |
|
1835 } |
|
1836 |
|
1837 return E1000_SUCCESS; |
|
1838 } |
|
1839 |
|
1840 /******************************************************************** |
|
1841 * Setup auto-negotiation and flow control advertisements, |
|
1842 * and then perform auto-negotiation. |
|
1843 * |
|
1844 * hw - Struct containing variables accessed by shared code |
|
1845 *********************************************************************/ |
|
1846 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) |
|
1847 { |
|
1848 s32 ret_val; |
|
1849 u16 phy_data; |
|
1850 |
|
1851 DEBUGFUNC("e1000_copper_link_autoneg"); |
|
1852 |
|
1853 /* Perform some bounds checking on the hw->autoneg_advertised |
|
1854 * parameter. If this variable is zero, then set it to the default. |
|
1855 */ |
|
1856 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
1857 |
|
1858 /* If autoneg_advertised is zero, we assume it was not defaulted |
|
1859 * by the calling code so we set to advertise full capability. |
|
1860 */ |
|
1861 if (hw->autoneg_advertised == 0) |
|
1862 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
1863 |
|
1864 /* IFE phy only supports 10/100 */ |
|
1865 if (hw->phy_type == e1000_phy_ife) |
|
1866 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; |
|
1867 |
|
1868 DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
|
1869 ret_val = e1000_phy_setup_autoneg(hw); |
|
1870 if (ret_val) { |
|
1871 DEBUGOUT("Error Setting up Auto-Negotiation\n"); |
|
1872 return ret_val; |
|
1873 } |
|
1874 DEBUGOUT("Restarting Auto-Neg\n"); |
|
1875 |
|
1876 /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
|
1877 * the Auto Neg Restart bit in the PHY control register. |
|
1878 */ |
|
1879 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
|
1880 if (ret_val) |
|
1881 return ret_val; |
|
1882 |
|
1883 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
|
1884 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
|
1885 if (ret_val) |
|
1886 return ret_val; |
|
1887 |
|
1888 /* Does the user want to wait for Auto-Neg to complete here, or |
|
1889 * check at a later time (for example, callback routine). |
|
1890 */ |
|
1891 if (hw->wait_autoneg_complete) { |
|
1892 ret_val = e1000_wait_autoneg(hw); |
|
1893 if (ret_val) { |
|
1894 DEBUGOUT("Error while waiting for autoneg to complete\n"); |
|
1895 return ret_val; |
|
1896 } |
|
1897 } |
|
1898 |
|
1899 hw->get_link_status = true; |
|
1900 |
|
1901 return E1000_SUCCESS; |
|
1902 } |
|
1903 |
|
1904 /****************************************************************************** |
|
1905 * Config the MAC and the PHY after link is up. |
|
1906 * 1) Set up the MAC to the current PHY speed/duplex |
|
1907 * if we are on 82543. If we |
|
1908 * are on newer silicon, we only need to configure |
|
1909 * collision distance in the Transmit Control Register. |
|
1910 * 2) Set up flow control on the MAC to that established with |
|
1911 * the link partner. |
|
1912 * 3) Config DSP to improve Gigabit link quality for some PHY revisions. |
|
1913 * |
|
1914 * hw - Struct containing variables accessed by shared code |
|
1915 ******************************************************************************/ |
|
1916 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) |
|
1917 { |
|
1918 s32 ret_val; |
|
1919 DEBUGFUNC("e1000_copper_link_postconfig"); |
|
1920 |
|
1921 if (hw->mac_type >= e1000_82544) { |
|
1922 e1000_config_collision_dist(hw); |
|
1923 } else { |
|
1924 ret_val = e1000_config_mac_to_phy(hw); |
|
1925 if (ret_val) { |
|
1926 DEBUGOUT("Error configuring MAC to PHY settings\n"); |
|
1927 return ret_val; |
|
1928 } |
|
1929 } |
|
1930 ret_val = e1000_config_fc_after_link_up(hw); |
|
1931 if (ret_val) { |
|
1932 DEBUGOUT("Error Configuring Flow Control\n"); |
|
1933 return ret_val; |
|
1934 } |
|
1935 |
|
1936 /* Config DSP to improve Giga link quality */ |
|
1937 if (hw->phy_type == e1000_phy_igp) { |
|
1938 ret_val = e1000_config_dsp_after_link_change(hw, true); |
|
1939 if (ret_val) { |
|
1940 DEBUGOUT("Error Configuring DSP after link up\n"); |
|
1941 return ret_val; |
|
1942 } |
|
1943 } |
|
1944 |
|
1945 return E1000_SUCCESS; |
|
1946 } |
|
1947 |
|
1948 /****************************************************************************** |
|
1949 * Detects which PHY is present and setup the speed and duplex |
|
1950 * |
|
1951 * hw - Struct containing variables accessed by shared code |
|
1952 ******************************************************************************/ |
|
1953 static s32 e1000_setup_copper_link(struct e1000_hw *hw) |
|
1954 { |
|
1955 s32 ret_val; |
|
1956 u16 i; |
|
1957 u16 phy_data; |
|
1958 u16 reg_data; |
|
1959 |
|
1960 DEBUGFUNC("e1000_setup_copper_link"); |
|
1961 |
|
1962 switch (hw->mac_type) { |
|
1963 case e1000_80003es2lan: |
|
1964 case e1000_ich8lan: |
|
1965 /* Set the mac to wait the maximum time between each |
|
1966 * iteration and increase the max iterations when |
|
1967 * polling the phy; this fixes erroneous timeouts at 10Mbps. */ |
|
1968 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); |
|
1969 if (ret_val) |
|
1970 return ret_val; |
|
1971 ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); |
|
1972 if (ret_val) |
|
1973 return ret_val; |
|
1974 reg_data |= 0x3F; |
|
1975 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); |
|
1976 if (ret_val) |
|
1977 return ret_val; |
|
1978 default: |
|
1979 break; |
|
1980 } |
|
1981 |
|
1982 /* Check if it is a valid PHY and set PHY mode if necessary. */ |
|
1983 ret_val = e1000_copper_link_preconfig(hw); |
|
1984 if (ret_val) |
|
1985 return ret_val; |
|
1986 |
|
1987 switch (hw->mac_type) { |
|
1988 case e1000_80003es2lan: |
|
1989 /* Kumeran registers are written-only */ |
|
1990 reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; |
|
1991 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; |
|
1992 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, |
|
1993 reg_data); |
|
1994 if (ret_val) |
|
1995 return ret_val; |
|
1996 break; |
|
1997 default: |
|
1998 break; |
|
1999 } |
|
2000 |
|
2001 if (hw->phy_type == e1000_phy_igp || |
|
2002 hw->phy_type == e1000_phy_igp_3 || |
|
2003 hw->phy_type == e1000_phy_igp_2) { |
|
2004 ret_val = e1000_copper_link_igp_setup(hw); |
|
2005 if (ret_val) |
|
2006 return ret_val; |
|
2007 } else if (hw->phy_type == e1000_phy_m88) { |
|
2008 ret_val = e1000_copper_link_mgp_setup(hw); |
|
2009 if (ret_val) |
|
2010 return ret_val; |
|
2011 } else if (hw->phy_type == e1000_phy_gg82563) { |
|
2012 ret_val = e1000_copper_link_ggp_setup(hw); |
|
2013 if (ret_val) |
|
2014 return ret_val; |
|
2015 } |
|
2016 |
|
2017 if (hw->autoneg) { |
|
2018 /* Setup autoneg and flow control advertisement |
|
2019 * and perform autonegotiation */ |
|
2020 ret_val = e1000_copper_link_autoneg(hw); |
|
2021 if (ret_val) |
|
2022 return ret_val; |
|
2023 } else { |
|
2024 /* PHY will be set to 10H, 10F, 100H,or 100F |
|
2025 * depending on value from forced_speed_duplex. */ |
|
2026 DEBUGOUT("Forcing speed and duplex\n"); |
|
2027 ret_val = e1000_phy_force_speed_duplex(hw); |
|
2028 if (ret_val) { |
|
2029 DEBUGOUT("Error Forcing Speed and Duplex\n"); |
|
2030 return ret_val; |
|
2031 } |
|
2032 } |
|
2033 |
|
2034 /* Check link status. Wait up to 100 microseconds for link to become |
|
2035 * valid. |
|
2036 */ |
|
2037 for (i = 0; i < 10; i++) { |
|
2038 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2039 if (ret_val) |
|
2040 return ret_val; |
|
2041 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2042 if (ret_val) |
|
2043 return ret_val; |
|
2044 |
|
2045 if (phy_data & MII_SR_LINK_STATUS) { |
|
2046 /* Config the MAC and PHY after link is up */ |
|
2047 ret_val = e1000_copper_link_postconfig(hw); |
|
2048 if (ret_val) |
|
2049 return ret_val; |
|
2050 |
|
2051 DEBUGOUT("Valid link established!!!\n"); |
|
2052 return E1000_SUCCESS; |
|
2053 } |
|
2054 udelay(10); |
|
2055 } |
|
2056 |
|
2057 DEBUGOUT("Unable to establish link!!!\n"); |
|
2058 return E1000_SUCCESS; |
|
2059 } |
|
2060 |
|
2061 /****************************************************************************** |
|
2062 * Configure the MAC-to-PHY interface for 10/100Mbps |
|
2063 * |
|
2064 * hw - Struct containing variables accessed by shared code |
|
2065 ******************************************************************************/ |
|
2066 static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex) |
|
2067 { |
|
2068 s32 ret_val = E1000_SUCCESS; |
|
2069 u32 tipg; |
|
2070 u16 reg_data; |
|
2071 |
|
2072 DEBUGFUNC("e1000_configure_kmrn_for_10_100"); |
|
2073 |
|
2074 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; |
|
2075 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, |
|
2076 reg_data); |
|
2077 if (ret_val) |
|
2078 return ret_val; |
|
2079 |
|
2080 /* Configure Transmit Inter-Packet Gap */ |
|
2081 tipg = er32(TIPG); |
|
2082 tipg &= ~E1000_TIPG_IPGT_MASK; |
|
2083 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; |
|
2084 ew32(TIPG, tipg); |
|
2085 |
|
2086 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
|
2087 |
|
2088 if (ret_val) |
|
2089 return ret_val; |
|
2090 |
|
2091 if (duplex == HALF_DUPLEX) |
|
2092 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; |
|
2093 else |
|
2094 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
2095 |
|
2096 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
|
2097 |
|
2098 return ret_val; |
|
2099 } |
|
2100 |
|
2101 static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw) |
|
2102 { |
|
2103 s32 ret_val = E1000_SUCCESS; |
|
2104 u16 reg_data; |
|
2105 u32 tipg; |
|
2106 |
|
2107 DEBUGFUNC("e1000_configure_kmrn_for_1000"); |
|
2108 |
|
2109 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; |
|
2110 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, |
|
2111 reg_data); |
|
2112 if (ret_val) |
|
2113 return ret_val; |
|
2114 |
|
2115 /* Configure Transmit Inter-Packet Gap */ |
|
2116 tipg = er32(TIPG); |
|
2117 tipg &= ~E1000_TIPG_IPGT_MASK; |
|
2118 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; |
|
2119 ew32(TIPG, tipg); |
|
2120 |
|
2121 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
|
2122 |
|
2123 if (ret_val) |
|
2124 return ret_val; |
|
2125 |
|
2126 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
2127 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
|
2128 |
|
2129 return ret_val; |
|
2130 } |
|
2131 |
|
2132 /****************************************************************************** |
|
2133 * Configures PHY autoneg and flow control advertisement settings |
|
2134 * |
|
2135 * hw - Struct containing variables accessed by shared code |
|
2136 ******************************************************************************/ |
|
2137 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) |
|
2138 { |
|
2139 s32 ret_val; |
|
2140 u16 mii_autoneg_adv_reg; |
|
2141 u16 mii_1000t_ctrl_reg; |
|
2142 |
|
2143 DEBUGFUNC("e1000_phy_setup_autoneg"); |
|
2144 |
|
2145 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
|
2146 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
|
2147 if (ret_val) |
|
2148 return ret_val; |
|
2149 |
|
2150 if (hw->phy_type != e1000_phy_ife) { |
|
2151 /* Read the MII 1000Base-T Control Register (Address 9). */ |
|
2152 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
|
2153 if (ret_val) |
|
2154 return ret_val; |
|
2155 } else |
|
2156 mii_1000t_ctrl_reg=0; |
|
2157 |
|
2158 /* Need to parse both autoneg_advertised and fc and set up |
|
2159 * the appropriate PHY registers. First we will parse for |
|
2160 * autoneg_advertised software override. Since we can advertise |
|
2161 * a plethora of combinations, we need to check each bit |
|
2162 * individually. |
|
2163 */ |
|
2164 |
|
2165 /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
|
2166 * Advertisement Register (Address 4) and the 1000 mb speed bits in |
|
2167 * the 1000Base-T Control Register (Address 9). |
|
2168 */ |
|
2169 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
|
2170 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
|
2171 |
|
2172 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); |
|
2173 |
|
2174 /* Do we want to advertise 10 Mb Half Duplex? */ |
|
2175 if (hw->autoneg_advertised & ADVERTISE_10_HALF) { |
|
2176 DEBUGOUT("Advertise 10mb Half duplex\n"); |
|
2177 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
|
2178 } |
|
2179 |
|
2180 /* Do we want to advertise 10 Mb Full Duplex? */ |
|
2181 if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
|
2182 DEBUGOUT("Advertise 10mb Full duplex\n"); |
|
2183 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
|
2184 } |
|
2185 |
|
2186 /* Do we want to advertise 100 Mb Half Duplex? */ |
|
2187 if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
|
2188 DEBUGOUT("Advertise 100mb Half duplex\n"); |
|
2189 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
|
2190 } |
|
2191 |
|
2192 /* Do we want to advertise 100 Mb Full Duplex? */ |
|
2193 if (hw->autoneg_advertised & ADVERTISE_100_FULL) { |
|
2194 DEBUGOUT("Advertise 100mb Full duplex\n"); |
|
2195 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
|
2196 } |
|
2197 |
|
2198 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
|
2199 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
|
2200 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); |
|
2201 } |
|
2202 |
|
2203 /* Do we want to advertise 1000 Mb Full Duplex? */ |
|
2204 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
|
2205 DEBUGOUT("Advertise 1000mb Full duplex\n"); |
|
2206 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
|
2207 if (hw->phy_type == e1000_phy_ife) { |
|
2208 DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); |
|
2209 } |
|
2210 } |
|
2211 |
|
2212 /* Check for a software override of the flow control settings, and |
|
2213 * setup the PHY advertisement registers accordingly. If |
|
2214 * auto-negotiation is enabled, then software will have to set the |
|
2215 * "PAUSE" bits to the correct value in the Auto-Negotiation |
|
2216 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. |
|
2217 * |
|
2218 * The possible values of the "fc" parameter are: |
|
2219 * 0: Flow control is completely disabled |
|
2220 * 1: Rx flow control is enabled (we can receive pause frames |
|
2221 * but not send pause frames). |
|
2222 * 2: Tx flow control is enabled (we can send pause frames |
|
2223 * but we do not support receiving pause frames). |
|
2224 * 3: Both Rx and TX flow control (symmetric) are enabled. |
|
2225 * other: No software override. The flow control configuration |
|
2226 * in the EEPROM is used. |
|
2227 */ |
|
2228 switch (hw->fc) { |
|
2229 case E1000_FC_NONE: /* 0 */ |
|
2230 /* Flow control (RX & TX) is completely disabled by a |
|
2231 * software over-ride. |
|
2232 */ |
|
2233 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
|
2234 break; |
|
2235 case E1000_FC_RX_PAUSE: /* 1 */ |
|
2236 /* RX Flow control is enabled, and TX Flow control is |
|
2237 * disabled, by a software over-ride. |
|
2238 */ |
|
2239 /* Since there really isn't a way to advertise that we are |
|
2240 * capable of RX Pause ONLY, we will advertise that we |
|
2241 * support both symmetric and asymmetric RX PAUSE. Later |
|
2242 * (in e1000_config_fc_after_link_up) we will disable the |
|
2243 *hw's ability to send PAUSE frames. |
|
2244 */ |
|
2245 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
|
2246 break; |
|
2247 case E1000_FC_TX_PAUSE: /* 2 */ |
|
2248 /* TX Flow control is enabled, and RX Flow control is |
|
2249 * disabled, by a software over-ride. |
|
2250 */ |
|
2251 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
|
2252 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
|
2253 break; |
|
2254 case E1000_FC_FULL: /* 3 */ |
|
2255 /* Flow control (both RX and TX) is enabled by a software |
|
2256 * over-ride. |
|
2257 */ |
|
2258 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
|
2259 break; |
|
2260 default: |
|
2261 DEBUGOUT("Flow control param set incorrectly\n"); |
|
2262 return -E1000_ERR_CONFIG; |
|
2263 } |
|
2264 |
|
2265 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
|
2266 if (ret_val) |
|
2267 return ret_val; |
|
2268 |
|
2269 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
|
2270 |
|
2271 if (hw->phy_type != e1000_phy_ife) { |
|
2272 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
|
2273 if (ret_val) |
|
2274 return ret_val; |
|
2275 } |
|
2276 |
|
2277 return E1000_SUCCESS; |
|
2278 } |
|
2279 |
|
2280 /****************************************************************************** |
|
2281 * Force PHY speed and duplex settings to hw->forced_speed_duplex |
|
2282 * |
|
2283 * hw - Struct containing variables accessed by shared code |
|
2284 ******************************************************************************/ |
|
2285 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) |
|
2286 { |
|
2287 u32 ctrl; |
|
2288 s32 ret_val; |
|
2289 u16 mii_ctrl_reg; |
|
2290 u16 mii_status_reg; |
|
2291 u16 phy_data; |
|
2292 u16 i; |
|
2293 |
|
2294 DEBUGFUNC("e1000_phy_force_speed_duplex"); |
|
2295 |
|
2296 /* Turn off Flow control if we are forcing speed and duplex. */ |
|
2297 hw->fc = E1000_FC_NONE; |
|
2298 |
|
2299 DEBUGOUT1("hw->fc = %d\n", hw->fc); |
|
2300 |
|
2301 /* Read the Device Control Register. */ |
|
2302 ctrl = er32(CTRL); |
|
2303 |
|
2304 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ |
|
2305 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
2306 ctrl &= ~(DEVICE_SPEED_MASK); |
|
2307 |
|
2308 /* Clear the Auto Speed Detect Enable bit. */ |
|
2309 ctrl &= ~E1000_CTRL_ASDE; |
|
2310 |
|
2311 /* Read the MII Control Register. */ |
|
2312 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); |
|
2313 if (ret_val) |
|
2314 return ret_val; |
|
2315 |
|
2316 /* We need to disable autoneg in order to force link and duplex. */ |
|
2317 |
|
2318 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; |
|
2319 |
|
2320 /* Are we forcing Full or Half Duplex? */ |
|
2321 if (hw->forced_speed_duplex == e1000_100_full || |
|
2322 hw->forced_speed_duplex == e1000_10_full) { |
|
2323 /* We want to force full duplex so we SET the full duplex bits in the |
|
2324 * Device and MII Control Registers. |
|
2325 */ |
|
2326 ctrl |= E1000_CTRL_FD; |
|
2327 mii_ctrl_reg |= MII_CR_FULL_DUPLEX; |
|
2328 DEBUGOUT("Full Duplex\n"); |
|
2329 } else { |
|
2330 /* We want to force half duplex so we CLEAR the full duplex bits in |
|
2331 * the Device and MII Control Registers. |
|
2332 */ |
|
2333 ctrl &= ~E1000_CTRL_FD; |
|
2334 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; |
|
2335 DEBUGOUT("Half Duplex\n"); |
|
2336 } |
|
2337 |
|
2338 /* Are we forcing 100Mbps??? */ |
|
2339 if (hw->forced_speed_duplex == e1000_100_full || |
|
2340 hw->forced_speed_duplex == e1000_100_half) { |
|
2341 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ |
|
2342 ctrl |= E1000_CTRL_SPD_100; |
|
2343 mii_ctrl_reg |= MII_CR_SPEED_100; |
|
2344 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); |
|
2345 DEBUGOUT("Forcing 100mb "); |
|
2346 } else { |
|
2347 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ |
|
2348 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
|
2349 mii_ctrl_reg |= MII_CR_SPEED_10; |
|
2350 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); |
|
2351 DEBUGOUT("Forcing 10mb "); |
|
2352 } |
|
2353 |
|
2354 e1000_config_collision_dist(hw); |
|
2355 |
|
2356 /* Write the configured values back to the Device Control Reg. */ |
|
2357 ew32(CTRL, ctrl); |
|
2358 |
|
2359 if ((hw->phy_type == e1000_phy_m88) || |
|
2360 (hw->phy_type == e1000_phy_gg82563)) { |
|
2361 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
2362 if (ret_val) |
|
2363 return ret_val; |
|
2364 |
|
2365 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
|
2366 * forced whenever speed are duplex are forced. |
|
2367 */ |
|
2368 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
|
2369 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
2370 if (ret_val) |
|
2371 return ret_val; |
|
2372 |
|
2373 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); |
|
2374 |
|
2375 /* Need to reset the PHY or these changes will be ignored */ |
|
2376 mii_ctrl_reg |= MII_CR_RESET; |
|
2377 |
|
2378 /* Disable MDI-X support for 10/100 */ |
|
2379 } else if (hw->phy_type == e1000_phy_ife) { |
|
2380 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); |
|
2381 if (ret_val) |
|
2382 return ret_val; |
|
2383 |
|
2384 phy_data &= ~IFE_PMC_AUTO_MDIX; |
|
2385 phy_data &= ~IFE_PMC_FORCE_MDIX; |
|
2386 |
|
2387 ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); |
|
2388 if (ret_val) |
|
2389 return ret_val; |
|
2390 |
|
2391 } else { |
|
2392 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
|
2393 * forced whenever speed or duplex are forced. |
|
2394 */ |
|
2395 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
|
2396 if (ret_val) |
|
2397 return ret_val; |
|
2398 |
|
2399 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
|
2400 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
|
2401 |
|
2402 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
|
2403 if (ret_val) |
|
2404 return ret_val; |
|
2405 } |
|
2406 |
|
2407 /* Write back the modified PHY MII control register. */ |
|
2408 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); |
|
2409 if (ret_val) |
|
2410 return ret_val; |
|
2411 |
|
2412 udelay(1); |
|
2413 |
|
2414 /* The wait_autoneg_complete flag may be a little misleading here. |
|
2415 * Since we are forcing speed and duplex, Auto-Neg is not enabled. |
|
2416 * But we do want to delay for a period while forcing only so we |
|
2417 * don't generate false No Link messages. So we will wait here |
|
2418 * only if the user has set wait_autoneg_complete to 1, which is |
|
2419 * the default. |
|
2420 */ |
|
2421 if (hw->wait_autoneg_complete) { |
|
2422 /* We will wait for autoneg to complete. */ |
|
2423 DEBUGOUT("Waiting for forced speed/duplex link.\n"); |
|
2424 mii_status_reg = 0; |
|
2425 |
|
2426 /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
|
2427 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
2428 /* Read the MII Status Register and wait for Auto-Neg Complete bit |
|
2429 * to be set. |
|
2430 */ |
|
2431 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
2432 if (ret_val) |
|
2433 return ret_val; |
|
2434 |
|
2435 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
2436 if (ret_val) |
|
2437 return ret_val; |
|
2438 |
|
2439 if (mii_status_reg & MII_SR_LINK_STATUS) break; |
|
2440 msleep(100); |
|
2441 } |
|
2442 if ((i == 0) && |
|
2443 ((hw->phy_type == e1000_phy_m88) || |
|
2444 (hw->phy_type == e1000_phy_gg82563))) { |
|
2445 /* We didn't get link. Reset the DSP and wait again for link. */ |
|
2446 ret_val = e1000_phy_reset_dsp(hw); |
|
2447 if (ret_val) { |
|
2448 DEBUGOUT("Error Resetting PHY DSP\n"); |
|
2449 return ret_val; |
|
2450 } |
|
2451 } |
|
2452 /* This loop will early-out if the link condition has been met. */ |
|
2453 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
2454 if (mii_status_reg & MII_SR_LINK_STATUS) break; |
|
2455 msleep(100); |
|
2456 /* Read the MII Status Register and wait for Auto-Neg Complete bit |
|
2457 * to be set. |
|
2458 */ |
|
2459 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
2460 if (ret_val) |
|
2461 return ret_val; |
|
2462 |
|
2463 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
2464 if (ret_val) |
|
2465 return ret_val; |
|
2466 } |
|
2467 } |
|
2468 |
|
2469 if (hw->phy_type == e1000_phy_m88) { |
|
2470 /* Because we reset the PHY above, we need to re-force TX_CLK in the |
|
2471 * Extended PHY Specific Control Register to 25MHz clock. This value |
|
2472 * defaults back to a 2.5MHz clock when the PHY is reset. |
|
2473 */ |
|
2474 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); |
|
2475 if (ret_val) |
|
2476 return ret_val; |
|
2477 |
|
2478 phy_data |= M88E1000_EPSCR_TX_CLK_25; |
|
2479 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
|
2480 if (ret_val) |
|
2481 return ret_val; |
|
2482 |
|
2483 /* In addition, because of the s/w reset above, we need to enable CRS on |
|
2484 * TX. This must be set for both full and half duplex operation. |
|
2485 */ |
|
2486 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
2487 if (ret_val) |
|
2488 return ret_val; |
|
2489 |
|
2490 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
|
2491 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
2492 if (ret_val) |
|
2493 return ret_val; |
|
2494 |
|
2495 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && |
|
2496 (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full || |
|
2497 hw->forced_speed_duplex == e1000_10_half)) { |
|
2498 ret_val = e1000_polarity_reversal_workaround(hw); |
|
2499 if (ret_val) |
|
2500 return ret_val; |
|
2501 } |
|
2502 } else if (hw->phy_type == e1000_phy_gg82563) { |
|
2503 /* The TX_CLK of the Extended PHY Specific Control Register defaults |
|
2504 * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if |
|
2505 * we're not in a forced 10/duplex configuration. */ |
|
2506 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); |
|
2507 if (ret_val) |
|
2508 return ret_val; |
|
2509 |
|
2510 phy_data &= ~GG82563_MSCR_TX_CLK_MASK; |
|
2511 if ((hw->forced_speed_duplex == e1000_10_full) || |
|
2512 (hw->forced_speed_duplex == e1000_10_half)) |
|
2513 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ; |
|
2514 else |
|
2515 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ; |
|
2516 |
|
2517 /* Also due to the reset, we need to enable CRS on Tx. */ |
|
2518 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
|
2519 |
|
2520 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); |
|
2521 if (ret_val) |
|
2522 return ret_val; |
|
2523 } |
|
2524 return E1000_SUCCESS; |
|
2525 } |
|
2526 |
|
2527 /****************************************************************************** |
|
2528 * Sets the collision distance in the Transmit Control register |
|
2529 * |
|
2530 * hw - Struct containing variables accessed by shared code |
|
2531 * |
|
2532 * Link should have been established previously. Reads the speed and duplex |
|
2533 * information from the Device Status register. |
|
2534 ******************************************************************************/ |
|
2535 void e1000_config_collision_dist(struct e1000_hw *hw) |
|
2536 { |
|
2537 u32 tctl, coll_dist; |
|
2538 |
|
2539 DEBUGFUNC("e1000_config_collision_dist"); |
|
2540 |
|
2541 if (hw->mac_type < e1000_82543) |
|
2542 coll_dist = E1000_COLLISION_DISTANCE_82542; |
|
2543 else |
|
2544 coll_dist = E1000_COLLISION_DISTANCE; |
|
2545 |
|
2546 tctl = er32(TCTL); |
|
2547 |
|
2548 tctl &= ~E1000_TCTL_COLD; |
|
2549 tctl |= coll_dist << E1000_COLD_SHIFT; |
|
2550 |
|
2551 ew32(TCTL, tctl); |
|
2552 E1000_WRITE_FLUSH(); |
|
2553 } |
|
2554 |
|
2555 /****************************************************************************** |
|
2556 * Sets MAC speed and duplex settings to reflect the those in the PHY |
|
2557 * |
|
2558 * hw - Struct containing variables accessed by shared code |
|
2559 * mii_reg - data to write to the MII control register |
|
2560 * |
|
2561 * The contents of the PHY register containing the needed information need to |
|
2562 * be passed in. |
|
2563 ******************************************************************************/ |
|
2564 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) |
|
2565 { |
|
2566 u32 ctrl; |
|
2567 s32 ret_val; |
|
2568 u16 phy_data; |
|
2569 |
|
2570 DEBUGFUNC("e1000_config_mac_to_phy"); |
|
2571 |
|
2572 /* 82544 or newer MAC, Auto Speed Detection takes care of |
|
2573 * MAC speed/duplex configuration.*/ |
|
2574 if (hw->mac_type >= e1000_82544) |
|
2575 return E1000_SUCCESS; |
|
2576 |
|
2577 /* Read the Device Control Register and set the bits to Force Speed |
|
2578 * and Duplex. |
|
2579 */ |
|
2580 ctrl = er32(CTRL); |
|
2581 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
2582 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
|
2583 |
|
2584 /* Set up duplex in the Device Control and Transmit Control |
|
2585 * registers depending on negotiated values. |
|
2586 */ |
|
2587 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
|
2588 if (ret_val) |
|
2589 return ret_val; |
|
2590 |
|
2591 if (phy_data & M88E1000_PSSR_DPLX) |
|
2592 ctrl |= E1000_CTRL_FD; |
|
2593 else |
|
2594 ctrl &= ~E1000_CTRL_FD; |
|
2595 |
|
2596 e1000_config_collision_dist(hw); |
|
2597 |
|
2598 /* Set up speed in the Device Control register depending on |
|
2599 * negotiated values. |
|
2600 */ |
|
2601 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
|
2602 ctrl |= E1000_CTRL_SPD_1000; |
|
2603 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) |
|
2604 ctrl |= E1000_CTRL_SPD_100; |
|
2605 |
|
2606 /* Write the configured values back to the Device Control Reg. */ |
|
2607 ew32(CTRL, ctrl); |
|
2608 return E1000_SUCCESS; |
|
2609 } |
|
2610 |
|
2611 /****************************************************************************** |
|
2612 * Forces the MAC's flow control settings. |
|
2613 * |
|
2614 * hw - Struct containing variables accessed by shared code |
|
2615 * |
|
2616 * Sets the TFCE and RFCE bits in the device control register to reflect |
|
2617 * the adapter settings. TFCE and RFCE need to be explicitly set by |
|
2618 * software when a Copper PHY is used because autonegotiation is managed |
|
2619 * by the PHY rather than the MAC. Software must also configure these |
|
2620 * bits when link is forced on a fiber connection. |
|
2621 *****************************************************************************/ |
|
2622 s32 e1000_force_mac_fc(struct e1000_hw *hw) |
|
2623 { |
|
2624 u32 ctrl; |
|
2625 |
|
2626 DEBUGFUNC("e1000_force_mac_fc"); |
|
2627 |
|
2628 /* Get the current configuration of the Device Control Register */ |
|
2629 ctrl = er32(CTRL); |
|
2630 |
|
2631 /* Because we didn't get link via the internal auto-negotiation |
|
2632 * mechanism (we either forced link or we got link via PHY |
|
2633 * auto-neg), we have to manually enable/disable transmit an |
|
2634 * receive flow control. |
|
2635 * |
|
2636 * The "Case" statement below enables/disable flow control |
|
2637 * according to the "hw->fc" parameter. |
|
2638 * |
|
2639 * The possible values of the "fc" parameter are: |
|
2640 * 0: Flow control is completely disabled |
|
2641 * 1: Rx flow control is enabled (we can receive pause |
|
2642 * frames but not send pause frames). |
|
2643 * 2: Tx flow control is enabled (we can send pause frames |
|
2644 * frames but we do not receive pause frames). |
|
2645 * 3: Both Rx and TX flow control (symmetric) is enabled. |
|
2646 * other: No other values should be possible at this point. |
|
2647 */ |
|
2648 |
|
2649 switch (hw->fc) { |
|
2650 case E1000_FC_NONE: |
|
2651 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
|
2652 break; |
|
2653 case E1000_FC_RX_PAUSE: |
|
2654 ctrl &= (~E1000_CTRL_TFCE); |
|
2655 ctrl |= E1000_CTRL_RFCE; |
|
2656 break; |
|
2657 case E1000_FC_TX_PAUSE: |
|
2658 ctrl &= (~E1000_CTRL_RFCE); |
|
2659 ctrl |= E1000_CTRL_TFCE; |
|
2660 break; |
|
2661 case E1000_FC_FULL: |
|
2662 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
|
2663 break; |
|
2664 default: |
|
2665 DEBUGOUT("Flow control param set incorrectly\n"); |
|
2666 return -E1000_ERR_CONFIG; |
|
2667 } |
|
2668 |
|
2669 /* Disable TX Flow Control for 82542 (rev 2.0) */ |
|
2670 if (hw->mac_type == e1000_82542_rev2_0) |
|
2671 ctrl &= (~E1000_CTRL_TFCE); |
|
2672 |
|
2673 ew32(CTRL, ctrl); |
|
2674 return E1000_SUCCESS; |
|
2675 } |
|
2676 |
|
2677 /****************************************************************************** |
|
2678 * Configures flow control settings after link is established |
|
2679 * |
|
2680 * hw - Struct containing variables accessed by shared code |
|
2681 * |
|
2682 * Should be called immediately after a valid link has been established. |
|
2683 * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
|
2684 * and autonegotiation is enabled, the MAC flow control settings will be set |
|
2685 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
|
2686 * and RFCE bits will be automaticaly set to the negotiated flow control mode. |
|
2687 *****************************************************************************/ |
|
2688 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) |
|
2689 { |
|
2690 s32 ret_val; |
|
2691 u16 mii_status_reg; |
|
2692 u16 mii_nway_adv_reg; |
|
2693 u16 mii_nway_lp_ability_reg; |
|
2694 u16 speed; |
|
2695 u16 duplex; |
|
2696 |
|
2697 DEBUGFUNC("e1000_config_fc_after_link_up"); |
|
2698 |
|
