|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* ethtool support for e1000 */ |
|
30 |
|
31 #include "e1000.h" |
|
32 #include <asm/uaccess.h> |
|
33 |
|
34 struct e1000_stats { |
|
35 char stat_string[ETH_GSTRING_LEN]; |
|
36 int sizeof_stat; |
|
37 int stat_offset; |
|
38 }; |
|
39 |
|
40 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \ |
|
41 offsetof(struct e1000_adapter, m) |
|
42 static const struct e1000_stats e1000_gstrings_stats[] = { |
|
43 { "rx_packets", E1000_STAT(stats.gprc) }, |
|
44 { "tx_packets", E1000_STAT(stats.gptc) }, |
|
45 { "rx_bytes", E1000_STAT(stats.gorcl) }, |
|
46 { "tx_bytes", E1000_STAT(stats.gotcl) }, |
|
47 { "rx_broadcast", E1000_STAT(stats.bprc) }, |
|
48 { "tx_broadcast", E1000_STAT(stats.bptc) }, |
|
49 { "rx_multicast", E1000_STAT(stats.mprc) }, |
|
50 { "tx_multicast", E1000_STAT(stats.mptc) }, |
|
51 { "rx_errors", E1000_STAT(stats.rxerrc) }, |
|
52 { "tx_errors", E1000_STAT(stats.txerrc) }, |
|
53 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, |
|
54 { "multicast", E1000_STAT(stats.mprc) }, |
|
55 { "collisions", E1000_STAT(stats.colc) }, |
|
56 { "rx_length_errors", E1000_STAT(stats.rlerrc) }, |
|
57 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, |
|
58 { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, |
|
59 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, |
|
60 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, |
|
61 { "rx_missed_errors", E1000_STAT(stats.mpc) }, |
|
62 { "tx_aborted_errors", E1000_STAT(stats.ecol) }, |
|
63 { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, |
|
64 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, |
|
65 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, |
|
66 { "tx_window_errors", E1000_STAT(stats.latecol) }, |
|
67 { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, |
|
68 { "tx_deferred_ok", E1000_STAT(stats.dc) }, |
|
69 { "tx_single_coll_ok", E1000_STAT(stats.scc) }, |
|
70 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, |
|
71 { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, |
|
72 { "tx_restart_queue", E1000_STAT(restart_queue) }, |
|
73 { "rx_long_length_errors", E1000_STAT(stats.roc) }, |
|
74 { "rx_short_length_errors", E1000_STAT(stats.ruc) }, |
|
75 { "rx_align_errors", E1000_STAT(stats.algnerrc) }, |
|
76 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, |
|
77 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, |
|
78 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, |
|
79 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, |
|
80 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, |
|
81 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, |
|
82 { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, |
|
83 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, |
|
84 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, |
|
85 { "rx_header_split", E1000_STAT(rx_hdr_split) }, |
|
86 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, |
|
87 { "tx_smbus", E1000_STAT(stats.mgptc) }, |
|
88 { "rx_smbus", E1000_STAT(stats.mgprc) }, |
|
89 { "dropped_smbus", E1000_STAT(stats.mgpdc) }, |
|
90 }; |
|
91 |
|
92 #define E1000_QUEUE_STATS_LEN 0 |
|
93 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) |
|
94 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) |
|
95 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { |
|
96 "Register test (offline)", "Eeprom test (offline)", |
|
97 "Interrupt test (offline)", "Loopback test (offline)", |
|
98 "Link test (on/offline)" |
|
99 }; |
|
100 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) |
|
101 |
|
102 static int e1000_get_settings(struct net_device *netdev, |
|
103 struct ethtool_cmd *ecmd) |
|
104 { |
|
105 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
106 struct e1000_hw *hw = &adapter->hw; |
|
107 |
|
108 if (hw->media_type == e1000_media_type_copper) { |
|
109 |
|
110 ecmd->supported = (SUPPORTED_10baseT_Half | |
|
111 SUPPORTED_10baseT_Full | |
|
112 SUPPORTED_100baseT_Half | |
|
113 SUPPORTED_100baseT_Full | |
|
114 SUPPORTED_1000baseT_Full| |
|
115 SUPPORTED_Autoneg | |
|
116 SUPPORTED_TP); |
|
117 if (hw->phy_type == e1000_phy_ife) |
|
118 ecmd->supported &= ~SUPPORTED_1000baseT_Full; |
|
119 ecmd->advertising = ADVERTISED_TP; |
|
120 |
|
121 if (hw->autoneg == 1) { |
|
122 ecmd->advertising |= ADVERTISED_Autoneg; |
|
123 /* the e1000 autoneg seems to match ethtool nicely */ |
|
124 ecmd->advertising |= hw->autoneg_advertised; |
|
125 } |
|
126 |
|
127 ecmd->port = PORT_TP; |
|
128 ecmd->phy_address = hw->phy_addr; |
|
129 |
|
130 if (hw->mac_type == e1000_82543) |
|
131 ecmd->transceiver = XCVR_EXTERNAL; |
|
132 else |
|
133 ecmd->transceiver = XCVR_INTERNAL; |
|
134 |
|
135 } else { |
|
136 ecmd->supported = (SUPPORTED_1000baseT_Full | |
|
137 SUPPORTED_FIBRE | |
|
138 SUPPORTED_Autoneg); |
|
139 |
|
140 ecmd->advertising = (ADVERTISED_1000baseT_Full | |
|
141 ADVERTISED_FIBRE | |
|
142 ADVERTISED_Autoneg); |
|
143 |
|
144 ecmd->port = PORT_FIBRE; |
|
145 |
|
146 if (hw->mac_type >= e1000_82545) |
|
147 ecmd->transceiver = XCVR_INTERNAL; |
|
148 else |
|
149 ecmd->transceiver = XCVR_EXTERNAL; |
|
150 } |
|
151 |
|
152 if (er32(STATUS) & E1000_STATUS_LU) { |
|
153 |
|
154 e1000_get_speed_and_duplex(hw, &adapter->link_speed, |
|
155 &adapter->link_duplex); |
|
156 ecmd->speed = adapter->link_speed; |
|
157 |
|
158 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL |
|
159 * and HALF_DUPLEX != DUPLEX_HALF */ |
|
160 |
|
161 if (adapter->link_duplex == FULL_DUPLEX) |
|
162 ecmd->duplex = DUPLEX_FULL; |
|
163 else |
|
164 ecmd->duplex = DUPLEX_HALF; |
|
165 } else { |
|
166 ecmd->speed = -1; |
|
167 ecmd->duplex = -1; |
|
168 } |
|
169 |
|
170 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || |
|
171 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; |
|
172 return 0; |
|
173 } |
|
174 |
|
175 static int e1000_set_settings(struct net_device *netdev, |
|
176 struct ethtool_cmd *ecmd) |
|
177 { |
|
178 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
179 struct e1000_hw *hw = &adapter->hw; |
|
180 |
|
181 /* When SoL/IDER sessions are active, autoneg/speed/duplex |
|
182 * cannot be changed */ |
|
183 if (e1000_check_phy_reset_block(hw)) { |
|
184 DPRINTK(DRV, ERR, "Cannot change link characteristics " |
|
185 "when SoL/IDER is active.\n"); |
|
186 return -EINVAL; |
|
187 } |
|
188 |
|
189 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
190 msleep(1); |
|
191 |
|
192 if (ecmd->autoneg == AUTONEG_ENABLE) { |
|
193 hw->autoneg = 1; |
|
194 if (hw->media_type == e1000_media_type_fiber) |
|
195 hw->autoneg_advertised = ADVERTISED_1000baseT_Full | |
|
196 ADVERTISED_FIBRE | |
|
197 ADVERTISED_Autoneg; |
|
198 else |
|
199 hw->autoneg_advertised = ecmd->advertising | |
|
200 ADVERTISED_TP | |
|
201 ADVERTISED_Autoneg; |
|
202 ecmd->advertising = hw->autoneg_advertised; |
|
203 } else |
|
204 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) { |
|
205 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
206 return -EINVAL; |
|
207 } |
|
208 |
|
209 /* reset the link */ |
|
210 |
|
211 if (netif_running(adapter->netdev)) { |
|
212 e1000_down(adapter); |
|
213 e1000_up(adapter); |
|
214 } else |
|
215 e1000_reset(adapter); |
|
216 |
|
217 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
218 return 0; |
|
219 } |
|
220 |
|
221 static void e1000_get_pauseparam(struct net_device *netdev, |
|
222 struct ethtool_pauseparam *pause) |
|
223 { |
|
224 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
225 struct e1000_hw *hw = &adapter->hw; |
|
226 |
|
227 pause->autoneg = |
|
228 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); |
|
229 |
|
230 if (hw->fc == E1000_FC_RX_PAUSE) |
|
231 pause->rx_pause = 1; |
|
232 else if (hw->fc == E1000_FC_TX_PAUSE) |
|
233 pause->tx_pause = 1; |
|
234 else if (hw->fc == E1000_FC_FULL) { |
|
235 pause->rx_pause = 1; |
|
236 pause->tx_pause = 1; |
|
237 } |
|
238 } |
|
239 |
|
240 static int e1000_set_pauseparam(struct net_device *netdev, |
|
241 struct ethtool_pauseparam *pause) |
|
242 { |
|
243 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
244 struct e1000_hw *hw = &adapter->hw; |
|
245 int retval = 0; |
|
246 |
|
247 adapter->fc_autoneg = pause->autoneg; |
|
248 |
|
249 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
250 msleep(1); |
|
251 |
|
252 if (pause->rx_pause && pause->tx_pause) |
|
253 hw->fc = E1000_FC_FULL; |
|
254 else if (pause->rx_pause && !pause->tx_pause) |
|
