devices/e1000/e1000_main-2.6.18-orig.c
changeset 667 9feff35c9617
equal deleted inserted replaced
666:825ead3e0559 667:9feff35c9617
       
     1 /*******************************************************************************
       
     2 
       
     3   
       
     4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
       
     5   
       
     6   This program is free software; you can redistribute it and/or modify it 
       
     7   under the terms of the GNU General Public License as published by the Free 
       
     8   Software Foundation; either version 2 of the License, or (at your option) 
       
     9   any later version.
       
    10   
       
    11   This program is distributed in the hope that it will be useful, but WITHOUT 
       
    12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
       
    13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
       
    14   more details.
       
    15   
       
    16   You should have received a copy of the GNU General Public License along with
       
    17   this program; if not, write to the Free Software Foundation, Inc., 59 
       
    18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
       
    19   
       
    20   The full GNU General Public License is included in this distribution in the
       
    21   file called LICENSE.
       
    22   
       
    23   Contact Information:
       
    24   Linux NICS <linux.nics@intel.com>
       
    25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    27 
       
    28 *******************************************************************************/
       
    29 
       
    30 #include "e1000.h"
       
    31 
       
    32 char e1000_driver_name[] = "e1000";
       
    33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
       
    34 #ifndef CONFIG_E1000_NAPI
       
    35 #define DRIVERNAPI
       
    36 #else
       
    37 #define DRIVERNAPI "-NAPI"
       
    38 #endif
       
    39 #define DRV_VERSION "7.1.9-k4"DRIVERNAPI
       
    40 char e1000_driver_version[] = DRV_VERSION;
       
    41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
       
    42 
       
    43 /* e1000_pci_tbl - PCI Device ID Table
       
    44  *
       
    45  * Last entry must be all 0s
       
    46  *
       
    47  * Macro expands to...
       
    48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
       
    49  */
       
    50 static struct pci_device_id e1000_pci_tbl[] = {
       
    51 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
       
    52 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
       
    53 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
       
    54 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
       
    55 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
       
    56 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
       
    57 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
       
    58 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
       
    59 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
       
    60 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
       
    61 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
       
    62 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
       
    63 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
       
    64 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
       
    65 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
       
    66 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
       
    67 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
       
    68 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
       
    69 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
       
    70 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
       
    71 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
       
    72 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
       
    73 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
       
    74 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
       
    75 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
       
    76 	INTEL_E1000_ETHERNET_DEVICE(0x1049),
       
    77 	INTEL_E1000_ETHERNET_DEVICE(0x104A),
       
    78 	INTEL_E1000_ETHERNET_DEVICE(0x104B),
       
    79 	INTEL_E1000_ETHERNET_DEVICE(0x104C),
       
    80 	INTEL_E1000_ETHERNET_DEVICE(0x104D),
       
    81 	INTEL_E1000_ETHERNET_DEVICE(0x105E),
       
    82 	INTEL_E1000_ETHERNET_DEVICE(0x105F),
       
    83 	INTEL_E1000_ETHERNET_DEVICE(0x1060),
       
    84 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
       
    85 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
       
    86 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
       
    87 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
       
    88 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
       
    89 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
       
    90 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
       
    91 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
       
    92 	INTEL_E1000_ETHERNET_DEVICE(0x107D),
       
    93 	INTEL_E1000_ETHERNET_DEVICE(0x107E),
       
    94 	INTEL_E1000_ETHERNET_DEVICE(0x107F),
       
    95 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
       
    96 	INTEL_E1000_ETHERNET_DEVICE(0x108B),
       
    97 	INTEL_E1000_ETHERNET_DEVICE(0x108C),
       
    98 	INTEL_E1000_ETHERNET_DEVICE(0x1096),
       
    99 	INTEL_E1000_ETHERNET_DEVICE(0x1098),
       
   100 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
       
   101 	INTEL_E1000_ETHERNET_DEVICE(0x109A),
       
   102 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
       
   103 	INTEL_E1000_ETHERNET_DEVICE(0x10B9),
       
   104 	INTEL_E1000_ETHERNET_DEVICE(0x10BA),
       
   105 	INTEL_E1000_ETHERNET_DEVICE(0x10BB),
       
   106 	/* required last entry */
       
   107 	{0,}
       
   108 };
       
   109 
       
   110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
   111 
       
   112 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
   113                                     struct e1000_tx_ring *txdr);
       
   114 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
   115                                     struct e1000_rx_ring *rxdr);
       
   116 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
   117                                     struct e1000_tx_ring *tx_ring);
       
   118 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
   119                                     struct e1000_rx_ring *rx_ring);
       
   120 
       
   121 /* Local Function Prototypes */
       
   122 
       
   123 static int e1000_init_module(void);
       
   124 static void e1000_exit_module(void);
       
   125 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
       
   126 static void __devexit e1000_remove(struct pci_dev *pdev);
       
   127 static int e1000_alloc_queues(struct e1000_adapter *adapter);
       
   128 static int e1000_sw_init(struct e1000_adapter *adapter);
       
   129 static int e1000_open(struct net_device *netdev);
       
   130 static int e1000_close(struct net_device *netdev);
       
   131 static void e1000_configure_tx(struct e1000_adapter *adapter);
       
   132 static void e1000_configure_rx(struct e1000_adapter *adapter);
       
   133 static void e1000_setup_rctl(struct e1000_adapter *adapter);
       
   134 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
       
   135 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
       
   136 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
   137                                 struct e1000_tx_ring *tx_ring);
       
   138 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
   139                                 struct e1000_rx_ring *rx_ring);
       
   140 static void e1000_set_multi(struct net_device *netdev);
       
   141 static void e1000_update_phy_info(unsigned long data);
       
   142 static void e1000_watchdog(unsigned long data);
       
   143 static void e1000_82547_tx_fifo_stall(unsigned long data);
       
   144 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
       
   145 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
       
   146 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
       
   147 static int e1000_set_mac(struct net_device *netdev, void *p);
       
   148 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
       
   149 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
   150                                     struct e1000_tx_ring *tx_ring);
       
   151 #ifdef CONFIG_E1000_NAPI
       
   152 static int e1000_clean(struct net_device *poll_dev, int *budget);
       
   153 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   154                                     struct e1000_rx_ring *rx_ring,
       
   155                                     int *work_done, int work_to_do);
       
   156 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   157                                        struct e1000_rx_ring *rx_ring,
       
   158                                        int *work_done, int work_to_do);
       
   159 #else
       
   160 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   161                                     struct e1000_rx_ring *rx_ring);
       
   162 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   163                                        struct e1000_rx_ring *rx_ring);
       
   164 #endif
       
   165 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
   166                                    struct e1000_rx_ring *rx_ring,
       
   167 				   int cleaned_count);
       
   168 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
   169                                       struct e1000_rx_ring *rx_ring,
       
   170 				      int cleaned_count);
       
   171 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
       
   172 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
   173 			   int cmd);
       
   174 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
       
   175 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
       
   176 static void e1000_tx_timeout(struct net_device *dev);
       
   177 static void e1000_reset_task(struct net_device *dev);
       
   178 static void e1000_smartspeed(struct e1000_adapter *adapter);
       
   179 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
   180                                        struct sk_buff *skb);
       
   181 
       
   182 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
       
   183 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
       
   184 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
       
   185 static void e1000_restore_vlan(struct e1000_adapter *adapter);
       
   186 
       
   187 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
       
   188 #ifdef CONFIG_PM
       
   189 static int e1000_resume(struct pci_dev *pdev);
       
   190 #endif
       
   191 static void e1000_shutdown(struct pci_dev *pdev);
       
   192 
       
   193 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   194 /* for netdump / net console */
       
   195 static void e1000_netpoll (struct net_device *netdev);
       
   196 #endif
       
   197 
       
   198 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
   199                      pci_channel_state_t state);
       
   200 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
       
   201 static void e1000_io_resume(struct pci_dev *pdev);
       
   202 
       
   203 static struct pci_error_handlers e1000_err_handler = {
       
   204 	.error_detected = e1000_io_error_detected,
       
   205 	.slot_reset = e1000_io_slot_reset,
       
   206 	.resume = e1000_io_resume,
       
   207 };
       
   208 
       
   209 static struct pci_driver e1000_driver = {
       
   210 	.name     = e1000_driver_name,
       
   211 	.id_table = e1000_pci_tbl,
       
   212 	.probe    = e1000_probe,
       
   213 	.remove   = __devexit_p(e1000_remove),
       
   214 	/* Power Managment Hooks */
       
   215 	.suspend  = e1000_suspend,
       
   216 #ifdef CONFIG_PM
       
   217 	.resume   = e1000_resume,
       
   218 #endif
       
   219 	.shutdown = e1000_shutdown,
       
   220 	.err_handler = &e1000_err_handler
       
   221 };
       
   222 
       
   223 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
       
   224 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
       
   225 MODULE_LICENSE("GPL");
       
   226 MODULE_VERSION(DRV_VERSION);
       
   227 
       
   228 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
       
   229 module_param(debug, int, 0);
       
   230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   231 
       
   232 /**
       
   233  * e1000_init_module - Driver Registration Routine
       
   234  *
       
   235  * e1000_init_module is the first routine called when the driver is
       
   236  * loaded. All it does is register with the PCI subsystem.
       
   237  **/
       
   238 
       
   239 static int __init
       
   240 e1000_init_module(void)
       
   241 {
       
   242 	int ret;
       
   243 	printk(KERN_INFO "%s - version %s\n",
       
   244 	       e1000_driver_string, e1000_driver_version);
       
   245 
       
   246 	printk(KERN_INFO "%s\n", e1000_copyright);
       
   247 
       
   248 	ret = pci_module_init(&e1000_driver);
       
   249 
       
   250 	return ret;
       
   251 }
       
   252 
       
   253 module_init(e1000_init_module);
       
   254 
       
   255 /**
       
   256  * e1000_exit_module - Driver Exit Cleanup Routine
       
   257  *
       
   258  * e1000_exit_module is called just before the driver is removed
       
   259  * from memory.
       
   260  **/
       
   261 
       
   262 static void __exit
       
   263 e1000_exit_module(void)
       
   264 {
       
   265 	pci_unregister_driver(&e1000_driver);
       
   266 }
       
   267 
       
   268 module_exit(e1000_exit_module);
       
   269 
       
   270 static int e1000_request_irq(struct e1000_adapter *adapter)
       
   271 {
       
   272 	struct net_device *netdev = adapter->netdev;
       
   273 	int flags, err = 0;
       
   274 
       
   275 	flags = IRQF_SHARED;
       
   276 #ifdef CONFIG_PCI_MSI
       
   277 	if (adapter->hw.mac_type > e1000_82547_rev_2) {
       
   278 		adapter->have_msi = TRUE;
       
   279 		if ((err = pci_enable_msi(adapter->pdev))) {
       
   280 			DPRINTK(PROBE, ERR,
       
   281 			 "Unable to allocate MSI interrupt Error: %d\n", err);
       
   282 			adapter->have_msi = FALSE;
       
   283 		}
       
   284 	}
       
   285 	if (adapter->have_msi)
       
   286 		flags &= ~IRQF_SHARED;
       
   287 #endif
       
   288 	if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
       
   289 	                       netdev->name, netdev)))
       
   290 		DPRINTK(PROBE, ERR,
       
   291 		        "Unable to allocate interrupt Error: %d\n", err);
       
   292 
       
   293 	return err;
       
   294 }
       
   295 
       
   296 static void e1000_free_irq(struct e1000_adapter *adapter)
       
   297 {
       
   298 	struct net_device *netdev = adapter->netdev;
       
   299 
       
   300 	free_irq(adapter->pdev->irq, netdev);
       
   301 
       
   302 #ifdef CONFIG_PCI_MSI
       
   303 	if (adapter->have_msi)
       
   304 		pci_disable_msi(adapter->pdev);
       
   305 #endif
       
   306 }
       
   307 
       
   308 /**
       
   309  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
   310  * @adapter: board private structure
       
   311  **/
       
   312 
       
   313 static void
       
   314 e1000_irq_disable(struct e1000_adapter *adapter)
       
   315 {
       
   316 	atomic_inc(&adapter->irq_sem);
       
   317 	E1000_WRITE_REG(&adapter->hw, IMC, ~0);
       
   318 	E1000_WRITE_FLUSH(&adapter->hw);
       
   319 	synchronize_irq(adapter->pdev->irq);
       
   320 }
       
   321 
       
   322 /**
       
   323  * e1000_irq_enable - Enable default interrupt generation settings
       
   324  * @adapter: board private structure
       
   325  **/
       
   326 
       
   327 static void
       
   328 e1000_irq_enable(struct e1000_adapter *adapter)
       
   329 {
       
   330 	if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
       
   331 		E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
       
   332 		E1000_WRITE_FLUSH(&adapter->hw);
       
   333 	}
       
   334 }
       
   335 
       
   336 static void
       
   337 e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
   338 {
       
   339 	struct net_device *netdev = adapter->netdev;
       
   340 	uint16_t vid = adapter->hw.mng_cookie.vlan_id;
       
   341 	uint16_t old_vid = adapter->mng_vlan_id;
       
   342 	if (adapter->vlgrp) {
       
   343 		if (!adapter->vlgrp->vlan_devices[vid]) {
       
   344 			if (adapter->hw.mng_cookie.status &
       
   345 				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
       
   346 				e1000_vlan_rx_add_vid(netdev, vid);
       
   347 				adapter->mng_vlan_id = vid;
       
   348 			} else
       
   349 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
   350 
       
   351 			if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
       
   352 					(vid != old_vid) &&
       
   353 					!adapter->vlgrp->vlan_devices[old_vid])
       
   354 				e1000_vlan_rx_kill_vid(netdev, old_vid);
       
   355 		} else
       
   356 			adapter->mng_vlan_id = vid;
       
   357 	}
       
   358 }
       
   359 
       
   360 /**
       
   361  * e1000_release_hw_control - release control of the h/w to f/w
       
   362  * @adapter: address of board private structure
       
   363  *
       
   364  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   365  * For ASF and Pass Through versions of f/w this means that the
       
   366  * driver is no longer loaded. For AMT version (only with 82573) i
       
   367  * of the f/w this means that the netowrk i/f is closed.
       