2699 /* Check for the case where we have fiber media and auto-neg failed |
|
2700 * so we had to force link. In this case, we need to force the |
|
2701 * configuration of the MAC to match the "fc" parameter. |
|
2702 */ |
|
2703 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || |
|
2704 ((hw->media_type == e1000_media_type_internal_serdes) && |
|
2705 (hw->autoneg_failed)) || |
|
2706 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { |
|
2707 ret_val = e1000_force_mac_fc(hw); |
|
2708 if (ret_val) { |
|
2709 DEBUGOUT("Error forcing flow control settings\n"); |
|
2710 return ret_val; |
|
2711 } |
|
2712 } |
|
2713 |
|
2714 /* Check for the case where we have copper media and auto-neg is |
|
2715 * enabled. In this case, we need to check and see if Auto-Neg |
|
2716 * has completed, and if so, how the PHY and link partner has |
|
2717 * flow control configured. |
|
2718 */ |
|
2719 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { |
|
2720 /* Read the MII Status Register and check to see if AutoNeg |
|
2721 * has completed. We read this twice because this reg has |
|
2722 * some "sticky" (latched) bits. |
|
2723 */ |
|
2724 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
2725 if (ret_val) |
|
2726 return ret_val; |
|
2727 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
2728 if (ret_val) |
|
2729 return ret_val; |
|
2730 |
|
2731 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
|
2732 /* The AutoNeg process has completed, so we now need to |
|
2733 * read both the Auto Negotiation Advertisement Register |
|
2734 * (Address 4) and the Auto_Negotiation Base Page Ability |
|
2735 * Register (Address 5) to determine how flow control was |
|
2736 * negotiated. |
|
2737 */ |
|
2738 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, |
|
2739 &mii_nway_adv_reg); |
|
2740 if (ret_val) |
|
2741 return ret_val; |
|
2742 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, |
|
2743 &mii_nway_lp_ability_reg); |
|
2744 if (ret_val) |
|
2745 return ret_val; |
|
2746 |
|
2747 /* Two bits in the Auto Negotiation Advertisement Register |
|
2748 * (Address 4) and two bits in the Auto Negotiation Base |
|
2749 * Page Ability Register (Address 5) determine flow control |
|
2750 * for both the PHY and the link partner. The following |
|
2751 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
|
2752 * 1999, describes these PAUSE resolution bits and how flow |
|
2753 * control is determined based upon these settings. |
|
2754 * NOTE: DC = Don't Care |
|
2755 * |
|
2756 * LOCAL DEVICE | LINK PARTNER |
|
2757 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
|
2758 *-------|---------|-------|---------|-------------------- |
|
2759 * 0 | 0 | DC | DC | E1000_FC_NONE |
|
2760 * 0 | 1 | 0 | DC | E1000_FC_NONE |
|
2761 * 0 | 1 | 1 | 0 | E1000_FC_NONE |
|
2762 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
|
2763 * 1 | 0 | 0 | DC | E1000_FC_NONE |
|
2764 * 1 | DC | 1 | DC | E1000_FC_FULL |
|
2765 * 1 | 1 | 0 | 0 | E1000_FC_NONE |
|
2766 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
|
2767 * |
|
2768 */ |
|
2769 /* Are both PAUSE bits set to 1? If so, this implies |
|
2770 * Symmetric Flow Control is enabled at both ends. The |
|
2771 * ASM_DIR bits are irrelevant per the spec. |
|
2772 * |
|
2773 * For Symmetric Flow Control: |
|
2774 * |
|
2775 * LOCAL DEVICE | LINK PARTNER |
|
2776 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
2777 *-------|---------|-------|---------|-------------------- |
|
2778 * 1 | DC | 1 | DC | E1000_FC_FULL |
|
2779 * |
|
2780 */ |
|
2781 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
2782 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
|
2783 /* Now we need to check if the user selected RX ONLY |
|
2784 * of pause frames. In this case, we had to advertise |
|
2785 * FULL flow control because we could not advertise RX |
|
2786 * ONLY. Hence, we must now check to see if we need to |
|
2787 * turn OFF the TRANSMISSION of PAUSE frames. |
|
2788 */ |
|
2789 if (hw->original_fc == E1000_FC_FULL) { |
|
2790 hw->fc = E1000_FC_FULL; |
|
2791 DEBUGOUT("Flow Control = FULL.\n"); |
|
2792 } else { |
|
2793 hw->fc = E1000_FC_RX_PAUSE; |
|
2794 DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); |
|
2795 } |
|
2796 } |
|
2797 /* For receiving PAUSE frames ONLY. |
|
2798 * |
|
2799 * LOCAL DEVICE | LINK PARTNER |
|
2800 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
2801 *-------|---------|-------|---------|-------------------- |
|
2802 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
|
2803 * |
|
2804 */ |
|
2805 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
2806 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
|
2807 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
|
2808 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
|
2809 hw->fc = E1000_FC_TX_PAUSE; |
|
2810 DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); |
|
2811 } |
|
2812 /* For transmitting PAUSE frames ONLY. |
|
2813 * |
|
2814 * LOCAL DEVICE | LINK PARTNER |
|
2815 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
2816 *-------|---------|-------|---------|-------------------- |
|
2817 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
|
2818 * |
|
2819 */ |
|
2820 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
2821 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
|
2822 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
|
2823 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
|
2824 hw->fc = E1000_FC_RX_PAUSE; |
|
2825 DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); |
|
2826 } |
|
2827 /* Per the IEEE spec, at this point flow control should be |
|
2828 * disabled. However, we want to consider that we could |
|
2829 * be connected to a legacy switch that doesn't advertise |
|
2830 * desired flow control, but can be forced on the link |
|
2831 * partner. So if we advertised no flow control, that is |
|
2832 * what we will resolve to. If we advertised some kind of |
|
2833 * receive capability (Rx Pause Only or Full Flow Control) |
|
2834 * and the link partner advertised none, we will configure |
|
2835 * ourselves to enable Rx Flow Control only. We can do |
|
2836 * this safely for two reasons: If the link partner really |
|
2837 * didn't want flow control enabled, and we enable Rx, no |
|
2838 * harm done since we won't be receiving any PAUSE frames |
|
2839 * anyway. If the intent on the link partner was to have |
|
2840 * flow control enabled, then by us enabling RX only, we |
|
2841 * can at least receive pause frames and process them. |
|
2842 * This is a good idea because in most cases, since we are |
|
2843 * predominantly a server NIC, more times than not we will |
|
2844 * be asked to delay transmission of packets than asking |
|
2845 * our link partner to pause transmission of frames. |
|
2846 */ |
|
2847 else if ((hw->original_fc == E1000_FC_NONE || |
|
2848 hw->original_fc == E1000_FC_TX_PAUSE) || |
|
2849 hw->fc_strict_ieee) { |
|
2850 hw->fc = E1000_FC_NONE; |
|
2851 DEBUGOUT("Flow Control = NONE.\n"); |
|
2852 } else { |
|
2853 hw->fc = E1000_FC_RX_PAUSE; |
|
2854 DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); |
|
2855 } |
|
2856 |
|
2857 /* Now we need to do one last check... If we auto- |
|
2858 * negotiated to HALF DUPLEX, flow control should not be |
|
2859 * enabled per IEEE 802.3 spec. |
|
2860 */ |
|
2861 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
|
2862 if (ret_val) { |
|
2863 DEBUGOUT("Error getting link speed and duplex\n"); |
|
2864 return ret_val; |
|
2865 } |
|
2866 |
|
2867 if (duplex == HALF_DUPLEX) |
|
2868 hw->fc = E1000_FC_NONE; |
|
2869 |
|
2870 /* Now we call a subroutine to actually force the MAC |
|
2871 * controller to use the correct flow control settings. |
|
2872 */ |
|
2873 ret_val = e1000_force_mac_fc(hw); |
|
2874 if (ret_val) { |
|
2875 DEBUGOUT("Error forcing flow control settings\n"); |
|
2876 return ret_val; |
|
2877 } |
|
2878 } else { |
|
2879 DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); |
|
2880 } |
|
2881 } |
|
2882 return E1000_SUCCESS; |
|
2883 } |
|
2884 |
|
2885 /****************************************************************************** |
|
2886 * Checks to see if the link status of the hardware has changed. |
|
2887 * |
|
2888 * hw - Struct containing variables accessed by shared code |
|
2889 * |
|
2890 * Called by any function that needs to check the link status of the adapter. |
|
2891 *****************************************************************************/ |
|
2892 s32 e1000_check_for_link(struct e1000_hw *hw) |
|
2893 { |
|
2894 u32 rxcw = 0; |
|
2895 u32 ctrl; |
|
2896 u32 status; |
|
2897 u32 rctl; |
|
2898 u32 icr; |
|
2899 u32 signal = 0; |
|
2900 s32 ret_val; |
|
2901 u16 phy_data; |
|
2902 |
|
2903 DEBUGFUNC("e1000_check_for_link"); |
|
2904 |
|
2905 ctrl = er32(CTRL); |
|
2906 status = er32(STATUS); |
|
2907 |
|
2908 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be |
|
2909 * set when the optics detect a signal. On older adapters, it will be |
|
2910 * cleared when there is a signal. This applies to fiber media only. |
|
2911 */ |
|
2912 if ((hw->media_type == e1000_media_type_fiber) || |
|
2913 (hw->media_type == e1000_media_type_internal_serdes)) { |
|
2914 rxcw = er32(RXCW); |
|
2915 |
|
2916 if (hw->media_type == e1000_media_type_fiber) { |
|
2917 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
|
2918 if (status & E1000_STATUS_LU) |
|
2919 hw->get_link_status = false; |
|
2920 } |
|
2921 } |
|
2922 |
|
2923 /* If we have a copper PHY then we only want to go out to the PHY |
|
2924 * registers to see if Auto-Neg has completed and/or if our link |
|
2925 * status has changed. The get_link_status flag will be set if we |
|
2926 * receive a Link Status Change interrupt or we have Rx Sequence |
|
2927 * Errors. |
|
2928 */ |
|
2929 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
|
2930 /* First we want to see if the MII Status Register reports |
|
2931 * link. If so, then we want to get the current speed/duplex |
|
2932 * of the PHY. |
|
2933 * Read the register twice since the link bit is sticky. |
|
2934 */ |
|
2935 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2936 if (ret_val) |
|
2937 return ret_val; |
|
2938 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2939 if (ret_val) |
|
2940 return ret_val; |
|
2941 |
|
2942 if (phy_data & MII_SR_LINK_STATUS) { |
|
2943 hw->get_link_status = false; |
|
2944 /* Check if there was DownShift, must be checked immediately after |
|
2945 * link-up */ |
|
2946 e1000_check_downshift(hw); |
|
2947 |
|
2948 /* If we are on 82544 or 82543 silicon and speed/duplex |
|
2949 * are forced to 10H or 10F, then we will implement the polarity |
|
2950 * reversal workaround. We disable interrupts first, and upon |
|
2951 * returning, place the devices interrupt state to its previous |
|
2952 * value except for the link status change interrupt which will |
|
2953 * happen due to the execution of this workaround. |
|
2954 */ |
|
2955 |
|
2956 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && |
|
2957 (!hw->autoneg) && |
|
2958 (hw->forced_speed_duplex == e1000_10_full || |
|
2959 hw->forced_speed_duplex == e1000_10_half)) { |
|
2960 ew32(IMC, 0xffffffff); |
|
2961 ret_val = e1000_polarity_reversal_workaround(hw); |
|
2962 icr = er32(ICR); |
|
2963 ew32(ICS, (icr & ~E1000_ICS_LSC)); |
|
2964 ew32(IMS, IMS_ENABLE_MASK); |
|
2965 } |
|
2966 |
|
2967 } else { |
|
2968 /* No link detected */ |
|
2969 e1000_config_dsp_after_link_change(hw, false); |
|
2970 return 0; |
|
2971 } |
|
2972 |
|
2973 /* If we are forcing speed/duplex, then we simply return since |
|
2974 * we have already determined whether we have link or not. |
|
2975 */ |
|
2976 if (!hw->autoneg) return -E1000_ERR_CONFIG; |
|
2977 |
|
2978 /* optimize the dsp settings for the igp phy */ |
|
2979 e1000_config_dsp_after_link_change(hw, true); |
|
2980 |
|
2981 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
|
2982 * have Si on board that is 82544 or newer, Auto |
|
2983 * Speed Detection takes care of MAC speed/duplex |
|
2984 * configuration. So we only need to configure Collision |
|
2985 * Distance in the MAC. Otherwise, we need to force |
|
2986 * speed/duplex on the MAC to the current PHY speed/duplex |
|
2987 * settings. |
|
2988 */ |
|
2989 if (hw->mac_type >= e1000_82544) |
|
2990 e1000_config_collision_dist(hw); |
|
2991 else { |
|
2992 ret_val = e1000_config_mac_to_phy(hw); |
|
2993 if (ret_val) { |
|
2994 DEBUGOUT("Error configuring MAC to PHY settings\n"); |
|
2995 return ret_val; |
|
2996 } |
|
2997 } |
|
2998 |
|
2999 /* Configure Flow Control now that Auto-Neg has completed. First, we |
|
3000 * need to restore the desired flow control settings because we may |
|
3001 * have had to re-autoneg with a different link partner. |
|
3002 */ |
|
3003 ret_val = e1000_config_fc_after_link_up(hw); |
|
3004 if (ret_val) { |
|
3005 DEBUGOUT("Error configuring flow control\n"); |
|
3006 return ret_val; |
|
3007 } |
|
3008 |
|
3009 /* At this point we know that we are on copper and we have |
|
3010 * auto-negotiated link. These are conditions for checking the link |
|
3011 * partner capability register. We use the link speed to determine if |
|
3012 * TBI compatibility needs to be turned on or off. If the link is not |
|
3013 * at gigabit speed, then TBI compatibility is not needed. If we are |
|
3014 * at gigabit speed, we turn on TBI compatibility. |
|
3015 */ |
|
3016 if (hw->tbi_compatibility_en) { |
|
3017 u16 speed, duplex; |
|
3018 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
|
3019 if (ret_val) { |
|
3020 DEBUGOUT("Error getting link speed and duplex\n"); |
|
3021 return ret_val; |
|
3022 } |
|
3023 if (speed != SPEED_1000) { |
|
3024 /* If link speed is not set to gigabit speed, we do not need |
|
3025 * to enable TBI compatibility. |
|
3026 */ |
|
3027 if (hw->tbi_compatibility_on) { |
|
3028 /* If we previously were in the mode, turn it off. */ |
|
3029 rctl = er32(RCTL); |
|
3030 rctl &= ~E1000_RCTL_SBP; |
|
3031 ew32(RCTL, rctl); |
|
3032 hw->tbi_compatibility_on = false; |
|
3033 } |
|
3034 } else { |
|
3035 /* If TBI compatibility is was previously off, turn it on. For |
|
3036 * compatibility with a TBI link partner, we will store bad |
|
3037 * packets. Some frames have an additional byte on the end and |
|
3038 * will look like CRC errors to to the hardware. |
|
3039 */ |
|
3040 if (!hw->tbi_compatibility_on) { |
|
3041 hw->tbi_compatibility_on = true; |
|
3042 rctl = er32(RCTL); |
|
3043 rctl |= E1000_RCTL_SBP; |
|
3044 ew32(RCTL, rctl); |
|
3045 } |
|
3046 } |
|
3047 } |
|
3048 } |
|
3049 /* If we don't have link (auto-negotiation failed or link partner cannot |
|
3050 * auto-negotiate), the cable is plugged in (we have signal), and our |
|
3051 * link partner is not trying to auto-negotiate with us (we are receiving |
|
3052 * idles or data), we need to force link up. We also need to give |
|
3053 * auto-negotiation time to complete, in case the cable was just plugged |
|
3054 * in. The autoneg_failed flag does this. |
|
3055 */ |
|
3056 else if ((((hw->media_type == e1000_media_type_fiber) && |
|
3057 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || |
|
3058 (hw->media_type == e1000_media_type_internal_serdes)) && |
|
3059 (!(status & E1000_STATUS_LU)) && |
|
3060 (!(rxcw & E1000_RXCW_C))) { |
|
3061 if (hw->autoneg_failed == 0) { |
|
3062 hw->autoneg_failed = 1; |
|
3063 return 0; |
|
3064 } |
|
3065 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); |
|
3066 |
|
3067 /* Disable auto-negotiation in the TXCW register */ |
|
3068 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); |
|
3069 |
|
3070 /* Force link-up and also force full-duplex. */ |
|
3071 ctrl = er32(CTRL); |
|
3072 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
|
3073 ew32(CTRL, ctrl); |
|
3074 |
|
3075 /* Configure Flow Control after forcing link up. */ |
|
3076 ret_val = e1000_config_fc_after_link_up(hw); |
|
3077 if (ret_val) { |
|
3078 DEBUGOUT("Error configuring flow control\n"); |
|
3079 return ret_val; |
|
3080 } |
|
3081 } |
|
3082 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable |
|
3083 * auto-negotiation in the TXCW register and disable forced link in the |
|
3084 * Device Control register in an attempt to auto-negotiate with our link |
|
3085 * partner. |
|
3086 */ |
|
3087 else if (((hw->media_type == e1000_media_type_fiber) || |
|
3088 (hw->media_type == e1000_media_type_internal_serdes)) && |
|
3089 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
|
3090 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); |
|
3091 ew32(TXCW, hw->txcw); |
|
3092 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
|
3093 |
|
3094 hw->serdes_link_down = false; |
|
3095 } |
|
3096 /* If we force link for non-auto-negotiation switch, check link status |
|
3097 * based on MAC synchronization for internal serdes media type. |
|
3098 */ |
|
3099 else if ((hw->media_type == e1000_media_type_internal_serdes) && |
|
3100 !(E1000_TXCW_ANE & er32(TXCW))) { |
|
3101 /* SYNCH bit and IV bit are sticky. */ |
|
3102 udelay(10); |
|
3103 if (E1000_RXCW_SYNCH & er32(RXCW)) { |
|
3104 if (!(rxcw & E1000_RXCW_IV)) { |
|
3105 hw->serdes_link_down = false; |
|
3106 DEBUGOUT("SERDES: Link is up.\n"); |
|
3107 } |
|
3108 } else { |
|
3109 hw->serdes_link_down = true; |
|
3110 DEBUGOUT("SERDES: Link is down.\n"); |
|
3111 } |
|
3112 } |
|
3113 if ((hw->media_type == e1000_media_type_internal_serdes) && |
|
3114 (E1000_TXCW_ANE & er32(TXCW))) { |
|
3115 hw->serdes_link_down = !(E1000_STATUS_LU & er32(STATUS)); |
|
3116 } |
|
3117 return E1000_SUCCESS; |
|
3118 } |
|
3119 |
|
3120 /****************************************************************************** |
|
3121 * Detects the current speed and duplex settings of the hardware. |
|
3122 * |
|
3123 * hw - Struct containing variables accessed by shared code |
|
3124 * speed - Speed of the connection |
|
3125 * duplex - Duplex setting of the connection |
|
3126 *****************************************************************************/ |
|
3127 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) |
|
3128 { |
|
3129 u32 status; |
|
3130 s32 ret_val; |
|
3131 u16 phy_data; |
|
3132 |
|
3133 DEBUGFUNC("e1000_get_speed_and_duplex"); |
|
3134 |
|
3135 if (hw->mac_type >= e1000_82543) { |
|
3136 status = er32(STATUS); |
|
3137 if (status & E1000_STATUS_SPEED_1000) { |
|
3138 *speed = SPEED_1000; |
|
3139 DEBUGOUT("1000 Mbs, "); |
|
3140 } else if (status & E1000_STATUS_SPEED_100) { |
|
3141 *speed = SPEED_100; |
|
3142 DEBUGOUT("100 Mbs, "); |
|
3143 } else { |
|
3144 *speed = SPEED_10; |
|
3145 DEBUGOUT("10 Mbs, "); |
|
3146 } |
|
3147 |
|
3148 if (status & E1000_STATUS_FD) { |
|
3149 *duplex = FULL_DUPLEX; |
|
3150 DEBUGOUT("Full Duplex\n"); |
|
3151 } else { |
|
3152 *duplex = HALF_DUPLEX; |
|
3153 DEBUGOUT(" Half Duplex\n"); |
|
3154 } |
|
3155 } else { |
|
3156 DEBUGOUT("1000 Mbs, Full Duplex\n"); |
|
3157 *speed = SPEED_1000; |
|
3158 *duplex = FULL_DUPLEX; |
|
3159 } |
|
3160 |
|
3161 /* IGP01 PHY may advertise full duplex operation after speed downgrade even |
|
3162 * if it is operating at half duplex. Here we set the duplex settings to |
|
3163 * match the duplex in the link partner's capabilities. |
|
3164 */ |
|
3165 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { |
|
3166 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); |
|
3167 if (ret_val) |
|
3168 return ret_val; |
|
3169 |
|
3170 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) |
|
3171 *duplex = HALF_DUPLEX; |
|
3172 else { |
|
3173 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); |
|
3174 if (ret_val) |
|
3175 return ret_val; |
|
3176 if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || |
|
3177 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) |
|
3178 *duplex = HALF_DUPLEX; |
|
3179 } |
|
3180 } |
|
3181 |
|
3182 if ((hw->mac_type == e1000_80003es2lan) && |
|
3183 (hw->media_type == e1000_media_type_copper)) { |
|
3184 if (*speed == SPEED_1000) |
|
3185 ret_val = e1000_configure_kmrn_for_1000(hw); |
|
3186 else |
|
3187 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); |
|
3188 if (ret_val) |
|
3189 return ret_val; |
|
3190 } |
|
3191 |
|
3192 if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { |
|
3193 ret_val = e1000_kumeran_lock_loss_workaround(hw); |
|
3194 if (ret_val) |
|
3195 return ret_val; |
|
3196 } |
|
3197 |
|
3198 return E1000_SUCCESS; |
|
3199 } |
|
3200 |
|
3201 /****************************************************************************** |
|
3202 * Blocks until autoneg completes or times out (~4.5 seconds) |
|
3203 * |
|
3204 * hw - Struct containing variables accessed by shared code |
|
3205 ******************************************************************************/ |
|
3206 static s32 e1000_wait_autoneg(struct e1000_hw *hw) |
|
3207 { |
|
3208 s32 ret_val; |
|
3209 u16 i; |
|
3210 u16 phy_data; |
|
3211 |
|
3212 DEBUGFUNC("e1000_wait_autoneg"); |
|
3213 DEBUGOUT("Waiting for Auto-Neg to complete.\n"); |
|
3214 |
|
3215 /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
|
3216 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
|
3217 /* Read the MII Status Register and wait for Auto-Neg |
|
3218 * Complete bit to be set. |
|
3219 */ |
|
3220 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
3221 if (ret_val) |
|
3222 return ret_val; |
|
3223 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
3224 if (ret_val) |
|
3225 return ret_val; |
|
3226 if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
|
3227 return E1000_SUCCESS; |
|
3228 } |
|
3229 msleep(100); |
|
3230 } |
|
3231 return E1000_SUCCESS; |
|
3232 } |
|
3233 |
|
3234 /****************************************************************************** |
|
3235 * Raises the Management Data Clock |
|
3236 * |
|
3237 * hw - Struct containing variables accessed by shared code |
|
3238 * ctrl - Device control register's current value |
|
3239 ******************************************************************************/ |
|
3240 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
|
3241 { |
|
3242 /* Raise the clock input to the Management Data Clock (by setting the MDC |
|
3243 * bit), and then delay 10 microseconds. |
|
3244 */ |
|
3245 ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); |
|
3246 E1000_WRITE_FLUSH(); |
|
3247 udelay(10); |
|
3248 } |
|
3249 |
|
3250 /****************************************************************************** |
|
3251 * Lowers the Management Data Clock |
|
3252 * |
|
3253 * hw - Struct containing variables accessed by shared code |
|
3254 * ctrl - Device control register's current value |
|
3255 ******************************************************************************/ |
|
3256 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
|
3257 { |
|
3258 /* Lower the clock input to the Management Data Clock (by clearing the MDC |
|
3259 * bit), and then delay 10 microseconds. |
|
3260 */ |
|
3261 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
|
3262 E1000_WRITE_FLUSH(); |
|
3263 udelay(10); |
|
3264 } |
|
3265 |
|
3266 /****************************************************************************** |
|
3267 * Shifts data bits out to the PHY |
|
3268 * |
|
3269 * hw - Struct containing variables accessed by shared code |
|
3270 * data - Data to send out to the PHY |
|
3271 * count - Number of bits to shift out |
|
3272 * |
|
3273 * Bits are shifted out in MSB to LSB order. |
|
3274 ******************************************************************************/ |
|
3275 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) |
|
3276 { |
|
3277 u32 ctrl; |
|
3278 u32 mask; |
|
3279 |
|
3280 /* We need to shift "count" number of bits out to the PHY. So, the value |
|
3281 * in the "data" parameter will be shifted out to the PHY one bit at a |
|
3282 * time. In order to do this, "data" must be broken down into bits. |
|
3283 */ |
|
3284 mask = 0x01; |
|
3285 mask <<= (count - 1); |
|
3286 |
|
3287 ctrl = er32(CTRL); |
|
3288 |
|
3289 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
|
3290 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
|
3291 |
|
3292 while (mask) { |
|
3293 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
|
3294 * then raising and lowering the Management Data Clock. A "0" is |
|
3295 * shifted out to the PHY by setting the MDIO bit to "0" and then |
|
3296 * raising and lowering the clock. |
|
3297 */ |
|
3298 if (data & mask) |
|
3299 ctrl |= E1000_CTRL_MDIO; |
|
3300 else |
|
3301 ctrl &= ~E1000_CTRL_MDIO; |
|
3302 |
|
3303 ew32(CTRL, ctrl); |
|
3304 E1000_WRITE_FLUSH(); |
|
3305 |
|
3306 udelay(10); |
|
3307 |
|
3308 e1000_raise_mdi_clk(hw, &ctrl); |
|
3309 e1000_lower_mdi_clk(hw, &ctrl); |
|
3310 |
|
3311 mask = mask >> 1; |
|
3312 } |
|
3313 } |
|
3314 |
|
3315 /****************************************************************************** |
|
3316 * Shifts data bits in from the PHY |
|
3317 * |
|
3318 * hw - Struct containing variables accessed by shared code |
|
3319 * |
|
3320 * Bits are shifted in in MSB to LSB order. |
|
3321 ******************************************************************************/ |
|
3322 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
|
3323 { |
|
3324 u32 ctrl; |
|
3325 u16 data = 0; |
|
3326 u8 i; |
|
3327 |
|
3328 /* In order to read a register from the PHY, we need to shift in a total |
|
3329 * of 18 bits from the PHY. The first two bit (turnaround) times are used |
|
3330 * to avoid contention on the MDIO pin when a read operation is performed. |
|
3331 * These two bits are ignored by us and thrown away. Bits are "shifted in" |
|
3332 * by raising the input to the Management Data Clock (setting the MDC bit), |
|
3333 * and then reading the value of the MDIO bit. |
|
3334 */ |
|
3335 ctrl = er32(CTRL); |
|
3336 |
|
3337 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
|
3338 ctrl &= ~E1000_CTRL_MDIO_DIR; |
|
3339 ctrl &= ~E1000_CTRL_MDIO; |
|
3340 |
|
3341 ew32(CTRL, ctrl); |
|
3342 E1000_WRITE_FLUSH(); |
|
3343 |
|
3344 /* Raise and Lower the clock before reading in the data. This accounts for |
|
3345 * the turnaround bits. The first clock occurred when we clocked out the |
|
3346 * last bit of the Register Address. |
|
3347 */ |
|
3348 e1000_raise_mdi_clk(hw, &ctrl); |
|
3349 e1000_lower_mdi_clk(hw, &ctrl); |
|
3350 |
|
3351 for (data = 0, i = 0; i < 16; i++) { |
|
3352 data = data << 1; |
|
3353 e1000_raise_mdi_clk(hw, &ctrl); |
|
3354 ctrl = er32(CTRL); |
|
3355 /* Check to see if we shifted in a "1". */ |
|
3356 if (ctrl & E1000_CTRL_MDIO) |
|
3357 data |= 1; |
|
3358 e1000_lower_mdi_clk(hw, &ctrl); |
|
3359 } |
|
3360 |
|
3361 e1000_raise_mdi_clk(hw, &ctrl); |
|
3362 e1000_lower_mdi_clk(hw, &ctrl); |
|
3363 |
|
3364 return data; |
|
3365 } |
|
3366 |
|
3367 static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask) |
|
3368 { |
|
3369 u32 swfw_sync = 0; |
|
3370 u32 swmask = mask; |
|
3371 u32 fwmask = mask << 16; |
|
3372 s32 timeout = 200; |
|
3373 |
|
3374 DEBUGFUNC("e1000_swfw_sync_acquire"); |
|
3375 |
|
3376 if (hw->swfwhw_semaphore_present) |
|
3377 return e1000_get_software_flag(hw); |
|
3378 |
|
3379 if (!hw->swfw_sync_present) |
|
3380 return e1000_get_hw_eeprom_semaphore(hw); |
|
3381 |
|
3382 while (timeout) { |
|
3383 if (e1000_get_hw_eeprom_semaphore(hw)) |
|
3384 return -E1000_ERR_SWFW_SYNC; |
|
3385 |
|
3386 swfw_sync = er32(SW_FW_SYNC); |
|
3387 if (!(swfw_sync & (fwmask | swmask))) { |
|
3388 break; |
|
3389 } |
|
3390 |
|
3391 /* firmware currently using resource (fwmask) */ |
|
3392 /* or other software thread currently using resource (swmask) */ |
|
3393 e1000_put_hw_eeprom_semaphore(hw); |
|
3394 mdelay(5); |
|
3395 timeout--; |
|
3396 } |
|
3397 |
|
3398 if (!timeout) { |
|
3399 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
|
3400 return -E1000_ERR_SWFW_SYNC; |
|
3401 } |
|
3402 |
|
3403 swfw_sync |= swmask; |
|
3404 ew32(SW_FW_SYNC, swfw_sync); |
|
3405 |
|
3406 e1000_put_hw_eeprom_semaphore(hw); |
|
3407 return E1000_SUCCESS; |
|
3408 } |
|
3409 |
|
3410 static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask) |
|
3411 { |
|
3412 u32 swfw_sync; |
|
3413 u32 swmask = mask; |
|
3414 |
|
3415 DEBUGFUNC("e1000_swfw_sync_release"); |
|
3416 |
|
3417 if (hw->swfwhw_semaphore_present) { |
|
3418 e1000_release_software_flag(hw); |
|
3419 return; |
|
3420 } |
|
3421 |
|
3422 if (!hw->swfw_sync_present) { |
|
3423 e1000_put_hw_eeprom_semaphore(hw); |
|
3424 return; |
|
3425 } |
|
3426 |
|
3427 /* if (e1000_get_hw_eeprom_semaphore(hw)) |
|
3428 * return -E1000_ERR_SWFW_SYNC; */ |
|
3429 while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS); |
|
3430 /* empty */ |
|
3431 |
|
3432 swfw_sync = er32(SW_FW_SYNC); |
|
3433 swfw_sync &= ~swmask; |
|
3434 ew32(SW_FW_SYNC, swfw_sync); |
|
3435 |
|
3436 e1000_put_hw_eeprom_semaphore(hw); |
|
3437 } |
|
3438 |
|
3439 /***************************************************************************** |
|
3440 * Reads the value from a PHY register, if the value is on a specific non zero |
|
3441 * page, sets the page first. |
|
3442 * hw - Struct containing variables accessed by shared code |
|
3443 * reg_addr - address of the PHY register to read |
|
3444 ******************************************************************************/ |
|
3445 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) |
|
3446 { |
|
3447 u32 ret_val; |
|
3448 u16 swfw; |
|
3449 |
|
3450 DEBUGFUNC("e1000_read_phy_reg"); |
|
3451 |
|
3452 if ((hw->mac_type == e1000_80003es2lan) && |
|
3453 (er32(STATUS) & E1000_STATUS_FUNC_1)) { |
|
3454 swfw = E1000_SWFW_PHY1_SM; |
|
3455 } else { |
|
3456 swfw = E1000_SWFW_PHY0_SM; |
|
3457 } |
|
3458 if (e1000_swfw_sync_acquire(hw, swfw)) |
|
3459 return -E1000_ERR_SWFW_SYNC; |
|
3460 |
|
3461 if ((hw->phy_type == e1000_phy_igp || |
|
3462 hw->phy_type == e1000_phy_igp_3 || |
|
3463 hw->phy_type == e1000_phy_igp_2) && |
|
3464 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
|
3465 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
3466 (u16)reg_addr); |
|
3467 if (ret_val) { |
|
3468 e1000_swfw_sync_release(hw, swfw); |
|
3469 return ret_val; |
|
3470 } |
|
3471 } else if (hw->phy_type == e1000_phy_gg82563) { |
|
3472 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || |
|
3473 (hw->mac_type == e1000_80003es2lan)) { |
|
3474 /* Select Configuration Page */ |
|
3475 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
|
3476 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, |
|
3477 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); |
|
3478 } else { |
|
3479 /* Use Alternative Page Select register to access |
|
3480 * registers 30 and 31 |
|
3481 */ |
|
3482 ret_val = e1000_write_phy_reg_ex(hw, |
|
3483 GG82563_PHY_PAGE_SELECT_ALT, |
|
3484 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); |
|
3485 } |
|
3486 |
|
3487 if (ret_val) { |
|
3488 e1000_swfw_sync_release(hw, swfw); |
|
3489 return ret_val; |
|
3490 } |
|
3491 } |
|
3492 } |
|
3493 |
|
3494 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
|
3495 phy_data); |
|
3496 |
|
3497 e1000_swfw_sync_release(hw, swfw); |
|
3498 return ret_val; |
|
3499 } |
|
3500 |
|
3501 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
|
3502 u16 *phy_data) |
|
3503 { |
|
3504 u32 i; |
|
3505 u32 mdic = 0; |
|
3506 const u32 phy_addr = 1; |
|
3507 |
|
3508 DEBUGFUNC("e1000_read_phy_reg_ex"); |
|
3509 |
|
3510 if (reg_addr > MAX_PHY_REG_ADDRESS) { |
|
3511 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); |
|
3512 return -E1000_ERR_PARAM; |
|
3513 } |
|
3514 |
|
3515 if (hw->mac_type > e1000_82543) { |
|
3516 /* Set up Op-code, Phy Address, and register address in the MDI |
|
3517 * Control register. The MAC will take care of interfacing with the |
|
3518 * PHY to retrieve the desired data. |
|
3519 */ |
|
3520 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
|
3521 (phy_addr << E1000_MDIC_PHY_SHIFT) | |
|
3522 (E1000_MDIC_OP_READ)); |
|
3523 |
|
3524 ew32(MDIC, mdic); |
|
3525 |
|
3526 /* Poll the ready bit to see if the MDI read completed */ |
|
3527 for (i = 0; i < 64; i++) { |
|
3528 udelay(50); |
|
3529 mdic = er32(MDIC); |
|
3530 if (mdic & E1000_MDIC_READY) break; |
|
3531 } |
|
3532 if (!(mdic & E1000_MDIC_READY)) { |
|
3533 DEBUGOUT("MDI Read did not complete\n"); |
|
3534 return -E1000_ERR_PHY; |
|
3535 } |
|
3536 if (mdic & E1000_MDIC_ERROR) { |
|
3537 DEBUGOUT("MDI Error\n"); |
|
3538 return -E1000_ERR_PHY; |
|
3539 } |
|
3540 *phy_data = (u16)mdic; |
|
3541 } else { |
|
3542 /* We must first send a preamble through the MDIO pin to signal the |
|
3543 * beginning of an MII instruction. This is done by sending 32 |