255 hw->fc = E1000_FC_RX_PAUSE; |
|
256 else if (!pause->rx_pause && pause->tx_pause) |
|
257 hw->fc = E1000_FC_TX_PAUSE; |
|
258 else if (!pause->rx_pause && !pause->tx_pause) |
|
259 hw->fc = E1000_FC_NONE; |
|
260 |
|
261 hw->original_fc = hw->fc; |
|
262 |
|
263 if (adapter->fc_autoneg == AUTONEG_ENABLE) { |
|
264 if (netif_running(adapter->netdev)) { |
|
265 e1000_down(adapter); |
|
266 e1000_up(adapter); |
|
267 } else |
|
268 e1000_reset(adapter); |
|
269 } else |
|
270 retval = ((hw->media_type == e1000_media_type_fiber) ? |
|
271 e1000_setup_link(hw) : e1000_force_mac_fc(hw)); |
|
272 |
|
273 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
274 return retval; |
|
275 } |
|
276 |
|
277 static u32 e1000_get_rx_csum(struct net_device *netdev) |
|
278 { |
|
279 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
280 return adapter->rx_csum; |
|
281 } |
|
282 |
|
283 static int e1000_set_rx_csum(struct net_device *netdev, u32 data) |
|
284 { |
|
285 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
286 adapter->rx_csum = data; |
|
287 |
|
288 if (netif_running(netdev)) |
|
289 e1000_reinit_locked(adapter); |
|
290 else |
|
291 e1000_reset(adapter); |
|
292 return 0; |
|
293 } |
|
294 |
|
295 static u32 e1000_get_tx_csum(struct net_device *netdev) |
|
296 { |
|
297 return (netdev->features & NETIF_F_HW_CSUM) != 0; |
|
298 } |
|
299 |
|
300 static int e1000_set_tx_csum(struct net_device *netdev, u32 data) |
|
301 { |
|
302 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
303 struct e1000_hw *hw = &adapter->hw; |
|
304 |
|
305 if (hw->mac_type < e1000_82543) { |
|
306 if (!data) |
|
307 return -EINVAL; |
|
308 return 0; |
|
309 } |
|
310 |
|
311 if (data) |
|
312 netdev->features |= NETIF_F_HW_CSUM; |
|
313 else |
|
314 netdev->features &= ~NETIF_F_HW_CSUM; |
|
315 |
|
316 return 0; |
|
317 } |
|
318 |
|
319 static int e1000_set_tso(struct net_device *netdev, u32 data) |
|
320 { |
|
321 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
322 struct e1000_hw *hw = &adapter->hw; |
|
323 |
|
324 if ((hw->mac_type < e1000_82544) || |
|
325 (hw->mac_type == e1000_82547)) |
|
326 return data ? -EINVAL : 0; |
|
327 |
|
328 if (data) |
|
329 netdev->features |= NETIF_F_TSO; |
|
330 else |
|
331 netdev->features &= ~NETIF_F_TSO; |
|
332 |
|
333 if (data && (adapter->hw.mac_type > e1000_82547_rev_2)) |
|
334 netdev->features |= NETIF_F_TSO6; |
|
335 else |
|
336 netdev->features &= ~NETIF_F_TSO6; |
|
337 |
|
338 DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled"); |
|
339 adapter->tso_force = true; |
|
340 return 0; |
|
341 } |
|
342 |
|
343 static u32 e1000_get_msglevel(struct net_device *netdev) |
|
344 { |
|
345 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
346 return adapter->msg_enable; |
|
347 } |
|
348 |
|
349 static void e1000_set_msglevel(struct net_device *netdev, u32 data) |
|
350 { |
|
351 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
352 adapter->msg_enable = data; |
|
353 } |
|
354 |
|
355 static int e1000_get_regs_len(struct net_device *netdev) |
|
356 { |
|
357 #define E1000_REGS_LEN 32 |
|
358 return E1000_REGS_LEN * sizeof(u32); |
|
359 } |
|
360 |
|
361 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, |
|
362 void *p) |
|
363 { |
|
364 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
365 struct e1000_hw *hw = &adapter->hw; |
|
366 u32 *regs_buff = p; |
|
367 u16 phy_data; |
|
368 |
|
369 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); |
|
370 |
|
371 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; |
|
372 |
|
373 regs_buff[0] = er32(CTRL); |
|
374 regs_buff[1] = er32(STATUS); |
|
375 |
|
376 regs_buff[2] = er32(RCTL); |
|
377 regs_buff[3] = er32(RDLEN); |
|
378 regs_buff[4] = er32(RDH); |
|
379 regs_buff[5] = er32(RDT); |
|
380 regs_buff[6] = er32(RDTR); |
|
381 |
|
382 regs_buff[7] = er32(TCTL); |
|
383 regs_buff[8] = er32(TDLEN); |
|
384 regs_buff[9] = er32(TDH); |
|
385 regs_buff[10] = er32(TDT); |
|
386 regs_buff[11] = er32(TIDV); |
|
387 |
|
388 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ |
|
389 if (hw->phy_type == e1000_phy_igp) { |
|
390 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
391 IGP01E1000_PHY_AGC_A); |
|
392 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & |
|
393 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
394 regs_buff[13] = (u32)phy_data; /* cable length */ |
|
395 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
396 IGP01E1000_PHY_AGC_B); |
|
397 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & |
|
398 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
399 regs_buff[14] = (u32)phy_data; /* cable length */ |
|
400 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
401 IGP01E1000_PHY_AGC_C); |
|
402 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & |
|
403 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
404 regs_buff[15] = (u32)phy_data; /* cable length */ |
|
405 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
406 IGP01E1000_PHY_AGC_D); |
|
407 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & |
|
408 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
409 regs_buff[16] = (u32)phy_data; /* cable length */ |
|
410 regs_buff[17] = 0; /* extended 10bt distance (not needed) */ |
|
411 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); |
|
412 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & |
|
413 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
414 regs_buff[18] = (u32)phy_data; /* cable polarity */ |
|
415 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
416 IGP01E1000_PHY_PCS_INIT_REG); |
|
417 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & |
|
418 IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
|
419 regs_buff[19] = (u32)phy_data; /* cable polarity */ |
|
420 regs_buff[20] = 0; /* polarity correction enabled (always) */ |
|
421 regs_buff[22] = 0; /* phy receive errors (unavailable) */ |
|
422 regs_buff[23] = regs_buff[18]; /* mdix mode */ |
|
423 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); |
|
424 } else { |
|
425 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
|
426 regs_buff[13] = (u32)phy_data; /* cable length */ |
|
427 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
428 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
429 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
430 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
431 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ |
|
432 regs_buff[18] = regs_buff[13]; /* cable polarity */ |
|
433 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
434 regs_buff[20] = regs_buff[17]; /* polarity correction */ |
|
435 /* phy receive errors */ |
|
436 regs_buff[22] = adapter->phy_stats.receive_errors; |
|
437 regs_buff[23] = regs_buff[13]; /* mdix mode */ |
|
438 } |
|
439 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ |
|
440 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
|
441 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ |
|
442 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ |
|
443 if (hw->mac_type >= e1000_82540 && |
|
444 hw->mac_type < e1000_82571 && |
|
445 hw->media_type == e1000_media_type_copper) { |
|
446 regs_buff[26] = er32(MANC); |
|
447 } |
|
448 } |
|
449 |
|
450 static int e1000_get_eeprom_len(struct net_device *netdev) |
|
451 { |
|
452 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
453 struct e1000_hw *hw = &adapter->hw; |
|
454 |
|
455 return hw->eeprom.word_size * 2; |
|
456 } |
|
457 |
|
458 static int e1000_get_eeprom(struct net_device *netdev, |
|
459 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
460 { |
|
461 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
462 struct e1000_hw *hw = &adapter->hw; |
|
463 u16 *eeprom_buff; |
|
464 int first_word, last_word; |
|
465 int ret_val = 0; |
|
466 u16 i; |
|
467 |
|
468 if (eeprom->len == 0) |
|
469 return -EINVAL; |
|
470 |
|
471 eeprom->magic = hw->vendor_id | (hw->device_id << 16); |
|
472 |
|
473 first_word = eeprom->offset >> 1; |
|
474 last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
|
475 |
|
476 eeprom_buff = kmalloc(sizeof(u16) * |
|
477 (last_word - first_word + 1), GFP_KERNEL); |
|
478 if (!eeprom_buff) |
|
479 return -ENOMEM; |
|
480 |
|
481 if (hw->eeprom.type == e1000_eeprom_spi) |
|
482 ret_val = e1000_read_eeprom(hw, first_word, |
|
483 last_word - first_word + 1, |
|
484 eeprom_buff); |
|
485 else { |
|
486 for (i = 0; i < last_word - first_word + 1; i++) { |
|