   368  *
       
   369  **/
       
   370 
       
   371 static void
       
   372 e1000_release_hw_control(struct e1000_adapter *adapter)
       
   373 {
       
   374 	uint32_t ctrl_ext;
       
   375 	uint32_t swsm;
       
   376 	uint32_t extcnf;
       
   377 
       
   378 	/* Let firmware taken over control of h/w */
       
   379 	switch (adapter->hw.mac_type) {
       
   380 	case e1000_82571:
       
   381 	case e1000_82572:
       
   382 	case e1000_80003es2lan:
       
   383 		ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
   384 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
       
   385 				ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
       
   386 		break;
       
   387 	case e1000_82573:
       
   388 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
   389 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
   390 				swsm & ~E1000_SWSM_DRV_LOAD);
       
   391 	case e1000_ich8lan:
       
   392 		extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
   393 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
       
   394 				extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
       
   395 		break;
       
   396 	default:
       
   397 		break;
       
   398 	}
       
   399 }
       
   400 
       
   401 /**
       
   402  * e1000_get_hw_control - get control of the h/w from f/w
       
   403  * @adapter: address of board private structure
       
   404  *
       
   405  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   406  * For ASF and Pass Through versions of f/w this means that
       
   407  * the driver is loaded. For AMT version (only with 82573)
       
   408  * of the f/w this means that the netowrk i/f is open.
       
   409  *
       
   410  **/
       
   411 
       
   412 static void
       
   413 e1000_get_hw_control(struct e1000_adapter *adapter)
       
   414 {
       
   415 	uint32_t ctrl_ext;
       
   416 	uint32_t swsm;
       
   417 	uint32_t extcnf;
       
   418 	/* Let firmware know the driver has taken over */
       
   419 	switch (adapter->hw.mac_type) {
       
   420 	case e1000_82571:
       
   421 	case e1000_82572:
       
   422 	case e1000_80003es2lan:
       
   423 		ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
   424 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
       
   425 				ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
       
   426 		break;
       
   427 	case e1000_82573:
       
   428 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
   429 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
   430 				swsm | E1000_SWSM_DRV_LOAD);
       
   431 		break;
       
   432 	case e1000_ich8lan:
       
   433 		extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
       
   434 		E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
       
   435 				extcnf | E1000_EXTCNF_CTRL_SWFLAG);
       
   436 		break;
       
   437 	default:
       
   438 		break;
       
   439 	}
       
   440 }
       
   441 
       
   442 int
       
   443 e1000_up(struct e1000_adapter *adapter)
       
   444 {
       
   445 	struct net_device *netdev = adapter->netdev;
       
   446 	int i;
       
   447 
       
   448 	/* hardware has been reset, we need to reload some things */
       
   449 
       
   450 	e1000_set_multi(netdev);
       
   451 
       
   452 	e1000_restore_vlan(adapter);
       
   453 
       
   454 	e1000_configure_tx(adapter);
       
   455 	e1000_setup_rctl(adapter);
       
   456 	e1000_configure_rx(adapter);
       
   457 	/* call E1000_DESC_UNUSED which always leaves
       
   458 	 * at least 1 descriptor unused to make sure
       
   459 	 * next_to_use != next_to_clean */
       
   460 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
   461 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
       
   462 		adapter->alloc_rx_buf(adapter, ring,
       
   463 		                      E1000_DESC_UNUSED(ring));
       
   464 	}
       
   465 
       
   466 	adapter->tx_queue_len = netdev->tx_queue_len;
       
   467 
       
   468 	mod_timer(&adapter->watchdog_timer, jiffies);
       
   469 
       
   470 #ifdef CONFIG_E1000_NAPI
       
   471 	netif_poll_enable(netdev);
       
   472 #endif
       
   473 	e1000_irq_enable(adapter);
       
   474 
       
   475 	return 0;
       
   476 }
       
   477 
       
   478 /**
       
   479  * e1000_power_up_phy - restore link in case the phy was powered down
       
   480  * @adapter: address of board private structure
       
   481  *
       
   482  * The phy may be powered down to save power and turn off link when the
       
   483  * driver is unloaded and wake on lan is not enabled (among others)
       
   484  * *** this routine MUST be followed by a call to e1000_reset ***
       
   485  *
       
   486  **/
       
   487 
       
   488 static void e1000_power_up_phy(struct e1000_adapter *adapter)
       
   489 {
       
   490 	uint16_t mii_reg = 0;
       
   491 
       
   492 	/* Just clear the power down bit to wake the phy back up */
       
   493 	if (adapter->hw.media_type == e1000_media_type_copper) {
       
   494 		/* according to the manual, the phy will retain its
       
   495 		 * settings across a power-down/up cycle */
       
   496 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
       
   497 		mii_reg &= ~MII_CR_POWER_DOWN;
       
   498 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
       
   499 	}
       
   500 }
       
   501 
       
   502 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
   503 {
       
   504 	boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
       
   505 	                              e1000_check_mng_mode(&adapter->hw);
       
   506 	/* Power down the PHY so no link is implied when interface is down
       
   507 	 * The PHY cannot be powered down if any of the following is TRUE
       
   508 	 * (a) WoL is enabled
       
   509 	 * (b) AMT is active
       
   510 	 * (c) SoL/IDER session is active */
       
   511 	if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
       
   512 	    adapter->hw.mac_type != e1000_ich8lan &&
       
   513 	    adapter->hw.media_type == e1000_media_type_copper &&
       
   514 	    !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
       
   515 	    !mng_mode_enabled &&
       
   516 	    !e1000_check_phy_reset_block(&adapter->hw)) {
       
   517 		uint16_t mii_reg = 0;
       
   518 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
       
   519 		mii_reg |= MII_CR_POWER_DOWN;
       
   520 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
       
   521 		mdelay(1);
       
   522 	}
       
   523 }
       
   524 
       
   525 void
       
   526 e1000_down(struct e1000_adapter *adapter)
       
   527 {
       
   528 	struct net_device *netdev = adapter->netdev;
       
   529 
       
   530 	e1000_irq_disable(adapter);
       
   531 
       
   532 	del_timer_sync(&adapter->tx_fifo_stall_timer);
       
   533 	del_timer_sync(&adapter->watchdog_timer);
       
   534 	del_timer_sync(&adapter->phy_info_timer);
       
   535 
       
   536 #ifdef CONFIG_E1000_NAPI
       
   537 	netif_poll_disable(netdev);
       
   538 #endif
       
   539 	netdev->tx_queue_len = adapter->tx_queue_len;
       
   540 	adapter->link_speed = 0;
       
   541 	adapter->link_duplex = 0;
       
   542 	netif_carrier_off(netdev);
       
   543 	netif_stop_queue(netdev);
       
   544 
       
   545 	e1000_reset(adapter);
       
   546 	e1000_clean_all_tx_rings(adapter);
       
   547 	e1000_clean_all_rx_rings(adapter);
       
   548 }
       
   549 
       
   550 void
       
   551 e1000_reinit_locked(struct e1000_adapter *adapter)
       
   552 {
       
   553 	WARN_ON(in_interrupt());
       
   554 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   555 		msleep(1);
       
   556 	e1000_down(adapter);
       
   557 	e1000_up(adapter);
       
   558 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   559 }
       
   560 
       
   561 void
       
   562 e1000_reset(struct e1000_adapter *adapter)
       
   563 {
       
   564 	uint32_t pba, manc;
       
   565 	uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
       
   566 
       
   567 	/* Repartition Pba for greater than 9k mtu
       
   568 	 * To take effect CTRL.RST is required.
       
   569 	 */
       
   570 
       
   571 	switch (adapter->hw.mac_type) {
       
   572 	case e1000_82547:
       
   573 	case e1000_82547_rev_2:
       
   574 		pba = E1000_PBA_30K;
       
   575 		break;
       
   576 	case e1000_82571:
       
   577 	case e1000_82572:
       
   578 	case e1000_80003es2lan:
       
   579 		pba = E1000_PBA_38K;
       
   580 		break;
       
   581 	case e1000_82573:
       
   582 		pba = E1000_PBA_12K;
       
   583 		break;
       
   584 	case e1000_ich8lan:
       
   585 		pba = E1000_PBA_8K;
       
   586 		break;
       
   587 	default:
       
   588 		pba = E1000_PBA_48K;
       
   589 		break;
       
   590 	}
       
   591 
       
   592 	if ((adapter->hw.mac_type != e1000_82573) &&
       
   593 	   (adapter->netdev->mtu > E1000_RXBUFFER_8192))
       
   594 		pba -= 8; /* allocate more FIFO for Tx */
       
   595 
       
   596 
       
   597 	if (adapter->hw.mac_type == e1000_82547) {
       
   598 		adapter->tx_fifo_head = 0;
       
   599 		adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
       
   600 		adapter->tx_fifo_size =
       
   601 			(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
       
   602 		atomic_set(&adapter->tx_fifo_stall, 0);
       
   603 	}
       
   604 
       
   605 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
       
   606 
       
   607 	/* flow control settings */
       
   608 	/* Set the FC high water mark to 90% of the FIFO size.
       
   609 	 * Required to clear last 3 LSB */
       
   610 	fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
       
   611 	/* We can't use 90% on small FIFOs because the remainder
       
   612 	 * would be less than 1 full frame.  In this case, we size
       
   613 	 * it to allow at least a full frame above the high water
       
   614 	 *  mark. */
       
   615 	if (pba < E1000_PBA_16K)
       
   616 		fc_high_water_mark = (pba * 1024) - 1600;
       
   617 
       
   618 	adapter->hw.fc_high_water = fc_high_water_mark;
       
   619 	adapter->hw.fc_low_water = fc_high_water_mark - 8;
       
   620 	if (adapter->hw.mac_type == e1000_80003es2lan)
       
   621 		adapter->hw.fc_pause_time = 0xFFFF;
       
   622 	else
       
   623 		adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
       
   624 	adapter->hw.fc_send_xon = 1;
       
   625 	adapter->hw.fc = adapter->hw.original_fc;
       
   626 
       
   627 	/* Allow time for pending master requests to run */
       
   628 	e1000_reset_hw(&adapter->hw);
       
   629 	if (adapter->hw.mac_type >= e1000_82544)
       
   630 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
       
   631 	if (e1000_init_hw(&adapter->hw))
       
   632 		DPRINTK(PROBE, ERR, "Hardware Error\n");
       
   633 	e1000_update_mng_vlan(adapter);
       
   634 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
   635 	E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
       
   636 
       
   637 	e1000_reset_adaptive(&adapter->hw);
       
   638 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
       
   639 
       
   640 	if (!adapter->smart_power_down &&
       
   641 	    (adapter->hw.mac_type == e1000_82571 ||
       
   642 	     adapter->hw.mac_type == e1000_82572)) {
       
   643 		uint16_t phy_data = 0;
       
   644 		/* speed up time to link by disabling smart power down, ignore
       
   645 		 * the return value of this function because there is nothing
       
   646 		 * different we would do if it failed */
       
   647 		e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
       
   648 		                   &phy_data);
       
   649 		phy_data &= ~IGP02E1000_PM_SPD;
       
   650 		e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
       
   651 		                    phy_data);
       
   652 	}
       
   653 
       
   654 	if (adapter->hw.mac_type < e1000_ich8lan)
       
   655 	/* FIXME: this code is duplicate and wrong for PCI Express */
       
   656 	if (adapter->en_mng_pt) {
       
   657 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
   658 		manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
       
   659 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
   660 	}
       
   661 }
       
   662 
       
   663 /**
       
   664  * e1000_probe - Device Initialization Routine
       
   665  * @pdev: PCI device information struct
       
   666  * @ent: entry in e1000_pci_tbl
       
   667  *
       
   668  * Returns 0 on success, negative on failure
       
   669  *
       
   670  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
   671  * The OS initialization, configuring of the adapter private structure,
       
   672  * and a hardware reset occur.
       
   673  **/
       
   674 
       
   675 static int __devinit
       
   676 e1000_probe(struct pci_dev *pdev,
       
   677             const struct pci_device_id *ent)
       
   678 {
       
   679 	struct net_device *netdev;
       
   680 	struct e1000_adapter *adapter;
       
   681 	unsigned long mmio_start, mmio_len;
       
   682 	unsigned long flash_start, flash_len;
       
   683 
       
   684 	static int cards_found = 0;
       
   685 	static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
       
   686 	int i, err, pci_using_dac;
       
   687 	uint16_t eeprom_data;
       
   688 	uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
       
   689 	if ((err = pci_enable_device(pdev)))
       
   690 		return err;
       
   691 
       
   692 	if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
       
   693 	    !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
       
   694 		pci_using_dac = 1;
       
   695 	} else {
       
   696 		if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
       
   697 		    (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
       
   698 			E1000_ERR("No usable DMA configuration, aborting\n");
       
   699 			return err;
       
   700 		}
       
   701 		pci_using_dac = 0;
       
   702 	}
       
   703 
       
   704 	if ((err = pci_request_regions(pdev, e1000_driver_name)))
       
   705 		return err;
       
   706 
       
   707 	pci_set_master(pdev);
       
   708 
       
   709 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
   710 	if (!netdev) {
       
   711 		err = -ENOMEM;
       
   712 		goto err_alloc_etherdev;
       
   713 	}
       
   714 
       
   715 	SET_MODULE_OWNER(netdev);
       
   716 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
   717 
       
   718 	pci_set_drvdata(pdev, netdev);
       
   719 	adapter = netdev_priv(netdev);
       
   720 	adapter->netdev = netdev;
       
   721 	adapter->pdev = pdev;
       
   722 	adapter->hw.back = adapter;
       
   723 	adapter->msg_enable = (1 << debug) - 1;
       
   724 
       
   725 	mmio_start = pci_resource_start(pdev, BAR_0);
       
   726 	mmio_len = pci_resource_len(pdev, BAR_0);
       
   727 
       
   728 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
       
   729 	if (!adapter->hw.hw_addr) {
       
   730 		err = -EIO;
       
   731 		goto err_ioremap;
       
   732 	}
       
   733 
       
   734 	for (i = BAR_1; i <= BAR_5; i++) {
       
   735 		if (pci_resource_len(pdev, i) == 0)
       
   736 			continue;
       
   737 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
       
   738 			adapter->hw.io_base = pci_resource_start(pdev, i);
       
   739 			break;
       
   740 		}
       
   741 	}
       
   742 
       
   743 	netdev->open = &e1000_open;
       
   744 	netdev->stop = &e1000_close;
       
   745 	netdev->hard_start_xmit = &e1000_xmit_frame;
       
   746 	netdev->get_stats = &e1000_get_stats;
       
   747 	netdev->set_multicast_list = &e1000_set_multi;
       
   748 	netdev->set_mac_address = &e1000_set_mac;
       