|
3544 * consecutive "1" bits. |
|
3545 */ |
|
3546 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
|
3547 |
|
3548 /* Now combine the next few fields that are required for a read |
|
3549 * operation. We use this method instead of calling the |
|
3550 * e1000_shift_out_mdi_bits routine five different times. The format of |
|
3551 * a MII read instruction consists of a shift out of 14 bits and is |
|
3552 * defined as follows: |
|
3553 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
|
3554 * followed by a shift in of 18 bits. This first two bits shifted in |
|
3555 * are TurnAround bits used to avoid contention on the MDIO pin when a |
|
3556 * READ operation is performed. These two bits are thrown away |
|
3557 * followed by a shift in of 16 bits which contains the desired data. |
|
3558 */ |
|
3559 mdic = ((reg_addr) | (phy_addr << 5) | |
|
3560 (PHY_OP_READ << 10) | (PHY_SOF << 12)); |
|
3561 |
|
3562 e1000_shift_out_mdi_bits(hw, mdic, 14); |
|
3563 |
|
3564 /* Now that we've shifted out the read command to the MII, we need to |
|
3565 * "shift in" the 16-bit value (18 total bits) of the requested PHY |
|
3566 * register address. |
|
3567 */ |
|
3568 *phy_data = e1000_shift_in_mdi_bits(hw); |
|
3569 } |
|
3570 return E1000_SUCCESS; |
|
3571 } |
|
3572 |
|
3573 /****************************************************************************** |
|
3574 * Writes a value to a PHY register |
|
3575 * |
|
3576 * hw - Struct containing variables accessed by shared code |
|
3577 * reg_addr - address of the PHY register to write |
|
3578 * data - data to write to the PHY |
|
3579 ******************************************************************************/ |
|
3580 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) |
|
3581 { |
|
3582 u32 ret_val; |
|
3583 u16 swfw; |
|
3584 |
|
3585 DEBUGFUNC("e1000_write_phy_reg"); |
|
3586 |
|
3587 if ((hw->mac_type == e1000_80003es2lan) && |
|
3588 (er32(STATUS) & E1000_STATUS_FUNC_1)) { |
|
3589 swfw = E1000_SWFW_PHY1_SM; |
|
3590 } else { |
|
3591 swfw = E1000_SWFW_PHY0_SM; |
|
3592 } |
|
3593 if (e1000_swfw_sync_acquire(hw, swfw)) |
|
3594 return -E1000_ERR_SWFW_SYNC; |
|
3595 |
|
3596 if ((hw->phy_type == e1000_phy_igp || |
|
3597 hw->phy_type == e1000_phy_igp_3 || |
|
3598 hw->phy_type == e1000_phy_igp_2) && |
|
3599 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
|
3600 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
3601 (u16)reg_addr); |
|
3602 if (ret_val) { |
|
3603 e1000_swfw_sync_release(hw, swfw); |
|
3604 return ret_val; |
|
3605 } |
|
3606 } else if (hw->phy_type == e1000_phy_gg82563) { |
|
3607 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || |
|
3608 (hw->mac_type == e1000_80003es2lan)) { |
|
3609 /* Select Configuration Page */ |
|
3610 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
|
3611 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, |
|
3612 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); |
|
3613 } else { |
|
3614 /* Use Alternative Page Select register to access |
|
3615 * registers 30 and 31 |
|
3616 */ |
|
3617 ret_val = e1000_write_phy_reg_ex(hw, |
|
3618 GG82563_PHY_PAGE_SELECT_ALT, |
|
3619 (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); |
|
3620 } |
|
3621 |
|
3622 if (ret_val) { |
|
3623 e1000_swfw_sync_release(hw, swfw); |
|
3624 return ret_val; |
|
3625 } |
|
3626 } |
|
3627 } |
|
3628 |
|
3629 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
|
3630 phy_data); |
|
3631 |
|
3632 e1000_swfw_sync_release(hw, swfw); |
|
3633 return ret_val; |
|
3634 } |
|
3635 |
|
3636 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
|
3637 u16 phy_data) |
|
3638 { |
|
3639 u32 i; |
|
3640 u32 mdic = 0; |
|
3641 const u32 phy_addr = 1; |
|
3642 |
|
3643 DEBUGFUNC("e1000_write_phy_reg_ex"); |
|
3644 |
|
3645 if (reg_addr > MAX_PHY_REG_ADDRESS) { |
|
3646 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); |
|
3647 return -E1000_ERR_PARAM; |
|
3648 } |
|
3649 |
|
3650 if (hw->mac_type > e1000_82543) { |
|
3651 /* Set up Op-code, Phy Address, register address, and data intended |
|
3652 * for the PHY register in the MDI Control register. The MAC will take |
|
3653 * care of interfacing with the PHY to send the desired data. |
|
3654 */ |
|
3655 mdic = (((u32)phy_data) | |
|
3656 (reg_addr << E1000_MDIC_REG_SHIFT) | |
|
3657 (phy_addr << E1000_MDIC_PHY_SHIFT) | |
|
3658 (E1000_MDIC_OP_WRITE)); |
|
3659 |
|
3660 ew32(MDIC, mdic); |
|
3661 |
|
3662 /* Poll the ready bit to see if the MDI read completed */ |
|
3663 for (i = 0; i < 641; i++) { |
|
3664 udelay(5); |
|
3665 mdic = er32(MDIC); |
|
3666 if (mdic & E1000_MDIC_READY) break; |
|
3667 } |
|
3668 if (!(mdic & E1000_MDIC_READY)) { |
|
3669 DEBUGOUT("MDI Write did not complete\n"); |
|
3670 return -E1000_ERR_PHY; |
|
3671 } |
|
3672 } else { |
|
3673 /* We'll need to use the SW defined pins to shift the write command |
|
3674 * out to the PHY. We first send a preamble to the PHY to signal the |
|
3675 * beginning of the MII instruction. This is done by sending 32 |
|
3676 * consecutive "1" bits. |
|
3677 */ |
|
3678 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
|
3679 |
|
3680 /* Now combine the remaining required fields that will indicate a |
|
3681 * write operation. We use this method instead of calling the |
|
3682 * e1000_shift_out_mdi_bits routine for each field in the command. The |
|
3683 * format of a MII write instruction is as follows: |
|
3684 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. |
|
3685 */ |
|
3686 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
|
3687 (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
|
3688 mdic <<= 16; |
|
3689 mdic |= (u32)phy_data; |
|
3690 |
|
3691 e1000_shift_out_mdi_bits(hw, mdic, 32); |
|
3692 } |
|
3693 |
|
3694 return E1000_SUCCESS; |
|
3695 } |
|
3696 |
|
3697 static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data) |
|
3698 { |
|
3699 u32 reg_val; |
|
3700 u16 swfw; |
|
3701 DEBUGFUNC("e1000_read_kmrn_reg"); |
|
3702 |
|
3703 if ((hw->mac_type == e1000_80003es2lan) && |
|
3704 (er32(STATUS) & E1000_STATUS_FUNC_1)) { |
|
3705 swfw = E1000_SWFW_PHY1_SM; |
|
3706 } else { |
|
3707 swfw = E1000_SWFW_PHY0_SM; |
|
3708 } |
|
3709 if (e1000_swfw_sync_acquire(hw, swfw)) |
|
3710 return -E1000_ERR_SWFW_SYNC; |
|
3711 |
|
3712 /* Write register address */ |
|
3713 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & |
|
3714 E1000_KUMCTRLSTA_OFFSET) | |
|
3715 E1000_KUMCTRLSTA_REN; |
|
3716 ew32(KUMCTRLSTA, reg_val); |
|
3717 udelay(2); |
|
3718 |
|
3719 /* Read the data returned */ |
|
3720 reg_val = er32(KUMCTRLSTA); |
|
3721 *data = (u16)reg_val; |
|
3722 |
|
3723 e1000_swfw_sync_release(hw, swfw); |
|
3724 return E1000_SUCCESS; |
|
3725 } |
|
3726 |
|
3727 static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data) |
|
3728 { |
|
3729 u32 reg_val; |
|
3730 u16 swfw; |
|
3731 DEBUGFUNC("e1000_write_kmrn_reg"); |
|
3732 |
|
3733 if ((hw->mac_type == e1000_80003es2lan) && |
|
3734 (er32(STATUS) & E1000_STATUS_FUNC_1)) { |
|
3735 swfw = E1000_SWFW_PHY1_SM; |
|
3736 } else { |
|
3737 swfw = E1000_SWFW_PHY0_SM; |
|
3738 } |
|
3739 if (e1000_swfw_sync_acquire(hw, swfw)) |
|
3740 return -E1000_ERR_SWFW_SYNC; |
|
3741 |
|
3742 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & |
|
3743 E1000_KUMCTRLSTA_OFFSET) | data; |
|
3744 ew32(KUMCTRLSTA, reg_val); |
|
3745 udelay(2); |
|
3746 |
|
3747 e1000_swfw_sync_release(hw, swfw); |
|
3748 return E1000_SUCCESS; |
|
3749 } |
|
3750 |
|
3751 /****************************************************************************** |
|
3752 * Returns the PHY to the power-on reset state |
|
3753 * |
|
3754 * hw - Struct containing variables accessed by shared code |
|
3755 ******************************************************************************/ |
|
3756 s32 e1000_phy_hw_reset(struct e1000_hw *hw) |
|
3757 { |
|
3758 u32 ctrl, ctrl_ext; |
|
3759 u32 led_ctrl; |
|
3760 s32 ret_val; |
|
3761 u16 swfw; |
|
3762 |
|
3763 DEBUGFUNC("e1000_phy_hw_reset"); |
|
3764 |
|
3765 /* In the case of the phy reset being blocked, it's not an error, we |
|
3766 * simply return success without performing the reset. */ |
|
3767 ret_val = e1000_check_phy_reset_block(hw); |
|
3768 if (ret_val) |
|
3769 return E1000_SUCCESS; |
|
3770 |
|
3771 DEBUGOUT("Resetting Phy...\n"); |
|
3772 |
|
3773 if (hw->mac_type > e1000_82543) { |
|
3774 if ((hw->mac_type == e1000_80003es2lan) && |
|
3775 (er32(STATUS) & E1000_STATUS_FUNC_1)) { |
|
3776 swfw = E1000_SWFW_PHY1_SM; |
|
3777 } else { |
|
3778 swfw = E1000_SWFW_PHY0_SM; |
|
3779 } |
|
3780 if (e1000_swfw_sync_acquire(hw, swfw)) { |
|
3781 DEBUGOUT("Unable to acquire swfw sync\n"); |
|
3782 return -E1000_ERR_SWFW_SYNC; |
|
3783 } |
|
3784 /* Read the device control register and assert the E1000_CTRL_PHY_RST |
|
3785 * bit. Then, take it out of reset. |
|
3786 * For pre-e1000_82571 hardware, we delay for 10ms between the assert |
|
3787 * and deassert. For e1000_82571 hardware and later, we instead delay |
|
3788 * for 50us between and 10ms after the deassertion. |
|
3789 */ |
|
3790 ctrl = er32(CTRL); |
|
3791 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); |
|
3792 E1000_WRITE_FLUSH(); |
|
3793 |
|
3794 if (hw->mac_type < e1000_82571) |
|
3795 msleep(10); |
|
3796 else |
|
3797 udelay(100); |
|
3798 |
|
3799 ew32(CTRL, ctrl); |
|
3800 E1000_WRITE_FLUSH(); |
|
3801 |
|
3802 if (hw->mac_type >= e1000_82571) |
|
3803 mdelay(10); |
|
3804 |
|
3805 e1000_swfw_sync_release(hw, swfw); |
|
3806 } else { |
|
3807 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
|
3808 * bit to put the PHY into reset. Then, take it out of reset. |
|
3809 */ |
|
3810 ctrl_ext = er32(CTRL_EXT); |
|
3811 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
|
3812 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
|
3813 ew32(CTRL_EXT, ctrl_ext); |
|
3814 E1000_WRITE_FLUSH(); |
|
3815 msleep(10); |
|
3816 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
|
3817 ew32(CTRL_EXT, ctrl_ext); |
|
3818 E1000_WRITE_FLUSH(); |
|
3819 } |
|
3820 udelay(150); |
|
3821 |
|
3822 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
3823 /* Configure activity LED after PHY reset */ |
|
3824 led_ctrl = er32(LEDCTL); |
|
3825 led_ctrl &= IGP_ACTIVITY_LED_MASK; |
|
3826 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
|
3827 ew32(LEDCTL, led_ctrl); |
|
3828 } |
|
3829 |
|
3830 /* Wait for FW to finish PHY configuration. */ |
|
3831 ret_val = e1000_get_phy_cfg_done(hw); |
|
3832 if (ret_val != E1000_SUCCESS) |
|
3833 return ret_val; |
|
3834 e1000_release_software_semaphore(hw); |
|
3835 |
|
3836 if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3)) |
|
3837 ret_val = e1000_init_lcd_from_nvm(hw); |
|
3838 |
|
3839 return ret_val; |
|
3840 } |
|
3841 |
|
3842 /****************************************************************************** |
|
3843 * Resets the PHY |
|
3844 * |
|
3845 * hw - Struct containing variables accessed by shared code |
|
3846 * |
|
3847 * Sets bit 15 of the MII Control register |
|
3848 ******************************************************************************/ |
|
3849 s32 e1000_phy_reset(struct e1000_hw *hw) |
|
3850 { |
|
3851 s32 ret_val; |
|
3852 u16 phy_data; |
|
3853 |
|
3854 DEBUGFUNC("e1000_phy_reset"); |
|
3855 |
|
3856 /* In the case of the phy reset being blocked, it's not an error, we |
|
3857 * simply return success without performing the reset. */ |
|
3858 ret_val = e1000_check_phy_reset_block(hw); |
|
3859 if (ret_val) |
|
3860 return E1000_SUCCESS; |
|
3861 |
|
3862 switch (hw->phy_type) { |
|
3863 case e1000_phy_igp: |
|
3864 case e1000_phy_igp_2: |
|
3865 case e1000_phy_igp_3: |
|
3866 case e1000_phy_ife: |
|
3867 ret_val = e1000_phy_hw_reset(hw); |
|
3868 if (ret_val) |
|
3869 return ret_val; |
|
3870 break; |
|
3871 default: |
|
3872 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
|
3873 if (ret_val) |
|
3874 return ret_val; |
|
3875 |
|
3876 phy_data |= MII_CR_RESET; |
|
3877 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
|
3878 if (ret_val) |
|
3879 return ret_val; |
|
3880 |
|
3881 udelay(1); |
|
3882 break; |
|
3883 } |
|
3884 |
|
3885 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) |
|
3886 e1000_phy_init_script(hw); |
|
3887 |
|
3888 return E1000_SUCCESS; |
|
3889 } |
|
3890 |
|
3891 /****************************************************************************** |
|
3892 * Work-around for 82566 power-down: on D3 entry- |
|
3893 * 1) disable gigabit link |
|
3894 * 2) write VR power-down enable |
|
3895 * 3) read it back |
|
3896 * if successful continue, else issue LCD reset and repeat |
|
3897 * |
|
3898 * hw - struct containing variables accessed by shared code |
|
3899 ******************************************************************************/ |
|
3900 void e1000_phy_powerdown_workaround(struct e1000_hw *hw) |
|
3901 { |
|
3902 s32 reg; |
|
3903 u16 phy_data; |
|
3904 s32 retry = 0; |
|
3905 |
|
3906 DEBUGFUNC("e1000_phy_powerdown_workaround"); |
|
3907 |
|
3908 if (hw->phy_type != e1000_phy_igp_3) |
|
3909 return; |
|
3910 |
|
3911 do { |
|
3912 /* Disable link */ |
|
3913 reg = er32(PHY_CTRL); |
|
3914 ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | |
|
3915 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
|
3916 |
|
3917 /* Write VR power-down enable - bits 9:8 should be 10b */ |
|
3918 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); |
|
3919 phy_data |= (1 << 9); |
|
3920 phy_data &= ~(1 << 8); |
|
3921 e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data); |
|
3922 |
|
3923 /* Read it back and test */ |
|
3924 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); |
|
3925 if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry) |
|
3926 break; |
|
3927 |
|
3928 /* Issue PHY reset and repeat at most one more time */ |
|
3929 reg = er32(CTRL); |
|
3930 ew32(CTRL, reg | E1000_CTRL_PHY_RST); |
|
3931 retry++; |
|
3932 } while (retry); |
|
3933 |
|
3934 return; |
|
3935 |
|
3936 } |
|
3937 |
|
3938 /****************************************************************************** |
|
3939 * Work-around for 82566 Kumeran PCS lock loss: |
|
3940 * On link status change (i.e. PCI reset, speed change) and link is up and |
|
3941 * speed is gigabit- |
|
3942 * 0) if workaround is optionally disabled do nothing |
|
3943 * 1) wait 1ms for Kumeran link to come up |
|
3944 * 2) check Kumeran Diagnostic register PCS lock loss bit |
|
3945 * 3) if not set the link is locked (all is good), otherwise... |
|
3946 * 4) reset the PHY |
|
3947 * 5) repeat up to 10 times |
|
3948 * Note: this is only called for IGP3 copper when speed is 1gb. |
|
3949 * |
|
3950 * hw - struct containing variables accessed by shared code |
|
3951 ******************************************************************************/ |
|
3952 static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) |
|
3953 { |
|
3954 s32 ret_val; |
|
3955 s32 reg; |
|
3956 s32 cnt; |
|
3957 u16 phy_data; |
|
3958 |
|
3959 if (hw->kmrn_lock_loss_workaround_disabled) |
|
3960 return E1000_SUCCESS; |
|
3961 |
|
3962 /* Make sure link is up before proceeding. If not just return. |
|
3963 * Attempting this while link is negotiating fouled up link |
|
3964 * stability */ |
|
3965 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
3966 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
3967 |
|
3968 if (phy_data & MII_SR_LINK_STATUS) { |
|
3969 for (cnt = 0; cnt < 10; cnt++) { |
|
3970 /* read once to clear */ |
|
3971 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); |
|
3972 if (ret_val) |
|
3973 return ret_val; |
|
3974 /* and again to get new status */ |
|
3975 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); |
|
3976 if (ret_val) |
|
3977 return ret_val; |
|
3978 |
|
3979 /* check for PCS lock */ |
|
3980 if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) |
|
3981 return E1000_SUCCESS; |
|
3982 |
|
3983 /* Issue PHY reset */ |
|
3984 e1000_phy_hw_reset(hw); |
|
3985 mdelay(5); |
|
3986 } |
|
3987 /* Disable GigE link negotiation */ |
|
3988 reg = er32(PHY_CTRL); |
|
3989 ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | |
|
3990 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
|
3991 |
|
3992 /* unable to acquire PCS lock */ |
|
3993 return E1000_ERR_PHY; |
|
3994 } |
|
3995 |
|
3996 return E1000_SUCCESS; |
|
3997 } |
|
3998 |
|
3999 /****************************************************************************** |
|
4000 * Probes the expected PHY address for known PHY IDs |
|
4001 * |
|
4002 * hw - Struct containing variables accessed by shared code |
|
4003 ******************************************************************************/ |
|
4004 static s32 e1000_detect_gig_phy(struct e1000_hw *hw) |
|
4005 { |
|
4006 s32 phy_init_status, ret_val; |
|
4007 u16 phy_id_high, phy_id_low; |
|
4008 bool match = false; |
|
4009 |
|
4010 DEBUGFUNC("e1000_detect_gig_phy"); |
|
4011 |
|
4012 if (hw->phy_id != 0) |
|
4013 return E1000_SUCCESS; |
|
4014 |
|
4015 /* The 82571 firmware may still be configuring the PHY. In this |
|
4016 * case, we cannot access the PHY until the configuration is done. So |
|
4017 * we explicitly set the PHY values. */ |
|
4018 if (hw->mac_type == e1000_82571 || |
|
4019 hw->mac_type == e1000_82572) { |
|
4020 hw->phy_id = IGP01E1000_I_PHY_ID; |
|
4021 hw->phy_type = e1000_phy_igp_2; |
|
4022 return E1000_SUCCESS; |
|
4023 } |
|
4024 |
|
4025 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work- |
|
4026 * around that forces PHY page 0 to be set or the reads fail. The rest of |
|
4027 * the code in this routine uses e1000_read_phy_reg to read the PHY ID. |
|
4028 * So for ESB-2 we need to have this set so our reads won't fail. If the |
|
4029 * attached PHY is not a e1000_phy_gg82563, the routines below will figure |
|
4030 * this out as well. */ |
|
4031 if (hw->mac_type == e1000_80003es2lan) |
|
4032 hw->phy_type = e1000_phy_gg82563; |
|
4033 |
|
4034 /* Read the PHY ID Registers to identify which PHY is onboard. */ |
|
4035 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
|
4036 if (ret_val) |
|
4037 return ret_val; |
|
4038 |
|
4039 hw->phy_id = (u32)(phy_id_high << 16); |
|
4040 udelay(20); |
|
4041 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); |
|
4042 if (ret_val) |
|
4043 return ret_val; |
|
4044 |
|
4045 hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK); |
|
4046 hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK; |
|
4047 |
|
4048 switch (hw->mac_type) { |
|
4049 case e1000_82543: |
|
4050 if (hw->phy_id == M88E1000_E_PHY_ID) match = true; |
|
4051 break; |
|
4052 case e1000_82544: |
|
4053 if (hw->phy_id == M88E1000_I_PHY_ID) match = true; |
|
4054 break; |
|
4055 case e1000_82540: |
|
4056 case e1000_82545: |
|
4057 case e1000_82545_rev_3: |
|
4058 case e1000_82546: |
|
4059 case e1000_82546_rev_3: |
|
4060 if (hw->phy_id == M88E1011_I_PHY_ID) match = true; |
|
4061 break; |
|
4062 case e1000_82541: |
|
4063 case e1000_82541_rev_2: |
|
4064 case e1000_82547: |
|
4065 case e1000_82547_rev_2: |
|
4066 if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true; |
|
4067 break; |
|
4068 case e1000_82573: |
|
4069 if (hw->phy_id == M88E1111_I_PHY_ID) match = true; |
|
4070 break; |
|
4071 case e1000_80003es2lan: |
|
4072 if (hw->phy_id == GG82563_E_PHY_ID) match = true; |
|
4073 break; |
|
4074 case e1000_ich8lan: |
|
4075 if (hw->phy_id == IGP03E1000_E_PHY_ID) match = true; |
|
4076 if (hw->phy_id == IFE_E_PHY_ID) match = true; |
|
4077 if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = true; |
|
4078 if (hw->phy_id == IFE_C_E_PHY_ID) match = true; |
|
4079 break; |
|
4080 default: |
|
4081 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); |
|
4082 return -E1000_ERR_CONFIG; |
|
4083 } |
|
4084 phy_init_status = e1000_set_phy_type(hw); |
|
4085 |
|
4086 if ((match) && (phy_init_status == E1000_SUCCESS)) { |
|
4087 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); |
|
4088 return E1000_SUCCESS; |
|
4089 } |
|
4090 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); |
|
4091 return -E1000_ERR_PHY; |
|
4092 } |
|
4093 |
|
4094 /****************************************************************************** |
|
4095 * Resets the PHY's DSP |
|
4096 * |
|
4097 * hw - Struct containing variables accessed by shared code |
|
4098 ******************************************************************************/ |
|
4099 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) |
|
4100 { |
|
4101 s32 ret_val; |
|
4102 DEBUGFUNC("e1000_phy_reset_dsp"); |
|
4103 |
|
4104 do { |
|
4105 if (hw->phy_type != e1000_phy_gg82563) { |
|
4106 ret_val = e1000_write_phy_reg(hw, 29, 0x001d); |
|
4107 if (ret_val) break; |
|
4108 } |
|
4109 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); |
|
4110 if (ret_val) break; |
|
4111 ret_val = e1000_write_phy_reg(hw, 30, 0x0000); |
|
4112 if (ret_val) break; |
|
4113 ret_val = E1000_SUCCESS; |
|
4114 } while (0); |
|
4115 |
|
4116 return ret_val; |
|
4117 } |
|
4118 |
|
4119 /****************************************************************************** |
|
4120 * Get PHY information from various PHY registers for igp PHY only. |
|
4121 * |
|
4122 * hw - Struct containing variables accessed by shared code |
|
4123 * phy_info - PHY information structure |
|
4124 ******************************************************************************/ |
|
4125 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
|
4126 struct e1000_phy_info *phy_info) |
|
4127 { |
|
4128 s32 ret_val; |
|
4129 u16 phy_data, min_length, max_length, average; |
|
4130 e1000_rev_polarity polarity; |
|
4131 |
|
4132 DEBUGFUNC("e1000_phy_igp_get_info"); |
|
4133 |
|
4134 /* The downshift status is checked only once, after link is established, |
|
4135 * and it stored in the hw->speed_downgraded parameter. */ |
|
4136 phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
|
4137 |
|
4138 /* IGP01E1000 does not need to support it. */ |
|
4139 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
|
4140 |
|
4141 /* IGP01E1000 always correct polarity reversal */ |
|
4142 phy_info->polarity_correction = e1000_polarity_reversal_enabled; |
|
4143 |
|
4144 /* Check polarity status */ |
|
4145 ret_val = e1000_check_polarity(hw, &polarity); |
|
4146 if (ret_val) |
|
4147 return ret_val; |
|
4148 |
|
4149 phy_info->cable_polarity = polarity; |
|
4150 |
|
4151 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); |
|
4152 if (ret_val) |
|
4153 return ret_val; |
|
4154 |
|
4155 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >> |
|
4156 IGP01E1000_PSSR_MDIX_SHIFT); |
|
4157 |
|
4158 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
|
4159 IGP01E1000_PSSR_SPEED_1000MBPS) { |
|
4160 /* Local/Remote Receiver Information are only valid at 1000 Mbps */ |
|
4161 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
|
4162 if (ret_val) |
|
4163 return ret_val; |
|
4164 |
|
4165 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
|
4166 SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
|
4167 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
4168 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
|
4169 SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
|
4170 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
4171 |
|
4172 /* Get cable length */ |
|
4173 ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
|
4174 if (ret_val) |
|
4175 return ret_val; |
|
4176 |
|
4177 /* Translate to old method */ |
|
4178 average = (max_length + min_length) / 2; |
|
4179 |
|
4180 if (average <= e1000_igp_cable_length_50) |
|
4181 phy_info->cable_length = e1000_cable_length_50; |
|
4182 else if (average <= e1000_igp_cable_length_80) |
|
4183 phy_info->cable_length = e1000_cable_length_50_80; |
|
4184 else if (average <= e1000_igp_cable_length_110) |
|
4185 phy_info->cable_length = e1000_cable_length_80_110; |
|
4186 else if (average <= e1000_igp_cable_length_140) |
|
4187 phy_info->cable_length = e1000_cable_length_110_140; |
|
4188 else |
|
4189 phy_info->cable_length = e1000_cable_length_140; |
|
4190 } |
|
4191 |
|
4192 return E1000_SUCCESS; |
|
4193 } |
|
4194 |
|
4195 /****************************************************************************** |
|
4196 * Get PHY information from various PHY registers for ife PHY only. |
|
4197 * |
|
4198 * hw - Struct containing variables accessed by shared code |
|
4199 * phy_info - PHY information structure |
|
4200 ******************************************************************************/ |
|
4201 static s32 e1000_phy_ife_get_info(struct e1000_hw *hw, |
|
4202 struct e1000_phy_info *phy_info) |
|
4203 { |
|
4204 s32 ret_val; |
|
4205 u16 phy_data; |
|
4206 e1000_rev_polarity polarity; |
|
4207 |
|
4208 DEBUGFUNC("e1000_phy_ife_get_info"); |
|
4209 |
|
4210 phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
|
4211 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
|
4212 |
|
4213 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); |
|
4214 if (ret_val) |
|
4215 return ret_val; |
|
4216 phy_info->polarity_correction = |
|
4217 ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> |
|
4218 IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ? |
|
4219 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; |
|
4220 |
|
4221 if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) { |
|
4222 ret_val = e1000_check_polarity(hw, &polarity); |
|
4223 if (ret_val) |
|
4224 return ret_val; |
|
4225 } else { |
|
4226 /* Polarity is forced. */ |
|
4227 polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >> |
|
4228 IFE_PSC_FORCE_POLARITY_SHIFT) ? |
|
4229 e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
|
4230 } |
|
4231 phy_info->cable_polarity = polarity; |
|
4232 |
|
4233 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); |
|
4234 if (ret_val) |
|
4235 return ret_val; |
|
4236 |
|
4237 phy_info->mdix_mode = (e1000_auto_x_mode) |
|
4238 ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> |
|
4239 IFE_PMC_MDIX_MODE_SHIFT); |
|
4240 |
|
4241 return E1000_SUCCESS; |
|
4242 } |
|
4243 |
|
4244 /****************************************************************************** |
|
4245 * Get PHY information from various PHY registers fot m88 PHY only. |
|
4246 * |
|
4247 * hw - Struct containing variables accessed by shared code |
|
4248 * phy_info - PHY information structure |
|
4249 ******************************************************************************/ |
|
4250 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
|
4251 struct e1000_phy_info *phy_info) |
|
4252 { |
|
4253 s32 ret_val; |
|
4254 u16 phy_data; |
|
4255 e1000_rev_polarity polarity; |
|
4256 |
|
4257 DEBUGFUNC("e1000_phy_m88_get_info"); |
|
4258 |
|
4259 /* The downshift status is checked only once, after link is established, |
|
4260 * and it stored in the hw->speed_downgraded parameter. */ |
|
4261 phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
|
4262 |
|
4263 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
4264 if (ret_val) |
|
4265 return ret_val; |
|
4266 |
|
4267 phy_info->extended_10bt_distance = |
|
4268 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> |
|
4269 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? |
|
4270 e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal; |
|
4271 |
|
4272 phy_info->polarity_correction = |
|
4273 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> |
|
4274 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? |
|
4275 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; |
|
4276 |
|
4277 /* Check polarity status */ |
|
4278 ret_val = e1000_check_polarity(hw, &polarity); |
|
4279 if (ret_val) |
|
4280 return ret_val; |
|
4281 phy_info->cable_polarity = polarity; |
|
4282 |
|
4283 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
|
4284 if (ret_val) |
|
4285 return ret_val; |
|
4286 |
|
4287 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >> |
|
4288 M88E1000_PSSR_MDIX_SHIFT); |
|
4289 |
|
4290 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { |
|
4291 /* Cable Length Estimation and Local/Remote Receiver Information |
|
4292 * are only valid at 1000 Mbps. |
|
4293 */ |
|
4294 if (hw->phy_type != e1000_phy_gg82563) { |
|
4295 phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
|
4296 M88E1000_PSSR_CABLE_LENGTH_SHIFT); |
|
4297 } else { |
|
4298 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, |
|
4299 &phy_data); |
|
4300 if (ret_val) |
|
4301 return ret_val; |
|
4302 |
|
4303 phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH); |
|
4304 } |
|
4305 |
|
4306 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
|
4307 if (ret_val) |
|
4308 return ret_val; |
|
4309 |
|
4310 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
|
4311 SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
|
4312 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
4313 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
|
4314 SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
|
4315 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
4316 |
|
4317 } |
|
4318 |
|
4319 return E1000_SUCCESS; |
|
4320 } |
|
4321 |
|
4322 /****************************************************************************** |
|
4323 * Get PHY information from various PHY registers |
|
4324 * |
|
4325 * hw - Struct containing variables accessed by shared code |
|
4326 * phy_info - PHY information structure |
|
4327 ******************************************************************************/ |
|
4328 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) |
|
4329 { |
|
4330 s32 ret_val; |
|
4331 u16 phy_data; |
|
4332 |
|
4333 DEBUGFUNC("e1000_phy_get_info"); |
|
4334 |
|
4335 phy_info->cable_length = e1000_cable_length_undefined; |
|
4336 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; |
|
4337 phy_info->cable_polarity = e1000_rev_polarity_undefined; |
|
4338 phy_info->downshift = e1000_downshift_undefined; |
|
4339 phy_info->polarity_correction = e1000_polarity_reversal_undefined; |
|
4340 phy_info->mdix_mode = e1000_auto_x_mode_undefined; |
|
4341 phy_info->local_rx = e1000_1000t_rx_status_undefined; |
|
4342 phy_info->remote_rx = e1000_1000t_rx_status_undefined; |
|
4343 |
|
4344 if (hw->media_type != e1000_media_type_copper) { |
|
4345 DEBUGOUT("PHY info is only valid for copper media\n"); |
|
4346 return -E1000_ERR_CONFIG; |
|
4347 } |
|
4348 |
|
4349 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
4350 if (ret_val) |
|
4351 return ret_val; |
|
4352 |
|
4353 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
4354 if (ret_val) |
|
4355 return ret_val; |
|
4356 |
|
4357 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { |
|
4358 DEBUGOUT("PHY info is only valid if link is up\n"); |
|
4359 return -E1000_ERR_CONFIG; |
|
4360 } |
|
4361 |
|
4362 if (hw->phy_type == e1000_phy_igp || |
|
4363 hw->phy_type == e1000_phy_igp_3 || |
|
4364 hw->phy_type == e1000_phy_igp_2) |
|
4365 return e1000_phy_igp_get_info(hw, phy_info); |
|
4366 else if (hw->phy_type == e1000_phy_ife) |
|
4367 return e1000_phy_ife_get_info(hw, phy_info); |
|
4368 else |
|
4369 return e1000_phy_m88_get_info(hw, phy_info); |
|
4370 } |
|
4371 |
|
4372 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) |
|
4373 { |
|
4374 DEBUGFUNC("e1000_validate_mdi_settings"); |
|
4375 |
|
4376 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { |
|
4377 DEBUGOUT("Invalid MDI setting detected\n"); |
|
4378 hw->mdix = 1; |
|
4379 return -E1000_ERR_CONFIG; |
|
4380 } |
|
4381 return E1000_SUCCESS; |
|
4382 } |
|
4383 |
|
4384 |
|
4385 /****************************************************************************** |
|
4386 * Sets up eeprom variables in the hw struct. Must be called after mac_type |
|
4387 * is configured. Additionally, if this is ICH8, the flash controller GbE |
|
4388 * registers must be mapped, or this will crash. |
|
4389 * |
|
4390 * hw - Struct containing variables accessed by shared code |
|
4391 *****************************************************************************/ |
|
4392 s32 e1000_init_eeprom_params(struct e1000_hw *hw) |
|
4393 { |
|
4394 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
4395 u32 eecd = er32(EECD); |
|
4396 s32 ret_val = E1000_SUCCESS; |
|
4397 u16 eeprom_size; |
|
4398 |
|
4399 DEBUGFUNC("e1000_init_eeprom_params"); |
|
4400 |
|
4401 switch (hw->mac_type) { |
|
4402 case e1000_82542_rev2_0: |
|
4403 case e1000_82542_rev2_1: |
|
4404 case e1000_82543: |
|
4405 case e1000_82544: |
|
4406 eeprom->type = e1000_eeprom_microwire; |
|
4407 eeprom->word_size = 64; |
|
4408 eeprom->opcode_bits = 3; |
|
4409 eeprom->address_bits = 6; |
|
4410 eeprom->delay_usec = 50; |
|
4411 eeprom->use_eerd = false; |
|