487 ret_val = e1000_read_eeprom(hw, first_word + i, 1, |
|
488 &eeprom_buff[i]); |
|
489 if (ret_val) |
|
490 break; |
|
491 } |
|
492 } |
|
493 |
|
494 /* Device's eeprom is always little-endian, word addressable */ |
|
495 for (i = 0; i < last_word - first_word + 1; i++) |
|
496 le16_to_cpus(&eeprom_buff[i]); |
|
497 |
|
498 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), |
|
499 eeprom->len); |
|
500 kfree(eeprom_buff); |
|
501 |
|
502 return ret_val; |
|
503 } |
|
504 |
|
505 static int e1000_set_eeprom(struct net_device *netdev, |
|
506 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
507 { |
|
508 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
509 struct e1000_hw *hw = &adapter->hw; |
|
510 u16 *eeprom_buff; |
|
511 void *ptr; |
|
512 int max_len, first_word, last_word, ret_val = 0; |
|
513 u16 i; |
|
514 |
|
515 if (eeprom->len == 0) |
|
516 return -EOPNOTSUPP; |
|
517 |
|
518 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) |
|
519 return -EFAULT; |
|
520 |
|
521 max_len = hw->eeprom.word_size * 2; |
|
522 |
|
523 first_word = eeprom->offset >> 1; |
|
524 last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
|
525 eeprom_buff = kmalloc(max_len, GFP_KERNEL); |
|
526 if (!eeprom_buff) |
|
527 return -ENOMEM; |
|
528 |
|
529 ptr = (void *)eeprom_buff; |
|
530 |
|
531 if (eeprom->offset & 1) { |
|
532 /* need read/modify/write of first changed EEPROM word */ |
|
533 /* only the second byte of the word is being modified */ |
|
534 ret_val = e1000_read_eeprom(hw, first_word, 1, |
|
535 &eeprom_buff[0]); |
|
536 ptr++; |
|
537 } |
|
538 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { |
|
539 /* need read/modify/write of last changed EEPROM word */ |
|
540 /* only the first byte of the word is being modified */ |
|
541 ret_val = e1000_read_eeprom(hw, last_word, 1, |
|
542 &eeprom_buff[last_word - first_word]); |
|
543 } |
|
544 |
|
545 /* Device's eeprom is always little-endian, word addressable */ |
|
546 for (i = 0; i < last_word - first_word + 1; i++) |
|
547 le16_to_cpus(&eeprom_buff[i]); |
|
548 |
|
549 memcpy(ptr, bytes, eeprom->len); |
|
550 |
|
551 for (i = 0; i < last_word - first_word + 1; i++) |
|
552 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); |
|
553 |
|
554 ret_val = e1000_write_eeprom(hw, first_word, |
|
555 last_word - first_word + 1, eeprom_buff); |
|
556 |
|
557 /* Update the checksum over the first part of the EEPROM if needed |
|
558 * and flush shadow RAM for 82573 conrollers */ |
|
559 if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) || |
|
560 (hw->mac_type == e1000_82573))) |
|
561 e1000_update_eeprom_checksum(hw); |
|
562 |
|
563 kfree(eeprom_buff); |
|
564 return ret_val; |
|
565 } |
|
566 |
|
567 static void e1000_get_drvinfo(struct net_device *netdev, |
|
568 struct ethtool_drvinfo *drvinfo) |
|
569 { |
|
570 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
571 struct e1000_hw *hw = &adapter->hw; |
|
572 char firmware_version[32]; |
|
573 u16 eeprom_data; |
|
574 |
|
575 strncpy(drvinfo->driver, e1000_driver_name, 32); |
|
576 strncpy(drvinfo->version, e1000_driver_version, 32); |
|
577 |
|
578 /* EEPROM image version # is reported as firmware version # for |
|
579 * 8257{1|2|3} controllers */ |
|
580 e1000_read_eeprom(hw, 5, 1, &eeprom_data); |
|
581 switch (hw->mac_type) { |
|
582 case e1000_82571: |
|
583 case e1000_82572: |
|
584 case e1000_82573: |
|
585 case e1000_80003es2lan: |
|
586 case e1000_ich8lan: |
|
587 sprintf(firmware_version, "%d.%d-%d", |
|
588 (eeprom_data & 0xF000) >> 12, |
|
589 (eeprom_data & 0x0FF0) >> 4, |
|
590 eeprom_data & 0x000F); |
|
591 break; |
|
592 default: |
|
593 sprintf(firmware_version, "N/A"); |
|
594 } |
|
595 |
|
596 strncpy(drvinfo->fw_version, firmware_version, 32); |
|
597 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); |
|
598 drvinfo->regdump_len = e1000_get_regs_len(netdev); |
|
599 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); |
|
600 } |
|
601 |
|
602 static void e1000_get_ringparam(struct net_device *netdev, |
|
603 struct ethtool_ringparam *ring) |
|
604 { |
|
605 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
606 struct e1000_hw *hw = &adapter->hw; |
|
607 e1000_mac_type mac_type = hw->mac_type; |
|
608 struct e1000_tx_ring *txdr = adapter->tx_ring; |
|
609 struct e1000_rx_ring *rxdr = adapter->rx_ring; |
|
610 |
|
611 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : |
|
612 E1000_MAX_82544_RXD; |
|
613 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : |
|
614 E1000_MAX_82544_TXD; |
|
615 ring->rx_mini_max_pending = 0; |
|
616 ring->rx_jumbo_max_pending = 0; |
|
617 ring->rx_pending = rxdr->count; |
|
618 ring->tx_pending = txdr->count; |
|
619 ring->rx_mini_pending = 0; |
|
620 ring->rx_jumbo_pending = 0; |
|
621 } |
|
622 |
|
623 static int e1000_set_ringparam(struct net_device *netdev, |
|
624 struct ethtool_ringparam *ring) |
|
625 { |
|
626 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
627 struct e1000_hw *hw = &adapter->hw; |
|
628 e1000_mac_type mac_type = hw->mac_type; |
|
629 struct e1000_tx_ring *txdr, *tx_old; |
|
630 struct e1000_rx_ring *rxdr, *rx_old; |
|
631 int i, err; |
|
632 |
|
633 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
|
634 return -EINVAL; |
|
635 |
|
636 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
637 msleep(1); |
|
638 |
|
639 if (netif_running(adapter->netdev)) |
|
640 e1000_down(adapter); |
|
641 |
|
642 tx_old = adapter->tx_ring; |
|
643 rx_old = adapter->rx_ring; |
|
644 |
|
645 err = -ENOMEM; |
|
646 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL); |
|
647 if (!txdr) |
|
648 goto err_alloc_tx; |
|
649 |
|
650 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL); |
|
651 if (!rxdr) |
|
652 goto err_alloc_rx; |
|
653 |
|
654 adapter->tx_ring = txdr; |
|
655 adapter->rx_ring = rxdr; |
|
656 |
|
657 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD); |
|
658 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ? |
|
659 E1000_MAX_RXD : E1000_MAX_82544_RXD)); |
|
660 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); |
|
661 |
|
662 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD); |
|
663 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ? |
|
664 E1000_MAX_TXD : E1000_MAX_82544_TXD)); |
|
665 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); |
|
666 |
|
667 for (i = 0; i < adapter->num_tx_queues; i++) |
|
668 txdr[i].count = txdr->count; |
|
669 for (i = 0; i < adapter->num_rx_queues; i++) |
|
670 rxdr[i].count = rxdr->count; |
|
671 |
|
672 if (netif_running(adapter->netdev)) { |
|
673 /* Try to get new resources before deleting old */ |
|
674 err = e1000_setup_all_rx_resources(adapter); |
|
675 if (err) |
|
676 goto err_setup_rx; |
|
677 err = e1000_setup_all_tx_resources(adapter); |
|
678 if (err) |
|
679 goto err_setup_tx; |
|
680 |
|
681 /* save the new, restore the old in order to free it, |
|
682 * then restore the new back again */ |
|
683 |
|
684 adapter->rx_ring = rx_old; |
|
685 adapter->tx_ring = tx_old; |
|
686 e1000_free_all_rx_resources(adapter); |
|
687 e1000_free_all_tx_resources(adapter); |
|
688 kfree(tx_old); |
|
689 kfree(rx_old); |
|
690 adapter->rx_ring = rxdr; |
|
691 adapter->tx_ring = txdr; |
|
692 err = e1000_up(adapter); |
|
693 if (err) |
|
694 goto err_setup; |
|
695 } |
|
696 |
|
697 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
698 return 0; |
|
699 err_setup_tx: |
|
700 e1000_free_all_rx_resources(adapter); |
|
701 err_setup_rx: |
|
702 adapter->rx_ring = rx_old; |
|
703 adapter->tx_ring = tx_old; |
|
704 kfree(rxdr); |
|
705 err_alloc_rx: |
|
706 kfree(txdr); |
|
707 err_alloc_tx: |
|
708 e1000_up(adapter); |
|
709 err_setup: |
|
710 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
711 return err; |
|
712 } |
|
713 |
|
714 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, |
|
715 u32 mask, u32 write) |
|
716 { |
|
717 struct e1000_hw *hw = &adapter->hw; |
|
718 static const u32 test[] = |
|
719 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; |
|
720 u8 __iomem *address = hw->hw_addr + reg; |
|
721 u32 read; |
|
722 int i; |
|
723 |
|
724 for (i = 0; i < ARRAY_SIZE(test); i++) { |
|
725 writel(write & test[i], address); |
|
726 read = readl(address); |
|
727 if (read != (write & test[i] & mask)) { |
|
728 DPRINTK(DRV, ERR, "pattern test reg %04X failed: " |
|
729 "got 0x%08X expected 0x%08X\n", |
|
730 reg, read, (write & test[i] & mask)); |
|
731 *data = reg; |
|
732 return true; |
|
733 } |
|
734 } |
|
735 return false; |