   749 	netdev->change_mtu = &e1000_change_mtu;
       
   750 	netdev->do_ioctl = &e1000_ioctl;
       
   751 	e1000_set_ethtool_ops(netdev);
       
   752 	netdev->tx_timeout = &e1000_tx_timeout;
       
   753 	netdev->watchdog_timeo = 5 * HZ;
       
   754 #ifdef CONFIG_E1000_NAPI
       
   755 	netdev->poll = &e1000_clean;
       
   756 	netdev->weight = 64;
       
   757 #endif
       
   758 	netdev->vlan_rx_register = e1000_vlan_rx_register;
       
   759 	netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
       
   760 	netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
       
   761 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   762 	netdev->poll_controller = e1000_netpoll;
       
   763 #endif
       
   764 	strcpy(netdev->name, pci_name(pdev));
       
   765 
       
   766 	netdev->mem_start = mmio_start;
       
   767 	netdev->mem_end = mmio_start + mmio_len;
       
   768 	netdev->base_addr = adapter->hw.io_base;
       
   769 
       
   770 	adapter->bd_number = cards_found;
       
   771 
       
   772 	/* setup the private structure */
       
   773 
       
   774 	if ((err = e1000_sw_init(adapter)))
       
   775 		goto err_sw_init;
       
   776 
       
   777 	/* Flash BAR mapping must happen after e1000_sw_init
       
   778 	 * because it depends on mac_type */
       
   779 	if ((adapter->hw.mac_type == e1000_ich8lan) &&
       
   780 	   (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
       
   781 		flash_start = pci_resource_start(pdev, 1);
       
   782 		flash_len = pci_resource_len(pdev, 1);
       
   783 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
       
   784 		if (!adapter->hw.flash_address) {
       
   785 			err = -EIO;
       
   786 			goto err_flashmap;
       
   787 		}
       
   788 	}
       
   789 
       
   790 	if ((err = e1000_check_phy_reset_block(&adapter->hw)))
       
   791 		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
       
   792 
       
   793 	/* if ksp3, indicate if it's port a being setup */
       
   794 	if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
       
   795 			e1000_ksp3_port_a == 0)
       
   796 		adapter->ksp3_port_a = 1;
       
   797 	e1000_ksp3_port_a++;
       
   798 	/* Reset for multiple KP3 adapters */
       
   799 	if (e1000_ksp3_port_a == 4)
       
   800 		e1000_ksp3_port_a = 0;
       
   801 
       
   802 	if (adapter->hw.mac_type >= e1000_82543) {
       
   803 		netdev->features = NETIF_F_SG |
       
   804 				   NETIF_F_HW_CSUM |
       
   805 				   NETIF_F_HW_VLAN_TX |
       
   806 				   NETIF_F_HW_VLAN_RX |
       
   807 				   NETIF_F_HW_VLAN_FILTER;
       
   808 		if (adapter->hw.mac_type == e1000_ich8lan)
       
   809 			netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
       
   810 	}
       
   811 
       
   812 #ifdef NETIF_F_TSO
       
   813 	if ((adapter->hw.mac_type >= e1000_82544) &&
       
   814 	   (adapter->hw.mac_type != e1000_82547))
       
   815 		netdev->features |= NETIF_F_TSO;
       
   816 
       
   817 #ifdef NETIF_F_TSO_IPV6
       
   818 	if (adapter->hw.mac_type > e1000_82547_rev_2)
       
   819 		netdev->features |= NETIF_F_TSO_IPV6;
       
   820 #endif
       
   821 #endif
       
   822 	if (pci_using_dac)
       
   823 		netdev->features |= NETIF_F_HIGHDMA;
       
   824 
       
   825 	netdev->features |= NETIF_F_LLTX;
       
   826 
       
   827 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
       
   828 
       
   829 	/* initialize eeprom parameters */
       
   830 
       
   831 	if (e1000_init_eeprom_params(&adapter->hw)) {
       
   832 		E1000_ERR("EEPROM initialization failed\n");
       
   833 		return -EIO;
       
   834 	}
       
   835 
       
   836 	/* before reading the EEPROM, reset the controller to
       
   837 	 * put the device in a known good starting state */
       
   838 
       
   839 	e1000_reset_hw(&adapter->hw);
       
   840 
       
   841 	/* make sure the EEPROM is good */
       
   842 
       
   843 	if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
       
   844 		/* On some hardware the first attemp fails */
       
   845 		if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
       
   846 			DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
       
   847 			err = -EIO;
       
   848 			goto err_eeprom;
       
   849 		} else
       
   850 			DPRINTK(PROBE, INFO, "The EEPROM Checksum failed in the first read, now OK\n");
       
   851 	}
       
   852 
       
   853 	/* copy the MAC address out of the EEPROM */
       
   854 
       
   855 	if (e1000_read_mac_addr(&adapter->hw))
       
   856 		DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
       
   857 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
       
   858 	memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
       
   859 
       
   860 	if (!is_valid_ether_addr(netdev->perm_addr)) {
       
   861 		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
       
   862 		err = -EIO;
       
   863 		goto err_eeprom;
       
   864 	}
       
   865 
       
   866 	e1000_read_part_num(&adapter->hw, &(adapter->part_num));
       
   867 
       
   868 	e1000_get_bus_info(&adapter->hw);
       
   869 
       
   870 	init_timer(&adapter->tx_fifo_stall_timer);
       
   871 	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
       
   872 	adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
       
   873 
       
   874 	init_timer(&adapter->watchdog_timer);
       
   875 	adapter->watchdog_timer.function = &e1000_watchdog;
       
   876 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
   877 
       
   878 	init_timer(&adapter->phy_info_timer);
       
   879 	adapter->phy_info_timer.function = &e1000_update_phy_info;
       
   880 	adapter->phy_info_timer.data = (unsigned long) adapter;
       
   881 
       
   882 	INIT_WORK(&adapter->reset_task,
       
   883 		(void (*)(void *))e1000_reset_task, netdev);
       
   884 
       
   885 	/* we're going to reset, so assume we have no link for now */
       
   886 
       
   887 	netif_carrier_off(netdev);
       
   888 	netif_stop_queue(netdev);
       
   889 
       
   890 	e1000_check_options(adapter);
       
   891 
       
   892 	/* Initial Wake on LAN setting
       
   893 	 * If APM wake is enabled in the EEPROM,
       
   894 	 * enable the ACPI Magic Packet filter
       
   895 	 */
       
   896 
       
   897 	switch (adapter->hw.mac_type) {
       
   898 	case e1000_82542_rev2_0:
       
   899 	case e1000_82542_rev2_1:
       
   900 	case e1000_82543:
       
   901 		break;
       
   902 	case e1000_82544:
       
   903 		e1000_read_eeprom(&adapter->hw,
       
   904 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
       
   905 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
       
   906 		break;
       
   907 	case e1000_ich8lan:
       
   908 		e1000_read_eeprom(&adapter->hw,
       
   909 			EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
       
   910 		eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
       
   911 		break;
       
   912 	case e1000_82546:
       
   913 	case e1000_82546_rev_3:
       
   914 	case e1000_82571:
       
   915 	case e1000_80003es2lan:
       
   916 		if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
       
   917 			e1000_read_eeprom(&adapter->hw,
       
   918 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
   919 			break;
       
   920 		}
       
   921 		/* Fall Through */
       
   922 	default:
       
   923 		e1000_read_eeprom(&adapter->hw,
       
   924 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
   925 		break;
       
   926 	}
       
   927 	if (eeprom_data & eeprom_apme_mask)
       
   928 		adapter->wol |= E1000_WUFC_MAG;
       
   929 
       
   930 	/* print bus type/speed/width info */
       
   931 	{
       
   932 	struct e1000_hw *hw = &adapter->hw;
       
   933 	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
       
   934 		((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
       
   935 		 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
       
   936 		((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
       
   937 		 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
       
   938 		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
       
   939 		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
       
   940 		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
       
   941 		((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
       
   942 		 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
       
   943 		 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
       
   944 		 "32-bit"));
       
   945 	}
       
   946 
       
   947 	for (i = 0; i < 6; i++)
       
   948 		printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
       
   949 
       
   950 	/* reset the hardware with the new settings */
       
   951 	e1000_reset(adapter);
       
   952 
       
   953 	/* If the controller is 82573 and f/w is AMT, do not set
       
   954 	 * DRV_LOAD until the interface is up.  For all other cases,
       
   955 	 * let the f/w know that the h/w is now under the control
       
   956 	 * of the driver. */
       
   957 	if (adapter->hw.mac_type != e1000_82573 ||
       
   958 	    !e1000_check_mng_mode(&adapter->hw))
       
   959 		e1000_get_hw_control(adapter);
       
   960 
       
   961 	strcpy(netdev->name, "eth%d");
       
   962 	if ((err = register_netdev(netdev)))
       
   963 		goto err_register;
       
   964 
       
   965 	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
       
   966 
       
   967 	cards_found++;
       
   968 	return 0;
       
   969 
       
   970 err_register:
       
   971 	if (adapter->hw.flash_address)
       
   972 		iounmap(adapter->hw.flash_address);
       
   973 err_flashmap:
       
   974 err_sw_init:
       
   975 err_eeprom:
       
   976 	iounmap(adapter->hw.hw_addr);
       
   977 err_ioremap:
       
   978 	free_netdev(netdev);
       
   979 err_alloc_etherdev:
       
   980 	pci_release_regions(pdev);
       
   981 	return err;
       
   982 }
       
   983 
       
   984 /**
       
   985  * e1000_remove - Device Removal Routine
       
   986  * @pdev: PCI device information struct
       
   987  *
       
   988  * e1000_remove is called by the PCI subsystem to alert the driver
       
   989  * that it should release a PCI device.  The could be caused by a
       
   990  * Hot-Plug event, or because the driver is going to be removed from
       
   991  * memory.
       
   992  **/
       
   993 
       
   994 static void __devexit
       
   995 e1000_remove(struct pci_dev *pdev)
       
   996 {
       
   997 	struct net_device *netdev = pci_get_drvdata(pdev);
       
   998 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   999 	uint32_t manc;
       
  1000 #ifdef CONFIG_E1000_NAPI
       
  1001 	int i;
       
  1002 #endif
       
  1003 
       
  1004 	flush_scheduled_work();
       
  1005 
       
  1006 	if (adapter->hw.mac_type >= e1000_82540 &&
       
  1007 	   adapter->hw.mac_type != e1000_ich8lan &&
       
  1008 	   adapter->hw.media_type == e1000_media_type_copper) {
       
  1009 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
  1010 		if (manc & E1000_MANC_SMBUS_EN) {
       
  1011 			manc |= E1000_MANC_ARP_EN;
       
  1012 			E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
  1013 		}
       
  1014 	}
       
  1015 
       
  1016 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  1017 	 * would have already happened in close and is redundant. */
       
  1018 	e1000_release_hw_control(adapter);
       
  1019 
       
  1020 	unregister_netdev(netdev);
       
  1021 #ifdef CONFIG_E1000_NAPI
       
  1022 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  1023 		dev_put(&adapter->polling_netdev[i]);
       
  1024 #endif
       
  1025 
       
  1026 	if (!e1000_check_phy_reset_block(&adapter->hw))
       
  1027 		e1000_phy_hw_reset(&adapter->hw);
       
  1028 
       
  1029 	kfree(adapter->tx_ring);
       
  1030 	kfree(adapter->rx_ring);
       
  1031 #ifdef CONFIG_E1000_NAPI
       
  1032 	kfree(adapter->polling_netdev);
       
  1033 #endif
       
  1034 
       
  1035 	iounmap(adapter->hw.hw_addr);
       
  1036 	if (adapter->hw.flash_address)
       
  1037 		iounmap(adapter->hw.flash_address);
       
  1038 	pci_release_regions(pdev);
       
  1039 
       
  1040 	free_netdev(netdev);
       
  1041 
       
  1042 	pci_disable_device(pdev);
       
  1043 }
       
  1044 
       
  1045 /**
       
  1046  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  1047  * @adapter: board private structure to initialize
       
  1048  *
       
  1049  * e1000_sw_init initializes the Adapter private data structure.
       
  1050  * Fields are initialized based on PCI device information and
       
  1051  * OS network device settings (MTU size).
       
  1052  **/
       
  1053 
       
  1054 static int __devinit
       
  1055 e1000_sw_init(struct e1000_adapter *adapter)
       
  1056 {
       
  1057 	struct e1000_hw *hw = &adapter->hw;
       
  1058 	struct net_device *netdev = adapter->netdev;
       
  1059 	struct pci_dev *pdev = adapter->pdev;
       
  1060 #ifdef CONFIG_E1000_NAPI
       
  1061 	int i;
       
  1062 #endif
       
  1063 
       
  1064 	/* PCI config space info */
       
  1065 
       
  1066 	hw->vendor_id = pdev->vendor;
       
  1067 	hw->device_id = pdev->device;
       
  1068 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
       
  1069 	hw->subsystem_id = pdev->subsystem_device;
       
  1070 
       
  1071 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
       
  1072 
       
  1073 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
       
  1074 
       
  1075 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  1076 	adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
       
  1077 	hw->max_frame_size = netdev->mtu +
       
  1078 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  1079 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
       
  1080 
       
  1081 	/* identify the MAC */
       
  1082 
       
  1083 	if (e1000_set_mac_type(hw)) {
       
  1084 		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
       
  1085 		return -EIO;
       
  1086 	}
       
  1087 
       
  1088 	switch (hw->mac_type) {
       
  1089 	default:
       
  1090 		break;
       
  1091 	case e1000_82541:
       
  1092 	case e1000_82547:
       
  1093 	case e1000_82541_rev_2:
       
  1094 	case e1000_82547_rev_2:
       
  1095 		hw->phy_init_script = 1;
       
  1096 		break;
       
  1097 	}
       
  1098 
       
  1099 	e1000_set_media_type(hw);
       
  1100 
       
  1101 	hw->wait_autoneg_complete = FALSE;
       
  1102 	hw->tbi_compatibility_en = TRUE;
       
  1103 	hw->adaptive_ifs = TRUE;
       
  1104 
       
  1105 	/* Copper options */
       
  1106 
       
  1107 	if (hw->media_type == e1000_media_type_copper) {
       
  1108 		hw->mdix = AUTO_ALL_MODES;
       
  1109 		hw->disable_polarity_correction = FALSE;
       
  1110 		hw->master_slave = E1000_MASTER_SLAVE;
       
  1111 	}
       
  1112 
       
  1113 	adapter->num_tx_queues = 1;
       
  1114 	adapter->num_rx_queues = 1;
       
  1115 
       
  1116 	if (e1000_alloc_queues(adapter)) {
       
  1117 		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
       
  1118 		return -ENOMEM;
       
  1119 	}
       
  1120 
       
  1121 #ifdef CONFIG_E1000_NAPI
       
  1122 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1123 		adapter->polling_netdev[i].priv = adapter;
       
  1124 		adapter->polling_netdev[i].poll = &e1000_clean;
       
  1125 		adapter->polling_netdev[i].weight = 64;
       
  1126 		dev_hold(&adapter->polling_netdev[i]);
       
  1127 		set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
       
  1128 	}
       
  1129 	spin_lock_init(&adapter->tx_queue_lock);
       
  1130 #endif
       
  1131 
       
  1132 	atomic_set(&adapter->irq_sem, 1);
       
  1133 	spin_lock_init(&adapter->stats_lock);
       
  1134 
       
  1135 	return 0;
       
  1136 }
       
  1137 
       
  1138 /**
       
  1139  * e1000_alloc_queues - Allocate memory for all rings
       
  1140  * @adapter: board private structure to initialize
       
  1141  *
       
  1142  * We allocate one ring per queue at run-time since we don't know the
       
  1143  * number of queues at compile-time.  The polling_netdev array is
       
  1144  * intended for Multiqueue, but should work fine with a single queue.
       