4412 eeprom->use_eewr = false; |
|
4413 break; |
|
4414 case e1000_82540: |
|
4415 case e1000_82545: |
|
4416 case e1000_82545_rev_3: |
|
4417 case e1000_82546: |
|
4418 case e1000_82546_rev_3: |
|
4419 eeprom->type = e1000_eeprom_microwire; |
|
4420 eeprom->opcode_bits = 3; |
|
4421 eeprom->delay_usec = 50; |
|
4422 if (eecd & E1000_EECD_SIZE) { |
|
4423 eeprom->word_size = 256; |
|
4424 eeprom->address_bits = 8; |
|
4425 } else { |
|
4426 eeprom->word_size = 64; |
|
4427 eeprom->address_bits = 6; |
|
4428 } |
|
4429 eeprom->use_eerd = false; |
|
4430 eeprom->use_eewr = false; |
|
4431 break; |
|
4432 case e1000_82541: |
|
4433 case e1000_82541_rev_2: |
|
4434 case e1000_82547: |
|
4435 case e1000_82547_rev_2: |
|
4436 if (eecd & E1000_EECD_TYPE) { |
|
4437 eeprom->type = e1000_eeprom_spi; |
|
4438 eeprom->opcode_bits = 8; |
|
4439 eeprom->delay_usec = 1; |
|
4440 if (eecd & E1000_EECD_ADDR_BITS) { |
|
4441 eeprom->page_size = 32; |
|
4442 eeprom->address_bits = 16; |
|
4443 } else { |
|
4444 eeprom->page_size = 8; |
|
4445 eeprom->address_bits = 8; |
|
4446 } |
|
4447 } else { |
|
4448 eeprom->type = e1000_eeprom_microwire; |
|
4449 eeprom->opcode_bits = 3; |
|
4450 eeprom->delay_usec = 50; |
|
4451 if (eecd & E1000_EECD_ADDR_BITS) { |
|
4452 eeprom->word_size = 256; |
|
4453 eeprom->address_bits = 8; |
|
4454 } else { |
|
4455 eeprom->word_size = 64; |
|
4456 eeprom->address_bits = 6; |
|
4457 } |
|
4458 } |
|
4459 eeprom->use_eerd = false; |
|
4460 eeprom->use_eewr = false; |
|
4461 break; |
|
4462 case e1000_82571: |
|
4463 case e1000_82572: |
|
4464 eeprom->type = e1000_eeprom_spi; |
|
4465 eeprom->opcode_bits = 8; |
|
4466 eeprom->delay_usec = 1; |
|
4467 if (eecd & E1000_EECD_ADDR_BITS) { |
|
4468 eeprom->page_size = 32; |
|
4469 eeprom->address_bits = 16; |
|
4470 } else { |
|
4471 eeprom->page_size = 8; |
|
4472 eeprom->address_bits = 8; |
|
4473 } |
|
4474 eeprom->use_eerd = false; |
|
4475 eeprom->use_eewr = false; |
|
4476 break; |
|
4477 case e1000_82573: |
|
4478 eeprom->type = e1000_eeprom_spi; |
|
4479 eeprom->opcode_bits = 8; |
|
4480 eeprom->delay_usec = 1; |
|
4481 if (eecd & E1000_EECD_ADDR_BITS) { |
|
4482 eeprom->page_size = 32; |
|
4483 eeprom->address_bits = 16; |
|
4484 } else { |
|
4485 eeprom->page_size = 8; |
|
4486 eeprom->address_bits = 8; |
|
4487 } |
|
4488 eeprom->use_eerd = true; |
|
4489 eeprom->use_eewr = true; |
|
4490 if (!e1000_is_onboard_nvm_eeprom(hw)) { |
|
4491 eeprom->type = e1000_eeprom_flash; |
|
4492 eeprom->word_size = 2048; |
|
4493 |
|
4494 /* Ensure that the Autonomous FLASH update bit is cleared due to |
|
4495 * Flash update issue on parts which use a FLASH for NVM. */ |
|
4496 eecd &= ~E1000_EECD_AUPDEN; |
|
4497 ew32(EECD, eecd); |
|
4498 } |
|
4499 break; |
|
4500 case e1000_80003es2lan: |
|
4501 eeprom->type = e1000_eeprom_spi; |
|
4502 eeprom->opcode_bits = 8; |
|
4503 eeprom->delay_usec = 1; |
|
4504 if (eecd & E1000_EECD_ADDR_BITS) { |
|
4505 eeprom->page_size = 32; |
|
4506 eeprom->address_bits = 16; |
|
4507 } else { |
|
4508 eeprom->page_size = 8; |
|
4509 eeprom->address_bits = 8; |
|
4510 } |
|
4511 eeprom->use_eerd = true; |
|
4512 eeprom->use_eewr = false; |
|
4513 break; |
|
4514 case e1000_ich8lan: |
|
4515 { |
|
4516 s32 i = 0; |
|
4517 u32 flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG); |
|
4518 |
|
4519 eeprom->type = e1000_eeprom_ich8; |
|
4520 eeprom->use_eerd = false; |
|
4521 eeprom->use_eewr = false; |
|
4522 eeprom->word_size = E1000_SHADOW_RAM_WORDS; |
|
4523 |
|
4524 /* Zero the shadow RAM structure. But don't load it from NVM |
|
4525 * so as to save time for driver init */ |
|
4526 if (hw->eeprom_shadow_ram != NULL) { |
|
4527 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { |
|
4528 hw->eeprom_shadow_ram[i].modified = false; |
|
4529 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; |
|
4530 } |
|
4531 } |
|
4532 |
|
4533 hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) * |
|
4534 ICH_FLASH_SECTOR_SIZE; |
|
4535 |
|
4536 hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1; |
|
4537 hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK); |
|
4538 |
|
4539 hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; |
|
4540 |
|
4541 hw->flash_bank_size /= 2 * sizeof(u16); |
|
4542 |
|
4543 break; |
|
4544 } |
|
4545 default: |
|
4546 break; |
|
4547 } |
|
4548 |
|
4549 if (eeprom->type == e1000_eeprom_spi) { |
|
4550 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to |
|
4551 * 32KB (incremented by powers of 2). |
|
4552 */ |
|
4553 if (hw->mac_type <= e1000_82547_rev_2) { |
|
4554 /* Set to default value for initial eeprom read. */ |
|
4555 eeprom->word_size = 64; |
|
4556 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
|
4557 if (ret_val) |
|
4558 return ret_val; |
|
4559 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
|
4560 /* 256B eeprom size was not supported in earlier hardware, so we |
|
4561 * bump eeprom_size up one to ensure that "1" (which maps to 256B) |
|
4562 * is never the result used in the shifting logic below. */ |
|
4563 if (eeprom_size) |
|
4564 eeprom_size++; |
|
4565 } else { |
|
4566 eeprom_size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
|
4567 E1000_EECD_SIZE_EX_SHIFT); |
|
4568 } |
|
4569 |
|
4570 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); |
|
4571 } |
|
4572 return ret_val; |
|
4573 } |
|
4574 |
|
4575 /****************************************************************************** |
|
4576 * Raises the EEPROM's clock input. |
|
4577 * |
|
4578 * hw - Struct containing variables accessed by shared code |
|
4579 * eecd - EECD's current value |
|
4580 *****************************************************************************/ |
|
4581 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) |
|
4582 { |
|
4583 /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
|
4584 * wait <delay> microseconds. |
|
4585 */ |
|
4586 *eecd = *eecd | E1000_EECD_SK; |
|
4587 ew32(EECD, *eecd); |
|
4588 E1000_WRITE_FLUSH(); |
|
4589 udelay(hw->eeprom.delay_usec); |
|
4590 } |
|
4591 |
|
4592 /****************************************************************************** |
|
4593 * Lowers the EEPROM's clock input. |
|
4594 * |
|
4595 * hw - Struct containing variables accessed by shared code |
|
4596 * eecd - EECD's current value |
|
4597 *****************************************************************************/ |
|
4598 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) |
|
4599 { |
|
4600 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
|
4601 * wait 50 microseconds. |
|
4602 */ |
|
4603 *eecd = *eecd & ~E1000_EECD_SK; |
|
4604 ew32(EECD, *eecd); |
|
4605 E1000_WRITE_FLUSH(); |
|
4606 udelay(hw->eeprom.delay_usec); |
|
4607 } |
|
4608 |
|
4609 /****************************************************************************** |
|
4610 * Shift data bits out to the EEPROM. |
|
4611 * |
|
4612 * hw - Struct containing variables accessed by shared code |
|
4613 * data - data to send to the EEPROM |
|
4614 * count - number of bits to shift out |
|
4615 *****************************************************************************/ |
|
4616 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) |
|
4617 { |
|
4618 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
4619 u32 eecd; |
|
4620 u32 mask; |
|
4621 |
|
4622 /* We need to shift "count" bits out to the EEPROM. So, value in the |
|
4623 * "data" parameter will be shifted out to the EEPROM one bit at a time. |
|
4624 * In order to do this, "data" must be broken down into bits. |
|
4625 */ |
|
4626 mask = 0x01 << (count - 1); |
|
4627 eecd = er32(EECD); |
|
4628 if (eeprom->type == e1000_eeprom_microwire) { |
|
4629 eecd &= ~E1000_EECD_DO; |
|
4630 } else if (eeprom->type == e1000_eeprom_spi) { |
|
4631 eecd |= E1000_EECD_DO; |
|
4632 } |
|
4633 do { |
|
4634 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
|
4635 * and then raising and then lowering the clock (the SK bit controls |
|
4636 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
|
4637 * by setting "DI" to "0" and then raising and then lowering the clock. |
|
4638 */ |
|
4639 eecd &= ~E1000_EECD_DI; |
|
4640 |
|
4641 if (data & mask) |
|
4642 eecd |= E1000_EECD_DI; |
|
4643 |
|
4644 ew32(EECD, eecd); |
|
4645 E1000_WRITE_FLUSH(); |
|
4646 |
|
4647 udelay(eeprom->delay_usec); |
|
4648 |
|
4649 e1000_raise_ee_clk(hw, &eecd); |
|
4650 e1000_lower_ee_clk(hw, &eecd); |
|
4651 |
|
4652 mask = mask >> 1; |
|
4653 |
|
4654 } while (mask); |
|
4655 |
|
4656 /* We leave the "DI" bit set to "0" when we leave this routine. */ |
|
4657 eecd &= ~E1000_EECD_DI; |
|
4658 ew32(EECD, eecd); |
|
4659 } |
|
4660 |
|
4661 /****************************************************************************** |
|
4662 * Shift data bits in from the EEPROM |
|
4663 * |
|
4664 * hw - Struct containing variables accessed by shared code |
|
4665 *****************************************************************************/ |
|
4666 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) |
|
4667 { |
|
4668 u32 eecd; |
|
4669 u32 i; |
|
4670 u16 data; |
|
4671 |
|
4672 /* In order to read a register from the EEPROM, we need to shift 'count' |
|
4673 * bits in from the EEPROM. Bits are "shifted in" by raising the clock |
|
4674 * input to the EEPROM (setting the SK bit), and then reading the value of |
|
4675 * the "DO" bit. During this "shifting in" process the "DI" bit should |
|
4676 * always be clear. |
|
4677 */ |
|
4678 |
|
4679 eecd = er32(EECD); |
|
4680 |
|
4681 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
|
4682 data = 0; |
|
4683 |
|
4684 for (i = 0; i < count; i++) { |
|
4685 data = data << 1; |
|
4686 e1000_raise_ee_clk(hw, &eecd); |
|
4687 |
|
4688 eecd = er32(EECD); |
|
4689 |
|
4690 eecd &= ~(E1000_EECD_DI); |
|
4691 if (eecd & E1000_EECD_DO) |
|
4692 data |= 1; |
|
4693 |
|
4694 e1000_lower_ee_clk(hw, &eecd); |
|
4695 } |
|
4696 |
|
4697 return data; |
|
4698 } |
|
4699 |
|
4700 /****************************************************************************** |
|
4701 * Prepares EEPROM for access |
|
4702 * |
|
4703 * hw - Struct containing variables accessed by shared code |
|
4704 * |
|
4705 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
|
4706 * function should be called before issuing a command to the EEPROM. |
|
4707 *****************************************************************************/ |
|
4708 static s32 e1000_acquire_eeprom(struct e1000_hw *hw) |
|
4709 { |
|
4710 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
4711 u32 eecd, i=0; |
|
4712 |
|
4713 DEBUGFUNC("e1000_acquire_eeprom"); |
|
4714 |
|
4715 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) |
|
4716 return -E1000_ERR_SWFW_SYNC; |
|
4717 eecd = er32(EECD); |
|
4718 |
|
4719 if (hw->mac_type != e1000_82573) { |
|
4720 /* Request EEPROM Access */ |
|
4721 if (hw->mac_type > e1000_82544) { |
|
4722 eecd |= E1000_EECD_REQ; |
|
4723 ew32(EECD, eecd); |
|
4724 eecd = er32(EECD); |
|
4725 while ((!(eecd & E1000_EECD_GNT)) && |
|
4726 (i < E1000_EEPROM_GRANT_ATTEMPTS)) { |
|
4727 i++; |
|
4728 udelay(5); |
|
4729 eecd = er32(EECD); |
|
4730 } |
|
4731 if (!(eecd & E1000_EECD_GNT)) { |
|
4732 eecd &= ~E1000_EECD_REQ; |
|
4733 ew32(EECD, eecd); |
|
4734 DEBUGOUT("Could not acquire EEPROM grant\n"); |
|
4735 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); |
|
4736 return -E1000_ERR_EEPROM; |
|
4737 } |
|
4738 } |
|
4739 } |
|
4740 |
|
4741 /* Setup EEPROM for Read/Write */ |
|
4742 |
|
4743 if (eeprom->type == e1000_eeprom_microwire) { |
|
4744 /* Clear SK and DI */ |
|
4745 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); |
|
4746 ew32(EECD, eecd); |
|
4747 |
|
4748 /* Set CS */ |
|
4749 eecd |= E1000_EECD_CS; |
|
4750 ew32(EECD, eecd); |
|
4751 } else if (eeprom->type == e1000_eeprom_spi) { |
|
4752 /* Clear SK and CS */ |
|
4753 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
|
4754 ew32(EECD, eecd); |
|
4755 udelay(1); |
|
4756 } |
|
4757 |
|
4758 return E1000_SUCCESS; |
|
4759 } |
|
4760 |
|
4761 /****************************************************************************** |
|
4762 * Returns EEPROM to a "standby" state |
|
4763 * |
|
4764 * hw - Struct containing variables accessed by shared code |
|
4765 *****************************************************************************/ |
|
4766 static void e1000_standby_eeprom(struct e1000_hw *hw) |
|
4767 { |
|
4768 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
4769 u32 eecd; |
|
4770 |
|
4771 eecd = er32(EECD); |
|
4772 |
|
4773 if (eeprom->type == e1000_eeprom_microwire) { |
|
4774 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
|
4775 ew32(EECD, eecd); |
|
4776 E1000_WRITE_FLUSH(); |
|
4777 udelay(eeprom->delay_usec); |
|
4778 |
|
4779 /* Clock high */ |
|
4780 eecd |= E1000_EECD_SK; |
|
4781 ew32(EECD, eecd); |
|
4782 E1000_WRITE_FLUSH(); |
|
4783 udelay(eeprom->delay_usec); |
|
4784 |
|
4785 /* Select EEPROM */ |
|
4786 eecd |= E1000_EECD_CS; |
|
4787 ew32(EECD, eecd); |
|
4788 E1000_WRITE_FLUSH(); |
|
4789 udelay(eeprom->delay_usec); |
|
4790 |
|
4791 /* Clock low */ |
|
4792 eecd &= ~E1000_EECD_SK; |
|
4793 ew32(EECD, eecd); |
|
4794 E1000_WRITE_FLUSH(); |
|
4795 udelay(eeprom->delay_usec); |
|
4796 } else if (eeprom->type == e1000_eeprom_spi) { |
|
4797 /* Toggle CS to flush commands */ |
|
4798 eecd |= E1000_EECD_CS; |
|
4799 ew32(EECD, eecd); |
|
4800 E1000_WRITE_FLUSH(); |
|
4801 udelay(eeprom->delay_usec); |
|
4802 eecd &= ~E1000_EECD_CS; |
|
4803 ew32(EECD, eecd); |
|
4804 E1000_WRITE_FLUSH(); |
|
4805 udelay(eeprom->delay_usec); |
|
4806 } |
|
4807 } |
|
4808 |
|
4809 /****************************************************************************** |
|
4810 * Terminates a command by inverting the EEPROM's chip select pin |
|
4811 * |
|
4812 * hw - Struct containing variables accessed by shared code |
|
4813 *****************************************************************************/ |
|
4814 static void e1000_release_eeprom(struct e1000_hw *hw) |
|
4815 { |
|
4816 u32 eecd; |
|
4817 |
|
4818 DEBUGFUNC("e1000_release_eeprom"); |
|
4819 |
|
4820 eecd = er32(EECD); |
|
4821 |
|
4822 if (hw->eeprom.type == e1000_eeprom_spi) { |
|
4823 eecd |= E1000_EECD_CS; /* Pull CS high */ |
|
4824 eecd &= ~E1000_EECD_SK; /* Lower SCK */ |
|
4825 |
|
4826 ew32(EECD, eecd); |
|
4827 |
|
4828 udelay(hw->eeprom.delay_usec); |
|
4829 } else if (hw->eeprom.type == e1000_eeprom_microwire) { |
|
4830 /* cleanup eeprom */ |
|
4831 |
|
4832 /* CS on Microwire is active-high */ |
|
4833 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
|
4834 |
|
4835 ew32(EECD, eecd); |
|
4836 |
|
4837 /* Rising edge of clock */ |
|
4838 eecd |= E1000_EECD_SK; |
|
4839 ew32(EECD, eecd); |
|
4840 E1000_WRITE_FLUSH(); |
|
4841 udelay(hw->eeprom.delay_usec); |
|
4842 |
|
4843 /* Falling edge of clock */ |
|
4844 eecd &= ~E1000_EECD_SK; |
|
4845 ew32(EECD, eecd); |
|
4846 E1000_WRITE_FLUSH(); |
|
4847 udelay(hw->eeprom.delay_usec); |
|
4848 } |
|
4849 |
|
4850 /* Stop requesting EEPROM access */ |
|
4851 if (hw->mac_type > e1000_82544) { |
|
4852 eecd &= ~E1000_EECD_REQ; |
|
4853 ew32(EECD, eecd); |
|
4854 } |
|
4855 |
|
4856 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); |
|
4857 } |
|
4858 |
|
4859 /****************************************************************************** |
|
4860 * Reads a 16 bit word from the EEPROM. |
|
4861 * |
|
4862 * hw - Struct containing variables accessed by shared code |
|
4863 *****************************************************************************/ |
|
4864 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) |
|
4865 { |
|
4866 u16 retry_count = 0; |
|
4867 u8 spi_stat_reg; |
|
4868 |
|
4869 DEBUGFUNC("e1000_spi_eeprom_ready"); |
|
4870 |
|
4871 /* Read "Status Register" repeatedly until the LSB is cleared. The |
|
4872 * EEPROM will signal that the command has been completed by clearing |
|
4873 * bit 0 of the internal status register. If it's not cleared within |
|
4874 * 5 milliseconds, then error out. |
|
4875 */ |
|
4876 retry_count = 0; |
|
4877 do { |
|
4878 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, |
|
4879 hw->eeprom.opcode_bits); |
|
4880 spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8); |
|
4881 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) |
|
4882 break; |
|
4883 |
|
4884 udelay(5); |
|
4885 retry_count += 5; |
|
4886 |
|
4887 e1000_standby_eeprom(hw); |
|
4888 } while (retry_count < EEPROM_MAX_RETRY_SPI); |
|
4889 |
|
4890 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and |
|
4891 * only 0-5mSec on 5V devices) |
|
4892 */ |
|
4893 if (retry_count >= EEPROM_MAX_RETRY_SPI) { |
|
4894 DEBUGOUT("SPI EEPROM Status error\n"); |
|
4895 return -E1000_ERR_EEPROM; |
|
4896 } |
|
4897 |
|
4898 return E1000_SUCCESS; |
|
4899 } |
|
4900 |
|
4901 /****************************************************************************** |
|
4902 * Reads a 16 bit word from the EEPROM. |
|
4903 * |
|
4904 * hw - Struct containing variables accessed by shared code |
|
4905 * offset - offset of word in the EEPROM to read |
|
4906 * data - word read from the EEPROM |
|
4907 * words - number of words to read |
|
4908 *****************************************************************************/ |
|
4909 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
4910 { |
|
4911 s32 ret; |
|
4912 spin_lock(&e1000_eeprom_lock); |
|
4913 ret = e1000_do_read_eeprom(hw, offset, words, data); |
|
4914 spin_unlock(&e1000_eeprom_lock); |
|
4915 return ret; |
|
4916 } |
|
4917 |
|
4918 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
4919 { |
|
4920 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
4921 u32 i = 0; |
|
4922 |
|
4923 DEBUGFUNC("e1000_read_eeprom"); |
|
4924 |
|
4925 /* If eeprom is not yet detected, do so now */ |
|
4926 if (eeprom->word_size == 0) |
|
4927 e1000_init_eeprom_params(hw); |
|
4928 |
|
4929 /* A check for invalid values: offset too large, too many words, and not |
|
4930 * enough words. |
|
4931 */ |
|
4932 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || |
|
4933 (words == 0)) { |
|
4934 DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size); |
|
4935 return -E1000_ERR_EEPROM; |
|
4936 } |
|
4937 |
|
4938 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI |
|
4939 * directly. In this case, we need to acquire the EEPROM so that |
|
4940 * FW or other port software does not interrupt. |
|
4941 */ |
|
4942 if (e1000_is_onboard_nvm_eeprom(hw) && !hw->eeprom.use_eerd) { |
|
4943 /* Prepare the EEPROM for bit-bang reading */ |
|
4944 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
|
4945 return -E1000_ERR_EEPROM; |
|
4946 } |
|
4947 |
|
4948 /* Eerd register EEPROM access requires no eeprom aquire/release */ |
|
4949 if (eeprom->use_eerd) |
|
4950 return e1000_read_eeprom_eerd(hw, offset, words, data); |
|
4951 |
|
4952 /* ICH EEPROM access is done via the ICH flash controller */ |
|
4953 if (eeprom->type == e1000_eeprom_ich8) |
|
4954 return e1000_read_eeprom_ich8(hw, offset, words, data); |
|
4955 |
|
4956 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have |
|
4957 * acquired the EEPROM at this point, so any returns should relase it */ |
|
4958 if (eeprom->type == e1000_eeprom_spi) { |
|
4959 u16 word_in; |
|
4960 u8 read_opcode = EEPROM_READ_OPCODE_SPI; |
|
4961 |
|
4962 if (e1000_spi_eeprom_ready(hw)) { |
|
4963 e1000_release_eeprom(hw); |
|
4964 return -E1000_ERR_EEPROM; |
|
4965 } |
|
4966 |
|
4967 e1000_standby_eeprom(hw); |
|
4968 |
|
4969 /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
|
4970 if ((eeprom->address_bits == 8) && (offset >= 128)) |
|
4971 read_opcode |= EEPROM_A8_OPCODE_SPI; |
|
4972 |
|
4973 /* Send the READ command (opcode + addr) */ |
|
4974 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); |
|
4975 e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits); |
|
4976 |
|
4977 /* Read the data. The address of the eeprom internally increments with |
|
4978 * each byte (spi) being read, saving on the overhead of eeprom setup |
|
4979 * and tear-down. The address counter will roll over if reading beyond |
|
4980 * the size of the eeprom, thus allowing the entire memory to be read |
|
4981 * starting from any offset. */ |
|
4982 for (i = 0; i < words; i++) { |
|
4983 word_in = e1000_shift_in_ee_bits(hw, 16); |
|
4984 data[i] = (word_in >> 8) | (word_in << 8); |
|
4985 } |
|
4986 } else if (eeprom->type == e1000_eeprom_microwire) { |
|
4987 for (i = 0; i < words; i++) { |
|
4988 /* Send the READ command (opcode + addr) */ |
|
4989 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, |
|
4990 eeprom->opcode_bits); |
|
4991 e1000_shift_out_ee_bits(hw, (u16)(offset + i), |
|
4992 eeprom->address_bits); |
|
4993 |
|
4994 /* Read the data. For microwire, each word requires the overhead |
|
4995 * of eeprom setup and tear-down. */ |
|
4996 data[i] = e1000_shift_in_ee_bits(hw, 16); |
|
4997 e1000_standby_eeprom(hw); |
|
4998 } |
|
4999 } |
|
5000 |
|
5001 /* End this read operation */ |
|
5002 e1000_release_eeprom(hw); |
|
5003 |
|
5004 return E1000_SUCCESS; |
|
5005 } |
|
5006 |
|
5007 /****************************************************************************** |
|
5008 * Reads a 16 bit word from the EEPROM using the EERD register. |
|
5009 * |
|
5010 * hw - Struct containing variables accessed by shared code |
|
5011 * offset - offset of word in the EEPROM to read |
|
5012 * data - word read from the EEPROM |
|
5013 * words - number of words to read |
|
5014 *****************************************************************************/ |
|
5015 static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, |
|
5016 u16 *data) |
|
5017 { |
|
5018 u32 i, eerd = 0; |
|
5019 s32 error = 0; |
|
5020 |
|
5021 for (i = 0; i < words; i++) { |
|
5022 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + |
|
5023 E1000_EEPROM_RW_REG_START; |
|
5024 |
|
5025 ew32(EERD, eerd); |
|
5026 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); |
|
5027 |
|
5028 if (error) { |
|
5029 break; |
|
5030 } |
|
5031 data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA); |
|
5032 |
|
5033 } |
|
5034 |
|
5035 return error; |
|
5036 } |
|
5037 |
|
5038 /****************************************************************************** |
|
5039 * Writes a 16 bit word from the EEPROM using the EEWR register. |
|
5040 * |
|
5041 * hw - Struct containing variables accessed by shared code |
|
5042 * offset - offset of word in the EEPROM to read |
|
5043 * data - word read from the EEPROM |
|
5044 * words - number of words to read |
|
5045 *****************************************************************************/ |
|
5046 static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words, |
|
5047 u16 *data) |
|
5048 { |
|
5049 u32 register_value = 0; |
|
5050 u32 i = 0; |
|
5051 s32 error = 0; |
|
5052 |
|
5053 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) |
|
5054 return -E1000_ERR_SWFW_SYNC; |
|
5055 |
|
5056 for (i = 0; i < words; i++) { |
|
5057 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | |
|
5058 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | |
|
5059 E1000_EEPROM_RW_REG_START; |
|
5060 |
|
5061 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); |
|
5062 if (error) { |
|
5063 break; |
|
5064 } |
|
5065 |
|
5066 ew32(EEWR, register_value); |
|
5067 |
|
5068 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); |
|
5069 |
|
5070 if (error) { |
|
5071 break; |
|
5072 } |
|
5073 } |
|
5074 |
|
5075 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); |
|
5076 return error; |
|
5077 } |
|
5078 |
|
5079 /****************************************************************************** |
|
5080 * Polls the status bit (bit 1) of the EERD to determine when the read is done. |
|
5081 * |
|
5082 * hw - Struct containing variables accessed by shared code |
|
5083 *****************************************************************************/ |
|
5084 static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) |
|
5085 { |
|
5086 u32 attempts = 100000; |
|
5087 u32 i, reg = 0; |
|
5088 s32 done = E1000_ERR_EEPROM; |
|
5089 |
|
5090 for (i = 0; i < attempts; i++) { |
|
5091 if (eerd == E1000_EEPROM_POLL_READ) |
|
5092 reg = er32(EERD); |
|
5093 else |
|
5094 reg = er32(EEWR); |
|
5095 |
|
5096 if (reg & E1000_EEPROM_RW_REG_DONE) { |
|
5097 done = E1000_SUCCESS; |
|
5098 break; |
|
5099 } |
|
5100 udelay(5); |
|
5101 } |
|
5102 |
|
5103 return done; |
|
5104 } |
|
5105 |
|
5106 /*************************************************************************** |
|
5107 * Description: Determines if the onboard NVM is FLASH or EEPROM. |
|
5108 * |
|
5109 * hw - Struct containing variables accessed by shared code |
|
5110 ****************************************************************************/ |
|
5111 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) |
|
5112 { |
|
5113 u32 eecd = 0; |
|
5114 |
|
5115 DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); |
|
5116 |
|
5117 if (hw->mac_type == e1000_ich8lan) |
|
5118 return false; |
|
5119 |
|
5120 if (hw->mac_type == e1000_82573) { |
|
5121 eecd = er32(EECD); |
|
5122 |
|
5123 /* Isolate bits 15 & 16 */ |
|
5124 eecd = ((eecd >> 15) & 0x03); |
|
5125 |
|
5126 /* If both bits are set, device is Flash type */ |
|
5127 if (eecd == 0x03) { |
|
5128 return false; |
|
5129 } |
|
5130 } |
|
5131 return true; |
|
5132 } |
|
5133 |
|
5134 /****************************************************************************** |
|
5135 * Verifies that the EEPROM has a valid checksum |
|
5136 * |
|
5137 * hw - Struct containing variables accessed by shared code |
|
5138 * |
|
5139 * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
|
5140 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
|
5141 * valid. |
|
5142 *****************************************************************************/ |
|
5143 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) |
|
5144 { |
|
5145 u16 checksum = 0; |
|
5146 u16 i, eeprom_data; |
|
5147 |
|
5148 DEBUGFUNC("e1000_validate_eeprom_checksum"); |
|
5149 |
|
5150 if ((hw->mac_type == e1000_82573) && !e1000_is_onboard_nvm_eeprom(hw)) { |
|
5151 /* Check bit 4 of word 10h. If it is 0, firmware is done updating |
|
5152 * 10h-12h. Checksum may need to be fixed. */ |
|
5153 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); |
|
5154 if ((eeprom_data & 0x10) == 0) { |
|
5155 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum |
|
5156 * has already been fixed. If the checksum is still wrong and this |
|
5157 * bit is a 1, we need to return bad checksum. Otherwise, we need |
|
5158 * to set this bit to a 1 and update the checksum. */ |
|
5159 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); |
|
5160 if ((eeprom_data & 0x8000) == 0) { |
|
5161 eeprom_data |= 0x8000; |
|
5162 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); |
|
5163 e1000_update_eeprom_checksum(hw); |
|
5164 } |
|
5165 } |
|
5166 } |
|
5167 |
|
5168 if (hw->mac_type == e1000_ich8lan) { |
|
5169 /* Drivers must allocate the shadow ram structure for the |
|
5170 * EEPROM checksum to be updated. Otherwise, this bit as well |
|
5171 * as the checksum must both be set correctly for this |
|
5172 * validation to pass. |
|
5173 */ |
|
5174 e1000_read_eeprom(hw, 0x19, 1, &eeprom_data); |
|
5175 if ((eeprom_data & 0x40) == 0) { |
|
5176 eeprom_data |= 0x40; |
|
5177 e1000_write_eeprom(hw, 0x19, 1, &eeprom_data); |
|
5178 e1000_update_eeprom_checksum(hw); |
|
5179 } |
|
5180 } |
|
5181 |
|
5182 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
|
5183 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
|
5184 DEBUGOUT("EEPROM Read Error\n"); |
|
5185 return -E1000_ERR_EEPROM; |
|
5186 } |
|
5187 checksum += eeprom_data; |
|
5188 } |
|
5189 |
|
5190 if (checksum == (u16)EEPROM_SUM) |
|
5191 return E1000_SUCCESS; |
|
5192 else { |
|
5193 DEBUGOUT("EEPROM Checksum Invalid\n"); |
|
5194 return -E1000_ERR_EEPROM; |
|
5195 } |
|
5196 } |
|
5197 |
|
5198 /****************************************************************************** |
|
5199 * Calculates the EEPROM checksum and writes it to the EEPROM |
|
5200 * |
|
5201 * hw - Struct containing variables accessed by shared code |
|
5202 * |
|
5203 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. |
|
5204 * Writes the difference to word offset 63 of the EEPROM. |
|
5205 *****************************************************************************/ |
|
5206 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) |
|
5207 { |
|
5208 u32 ctrl_ext; |
|
5209 u16 checksum = 0; |
|
5210 u16 i, eeprom_data; |
|
5211 |
|
5212 DEBUGFUNC("e1000_update_eeprom_checksum"); |
|
5213 |
|
5214 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { |
|
5215 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
|
5216 DEBUGOUT("EEPROM Read Error\n"); |
|
5217 return -E1000_ERR_EEPROM; |
|
5218 } |
|
5219 checksum += eeprom_data; |
|
5220 } |
|
5221 checksum = (u16)EEPROM_SUM - checksum; |
|
5222 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
|
5223 DEBUGOUT("EEPROM Write Error\n"); |
|
5224 return -E1000_ERR_EEPROM; |
|
5225 } else if (hw->eeprom.type == e1000_eeprom_flash) { |
|
5226 e1000_commit_shadow_ram(hw); |
|
5227 } else if (hw->eeprom.type == e1000_eeprom_ich8) { |
|
5228 e1000_commit_shadow_ram(hw); |
|
5229 /* Reload the EEPROM, or else modifications will not appear |
|
5230 * until after next adapter reset. */ |
|
5231 ctrl_ext = er32(CTRL_EXT); |
|
5232 ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
|
5233 ew32(CTRL_EXT, ctrl_ext); |
|
5234 msleep(10); |
|
5235 } |
|
5236 return E1000_SUCCESS; |
|
5237 } |
|
5238 |
|
5239 /****************************************************************************** |
|
5240 * Parent function for writing words to the different EEPROM types. |
|
5241 * |
|
5242 * hw - Struct containing variables accessed by shared code |
|
5243 * offset - offset within the EEPROM to be written to |
|
5244 * words - number of words to write |
|
5245 * data - 16 bit word to be written to the EEPROM |
|
5246 * |
|
5247 * If e1000_update_eeprom_checksum is not called after this function, the |
|
5248 * EEPROM will most likely contain an invalid checksum. |
|
5249 *****************************************************************************/ |
|
5250 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
5251 { |
|
5252 s32 ret; |
|
5253 spin_lock(&e1000_eeprom_lock); |
|
5254 ret = e1000_do_write_eeprom(hw, offset, words, data); |
|
5255 spin_unlock(&e1000_eeprom_lock); |
|
5256 return ret; |
|
5257 } |
|
5258 |
|
5259 |
|
5260 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
5261 { |
|
5262 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
5263 s32 status = 0; |
|
5264 |
|
5265 DEBUGFUNC("e1000_write_eeprom"); |
|
5266 |
|
5267 /* If eeprom is not yet detected, do so now */ |
|
5268 if (eeprom->word_size == 0) |
|
5269 e1000_init_eeprom_params(hw); |
|
5270 |
|
5271 /* A check for invalid values: offset too large, too many words, and not |
|
5272 * enough words. |
|
5273 */ |
|
5274 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || |
|
5275 (words == 0)) { |
|
5276 DEBUGOUT("\"words\" parameter out of bounds\n"); |
|
5277 return -E1000_ERR_EEPROM; |
|
5278 } |
|
5279 |
|
5280 /* 82573 writes only through eewr */ |
|
5281 if (eeprom->use_eewr) |
|
5282 return e1000_write_eeprom_eewr(hw, offset, words, data); |
|
5283 |
|
5284 if (eeprom->type == e1000_eeprom_ich8) |
|
5285 return e1000_write_eeprom_ich8(hw, offset, words, data); |
|
5286 |
|
5287 /* Prepare the EEPROM for writing */ |
|
5288 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
|
5289 return -E1000_ERR_EEPROM; |
|
5290 |
|
5291 if (eeprom->type == e1000_eeprom_microwire) { |
|
5292 status = e1000_write_eeprom_microwire(hw, offset, words, data); |
|
5293 } else { |
|
5294 status = e1000_write_eeprom_spi(hw, offset, words, data); |
|
5295 msleep(10); |
|
5296 } |
|
5297 |
|
5298 /* Done with writing */ |
|
5299 e1000_release_eeprom(hw); |
|
5300 |
|
5301 return status; |
|
5302 } |
|
5303 |
|
5304 /****************************************************************************** |
|
5305 * Writes a 16 bit word to a given offset in an SPI EEPROM. |
|
5306 * |
|
5307 * hw - Struct containing variables accessed by shared code |
|
5308 * offset - offset within the EEPROM to be written to |
|
5309 * words - number of words to write |
|
5310 * data - pointer to array of 8 bit words to be written to the EEPROM |
|
5311 * |
|
5312 *****************************************************************************/ |
|
5313 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, |
|
5314 u16 *data) |
|
5315 { |
|