|
736 } |
|
737 |
|
738 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, |
|
739 u32 mask, u32 write) |
|
740 { |
|
741 struct e1000_hw *hw = &adapter->hw; |
|
742 u8 __iomem *address = hw->hw_addr + reg; |
|
743 u32 read; |
|
744 |
|
745 writel(write & mask, address); |
|
746 read = readl(address); |
|
747 if ((read & mask) != (write & mask)) { |
|
748 DPRINTK(DRV, ERR, "set/check reg %04X test failed: " |
|
749 "got 0x%08X expected 0x%08X\n", |
|
750 reg, (read & mask), (write & mask)); |
|
751 *data = reg; |
|
752 return true; |
|
753 } |
|
754 return false; |
|
755 } |
|
756 |
|
757 #define REG_PATTERN_TEST(reg, mask, write) \ |
|
758 do { \ |
|
759 if (reg_pattern_test(adapter, data, \ |
|
760 (hw->mac_type >= e1000_82543) \ |
|
761 ? E1000_##reg : E1000_82542_##reg, \ |
|
762 mask, write)) \ |
|
763 return 1; \ |
|
764 } while (0) |
|
765 |
|
766 #define REG_SET_AND_CHECK(reg, mask, write) \ |
|
767 do { \ |
|
768 if (reg_set_and_check(adapter, data, \ |
|
769 (hw->mac_type >= e1000_82543) \ |
|
770 ? E1000_##reg : E1000_82542_##reg, \ |
|
771 mask, write)) \ |
|
772 return 1; \ |
|
773 } while (0) |
|
774 |
|
775 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) |
|
776 { |
|
777 u32 value, before, after; |
|
778 u32 i, toggle; |
|
779 struct e1000_hw *hw = &adapter->hw; |
|
780 |
|
781 /* The status register is Read Only, so a write should fail. |
|
782 * Some bits that get toggled are ignored. |
|
783 */ |
|
784 switch (hw->mac_type) { |
|
785 /* there are several bits on newer hardware that are r/w */ |
|
786 case e1000_82571: |
|
787 case e1000_82572: |
|
788 case e1000_80003es2lan: |
|
789 toggle = 0x7FFFF3FF; |
|
790 break; |
|
791 case e1000_82573: |
|
792 case e1000_ich8lan: |
|
793 toggle = 0x7FFFF033; |
|
794 break; |
|
795 default: |
|
796 toggle = 0xFFFFF833; |
|
797 break; |
|
798 } |
|
799 |
|
800 before = er32(STATUS); |
|
801 value = (er32(STATUS) & toggle); |
|
802 ew32(STATUS, toggle); |
|
803 after = er32(STATUS) & toggle; |
|
804 if (value != after) { |
|
805 DPRINTK(DRV, ERR, "failed STATUS register test got: " |
|
806 "0x%08X expected: 0x%08X\n", after, value); |
|
807 *data = 1; |
|
808 return 1; |
|
809 } |
|
810 /* restore previous status */ |
|
811 ew32(STATUS, before); |
|
812 |
|
813 if (hw->mac_type != e1000_ich8lan) { |
|
814 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); |
|
815 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); |
|
816 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); |
|
817 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); |
|
818 } |
|
819 |
|
820 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); |
|
821 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
|
822 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); |
|
823 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); |
|
824 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); |
|
825 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); |
|
826 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); |
|
827 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); |
|
828 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
|
829 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); |
|
830 |
|
831 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); |
|
832 |
|
833 before = (hw->mac_type == e1000_ich8lan ? |
|
834 0x06C3B33E : 0x06DFB3FE); |
|
835 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); |
|
836 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); |
|
837 |
|
838 if (hw->mac_type >= e1000_82543) { |
|
839 |
|
840 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); |
|
841 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
|
842 if (hw->mac_type != e1000_ich8lan) |
|
843 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); |
|
844 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
|
845 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); |
|
846 value = (hw->mac_type == e1000_ich8lan ? |
|
847 E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES); |
|
848 for (i = 0; i < value; i++) { |
|
849 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, |
|
850 0xFFFFFFFF); |
|
851 } |
|
852 |
|
853 } else { |
|
854 |
|
855 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); |
|
856 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); |
|
857 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); |
|
858 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); |
|
859 |
|
860 } |
|
861 |
|
862 value = (hw->mac_type == e1000_ich8lan ? |
|
863 E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE); |
|
864 for (i = 0; i < value; i++) |
|
865 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); |
|
866 |
|
867 *data = 0; |
|
868 return 0; |
|
869 } |
|
870 |
|
871 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) |
|
872 { |
|
873 struct e1000_hw *hw = &adapter->hw; |
|
874 u16 temp; |
|
875 u16 checksum = 0; |
|
876 u16 i; |
|
877 |
|
878 *data = 0; |
|
879 /* Read and add up the contents of the EEPROM */ |
|
880 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
|
881 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { |
|
882 *data = 1; |
|
883 break; |
|
884 } |
|
885 checksum += temp; |
|
886 } |
|
887 |
|
888 /* If Checksum is not Correct return error else test passed */ |
|
889 if ((checksum != (u16)EEPROM_SUM) && !(*data)) |
|
890 *data = 2; |
|
891 |
|
892 return *data; |
|
893 } |
|
894 |
|
895 static irqreturn_t e1000_test_intr(int irq, void *data) |
|
896 { |
|
897 struct net_device *netdev = (struct net_device *)data; |
|
898 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
899 struct e1000_hw *hw = &adapter->hw; |
|
900 |
|
901 adapter->test_icr |= er32(ICR); |
|
902 |
|
903 return IRQ_HANDLED; |
|
904 } |
|
905 |
|
906 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) |
|
907 { |
|
908 struct net_device *netdev = adapter->netdev; |
|
909 u32 mask, i = 0; |
|
910 bool shared_int = true; |
|
911 u32 irq = adapter->pdev->irq; |
|
912 struct e1000_hw *hw = &adapter->hw; |
|
913 |
|
914 *data = 0; |
|
915 |
|
916 /* NOTE: we don't test MSI interrupts here, yet */ |
|
917 /* Hook up test interrupt handler just for this test */ |
|
918 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, |
|
919 netdev)) |
|
920 shared_int = false; |
|
921 else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED, |
|
922 netdev->name, netdev)) { |
|
923 *data = 1; |
|
924 return -1; |
|
925 } |
|
926 DPRINTK(HW, INFO, "testing %s interrupt\n", |
|
927 (shared_int ? "shared" : "unshared")); |
|
928 |
|
929 /* Disable all the interrupts */ |
|
930 ew32(IMC, 0xFFFFFFFF); |
|
931 msleep(10); |
|
932 |
|
933 /* Test each interrupt */ |
|
934 for (; i < 10; i++) { |
|
935 |
|
936 if (hw->mac_type == e1000_ich8lan && i == 8) |
|
937 continue; |
|
938 |
|
939 /* Interrupt to test */ |
|
940 mask = 1 << i; |
|
941 |
|
942 if (!shared_int) { |
|
943 /* Disable the interrupt to be reported in |
|
944 * the cause register and then force the same |
|
945 * interrupt and see if one gets posted. If |
|
946 * an interrupt was posted to the bus, the |
|
947 * test failed. |
|
948 */ |
|
949 adapter->test_icr = 0; |
|
950 ew32(IMC, mask); |
|
951 ew32(ICS, mask); |
|
952 msleep(10); |
|
953 |
|
954 if (adapter->test_icr & mask) { |
|
955 *data = 3; |
|
956 break; |
|
957 } |
|
958 } |
|
959 |
|
960 /* Enable the interrupt to be reported in |
|
961 * the cause register and then force the same |
|
962 * interrupt and see if one gets posted. If |
|
963 * an interrupt was not posted to the bus, the |
|
964 * test failed. |
|
965 */ |
|
966 adapter->test_icr = 0; |
|
967 ew32(IMS, mask); |
|
968 ew32(ICS, mask); |
|
969 msleep(10); |
|
970 |
|
971 if (!(adapter->test_icr & mask)) { |
|
972 *data = 4; |
|
973 break; |
|
974 } |
|
975 |
|
976 if (!shared_int) { |
|
977 /* Disable the other interrupts to be reported in |
|
978 * the cause register and then force the other |
|
979 * interrupts and see if any get posted. If |
|
980 * an interrupt was posted to the bus, the |
|
981 * test failed. |
|
982 */ |
|
983 adapter->test_icr = 0; |
|
984 ew32(IMC, ~mask & 0x00007FFF); |
|
985 ew32(ICS, ~mask & 0x00007FFF); |
|
986 msleep(10); |
|
987 |
|
988 if (adapter->test_icr) { |
|
989 *data = 5; |
|
990 break; |
|
991 } |
|
992 } |
|
993 } |
|
994 |
|
995 /* Disable all the interrupts */ |
|
996 ew32(IMC, 0xFFFFFFFF); |
|
997 msleep(10); |
|
998 |
|
999 /* Unhook test interrupt handler */ |
|
1000 free_irq(irq, netdev); |