  1145  **/
       
  1146 
       
  1147 static int __devinit
       
  1148 e1000_alloc_queues(struct e1000_adapter *adapter)
       
  1149 {
       
  1150 	int size;
       
  1151 
       
  1152 	size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
       
  1153 	adapter->tx_ring = kmalloc(size, GFP_KERNEL);
       
  1154 	if (!adapter->tx_ring)
       
  1155 		return -ENOMEM;
       
  1156 	memset(adapter->tx_ring, 0, size);
       
  1157 
       
  1158 	size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
       
  1159 	adapter->rx_ring = kmalloc(size, GFP_KERNEL);
       
  1160 	if (!adapter->rx_ring) {
       
  1161 		kfree(adapter->tx_ring);
       
  1162 		return -ENOMEM;
       
  1163 	}
       
  1164 	memset(adapter->rx_ring, 0, size);
       
  1165 
       
  1166 #ifdef CONFIG_E1000_NAPI
       
  1167 	size = sizeof(struct net_device) * adapter->num_rx_queues;
       
  1168 	adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
       
  1169 	if (!adapter->polling_netdev) {
       
  1170 		kfree(adapter->tx_ring);
       
  1171 		kfree(adapter->rx_ring);
       
  1172 		return -ENOMEM;
       
  1173 	}
       
  1174 	memset(adapter->polling_netdev, 0, size);
       
  1175 #endif
       
  1176 
       
  1177 	return E1000_SUCCESS;
       
  1178 }
       
  1179 
       
  1180 /**
       
  1181  * e1000_open - Called when a network interface is made active
       
  1182  * @netdev: network interface device structure
       
  1183  *
       
  1184  * Returns 0 on success, negative value on failure
       
  1185  *
       
  1186  * The open entry point is called when a network interface is made
       
  1187  * active by the system (IFF_UP).  At this point all resources needed
       
  1188  * for transmit and receive operations are allocated, the interrupt
       
  1189  * handler is registered with the OS, the watchdog timer is started,
       
  1190  * and the stack is notified that the interface is ready.
       
  1191  **/
       
  1192 
       
  1193 static int
       
  1194 e1000_open(struct net_device *netdev)
       
  1195 {
       
  1196 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1197 	int err;
       
  1198 
       
  1199 	/* disallow open during test */
       
  1200 	if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
       
  1201 		return -EBUSY;
       
  1202 
       
  1203 	/* allocate transmit descriptors */
       
  1204 
       
  1205 	if ((err = e1000_setup_all_tx_resources(adapter)))
       
  1206 		goto err_setup_tx;
       
  1207 
       
  1208 	/* allocate receive descriptors */
       
  1209 
       
  1210 	if ((err = e1000_setup_all_rx_resources(adapter)))
       
  1211 		goto err_setup_rx;
       
  1212 
       
  1213 	err = e1000_request_irq(adapter);
       
  1214 	if (err)
       
  1215 		goto err_up;
       
  1216 
       
  1217 	e1000_power_up_phy(adapter);
       
  1218 
       
  1219 	if ((err = e1000_up(adapter)))
       
  1220 		goto err_up;
       
  1221 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  1222 	if ((adapter->hw.mng_cookie.status &
       
  1223 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
  1224 		e1000_update_mng_vlan(adapter);
       
  1225 	}
       
  1226 
       
  1227 	/* If AMT is enabled, let the firmware know that the network
       
  1228 	 * interface is now open */
       
  1229 	if (adapter->hw.mac_type == e1000_82573 &&
       
  1230 	    e1000_check_mng_mode(&adapter->hw))
       
  1231 		e1000_get_hw_control(adapter);
       
  1232 
       
  1233 	return E1000_SUCCESS;
       
  1234 
       
  1235 err_up:
       
  1236 	e1000_free_all_rx_resources(adapter);
       
  1237 err_setup_rx:
       
  1238 	e1000_free_all_tx_resources(adapter);
       
  1239 err_setup_tx:
       
  1240 	e1000_reset(adapter);
       
  1241 
       
  1242 	return err;
       
  1243 }
       
  1244 
       
  1245 /**
       
  1246  * e1000_close - Disables a network interface
       
  1247  * @netdev: network interface device structure
       
  1248  *
       
  1249  * Returns 0, this is not allowed to fail
       
  1250  *
       
  1251  * The close entry point is called when an interface is de-activated
       
  1252  * by the OS.  The hardware is still under the drivers control, but
       
  1253  * needs to be disabled.  A global MAC reset is issued to stop the
       
  1254  * hardware, and all transmit and receive resources are freed.
       
  1255  **/
       
  1256 
       
  1257 static int
       
  1258 e1000_close(struct net_device *netdev)
       
  1259 {
       
  1260 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1261 
       
  1262 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  1263 	e1000_down(adapter);
       
  1264 	e1000_power_down_phy(adapter);
       
  1265 	e1000_free_irq(adapter);
       
  1266 
       
  1267 	e1000_free_all_tx_resources(adapter);
       
  1268 	e1000_free_all_rx_resources(adapter);
       
  1269 
       
  1270 	if ((adapter->hw.mng_cookie.status &
       
  1271 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
  1272 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  1273 	}
       
  1274 
       
  1275 	/* If AMT is enabled, let the firmware know that the network
       
  1276 	 * interface is now closed */
       
  1277 	if (adapter->hw.mac_type == e1000_82573 &&
       
  1278 	    e1000_check_mng_mode(&adapter->hw))
       
  1279 		e1000_release_hw_control(adapter);
       
  1280 
       
  1281 	return 0;
       
  1282 }
       
  1283 
       
  1284 /**
       
  1285  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
       
  1286  * @adapter: address of board private structure
       
  1287  * @start: address of beginning of memory
       
  1288  * @len: length of memory
       
  1289  **/
       
  1290 static boolean_t
       
  1291 e1000_check_64k_bound(struct e1000_adapter *adapter,
       
  1292 		      void *start, unsigned long len)
       
  1293 {
       
  1294 	unsigned long begin = (unsigned long) start;
       
  1295 	unsigned long end = begin + len;
       
  1296 
       
  1297 	/* First rev 82545 and 82546 need to not allow any memory
       
  1298 	 * write location to cross 64k boundary due to errata 23 */
       
  1299 	if (adapter->hw.mac_type == e1000_82545 ||
       
  1300 	    adapter->hw.mac_type == e1000_82546) {
       
  1301 		return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
       
  1302 	}
       
  1303 
       
  1304 	return TRUE;
       
  1305 }
       
  1306 
       
  1307 /**
       
  1308  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
       
  1309  * @adapter: board private structure
       
  1310  * @txdr:    tx descriptor ring (for a specific queue) to setup
       
  1311  *
       
  1312  * Return 0 on success, negative on failure
       
  1313  **/
       
  1314 
       
  1315 static int
       
  1316 e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
  1317                          struct e1000_tx_ring *txdr)
       
  1318 {
       
  1319 	struct pci_dev *pdev = adapter->pdev;
       
  1320 	int size;
       
  1321 
       
  1322 	size = sizeof(struct e1000_buffer) * txdr->count;
       
  1323 	txdr->buffer_info = vmalloc(size);
       
  1324 	if (!txdr->buffer_info) {
       
  1325 		DPRINTK(PROBE, ERR,
       
  1326 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1327 		return -ENOMEM;
       
  1328 	}
       
  1329 	memset(txdr->buffer_info, 0, size);
       
  1330 
       
  1331 	/* round up to nearest 4K */
       
  1332 
       
  1333 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
  1334 	E1000_ROUNDUP(txdr->size, 4096);
       
  1335 
       
  1336 	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1337 	if (!txdr->desc) {
       
  1338 setup_tx_desc_die:
       
  1339 		vfree(txdr->buffer_info);
       
  1340 		DPRINTK(PROBE, ERR,
       
  1341 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1342 		return -ENOMEM;
       
  1343 	}
       
  1344 
       
  1345 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1346 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1347 		void *olddesc = txdr->desc;
       
  1348 		dma_addr_t olddma = txdr->dma;
       
  1349 		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
       
  1350 				     "at %p\n", txdr->size, txdr->desc);
       
  1351 		/* Try again, without freeing the previous */
       
  1352 		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1353 		/* Failed allocation, critical failure */
       
  1354 		if (!txdr->desc) {
       
  1355 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1356 			goto setup_tx_desc_die;
       
  1357 		}
       
  1358 
       
  1359 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1360 			/* give up */
       
  1361 			pci_free_consistent(pdev, txdr->size, txdr->desc,
       
  1362 					    txdr->dma);
       
  1363 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1364 			DPRINTK(PROBE, ERR,
       
  1365 				"Unable to allocate aligned memory "
       
  1366 				"for the transmit descriptor ring\n");
       
  1367 			vfree(txdr->buffer_info);
       
  1368 			return -ENOMEM;
       
  1369 		} else {
       
  1370 			/* Free old allocation, new allocation was successful */
       
  1371 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1372 		}
       
  1373 	}
       
  1374 	memset(txdr->desc, 0, txdr->size);
       
  1375 
       
  1376 	txdr->next_to_use = 0;
       
  1377 	txdr->next_to_clean = 0;
       
  1378 	spin_lock_init(&txdr->tx_lock);
       
  1379 
       
  1380 	return 0;
       
  1381 }
       
  1382 
       
  1383 /**
       
  1384  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
       
  1385  * 				  (Descriptors) for all queues
       
  1386  * @adapter: board private structure
       
  1387  *
       
  1388  * If this function returns with an error, then it's possible one or
       
  1389  * more of the rings is populated (while the rest are not).  It is the
       
  1390  * callers duty to clean those orphaned rings.
       
  1391  *
       
  1392  * Return 0 on success, negative on failure
       
  1393  **/
       
  1394 
       
  1395 int
       
  1396 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
       
  1397 {
       
  1398 	int i, err = 0;
       
  1399 
       
  1400 	for (i = 0; i < adapter->num_tx_queues; i++) {
       
  1401 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1402 		if (err) {
       
  1403 			DPRINTK(PROBE, ERR,
       
  1404 				"Allocation for Tx Queue %u failed\n", i);
       
  1405 			break;
       
  1406 		}
       
  1407 	}
       
  1408 
       
  1409 	return err;
       
  1410 }
       
  1411 
       
  1412 /**
       
  1413  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  1414  * @adapter: board private structure
       
  1415  *
       
  1416  * Configure the Tx unit of the MAC after a reset.
       
  1417  **/
       
  1418 
       
  1419 static void
       
  1420 e1000_configure_tx(struct e1000_adapter *adapter)
       
  1421 {
       
  1422 	uint64_t tdba;
       
  1423 	struct e1000_hw *hw = &adapter->hw;
       
  1424 	uint32_t tdlen, tctl, tipg, tarc;
       
  1425 	uint32_t ipgr1, ipgr2;
       
  1426 
       
  1427 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  1428 
       
  1429 	switch (adapter->num_tx_queues) {
       
  1430 	case 1:
       
  1431 	default:
       
  1432 		tdba = adapter->tx_ring[0].dma;
       
  1433 		tdlen = adapter->tx_ring[0].count *
       
  1434 			sizeof(struct e1000_tx_desc);
       
  1435 		E1000_WRITE_REG(hw, TDLEN, tdlen);
       
  1436 		E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
       
  1437 		E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
       
  1438 		E1000_WRITE_REG(hw, TDT, 0);
       
  1439 		E1000_WRITE_REG(hw, TDH, 0);
       
  1440 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
       
  1441 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
       
  1442 		break;
       
  1443 	}
       
  1444 
       
  1445 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  1446 
       
  1447 	if (hw->media_type == e1000_media_type_fiber ||
       
  1448 	    hw->media_type == e1000_media_type_internal_serdes)
       
  1449 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
       
  1450 	else
       
  1451 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
       
  1452 
       
  1453 	switch (hw->mac_type) {
       
  1454 	case e1000_82542_rev2_0:
       
  1455 	case e1000_82542_rev2_1:
       
  1456 		tipg = DEFAULT_82542_TIPG_IPGT;
       
  1457 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
       
  1458 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
       
  1459 		break;
       
  1460 	case e1000_80003es2lan:
       
  1461 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1462 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
       
  1463 		break;
       
  1464 	default:
       
  1465 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1466 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
       
  1467 		break;
       
  1468 	}
       
  1469 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
       
  1470 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
       
  1471 	E1000_WRITE_REG(hw, TIPG, tipg);
       
  1472 
       
  1473 	/* Set the Tx Interrupt Delay register */
       
  1474 
       
  1475 	E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
       
  1476 	if (hw->mac_type >= e1000_82540)
       
  1477 		E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
       
  1478 
       
  1479 	/* Program the Transmit Control Register */
       
  1480 
       
  1481 	tctl = E1000_READ_REG(hw, TCTL);
       
  1482 
       
  1483 	tctl &= ~E1000_TCTL_CT;
       
  1484 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  1485 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  1486 
       
  1487 #ifdef DISABLE_MULR
       
  1488 	/* disable Multiple Reads for debugging */
       
  1489 	tctl &= ~E1000_TCTL_MULR;
       