5316 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
5317 u16 widx = 0; |
|
5318 |
|
5319 DEBUGFUNC("e1000_write_eeprom_spi"); |
|
5320 |
|
5321 while (widx < words) { |
|
5322 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; |
|
5323 |
|
5324 if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; |
|
5325 |
|
5326 e1000_standby_eeprom(hw); |
|
5327 |
|
5328 /* Send the WRITE ENABLE command (8 bit opcode ) */ |
|
5329 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, |
|
5330 eeprom->opcode_bits); |
|
5331 |
|
5332 e1000_standby_eeprom(hw); |
|
5333 |
|
5334 /* Some SPI eeproms use the 8th address bit embedded in the opcode */ |
|
5335 if ((eeprom->address_bits == 8) && (offset >= 128)) |
|
5336 write_opcode |= EEPROM_A8_OPCODE_SPI; |
|
5337 |
|
5338 /* Send the Write command (8-bit opcode + addr) */ |
|
5339 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); |
|
5340 |
|
5341 e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2), |
|
5342 eeprom->address_bits); |
|
5343 |
|
5344 /* Send the data */ |
|
5345 |
|
5346 /* Loop to allow for up to whole page write (32 bytes) of eeprom */ |
|
5347 while (widx < words) { |
|
5348 u16 word_out = data[widx]; |
|
5349 word_out = (word_out >> 8) | (word_out << 8); |
|
5350 e1000_shift_out_ee_bits(hw, word_out, 16); |
|
5351 widx++; |
|
5352 |
|
5353 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE |
|
5354 * operation, while the smaller eeproms are capable of an 8-byte |
|
5355 * PAGE WRITE operation. Break the inner loop to pass new address |
|
5356 */ |
|
5357 if ((((offset + widx)*2) % eeprom->page_size) == 0) { |
|
5358 e1000_standby_eeprom(hw); |
|
5359 break; |
|
5360 } |
|
5361 } |
|
5362 } |
|
5363 |
|
5364 return E1000_SUCCESS; |
|
5365 } |
|
5366 |
|
5367 /****************************************************************************** |
|
5368 * Writes a 16 bit word to a given offset in a Microwire EEPROM. |
|
5369 * |
|
5370 * hw - Struct containing variables accessed by shared code |
|
5371 * offset - offset within the EEPROM to be written to |
|
5372 * words - number of words to write |
|
5373 * data - pointer to array of 16 bit words to be written to the EEPROM |
|
5374 * |
|
5375 *****************************************************************************/ |
|
5376 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
|
5377 u16 words, u16 *data) |
|
5378 { |
|
5379 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
5380 u32 eecd; |
|
5381 u16 words_written = 0; |
|
5382 u16 i = 0; |
|
5383 |
|
5384 DEBUGFUNC("e1000_write_eeprom_microwire"); |
|
5385 |
|
5386 /* Send the write enable command to the EEPROM (3-bit opcode plus |
|
5387 * 6/8-bit dummy address beginning with 11). It's less work to include |
|
5388 * the 11 of the dummy address as part of the opcode than it is to shift |
|
5389 * it over the correct number of bits for the address. This puts the |
|
5390 * EEPROM into write/erase mode. |
|
5391 */ |
|
5392 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, |
|
5393 (u16)(eeprom->opcode_bits + 2)); |
|
5394 |
|
5395 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); |
|
5396 |
|
5397 /* Prepare the EEPROM */ |
|
5398 e1000_standby_eeprom(hw); |
|
5399 |
|
5400 while (words_written < words) { |
|
5401 /* Send the Write command (3-bit opcode + addr) */ |
|
5402 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, |
|
5403 eeprom->opcode_bits); |
|
5404 |
|
5405 e1000_shift_out_ee_bits(hw, (u16)(offset + words_written), |
|
5406 eeprom->address_bits); |
|
5407 |
|
5408 /* Send the data */ |
|
5409 e1000_shift_out_ee_bits(hw, data[words_written], 16); |
|
5410 |
|
5411 /* Toggle the CS line. This in effect tells the EEPROM to execute |
|
5412 * the previous command. |
|
5413 */ |
|
5414 e1000_standby_eeprom(hw); |
|
5415 |
|
5416 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will |
|
5417 * signal that the command has been completed by raising the DO signal. |
|
5418 * If DO does not go high in 10 milliseconds, then error out. |
|
5419 */ |
|
5420 for (i = 0; i < 200; i++) { |
|
5421 eecd = er32(EECD); |
|
5422 if (eecd & E1000_EECD_DO) break; |
|
5423 udelay(50); |
|
5424 } |
|
5425 if (i == 200) { |
|
5426 DEBUGOUT("EEPROM Write did not complete\n"); |
|
5427 return -E1000_ERR_EEPROM; |
|
5428 } |
|
5429 |
|
5430 /* Recover from write */ |
|
5431 e1000_standby_eeprom(hw); |
|
5432 |
|
5433 words_written++; |
|
5434 } |
|
5435 |
|
5436 /* Send the write disable command to the EEPROM (3-bit opcode plus |
|
5437 * 6/8-bit dummy address beginning with 10). It's less work to include |
|
5438 * the 10 of the dummy address as part of the opcode than it is to shift |
|
5439 * it over the correct number of bits for the address. This takes the |
|
5440 * EEPROM out of write/erase mode. |
|
5441 */ |
|
5442 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, |
|
5443 (u16)(eeprom->opcode_bits + 2)); |
|
5444 |
|
5445 e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); |
|
5446 |
|
5447 return E1000_SUCCESS; |
|
5448 } |
|
5449 |
|
5450 /****************************************************************************** |
|
5451 * Flushes the cached eeprom to NVM. This is done by saving the modified values |
|
5452 * in the eeprom cache and the non modified values in the currently active bank |
|
5453 * to the new bank. |
|
5454 * |
|
5455 * hw - Struct containing variables accessed by shared code |
|
5456 * offset - offset of word in the EEPROM to read |
|
5457 * data - word read from the EEPROM |
|
5458 * words - number of words to read |
|
5459 *****************************************************************************/ |
|
5460 static s32 e1000_commit_shadow_ram(struct e1000_hw *hw) |
|
5461 { |
|
5462 u32 attempts = 100000; |
|
5463 u32 eecd = 0; |
|
5464 u32 flop = 0; |
|
5465 u32 i = 0; |
|
5466 s32 error = E1000_SUCCESS; |
|
5467 u32 old_bank_offset = 0; |
|
5468 u32 new_bank_offset = 0; |
|
5469 u8 low_byte = 0; |
|
5470 u8 high_byte = 0; |
|
5471 bool sector_write_failed = false; |
|
5472 |
|
5473 if (hw->mac_type == e1000_82573) { |
|
5474 /* The flop register will be used to determine if flash type is STM */ |
|
5475 flop = er32(FLOP); |
|
5476 for (i=0; i < attempts; i++) { |
|
5477 eecd = er32(EECD); |
|
5478 if ((eecd & E1000_EECD_FLUPD) == 0) { |
|
5479 break; |
|
5480 } |
|
5481 udelay(5); |
|
5482 } |
|
5483 |
|
5484 if (i == attempts) { |
|
5485 return -E1000_ERR_EEPROM; |
|
5486 } |
|
5487 |
|
5488 /* If STM opcode located in bits 15:8 of flop, reset firmware */ |
|
5489 if ((flop & 0xFF00) == E1000_STM_OPCODE) { |
|
5490 ew32(HICR, E1000_HICR_FW_RESET); |
|
5491 } |
|
5492 |
|
5493 /* Perform the flash update */ |
|
5494 ew32(EECD, eecd | E1000_EECD_FLUPD); |
|
5495 |
|
5496 for (i=0; i < attempts; i++) { |
|
5497 eecd = er32(EECD); |
|
5498 if ((eecd & E1000_EECD_FLUPD) == 0) { |
|
5499 break; |
|
5500 } |
|
5501 udelay(5); |
|
5502 } |
|
5503 |
|
5504 if (i == attempts) { |
|
5505 return -E1000_ERR_EEPROM; |
|
5506 } |
|
5507 } |
|
5508 |
|
5509 if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) { |
|
5510 /* We're writing to the opposite bank so if we're on bank 1, |
|
5511 * write to bank 0 etc. We also need to erase the segment that |
|
5512 * is going to be written */ |
|
5513 if (!(er32(EECD) & E1000_EECD_SEC1VAL)) { |
|
5514 new_bank_offset = hw->flash_bank_size * 2; |
|
5515 old_bank_offset = 0; |
|
5516 e1000_erase_ich8_4k_segment(hw, 1); |
|
5517 } else { |
|
5518 old_bank_offset = hw->flash_bank_size * 2; |
|
5519 new_bank_offset = 0; |
|
5520 e1000_erase_ich8_4k_segment(hw, 0); |
|
5521 } |
|
5522 |
|
5523 sector_write_failed = false; |
|
5524 /* Loop for every byte in the shadow RAM, |
|
5525 * which is in units of words. */ |
|
5526 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { |
|
5527 /* Determine whether to write the value stored |
|
5528 * in the other NVM bank or a modified value stored |
|
5529 * in the shadow RAM */ |
|
5530 if (hw->eeprom_shadow_ram[i].modified) { |
|
5531 low_byte = (u8)hw->eeprom_shadow_ram[i].eeprom_word; |
|
5532 udelay(100); |
|
5533 error = e1000_verify_write_ich8_byte(hw, |
|
5534 (i << 1) + new_bank_offset, low_byte); |
|
5535 |
|
5536 if (error != E1000_SUCCESS) |
|
5537 sector_write_failed = true; |
|
5538 else { |
|
5539 high_byte = |
|
5540 (u8)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); |
|
5541 udelay(100); |
|
5542 } |
|
5543 } else { |
|
5544 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, |
|
5545 &low_byte); |
|
5546 udelay(100); |
|
5547 error = e1000_verify_write_ich8_byte(hw, |
|
5548 (i << 1) + new_bank_offset, low_byte); |
|
5549 |
|
5550 if (error != E1000_SUCCESS) |
|
5551 sector_write_failed = true; |
|
5552 else { |
|
5553 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, |
|
5554 &high_byte); |
|
5555 udelay(100); |
|
5556 } |
|
5557 } |
|
5558 |
|
5559 /* If the write of the low byte was successful, go ahead and |
|
5560 * write the high byte while checking to make sure that if it |
|
5561 * is the signature byte, then it is handled properly */ |
|
5562 if (!sector_write_failed) { |
|
5563 /* If the word is 0x13, then make sure the signature bits |
|
5564 * (15:14) are 11b until the commit has completed. |
|
5565 * This will allow us to write 10b which indicates the |
|
5566 * signature is valid. We want to do this after the write |
|
5567 * has completed so that we don't mark the segment valid |
|
5568 * while the write is still in progress */ |
|
5569 if (i == E1000_ICH_NVM_SIG_WORD) |
|
5570 high_byte = E1000_ICH_NVM_SIG_MASK | high_byte; |
|
5571 |
|
5572 error = e1000_verify_write_ich8_byte(hw, |
|
5573 (i << 1) + new_bank_offset + 1, high_byte); |
|
5574 if (error != E1000_SUCCESS) |
|
5575 sector_write_failed = true; |
|
5576 |
|
5577 } else { |
|
5578 /* If the write failed then break from the loop and |
|
5579 * return an error */ |
|
5580 break; |
|
5581 } |
|
5582 } |
|
5583 |
|
5584 /* Don't bother writing the segment valid bits if sector |
|
5585 * programming failed. */ |
|
5586 if (!sector_write_failed) { |
|
5587 /* Finally validate the new segment by setting bit 15:14 |
|
5588 * to 10b in word 0x13 , this can be done without an |
|
5589 * erase as well since these bits are 11 to start with |
|
5590 * and we need to change bit 14 to 0b */ |
|
5591 e1000_read_ich8_byte(hw, |
|
5592 E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, |
|
5593 &high_byte); |
|
5594 high_byte &= 0xBF; |
|
5595 error = e1000_verify_write_ich8_byte(hw, |
|
5596 E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte); |
|
5597 /* And invalidate the previously valid segment by setting |
|
5598 * its signature word (0x13) high_byte to 0b. This can be |
|
5599 * done without an erase because flash erase sets all bits |
|
5600 * to 1's. We can write 1's to 0's without an erase */ |
|
5601 if (error == E1000_SUCCESS) { |
|
5602 error = e1000_verify_write_ich8_byte(hw, |
|
5603 E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0); |
|
5604 } |
|
5605 |
|
5606 /* Clear the now not used entry in the cache */ |
|
5607 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { |
|
5608 hw->eeprom_shadow_ram[i].modified = false; |
|
5609 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; |
|
5610 } |
|
5611 } |
|
5612 } |
|
5613 |
|
5614 return error; |
|
5615 } |
|
5616 |
|
5617 /****************************************************************************** |
|
5618 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
|
5619 * second function of dual function devices |
|
5620 * |
|
5621 * hw - Struct containing variables accessed by shared code |
|
5622 *****************************************************************************/ |
|
5623 s32 e1000_read_mac_addr(struct e1000_hw *hw) |
|
5624 { |
|
5625 u16 offset; |
|
5626 u16 eeprom_data, i; |
|
5627 |
|
5628 DEBUGFUNC("e1000_read_mac_addr"); |
|
5629 |
|
5630 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
|
5631 offset = i >> 1; |
|
5632 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
|
5633 DEBUGOUT("EEPROM Read Error\n"); |
|
5634 return -E1000_ERR_EEPROM; |
|
5635 } |
|
5636 hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF); |
|
5637 hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8); |
|
5638 } |
|
5639 |
|
5640 switch (hw->mac_type) { |
|
5641 default: |
|
5642 break; |
|
5643 case e1000_82546: |
|
5644 case e1000_82546_rev_3: |
|
5645 case e1000_82571: |
|
5646 case e1000_80003es2lan: |
|
5647 if (er32(STATUS) & E1000_STATUS_FUNC_1) |
|
5648 hw->perm_mac_addr[5] ^= 0x01; |
|
5649 break; |
|
5650 } |
|
5651 |
|
5652 for (i = 0; i < NODE_ADDRESS_SIZE; i++) |
|
5653 hw->mac_addr[i] = hw->perm_mac_addr[i]; |
|
5654 return E1000_SUCCESS; |
|
5655 } |
|
5656 |
|
5657 /****************************************************************************** |
|
5658 * Initializes receive address filters. |
|
5659 * |
|
5660 * hw - Struct containing variables accessed by shared code |
|
5661 * |
|
5662 * Places the MAC address in receive address register 0 and clears the rest |
|
5663 * of the receive addresss registers. Clears the multicast table. Assumes |
|
5664 * the receiver is in reset when the routine is called. |
|
5665 *****************************************************************************/ |
|
5666 static void e1000_init_rx_addrs(struct e1000_hw *hw) |
|
5667 { |
|
5668 u32 i; |
|
5669 u32 rar_num; |
|
5670 |
|
5671 DEBUGFUNC("e1000_init_rx_addrs"); |
|
5672 |
|
5673 /* Setup the receive address. */ |
|
5674 DEBUGOUT("Programming MAC Address into RAR[0]\n"); |
|
5675 |
|
5676 e1000_rar_set(hw, hw->mac_addr, 0); |
|
5677 |
|
5678 rar_num = E1000_RAR_ENTRIES; |
|
5679 |
|
5680 /* Reserve a spot for the Locally Administered Address to work around |
|
5681 * an 82571 issue in which a reset on one port will reload the MAC on |
|
5682 * the other port. */ |
|
5683 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present)) |
|
5684 rar_num -= 1; |
|
5685 if (hw->mac_type == e1000_ich8lan) |
|
5686 rar_num = E1000_RAR_ENTRIES_ICH8LAN; |
|
5687 |
|
5688 /* Zero out the other 15 receive addresses. */ |
|
5689 DEBUGOUT("Clearing RAR[1-15]\n"); |
|
5690 for (i = 1; i < rar_num; i++) { |
|
5691 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
|
5692 E1000_WRITE_FLUSH(); |
|
5693 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
|
5694 E1000_WRITE_FLUSH(); |
|
5695 } |
|
5696 } |
|
5697 |
|
5698 /****************************************************************************** |
|
5699 * Hashes an address to determine its location in the multicast table |
|
5700 * |
|
5701 * hw - Struct containing variables accessed by shared code |
|
5702 * mc_addr - the multicast address to hash |
|
5703 *****************************************************************************/ |
|
5704 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) |
|
5705 { |
|
5706 u32 hash_value = 0; |
|
5707 |
|
5708 /* The portion of the address that is used for the hash table is |
|
5709 * determined by the mc_filter_type setting. |
|
5710 */ |
|
5711 switch (hw->mc_filter_type) { |
|
5712 /* [0] [1] [2] [3] [4] [5] |
|
5713 * 01 AA 00 12 34 56 |
|
5714 * LSB MSB |
|
5715 */ |
|
5716 case 0: |
|
5717 if (hw->mac_type == e1000_ich8lan) { |
|
5718 /* [47:38] i.e. 0x158 for above example address */ |
|
5719 hash_value = ((mc_addr[4] >> 6) | (((u16)mc_addr[5]) << 2)); |
|
5720 } else { |
|
5721 /* [47:36] i.e. 0x563 for above example address */ |
|
5722 hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); |
|
5723 } |
|
5724 break; |
|
5725 case 1: |
|
5726 if (hw->mac_type == e1000_ich8lan) { |
|
5727 /* [46:37] i.e. 0x2B1 for above example address */ |
|
5728 hash_value = ((mc_addr[4] >> 5) | (((u16)mc_addr[5]) << 3)); |
|
5729 } else { |
|
5730 /* [46:35] i.e. 0xAC6 for above example address */ |
|
5731 hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); |
|
5732 } |
|
5733 break; |
|
5734 case 2: |
|
5735 if (hw->mac_type == e1000_ich8lan) { |
|
5736 /*[45:36] i.e. 0x163 for above example address */ |
|
5737 hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); |
|
5738 } else { |
|
5739 /* [45:34] i.e. 0x5D8 for above example address */ |
|
5740 hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); |
|
5741 } |
|
5742 break; |
|
5743 case 3: |
|
5744 if (hw->mac_type == e1000_ich8lan) { |
|
5745 /* [43:34] i.e. 0x18D for above example address */ |
|
5746 hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); |
|
5747 } else { |
|
5748 /* [43:32] i.e. 0x634 for above example address */ |
|
5749 hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); |
|
5750 } |
|
5751 break; |
|
5752 } |
|
5753 |
|
5754 hash_value &= 0xFFF; |
|
5755 if (hw->mac_type == e1000_ich8lan) |
|
5756 hash_value &= 0x3FF; |
|
5757 |
|
5758 return hash_value; |
|
5759 } |
|
5760 |
|
5761 /****************************************************************************** |
|
5762 * Sets the bit in the multicast table corresponding to the hash value. |
|
5763 * |
|
5764 * hw - Struct containing variables accessed by shared code |
|
5765 * hash_value - Multicast address hash value |
|
5766 *****************************************************************************/ |
|
5767 void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) |
|
5768 { |
|
5769 u32 hash_bit, hash_reg; |
|
5770 u32 mta; |
|
5771 u32 temp; |
|
5772 |
|
5773 /* The MTA is a register array of 128 32-bit registers. |
|
5774 * It is treated like an array of 4096 bits. We want to set |
|
5775 * bit BitArray[hash_value]. So we figure out what register |
|
5776 * the bit is in, read it, OR in the new bit, then write |
|
5777 * back the new value. The register is determined by the |
|
5778 * upper 7 bits of the hash value and the bit within that |
|
5779 * register are determined by the lower 5 bits of the value. |
|
5780 */ |
|
5781 hash_reg = (hash_value >> 5) & 0x7F; |
|
5782 if (hw->mac_type == e1000_ich8lan) |
|
5783 hash_reg &= 0x1F; |
|
5784 |
|
5785 hash_bit = hash_value & 0x1F; |
|
5786 |
|
5787 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); |
|
5788 |
|
5789 mta |= (1 << hash_bit); |
|
5790 |
|
5791 /* If we are on an 82544 and we are trying to write an odd offset |
|
5792 * in the MTA, save off the previous entry before writing and |
|
5793 * restore the old value after writing. |
|
5794 */ |
|
5795 if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { |
|
5796 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); |
|
5797 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
|
5798 E1000_WRITE_FLUSH(); |
|
5799 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); |
|
5800 E1000_WRITE_FLUSH(); |
|
5801 } else { |
|
5802 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); |
|
5803 E1000_WRITE_FLUSH(); |
|
5804 } |
|
5805 } |
|
5806 |
|
5807 /****************************************************************************** |
|
5808 * Puts an ethernet address into a receive address register. |
|
5809 * |
|
5810 * hw - Struct containing variables accessed by shared code |
|
5811 * addr - Address to put into receive address register |
|
5812 * index - Receive address register to write |
|
5813 *****************************************************************************/ |
|
5814 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) |
|
5815 { |
|
5816 u32 rar_low, rar_high; |
|
5817 |
|
5818 /* HW expects these in little endian so we reverse the byte order |
|
5819 * from network order (big endian) to little endian |
|
5820 */ |
|
5821 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | |
|
5822 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); |
|
5823 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); |
|
5824 |
|
5825 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx |
|
5826 * unit hang. |
|
5827 * |
|
5828 * Description: |
|
5829 * If there are any Rx frames queued up or otherwise present in the HW |
|
5830 * before RSS is enabled, and then we enable RSS, the HW Rx unit will |
|
5831 * hang. To work around this issue, we have to disable receives and |
|
5832 * flush out all Rx frames before we enable RSS. To do so, we modify we |
|
5833 * redirect all Rx traffic to manageability and then reset the HW. |
|
5834 * This flushes away Rx frames, and (since the redirections to |
|
5835 * manageability persists across resets) keeps new ones from coming in |
|
5836 * while we work. Then, we clear the Address Valid AV bit for all MAC |
|
5837 * addresses and undo the re-direction to manageability. |
|
5838 * Now, frames are coming in again, but the MAC won't accept them, so |
|
5839 * far so good. We now proceed to initialize RSS (if necessary) and |
|
5840 * configure the Rx unit. Last, we re-enable the AV bits and continue |
|
5841 * on our merry way. |
|
5842 */ |
|
5843 switch (hw->mac_type) { |
|
5844 case e1000_82571: |
|
5845 case e1000_82572: |
|
5846 case e1000_80003es2lan: |
|
5847 if (hw->leave_av_bit_off) |
|
5848 break; |
|
5849 default: |
|
5850 /* Indicate to hardware the Address is Valid. */ |
|
5851 rar_high |= E1000_RAH_AV; |
|
5852 break; |
|
5853 } |
|
5854 |
|
5855 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
|
5856 E1000_WRITE_FLUSH(); |
|
5857 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
|
5858 E1000_WRITE_FLUSH(); |
|
5859 } |
|
5860 |
|
5861 /****************************************************************************** |
|
5862 * Writes a value to the specified offset in the VLAN filter table. |
|
5863 * |
|
5864 * hw - Struct containing variables accessed by shared code |
|
5865 * offset - Offset in VLAN filer table to write |
|
5866 * value - Value to write into VLAN filter table |
|
5867 *****************************************************************************/ |
|
5868 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) |
|
5869 { |
|
5870 u32 temp; |
|
5871 |
|
5872 if (hw->mac_type == e1000_ich8lan) |
|
5873 return; |
|
5874 |
|
5875 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { |
|
5876 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
|
5877 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
|
5878 E1000_WRITE_FLUSH(); |
|
5879 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); |
|
5880 E1000_WRITE_FLUSH(); |
|
5881 } else { |
|
5882 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
|
5883 E1000_WRITE_FLUSH(); |
|
5884 } |
|
5885 } |
|
5886 |
|
5887 /****************************************************************************** |
|
5888 * Clears the VLAN filer table |
|
5889 * |
|
5890 * hw - Struct containing variables accessed by shared code |
|
5891 *****************************************************************************/ |
|
5892 static void e1000_clear_vfta(struct e1000_hw *hw) |
|
5893 { |
|
5894 u32 offset; |
|
5895 u32 vfta_value = 0; |
|
5896 u32 vfta_offset = 0; |
|
5897 u32 vfta_bit_in_reg = 0; |
|
5898 |
|
5899 if (hw->mac_type == e1000_ich8lan) |
|
5900 return; |
|
5901 |
|
5902 if (hw->mac_type == e1000_82573) { |
|
5903 if (hw->mng_cookie.vlan_id != 0) { |
|
5904 /* The VFTA is a 4096b bit-field, each identifying a single VLAN |
|
5905 * ID. The following operations determine which 32b entry |
|
5906 * (i.e. offset) into the array we want to set the VLAN ID |
|
5907 * (i.e. bit) of the manageability unit. */ |
|
5908 vfta_offset = (hw->mng_cookie.vlan_id >> |
|
5909 E1000_VFTA_ENTRY_SHIFT) & |
|
5910 E1000_VFTA_ENTRY_MASK; |
|
5911 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & |
|
5912 E1000_VFTA_ENTRY_BIT_SHIFT_MASK); |
|
5913 } |
|
5914 } |
|
5915 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
|
5916 /* If the offset we want to clear is the same offset of the |
|
5917 * manageability VLAN ID, then clear all bits except that of the |
|
5918 * manageability unit */ |
|
5919 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
|
5920 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); |
|
5921 E1000_WRITE_FLUSH(); |
|
5922 } |
|
5923 } |
|
5924 |
|
5925 static s32 e1000_id_led_init(struct e1000_hw *hw) |
|
5926 { |
|
5927 u32 ledctl; |
|
5928 const u32 ledctl_mask = 0x000000FF; |
|
5929 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
|
5930 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
|
5931 u16 eeprom_data, i, temp; |
|
5932 const u16 led_mask = 0x0F; |
|
5933 |
|
5934 DEBUGFUNC("e1000_id_led_init"); |
|
5935 |
|
5936 if (hw->mac_type < e1000_82540) { |
|
5937 /* Nothing to do */ |
|
5938 return E1000_SUCCESS; |
|
5939 } |
|
5940 |
|
5941 ledctl = er32(LEDCTL); |
|
5942 hw->ledctl_default = ledctl; |
|
5943 hw->ledctl_mode1 = hw->ledctl_default; |
|
5944 hw->ledctl_mode2 = hw->ledctl_default; |
|
5945 |
|
5946 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { |
|
5947 DEBUGOUT("EEPROM Read Error\n"); |
|
5948 return -E1000_ERR_EEPROM; |
|
5949 } |
|
5950 |
|
5951 if ((hw->mac_type == e1000_82573) && |
|
5952 (eeprom_data == ID_LED_RESERVED_82573)) |
|
5953 eeprom_data = ID_LED_DEFAULT_82573; |
|
5954 else if ((eeprom_data == ID_LED_RESERVED_0000) || |
|
5955 (eeprom_data == ID_LED_RESERVED_FFFF)) { |
|
5956 if (hw->mac_type == e1000_ich8lan) |
|
5957 eeprom_data = ID_LED_DEFAULT_ICH8LAN; |
|
5958 else |
|
5959 eeprom_data = ID_LED_DEFAULT; |
|
5960 } |
|
5961 |
|
5962 for (i = 0; i < 4; i++) { |
|
5963 temp = (eeprom_data >> (i << 2)) & led_mask; |
|
5964 switch (temp) { |
|
5965 case ID_LED_ON1_DEF2: |
|
5966 case ID_LED_ON1_ON2: |
|
5967 case ID_LED_ON1_OFF2: |
|
5968 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
|
5969 hw->ledctl_mode1 |= ledctl_on << (i << 3); |
|
5970 break; |
|
5971 case ID_LED_OFF1_DEF2: |
|
5972 case ID_LED_OFF1_ON2: |
|
5973 case ID_LED_OFF1_OFF2: |
|
5974 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
|
5975 hw->ledctl_mode1 |= ledctl_off << (i << 3); |
|
5976 break; |
|
5977 default: |
|
5978 /* Do nothing */ |
|
5979 break; |
|
5980 } |
|
5981 switch (temp) { |
|
5982 case ID_LED_DEF1_ON2: |
|
5983 case ID_LED_ON1_ON2: |
|
5984 case ID_LED_OFF1_ON2: |
|
5985 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
|
5986 hw->ledctl_mode2 |= ledctl_on << (i << 3); |
|
5987 break; |
|
5988 case ID_LED_DEF1_OFF2: |
|
5989 case ID_LED_ON1_OFF2: |
|
5990 case ID_LED_OFF1_OFF2: |
|
5991 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
|
5992 hw->ledctl_mode2 |= ledctl_off << (i << 3); |
|
5993 break; |
|
5994 default: |
|
5995 /* Do nothing */ |
|
5996 break; |
|
5997 } |
|
5998 } |
|
5999 return E1000_SUCCESS; |
|
6000 } |
|
6001 |
|
6002 /****************************************************************************** |
|
6003 * Prepares SW controlable LED for use and saves the current state of the LED. |
|
6004 * |
|
6005 * hw - Struct containing variables accessed by shared code |
|
6006 *****************************************************************************/ |
|
6007 s32 e1000_setup_led(struct e1000_hw *hw) |
|
6008 { |
|
6009 u32 ledctl; |
|
6010 s32 ret_val = E1000_SUCCESS; |
|
6011 |
|
6012 DEBUGFUNC("e1000_setup_led"); |
|
6013 |
|
6014 switch (hw->mac_type) { |
|
6015 case e1000_82542_rev2_0: |
|
6016 case e1000_82542_rev2_1: |
|
6017 case e1000_82543: |
|
6018 case e1000_82544: |
|
6019 /* No setup necessary */ |
|
6020 break; |
|
6021 case e1000_82541: |
|
6022 case e1000_82547: |
|
6023 case e1000_82541_rev_2: |
|
6024 case e1000_82547_rev_2: |
|
6025 /* Turn off PHY Smart Power Down (if enabled) */ |
|
6026 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
6027 &hw->phy_spd_default); |
|
6028 if (ret_val) |
|
6029 return ret_val; |
|
6030 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
6031 (u16)(hw->phy_spd_default & |
|
6032 ~IGP01E1000_GMII_SPD)); |
|
6033 if (ret_val) |
|
6034 return ret_val; |
|
6035 /* Fall Through */ |
|
6036 default: |
|
6037 if (hw->media_type == e1000_media_type_fiber) { |
|
6038 ledctl = er32(LEDCTL); |
|
6039 /* Save current LEDCTL settings */ |
|
6040 hw->ledctl_default = ledctl; |
|
6041 /* Turn off LED0 */ |
|
6042 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | |
|
6043 E1000_LEDCTL_LED0_BLINK | |
|
6044 E1000_LEDCTL_LED0_MODE_MASK); |
|
6045 ledctl |= (E1000_LEDCTL_MODE_LED_OFF << |
|
6046 E1000_LEDCTL_LED0_MODE_SHIFT); |
|
6047 ew32(LEDCTL, ledctl); |
|
6048 } else if (hw->media_type == e1000_media_type_copper) |
|
6049 ew32(LEDCTL, hw->ledctl_mode1); |
|
6050 break; |
|
6051 } |
|
6052 |
|
6053 return E1000_SUCCESS; |
|
6054 } |
|
6055 |
|
6056 |
|
6057 /****************************************************************************** |
|
6058 * Used on 82571 and later Si that has LED blink bits. |
|
6059 * Callers must use their own timer and should have already called |
|
6060 * e1000_id_led_init() |
|
6061 * Call e1000_cleanup led() to stop blinking |
|
6062 * |
|
6063 * hw - Struct containing variables accessed by shared code |
|
6064 *****************************************************************************/ |
|
6065 s32 e1000_blink_led_start(struct e1000_hw *hw) |
|
6066 { |
|
6067 s16 i; |
|
6068 u32 ledctl_blink = 0; |
|
6069 |
|
6070 DEBUGFUNC("e1000_id_led_blink_on"); |
|
6071 |
|
6072 if (hw->mac_type < e1000_82571) { |
|
6073 /* Nothing to do */ |
|
6074 return E1000_SUCCESS; |
|
6075 } |
|
6076 if (hw->media_type == e1000_media_type_fiber) { |
|
6077 /* always blink LED0 for PCI-E fiber */ |
|
6078 ledctl_blink = E1000_LEDCTL_LED0_BLINK | |
|
6079 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); |
|
6080 } else { |
|
6081 /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ |
|
6082 ledctl_blink = hw->ledctl_mode2; |
|
6083 for (i=0; i < 4; i++) |
|
6084 if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == |
|
6085 E1000_LEDCTL_MODE_LED_ON) |
|
6086 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); |
|
6087 } |
|
6088 |
|
6089 ew32(LEDCTL, ledctl_blink); |
|
6090 |
|
6091 return E1000_SUCCESS; |
|
6092 } |
|
6093 |
|
6094 /****************************************************************************** |
|
6095 * Restores the saved state of the SW controlable LED. |
|
6096 * |
|
6097 * hw - Struct containing variables accessed by shared code |
|
6098 *****************************************************************************/ |
|
6099 s32 e1000_cleanup_led(struct e1000_hw *hw) |
|
6100 { |
|
6101 s32 ret_val = E1000_SUCCESS; |
|
6102 |
|
6103 DEBUGFUNC("e1000_cleanup_led"); |
|
6104 |
|
6105 switch (hw->mac_type) { |
|
6106 case e1000_82542_rev2_0: |
|
6107 case e1000_82542_rev2_1: |
|
6108 case e1000_82543: |
|
6109 case e1000_82544: |
|
6110 /* No cleanup necessary */ |
|
6111 break; |
|
6112 case e1000_82541: |
|
6113 case e1000_82547: |
|
6114 case e1000_82541_rev_2: |
|
6115 case e1000_82547_rev_2: |
|
6116 /* Turn on PHY Smart Power Down (if previously enabled) */ |
|
6117 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
6118 hw->phy_spd_default); |
|
6119 if (ret_val) |
|
6120 return ret_val; |
|
6121 /* Fall Through */ |
|
6122 default: |
|
6123 if (hw->phy_type == e1000_phy_ife) { |
|
6124 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); |
|
6125 break; |
|
6126 } |
|
6127 /* Restore LEDCTL settings */ |
|
6128 ew32(LEDCTL, hw->ledctl_default); |
|
6129 break; |
|
6130 } |
|
6131 |
|
6132 return E1000_SUCCESS; |
|
6133 } |
|
6134 |
|
6135 /****************************************************************************** |
|
6136 * Turns on the software controllable LED |
|
6137 * |
|
6138 * hw - Struct containing variables accessed by shared code |
|
6139 *****************************************************************************/ |
|
6140 s32 e1000_led_on(struct e1000_hw *hw) |
|
6141 { |
|
6142 u32 ctrl = er32(CTRL); |
|
6143 |
|
6144 DEBUGFUNC("e1000_led_on"); |
|
6145 |
|
6146 switch (hw->mac_type) { |
|
6147 case e1000_82542_rev2_0: |
|
6148 case e1000_82542_rev2_1: |
|
6149 case e1000_82543: |
|
6150 /* Set SW Defineable Pin 0 to turn on the LED */ |
|
6151 ctrl |= E1000_CTRL_SWDPIN0; |
|
6152 ctrl |= E1000_CTRL_SWDPIO0; |
|
6153 break; |
|
6154 case e1000_82544: |
|
6155 if (hw->media_type == e1000_media_type_fiber) { |
|
6156 /* Set SW Defineable Pin 0 to turn on the LED */ |
|
6157 ctrl |= E1000_CTRL_SWDPIN0; |
|
6158 ctrl |= E1000_CTRL_SWDPIO0; |
|
6159 } else { |
|
6160 /* Clear SW Defineable Pin 0 to turn on the LED */ |
|
6161 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
6162 ctrl |= E1000_CTRL_SWDPIO0; |
|
6163 } |
|
6164 break; |
|
6165 default: |
|
6166 if (hw->media_type == e1000_media_type_fiber) { |
|
6167 /* Clear SW Defineable Pin 0 to turn on the LED */ |
|
6168 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
6169 ctrl |= E1000_CTRL_SWDPIO0; |
|
6170 } else if (hw->phy_type == e1000_phy_ife) { |
|
6171 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
|
6172 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); |