|
1001 |
|
1002 return *data; |
|
1003 } |
|
1004 |
|
1005 static void e1000_free_desc_rings(struct e1000_adapter *adapter) |
|
1006 { |
|
1007 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; |
|
1008 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; |
|
1009 struct pci_dev *pdev = adapter->pdev; |
|
1010 int i; |
|
1011 |
|
1012 if (txdr->desc && txdr->buffer_info) { |
|
1013 for (i = 0; i < txdr->count; i++) { |
|
1014 if (txdr->buffer_info[i].dma) |
|
1015 pci_unmap_single(pdev, txdr->buffer_info[i].dma, |
|
1016 txdr->buffer_info[i].length, |
|
1017 PCI_DMA_TODEVICE); |
|
1018 if (txdr->buffer_info[i].skb) |
|
1019 dev_kfree_skb(txdr->buffer_info[i].skb); |
|
1020 } |
|
1021 } |
|
1022 |
|
1023 if (rxdr->desc && rxdr->buffer_info) { |
|
1024 for (i = 0; i < rxdr->count; i++) { |
|
1025 if (rxdr->buffer_info[i].dma) |
|
1026 pci_unmap_single(pdev, rxdr->buffer_info[i].dma, |
|
1027 rxdr->buffer_info[i].length, |
|
1028 PCI_DMA_FROMDEVICE); |
|
1029 if (rxdr->buffer_info[i].skb) |
|
1030 dev_kfree_skb(rxdr->buffer_info[i].skb); |
|
1031 } |
|
1032 } |
|
1033 |
|
1034 if (txdr->desc) { |
|
1035 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma); |
|
1036 txdr->desc = NULL; |
|
1037 } |
|
1038 if (rxdr->desc) { |
|
1039 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma); |
|
1040 rxdr->desc = NULL; |
|
1041 } |
|
1042 |
|
1043 kfree(txdr->buffer_info); |
|
1044 txdr->buffer_info = NULL; |
|
1045 kfree(rxdr->buffer_info); |
|
1046 rxdr->buffer_info = NULL; |
|
1047 |
|
1048 return; |
|
1049 } |
|
1050 |
|
1051 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) |
|
1052 { |
|
1053 struct e1000_hw *hw = &adapter->hw; |
|
1054 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; |
|
1055 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; |
|
1056 struct pci_dev *pdev = adapter->pdev; |
|
1057 u32 rctl; |
|
1058 int i, ret_val; |
|
1059 |
|
1060 /* Setup Tx descriptor ring and Tx buffers */ |
|
1061 |
|
1062 if (!txdr->count) |
|
1063 txdr->count = E1000_DEFAULT_TXD; |
|
1064 |
|
1065 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer), |
|
1066 GFP_KERNEL); |
|
1067 if (!txdr->buffer_info) { |
|
1068 ret_val = 1; |
|
1069 goto err_nomem; |
|
1070 } |
|
1071 |
|
1072 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
|
1073 txdr->size = ALIGN(txdr->size, 4096); |
|
1074 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
|
1075 if (!txdr->desc) { |
|
1076 ret_val = 2; |
|
1077 goto err_nomem; |
|
1078 } |
|
1079 memset(txdr->desc, 0, txdr->size); |
|
1080 txdr->next_to_use = txdr->next_to_clean = 0; |
|
1081 |
|
1082 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); |
|
1083 ew32(TDBAH, ((u64)txdr->dma >> 32)); |
|
1084 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); |
|
1085 ew32(TDH, 0); |
|
1086 ew32(TDT, 0); |
|
1087 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | |
|
1088 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | |
|
1089 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); |
|
1090 |
|
1091 for (i = 0; i < txdr->count; i++) { |
|
1092 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); |
|
1093 struct sk_buff *skb; |
|
1094 unsigned int size = 1024; |
|
1095 |
|
1096 skb = alloc_skb(size, GFP_KERNEL); |
|
1097 if (!skb) { |
|
1098 ret_val = 3; |
|
1099 goto err_nomem; |
|
1100 } |
|
1101 skb_put(skb, size); |
|
1102 txdr->buffer_info[i].skb = skb; |
|
1103 txdr->buffer_info[i].length = skb->len; |
|
1104 txdr->buffer_info[i].dma = |
|
1105 pci_map_single(pdev, skb->data, skb->len, |
|
1106 PCI_DMA_TODEVICE); |
|
1107 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); |
|
1108 tx_desc->lower.data = cpu_to_le32(skb->len); |
|
1109 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | |
|
1110 E1000_TXD_CMD_IFCS | |
|
1111 E1000_TXD_CMD_RPS); |
|
1112 tx_desc->upper.data = 0; |
|
1113 } |
|
1114 |
|
1115 /* Setup Rx descriptor ring and Rx buffers */ |
|
1116 |
|
1117 if (!rxdr->count) |
|
1118 rxdr->count = E1000_DEFAULT_RXD; |
|
1119 |
|
1120 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer), |
|
1121 GFP_KERNEL); |
|
1122 if (!rxdr->buffer_info) { |
|
1123 ret_val = 4; |
|
1124 goto err_nomem; |
|
1125 } |
|
1126 |
|
1127 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); |
|
1128 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
|
1129 if (!rxdr->desc) { |
|
1130 ret_val = 5; |
|
1131 goto err_nomem; |
|
1132 } |
|
1133 memset(rxdr->desc, 0, rxdr->size); |
|
1134 rxdr->next_to_use = rxdr->next_to_clean = 0; |
|
1135 |
|
1136 rctl = er32(RCTL); |
|
1137 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1138 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); |
|
1139 ew32(RDBAH, ((u64)rxdr->dma >> 32)); |
|
1140 ew32(RDLEN, rxdr->size); |
|
1141 ew32(RDH, 0); |
|
1142 ew32(RDT, 0); |
|
1143 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | |
|
1144 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
1145 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
1146 ew32(RCTL, rctl); |
|
1147 |
|
1148 for (i = 0; i < rxdr->count; i++) { |
|
1149 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); |
|
1150 struct sk_buff *skb; |
|
1151 |
|
1152 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL); |
|
1153 if (!skb) { |
|
1154 ret_val = 6; |
|
1155 goto err_nomem; |
|
1156 } |
|
1157 skb_reserve(skb, NET_IP_ALIGN); |
|
1158 rxdr->buffer_info[i].skb = skb; |
|
1159 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; |
|
1160 rxdr->buffer_info[i].dma = |
|
1161 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048, |
|
1162 PCI_DMA_FROMDEVICE); |
|
1163 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); |
|
1164 memset(skb->data, 0x00, skb->len); |
|
1165 } |
|
1166 |
|
1167 return 0; |
|
1168 |
|
1169 err_nomem: |
|
1170 e1000_free_desc_rings(adapter); |
|
1171 return ret_val; |
|
1172 } |
|
1173 |
|
1174 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) |
|
1175 { |
|
1176 struct e1000_hw *hw = &adapter->hw; |
|
1177 |
|
1178 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
|
1179 e1000_write_phy_reg(hw, 29, 0x001F); |
|
1180 e1000_write_phy_reg(hw, 30, 0x8FFC); |
|
1181 e1000_write_phy_reg(hw, 29, 0x001A); |
|
1182 e1000_write_phy_reg(hw, 30, 0x8FF0); |
|
1183 } |
|
1184 |
|
1185 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) |
|
1186 { |
|
1187 struct e1000_hw *hw = &adapter->hw; |
|
1188 u16 phy_reg; |
|
1189 |
|
1190 /* Because we reset the PHY above, we need to re-force TX_CLK in the |
|
1191 * Extended PHY Specific Control Register to 25MHz clock. This |
|
1192 * value defaults back to a 2.5MHz clock when the PHY is reset. |
|
1193 */ |
|
1194 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); |
|
1195 phy_reg |= M88E1000_EPSCR_TX_CLK_25; |
|
1196 e1000_write_phy_reg(hw, |
|
1197 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); |
|
1198 |
|
1199 /* In addition, because of the s/w reset above, we need to enable |
|
1200 * CRS on TX. This must be set for both full and half duplex |
|
1201 * operation. |
|
1202 */ |
|
1203 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); |
|
1204 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
|
1205 e1000_write_phy_reg(hw, |
|
1206 M88E1000_PHY_SPEC_CTRL, phy_reg); |
|
1207 } |
|
1208 |
|
1209 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) |
|
1210 { |
|
1211 struct e1000_hw *hw = &adapter->hw; |
|
1212 u32 ctrl_reg; |
|
1213 u16 phy_reg; |
|
1214 |
|
1215 /* Setup the Device Control Register for PHY loopback test. */ |
|
1216 |
|
1217 ctrl_reg = er32(CTRL); |
|
1218 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ |
|
1219 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
|
1220 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
|
1221 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ |
|
1222 E1000_CTRL_FD); /* Force Duplex to FULL */ |
|
1223 |
|
1224 ew32(CTRL, ctrl_reg); |
|
1225 |
|
1226 /* Read the PHY Specific Control Register (0x10) */ |
|
1227 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); |
|
1228 |
|
1229 /* Clear Auto-Crossover bits in PHY Specific Control Register |
|
1230 * (bits 6:5). |
|
1231 */ |
|
1232 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; |
|
1233 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); |
|
1234 |
|
1235 /* Perform software reset on the PHY */ |
|
1236 e1000_phy_reset(hw); |
|
1237 |
|
1238 /* Have to setup TX_CLK and TX_CRS after software reset */ |
|
1239 e1000_phy_reset_clk_and_crs(adapter); |
|
1240 |
|