  1490 #endif
       
  1491 
       
  1492 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
       
  1493 		tarc = E1000_READ_REG(hw, TARC0);
       
  1494 		tarc |= ((1 << 25) | (1 << 21));
       
  1495 		E1000_WRITE_REG(hw, TARC0, tarc);
       
  1496 		tarc = E1000_READ_REG(hw, TARC1);
       
  1497 		tarc |= (1 << 25);
       
  1498 		if (tctl & E1000_TCTL_MULR)
       
  1499 			tarc &= ~(1 << 28);
       
  1500 		else
       
  1501 			tarc |= (1 << 28);
       
  1502 		E1000_WRITE_REG(hw, TARC1, tarc);
       
  1503 	} else if (hw->mac_type == e1000_80003es2lan) {
       
  1504 		tarc = E1000_READ_REG(hw, TARC0);
       
  1505 		tarc |= 1;
       
  1506 		if (hw->media_type == e1000_media_type_internal_serdes)
       
  1507 			tarc |= (1 << 20);
       
  1508 		E1000_WRITE_REG(hw, TARC0, tarc);
       
  1509 		tarc = E1000_READ_REG(hw, TARC1);
       
  1510 		tarc |= 1;
       
  1511 		E1000_WRITE_REG(hw, TARC1, tarc);
       
  1512 	}
       
  1513 
       
  1514 	e1000_config_collision_dist(hw);
       
  1515 
       
  1516 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  1517 	adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
       
  1518 		E1000_TXD_CMD_IFCS;
       
  1519 
       
  1520 	if (hw->mac_type < e1000_82543)
       
  1521 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
       
  1522 	else
       
  1523 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  1524 
       
  1525 	/* Cache if we're 82544 running in PCI-X because we'll
       
  1526 	 * need this to apply a workaround later in the send path. */
       
  1527 	if (hw->mac_type == e1000_82544 &&
       
  1528 	    hw->bus_type == e1000_bus_type_pcix)
       
  1529 		adapter->pcix_82544 = 1;
       
  1530 
       
  1531 	E1000_WRITE_REG(hw, TCTL, tctl);
       
  1532 
       
  1533 }
       
  1534 
       
  1535 /**
       
  1536  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
       
  1537  * @adapter: board private structure
       
  1538  * @rxdr:    rx descriptor ring (for a specific queue) to setup
       
  1539  *
       
  1540  * Returns 0 on success, negative on failure
       
  1541  **/
       
  1542 
       
  1543 static int
       
  1544 e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
  1545                          struct e1000_rx_ring *rxdr)
       
  1546 {
       
  1547 	struct pci_dev *pdev = adapter->pdev;
       
  1548 	int size, desc_len;
       
  1549 
       
  1550 	size = sizeof(struct e1000_buffer) * rxdr->count;
       
  1551 	rxdr->buffer_info = vmalloc(size);
       
  1552 	if (!rxdr->buffer_info) {
       
  1553 		DPRINTK(PROBE, ERR,
       
  1554 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1555 		return -ENOMEM;
       
  1556 	}
       
  1557 	memset(rxdr->buffer_info, 0, size);
       
  1558 
       
  1559 	size = sizeof(struct e1000_ps_page) * rxdr->count;
       
  1560 	rxdr->ps_page = kmalloc(size, GFP_KERNEL);
       
  1561 	if (!rxdr->ps_page) {
       
  1562 		vfree(rxdr->buffer_info);
       
  1563 		DPRINTK(PROBE, ERR,
       
  1564 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1565 		return -ENOMEM;
       
  1566 	}
       
  1567 	memset(rxdr->ps_page, 0, size);
       
  1568 
       
  1569 	size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
       
  1570 	rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
       
  1571 	if (!rxdr->ps_page_dma) {
       
  1572 		vfree(rxdr->buffer_info);
       
  1573 		kfree(rxdr->ps_page);
       
  1574 		DPRINTK(PROBE, ERR,
       
  1575 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1576 		return -ENOMEM;
       
  1577 	}
       
  1578 	memset(rxdr->ps_page_dma, 0, size);
       
  1579 
       
  1580 	if (adapter->hw.mac_type <= e1000_82547_rev_2)
       
  1581 		desc_len = sizeof(struct e1000_rx_desc);
       
  1582 	else
       
  1583 		desc_len = sizeof(union e1000_rx_desc_packet_split);
       
  1584 
       
  1585 	/* Round up to nearest 4K */
       
  1586 
       
  1587 	rxdr->size = rxdr->count * desc_len;
       
  1588 	E1000_ROUNDUP(rxdr->size, 4096);
       
  1589 
       
  1590 	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1591 
       
  1592 	if (!rxdr->desc) {
       
  1593 		DPRINTK(PROBE, ERR,
       
  1594 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1595 setup_rx_desc_die:
       
  1596 		vfree(rxdr->buffer_info);
       
  1597 		kfree(rxdr->ps_page);
       
  1598 		kfree(rxdr->ps_page_dma);
       
  1599 		return -ENOMEM;
       
  1600 	}
       
  1601 
       
  1602 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1603 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1604 		void *olddesc = rxdr->desc;
       
  1605 		dma_addr_t olddma = rxdr->dma;
       
  1606 		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
       
  1607 				     "at %p\n", rxdr->size, rxdr->desc);
       
  1608 		/* Try again, without freeing the previous */
       
  1609 		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1610 		/* Failed allocation, critical failure */
       
  1611 		if (!rxdr->desc) {
       
  1612 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1613 			DPRINTK(PROBE, ERR,
       
  1614 				"Unable to allocate memory "
       
  1615 				"for the receive descriptor ring\n");
       
  1616 			goto setup_rx_desc_die;
       
  1617 		}
       
  1618 
       
  1619 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1620 			/* give up */
       
  1621 			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
       
  1622 					    rxdr->dma);
       
  1623 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1624 			DPRINTK(PROBE, ERR,
       
  1625 				"Unable to allocate aligned memory "
       
  1626 				"for the receive descriptor ring\n");
       
  1627 			goto setup_rx_desc_die;
       
  1628 		} else {
       
  1629 			/* Free old allocation, new allocation was successful */
       
  1630 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1631 		}
       
  1632 	}
       
  1633 	memset(rxdr->desc, 0, rxdr->size);
       
  1634 
       
  1635 	rxdr->next_to_clean = 0;
       
  1636 	rxdr->next_to_use = 0;
       
  1637 
       
  1638 	return 0;
       
  1639 }
       
  1640 
       
  1641 /**
       
  1642  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
       
  1643  * 				  (Descriptors) for all queues
       
  1644  * @adapter: board private structure
       
  1645  *
       
  1646  * If this function returns with an error, then it's possible one or
       
  1647  * more of the rings is populated (while the rest are not).  It is the
       
  1648  * callers duty to clean those orphaned rings.
       
  1649  *
       
  1650  * Return 0 on success, negative on failure
       
  1651  **/
       
  1652 
       
  1653 int
       
  1654 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
       
  1655 {
       
  1656 	int i, err = 0;
       
  1657 
       
  1658 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1659 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
       
  1660 		if (err) {
       
  1661 			DPRINTK(PROBE, ERR,
       
  1662 				"Allocation for Rx Queue %u failed\n", i);
       
  1663 			break;
       
  1664 		}
       
  1665 	}
       
  1666 
       
  1667 	return err;
       
  1668 }
       
  1669 
       
  1670 /**
       
  1671  * e1000_setup_rctl - configure the receive control registers
       
  1672  * @adapter: Board private structure
       
  1673  **/
       
  1674 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
       
  1675 			(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
       
  1676 static void
       
  1677 e1000_setup_rctl(struct e1000_adapter *adapter)
       
  1678 {
       
  1679 	uint32_t rctl, rfctl;
       
  1680 	uint32_t psrctl = 0;
       
  1681 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
       
  1682 	uint32_t pages = 0;
       
  1683 #endif
       
  1684 
       
  1685 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1686 
       
  1687 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  1688 
       
  1689 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  1690 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1691 		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1692 
       
  1693 	if (adapter->hw.tbi_compatibility_on == 1)
       
  1694 		rctl |= E1000_RCTL_SBP;
       
  1695 	else
       
  1696 		rctl &= ~E1000_RCTL_SBP;
       
  1697 
       
  1698 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  1699 		rctl &= ~E1000_RCTL_LPE;
       
  1700 	else
       
  1701 		rctl |= E1000_RCTL_LPE;
       
  1702 
       
  1703 	/* Setup buffer sizes */
       
  1704 	rctl &= ~E1000_RCTL_SZ_4096;
       
  1705 	rctl |= E1000_RCTL_BSEX;
       
  1706 	switch (adapter->rx_buffer_len) {
       
  1707 		case E1000_RXBUFFER_256:
       
  1708 			rctl |= E1000_RCTL_SZ_256;
       
  1709 			rctl &= ~E1000_RCTL_BSEX;
       
  1710 			break;
       
  1711 		case E1000_RXBUFFER_512:
       
  1712 			rctl |= E1000_RCTL_SZ_512;
       
  1713 			rctl &= ~E1000_RCTL_BSEX;
       
  1714 			break;
       
  1715 		case E1000_RXBUFFER_1024:
       
  1716 			rctl |= E1000_RCTL_SZ_1024;
       
  1717 			rctl &= ~E1000_RCTL_BSEX;
       
  1718 			break;
       
  1719 		case E1000_RXBUFFER_2048:
       
  1720 		default:
       
  1721 			rctl |= E1000_RCTL_SZ_2048;
       
  1722 			rctl &= ~E1000_RCTL_BSEX;
       
  1723 			break;
       
  1724 		case E1000_RXBUFFER_4096:
       
  1725 			rctl |= E1000_RCTL_SZ_4096;
       
  1726 			break;
       
  1727 		case E1000_RXBUFFER_8192:
       
  1728 			rctl |= E1000_RCTL_SZ_8192;
       
  1729 			break;
       
  1730 		case E1000_RXBUFFER_16384:
       
  1731 			rctl |= E1000_RCTL_SZ_16384;
       
  1732 			break;
       
  1733 	}
       
  1734 
       
  1735 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
       
  1736 	/* 82571 and greater support packet-split where the protocol
       
  1737 	 * header is placed in skb->data and the packet data is
       
  1738 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
       
  1739 	 * In the case of a non-split, skb->data is linearly filled,
       
  1740 	 * followed by the page buffers.  Therefore, skb->data is
       
  1741 	 * sized to hold the largest protocol header.
       
  1742 	 */
       
  1743 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
       
  1744 	if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
       
  1745 	    PAGE_SIZE <= 16384)
       
  1746 		adapter->rx_ps_pages = pages;
       
  1747 	else
       
  1748 		adapter->rx_ps_pages = 0;
       
  1749 #endif
       
  1750 	if (adapter->rx_ps_pages) {
       
  1751 		/* Configure extra packet-split registers */
       
  1752 		rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
       
  1753 		rfctl |= E1000_RFCTL_EXTEN;
       
  1754 		/* disable IPv6 packet split support */
       
  1755 		rfctl |= E1000_RFCTL_IPV6_DIS;
       
  1756 		E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
       
  1757 
       
  1758 		rctl |= E1000_RCTL_DTYP_PS;
       
  1759 
       
  1760 		psrctl |= adapter->rx_ps_bsize0 >>
       
  1761 			E1000_PSRCTL_BSIZE0_SHIFT;
       
  1762 
       
  1763 		switch (adapter->rx_ps_pages) {
       
  1764 		case 3:
       
  1765 			psrctl |= PAGE_SIZE <<
       
  1766 				E1000_PSRCTL_BSIZE3_SHIFT;
       
  1767 		case 2:
       
  1768 			psrctl |= PAGE_SIZE <<
       
  1769 				E1000_PSRCTL_BSIZE2_SHIFT;
       
  1770 		case 1:
       
  1771 			psrctl |= PAGE_SIZE >>
       
  1772 				E1000_PSRCTL_BSIZE1_SHIFT;
       
  1773 			break;
       
  1774 		}
       
  1775 
       
  1776 		E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
       
  1777 	}
       
  1778 
       
  1779 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1780 }
       
  1781 
       
  1782 /**
       
  1783  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
       
  1784  * @adapter: board private structure
       
  1785  *
       
  1786  * Configure the Rx unit of the MAC after a reset.
       
  1787  **/
       
  1788 
       
  1789 static void
       
  1790 e1000_configure_rx(struct e1000_adapter *adapter)
       
  1791 {
       
  1792 	uint64_t rdba;
       
  1793 	struct e1000_hw *hw = &adapter->hw;
       
  1794 	uint32_t rdlen, rctl, rxcsum, ctrl_ext;
       
  1795 
       
  1796 	if (adapter->rx_ps_pages) {
       
  1797 		/* this is a 32 byte descriptor */
       
  1798 		rdlen = adapter->rx_ring[0].count *
       
  1799 			sizeof(union e1000_rx_desc_packet_split);
       
  1800 		adapter->clean_rx = e1000_clean_rx_irq_ps;
       
  1801 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
       
  1802 	} else {
       
  1803 		rdlen = adapter->rx_ring[0].count *
       
  1804 			sizeof(struct e1000_rx_desc);
       
  1805 		adapter->clean_rx = e1000_clean_rx_irq;
       
  1806 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  1807 	}
       
  1808 
       
  1809 	/* disable receives while setting up the descriptors */
       
  1810 	rctl = E1000_READ_REG(hw, RCTL);
       
  1811 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  1812 
       
  1813 	/* set the Receive Delay Timer Register */
       
  1814 	E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
       
  1815 
       
  1816 	if (hw->mac_type >= e1000_82540) {
       
  1817 		E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
       
  1818 		if (adapter->itr > 1)
       
  1819 			E1000_WRITE_REG(hw, ITR,
       
  1820 				1000000000 / (adapter->itr * 256));
       
  1821 	}
       
  1822 
       
  1823 	if (hw->mac_type >= e1000_82571) {
       
  1824 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
  1825 		/* Reset delay timers after every interrupt */
       
  1826 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
       
  1827 #ifdef CONFIG_E1000_NAPI
       
  1828 		/* Auto-Mask interrupts upon ICR read. */
       
  1829 		ctrl_ext |= E1000_CTRL_EXT_IAME;
       
  1830 #endif
       
  1831 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
  1832 		E1000_WRITE_REG(hw, IAM, ~0);
       
  1833 		E1000_WRITE_FLUSH(hw);
       
  1834 	}
       
  1835 
       
  1836 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
       
  1837 	 * the Base and Length of the Rx Descriptor Ring */
       
  1838 	switch (adapter->num_rx_queues) {
       
  1839 	case 1:
       