|
6173 } else if (hw->media_type == e1000_media_type_copper) { |
|
6174 ew32(LEDCTL, hw->ledctl_mode2); |
|
6175 return E1000_SUCCESS; |
|
6176 } |
|
6177 break; |
|
6178 } |
|
6179 |
|
6180 ew32(CTRL, ctrl); |
|
6181 |
|
6182 return E1000_SUCCESS; |
|
6183 } |
|
6184 |
|
6185 /****************************************************************************** |
|
6186 * Turns off the software controllable LED |
|
6187 * |
|
6188 * hw - Struct containing variables accessed by shared code |
|
6189 *****************************************************************************/ |
|
6190 s32 e1000_led_off(struct e1000_hw *hw) |
|
6191 { |
|
6192 u32 ctrl = er32(CTRL); |
|
6193 |
|
6194 DEBUGFUNC("e1000_led_off"); |
|
6195 |
|
6196 switch (hw->mac_type) { |
|
6197 case e1000_82542_rev2_0: |
|
6198 case e1000_82542_rev2_1: |
|
6199 case e1000_82543: |
|
6200 /* Clear SW Defineable Pin 0 to turn off the LED */ |
|
6201 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
6202 ctrl |= E1000_CTRL_SWDPIO0; |
|
6203 break; |
|
6204 case e1000_82544: |
|
6205 if (hw->media_type == e1000_media_type_fiber) { |
|
6206 /* Clear SW Defineable Pin 0 to turn off the LED */ |
|
6207 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
6208 ctrl |= E1000_CTRL_SWDPIO0; |
|
6209 } else { |
|
6210 /* Set SW Defineable Pin 0 to turn off the LED */ |
|
6211 ctrl |= E1000_CTRL_SWDPIN0; |
|
6212 ctrl |= E1000_CTRL_SWDPIO0; |
|
6213 } |
|
6214 break; |
|
6215 default: |
|
6216 if (hw->media_type == e1000_media_type_fiber) { |
|
6217 /* Set SW Defineable Pin 0 to turn off the LED */ |
|
6218 ctrl |= E1000_CTRL_SWDPIN0; |
|
6219 ctrl |= E1000_CTRL_SWDPIO0; |
|
6220 } else if (hw->phy_type == e1000_phy_ife) { |
|
6221 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
|
6222 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); |
|
6223 } else if (hw->media_type == e1000_media_type_copper) { |
|
6224 ew32(LEDCTL, hw->ledctl_mode1); |
|
6225 return E1000_SUCCESS; |
|
6226 } |
|
6227 break; |
|
6228 } |
|
6229 |
|
6230 ew32(CTRL, ctrl); |
|
6231 |
|
6232 return E1000_SUCCESS; |
|
6233 } |
|
6234 |
|
6235 /****************************************************************************** |
|
6236 * Clears all hardware statistics counters. |
|
6237 * |
|
6238 * hw - Struct containing variables accessed by shared code |
|
6239 *****************************************************************************/ |
|
6240 static void e1000_clear_hw_cntrs(struct e1000_hw *hw) |
|
6241 { |
|
6242 volatile u32 temp; |
|
6243 |
|
6244 temp = er32(CRCERRS); |
|
6245 temp = er32(SYMERRS); |
|
6246 temp = er32(MPC); |
|
6247 temp = er32(SCC); |
|
6248 temp = er32(ECOL); |
|
6249 temp = er32(MCC); |
|
6250 temp = er32(LATECOL); |
|
6251 temp = er32(COLC); |
|
6252 temp = er32(DC); |
|
6253 temp = er32(SEC); |
|
6254 temp = er32(RLEC); |
|
6255 temp = er32(XONRXC); |
|
6256 temp = er32(XONTXC); |
|
6257 temp = er32(XOFFRXC); |
|
6258 temp = er32(XOFFTXC); |
|
6259 temp = er32(FCRUC); |
|
6260 |
|
6261 if (hw->mac_type != e1000_ich8lan) { |
|
6262 temp = er32(PRC64); |
|
6263 temp = er32(PRC127); |
|
6264 temp = er32(PRC255); |
|
6265 temp = er32(PRC511); |
|
6266 temp = er32(PRC1023); |
|
6267 temp = er32(PRC1522); |
|
6268 } |
|
6269 |
|
6270 temp = er32(GPRC); |
|
6271 temp = er32(BPRC); |
|
6272 temp = er32(MPRC); |
|
6273 temp = er32(GPTC); |
|
6274 temp = er32(GORCL); |
|
6275 temp = er32(GORCH); |
|
6276 temp = er32(GOTCL); |
|
6277 temp = er32(GOTCH); |
|
6278 temp = er32(RNBC); |
|
6279 temp = er32(RUC); |
|
6280 temp = er32(RFC); |
|
6281 temp = er32(ROC); |
|
6282 temp = er32(RJC); |
|
6283 temp = er32(TORL); |
|
6284 temp = er32(TORH); |
|
6285 temp = er32(TOTL); |
|
6286 temp = er32(TOTH); |
|
6287 temp = er32(TPR); |
|
6288 temp = er32(TPT); |
|
6289 |
|
6290 if (hw->mac_type != e1000_ich8lan) { |
|
6291 temp = er32(PTC64); |
|
6292 temp = er32(PTC127); |
|
6293 temp = er32(PTC255); |
|
6294 temp = er32(PTC511); |
|
6295 temp = er32(PTC1023); |
|
6296 temp = er32(PTC1522); |
|
6297 } |
|
6298 |
|
6299 temp = er32(MPTC); |
|
6300 temp = er32(BPTC); |
|
6301 |
|
6302 if (hw->mac_type < e1000_82543) return; |
|
6303 |
|
6304 temp = er32(ALGNERRC); |
|
6305 temp = er32(RXERRC); |
|
6306 temp = er32(TNCRS); |
|
6307 temp = er32(CEXTERR); |
|
6308 temp = er32(TSCTC); |
|
6309 temp = er32(TSCTFC); |
|
6310 |
|
6311 if (hw->mac_type <= e1000_82544) return; |
|
6312 |
|
6313 temp = er32(MGTPRC); |
|
6314 temp = er32(MGTPDC); |
|
6315 temp = er32(MGTPTC); |
|
6316 |
|
6317 if (hw->mac_type <= e1000_82547_rev_2) return; |
|
6318 |
|
6319 temp = er32(IAC); |
|
6320 temp = er32(ICRXOC); |
|
6321 |
|
6322 if (hw->mac_type == e1000_ich8lan) return; |
|
6323 |
|
6324 temp = er32(ICRXPTC); |
|
6325 temp = er32(ICRXATC); |
|
6326 temp = er32(ICTXPTC); |
|
6327 temp = er32(ICTXATC); |
|
6328 temp = er32(ICTXQEC); |
|
6329 temp = er32(ICTXQMTC); |
|
6330 temp = er32(ICRXDMTC); |
|
6331 } |
|
6332 |
|
6333 /****************************************************************************** |
|
6334 * Resets Adaptive IFS to its default state. |
|
6335 * |
|
6336 * hw - Struct containing variables accessed by shared code |
|
6337 * |
|
6338 * Call this after e1000_init_hw. You may override the IFS defaults by setting |
|
6339 * hw->ifs_params_forced to true. However, you must initialize hw-> |
|
6340 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio |
|
6341 * before calling this function. |
|
6342 *****************************************************************************/ |
|
6343 void e1000_reset_adaptive(struct e1000_hw *hw) |
|
6344 { |
|
6345 DEBUGFUNC("e1000_reset_adaptive"); |
|
6346 |
|
6347 if (hw->adaptive_ifs) { |
|
6348 if (!hw->ifs_params_forced) { |
|
6349 hw->current_ifs_val = 0; |
|
6350 hw->ifs_min_val = IFS_MIN; |
|
6351 hw->ifs_max_val = IFS_MAX; |
|
6352 hw->ifs_step_size = IFS_STEP; |
|
6353 hw->ifs_ratio = IFS_RATIO; |
|
6354 } |
|
6355 hw->in_ifs_mode = false; |
|
6356 ew32(AIT, 0); |
|
6357 } else { |
|
6358 DEBUGOUT("Not in Adaptive IFS mode!\n"); |
|
6359 } |
|
6360 } |
|
6361 |
|
6362 /****************************************************************************** |
|
6363 * Called during the callback/watchdog routine to update IFS value based on |
|
6364 * the ratio of transmits to collisions. |
|
6365 * |
|
6366 * hw - Struct containing variables accessed by shared code |
|
6367 * tx_packets - Number of transmits since last callback |
|
6368 * total_collisions - Number of collisions since last callback |
|
6369 *****************************************************************************/ |
|
6370 void e1000_update_adaptive(struct e1000_hw *hw) |
|
6371 { |
|
6372 DEBUGFUNC("e1000_update_adaptive"); |
|
6373 |
|
6374 if (hw->adaptive_ifs) { |
|
6375 if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { |
|
6376 if (hw->tx_packet_delta > MIN_NUM_XMITS) { |
|
6377 hw->in_ifs_mode = true; |
|
6378 if (hw->current_ifs_val < hw->ifs_max_val) { |
|
6379 if (hw->current_ifs_val == 0) |
|
6380 hw->current_ifs_val = hw->ifs_min_val; |
|
6381 else |
|
6382 hw->current_ifs_val += hw->ifs_step_size; |
|
6383 ew32(AIT, hw->current_ifs_val); |
|
6384 } |
|
6385 } |
|
6386 } else { |
|
6387 if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { |
|
6388 hw->current_ifs_val = 0; |
|
6389 hw->in_ifs_mode = false; |
|
6390 ew32(AIT, 0); |
|
6391 } |
|
6392 } |
|
6393 } else { |
|
6394 DEBUGOUT("Not in Adaptive IFS mode!\n"); |
|
6395 } |
|
6396 } |
|
6397 |
|
6398 /****************************************************************************** |
|
6399 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT |
|
6400 * |
|
6401 * hw - Struct containing variables accessed by shared code |
|
6402 * frame_len - The length of the frame in question |
|
6403 * mac_addr - The Ethernet destination address of the frame in question |
|
6404 *****************************************************************************/ |
|
6405 void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, |
|
6406 u32 frame_len, u8 *mac_addr) |
|
6407 { |
|
6408 u64 carry_bit; |
|
6409 |
|
6410 /* First adjust the frame length. */ |
|
6411 frame_len--; |
|
6412 /* We need to adjust the statistics counters, since the hardware |
|
6413 * counters overcount this packet as a CRC error and undercount |
|
6414 * the packet as a good packet |
|
6415 */ |
|
6416 /* This packet should not be counted as a CRC error. */ |
|
6417 stats->crcerrs--; |
|
6418 /* This packet does count as a Good Packet Received. */ |
|
6419 stats->gprc++; |
|
6420 |
|
6421 /* Adjust the Good Octets received counters */ |
|
6422 carry_bit = 0x80000000 & stats->gorcl; |
|
6423 stats->gorcl += frame_len; |
|
6424 /* If the high bit of Gorcl (the low 32 bits of the Good Octets |
|
6425 * Received Count) was one before the addition, |
|
6426 * AND it is zero after, then we lost the carry out, |
|
6427 * need to add one to Gorch (Good Octets Received Count High). |
|
6428 * This could be simplified if all environments supported |
|
6429 * 64-bit integers. |
|
6430 */ |
|
6431 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) |
|
6432 stats->gorch++; |
|
6433 /* Is this a broadcast or multicast? Check broadcast first, |
|
6434 * since the test for a multicast frame will test positive on |
|
6435 * a broadcast frame. |
|
6436 */ |
|
6437 if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff)) |
|
6438 /* Broadcast packet */ |
|
6439 stats->bprc++; |
|
6440 else if (*mac_addr & 0x01) |
|
6441 /* Multicast packet */ |
|
6442 stats->mprc++; |
|
6443 |
|
6444 if (frame_len == hw->max_frame_size) { |
|
6445 /* In this case, the hardware has overcounted the number of |
|
6446 * oversize frames. |
|
6447 */ |
|
6448 if (stats->roc > 0) |
|
6449 stats->roc--; |
|
6450 } |
|
6451 |
|
6452 /* Adjust the bin counters when the extra byte put the frame in the |
|
6453 * wrong bin. Remember that the frame_len was adjusted above. |
|
6454 */ |
|
6455 if (frame_len == 64) { |
|
6456 stats->prc64++; |
|
6457 stats->prc127--; |
|
6458 } else if (frame_len == 127) { |
|
6459 stats->prc127++; |
|
6460 stats->prc255--; |
|
6461 } else if (frame_len == 255) { |
|
6462 stats->prc255++; |
|
6463 stats->prc511--; |
|
6464 } else if (frame_len == 511) { |
|
6465 stats->prc511++; |
|
6466 stats->prc1023--; |
|
6467 } else if (frame_len == 1023) { |
|
6468 stats->prc1023++; |
|
6469 stats->prc1522--; |
|
6470 } else if (frame_len == 1522) { |
|
6471 stats->prc1522++; |
|
6472 } |
|
6473 } |
|
6474 |
|
6475 /****************************************************************************** |
|
6476 * Gets the current PCI bus type, speed, and width of the hardware |
|
6477 * |
|
6478 * hw - Struct containing variables accessed by shared code |
|
6479 *****************************************************************************/ |
|
6480 void e1000_get_bus_info(struct e1000_hw *hw) |
|
6481 { |
|
6482 s32 ret_val; |
|
6483 u16 pci_ex_link_status; |
|
6484 u32 status; |
|
6485 |
|
6486 switch (hw->mac_type) { |
|
6487 case e1000_82542_rev2_0: |
|
6488 case e1000_82542_rev2_1: |
|
6489 hw->bus_type = e1000_bus_type_pci; |
|
6490 hw->bus_speed = e1000_bus_speed_unknown; |
|
6491 hw->bus_width = e1000_bus_width_unknown; |
|
6492 break; |
|
6493 case e1000_82571: |
|
6494 case e1000_82572: |
|
6495 case e1000_82573: |
|
6496 case e1000_80003es2lan: |
|
6497 hw->bus_type = e1000_bus_type_pci_express; |
|
6498 hw->bus_speed = e1000_bus_speed_2500; |
|
6499 ret_val = e1000_read_pcie_cap_reg(hw, |
|
6500 PCI_EX_LINK_STATUS, |
|
6501 &pci_ex_link_status); |
|
6502 if (ret_val) |
|
6503 hw->bus_width = e1000_bus_width_unknown; |
|
6504 else |
|
6505 hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >> |
|
6506 PCI_EX_LINK_WIDTH_SHIFT; |
|
6507 break; |
|
6508 case e1000_ich8lan: |
|
6509 hw->bus_type = e1000_bus_type_pci_express; |
|
6510 hw->bus_speed = e1000_bus_speed_2500; |
|
6511 hw->bus_width = e1000_bus_width_pciex_1; |
|
6512 break; |
|
6513 default: |
|
6514 status = er32(STATUS); |
|
6515 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
|
6516 e1000_bus_type_pcix : e1000_bus_type_pci; |
|
6517 |
|
6518 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { |
|
6519 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? |
|
6520 e1000_bus_speed_66 : e1000_bus_speed_120; |
|
6521 } else if (hw->bus_type == e1000_bus_type_pci) { |
|
6522 hw->bus_speed = (status & E1000_STATUS_PCI66) ? |
|
6523 e1000_bus_speed_66 : e1000_bus_speed_33; |
|
6524 } else { |
|
6525 switch (status & E1000_STATUS_PCIX_SPEED) { |
|
6526 case E1000_STATUS_PCIX_SPEED_66: |
|
6527 hw->bus_speed = e1000_bus_speed_66; |
|
6528 break; |
|
6529 case E1000_STATUS_PCIX_SPEED_100: |
|
6530 hw->bus_speed = e1000_bus_speed_100; |
|
6531 break; |
|
6532 case E1000_STATUS_PCIX_SPEED_133: |
|
6533 hw->bus_speed = e1000_bus_speed_133; |
|
6534 break; |
|
6535 default: |
|
6536 hw->bus_speed = e1000_bus_speed_reserved; |
|
6537 break; |
|
6538 } |
|
6539 } |
|
6540 hw->bus_width = (status & E1000_STATUS_BUS64) ? |
|
6541 e1000_bus_width_64 : e1000_bus_width_32; |
|
6542 break; |
|
6543 } |
|
6544 } |
|
6545 |
|
6546 /****************************************************************************** |
|
6547 * Writes a value to one of the devices registers using port I/O (as opposed to |
|
6548 * memory mapped I/O). Only 82544 and newer devices support port I/O. |
|
6549 * |
|
6550 * hw - Struct containing variables accessed by shared code |
|
6551 * offset - offset to write to |
|
6552 * value - value to write |
|
6553 *****************************************************************************/ |
|
6554 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) |
|
6555 { |
|
6556 unsigned long io_addr = hw->io_base; |
|
6557 unsigned long io_data = hw->io_base + 4; |
|
6558 |
|
6559 e1000_io_write(hw, io_addr, offset); |
|
6560 e1000_io_write(hw, io_data, value); |
|
6561 } |
|
6562 |
|
6563 /****************************************************************************** |
|
6564 * Estimates the cable length. |
|
6565 * |
|
6566 * hw - Struct containing variables accessed by shared code |
|
6567 * min_length - The estimated minimum length |
|
6568 * max_length - The estimated maximum length |
|
6569 * |
|
6570 * returns: - E1000_ERR_XXX |
|
6571 * E1000_SUCCESS |
|
6572 * |
|
6573 * This function always returns a ranged length (minimum & maximum). |
|
6574 * So for M88 phy's, this function interprets the one value returned from the |
|
6575 * register to the minimum and maximum range. |
|
6576 * For IGP phy's, the function calculates the range by the AGC registers. |
|
6577 *****************************************************************************/ |
|
6578 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
|
6579 u16 *max_length) |
|
6580 { |
|
6581 s32 ret_val; |
|
6582 u16 agc_value = 0; |
|
6583 u16 i, phy_data; |
|
6584 u16 cable_length; |
|
6585 |
|
6586 DEBUGFUNC("e1000_get_cable_length"); |
|
6587 |
|
6588 *min_length = *max_length = 0; |
|
6589 |
|
6590 /* Use old method for Phy older than IGP */ |
|
6591 if (hw->phy_type == e1000_phy_m88) { |
|
6592 |
|
6593 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
|
6594 &phy_data); |
|
6595 if (ret_val) |
|
6596 return ret_val; |
|
6597 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
|
6598 M88E1000_PSSR_CABLE_LENGTH_SHIFT; |
|
6599 |
|
6600 /* Convert the enum value to ranged values */ |
|
6601 switch (cable_length) { |
|
6602 case e1000_cable_length_50: |
|
6603 *min_length = 0; |
|
6604 *max_length = e1000_igp_cable_length_50; |
|
6605 break; |
|
6606 case e1000_cable_length_50_80: |
|
6607 *min_length = e1000_igp_cable_length_50; |
|
6608 *max_length = e1000_igp_cable_length_80; |
|
6609 break; |
|
6610 case e1000_cable_length_80_110: |
|
6611 *min_length = e1000_igp_cable_length_80; |
|
6612 *max_length = e1000_igp_cable_length_110; |
|
6613 break; |
|
6614 case e1000_cable_length_110_140: |
|
6615 *min_length = e1000_igp_cable_length_110; |
|
6616 *max_length = e1000_igp_cable_length_140; |
|
6617 break; |
|
6618 case e1000_cable_length_140: |
|
6619 *min_length = e1000_igp_cable_length_140; |
|
6620 *max_length = e1000_igp_cable_length_170; |
|
6621 break; |
|
6622 default: |
|
6623 return -E1000_ERR_PHY; |
|
6624 break; |
|
6625 } |
|
6626 } else if (hw->phy_type == e1000_phy_gg82563) { |
|
6627 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, |
|
6628 &phy_data); |
|
6629 if (ret_val) |
|
6630 return ret_val; |
|
6631 cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH; |
|
6632 |
|
6633 switch (cable_length) { |
|
6634 case e1000_gg_cable_length_60: |
|
6635 *min_length = 0; |
|
6636 *max_length = e1000_igp_cable_length_60; |
|
6637 break; |
|
6638 case e1000_gg_cable_length_60_115: |
|
6639 *min_length = e1000_igp_cable_length_60; |
|
6640 *max_length = e1000_igp_cable_length_115; |
|
6641 break; |
|
6642 case e1000_gg_cable_length_115_150: |
|
6643 *min_length = e1000_igp_cable_length_115; |
|
6644 *max_length = e1000_igp_cable_length_150; |
|
6645 break; |
|
6646 case e1000_gg_cable_length_150: |
|
6647 *min_length = e1000_igp_cable_length_150; |
|
6648 *max_length = e1000_igp_cable_length_180; |
|
6649 break; |
|
6650 default: |
|
6651 return -E1000_ERR_PHY; |
|
6652 break; |
|
6653 } |
|
6654 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
|
6655 u16 cur_agc_value; |
|
6656 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; |
|
6657 u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
|
6658 {IGP01E1000_PHY_AGC_A, |
|
6659 IGP01E1000_PHY_AGC_B, |
|
6660 IGP01E1000_PHY_AGC_C, |
|
6661 IGP01E1000_PHY_AGC_D}; |
|
6662 /* Read the AGC registers for all channels */ |
|
6663 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
|
6664 |
|
6665 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); |
|
6666 if (ret_val) |
|
6667 return ret_val; |
|
6668 |
|
6669 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; |
|
6670 |
|
6671 /* Value bound check. */ |
|
6672 if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || |
|
6673 (cur_agc_value == 0)) |
|
6674 return -E1000_ERR_PHY; |
|
6675 |
|
6676 agc_value += cur_agc_value; |
|
6677 |
|
6678 /* Update minimal AGC value. */ |
|
6679 if (min_agc_value > cur_agc_value) |
|
6680 min_agc_value = cur_agc_value; |
|
6681 } |
|
6682 |
|
6683 /* Remove the minimal AGC result for length < 50m */ |
|
6684 if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { |
|
6685 agc_value -= min_agc_value; |
|
6686 |
|
6687 /* Get the average length of the remaining 3 channels */ |
|
6688 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); |
|
6689 } else { |
|
6690 /* Get the average length of all the 4 channels. */ |
|
6691 agc_value /= IGP01E1000_PHY_CHANNEL_NUM; |
|
6692 } |
|
6693 |
|
6694 /* Set the range of the calculated length. */ |
|
6695 *min_length = ((e1000_igp_cable_length_table[agc_value] - |
|
6696 IGP01E1000_AGC_RANGE) > 0) ? |
|
6697 (e1000_igp_cable_length_table[agc_value] - |
|
6698 IGP01E1000_AGC_RANGE) : 0; |
|
6699 *max_length = e1000_igp_cable_length_table[agc_value] + |
|
6700 IGP01E1000_AGC_RANGE; |
|
6701 } else if (hw->phy_type == e1000_phy_igp_2 || |
|
6702 hw->phy_type == e1000_phy_igp_3) { |
|
6703 u16 cur_agc_index, max_agc_index = 0; |
|
6704 u16 min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; |
|
6705 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = |
|
6706 {IGP02E1000_PHY_AGC_A, |
|
6707 IGP02E1000_PHY_AGC_B, |
|
6708 IGP02E1000_PHY_AGC_C, |
|
6709 IGP02E1000_PHY_AGC_D}; |
|
6710 /* Read the AGC registers for all channels */ |
|
6711 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { |
|
6712 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); |
|
6713 if (ret_val) |
|
6714 return ret_val; |
|
6715 |
|
6716 /* Getting bits 15:9, which represent the combination of course and |
|
6717 * fine gain values. The result is a number that can be put into |
|
6718 * the lookup table to obtain the approximate cable length. */ |
|
6719 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & |
|
6720 IGP02E1000_AGC_LENGTH_MASK; |
|
6721 |
|
6722 /* Array index bound check. */ |
|
6723 if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || |
|
6724 (cur_agc_index == 0)) |
|
6725 return -E1000_ERR_PHY; |
|
6726 |
|
6727 /* Remove min & max AGC values from calculation. */ |
|
6728 if (e1000_igp_2_cable_length_table[min_agc_index] > |
|
6729 e1000_igp_2_cable_length_table[cur_agc_index]) |
|
6730 min_agc_index = cur_agc_index; |
|
6731 if (e1000_igp_2_cable_length_table[max_agc_index] < |
|
6732 e1000_igp_2_cable_length_table[cur_agc_index]) |
|
6733 max_agc_index = cur_agc_index; |
|
6734 |
|
6735 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; |
|
6736 } |
|
6737 |
|
6738 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + |
|
6739 e1000_igp_2_cable_length_table[max_agc_index]); |
|
6740 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); |
|
6741 |
|
6742 /* Calculate cable length with the error range of +/- 10 meters. */ |
|
6743 *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? |
|
6744 (agc_value - IGP02E1000_AGC_RANGE) : 0; |
|
6745 *max_length = agc_value + IGP02E1000_AGC_RANGE; |
|
6746 } |
|
6747 |
|
6748 return E1000_SUCCESS; |
|
6749 } |
|
6750 |
|
6751 /****************************************************************************** |
|
6752 * Check the cable polarity |
|
6753 * |
|
6754 * hw - Struct containing variables accessed by shared code |
|
6755 * polarity - output parameter : 0 - Polarity is not reversed |
|
6756 * 1 - Polarity is reversed. |
|
6757 * |
|
6758 * returns: - E1000_ERR_XXX |
|
6759 * E1000_SUCCESS |
|
6760 * |
|
6761 * For phy's older then IGP, this function simply reads the polarity bit in the |
|
6762 * Phy Status register. For IGP phy's, this bit is valid only if link speed is |
|
6763 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will |
|
6764 * return 0. If the link speed is 1000 Mbps the polarity status is in the |
|
6765 * IGP01E1000_PHY_PCS_INIT_REG. |
|
6766 *****************************************************************************/ |
|
6767 static s32 e1000_check_polarity(struct e1000_hw *hw, |
|
6768 e1000_rev_polarity *polarity) |
|
6769 { |
|
6770 s32 ret_val; |
|
6771 u16 phy_data; |
|
6772 |
|
6773 DEBUGFUNC("e1000_check_polarity"); |
|
6774 |
|
6775 if ((hw->phy_type == e1000_phy_m88) || |
|
6776 (hw->phy_type == e1000_phy_gg82563)) { |
|
6777 /* return the Polarity bit in the Status register. */ |
|
6778 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
|
6779 &phy_data); |
|
6780 if (ret_val) |
|
6781 return ret_val; |
|
6782 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> |
|
6783 M88E1000_PSSR_REV_POLARITY_SHIFT) ? |
|
6784 e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
|
6785 |
|
6786 } else if (hw->phy_type == e1000_phy_igp || |
|
6787 hw->phy_type == e1000_phy_igp_3 || |
|
6788 hw->phy_type == e1000_phy_igp_2) { |
|
6789 /* Read the Status register to check the speed */ |
|
6790 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
|
6791 &phy_data); |
|
6792 if (ret_val) |
|
6793 return ret_val; |
|
6794 |
|
6795 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to |
|
6796 * find the polarity status */ |
|
6797 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
|
6798 IGP01E1000_PSSR_SPEED_1000MBPS) { |
|
6799 |
|
6800 /* Read the GIG initialization PCS register (0x00B4) */ |
|
6801 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, |
|
6802 &phy_data); |
|
6803 if (ret_val) |
|
6804 return ret_val; |
|
6805 |
|
6806 /* Check the polarity bits */ |
|
6807 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? |
|
6808 e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
|
6809 } else { |
|
6810 /* For 10 Mbps, read the polarity bit in the status register. (for |
|
6811 * 100 Mbps this bit is always 0) */ |
|
6812 *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? |
|
6813 e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
|
6814 } |
|
6815 } else if (hw->phy_type == e1000_phy_ife) { |
|
6816 ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, |
|
6817 &phy_data); |
|
6818 if (ret_val) |
|
6819 return ret_val; |
|
6820 *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >> |
|
6821 IFE_PESC_POLARITY_REVERSED_SHIFT) ? |
|
6822 e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
|
6823 } |
|
6824 return E1000_SUCCESS; |
|
6825 } |
|
6826 |
|
6827 /****************************************************************************** |
|
6828 * Check if Downshift occured |
|
6829 * |
|
6830 * hw - Struct containing variables accessed by shared code |
|
6831 * downshift - output parameter : 0 - No Downshift ocured. |
|
6832 * 1 - Downshift ocured. |
|
6833 * |
|
6834 * returns: - E1000_ERR_XXX |
|
6835 * E1000_SUCCESS |
|
6836 * |
|
6837 * For phy's older then IGP, this function reads the Downshift bit in the Phy |
|
6838 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the |
|
6839 * Link Health register. In IGP this bit is latched high, so the driver must |
|
6840 * read it immediately after link is established. |
|
6841 *****************************************************************************/ |
|
6842 static s32 e1000_check_downshift(struct e1000_hw *hw) |
|
6843 { |
|
6844 s32 ret_val; |
|
6845 u16 phy_data; |
|
6846 |
|
6847 DEBUGFUNC("e1000_check_downshift"); |
|
6848 |
|
6849 if (hw->phy_type == e1000_phy_igp || |
|
6850 hw->phy_type == e1000_phy_igp_3 || |
|
6851 hw->phy_type == e1000_phy_igp_2) { |
|
6852 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
|
6853 &phy_data); |
|
6854 if (ret_val) |
|
6855 return ret_val; |
|
6856 |
|
6857 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; |
|
6858 } else if ((hw->phy_type == e1000_phy_m88) || |
|
6859 (hw->phy_type == e1000_phy_gg82563)) { |
|
6860 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
|
6861 &phy_data); |
|
6862 if (ret_val) |
|
6863 return ret_val; |
|
6864 |
|
6865 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
|
6866 M88E1000_PSSR_DOWNSHIFT_SHIFT; |
|
6867 } else if (hw->phy_type == e1000_phy_ife) { |
|
6868 /* e1000_phy_ife supports 10/100 speed only */ |
|
6869 hw->speed_downgraded = false; |
|
6870 } |
|
6871 |
|
6872 return E1000_SUCCESS; |
|
6873 } |
|
6874 |
|
6875 /***************************************************************************** |
|
6876 * |
|
6877 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a |
|
6878 * gigabit link is achieved to improve link quality. |
|
6879 * |
|
6880 * hw: Struct containing variables accessed by shared code |
|
6881 * |
|
6882 * returns: - E1000_ERR_PHY if fail to read/write the PHY |
|
6883 * E1000_SUCCESS at any other case. |
|
6884 * |
|
6885 ****************************************************************************/ |
|
6886 |
|
6887 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) |
|
6888 { |
|
6889 s32 ret_val; |
|
6890 u16 phy_data, phy_saved_data, speed, duplex, i; |
|
6891 u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = |
|
6892 {IGP01E1000_PHY_AGC_PARAM_A, |
|
6893 IGP01E1000_PHY_AGC_PARAM_B, |
|
6894 IGP01E1000_PHY_AGC_PARAM_C, |
|
6895 IGP01E1000_PHY_AGC_PARAM_D}; |
|
6896 u16 min_length, max_length; |
|
6897 |
|
6898 DEBUGFUNC("e1000_config_dsp_after_link_change"); |
|
6899 |
|
6900 if (hw->phy_type != e1000_phy_igp) |
|
6901 return E1000_SUCCESS; |
|
6902 |
|
6903 if (link_up) { |
|
6904 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
|
6905 if (ret_val) { |
|
6906 DEBUGOUT("Error getting link speed and duplex\n"); |
|
6907 return ret_val; |
|
6908 } |
|
6909 |
|
6910 if (speed == SPEED_1000) { |
|
6911 |
|
6912 ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
|
6913 if (ret_val) |
|
6914 return ret_val; |
|
6915 |
|
6916 if ((hw->dsp_config_state == e1000_dsp_config_enabled) && |
|
6917 min_length >= e1000_igp_cable_length_50) { |
|
6918 |
|
6919 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
|
6920 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], |
|
6921 &phy_data); |
|
6922 if (ret_val) |
|
6923 return ret_val; |
|
6924 |
|
6925 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; |
|
6926 |
|
6927 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], |
|
6928 phy_data); |
|
6929 if (ret_val) |
|
6930 return ret_val; |
|
6931 } |
|
6932 hw->dsp_config_state = e1000_dsp_config_activated; |
|
6933 } |
|
6934 |
|
6935 if ((hw->ffe_config_state == e1000_ffe_config_enabled) && |
|
6936 (min_length < e1000_igp_cable_length_50)) { |
|
6937 |
|
6938 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; |
|
6939 u32 idle_errs = 0; |
|
6940 |
|
6941 /* clear previous idle error counts */ |
|
6942 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, |
|
6943 &phy_data); |
|
6944 if (ret_val) |
|
6945 return ret_val; |
|
6946 |
|
6947 for (i = 0; i < ffe_idle_err_timeout; i++) { |
|
6948 udelay(1000); |
|
6949 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, |
|
6950 &phy_data); |
|
6951 if (ret_val) |
|
6952 return ret_val; |
|
6953 |
|
6954 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); |
|
6955 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { |
|
6956 hw->ffe_config_state = e1000_ffe_config_active; |
|
6957 |
|
6958 ret_val = e1000_write_phy_reg(hw, |
|
6959 IGP01E1000_PHY_DSP_FFE, |
|
6960 IGP01E1000_PHY_DSP_FFE_CM_CP); |
|
6961 if (ret_val) |
|
6962 return ret_val; |
|
6963 break; |
|
6964 } |
|
6965 |
|
6966 if (idle_errs) |
|
6967 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; |
|
6968 } |
|
6969 } |
|
6970 } |
|
6971 } else { |
|
6972 if (hw->dsp_config_state == e1000_dsp_config_activated) { |
|
6973 /* Save off the current value of register 0x2F5B to be restored at |
|
6974 * the end of the routines. */ |
|
6975 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
|
6976 |
|
6977 if (ret_val) |
|
6978 return ret_val; |
|
6979 |
|
6980 /* Disable the PHY transmitter */ |
|
6981 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
|
6982 |
|
6983 if (ret_val) |
|
6984 return ret_val; |
|
6985 |
|
6986 mdelay(20); |
|
6987 |
|
6988 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
6989 IGP01E1000_IEEE_FORCE_GIGA); |
|
6990 if (ret_val) |
|
6991 return ret_val; |
|
6992 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
|
6993 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); |
|
6994 if (ret_val) |
|
6995 return ret_val; |
|
6996 |
|
6997 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; |
|
6998 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; |
|
6999 |
|
7000 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); |
|
7001 if (ret_val) |
|
7002 return ret_val; |
|
7003 } |
|
7004 |
|
7005 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
7006 IGP01E1000_IEEE_RESTART_AUTONEG); |
|
7007 if (ret_val) |
|
7008 return ret_val; |
|
7009 |
|
7010 mdelay(20); |
|
7011 |
|
7012 /* Now enable the transmitter */ |
|
7013 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
|
7014 |
|
7015 if (ret_val) |
|
7016 return ret_val; |
|
7017 |
|
7018 hw->dsp_config_state = e1000_dsp_config_enabled; |
|
7019 } |
|
7020 |
|
7021 if (hw->ffe_config_state == e1000_ffe_config_active) { |
|
7022 /* Save off the current value of register 0x2F5B to be restored at |
|
7023 * the end of the routines. */ |
|
7024 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
|
7025 |
|
7026 if (ret_val) |
|
7027 return ret_val; |
|
7028 |
|
7029 /* Disable the PHY transmitter */ |
|
7030 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
|
7031 |
|
7032 if (ret_val) |
|
7033 return ret_val; |
|
7034 |
|
7035 mdelay(20); |
|
7036 |
|
7037 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
7038 IGP01E1000_IEEE_FORCE_GIGA); |
|
7039 if (ret_val) |
|
7040 return ret_val; |
|
7041 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, |
|
7042 IGP01E1000_PHY_DSP_FFE_DEFAULT); |
|
7043 if (ret_val) |
|
7044 return ret_val; |
|
7045 |
|
7046 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
7047 IGP01E1000_IEEE_RESTART_AUTONEG); |
|
7048 if (ret_val) |
|
7049 return ret_val; |
|
7050 |
|
7051 mdelay(20); |
|
7052 |
|
7053 /* Now enable the transmitter */ |
|
7054 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
|
7055 |
|
7056 if (ret_val) |
|
7057 return ret_val; |
|
7058 |
|
7059 hw->ffe_config_state = e1000_ffe_config_enabled; |
|
7060 } |
|
7061 } |
|
7062 return E1000_SUCCESS; |
|
7063 } |
|
7064 |
|
7065 /***************************************************************************** |
|
7066 * Set PHY to class A mode |
|
7067 * Assumes the following operations will follow to enable the new class mode. |
|
7068 * 1. Do a PHY soft reset |
|
7069 * 2. Restart auto-negotiation or force link. |
|