1241 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); |
|
1242 |
|
1243 /* Wait for reset to complete. */ |
|
1244 udelay(500); |
|
1245 |
|
1246 /* Have to setup TX_CLK and TX_CRS after software reset */ |
|
1247 e1000_phy_reset_clk_and_crs(adapter); |
|
1248 |
|
1249 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
|
1250 e1000_phy_disable_receiver(adapter); |
|
1251 |
|
1252 /* Set the loopback bit in the PHY control register. */ |
|
1253 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); |
|
1254 phy_reg |= MII_CR_LOOPBACK; |
|
1255 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); |
|
1256 |
|
1257 /* Setup TX_CLK and TX_CRS one more time. */ |
|
1258 e1000_phy_reset_clk_and_crs(adapter); |
|
1259 |
|
1260 /* Check Phy Configuration */ |
|
1261 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); |
|
1262 if (phy_reg != 0x4100) |
|
1263 return 9; |
|
1264 |
|
1265 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); |
|
1266 if (phy_reg != 0x0070) |
|
1267 return 10; |
|
1268 |
|
1269 e1000_read_phy_reg(hw, 29, &phy_reg); |
|
1270 if (phy_reg != 0x001A) |
|
1271 return 11; |
|
1272 |
|
1273 return 0; |
|
1274 } |
|
1275 |
|
1276 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) |
|
1277 { |
|
1278 struct e1000_hw *hw = &adapter->hw; |
|
1279 u32 ctrl_reg = 0; |
|
1280 u32 stat_reg = 0; |
|
1281 |
|
1282 hw->autoneg = false; |
|
1283 |
|
1284 if (hw->phy_type == e1000_phy_m88) { |
|
1285 /* Auto-MDI/MDIX Off */ |
|
1286 e1000_write_phy_reg(hw, |
|
1287 M88E1000_PHY_SPEC_CTRL, 0x0808); |
|
1288 /* reset to update Auto-MDI/MDIX */ |
|
1289 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); |
|
1290 /* autoneg off */ |
|
1291 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); |
|
1292 } else if (hw->phy_type == e1000_phy_gg82563) |
|
1293 e1000_write_phy_reg(hw, |
|
1294 GG82563_PHY_KMRN_MODE_CTRL, |
|
1295 0x1CC); |
|
1296 |
|
1297 ctrl_reg = er32(CTRL); |
|
1298 |
|
1299 if (hw->phy_type == e1000_phy_ife) { |
|
1300 /* force 100, set loopback */ |
|
1301 e1000_write_phy_reg(hw, PHY_CTRL, 0x6100); |
|
1302 |
|
1303 /* Now set up the MAC to the same speed/duplex as the PHY. */ |
|
1304 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
|
1305 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
|
1306 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
|
1307 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ |
|
1308 E1000_CTRL_FD); /* Force Duplex to FULL */ |
|
1309 } else { |
|
1310 /* force 1000, set loopback */ |
|
1311 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); |
|
1312 |
|
1313 /* Now set up the MAC to the same speed/duplex as the PHY. */ |
|
1314 ctrl_reg = er32(CTRL); |
|
1315 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
|
1316 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
|
1317 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
|
1318 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ |
|
1319 E1000_CTRL_FD); /* Force Duplex to FULL */ |
|
1320 } |
|
1321 |
|
1322 if (hw->media_type == e1000_media_type_copper && |
|
1323 hw->phy_type == e1000_phy_m88) |
|
1324 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ |
|
1325 else { |
|
1326 /* Set the ILOS bit on the fiber Nic is half |
|
1327 * duplex link is detected. */ |
|
1328 stat_reg = er32(STATUS); |
|
1329 if ((stat_reg & E1000_STATUS_FD) == 0) |
|
1330 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); |
|
1331 } |
|
1332 |
|
1333 ew32(CTRL, ctrl_reg); |
|
1334 |
|
1335 /* Disable the receiver on the PHY so when a cable is plugged in, the |
|
1336 * PHY does not begin to autoneg when a cable is reconnected to the NIC. |
|
1337 */ |
|
1338 if (hw->phy_type == e1000_phy_m88) |
|
1339 e1000_phy_disable_receiver(adapter); |
|
1340 |
|
1341 udelay(500); |
|
1342 |
|
1343 return 0; |
|
1344 } |
|
1345 |
|
1346 static int e1000_set_phy_loopback(struct e1000_adapter *adapter) |
|
1347 { |
|
1348 struct e1000_hw *hw = &adapter->hw; |
|
1349 u16 phy_reg = 0; |
|
1350 u16 count = 0; |
|
1351 |
|
1352 switch (hw->mac_type) { |
|
1353 case e1000_82543: |
|
1354 if (hw->media_type == e1000_media_type_copper) { |
|
1355 /* Attempt to setup Loopback mode on Non-integrated PHY. |
|
1356 * Some PHY registers get corrupted at random, so |
|
1357 * attempt this 10 times. |
|
1358 */ |
|
1359 while (e1000_nonintegrated_phy_loopback(adapter) && |
|
1360 count++ < 10); |
|
1361 if (count < 11) |
|
1362 return 0; |
|
1363 } |
|
1364 break; |
|
1365 |
|
1366 case e1000_82544: |
|
1367 case e1000_82540: |
|
1368 case e1000_82545: |
|
1369 case e1000_82545_rev_3: |
|
1370 case e1000_82546: |
|
1371 case e1000_82546_rev_3: |
|
1372 case e1000_82541: |
|
1373 case e1000_82541_rev_2: |
|
1374 case e1000_82547: |
|
1375 case e1000_82547_rev_2: |
|
1376 case e1000_82571: |
|
1377 case e1000_82572: |
|
1378 case e1000_82573: |
|
1379 case e1000_80003es2lan: |
|
1380 case e1000_ich8lan: |
|
1381 return e1000_integrated_phy_loopback(adapter); |
|
1382 break; |
|
1383 |
|
1384 default: |
|
1385 /* Default PHY loopback work is to read the MII |
|
1386 * control register and assert bit 14 (loopback mode). |
|
1387 */ |
|
1388 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); |
|
1389 phy_reg |= MII_CR_LOOPBACK; |
|
1390 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); |
|
1391 return 0; |
|
1392 break; |
|
1393 } |
|
1394 |
|
1395 return 8; |
|
1396 } |
|
1397 |
|
1398 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) |
|
1399 { |
|
1400 struct e1000_hw *hw = &adapter->hw; |
|
1401 u32 rctl; |
|
1402 |
|
1403 if (hw->media_type == e1000_media_type_fiber || |
|
1404 hw->media_type == e1000_media_type_internal_serdes) { |
|
1405 switch (hw->mac_type) { |
|
1406 case e1000_82545: |
|
1407 case e1000_82546: |
|
1408 case e1000_82545_rev_3: |
|
1409 case e1000_82546_rev_3: |
|
1410 return e1000_set_phy_loopback(adapter); |
|
1411 break; |
|
1412 case e1000_82571: |
|
1413 case e1000_82572: |
|
1414 #define E1000_SERDES_LB_ON 0x410 |
|
1415 e1000_set_phy_loopback(adapter); |
|
1416 ew32(SCTL, E1000_SERDES_LB_ON); |
|
1417 msleep(10); |
|
1418 return 0; |
|
1419 break; |
|
1420 default: |
|
1421 rctl = er32(RCTL); |
|
1422 rctl |= E1000_RCTL_LBM_TCVR; |
|
1423 ew32(RCTL, rctl); |
|
1424 return 0; |
|
1425 } |
|
1426 } else if (hw->media_type == e1000_media_type_copper) |
|
1427 return e1000_set_phy_loopback(adapter); |
|
1428 |
|
1429 return 7; |
|
1430 } |
|
1431 |
|
1432 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) |
|
1433 { |
|
1434 struct e1000_hw *hw = &adapter->hw; |
|
1435 u32 rctl; |
|
1436 u16 phy_reg; |
|
1437 |
|
1438 rctl = er32(RCTL); |
|
1439 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); |
|
1440 ew32(RCTL, rctl); |
|
1441 |
|
1442 switch (hw->mac_type) { |
|
1443 case e1000_82571: |
|
1444 case e1000_82572: |
|
1445 if (hw->media_type == e1000_media_type_fiber || |
|
1446 hw->media_type == e1000_media_type_internal_serdes) { |
|
1447 #define E1000_SERDES_LB_OFF 0x400 |
|
1448 ew32(SCTL, E1000_SERDES_LB_OFF); |
|
1449 msleep(10); |
|
1450 break; |
|
1451 } |
|
1452 /* Fall Through */ |
|
1453 case e1000_82545: |
|
1454 case e1000_82546: |
|
1455 case e1000_82545_rev_3: |
|
1456 case e1000_82546_rev_3: |
|
1457 default: |
|
1458 hw->autoneg = true; |
|
1459 if (hw->phy_type == e1000_phy_gg82563) |
|
1460 e1000_write_phy_reg(hw, |
|
1461 GG82563_PHY_KMRN_MODE_CTRL, |
|
1462 0x180); |
|
1463 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); |
|
1464 if (phy_reg & MII_CR_LOOPBACK) { |
|
1465 phy_reg &= ~MII_CR_LOOPBACK; |
|
1466 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); |
|
1467 e1000_phy_reset(hw); |
|
1468 } |
|
1469 break; |
|
1470 } |
|
1471 } |
|
1472 |
|
1473 static void e1000_create_lbtest_frame(struct sk_buff *skb, |
|
1474 unsigned int frame_size) |
|
1475 { |
|
1476 memset(skb->data, 0xFF, frame_size); |
|
1477 frame_size &= ~1; |
|
1478 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); |
|
1479 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); |
|
1480 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); |
|
1481 } |
|
1482 |
|
1483 static int e1000_check_lbtest_frame(struct sk_buff *skb, |
|
1484 unsigned int frame_size) |
|
1485 { |
|
1486 frame_size &= ~1; |
|
1487 if (*(skb->data + 3) == 0xFF) { |
|
1488 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && |
|
1489 (*(skb->data + frame_size / 2 + 12) == 0xAF)) { |
|
1490 return 0; |
|
1491 } |
|
1492 } |
|
1493 return 13; |
|
1494 } |
|
1495 |
|