  1840 	default:
       
  1841 		rdba = adapter->rx_ring[0].dma;
       
  1842 		E1000_WRITE_REG(hw, RDLEN, rdlen);
       
  1843 		E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
       
  1844 		E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
       
  1845 		E1000_WRITE_REG(hw, RDT, 0);
       
  1846 		E1000_WRITE_REG(hw, RDH, 0);
       
  1847 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
       
  1848 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
       
  1849 		break;
       
  1850 	}
       
  1851 
       
  1852 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
       
  1853 	if (hw->mac_type >= e1000_82543) {
       
  1854 		rxcsum = E1000_READ_REG(hw, RXCSUM);
       
  1855 		if (adapter->rx_csum == TRUE) {
       
  1856 			rxcsum |= E1000_RXCSUM_TUOFL;
       
  1857 
       
  1858 			/* Enable 82571 IPv4 payload checksum for UDP fragments
       
  1859 			 * Must be used in conjunction with packet-split. */
       
  1860 			if ((hw->mac_type >= e1000_82571) &&
       
  1861 			    (adapter->rx_ps_pages)) {
       
  1862 				rxcsum |= E1000_RXCSUM_IPPCSE;
       
  1863 			}
       
  1864 		} else {
       
  1865 			rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  1866 			/* don't need to clear IPPCSE as it defaults to 0 */
       
  1867 		}
       
  1868 		E1000_WRITE_REG(hw, RXCSUM, rxcsum);
       
  1869 	}
       
  1870 
       
  1871 	/* Enable Receives */
       
  1872 	E1000_WRITE_REG(hw, RCTL, rctl);
       
  1873 }
       
  1874 
       
  1875 /**
       
  1876  * e1000_free_tx_resources - Free Tx Resources per Queue
       
  1877  * @adapter: board private structure
       
  1878  * @tx_ring: Tx descriptor ring for a specific queue
       
  1879  *
       
  1880  * Free all transmit software resources
       
  1881  **/
       
  1882 
       
  1883 static void
       
  1884 e1000_free_tx_resources(struct e1000_adapter *adapter,
       
  1885                         struct e1000_tx_ring *tx_ring)
       
  1886 {
       
  1887 	struct pci_dev *pdev = adapter->pdev;
       
  1888 
       
  1889 	e1000_clean_tx_ring(adapter, tx_ring);
       
  1890 
       
  1891 	vfree(tx_ring->buffer_info);
       
  1892 	tx_ring->buffer_info = NULL;
       
  1893 
       
  1894 	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
       
  1895 
       
  1896 	tx_ring->desc = NULL;
       
  1897 }
       
  1898 
       
  1899 /**
       
  1900  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
       
  1901  * @adapter: board private structure
       
  1902  *
       
  1903  * Free all transmit software resources
       
  1904  **/
       
  1905 
       
  1906 void
       
  1907 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
       
  1908 {
       
  1909 	int i;
       
  1910 
       
  1911 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  1912 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1913 }
       
  1914 
       
  1915 static void
       
  1916 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
       
  1917 			struct e1000_buffer *buffer_info)
       
  1918 {
       
  1919 	if (buffer_info->dma) {
       
  1920 		pci_unmap_page(adapter->pdev,
       
  1921 				buffer_info->dma,
       
  1922 				buffer_info->length,
       
  1923 				PCI_DMA_TODEVICE);
       
  1924 	}
       
  1925 	if (buffer_info->skb)
       
  1926 		dev_kfree_skb_any(buffer_info->skb);
       
  1927 	memset(buffer_info, 0, sizeof(struct e1000_buffer));
       
  1928 }
       
  1929 
       
  1930 /**
       
  1931  * e1000_clean_tx_ring - Free Tx Buffers
       
  1932  * @adapter: board private structure
       
  1933  * @tx_ring: ring to be cleaned
       
  1934  **/
       
  1935 
       
  1936 static void
       
  1937 e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
  1938                     struct e1000_tx_ring *tx_ring)
       
  1939 {
       
  1940 	struct e1000_buffer *buffer_info;
       
  1941 	unsigned long size;
       
  1942 	unsigned int i;
       
  1943 
       
  1944 	/* Free all the Tx ring sk_buffs */
       
  1945 
       
  1946 	for (i = 0; i < tx_ring->count; i++) {
       
  1947 		buffer_info = &tx_ring->buffer_info[i];
       
  1948 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  1949 	}
       
  1950 
       
  1951 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  1952 	memset(tx_ring->buffer_info, 0, size);
       
  1953 
       
  1954 	/* Zero out the descriptor ring */
       
  1955 
       
  1956 	memset(tx_ring->desc, 0, tx_ring->size);
       
  1957 
       
  1958 	tx_ring->next_to_use = 0;
       
  1959 	tx_ring->next_to_clean = 0;
       
  1960 	tx_ring->last_tx_tso = 0;
       
  1961 
       
  1962 	writel(0, adapter->hw.hw_addr + tx_ring->tdh);
       
  1963 	writel(0, adapter->hw.hw_addr + tx_ring->tdt);
       
  1964 }
       
  1965 
       
  1966 /**
       
  1967  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
       
  1968  * @adapter: board private structure
       
  1969  **/
       
  1970 
       
  1971 static void
       
  1972 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
       
  1973 {
       
  1974 	int i;
       
  1975 
       
  1976 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  1977 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
       
  1978 }
       
  1979 
       
  1980 /**
       
  1981  * e1000_free_rx_resources - Free Rx Resources
       
  1982  * @adapter: board private structure
       
  1983  * @rx_ring: ring to clean the resources from
       
  1984  *
       
  1985  * Free all receive software resources
       
  1986  **/
       
  1987 
       
  1988 static void
       
  1989 e1000_free_rx_resources(struct e1000_adapter *adapter,
       
  1990                         struct e1000_rx_ring *rx_ring)
       
  1991 {
       
  1992 	struct pci_dev *pdev = adapter->pdev;
       
  1993 
       
  1994 	e1000_clean_rx_ring(adapter, rx_ring);
       
  1995 
       
  1996 	vfree(rx_ring->buffer_info);
       
  1997 	rx_ring->buffer_info = NULL;
       
  1998 	kfree(rx_ring->ps_page);
       
  1999 	rx_ring->ps_page = NULL;
       
  2000 	kfree(rx_ring->ps_page_dma);
       
  2001 	rx_ring->ps_page_dma = NULL;
       
  2002 
       
  2003 	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
       
  2004 
       
  2005 	rx_ring->desc = NULL;
       
  2006 }
       
  2007 
       
  2008 /**
       
  2009  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
       
  2010  * @adapter: board private structure
       
  2011  *
       
  2012  * Free all receive software resources
       
  2013  **/
       
  2014 
       
  2015 void
       
  2016 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
       
  2017 {
       
  2018 	int i;
       
  2019 
       
  2020 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2021 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
       
  2022 }
       
  2023 
       
  2024 /**
       
  2025  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  2026  * @adapter: board private structure
       
  2027  * @rx_ring: ring to free buffers from
       
  2028  **/
       
  2029 
       
  2030 static void
       
  2031 e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
  2032                     struct e1000_rx_ring *rx_ring)
       
  2033 {
       
  2034 	struct e1000_buffer *buffer_info;
       
  2035 	struct e1000_ps_page *ps_page;
       
  2036 	struct e1000_ps_page_dma *ps_page_dma;
       
  2037 	struct pci_dev *pdev = adapter->pdev;
       
  2038 	unsigned long size;
       
  2039 	unsigned int i, j;
       
  2040 
       
  2041 	/* Free all the Rx ring sk_buffs */
       
  2042 	for (i = 0; i < rx_ring->count; i++) {
       
  2043 		buffer_info = &rx_ring->buffer_info[i];
       
  2044 		if (buffer_info->skb) {
       
  2045 			pci_unmap_single(pdev,
       
  2046 					 buffer_info->dma,
       
  2047 					 buffer_info->length,
       
  2048 					 PCI_DMA_FROMDEVICE);
       
  2049 
       
  2050 			dev_kfree_skb(buffer_info->skb);
       
  2051 			buffer_info->skb = NULL;
       
  2052 		}
       
  2053 		ps_page = &rx_ring->ps_page[i];
       
  2054 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  2055 		for (j = 0; j < adapter->rx_ps_pages; j++) {
       
  2056 			if (!ps_page->ps_page[j]) break;
       
  2057 			pci_unmap_page(pdev,
       
  2058 				       ps_page_dma->ps_page_dma[j],
       
  2059 				       PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  2060 			ps_page_dma->ps_page_dma[j] = 0;
       
  2061 			put_page(ps_page->ps_page[j]);
       
  2062 			ps_page->ps_page[j] = NULL;
       
  2063 		}
       
  2064 	}
       
  2065 
       
  2066 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  2067 	memset(rx_ring->buffer_info, 0, size);
       
  2068 	size = sizeof(struct e1000_ps_page) * rx_ring->count;
       
  2069 	memset(rx_ring->ps_page, 0, size);
       
  2070 	size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
       
  2071 	memset(rx_ring->ps_page_dma, 0, size);
       
  2072 
       
  2073 	/* Zero out the descriptor ring */
       
  2074 
       
  2075 	memset(rx_ring->desc, 0, rx_ring->size);
       
  2076 
       
  2077 	rx_ring->next_to_clean = 0;
       
  2078 	rx_ring->next_to_use = 0;
       
  2079 
       
  2080 	writel(0, adapter->hw.hw_addr + rx_ring->rdh);
       
  2081 	writel(0, adapter->hw.hw_addr + rx_ring->rdt);
       
  2082 }
       
  2083 
       
  2084 /**
       
  2085  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
       
  2086  * @adapter: board private structure
       
  2087  **/
       
  2088 
       
  2089 static void
       
  2090 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
       
  2091 {
       
  2092 	int i;
       
  2093 
       
  2094 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2095 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
       
  2096 }
       
  2097 
       
  2098 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
       
  2099  * and memory write and invalidate disabled for certain operations
       
  2100  */
       
  2101 static void
       
  2102 e1000_enter_82542_rst(struct e1000_adapter *adapter)
       
  2103 {
       
  2104 	struct net_device *netdev = adapter->netdev;
       
  2105 	uint32_t rctl;
       
  2106 
       
  2107 	e1000_pci_clear_mwi(&adapter->hw);
       
  2108 
       
  2109 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  2110 	rctl |= E1000_RCTL_RST;
       
  2111 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  2112 	E1000_WRITE_FLUSH(&adapter->hw);
       
  2113 	mdelay(5);
       
  2114 
       
  2115 	if (netif_running(netdev))
       
  2116 		e1000_clean_all_rx_rings(adapter);
       
  2117 }
       
  2118 
       
  2119 static void
       
  2120 e1000_leave_82542_rst(struct e1000_adapter *adapter)
       
  2121 {
       
  2122 	struct net_device *netdev = adapter->netdev;
       
  2123 	uint32_t rctl;
       
  2124 
       
  2125 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  2126 	rctl &= ~E1000_RCTL_RST;
       
  2127 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  2128 	E1000_WRITE_FLUSH(&adapter->hw);
       
  2129 	mdelay(5);
       
  2130 
       
  2131 	if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
  2132 		e1000_pci_set_mwi(&adapter->hw);
       
  2133 
       
  2134 	if (netif_running(netdev)) {
       
  2135 		/* No need to loop, because 82542 supports only 1 queue */
       
  2136 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
       
  2137 		e1000_configure_rx(adapter);
       
  2138 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
       
  2139 	}
       
  2140 }
       
  2141 
       
  2142 /**
       
  2143  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  2144  * @netdev: network interface device structure
       
  2145  * @p: pointer to an address structure
       
  2146  *
       
  2147  * Returns 0 on success, negative on failure
       
  2148  **/
       
  2149 
       
  2150 static int
       
  2151 e1000_set_mac(struct net_device *netdev, void *p)
       
  2152 {
       
  2153 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2154 	struct sockaddr *addr = p;
       
  2155 
       
  2156 	if (!is_valid_ether_addr(addr->sa_data))
       
  2157 		return -EADDRNOTAVAIL;
       
  2158 
       
  2159 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2160 
       
  2161 	if (adapter->hw.mac_type == e1000_82542_rev2_0)
       
  2162 		e1000_enter_82542_rst(adapter);
       
  2163 
       
  2164 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  2165 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
       
  2166 
       
  2167 	e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
       
  2168 
       
  2169 	/* With 82571 controllers, LAA may be overwritten (with the default)
       
  2170 	 * due to controller reset from the other port. */
       
  2171 	if (adapter->hw.mac_type == e1000_82571) {
       
  2172 		/* activate the work around */
       
  2173 		adapter->hw.laa_is_present = 1;
       
  2174 
       
  2175 		/* Hold a copy of the LAA in RAR[14] This is done so that
       
  2176 		 * between the time RAR[0] gets clobbered  and the time it
       
  2177 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
       
  2178 		 * of the RARs and no incoming packets directed to this port
       
  2179 		 * are dropped. Eventaully the LAA will be in RAR[0] and
       
  2180 		 * RAR[14] */
       
  2181 		e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
       
  2182 					E1000_RAR_ENTRIES - 1);
       
  2183 	}
       
  2184 
       
  2185 	if (adapter->hw.mac_type == e1000_82542_rev2_0)
       
  2186 		e1000_leave_82542_rst(adapter);
       
  2187 
       
  2188 	return 0;
       
  2189 }
       
  2190 
       
  2191 /**
       
  2192  * e1000_set_multi - Multicast and Promiscuous mode set
       
  2193  * @netdev: network interface device structure
       
  2194  *
       
  2195  * The set_multi entry point is called whenever the multicast address
       
  2196  * list or the network interface flags are updated.  This routine is
       
  2197  * responsible for configuring the hardware for proper multicast,
       
  2198  * promiscuous mode, and all-multi behavior.
       