7070 * |
|
7071 * hw - Struct containing variables accessed by shared code |
|
7072 ****************************************************************************/ |
|
7073 static s32 e1000_set_phy_mode(struct e1000_hw *hw) |
|
7074 { |
|
7075 s32 ret_val; |
|
7076 u16 eeprom_data; |
|
7077 |
|
7078 DEBUGFUNC("e1000_set_phy_mode"); |
|
7079 |
|
7080 if ((hw->mac_type == e1000_82545_rev_3) && |
|
7081 (hw->media_type == e1000_media_type_copper)) { |
|
7082 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); |
|
7083 if (ret_val) { |
|
7084 return ret_val; |
|
7085 } |
|
7086 |
|
7087 if ((eeprom_data != EEPROM_RESERVED_WORD) && |
|
7088 (eeprom_data & EEPROM_PHY_CLASS_A)) { |
|
7089 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); |
|
7090 if (ret_val) |
|
7091 return ret_val; |
|
7092 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); |
|
7093 if (ret_val) |
|
7094 return ret_val; |
|
7095 |
|
7096 hw->phy_reset_disable = false; |
|
7097 } |
|
7098 } |
|
7099 |
|
7100 return E1000_SUCCESS; |
|
7101 } |
|
7102 |
|
7103 /***************************************************************************** |
|
7104 * |
|
7105 * This function sets the lplu state according to the active flag. When |
|
7106 * activating lplu this function also disables smart speed and vise versa. |
|
7107 * lplu will not be activated unless the device autonegotiation advertisment |
|
7108 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
|
7109 * hw: Struct containing variables accessed by shared code |
|
7110 * active - true to enable lplu false to disable lplu. |
|
7111 * |
|
7112 * returns: - E1000_ERR_PHY if fail to read/write the PHY |
|
7113 * E1000_SUCCESS at any other case. |
|
7114 * |
|
7115 ****************************************************************************/ |
|
7116 |
|
7117 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) |
|
7118 { |
|
7119 u32 phy_ctrl = 0; |
|
7120 s32 ret_val; |
|
7121 u16 phy_data; |
|
7122 DEBUGFUNC("e1000_set_d3_lplu_state"); |
|
7123 |
|
7124 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 |
|
7125 && hw->phy_type != e1000_phy_igp_3) |
|
7126 return E1000_SUCCESS; |
|
7127 |
|
7128 /* During driver activity LPLU should not be used or it will attain link |
|
7129 * from the lowest speeds starting from 10Mbps. The capability is used for |
|
7130 * Dx transitions and states */ |
|
7131 if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { |
|
7132 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
|
7133 if (ret_val) |
|
7134 return ret_val; |
|
7135 } else if (hw->mac_type == e1000_ich8lan) { |
|
7136 /* MAC writes into PHY register based on the state transition |
|
7137 * and start auto-negotiation. SW driver can overwrite the settings |
|
7138 * in CSR PHY power control E1000_PHY_CTRL register. */ |
|
7139 phy_ctrl = er32(PHY_CTRL); |
|
7140 } else { |
|
7141 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
|
7142 if (ret_val) |
|
7143 return ret_val; |
|
7144 } |
|
7145 |
|
7146 if (!active) { |
|
7147 if (hw->mac_type == e1000_82541_rev_2 || |
|
7148 hw->mac_type == e1000_82547_rev_2) { |
|
7149 phy_data &= ~IGP01E1000_GMII_FLEX_SPD; |
|
7150 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); |
|
7151 if (ret_val) |
|
7152 return ret_val; |
|
7153 } else { |
|
7154 if (hw->mac_type == e1000_ich8lan) { |
|
7155 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; |
|
7156 ew32(PHY_CTRL, phy_ctrl); |
|
7157 } else { |
|
7158 phy_data &= ~IGP02E1000_PM_D3_LPLU; |
|
7159 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
|
7160 phy_data); |
|
7161 if (ret_val) |
|
7162 return ret_val; |
|
7163 } |
|
7164 } |
|
7165 |
|
7166 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
|
7167 * Dx states where the power conservation is most important. During |
|
7168 * driver activity we should enable SmartSpeed, so performance is |
|
7169 * maintained. */ |
|
7170 if (hw->smart_speed == e1000_smart_speed_on) { |
|
7171 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
7172 &phy_data); |
|
7173 if (ret_val) |
|
7174 return ret_val; |
|
7175 |
|
7176 phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
7177 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
7178 phy_data); |
|
7179 if (ret_val) |
|
7180 return ret_val; |
|
7181 } else if (hw->smart_speed == e1000_smart_speed_off) { |
|
7182 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
7183 &phy_data); |
|
7184 if (ret_val) |
|
7185 return ret_val; |
|
7186 |
|
7187 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
7188 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
7189 phy_data); |
|
7190 if (ret_val) |
|
7191 return ret_val; |
|
7192 } |
|
7193 |
|
7194 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || |
|
7195 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || |
|
7196 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { |
|
7197 |
|
7198 if (hw->mac_type == e1000_82541_rev_2 || |
|
7199 hw->mac_type == e1000_82547_rev_2) { |
|
7200 phy_data |= IGP01E1000_GMII_FLEX_SPD; |
|
7201 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); |
|
7202 if (ret_val) |
|
7203 return ret_val; |
|
7204 } else { |
|
7205 if (hw->mac_type == e1000_ich8lan) { |
|
7206 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; |
|
7207 ew32(PHY_CTRL, phy_ctrl); |
|
7208 } else { |
|
7209 phy_data |= IGP02E1000_PM_D3_LPLU; |
|
7210 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, |
|
7211 phy_data); |
|
7212 if (ret_val) |
|
7213 return ret_val; |
|
7214 } |
|
7215 } |
|
7216 |
|
7217 /* When LPLU is enabled we should disable SmartSpeed */ |
|
7218 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
|
7219 if (ret_val) |
|
7220 return ret_val; |
|
7221 |
|
7222 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
7223 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); |
|
7224 if (ret_val) |
|
7225 return ret_val; |
|
7226 |
|
7227 } |
|
7228 return E1000_SUCCESS; |
|
7229 } |
|
7230 |
|
7231 /***************************************************************************** |
|
7232 * |
|
7233 * This function sets the lplu d0 state according to the active flag. When |
|
7234 * activating lplu this function also disables smart speed and vise versa. |
|
7235 * lplu will not be activated unless the device autonegotiation advertisment |
|
7236 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
|
7237 * hw: Struct containing variables accessed by shared code |
|
7238 * active - true to enable lplu false to disable lplu. |
|
7239 * |
|
7240 * returns: - E1000_ERR_PHY if fail to read/write the PHY |
|
7241 * E1000_SUCCESS at any other case. |
|
7242 * |
|
7243 ****************************************************************************/ |
|
7244 |
|
7245 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) |
|
7246 { |
|
7247 u32 phy_ctrl = 0; |
|
7248 s32 ret_val; |
|
7249 u16 phy_data; |
|
7250 DEBUGFUNC("e1000_set_d0_lplu_state"); |
|
7251 |
|
7252 if (hw->mac_type <= e1000_82547_rev_2) |
|
7253 return E1000_SUCCESS; |
|
7254 |
|
7255 if (hw->mac_type == e1000_ich8lan) { |
|
7256 phy_ctrl = er32(PHY_CTRL); |
|
7257 } else { |
|
7258 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
|
7259 if (ret_val) |
|
7260 return ret_val; |
|
7261 } |
|
7262 |
|
7263 if (!active) { |
|
7264 if (hw->mac_type == e1000_ich8lan) { |
|
7265 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; |
|
7266 ew32(PHY_CTRL, phy_ctrl); |
|
7267 } else { |
|
7268 phy_data &= ~IGP02E1000_PM_D0_LPLU; |
|
7269 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
|
7270 if (ret_val) |
|
7271 return ret_val; |
|
7272 } |
|
7273 |
|
7274 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
|
7275 * Dx states where the power conservation is most important. During |
|
7276 * driver activity we should enable SmartSpeed, so performance is |
|
7277 * maintained. */ |
|
7278 if (hw->smart_speed == e1000_smart_speed_on) { |
|
7279 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
7280 &phy_data); |
|
7281 if (ret_val) |
|
7282 return ret_val; |
|
7283 |
|
7284 phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
7285 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
7286 phy_data); |
|
7287 if (ret_val) |
|
7288 return ret_val; |
|
7289 } else if (hw->smart_speed == e1000_smart_speed_off) { |
|
7290 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
7291 &phy_data); |
|
7292 if (ret_val) |
|
7293 return ret_val; |
|
7294 |
|
7295 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
7296 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
7297 phy_data); |
|
7298 if (ret_val) |
|
7299 return ret_val; |
|
7300 } |
|
7301 |
|
7302 |
|
7303 } else { |
|
7304 |
|
7305 if (hw->mac_type == e1000_ich8lan) { |
|
7306 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; |
|
7307 ew32(PHY_CTRL, phy_ctrl); |
|
7308 } else { |
|
7309 phy_data |= IGP02E1000_PM_D0_LPLU; |
|
7310 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
|
7311 if (ret_val) |
|
7312 return ret_val; |
|
7313 } |
|
7314 |
|
7315 /* When LPLU is enabled we should disable SmartSpeed */ |
|
7316 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
|
7317 if (ret_val) |
|
7318 return ret_val; |
|
7319 |
|
7320 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
7321 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); |
|
7322 if (ret_val) |
|
7323 return ret_val; |
|
7324 |
|
7325 } |
|
7326 return E1000_SUCCESS; |
|
7327 } |
|
7328 |
|
7329 /****************************************************************************** |
|
7330 * Change VCO speed register to improve Bit Error Rate performance of SERDES. |
|
7331 * |
|
7332 * hw - Struct containing variables accessed by shared code |
|
7333 *****************************************************************************/ |
|
7334 static s32 e1000_set_vco_speed(struct e1000_hw *hw) |
|
7335 { |
|
7336 s32 ret_val; |
|
7337 u16 default_page = 0; |
|
7338 u16 phy_data; |
|
7339 |
|
7340 DEBUGFUNC("e1000_set_vco_speed"); |
|
7341 |
|
7342 switch (hw->mac_type) { |
|
7343 case e1000_82545_rev_3: |
|
7344 case e1000_82546_rev_3: |
|
7345 break; |
|
7346 default: |
|
7347 return E1000_SUCCESS; |
|
7348 } |
|
7349 |
|
7350 /* Set PHY register 30, page 5, bit 8 to 0 */ |
|
7351 |
|
7352 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); |
|
7353 if (ret_val) |
|
7354 return ret_val; |
|
7355 |
|
7356 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); |
|
7357 if (ret_val) |
|
7358 return ret_val; |
|
7359 |
|
7360 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
|
7361 if (ret_val) |
|
7362 return ret_val; |
|
7363 |
|
7364 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; |
|
7365 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
|
7366 if (ret_val) |
|
7367 return ret_val; |
|
7368 |
|
7369 /* Set PHY register 30, page 4, bit 11 to 1 */ |
|
7370 |
|
7371 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); |
|
7372 if (ret_val) |
|
7373 return ret_val; |
|
7374 |
|
7375 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
|
7376 if (ret_val) |
|
7377 return ret_val; |
|
7378 |
|
7379 phy_data |= M88E1000_PHY_VCO_REG_BIT11; |
|
7380 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
|
7381 if (ret_val) |
|
7382 return ret_val; |
|
7383 |
|
7384 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); |
|
7385 if (ret_val) |
|
7386 return ret_val; |
|
7387 |
|
7388 return E1000_SUCCESS; |
|
7389 } |
|
7390 |
|
7391 |
|
7392 /***************************************************************************** |
|
7393 * This function reads the cookie from ARC ram. |
|
7394 * |
|
7395 * returns: - E1000_SUCCESS . |
|
7396 ****************************************************************************/ |
|
7397 static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer) |
|
7398 { |
|
7399 u8 i; |
|
7400 u32 offset = E1000_MNG_DHCP_COOKIE_OFFSET; |
|
7401 u8 length = E1000_MNG_DHCP_COOKIE_LENGTH; |
|
7402 |
|
7403 length = (length >> 2); |
|
7404 offset = (offset >> 2); |
|
7405 |
|
7406 for (i = 0; i < length; i++) { |
|
7407 *((u32 *)buffer + i) = |
|
7408 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); |
|
7409 } |
|
7410 return E1000_SUCCESS; |
|
7411 } |
|
7412 |
|
7413 |
|
7414 /***************************************************************************** |
|
7415 * This function checks whether the HOST IF is enabled for command operaton |
|
7416 * and also checks whether the previous command is completed. |
|
7417 * It busy waits in case of previous command is not completed. |
|
7418 * |
|
7419 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or |
|
7420 * timeout |
|
7421 * - E1000_SUCCESS for success. |
|
7422 ****************************************************************************/ |
|
7423 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) |
|
7424 { |
|
7425 u32 hicr; |
|
7426 u8 i; |
|
7427 |
|
7428 /* Check that the host interface is enabled. */ |
|
7429 hicr = er32(HICR); |
|
7430 if ((hicr & E1000_HICR_EN) == 0) { |
|
7431 DEBUGOUT("E1000_HOST_EN bit disabled.\n"); |
|
7432 return -E1000_ERR_HOST_INTERFACE_COMMAND; |
|
7433 } |
|
7434 /* check the previous command is completed */ |
|
7435 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { |
|
7436 hicr = er32(HICR); |
|
7437 if (!(hicr & E1000_HICR_C)) |
|
7438 break; |
|
7439 mdelay(1); |
|
7440 } |
|
7441 |
|
7442 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { |
|
7443 DEBUGOUT("Previous command timeout failed .\n"); |
|
7444 return -E1000_ERR_HOST_INTERFACE_COMMAND; |
|
7445 } |
|
7446 return E1000_SUCCESS; |
|
7447 } |
|
7448 |
|
7449 /***************************************************************************** |
|
7450 * This function writes the buffer content at the offset given on the host if. |
|
7451 * It also does alignment considerations to do the writes in most efficient way. |
|
7452 * Also fills up the sum of the buffer in *buffer parameter. |
|
7453 * |
|
7454 * returns - E1000_SUCCESS for success. |
|
7455 ****************************************************************************/ |
|
7456 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, |
|
7457 u16 offset, u8 *sum) |
|
7458 { |
|
7459 u8 *tmp; |
|
7460 u8 *bufptr = buffer; |
|
7461 u32 data = 0; |
|
7462 u16 remaining, i, j, prev_bytes; |
|
7463 |
|
7464 /* sum = only sum of the data and it is not checksum */ |
|
7465 |
|
7466 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { |
|
7467 return -E1000_ERR_PARAM; |
|
7468 } |
|
7469 |
|
7470 tmp = (u8 *)&data; |
|
7471 prev_bytes = offset & 0x3; |
|
7472 offset &= 0xFFFC; |
|
7473 offset >>= 2; |
|
7474 |
|
7475 if (prev_bytes) { |
|
7476 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); |
|
7477 for (j = prev_bytes; j < sizeof(u32); j++) { |
|
7478 *(tmp + j) = *bufptr++; |
|
7479 *sum += *(tmp + j); |
|
7480 } |
|
7481 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); |
|
7482 length -= j - prev_bytes; |
|
7483 offset++; |
|
7484 } |
|
7485 |
|
7486 remaining = length & 0x3; |
|
7487 length -= remaining; |
|
7488 |
|
7489 /* Calculate length in DWORDs */ |
|
7490 length >>= 2; |
|
7491 |
|
7492 /* The device driver writes the relevant command block into the |
|
7493 * ram area. */ |
|
7494 for (i = 0; i < length; i++) { |
|
7495 for (j = 0; j < sizeof(u32); j++) { |
|
7496 *(tmp + j) = *bufptr++; |
|
7497 *sum += *(tmp + j); |
|
7498 } |
|
7499 |
|
7500 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); |
|
7501 } |
|
7502 if (remaining) { |
|
7503 for (j = 0; j < sizeof(u32); j++) { |
|
7504 if (j < remaining) |
|
7505 *(tmp + j) = *bufptr++; |
|
7506 else |
|
7507 *(tmp + j) = 0; |
|
7508 |
|
7509 *sum += *(tmp + j); |
|
7510 } |
|
7511 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); |
|
7512 } |
|
7513 |
|
7514 return E1000_SUCCESS; |
|
7515 } |
|
7516 |
|
7517 |
|
7518 /***************************************************************************** |
|
7519 * This function writes the command header after does the checksum calculation. |
|
7520 * |
|
7521 * returns - E1000_SUCCESS for success. |
|
7522 ****************************************************************************/ |
|
7523 static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, |
|
7524 struct e1000_host_mng_command_header *hdr) |
|
7525 { |
|
7526 u16 i; |
|
7527 u8 sum; |
|
7528 u8 *buffer; |
|
7529 |
|
7530 /* Write the whole command header structure which includes sum of |
|
7531 * the buffer */ |
|
7532 |
|
7533 u16 length = sizeof(struct e1000_host_mng_command_header); |
|
7534 |
|
7535 sum = hdr->checksum; |
|
7536 hdr->checksum = 0; |
|
7537 |
|
7538 buffer = (u8 *)hdr; |
|
7539 i = length; |
|
7540 while (i--) |
|
7541 sum += buffer[i]; |
|
7542 |
|
7543 hdr->checksum = 0 - sum; |
|
7544 |
|
7545 length >>= 2; |
|
7546 /* The device driver writes the relevant command block into the ram area. */ |
|
7547 for (i = 0; i < length; i++) { |
|
7548 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *)hdr + i)); |
|
7549 E1000_WRITE_FLUSH(); |
|
7550 } |
|
7551 |
|
7552 return E1000_SUCCESS; |
|
7553 } |
|
7554 |
|
7555 |
|
7556 /***************************************************************************** |
|
7557 * This function indicates to ARC that a new command is pending which completes |
|
7558 * one write operation by the driver. |
|
7559 * |
|
7560 * returns - E1000_SUCCESS for success. |
|
7561 ****************************************************************************/ |
|
7562 static s32 e1000_mng_write_commit(struct e1000_hw *hw) |
|
7563 { |
|
7564 u32 hicr; |
|
7565 |
|
7566 hicr = er32(HICR); |
|
7567 /* Setting this bit tells the ARC that a new command is pending. */ |
|
7568 ew32(HICR, hicr | E1000_HICR_C); |
|
7569 |
|
7570 return E1000_SUCCESS; |
|
7571 } |
|
7572 |
|
7573 |
|
7574 /***************************************************************************** |
|
7575 * This function checks the mode of the firmware. |
|
7576 * |
|
7577 * returns - true when the mode is IAMT or false. |
|
7578 ****************************************************************************/ |
|
7579 bool e1000_check_mng_mode(struct e1000_hw *hw) |
|
7580 { |
|
7581 u32 fwsm; |
|
7582 |
|
7583 fwsm = er32(FWSM); |
|
7584 |
|
7585 if (hw->mac_type == e1000_ich8lan) { |
|
7586 if ((fwsm & E1000_FWSM_MODE_MASK) == |
|
7587 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) |
|
7588 return true; |
|
7589 } else if ((fwsm & E1000_FWSM_MODE_MASK) == |
|
7590 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) |
|
7591 return true; |
|
7592 |
|
7593 return false; |
|
7594 } |
|
7595 |
|
7596 |
|
7597 /***************************************************************************** |
|
7598 * This function writes the dhcp info . |
|
7599 ****************************************************************************/ |
|
7600 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) |
|
7601 { |
|
7602 s32 ret_val; |
|
7603 struct e1000_host_mng_command_header hdr; |
|
7604 |
|
7605 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; |
|
7606 hdr.command_length = length; |
|
7607 hdr.reserved1 = 0; |
|
7608 hdr.reserved2 = 0; |
|
7609 hdr.checksum = 0; |
|
7610 |
|
7611 ret_val = e1000_mng_enable_host_if(hw); |
|
7612 if (ret_val == E1000_SUCCESS) { |
|
7613 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), |
|
7614 &(hdr.checksum)); |
|
7615 if (ret_val == E1000_SUCCESS) { |
|
7616 ret_val = e1000_mng_write_cmd_header(hw, &hdr); |
|
7617 if (ret_val == E1000_SUCCESS) |
|
7618 ret_val = e1000_mng_write_commit(hw); |
|
7619 } |
|
7620 } |
|
7621 return ret_val; |
|
7622 } |
|
7623 |
|
7624 |
|
7625 /***************************************************************************** |
|
7626 * This function calculates the checksum. |
|
7627 * |
|
7628 * returns - checksum of buffer contents. |
|
7629 ****************************************************************************/ |
|
7630 static u8 e1000_calculate_mng_checksum(char *buffer, u32 length) |
|
7631 { |
|
7632 u8 sum = 0; |
|
7633 u32 i; |
|
7634 |
|
7635 if (!buffer) |
|
7636 return 0; |
|
7637 |
|
7638 for (i=0; i < length; i++) |
|
7639 sum += buffer[i]; |
|
7640 |
|
7641 return (u8)(0 - sum); |
|
7642 } |
|
7643 |
|
7644 /***************************************************************************** |
|
7645 * This function checks whether tx pkt filtering needs to be enabled or not. |
|
7646 * |
|
7647 * returns - true for packet filtering or false. |
|
7648 ****************************************************************************/ |
|
7649 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) |
|
7650 { |
|
7651 /* called in init as well as watchdog timer functions */ |
|
7652 |
|
7653 s32 ret_val, checksum; |
|
7654 bool tx_filter = false; |
|
7655 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); |
|
7656 u8 *buffer = (u8 *) &(hw->mng_cookie); |
|
7657 |
|
7658 if (e1000_check_mng_mode(hw)) { |
|
7659 ret_val = e1000_mng_enable_host_if(hw); |
|
7660 if (ret_val == E1000_SUCCESS) { |
|
7661 ret_val = e1000_host_if_read_cookie(hw, buffer); |
|
7662 if (ret_val == E1000_SUCCESS) { |
|
7663 checksum = hdr->checksum; |
|
7664 hdr->checksum = 0; |
|
7665 if ((hdr->signature == E1000_IAMT_SIGNATURE) && |
|
7666 checksum == e1000_calculate_mng_checksum((char *)buffer, |
|
7667 E1000_MNG_DHCP_COOKIE_LENGTH)) { |
|
7668 if (hdr->status & |
|
7669 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) |
|
7670 tx_filter = true; |
|
7671 } else |
|
7672 tx_filter = true; |
|
7673 } else |
|
7674 tx_filter = true; |
|
7675 } |
|
7676 } |
|
7677 |
|
7678 hw->tx_pkt_filtering = tx_filter; |
|
7679 return tx_filter; |
|
7680 } |
|
7681 |
|
7682 /****************************************************************************** |
|
7683 * Verifies the hardware needs to allow ARPs to be processed by the host |
|
7684 * |
|
7685 * hw - Struct containing variables accessed by shared code |
|
7686 * |
|
7687 * returns: - true/false |
|
7688 * |
|
7689 *****************************************************************************/ |
|
7690 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) |
|
7691 { |
|
7692 u32 manc; |
|
7693 u32 fwsm, factps; |
|
7694 |
|
7695 if (hw->asf_firmware_present) { |
|
7696 manc = er32(MANC); |
|
7697 |
|
7698 if (!(manc & E1000_MANC_RCV_TCO_EN) || |
|
7699 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
|
7700 return false; |
|
7701 if (e1000_arc_subsystem_valid(hw)) { |
|
7702 fwsm = er32(FWSM); |
|
7703 factps = er32(FACTPS); |
|
7704 |
|
7705 if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) == |
|
7706 e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG)) |
|
7707 return true; |
|
7708 } else |
|
7709 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) |
|
7710 return true; |
|
7711 } |
|
7712 return false; |
|
7713 } |
|
7714 |
|
7715 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) |
|
7716 { |
|
7717 s32 ret_val; |
|
7718 u16 mii_status_reg; |
|
7719 u16 i; |
|
7720 |
|
7721 /* Polarity reversal workaround for forced 10F/10H links. */ |
|
7722 |
|
7723 /* Disable the transmitter on the PHY */ |
|
7724 |
|
7725 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
|
7726 if (ret_val) |
|
7727 return ret_val; |
|
7728 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); |
|
7729 if (ret_val) |
|
7730 return ret_val; |
|
7731 |
|
7732 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
|
7733 if (ret_val) |
|
7734 return ret_val; |
|
7735 |
|
7736 /* This loop will early-out if the NO link condition has been met. */ |
|
7737 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
7738 /* Read the MII Status Register and wait for Link Status bit |
|
7739 * to be clear. |
|
7740 */ |
|
7741 |
|
7742 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
7743 if (ret_val) |
|
7744 return ret_val; |
|
7745 |
|
7746 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
7747 if (ret_val) |
|
7748 return ret_val; |
|
7749 |
|
7750 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; |
|
7751 mdelay(100); |
|
7752 } |
|
7753 |
|
7754 /* Recommended delay time after link has been lost */ |
|
7755 mdelay(1000); |
|
7756 |
|
7757 /* Now we will re-enable th transmitter on the PHY */ |
|
7758 |
|
7759 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
|
7760 if (ret_val) |
|
7761 return ret_val; |
|
7762 mdelay(50); |
|
7763 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); |
|
7764 if (ret_val) |
|
7765 return ret_val; |
|
7766 mdelay(50); |
|
7767 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); |
|
7768 if (ret_val) |
|
7769 return ret_val; |
|
7770 mdelay(50); |
|
7771 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); |
|
7772 if (ret_val) |
|
7773 return ret_val; |
|
7774 |
|
7775 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
|
7776 if (ret_val) |
|
7777 return ret_val; |
|
7778 |
|
7779 /* This loop will early-out if the link condition has been met. */ |
|
7780 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
7781 /* Read the MII Status Register and wait for Link Status bit |
|
7782 * to be set. |
|
7783 */ |
|
7784 |
|
7785 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
7786 if (ret_val) |
|
7787 return ret_val; |
|
7788 |
|
7789 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
7790 if (ret_val) |
|
7791 return ret_val; |
|
7792 |
|
7793 if (mii_status_reg & MII_SR_LINK_STATUS) break; |
|
7794 mdelay(100); |
|
7795 } |
|
7796 return E1000_SUCCESS; |
|
7797 } |
|
7798 |
|
7799 /*************************************************************************** |
|
7800 * |
|
7801 * Disables PCI-Express master access. |
|
7802 * |
|
7803 * hw: Struct containing variables accessed by shared code |
|
7804 * |
|
7805 * returns: - none. |
|
7806 * |
|
7807 ***************************************************************************/ |
|
7808 static void e1000_set_pci_express_master_disable(struct e1000_hw *hw) |
|
7809 { |
|
7810 u32 ctrl; |
|
7811 |
|
7812 DEBUGFUNC("e1000_set_pci_express_master_disable"); |
|
7813 |
|
7814 if (hw->bus_type != e1000_bus_type_pci_express) |
|
7815 return; |
|
7816 |
|
7817 ctrl = er32(CTRL); |
|
7818 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; |
|
7819 ew32(CTRL, ctrl); |
|
7820 } |
|
7821 |
|
7822 /******************************************************************************* |
|
7823 * |
|
7824 * Disables PCI-Express master access and verifies there are no pending requests |
|
7825 * |
|
7826 * hw: Struct containing variables accessed by shared code |
|
7827 * |
|
7828 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't |
|
7829 * caused the master requests to be disabled. |
|
7830 * E1000_SUCCESS master requests disabled. |
|
7831 * |
|
7832 ******************************************************************************/ |
|
7833 s32 e1000_disable_pciex_master(struct e1000_hw *hw) |
|
7834 { |
|
7835 s32 timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ |
|
7836 |
|
7837 DEBUGFUNC("e1000_disable_pciex_master"); |
|
7838 |
|
7839 if (hw->bus_type != e1000_bus_type_pci_express) |
|
7840 return E1000_SUCCESS; |
|
7841 |
|
7842 e1000_set_pci_express_master_disable(hw); |
|
7843 |
|
7844 while (timeout) { |
|
7845 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) |
|
7846 break; |
|
7847 else |
|
7848 udelay(100); |
|
7849 timeout--; |
|
7850 } |
|
7851 |
|
7852 if (!timeout) { |
|
7853 DEBUGOUT("Master requests are pending.\n"); |
|
7854 return -E1000_ERR_MASTER_REQUESTS_PENDING; |
|
7855 } |
|
7856 |
|
7857 return E1000_SUCCESS; |
|
7858 } |
|
7859 |
|
7860 /******************************************************************************* |
|
7861 * |
|
7862 * Check for EEPROM Auto Read bit done. |
|
7863 * |
|
7864 * hw: Struct containing variables accessed by shared code |
|
7865 * |
|
7866 * returns: - E1000_ERR_RESET if fail to reset MAC |
|
7867 * E1000_SUCCESS at any other case. |
|
7868 * |
|
7869 ******************************************************************************/ |
|
7870 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) |
|
7871 { |
|
7872 s32 timeout = AUTO_READ_DONE_TIMEOUT; |
|
7873 |
|
7874 DEBUGFUNC("e1000_get_auto_rd_done"); |
|
7875 |
|
7876 switch (hw->mac_type) { |
|
7877 default: |
|
7878 msleep(5); |
|
7879 break; |
|
7880 case e1000_82571: |
|
7881 case e1000_82572: |
|
7882 case e1000_82573: |
|
7883 case e1000_80003es2lan: |
|
7884 case e1000_ich8lan: |
|
7885 while (timeout) { |
|
7886 if (er32(EECD) & E1000_EECD_AUTO_RD) |
|
7887 break; |
|
7888 else msleep(1); |
|
7889 timeout--; |
|
7890 } |
|
7891 |
|
7892 if (!timeout) { |
|
7893 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); |
|
7894 return -E1000_ERR_RESET; |
|
7895 } |
|
7896 break; |
|
7897 } |
|
7898 |
|
7899 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high. |
|
7900 * Need to wait for PHY configuration completion before accessing NVM |
|
7901 * and PHY. */ |
|
7902 if (hw->mac_type == e1000_82573) |
|
7903 msleep(25); |
|
7904 |
|
7905 return E1000_SUCCESS; |
|
7906 } |
|
7907 |
|
7908 /*************************************************************************** |
|
7909 * Checks if the PHY configuration is done |
|
7910 * |
|
7911 * hw: Struct containing variables accessed by shared code |
|
7912 * |
|
7913 * returns: - E1000_ERR_RESET if fail to reset MAC |
|
7914 * E1000_SUCCESS at any other case. |
|
7915 * |
|
7916 ***************************************************************************/ |
|
7917 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) |
|
7918 { |
|
7919 s32 timeout = PHY_CFG_TIMEOUT; |
|
7920 u32 cfg_mask = E1000_EEPROM_CFG_DONE; |
|
7921 |
|
7922 DEBUGFUNC("e1000_get_phy_cfg_done"); |
|
7923 |
|
7924 switch (hw->mac_type) { |
|
7925 default: |
|
7926 mdelay(10); |
|
7927 break; |
|
7928 case e1000_80003es2lan: |
|
7929 /* Separate *_CFG_DONE_* bit for each port */ |
|
7930 if (er32(STATUS) & E1000_STATUS_FUNC_1) |
|
7931 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; |
|
7932 /* Fall Through */ |
|
7933 case e1000_82571: |
|
7934 case e1000_82572: |
|
7935 while (timeout) { |
|
7936 if (er32(EEMNGCTL) & cfg_mask) |
|
7937 break; |
|
7938 else |
|
7939 msleep(1); |
|
7940 timeout--; |
|
7941 } |
|
7942 if (!timeout) { |
|
7943 DEBUGOUT("MNG configuration cycle has not completed.\n"); |
|
7944 return -E1000_ERR_RESET; |
|
7945 } |
|
7946 break; |
|
7947 } |
|
7948 |
|
7949 return E1000_SUCCESS; |
|
7950 } |
|
7951 |
|
7952 /*************************************************************************** |
|
7953 * |
|
7954 * Using the combination of SMBI and SWESMBI semaphore bits when resetting |
|
7955 * adapter or Eeprom access. |
|
7956 * |
|
7957 * hw: Struct containing variables accessed by shared code |
|
7958 * |
|
7959 * returns: - E1000_ERR_EEPROM if fail to access EEPROM. |
|
7960 * E1000_SUCCESS at any other case. |
|
7961 * |
|
7962 ***************************************************************************/ |
|
7963 static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) |
|
7964 { |
|
7965 s32 timeout; |
|
7966 u32 swsm; |
|
7967 |
|
7968 DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); |
|
7969 |
|
7970 if (!hw->eeprom_semaphore_present) |
|
7971 return E1000_SUCCESS; |
|
7972 |
|
7973 if (hw->mac_type == e1000_80003es2lan) { |
|
7974 /* Get the SW semaphore. */ |
|
7975 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) |
|
7976 return -E1000_ERR_EEPROM; |
|
7977 } |
|
7978 |
|
7979 /* Get the FW semaphore. */ |
|
7980 timeout = hw->eeprom.word_size + 1; |
|
7981 while (timeout) { |
|
7982 swsm = er32(SWSM); |
|
7983 swsm |= E1000_SWSM_SWESMBI; |
|
7984 ew32(SWSM, swsm); |
|
7985 /* if we managed to set the bit we got the semaphore. */ |
|
7986 swsm = er32(SWSM); |
|
7987 if (swsm & E1000_SWSM_SWESMBI) |
|
7988 break; |
|
7989 |
|
7990 udelay(50); |
|
7991 timeout--; |
|
7992 } |
|
7993 |
|
7994 if (!timeout) { |
|
7995 /* Release semaphores */ |
|
7996 e1000_put_hw_eeprom_semaphore(hw); |
|
7997 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); |
|
7998 return -E1000_ERR_EEPROM; |
|
7999 } |
|
8000 |
|
8001 return E1000_SUCCESS; |
|
8002 } |
|
8003 |
|
8004 /*************************************************************************** |
|
8005 * This function clears HW semaphore bits. |
|
8006 * |
|
8007 * hw: Struct containing variables accessed by shared code |
|
8008 * |
|
8009 * returns: - None. |
|
8010 * |
|
8011 ***************************************************************************/ |
|
8012 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) |
|
8013 { |
|
8014 u32 swsm; |
|
8015 |
|
8016 DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); |
|
8017 |
|
8018 if (!hw->eeprom_semaphore_present) |
|
8019 return; |
|
8020 |
|