1496 static int e1000_run_loopback_test(struct e1000_adapter *adapter) |
|
1497 { |
|
1498 struct e1000_hw *hw = &adapter->hw; |
|
1499 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; |
|
1500 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; |
|
1501 struct pci_dev *pdev = adapter->pdev; |
|
1502 int i, j, k, l, lc, good_cnt, ret_val=0; |
|
1503 unsigned long time; |
|
1504 |
|
1505 ew32(RDT, rxdr->count - 1); |
|
1506 |
|
1507 /* Calculate the loop count based on the largest descriptor ring |
|
1508 * The idea is to wrap the largest ring a number of times using 64 |
|
1509 * send/receive pairs during each loop |
|
1510 */ |
|
1511 |
|
1512 if (rxdr->count <= txdr->count) |
|
1513 lc = ((txdr->count / 64) * 2) + 1; |
|
1514 else |
|
1515 lc = ((rxdr->count / 64) * 2) + 1; |
|
1516 |
|
1517 k = l = 0; |
|
1518 for (j = 0; j <= lc; j++) { /* loop count loop */ |
|
1519 for (i = 0; i < 64; i++) { /* send the packets */ |
|
1520 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, |
|
1521 1024); |
|
1522 pci_dma_sync_single_for_device(pdev, |
|
1523 txdr->buffer_info[k].dma, |
|
1524 txdr->buffer_info[k].length, |
|
1525 PCI_DMA_TODEVICE); |
|
1526 if (unlikely(++k == txdr->count)) k = 0; |
|
1527 } |
|
1528 ew32(TDT, k); |
|
1529 msleep(200); |
|
1530 time = jiffies; /* set the start time for the receive */ |
|
1531 good_cnt = 0; |
|
1532 do { /* receive the sent packets */ |
|
1533 pci_dma_sync_single_for_cpu(pdev, |
|
1534 rxdr->buffer_info[l].dma, |
|
1535 rxdr->buffer_info[l].length, |
|
1536 PCI_DMA_FROMDEVICE); |
|
1537 |
|
1538 ret_val = e1000_check_lbtest_frame( |
|
1539 rxdr->buffer_info[l].skb, |
|
1540 1024); |
|
1541 if (!ret_val) |
|
1542 good_cnt++; |
|
1543 if (unlikely(++l == rxdr->count)) l = 0; |
|
1544 /* time + 20 msecs (200 msecs on 2.4) is more than |
|
1545 * enough time to complete the receives, if it's |
|
1546 * exceeded, break and error off |
|
1547 */ |
|
1548 } while (good_cnt < 64 && jiffies < (time + 20)); |
|
1549 if (good_cnt != 64) { |
|
1550 ret_val = 13; /* ret_val is the same as mis-compare */ |
|
1551 break; |
|
1552 } |
|
1553 if (jiffies >= (time + 2)) { |
|
1554 ret_val = 14; /* error code for time out error */ |
|
1555 break; |
|
1556 } |
|
1557 } /* end loop count loop */ |
|
1558 return ret_val; |
|
1559 } |
|
1560 |
|
1561 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) |
|
1562 { |
|
1563 struct e1000_hw *hw = &adapter->hw; |
|
1564 |
|
1565 /* PHY loopback cannot be performed if SoL/IDER |
|
1566 * sessions are active */ |
|
1567 if (e1000_check_phy_reset_block(hw)) { |
|
1568 DPRINTK(DRV, ERR, "Cannot do PHY loopback test " |
|
1569 "when SoL/IDER is active.\n"); |
|
1570 *data = 0; |
|
1571 goto out; |
|
1572 } |
|
1573 |
|
1574 *data = e1000_setup_desc_rings(adapter); |
|
1575 if (*data) |
|
1576 goto out; |
|
1577 *data = e1000_setup_loopback_test(adapter); |
|
1578 if (*data) |
|
1579 goto err_loopback; |
|
1580 *data = e1000_run_loopback_test(adapter); |
|
1581 e1000_loopback_cleanup(adapter); |
|
1582 |
|
1583 err_loopback: |
|
1584 e1000_free_desc_rings(adapter); |
|
1585 out: |
|
1586 return *data; |
|
1587 } |
|
1588 |
|
1589 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) |
|
1590 { |
|
1591 struct e1000_hw *hw = &adapter->hw; |
|
1592 *data = 0; |
|
1593 if (hw->media_type == e1000_media_type_internal_serdes) { |
|
1594 int i = 0; |
|
1595 hw->serdes_link_down = true; |
|
1596 |
|
1597 /* On some blade server designs, link establishment |
|
1598 * could take as long as 2-3 minutes */ |
|
1599 do { |
|
1600 e1000_check_for_link(hw); |
|
1601 if (!hw->serdes_link_down) |
|
1602 return *data; |
|
1603 msleep(20); |
|
1604 } while (i++ < 3750); |
|
1605 |
|
1606 *data = 1; |
|
1607 } else { |
|
1608 e1000_check_for_link(hw); |
|
1609 if (hw->autoneg) /* if auto_neg is set wait for it */ |
|
1610 msleep(4000); |
|
1611 |
|
1612 if (!(er32(STATUS) & E1000_STATUS_LU)) { |
|
1613 *data = 1; |
|
1614 } |
|
1615 } |
|
1616 return *data; |
|
1617 } |
|
1618 |
|
1619 static int e1000_get_sset_count(struct net_device *netdev, int sset) |
|
1620 { |
|
1621 switch (sset) { |
|
1622 case ETH_SS_TEST: |
|
1623 return E1000_TEST_LEN; |
|
1624 case ETH_SS_STATS: |
|
1625 return E1000_STATS_LEN; |
|
1626 default: |
|
1627 return -EOPNOTSUPP; |
|
1628 } |
|
1629 } |
|
1630 |
|
1631 static void e1000_diag_test(struct net_device *netdev, |
|
1632 struct ethtool_test *eth_test, u64 *data) |
|
1633 { |
|
1634 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1635 struct e1000_hw *hw = &adapter->hw; |
|
1636 bool if_running = netif_running(netdev); |
|
1637 |
|
1638 set_bit(__E1000_TESTING, &adapter->flags); |
|
1639 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { |
|
1640 /* Offline tests */ |
|
1641 |
|
1642 /* save speed, duplex, autoneg settings */ |
|
1643 u16 autoneg_advertised = hw->autoneg_advertised; |
|
1644 u8 forced_speed_duplex = hw->forced_speed_duplex; |
|
1645 u8 autoneg = hw->autoneg; |
|
1646 |
|
1647 DPRINTK(HW, INFO, "offline testing starting\n"); |
|
1648 |
|
1649 /* Link test performed before hardware reset so autoneg doesn't |
|
1650 * interfere with test result */ |
|
1651 if (e1000_link_test(adapter, &data[4])) |
|
1652 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1653 |
|
1654 if (if_running) |
|
1655 /* indicate we're in test mode */ |
|
1656 dev_close(netdev); |
|
1657 else |
|
1658 e1000_reset(adapter); |
|
1659 |
|
1660 if (e1000_reg_test(adapter, &data[0])) |
|
1661 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1662 |
|
1663 e1000_reset(adapter); |
|
1664 if (e1000_eeprom_test(adapter, &data[1])) |
|
1665 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1666 |
|
1667 e1000_reset(adapter); |
|
1668 if (e1000_intr_test(adapter, &data[2])) |
|
1669 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1670 |
|
1671 e1000_reset(adapter); |
|
1672 /* make sure the phy is powered up */ |
|
1673 e1000_power_up_phy(adapter); |
|
1674 if (e1000_loopback_test(adapter, &data[3])) |
|
1675 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1676 |
|
1677 /* restore speed, duplex, autoneg settings */ |
|
1678 hw->autoneg_advertised = autoneg_advertised; |
|
1679 hw->forced_speed_duplex = forced_speed_duplex; |
|
1680 hw->autoneg = autoneg; |
|
1681 |
|
1682 e1000_reset(adapter); |
|
1683 clear_bit(__E1000_TESTING, &adapter->flags); |
|
1684 if (if_running) |
|
1685 dev_open(netdev); |
|
1686 } else { |
|
1687 DPRINTK(HW, INFO, "online testing starting\n"); |
|
1688 /* Online tests */ |
|
1689 if (e1000_link_test(adapter, &data[4])) |
|
1690 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1691 |
|
1692 /* Online tests aren't run; pass by default */ |
|
1693 data[0] = 0; |
|
1694 data[1] = 0; |
|
1695 data[2] = 0; |
|
1696 data[3] = 0; |
|
1697 |
|
1698 clear_bit(__E1000_TESTING, &adapter->flags); |
|
1699 } |
|
1700 msleep_interruptible(4 * 1000); |
|
1701 } |
|
1702 |
|
1703 static int e1000_wol_exclusion(struct e1000_adapter *adapter, |
|
1704 struct ethtool_wolinfo *wol) |
|
1705 { |
|
1706 struct e1000_hw *hw = &adapter->hw; |
|
1707 int retval = 1; /* fail by default */ |
|
1708 |
|
1709 switch (hw->device_id) { |
|
1710 case E1000_DEV_ID_82542: |
|
1711 case E1000_DEV_ID_82543GC_FIBER: |
|
1712 case E1000_DEV_ID_82543GC_COPPER: |
|
1713 case E1000_DEV_ID_82544EI_FIBER: |
|
1714 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
1715 case E1000_DEV_ID_82545EM_FIBER: |
|
1716 case E1000_DEV_ID_82545EM_COPPER: |
|
1717 case E1000_DEV_ID_82546GB_QUAD_COPPER: |
|
1718 case E1000_DEV_ID_82546GB_PCIE: |
|
1719 case E1000_DEV_ID_82571EB_SERDES_QUAD: |
|
1720 /* these don't support WoL at all */ |
|
1721 wol->supported = 0; |
|
1722 break; |
|
1723 case E1000_DEV_ID_82546EB_FIBER: |
|
1724 case E1000_DEV_ID_82546GB_FIBER: |
|
1725 case E1000_DEV_ID_82571EB_FIBER: |
|
1726 case E1000_DEV_ID_82571EB_SERDES: |
|
1727 case E1000_DEV_ID_82571EB_COPPER: |
|
1728 /* Wake events not supported on port B */ |
|
1729 if (er32(STATUS) & E1000_STATUS_FUNC_1) { |
|
1730 wol->supported = 0; |
|
1731 break; |
|
1732 } |
|
1733 /* return success for non excluded adapter ports */ |
|
1734 retval = 0; |
|
1735 break; |
|
1736 case E1000_DEV_ID_82571EB_QUAD_COPPER: |
|
1737 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
1738 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: |
|
1739 case E1000_DEV_ID_82571PT_QUAD_COPPER: |
|
1740 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1741 /* quad port adapters only support WoL on port A */ |