  2199  **/
       
  2200 
       
  2201 static void
       
  2202 e1000_set_multi(struct net_device *netdev)
       
  2203 {
       
  2204 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2205 	struct e1000_hw *hw = &adapter->hw;
       
  2206 	struct dev_mc_list *mc_ptr;
       
  2207 	uint32_t rctl;
       
  2208 	uint32_t hash_value;
       
  2209 	int i, rar_entries = E1000_RAR_ENTRIES;
       
  2210 	int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
       
  2211 				E1000_NUM_MTA_REGISTERS_ICH8LAN :
       
  2212 				E1000_NUM_MTA_REGISTERS;
       
  2213 
       
  2214 	if (adapter->hw.mac_type == e1000_ich8lan)
       
  2215 		rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
       
  2216 
       
  2217 	/* reserve RAR[14] for LAA over-write work-around */
       
  2218 	if (adapter->hw.mac_type == e1000_82571)
       
  2219 		rar_entries--;
       
  2220 
       
  2221 	/* Check for Promiscuous and All Multicast modes */
       
  2222 
       
  2223 	rctl = E1000_READ_REG(hw, RCTL);
       
  2224 
       
  2225 	if (netdev->flags & IFF_PROMISC) {
       
  2226 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2227 	} else if (netdev->flags & IFF_ALLMULTI) {
       
  2228 		rctl |= E1000_RCTL_MPE;
       
  2229 		rctl &= ~E1000_RCTL_UPE;
       
  2230 	} else {
       
  2231 		rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2232 	}
       
  2233 
       
  2234 	E1000_WRITE_REG(hw, RCTL, rctl);
       
  2235 
       
  2236 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2237 
       
  2238 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2239 		e1000_enter_82542_rst(adapter);
       
  2240 
       
  2241 	/* load the first 14 multicast address into the exact filters 1-14
       
  2242 	 * RAR 0 is used for the station MAC adddress
       
  2243 	 * if there are not 14 addresses, go ahead and clear the filters
       
  2244 	 * -- with 82571 controllers only 0-13 entries are filled here
       
  2245 	 */
       
  2246 	mc_ptr = netdev->mc_list;
       
  2247 
       
  2248 	for (i = 1; i < rar_entries; i++) {
       
  2249 		if (mc_ptr) {
       
  2250 			e1000_rar_set(hw, mc_ptr->dmi_addr, i);
       
  2251 			mc_ptr = mc_ptr->next;
       
  2252 		} else {
       
  2253 			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
       
  2254 			E1000_WRITE_FLUSH(hw);
       
  2255 			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
       
  2256 			E1000_WRITE_FLUSH(hw);
       
  2257 		}
       
  2258 	}
       
  2259 
       
  2260 	/* clear the old settings from the multicast hash table */
       
  2261 
       
  2262 	for (i = 0; i < mta_reg_count; i++) {
       
  2263 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
       
  2264 		E1000_WRITE_FLUSH(hw);
       
  2265 	}
       
  2266 
       
  2267 	/* load any remaining addresses into the hash table */
       
  2268 
       
  2269 	for (; mc_ptr; mc_ptr = mc_ptr->next) {
       
  2270 		hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
       
  2271 		e1000_mta_set(hw, hash_value);
       
  2272 	}
       
  2273 
       
  2274 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2275 		e1000_leave_82542_rst(adapter);
       
  2276 }
       
  2277 
       
  2278 /* Need to wait a few seconds after link up to get diagnostic information from
       
  2279  * the phy */
       
  2280 
       
  2281 static void
       
  2282 e1000_update_phy_info(unsigned long data)
       
  2283 {
       
  2284 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2285 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
       
  2286 }
       
  2287 
       
  2288 /**
       
  2289  * e1000_82547_tx_fifo_stall - Timer Call-back
       
  2290  * @data: pointer to adapter cast into an unsigned long
       
  2291  **/
       
  2292 
       
  2293 static void
       
  2294 e1000_82547_tx_fifo_stall(unsigned long data)
       
  2295 {
       
  2296 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2297 	struct net_device *netdev = adapter->netdev;
       
  2298 	uint32_t tctl;
       
  2299 
       
  2300 	if (atomic_read(&adapter->tx_fifo_stall)) {
       
  2301 		if ((E1000_READ_REG(&adapter->hw, TDT) ==
       
  2302 		    E1000_READ_REG(&adapter->hw, TDH)) &&
       
  2303 		   (E1000_READ_REG(&adapter->hw, TDFT) ==
       
  2304 		    E1000_READ_REG(&adapter->hw, TDFH)) &&
       
  2305 		   (E1000_READ_REG(&adapter->hw, TDFTS) ==
       
  2306 		    E1000_READ_REG(&adapter->hw, TDFHS))) {
       
  2307 			tctl = E1000_READ_REG(&adapter->hw, TCTL);
       
  2308 			E1000_WRITE_REG(&adapter->hw, TCTL,
       
  2309 					tctl & ~E1000_TCTL_EN);
       
  2310 			E1000_WRITE_REG(&adapter->hw, TDFT,
       
  2311 					adapter->tx_head_addr);
       
  2312 			E1000_WRITE_REG(&adapter->hw, TDFH,
       
  2313 					adapter->tx_head_addr);
       
  2314 			E1000_WRITE_REG(&adapter->hw, TDFTS,
       
  2315 					adapter->tx_head_addr);
       
  2316 			E1000_WRITE_REG(&adapter->hw, TDFHS,
       
  2317 					adapter->tx_head_addr);
       
  2318 			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
       
  2319 			E1000_WRITE_FLUSH(&adapter->hw);
       
  2320 
       
  2321 			adapter->tx_fifo_head = 0;
       
  2322 			atomic_set(&adapter->tx_fifo_stall, 0);
       
  2323 			netif_wake_queue(netdev);
       
  2324 		} else {
       
  2325 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  2326 		}
       
  2327 	}
       
  2328 }
       
  2329 
       
  2330 /**
       
  2331  * e1000_watchdog - Timer Call-back
       
  2332  * @data: pointer to adapter cast into an unsigned long
       
  2333  **/
       
  2334 static void
       
  2335 e1000_watchdog(unsigned long data)
       
  2336 {
       
  2337 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2338 	struct net_device *netdev = adapter->netdev;
       
  2339 	struct e1000_tx_ring *txdr = adapter->tx_ring;
       
  2340 	uint32_t link, tctl;
       
  2341 	int32_t ret_val;
       
  2342 
       
  2343 	ret_val = e1000_check_for_link(&adapter->hw);
       
  2344 	if ((ret_val == E1000_ERR_PHY) &&
       
  2345 	    (adapter->hw.phy_type == e1000_phy_igp_3) &&
       
  2346 	    (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
       
  2347 		/* See e1000_kumeran_lock_loss_workaround() */
       
  2348 		DPRINTK(LINK, INFO,
       
  2349 			"Gigabit has been disabled, downgrading speed\n");
       
  2350 	}
       
  2351 	if (adapter->hw.mac_type == e1000_82573) {
       
  2352 		e1000_enable_tx_pkt_filtering(&adapter->hw);
       
  2353 		if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
       
  2354 			e1000_update_mng_vlan(adapter);
       
  2355 	}
       
  2356 
       
  2357 	if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
       
  2358 	   !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
       
  2359 		link = !adapter->hw.serdes_link_down;
       
  2360 	else
       
  2361 		link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
       
  2362 
       
  2363 	if (link) {
       
  2364 		if (!netif_carrier_ok(netdev)) {
       
  2365 			boolean_t txb2b = 1;
       
  2366 			e1000_get_speed_and_duplex(&adapter->hw,
       
  2367 			                           &adapter->link_speed,
       
  2368 			                           &adapter->link_duplex);
       
  2369 
       
  2370 			DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
       
  2371 			       adapter->link_speed,
       
  2372 			       adapter->link_duplex == FULL_DUPLEX ?
       
  2373 			       "Full Duplex" : "Half Duplex");
       
  2374 
       
  2375 			/* tweak tx_queue_len according to speed/duplex
       
  2376 			 * and adjust the timeout factor */
       
  2377 			netdev->tx_queue_len = adapter->tx_queue_len;
       
  2378 			adapter->tx_timeout_factor = 1;
       
  2379 			switch (adapter->link_speed) {
       
  2380 			case SPEED_10:
       
  2381 				txb2b = 0;
       
  2382 				netdev->tx_queue_len = 10;
       
  2383 				adapter->tx_timeout_factor = 8;
       
  2384 				break;
       
  2385 			case SPEED_100:
       
  2386 				txb2b = 0;
       
  2387 				netdev->tx_queue_len = 100;
       
  2388 				/* maybe add some timeout factor ? */
       
  2389 				break;
       
  2390 			}
       
  2391 
       
  2392 			if ((adapter->hw.mac_type == e1000_82571 ||
       
  2393 			     adapter->hw.mac_type == e1000_82572) &&
       
  2394 			    txb2b == 0) {
       
  2395 #define SPEED_MODE_BIT (1 << 21)
       
  2396 				uint32_t tarc0;
       
  2397 				tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
       
  2398 				tarc0 &= ~SPEED_MODE_BIT;
       
  2399 				E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
       
  2400 			}
       
  2401 				
       
  2402 #ifdef NETIF_F_TSO
       
  2403 			/* disable TSO for pcie and 10/100 speeds, to avoid
       
  2404 			 * some hardware issues */
       
  2405 			if (!adapter->tso_force &&
       
  2406 			    adapter->hw.bus_type == e1000_bus_type_pci_express){
       
  2407 				switch (adapter->link_speed) {
       
  2408 				case SPEED_10:
       
  2409 				case SPEED_100:
       
  2410 					DPRINTK(PROBE,INFO,
       
  2411 				        "10/100 speed: disabling TSO\n");
       
  2412 					netdev->features &= ~NETIF_F_TSO;
       
  2413 					break;
       
  2414 				case SPEED_1000:
       
  2415 					netdev->features |= NETIF_F_TSO;
       
  2416 					break;
       
  2417 				default:
       
  2418 					/* oops */
       
  2419 					break;
       
  2420 				}
       
  2421 			}
       
  2422 #endif
       
  2423 
       
  2424 			/* enable transmits in the hardware, need to do this
       
  2425 			 * after setting TARC0 */
       
  2426 			tctl = E1000_READ_REG(&adapter->hw, TCTL);
       
  2427 			tctl |= E1000_TCTL_EN;
       
  2428 			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
       
  2429 
       
  2430 			netif_carrier_on(netdev);
       
  2431 			netif_wake_queue(netdev);
       
  2432 			mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
       
  2433 			adapter->smartspeed = 0;
       
  2434 		}
       
  2435 	} else {
       
  2436 		if (netif_carrier_ok(netdev)) {
       
  2437 			adapter->link_speed = 0;
       
  2438 			adapter->link_duplex = 0;
       
  2439 			DPRINTK(LINK, INFO, "NIC Link is Down\n");
       
  2440 			netif_carrier_off(netdev);
       
  2441 			netif_stop_queue(netdev);
       
  2442 			mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
       
  2443 
       
  2444 			/* 80003ES2LAN workaround--
       
  2445 			 * For packet buffer work-around on link down event;
       
  2446 			 * disable receives in the ISR and
       
  2447 			 * reset device here in the watchdog
       
  2448 			 */
       
  2449 			if (adapter->hw.mac_type == e1000_80003es2lan) {
       
  2450 				/* reset device */
       
  2451 				schedule_work(&adapter->reset_task);
       
  2452 			}
       
  2453 		}
       
  2454 
       
  2455 		e1000_smartspeed(adapter);
       
  2456 	}
       
  2457 
       
  2458 	e1000_update_stats(adapter);
       
  2459 
       
  2460 	adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  2461 	adapter->tpt_old = adapter->stats.tpt;
       
  2462 	adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
       
  2463 	adapter->colc_old = adapter->stats.colc;
       
  2464 
       
  2465 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
       
  2466 	adapter->gorcl_old = adapter->stats.gorcl;
       
  2467 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
       
  2468 	adapter->gotcl_old = adapter->stats.gotcl;
       
  2469 
       
  2470 	e1000_update_adaptive(&adapter->hw);
       
  2471 
       
  2472 	if (!netif_carrier_ok(netdev)) {
       
  2473 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
       
  2474 			/* We've lost link, so the controller stops DMA,
       
  2475 			 * but we've got queued Tx work that's never going
       
  2476 			 * to get done, so reset controller to flush Tx.
       
  2477 			 * (Do the reset outside of interrupt context). */
       
  2478 			adapter->tx_timeout_count++;
       
  2479 			schedule_work(&adapter->reset_task);
       
  2480 		}
       
  2481 	}
       
  2482 
       
  2483 	/* Dynamic mode for Interrupt Throttle Rate (ITR) */
       
  2484 	if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
       
  2485 		/* Symmetric Tx/Rx gets a reduced ITR=2000; Total
       
  2486 		 * asymmetrical Tx or Rx gets ITR=8000; everyone
       
  2487 		 * else is between 2000-8000. */
       
  2488 		uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
       
  2489 		uint32_t dif = (adapter->gotcl > adapter->gorcl ?
       