8021 swsm = er32(SWSM); |
|
8022 if (hw->mac_type == e1000_80003es2lan) { |
|
8023 /* Release both semaphores. */ |
|
8024 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); |
|
8025 } else |
|
8026 swsm &= ~(E1000_SWSM_SWESMBI); |
|
8027 ew32(SWSM, swsm); |
|
8028 } |
|
8029 |
|
8030 /*************************************************************************** |
|
8031 * |
|
8032 * Obtaining software semaphore bit (SMBI) before resetting PHY. |
|
8033 * |
|
8034 * hw: Struct containing variables accessed by shared code |
|
8035 * |
|
8036 * returns: - E1000_ERR_RESET if fail to obtain semaphore. |
|
8037 * E1000_SUCCESS at any other case. |
|
8038 * |
|
8039 ***************************************************************************/ |
|
8040 static s32 e1000_get_software_semaphore(struct e1000_hw *hw) |
|
8041 { |
|
8042 s32 timeout = hw->eeprom.word_size + 1; |
|
8043 u32 swsm; |
|
8044 |
|
8045 DEBUGFUNC("e1000_get_software_semaphore"); |
|
8046 |
|
8047 if (hw->mac_type != e1000_80003es2lan) { |
|
8048 return E1000_SUCCESS; |
|
8049 } |
|
8050 |
|
8051 while (timeout) { |
|
8052 swsm = er32(SWSM); |
|
8053 /* If SMBI bit cleared, it is now set and we hold the semaphore */ |
|
8054 if (!(swsm & E1000_SWSM_SMBI)) |
|
8055 break; |
|
8056 mdelay(1); |
|
8057 timeout--; |
|
8058 } |
|
8059 |
|
8060 if (!timeout) { |
|
8061 DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); |
|
8062 return -E1000_ERR_RESET; |
|
8063 } |
|
8064 |
|
8065 return E1000_SUCCESS; |
|
8066 } |
|
8067 |
|
8068 /*************************************************************************** |
|
8069 * |
|
8070 * Release semaphore bit (SMBI). |
|
8071 * |
|
8072 * hw: Struct containing variables accessed by shared code |
|
8073 * |
|
8074 ***************************************************************************/ |
|
8075 static void e1000_release_software_semaphore(struct e1000_hw *hw) |
|
8076 { |
|
8077 u32 swsm; |
|
8078 |
|
8079 DEBUGFUNC("e1000_release_software_semaphore"); |
|
8080 |
|
8081 if (hw->mac_type != e1000_80003es2lan) { |
|
8082 return; |
|
8083 } |
|
8084 |
|
8085 swsm = er32(SWSM); |
|
8086 /* Release the SW semaphores.*/ |
|
8087 swsm &= ~E1000_SWSM_SMBI; |
|
8088 ew32(SWSM, swsm); |
|
8089 } |
|
8090 |
|
8091 /****************************************************************************** |
|
8092 * Checks if PHY reset is blocked due to SOL/IDER session, for example. |
|
8093 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to |
|
8094 * the caller to figure out how to deal with it. |
|
8095 * |
|
8096 * hw - Struct containing variables accessed by shared code |
|
8097 * |
|
8098 * returns: - E1000_BLK_PHY_RESET |
|
8099 * E1000_SUCCESS |
|
8100 * |
|
8101 *****************************************************************************/ |
|
8102 s32 e1000_check_phy_reset_block(struct e1000_hw *hw) |
|
8103 { |
|
8104 u32 manc = 0; |
|
8105 u32 fwsm = 0; |
|
8106 |
|
8107 if (hw->mac_type == e1000_ich8lan) { |
|
8108 fwsm = er32(FWSM); |
|
8109 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS |
|
8110 : E1000_BLK_PHY_RESET; |
|
8111 } |
|
8112 |
|
8113 if (hw->mac_type > e1000_82547_rev_2) |
|
8114 manc = er32(MANC); |
|
8115 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? |
|
8116 E1000_BLK_PHY_RESET : E1000_SUCCESS; |
|
8117 } |
|
8118 |
|
8119 static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw) |
|
8120 { |
|
8121 u32 fwsm; |
|
8122 |
|
8123 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC |
|
8124 * may not be provided a DMA clock when no manageability features are |
|
8125 * enabled. We do not want to perform any reads/writes to these registers |
|
8126 * if this is the case. We read FWSM to determine the manageability mode. |
|
8127 */ |
|
8128 switch (hw->mac_type) { |
|
8129 case e1000_82571: |
|
8130 case e1000_82572: |
|
8131 case e1000_82573: |
|
8132 case e1000_80003es2lan: |
|
8133 fwsm = er32(FWSM); |
|
8134 if ((fwsm & E1000_FWSM_MODE_MASK) != 0) |
|
8135 return true; |
|
8136 break; |
|
8137 case e1000_ich8lan: |
|
8138 return true; |
|
8139 default: |
|
8140 break; |
|
8141 } |
|
8142 return false; |
|
8143 } |
|
8144 |
|
8145 |
|
8146 /****************************************************************************** |
|
8147 * Configure PCI-Ex no-snoop |
|
8148 * |
|
8149 * hw - Struct containing variables accessed by shared code. |
|
8150 * no_snoop - Bitmap of no-snoop events. |
|
8151 * |
|
8152 * returns: E1000_SUCCESS |
|
8153 * |
|
8154 *****************************************************************************/ |
|
8155 static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop) |
|
8156 { |
|
8157 u32 gcr_reg = 0; |
|
8158 |
|
8159 DEBUGFUNC("e1000_set_pci_ex_no_snoop"); |
|
8160 |
|
8161 if (hw->bus_type == e1000_bus_type_unknown) |
|
8162 e1000_get_bus_info(hw); |
|
8163 |
|
8164 if (hw->bus_type != e1000_bus_type_pci_express) |
|
8165 return E1000_SUCCESS; |
|
8166 |
|
8167 if (no_snoop) { |
|
8168 gcr_reg = er32(GCR); |
|
8169 gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); |
|
8170 gcr_reg |= no_snoop; |
|
8171 ew32(GCR, gcr_reg); |
|
8172 } |
|
8173 if (hw->mac_type == e1000_ich8lan) { |
|
8174 u32 ctrl_ext; |
|
8175 |
|
8176 ew32(GCR, PCI_EX_82566_SNOOP_ALL); |
|
8177 |
|
8178 ctrl_ext = er32(CTRL_EXT); |
|
8179 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
|
8180 ew32(CTRL_EXT, ctrl_ext); |
|
8181 } |
|
8182 |
|
8183 return E1000_SUCCESS; |
|
8184 } |
|
8185 |
|
8186 /*************************************************************************** |
|
8187 * |
|
8188 * Get software semaphore FLAG bit (SWFLAG). |
|
8189 * SWFLAG is used to synchronize the access to all shared resource between |
|
8190 * SW, FW and HW. |
|
8191 * |
|
8192 * hw: Struct containing variables accessed by shared code |
|
8193 * |
|
8194 ***************************************************************************/ |
|
8195 static s32 e1000_get_software_flag(struct e1000_hw *hw) |
|
8196 { |
|
8197 s32 timeout = PHY_CFG_TIMEOUT; |
|
8198 u32 extcnf_ctrl; |
|
8199 |
|
8200 DEBUGFUNC("e1000_get_software_flag"); |
|
8201 |
|
8202 if (hw->mac_type == e1000_ich8lan) { |
|
8203 while (timeout) { |
|
8204 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
8205 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; |
|
8206 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
8207 |
|
8208 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
8209 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) |
|
8210 break; |
|
8211 mdelay(1); |
|
8212 timeout--; |
|
8213 } |
|
8214 |
|
8215 if (!timeout) { |
|
8216 DEBUGOUT("FW or HW locks the resource too long.\n"); |
|
8217 return -E1000_ERR_CONFIG; |
|
8218 } |
|
8219 } |
|
8220 |
|
8221 return E1000_SUCCESS; |
|
8222 } |
|
8223 |
|
8224 /*************************************************************************** |
|
8225 * |
|
8226 * Release software semaphore FLAG bit (SWFLAG). |
|
8227 * SWFLAG is used to synchronize the access to all shared resource between |
|
8228 * SW, FW and HW. |
|
8229 * |
|
8230 * hw: Struct containing variables accessed by shared code |
|
8231 * |
|
8232 ***************************************************************************/ |
|
8233 static void e1000_release_software_flag(struct e1000_hw *hw) |
|
8234 { |
|
8235 u32 extcnf_ctrl; |
|
8236 |
|
8237 DEBUGFUNC("e1000_release_software_flag"); |
|
8238 |
|
8239 if (hw->mac_type == e1000_ich8lan) { |
|
8240 extcnf_ctrl= er32(EXTCNF_CTRL); |
|
8241 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
|
8242 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
8243 } |
|
8244 |
|
8245 return; |
|
8246 } |
|
8247 |
|
8248 /****************************************************************************** |
|
8249 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access |
|
8250 * register. |
|
8251 * |
|
8252 * hw - Struct containing variables accessed by shared code |
|
8253 * offset - offset of word in the EEPROM to read |
|
8254 * data - word read from the EEPROM |
|
8255 * words - number of words to read |
|
8256 *****************************************************************************/ |
|
8257 static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, |
|
8258 u16 *data) |
|
8259 { |
|
8260 s32 error = E1000_SUCCESS; |
|
8261 u32 flash_bank = 0; |
|
8262 u32 act_offset = 0; |
|
8263 u32 bank_offset = 0; |
|
8264 u16 word = 0; |
|
8265 u16 i = 0; |
|
8266 |
|
8267 /* We need to know which is the valid flash bank. In the event |
|
8268 * that we didn't allocate eeprom_shadow_ram, we may not be |
|
8269 * managing flash_bank. So it cannot be trusted and needs |
|
8270 * to be updated with each read. |
|
8271 */ |
|
8272 /* Value of bit 22 corresponds to the flash bank we're on. */ |
|
8273 flash_bank = (er32(EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; |
|
8274 |
|
8275 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ |
|
8276 bank_offset = flash_bank * (hw->flash_bank_size * 2); |
|
8277 |
|
8278 error = e1000_get_software_flag(hw); |
|
8279 if (error != E1000_SUCCESS) |
|
8280 return error; |
|
8281 |
|
8282 for (i = 0; i < words; i++) { |
|
8283 if (hw->eeprom_shadow_ram != NULL && |
|
8284 hw->eeprom_shadow_ram[offset+i].modified) { |
|
8285 data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; |
|
8286 } else { |
|
8287 /* The NVM part needs a byte offset, hence * 2 */ |
|
8288 act_offset = bank_offset + ((offset + i) * 2); |
|
8289 error = e1000_read_ich8_word(hw, act_offset, &word); |
|
8290 if (error != E1000_SUCCESS) |
|
8291 break; |
|
8292 data[i] = word; |
|
8293 } |
|
8294 } |
|
8295 |
|
8296 e1000_release_software_flag(hw); |
|
8297 |
|
8298 return error; |
|
8299 } |
|
8300 |
|
8301 /****************************************************************************** |
|
8302 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access |
|
8303 * register. Actually, writes are written to the shadow ram cache in the hw |
|
8304 * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to |
|
8305 * the NVM, which occurs when the NVM checksum is updated. |
|
8306 * |
|
8307 * hw - Struct containing variables accessed by shared code |
|
8308 * offset - offset of word in the EEPROM to write |
|
8309 * words - number of words to write |
|
8310 * data - words to write to the EEPROM |
|
8311 *****************************************************************************/ |
|
8312 static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, |
|
8313 u16 *data) |
|
8314 { |
|
8315 u32 i = 0; |
|
8316 s32 error = E1000_SUCCESS; |
|
8317 |
|
8318 error = e1000_get_software_flag(hw); |
|
8319 if (error != E1000_SUCCESS) |
|
8320 return error; |
|
8321 |
|
8322 /* A driver can write to the NVM only if it has eeprom_shadow_ram |
|
8323 * allocated. Subsequent reads to the modified words are read from |
|
8324 * this cached structure as well. Writes will only go into this |
|
8325 * cached structure unless it's followed by a call to |
|
8326 * e1000_update_eeprom_checksum() where it will commit the changes |
|
8327 * and clear the "modified" field. |
|
8328 */ |
|
8329 if (hw->eeprom_shadow_ram != NULL) { |
|
8330 for (i = 0; i < words; i++) { |
|
8331 if ((offset + i) < E1000_SHADOW_RAM_WORDS) { |
|
8332 hw->eeprom_shadow_ram[offset+i].modified = true; |
|
8333 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; |
|
8334 } else { |
|
8335 error = -E1000_ERR_EEPROM; |
|
8336 break; |
|
8337 } |
|
8338 } |
|
8339 } else { |
|
8340 /* Drivers have the option to not allocate eeprom_shadow_ram as long |
|
8341 * as they don't perform any NVM writes. An attempt in doing so |
|
8342 * will result in this error. |
|
8343 */ |
|
8344 error = -E1000_ERR_EEPROM; |
|
8345 } |
|
8346 |
|
8347 e1000_release_software_flag(hw); |
|
8348 |
|
8349 return error; |
|
8350 } |
|
8351 |
|
8352 /****************************************************************************** |
|
8353 * This function does initial flash setup so that a new read/write/erase cycle |
|
8354 * can be started. |
|
8355 * |
|
8356 * hw - The pointer to the hw structure |
|
8357 ****************************************************************************/ |
|
8358 static s32 e1000_ich8_cycle_init(struct e1000_hw *hw) |
|
8359 { |
|
8360 union ich8_hws_flash_status hsfsts; |
|
8361 s32 error = E1000_ERR_EEPROM; |
|
8362 s32 i = 0; |
|
8363 |
|
8364 DEBUGFUNC("e1000_ich8_cycle_init"); |
|
8365 |
|
8366 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
|
8367 |
|
8368 /* May be check the Flash Des Valid bit in Hw status */ |
|
8369 if (hsfsts.hsf_status.fldesvalid == 0) { |
|
8370 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used."); |
|
8371 return error; |
|
8372 } |
|
8373 |
|
8374 /* Clear FCERR in Hw status by writing 1 */ |
|
8375 /* Clear DAEL in Hw status by writing a 1 */ |
|
8376 hsfsts.hsf_status.flcerr = 1; |
|
8377 hsfsts.hsf_status.dael = 1; |
|
8378 |
|
8379 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); |
|
8380 |
|
8381 /* Either we should have a hardware SPI cycle in progress bit to check |
|
8382 * against, in order to start a new cycle or FDONE bit should be changed |
|
8383 * in the hardware so that it is 1 after harware reset, which can then be |
|
8384 * used as an indication whether a cycle is in progress or has been |
|
8385 * completed .. we should also have some software semaphore mechanism to |
|
8386 * guard FDONE or the cycle in progress bit so that two threads access to |
|
8387 * those bits can be sequentiallized or a way so that 2 threads dont |
|
8388 * start the cycle at the same time */ |
|
8389 |
|
8390 if (hsfsts.hsf_status.flcinprog == 0) { |
|
8391 /* There is no cycle running at present, so we can start a cycle */ |
|
8392 /* Begin by setting Flash Cycle Done. */ |
|
8393 hsfsts.hsf_status.flcdone = 1; |
|
8394 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); |
|
8395 error = E1000_SUCCESS; |
|
8396 } else { |
|
8397 /* otherwise poll for sometime so the current cycle has a chance |
|
8398 * to end before giving up. */ |
|
8399 for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) { |
|
8400 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
|
8401 if (hsfsts.hsf_status.flcinprog == 0) { |
|
8402 error = E1000_SUCCESS; |
|
8403 break; |
|
8404 } |
|
8405 udelay(1); |
|
8406 } |
|
8407 if (error == E1000_SUCCESS) { |
|
8408 /* Successful in waiting for previous cycle to timeout, |
|
8409 * now set the Flash Cycle Done. */ |
|
8410 hsfsts.hsf_status.flcdone = 1; |
|
8411 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); |
|
8412 } else { |
|
8413 DEBUGOUT("Flash controller busy, cannot get access"); |
|
8414 } |
|
8415 } |
|
8416 return error; |
|
8417 } |
|
8418 |
|
8419 /****************************************************************************** |
|
8420 * This function starts a flash cycle and waits for its completion |
|
8421 * |
|
8422 * hw - The pointer to the hw structure |
|
8423 ****************************************************************************/ |
|
8424 static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout) |
|
8425 { |
|
8426 union ich8_hws_flash_ctrl hsflctl; |
|
8427 union ich8_hws_flash_status hsfsts; |
|
8428 s32 error = E1000_ERR_EEPROM; |
|
8429 u32 i = 0; |
|
8430 |
|
8431 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ |
|
8432 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); |
|
8433 hsflctl.hsf_ctrl.flcgo = 1; |
|
8434 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); |
|
8435 |
|
8436 /* wait till FDONE bit is set to 1 */ |
|
8437 do { |
|
8438 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
|
8439 if (hsfsts.hsf_status.flcdone == 1) |
|
8440 break; |
|
8441 udelay(1); |
|
8442 i++; |
|
8443 } while (i < timeout); |
|
8444 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { |
|
8445 error = E1000_SUCCESS; |
|
8446 } |
|
8447 return error; |
|
8448 } |
|
8449 |
|
8450 /****************************************************************************** |
|
8451 * Reads a byte or word from the NVM using the ICH8 flash access registers. |
|
8452 * |
|
8453 * hw - The pointer to the hw structure |
|
8454 * index - The index of the byte or word to read. |
|
8455 * size - Size of data to read, 1=byte 2=word |
|
8456 * data - Pointer to the word to store the value read. |
|
8457 *****************************************************************************/ |
|
8458 static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size, |
|
8459 u16 *data) |
|
8460 { |
|
8461 union ich8_hws_flash_status hsfsts; |
|
8462 union ich8_hws_flash_ctrl hsflctl; |
|
8463 u32 flash_linear_address; |
|
8464 u32 flash_data = 0; |
|
8465 s32 error = -E1000_ERR_EEPROM; |
|
8466 s32 count = 0; |
|
8467 |
|
8468 DEBUGFUNC("e1000_read_ich8_data"); |
|
8469 |
|
8470 if (size < 1 || size > 2 || data == NULL || |
|
8471 index > ICH_FLASH_LINEAR_ADDR_MASK) |
|
8472 return error; |
|
8473 |
|
8474 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + |
|
8475 hw->flash_base_addr; |
|
8476 |
|
8477 do { |
|
8478 udelay(1); |
|
8479 /* Steps */ |
|
8480 error = e1000_ich8_cycle_init(hw); |
|
8481 if (error != E1000_SUCCESS) |
|
8482 break; |
|
8483 |
|
8484 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); |
|
8485 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
|
8486 hsflctl.hsf_ctrl.fldbcount = size - 1; |
|
8487 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; |
|
8488 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); |
|
8489 |
|
8490 /* Write the last 24 bits of index into Flash Linear address field in |
|
8491 * Flash Address */ |
|
8492 /* TODO: TBD maybe check the index against the size of flash */ |
|
8493 |
|
8494 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); |
|
8495 |
|
8496 error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); |
|
8497 |
|
8498 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole |
|
8499 * sequence a few more times, else read in (shift in) the Flash Data0, |
|
8500 * the order is least significant byte first msb to lsb */ |
|
8501 if (error == E1000_SUCCESS) { |
|
8502 flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0); |
|
8503 if (size == 1) { |
|
8504 *data = (u8)(flash_data & 0x000000FF); |
|
8505 } else if (size == 2) { |
|
8506 *data = (u16)(flash_data & 0x0000FFFF); |
|
8507 } |
|
8508 break; |
|
8509 } else { |
|
8510 /* If we've gotten here, then things are probably completely hosed, |
|
8511 * but if the error condition is detected, it won't hurt to give |
|
8512 * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. |
|
8513 */ |
|
8514 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
|
8515 if (hsfsts.hsf_status.flcerr == 1) { |
|
8516 /* Repeat for some time before giving up. */ |
|
8517 continue; |
|
8518 } else if (hsfsts.hsf_status.flcdone == 0) { |
|
8519 DEBUGOUT("Timeout error - flash cycle did not complete."); |
|
8520 break; |
|
8521 } |
|
8522 } |
|
8523 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
|
8524 |
|
8525 return error; |
|
8526 } |
|
8527 |
|
8528 /****************************************************************************** |
|
8529 * Writes One /two bytes to the NVM using the ICH8 flash access registers. |
|
8530 * |
|
8531 * hw - The pointer to the hw structure |
|
8532 * index - The index of the byte/word to read. |
|
8533 * size - Size of data to read, 1=byte 2=word |
|
8534 * data - The byte(s) to write to the NVM. |
|
8535 *****************************************************************************/ |
|
8536 static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size, |
|
8537 u16 data) |
|
8538 { |
|
8539 union ich8_hws_flash_status hsfsts; |
|
8540 union ich8_hws_flash_ctrl hsflctl; |
|
8541 u32 flash_linear_address; |
|
8542 u32 flash_data = 0; |
|
8543 s32 error = -E1000_ERR_EEPROM; |
|
8544 s32 count = 0; |
|
8545 |
|
8546 DEBUGFUNC("e1000_write_ich8_data"); |
|
8547 |
|
8548 if (size < 1 || size > 2 || data > size * 0xff || |
|
8549 index > ICH_FLASH_LINEAR_ADDR_MASK) |
|
8550 return error; |
|
8551 |
|
8552 flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + |
|
8553 hw->flash_base_addr; |
|
8554 |
|
8555 do { |
|
8556 udelay(1); |
|
8557 /* Steps */ |
|
8558 error = e1000_ich8_cycle_init(hw); |
|
8559 if (error != E1000_SUCCESS) |
|
8560 break; |
|
8561 |
|
8562 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); |
|
8563 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
|
8564 hsflctl.hsf_ctrl.fldbcount = size -1; |
|
8565 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; |
|
8566 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); |
|
8567 |
|
8568 /* Write the last 24 bits of index into Flash Linear address field in |
|
8569 * Flash Address */ |
|
8570 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); |
|
8571 |
|
8572 if (size == 1) |
|
8573 flash_data = (u32)data & 0x00FF; |
|
8574 else |
|
8575 flash_data = (u32)data; |
|
8576 |
|
8577 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); |
|
8578 |
|
8579 /* check if FCERR is set to 1 , if set to 1, clear it and try the whole |
|
8580 * sequence a few more times else done */ |
|
8581 error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); |
|
8582 if (error == E1000_SUCCESS) { |
|
8583 break; |
|
8584 } else { |
|
8585 /* If we're here, then things are most likely completely hosed, |
|
8586 * but if the error condition is detected, it won't hurt to give |
|
8587 * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. |
|
8588 */ |
|
8589 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
|
8590 if (hsfsts.hsf_status.flcerr == 1) { |
|
8591 /* Repeat for some time before giving up. */ |
|
8592 continue; |
|
8593 } else if (hsfsts.hsf_status.flcdone == 0) { |
|
8594 DEBUGOUT("Timeout error - flash cycle did not complete."); |
|
8595 break; |
|
8596 } |
|
8597 } |
|
8598 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
|
8599 |
|
8600 return error; |
|
8601 } |
|
8602 |
|
8603 /****************************************************************************** |
|
8604 * Reads a single byte from the NVM using the ICH8 flash access registers. |
|
8605 * |
|
8606 * hw - pointer to e1000_hw structure |
|
8607 * index - The index of the byte to read. |
|
8608 * data - Pointer to a byte to store the value read. |
|
8609 *****************************************************************************/ |
|
8610 static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data) |
|
8611 { |
|
8612 s32 status = E1000_SUCCESS; |
|
8613 u16 word = 0; |
|
8614 |
|
8615 status = e1000_read_ich8_data(hw, index, 1, &word); |
|
8616 if (status == E1000_SUCCESS) { |
|
8617 *data = (u8)word; |
|
8618 } |
|
8619 |
|
8620 return status; |
|
8621 } |
|
8622 |
|
8623 /****************************************************************************** |
|
8624 * Writes a single byte to the NVM using the ICH8 flash access registers. |
|
8625 * Performs verification by reading back the value and then going through |
|
8626 * a retry algorithm before giving up. |
|
8627 * |
|
8628 * hw - pointer to e1000_hw structure |
|
8629 * index - The index of the byte to write. |
|
8630 * byte - The byte to write to the NVM. |
|
8631 *****************************************************************************/ |
|
8632 static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte) |
|
8633 { |
|
8634 s32 error = E1000_SUCCESS; |
|
8635 s32 program_retries = 0; |
|
8636 |
|
8637 DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index); |
|
8638 |
|
8639 error = e1000_write_ich8_byte(hw, index, byte); |
|
8640 |
|
8641 if (error != E1000_SUCCESS) { |
|
8642 for (program_retries = 0; program_retries < 100; program_retries++) { |
|
8643 DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index); |
|
8644 error = e1000_write_ich8_byte(hw, index, byte); |
|
8645 udelay(100); |
|
8646 if (error == E1000_SUCCESS) |
|
8647 break; |
|
8648 } |
|
8649 } |
|
8650 |
|
8651 if (program_retries == 100) |
|
8652 error = E1000_ERR_EEPROM; |
|
8653 |
|
8654 return error; |
|
8655 } |
|
8656 |
|
8657 /****************************************************************************** |
|
8658 * Writes a single byte to the NVM using the ICH8 flash access registers. |
|
8659 * |
|
8660 * hw - pointer to e1000_hw structure |
|
8661 * index - The index of the byte to read. |
|
8662 * data - The byte to write to the NVM. |
|
8663 *****************************************************************************/ |
|
8664 static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 data) |
|
8665 { |
|
8666 s32 status = E1000_SUCCESS; |
|
8667 u16 word = (u16)data; |
|
8668 |
|
8669 status = e1000_write_ich8_data(hw, index, 1, word); |
|
8670 |
|
8671 return status; |
|
8672 } |
|
8673 |
|
8674 /****************************************************************************** |
|
8675 * Reads a word from the NVM using the ICH8 flash access registers. |
|
8676 * |
|
8677 * hw - pointer to e1000_hw structure |
|
8678 * index - The starting byte index of the word to read. |
|
8679 * data - Pointer to a word to store the value read. |
|
8680 *****************************************************************************/ |
|
8681 static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data) |
|
8682 { |
|
8683 s32 status = E1000_SUCCESS; |
|
8684 status = e1000_read_ich8_data(hw, index, 2, data); |
|
8685 return status; |
|
8686 } |
|
8687 |
|
8688 /****************************************************************************** |
|
8689 * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0 |
|
8690 * based. |
|
8691 * |
|
8692 * hw - pointer to e1000_hw structure |
|
8693 * bank - 0 for first bank, 1 for second bank |
|
8694 * |
|
8695 * Note that this function may actually erase as much as 8 or 64 KBytes. The |
|
8696 * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the |
|
8697 * bank size may be 4, 8 or 64 KBytes |
|
8698 *****************************************************************************/ |
|
8699 static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank) |
|
8700 { |
|
8701 union ich8_hws_flash_status hsfsts; |
|
8702 union ich8_hws_flash_ctrl hsflctl; |
|
8703 u32 flash_linear_address; |
|
8704 s32 count = 0; |
|
8705 s32 error = E1000_ERR_EEPROM; |
|
8706 s32 iteration; |
|
8707 s32 sub_sector_size = 0; |
|
8708 s32 bank_size; |
|
8709 s32 j = 0; |
|
8710 s32 error_flag = 0; |
|
8711 |
|
8712 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
|
8713 |
|
8714 /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ |
|
8715 /* 00: The Hw sector is 256 bytes, hence we need to erase 16 |
|
8716 * consecutive sectors. The start index for the nth Hw sector can be |
|
8717 * calculated as bank * 4096 + n * 256 |
|
8718 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. |
|
8719 * The start index for the nth Hw sector can be calculated |
|
8720 * as bank * 4096 |
|
8721 * 10: The HW sector is 8K bytes |
|
8722 * 11: The Hw sector size is 64K bytes */ |
|
8723 if (hsfsts.hsf_status.berasesz == 0x0) { |
|
8724 /* Hw sector size 256 */ |
|
8725 sub_sector_size = ICH_FLASH_SEG_SIZE_256; |
|
8726 bank_size = ICH_FLASH_SECTOR_SIZE; |
|
8727 iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256; |
|
8728 } else if (hsfsts.hsf_status.berasesz == 0x1) { |
|
8729 bank_size = ICH_FLASH_SEG_SIZE_4K; |
|
8730 iteration = 1; |
|
8731 } else if (hsfsts.hsf_status.berasesz == 0x3) { |
|
8732 bank_size = ICH_FLASH_SEG_SIZE_64K; |
|
8733 iteration = 1; |
|
8734 } else { |
|
8735 return error; |
|
8736 } |
|
8737 |
|
8738 for (j = 0; j < iteration ; j++) { |
|
8739 do { |
|
8740 count++; |
|
8741 /* Steps */ |
|
8742 error = e1000_ich8_cycle_init(hw); |
|
8743 if (error != E1000_SUCCESS) { |
|
8744 error_flag = 1; |
|
8745 break; |
|
8746 } |
|
8747 |
|
8748 /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash |
|
8749 * Control */ |
|
8750 hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); |
|
8751 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; |
|
8752 E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); |
|
8753 |
|
8754 /* Write the last 24 bits of an index within the block into Flash |
|
8755 * Linear address field in Flash Address. This probably needs to |
|
8756 * be calculated here based off the on-chip erase sector size and |
|
8757 * the software bank size (4, 8 or 64 KBytes) */ |
|
8758 flash_linear_address = bank * bank_size + j * sub_sector_size; |
|
8759 flash_linear_address += hw->flash_base_addr; |
|
8760 flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK; |
|
8761 |
|
8762 E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); |
|
8763 |
|
8764 error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT); |
|
8765 /* Check if FCERR is set to 1. If 1, clear it and try the whole |
|
8766 * sequence a few more times else Done */ |
|
8767 if (error == E1000_SUCCESS) { |
|
8768 break; |
|
8769 } else { |
|
8770 hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); |
|
8771 if (hsfsts.hsf_status.flcerr == 1) { |
|
8772 /* repeat for some time before giving up */ |
|
8773 continue; |
|
8774 } else if (hsfsts.hsf_status.flcdone == 0) { |
|
8775 error_flag = 1; |
|
8776 break; |
|
8777 } |
|
8778 } |
|
8779 } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); |
|
8780 if (error_flag == 1) |
|
8781 break; |
|
8782 } |
|
8783 if (error_flag != 1) |
|
8784 error = E1000_SUCCESS; |
|
8785 return error; |
|
8786 } |
|
8787 |
|
8788 static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, |
|
8789 u32 cnf_base_addr, |
|
8790 u32 cnf_size) |
|
8791 { |
|
8792 u32 ret_val = E1000_SUCCESS; |
|
8793 u16 word_addr, reg_data, reg_addr; |
|
8794 u16 i; |
|
8795 |
|
8796 /* cnf_base_addr is in DWORD */ |
|
8797 word_addr = (u16)(cnf_base_addr << 1); |
|
8798 |
|
8799 /* cnf_size is returned in size of dwords */ |
|
8800 for (i = 0; i < cnf_size; i++) { |
|
8801 ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data); |
|
8802 if (ret_val) |
|
8803 return ret_val; |
|
8804 |
|
8805 ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); |
|
8806 if (ret_val) |
|
8807 return ret_val; |
|
8808 |
|
8809 ret_val = e1000_get_software_flag(hw); |
|
8810 if (ret_val != E1000_SUCCESS) |
|
8811 return ret_val; |
|
8812 |
|
8813 ret_val = e1000_write_phy_reg_ex(hw, (u32)reg_addr, reg_data); |
|
8814 |
|
8815 e1000_release_software_flag(hw); |
|
8816 } |
|
8817 |
|
8818 return ret_val; |
|
8819 } |
|
8820 |
|
8821 |
|
8822 /****************************************************************************** |
|
8823 * This function initializes the PHY from the NVM on ICH8 platforms. This |
|
8824 * is needed due to an issue where the NVM configuration is not properly |
|
8825 * autoloaded after power transitions. Therefore, after each PHY reset, we |
|
8826 * will load the configuration data out of the NVM manually. |
|
8827 * |
|
8828 * hw: Struct containing variables accessed by shared code |
|
8829 *****************************************************************************/ |
|
8830 static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw) |
|
8831 { |
|
8832 u32 reg_data, cnf_base_addr, cnf_size, ret_val, loop; |
|
8833 |
|
8834 if (hw->phy_type != e1000_phy_igp_3) |
|
8835 return E1000_SUCCESS; |
|
8836 |
|
8837 /* Check if SW needs configure the PHY */ |
|
8838 reg_data = er32(FEXTNVM); |
|
8839 if (!(reg_data & FEXTNVM_SW_CONFIG)) |
|
8840 return E1000_SUCCESS; |
|
8841 |
|
8842 /* Wait for basic configuration completes before proceeding*/ |
|
8843 loop = 0; |
|
8844 do { |
|
8845 reg_data = er32(STATUS) & E1000_STATUS_LAN_INIT_DONE; |
|
8846 udelay(100); |
|
8847 loop++; |
|
8848 } while ((!reg_data) && (loop < 50)); |
|
8849 |
|
8850 /* Clear the Init Done bit for the next init event */ |
|
8851 reg_data = er32(STATUS); |
|
8852 reg_data &= ~E1000_STATUS_LAN_INIT_DONE; |
|
8853 ew32(STATUS, reg_data); |
|
8854 |
|
8855 /* Make sure HW does not configure LCD from PHY extended configuration |
|
8856 before SW configuration */ |
|
8857 reg_data = er32(EXTCNF_CTRL); |
|
8858 if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { |
|
8859 reg_data = er32(EXTCNF_SIZE); |
|
8860 cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; |
|
8861 cnf_size >>= 16; |
|
8862 if (cnf_size) { |
|
8863 reg_data = er32(EXTCNF_CTRL); |
|
8864 cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; |
|
8865 /* cnf_base_addr is in DWORD */ |
|
8866 cnf_base_addr >>= 16; |
|
8867 |
|
8868 /* Configure LCD from extended configuration region. */ |
|
8869 ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr, |
|
8870 cnf_size); |
|
8871 if (ret_val) |
|
8872 return ret_val; |
|
8873 } |
|
8874 } |
|
8875 |
|
8876 return E1000_SUCCESS; |
|
8877 } |
|
8878 |