|
1742 if (!adapter->quad_port_a) { |
|
1743 wol->supported = 0; |
|
1744 break; |
|
1745 } |
|
1746 /* return success for non excluded adapter ports */ |
|
1747 retval = 0; |
|
1748 break; |
|
1749 default: |
|
1750 /* dual port cards only support WoL on port A from now on |
|
1751 * unless it was enabled in the eeprom for port B |
|
1752 * so exclude FUNC_1 ports from having WoL enabled */ |
|
1753 if (er32(STATUS) & E1000_STATUS_FUNC_1 && |
|
1754 !adapter->eeprom_wol) { |
|
1755 wol->supported = 0; |
|
1756 break; |
|
1757 } |
|
1758 |
|
1759 retval = 0; |
|
1760 } |
|
1761 |
|
1762 return retval; |
|
1763 } |
|
1764 |
|
1765 static void e1000_get_wol(struct net_device *netdev, |
|
1766 struct ethtool_wolinfo *wol) |
|
1767 { |
|
1768 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1769 struct e1000_hw *hw = &adapter->hw; |
|
1770 |
|
1771 wol->supported = WAKE_UCAST | WAKE_MCAST | |
|
1772 WAKE_BCAST | WAKE_MAGIC; |
|
1773 wol->wolopts = 0; |
|
1774 |
|
1775 /* this function will set ->supported = 0 and return 1 if wol is not |
|
1776 * supported by this hardware */ |
|
1777 if (e1000_wol_exclusion(adapter, wol) || |
|
1778 !device_can_wakeup(&adapter->pdev->dev)) |
|
1779 return; |
|
1780 |
|
1781 /* apply any specific unsupported masks here */ |
|
1782 switch (hw->device_id) { |
|
1783 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1784 /* KSP3 does not suppport UCAST wake-ups */ |
|
1785 wol->supported &= ~WAKE_UCAST; |
|
1786 |
|
1787 if (adapter->wol & E1000_WUFC_EX) |
|
1788 DPRINTK(DRV, ERR, "Interface does not support " |
|
1789 "directed (unicast) frame wake-up packets\n"); |
|
1790 break; |
|
1791 default: |
|
1792 break; |
|
1793 } |
|
1794 |
|
1795 if (adapter->wol & E1000_WUFC_EX) |
|
1796 wol->wolopts |= WAKE_UCAST; |
|
1797 if (adapter->wol & E1000_WUFC_MC) |
|
1798 wol->wolopts |= WAKE_MCAST; |
|
1799 if (adapter->wol & E1000_WUFC_BC) |
|
1800 wol->wolopts |= WAKE_BCAST; |
|
1801 if (adapter->wol & E1000_WUFC_MAG) |
|
1802 wol->wolopts |= WAKE_MAGIC; |
|
1803 |
|
1804 return; |
|
1805 } |
|
1806 |
|
1807 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
|
1808 { |
|
1809 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1810 struct e1000_hw *hw = &adapter->hw; |
|
1811 |
|
1812 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) |
|
1813 return -EOPNOTSUPP; |
|
1814 |
|
1815 if (e1000_wol_exclusion(adapter, wol) || |
|
1816 !device_can_wakeup(&adapter->pdev->dev)) |
|
1817 return wol->wolopts ? -EOPNOTSUPP : 0; |
|
1818 |
|
1819 switch (hw->device_id) { |
|
1820 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1821 if (wol->wolopts & WAKE_UCAST) { |
|
1822 DPRINTK(DRV, ERR, "Interface does not support " |
|
1823 "directed (unicast) frame wake-up packets\n"); |
|
1824 return -EOPNOTSUPP; |
|
1825 } |
|
1826 break; |
|
1827 default: |
|
1828 break; |
|
1829 } |
|
1830 |
|
1831 /* these settings will always override what we currently have */ |
|
1832 adapter->wol = 0; |
|
1833 |
|
1834 if (wol->wolopts & WAKE_UCAST) |
|
1835 adapter->wol |= E1000_WUFC_EX; |
|
1836 if (wol->wolopts & WAKE_MCAST) |
|
1837 adapter->wol |= E1000_WUFC_MC; |
|
1838 if (wol->wolopts & WAKE_BCAST) |
|
1839 adapter->wol |= E1000_WUFC_BC; |
|
1840 if (wol->wolopts & WAKE_MAGIC) |
|
1841 adapter->wol |= E1000_WUFC_MAG; |
|
1842 |
|
1843 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
1844 |
|
1845 return 0; |
|
1846 } |
|
1847 |
|
1848 /* toggle LED 4 times per second = 2 "blinks" per second */ |
|
1849 #define E1000_ID_INTERVAL (HZ/4) |
|
1850 |
|
1851 /* bit defines for adapter->led_status */ |
|
1852 #define E1000_LED_ON 0 |
|
1853 |
|
1854 static void e1000_led_blink_callback(unsigned long data) |
|
1855 { |
|
1856 struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
|
1857 struct e1000_hw *hw = &adapter->hw; |
|
1858 |
|
1859 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status)) |
|
1860 e1000_led_off(hw); |
|
1861 else |
|
1862 e1000_led_on(hw); |
|
1863 |
|
1864 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); |
|
1865 } |
|
1866 |
|
1867 static int e1000_phys_id(struct net_device *netdev, u32 data) |
|
1868 { |
|
1869 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1870 struct e1000_hw *hw = &adapter->hw; |
|
1871 |
|
1872 if (!data) |
|
1873 data = INT_MAX; |
|
1874 |
|
1875 if (hw->mac_type < e1000_82571) { |
|
1876 if (!adapter->blink_timer.function) { |
|
1877 init_timer(&adapter->blink_timer); |
|
1878 adapter->blink_timer.function = e1000_led_blink_callback; |
|
1879 adapter->blink_timer.data = (unsigned long)adapter; |
|
1880 } |
|
1881 e1000_setup_led(hw); |
|
1882 mod_timer(&adapter->blink_timer, jiffies); |
|
1883 msleep_interruptible(data * 1000); |
|
1884 del_timer_sync(&adapter->blink_timer); |
|
1885 } else if (hw->phy_type == e1000_phy_ife) { |
|
1886 if (!adapter->blink_timer.function) { |
|
1887 init_timer(&adapter->blink_timer); |
|
1888 adapter->blink_timer.function = e1000_led_blink_callback; |
|
1889 adapter->blink_timer.data = (unsigned long)adapter; |
|
1890 } |
|
1891 mod_timer(&adapter->blink_timer, jiffies); |
|
1892 msleep_interruptible(data * 1000); |
|
1893 del_timer_sync(&adapter->blink_timer); |
|
1894 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0); |
|
1895 } else { |
|
1896 e1000_blink_led_start(hw); |
|
1897 msleep_interruptible(data * 1000); |
|
1898 } |
|
1899 |
|
1900 e1000_led_off(hw); |
|
1901 clear_bit(E1000_LED_ON, &adapter->led_status); |
|
1902 e1000_cleanup_led(hw); |
|
1903 |
|
1904 return 0; |
|
1905 } |
|
1906 |
|
1907 static int e1000_nway_reset(struct net_device *netdev) |
|
1908 { |
|
1909 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1910 if (netif_running(netdev)) |
|
1911 e1000_reinit_locked(adapter); |
|
1912 return 0; |
|
1913 } |
|
1914 |
|
1915 static void e1000_get_ethtool_stats(struct net_device *netdev, |
|
1916 struct ethtool_stats *stats, u64 *data) |
|
1917 { |
|
1918 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1919 int i; |
|
1920 |
|
1921 e1000_update_stats(adapter); |
|
1922 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { |
|
1923 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; |
|
1924 data[i] = (e1000_gstrings_stats[i].sizeof_stat == |
|
1925 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; |
|
1926 } |
|
1927 /* BUG_ON(i != E1000_STATS_LEN); */ |
|
1928 } |
|
1929 |
|
1930 static void e1000_get_strings(struct net_device *netdev, u32 stringset, |
|
1931 u8 *data) |
|
1932 { |
|
1933 u8 *p = data; |
|
1934 int i; |
|
1935 |
|
1936 switch (stringset) { |
|
1937 case ETH_SS_TEST: |
|
1938 memcpy(data, *e1000_gstrings_test, |
|
1939 sizeof(e1000_gstrings_test)); |
|
1940 break; |
|
1941 case ETH_SS_STATS: |
|
1942 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { |
|
1943 memcpy(p, e1000_gstrings_stats[i].stat_string, |
|
1944 ETH_GSTRING_LEN); |
|
1945 p += ETH_GSTRING_LEN; |
|
1946 } |
|
1947 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ |
|
1948 break; |
|
1949 } |
|
1950 } |
|
1951 |
|
1952 static const struct ethtool_ops e1000_ethtool_ops = { |
|
1953 .get_settings = e1000_get_settings, |
|
1954 .set_settings = e1000_set_settings, |
|
1955 .get_drvinfo = e1000_get_drvinfo, |
|
1956 .get_regs_len = e1000_get_regs_len, |
|
1957 .get_regs = e1000_get_regs, |
|
1958 .get_wol = e1000_get_wol, |
|
1959 .set_wol = e1000_set_wol, |
|
1960 .get_msglevel = e1000_get_msglevel, |
|
1961 .set_msglevel = e1000_set_msglevel, |
|
1962 .nway_reset = e1000_nway_reset, |
|
1963 .get_link = ethtool_op_get_link, |
|
1964 .get_eeprom_len = e1000_get_eeprom_len, |
|
1965 .get_eeprom = e1000_get_eeprom, |
|
1966 .set_eeprom = e1000_set_eeprom, |
|
1967 .get_ringparam = e1000_get_ringparam, |
|
1968 .set_ringparam = e1000_set_ringparam, |
|
1969 .get_pauseparam = e1000_get_pauseparam, |
|
1970 .set_pauseparam = e1000_set_pauseparam, |
|
1971 .get_rx_csum = e1000_get_rx_csum, |
|
1972 .set_rx_csum = e1000_set_rx_csum, |
|
1973 .get_tx_csum = e1000_get_tx_csum, |
|
1974 .set_tx_csum = e1000_set_tx_csum, |
|
1975 .set_sg = ethtool_op_set_sg, |
|
1976 .set_tso = e1000_set_tso, |
|
1977 .self_test = e1000_diag_test, |
|
1978 .get_strings = e1000_get_strings, |
|
1979 .phys_id = e1000_phys_id, |
|
1980 .get_ethtool_stats = e1000_get_ethtool_stats, |
|
1981 .get_sset_count = e1000_get_sset_count, |
|
1982 }; |
|
1983 |
|
1984 void e1000_set_ethtool_ops(struct net_device *netdev) |
|
1985 { |
|
1986 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); |
|
1987 } |