  2490 			adapter->gotcl - adapter->gorcl :
       
  2491 			adapter->gorcl - adapter->gotcl) / 10000;
       
  2492 		uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
       
  2493 		E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
       
  2494 	}
       
  2495 
       
  2496 	/* Cause software interrupt to ensure rx ring is cleaned */
       
  2497 	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
       
  2498 
       
  2499 	/* Force detection of hung controller every watchdog period */
       
  2500 	adapter->detect_tx_hung = TRUE;
       
  2501 
       
  2502 	/* With 82571 controllers, LAA may be overwritten due to controller
       
  2503 	 * reset from the other port. Set the appropriate LAA in RAR[0] */
       
  2504 	if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
       
  2505 		e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
       
  2506 
       
  2507 	/* Reset the timer */
       
  2508 	mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
       
  2509 }
       
  2510 
       
  2511 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  2512 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  2513 #define E1000_TX_FLAGS_TSO		0x00000004
       
  2514 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  2515 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  2516 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  2517 
       
  2518 static int
       
  2519 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2520           struct sk_buff *skb)
       
  2521 {
       
  2522 #ifdef NETIF_F_TSO
       
  2523 	struct e1000_context_desc *context_desc;
       
  2524 	struct e1000_buffer *buffer_info;
       
  2525 	unsigned int i;
       
  2526 	uint32_t cmd_length = 0;
       
  2527 	uint16_t ipcse = 0, tucse, mss;
       
  2528 	uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
       
  2529 	int err;
       
  2530 
       
  2531 	if (skb_is_gso(skb)) {
       
  2532 		if (skb_header_cloned(skb)) {
       
  2533 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  2534 			if (err)
       
  2535 				return err;
       
  2536 		}
       
  2537 
       
  2538 		hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
       
  2539 		mss = skb_shinfo(skb)->gso_size;
       
  2540 		if (skb->protocol == htons(ETH_P_IP)) {
       
  2541 			skb->nh.iph->tot_len = 0;
       
  2542 			skb->nh.iph->check = 0;
       
  2543 			skb->h.th->check =
       
  2544 				~csum_tcpudp_magic(skb->nh.iph->saddr,
       
  2545 						   skb->nh.iph->daddr,
       
  2546 						   0,
       
  2547 						   IPPROTO_TCP,
       
  2548 						   0);
       
  2549 			cmd_length = E1000_TXD_CMD_IP;
       
  2550 			ipcse = skb->h.raw - skb->data - 1;
       
  2551 #ifdef NETIF_F_TSO_IPV6
       
  2552 		} else if (skb->protocol == ntohs(ETH_P_IPV6)) {
       
  2553 			skb->nh.ipv6h->payload_len = 0;
       
  2554 			skb->h.th->check =
       
  2555 				~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
       
  2556 						 &skb->nh.ipv6h->daddr,
       
  2557 						 0,
       
  2558 						 IPPROTO_TCP,
       
  2559 						 0);
       
  2560 			ipcse = 0;
       
  2561 #endif
       
  2562 		}
       
  2563 		ipcss = skb->nh.raw - skb->data;
       
  2564 		ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
       
  2565 		tucss = skb->h.raw - skb->data;
       
  2566 		tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
       
  2567 		tucse = 0;
       
  2568 
       
  2569 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  2570 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  2571 
       
  2572 		i = tx_ring->next_to_use;
       
  2573 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2574 		buffer_info = &tx_ring->buffer_info[i];
       
  2575 
       
  2576 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  2577 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  2578 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  2579 		context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  2580 		context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  2581 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  2582 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  2583 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  2584 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  2585 
       
  2586 		buffer_info->time_stamp = jiffies;
       
  2587 
       
  2588 		if (++i == tx_ring->count) i = 0;
       
  2589 		tx_ring->next_to_use = i;
       
  2590 
       
  2591 		return TRUE;
       
  2592 	}
       
  2593 #endif
       
  2594 
       
  2595 	return FALSE;
       
  2596 }
       
  2597 
       
  2598 static boolean_t
       
  2599 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2600               struct sk_buff *skb)
       
  2601 {
       
  2602 	struct e1000_context_desc *context_desc;
       
  2603 	struct e1000_buffer *buffer_info;
       
  2604 	unsigned int i;
       
  2605 	uint8_t css;
       
  2606 
       
  2607 	if (likely(skb->ip_summed == CHECKSUM_HW)) {
       
  2608 		css = skb->h.raw - skb->data;
       
  2609 
       
  2610 		i = tx_ring->next_to_use;
       
  2611 		buffer_info = &tx_ring->buffer_info[i];
       
  2612 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2613 
       
  2614 		context_desc->upper_setup.tcp_fields.tucss = css;
       
  2615 		context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
       
  2616 		context_desc->upper_setup.tcp_fields.tucse = 0;
       
  2617 		context_desc->tcp_seg_setup.data = 0;
       
  2618 		context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
       
  2619 
       
  2620 		buffer_info->time_stamp = jiffies;
       
  2621 
       
  2622 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  2623 		tx_ring->next_to_use = i;
       
  2624 
       
  2625 		return TRUE;
       
  2626 	}
       
  2627 
       
  2628 	return FALSE;
       
  2629 }
       
  2630 
       
  2631 #define E1000_MAX_TXD_PWR	12
       
  2632 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
       
  2633 
       
  2634 static int
       
  2635 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2636              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
       
  2637              unsigned int nr_frags, unsigned int mss)
       
  2638 {
       
  2639 	struct e1000_buffer *buffer_info;
       
  2640 	unsigned int len = skb->len;
       
  2641 	unsigned int offset = 0, size, count = 0, i;
       
  2642 	unsigned int f;
       
  2643 	len -= skb->data_len;
       
  2644 
       
  2645 	i = tx_ring->next_to_use;
       
  2646 
       
  2647 	while (len) {
       
  2648 		buffer_info = &tx_ring->buffer_info[i];
       
  2649 		size = min(len, max_per_txd);
       
  2650 #ifdef NETIF_F_TSO
       
  2651 		/* Workaround for Controller erratum --
       
  2652 		 * descriptor for non-tso packet in a linear SKB that follows a
       
  2653 		 * tso gets written back prematurely before the data is fully
       
  2654 		 * DMA'd to the controller */
       
  2655 		if (!skb->data_len && tx_ring->last_tx_tso &&
       
  2656 		    !skb_is_gso(skb)) {
       
  2657 			tx_ring->last_tx_tso = 0;
       
  2658 			size -= 4;
       
  2659 		}
       
  2660 
       
  2661 		/* Workaround for premature desc write-backs
       
  2662 		 * in TSO mode.  Append 4-byte sentinel desc */
       
  2663 		if (unlikely(mss && !nr_frags && size == len && size > 8))
       
  2664 			size -= 4;
       
  2665 #endif
       
  2666 		/* work-around for errata 10 and it applies
       
  2667 		 * to all controllers in PCI-X mode
       
  2668 		 * The fix is to make sure that the first descriptor of a
       
  2669 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
       
  2670 		 */
       
  2671 		if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
       
  2672 		                (size > 2015) && count == 0))
       
  2673 		        size = 2015;
       
  2674 
       
  2675 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
       
  2676 		 * terminating buffers within evenly-aligned dwords. */
       
  2677 		if (unlikely(adapter->pcix_82544 &&
       
  2678 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
       
  2679 		   size > 4))
       
  2680 			size -= 4;
       
  2681 
       
  2682 		buffer_info->length = size;
       
  2683 		buffer_info->dma =
       
  2684 			pci_map_single(adapter->pdev,
       
  2685 				skb->data + offset,
       
  2686 				size,
       
  2687 				PCI_DMA_TODEVICE);
       
  2688 		buffer_info->time_stamp = jiffies;
       
  2689 
       
  2690 		len -= size;
       
  2691 		offset += size;
       
  2692 		count++;
       
  2693 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  2694 	}
       
  2695 
       
  2696 	for (f = 0; f < nr_frags; f++) {
       
  2697 		struct skb_frag_struct *frag;
       
  2698 
       
  2699 		frag = &skb_shinfo(skb)->frags[f];
       
  2700 		len = frag->size;
       
  2701 		offset = frag->page_offset;
       
  2702 
       
  2703 		while (len) {
       
  2704 			buffer_info = &tx_ring->buffer_info[i];
       
  2705 			size = min(len, max_per_txd);
       
  2706 #ifdef NETIF_F_TSO
       
  2707 			/* Workaround for premature desc write-backs
       
  2708 			 * in TSO mode.  Append 4-byte sentinel desc */
       
  2709 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
       
  2710 				size -= 4;
       
  2711 #endif
       
  2712 			/* Workaround for potential 82544 hang in PCI-X.
       
  2713 			 * Avoid terminating buffers within evenly-aligned
       
  2714 			 * dwords. */
       
  2715 			if (unlikely(adapter->pcix_82544 &&
       
  2716 			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
       
  2717 			   size > 4))
       
  2718 				size -= 4;
       
  2719 
       
  2720 			buffer_info->length = size;
       
  2721 			buffer_info->dma =
       
  2722 				pci_map_page(adapter->pdev,
       
  2723 					frag->page,
       
  2724 					offset,
       
  2725 					size,
       
  2726 					PCI_DMA_TODEVICE);
       
  2727 			buffer_info->time_stamp = jiffies;
       
  2728 
       
  2729 			len -= size;
       
  2730 			offset += size;
       
  2731 			count++;
       
  2732 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  2733 		}
       
  2734 	}
       
  2735 
       
  2736 	i = (i == 0) ? tx_ring->count - 1 : i - 1;
       
  2737 	tx_ring->buffer_info[i].skb = skb;
       
  2738 	tx_ring->buffer_info[first].next_to_watch = i;
       
  2739 
       
  2740 	return count;
       
  2741 }
       
  2742 
       
  2743 static void
       
  2744 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2745                int tx_flags, int count)
       
  2746 {
       
  2747 	struct e1000_tx_desc *tx_desc = NULL;
       
  2748 	struct e1000_buffer *buffer_info;
       
  2749 	uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  2750 	unsigned int i;
       
  2751 
       
  2752 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
       
  2753 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  2754 		             E1000_TXD_CMD_TSE;
       
  2755 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  2756 
       
  2757 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
       
  2758 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  2759 	}
       
  2760 
       
  2761 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
       
  2762 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  2763 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  2764 	}
       
  2765 
       
  2766 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
       
  2767 		txd_lower |= E1000_TXD_CMD_VLE;
       
  2768 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  2769 	}
       
  2770 
       
  2771 	i = tx_ring->next_to_use;
       
  2772 
       
  2773 	while (count--) {
       
  2774 		buffer_info = &tx_ring->buffer_info[i];
       
  2775 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  2776 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  2777 		tx_desc->lower.data =
       
  2778 			cpu_to_le32(txd_lower | buffer_info->length);
       
  2779 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  2780 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  2781 	}
       
  2782 
       
  2783 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  2784 
       
  2785 	/* Force memory writes to complete before letting h/w
       
  2786 	 * know there are new descriptors to fetch.  (Only
       
  2787 	 * applicable for weak-ordered memory model archs,
       
  2788 	 * such as IA-64). */
       
  2789 	wmb();
       
  2790 
       
  2791 	tx_ring->next_to_use = i;
       
  2792 	writel(i, adapter->hw.hw_addr + tx_ring->tdt);
       
  2793 }
       
  2794 
       
  2795 /**
       
  2796  * 82547 workaround to avoid controller hang in half-duplex environment.
       
  2797  * The workaround is to avoid queuing a large packet that would span
       
  2798  * the internal Tx FIFO ring boundary by notifying the stack to resend
       
  2799  * the packet at a later time.  This gives the Tx FIFO an opportunity to
       
  2800  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
       
  2801  * to the beginning of the Tx FIFO.
       
  2802  **/
       
  2803 
       
  2804 #define E1000_FIFO_HDR			0x10
       
  2805 #define E1000_82547_PAD_LEN		0x3E0
       
  2806 
       
  2807 static int
       
  2808 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  2809 {
       
  2810 	uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
       
  2811 	uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
       
  2812 
       
  2813 	E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
       
  2814 
       
  2815 	if (adapter->link_duplex != HALF_DUPLEX)
       
  2816 		goto no_fifo_stall_required;
       
  2817 
       
  2818 	if (atomic_read(&adapter->tx_fifo_stall))
       
  2819 		return 1;
       
  2820 
       
  2821 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
       
  2822 		atomic_set(&adapter->tx_fifo_stall, 1);
       
  2823 		return 1;
       
  2824 	}
       
  2825 
       
  2826 no_fifo_stall_required:
       
  2827 	adapter->tx_fifo_head += skb_fifo_len;
       
  2828 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
       
  2829 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
       
  2830 	return 0;
       
  2831 }
       
  2832 
       
  2833 #define MINIMUM_DHCP_PACKET_SIZE 282
       
  2834 static int
       
  2835 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  2836 {
       
  2837 	struct e1000_hw *hw =  &adapter->hw;
       
  2838 	uint16_t length, offset;
       
  2839 	if (vlan_tx_tag_present(skb)) {
       
  2840 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
       
  2841 			( adapter->hw.mng_cookie.status &
       
  2842 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
       
  2843 			return 0;
       
  2844 	}
       
  2845 	if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
       
  2846 		struct ethhdr *eth = (struct ethhdr *) skb->data;
       
  2847 		if ((htons(ETH_P_IP) == eth->h_proto)) {
       
  2848 			const struct iphdr *ip =
       
  2849 				(struct iphdr *)((uint8_t *)skb->data+14);
       
  2850 			if (IPPROTO_UDP == ip->protocol) {
       
  2851 				struct udphdr *udp =
       
  2852 					(struct udphdr *)((uint8_t *)ip +
       
  2853 						(ip->ihl << 2));
       
  2854 				if (ntohs(udp->dest) == 67) {
       
  2855 					offset = (uint8_t *)udp + 8 - skb->data;
       
  2856 					length = skb->len - offset;
       
  2857 
       
  2858 					return e1000_mng_write_dhcp_info(hw,
       
  2859 							(uint8_t *)udp + 8,
       
  2860 							length);
       
  2861 				}
       
  2862 			}
       
  2863 		}
       
  2864 	}
       
  2865 	return 0;
       
  2866 }
       
  2867 
       
  2868 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  2869 static int
       
  2870 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
       
  2871 {
       
  2872 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2873 	struct e1000_tx_ring *tx_ring;
       
  2874 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
       
  2875 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  2876 	unsigned int tx_flags = 0;
       
  2877 	unsigned int len = skb->len;
       
  2878 	unsigned long flags;
       
  2879 	unsigned int nr_frags = 0;
       
  2880 	unsigned int mss = 0;
       
  2881 	int count = 0;
       
  2882 	int tso;
       
  2883 	unsigned int f;
       
  2884 	len -= skb->data_len;
       
  2885 
       
  2886 	tx_ring = adapter->tx_ring;
       
  2887 
       
  2888 	if (unlikely(skb->len <= 0)) {
       
  2889 		dev_kfree_skb_any(skb);
       
  2890 		return NETDEV_TX_OK;
       
  2891 	}
       
  2892 
       
  2893 #ifdef NETIF_F_TSO
       
  2894 	mss = skb_shinfo(skb)->gso_size;
       
  2895 	/* The controller does a simple calculation to
       
  2896 	 * make sure there is enough room in the FIFO before
       
  2897 	 * initiating the DMA for each buffer.  The calc is:
       
  2898 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  2899 	 * overrun the FIFO, adjust the max buffer len if mss
       
  2900 	 * drops. */
       
  2901 	if (mss) {
       
  2902 		uint8_t hdr_len;
       
  2903 		max_per_txd = min(mss << 2, max_per_txd);
       
  2904 		max_txd_pwr = fls(max_per_txd) - 1;
       
  2905 
       
  2906 	/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
       
  2907 	 * points to just header, pull a few bytes of payload from
       
  2908 	 * frags into skb->data */
       
  2909 		hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
       
  2910 		if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
       
  2911 			switch (adapter->hw.mac_type) {
       
  2912 				unsigned int pull_size;
       
  2913 			case e1000_82571:
       
  2914 			case e1000_82572:
       
  2915 			case e1000_82573:
       
  2916 			case e1000_ich8lan:
       
  2917 				pull_size = min((unsigned int)4, skb->data_len);
       
  2918 				if (!__pskb_pull_tail(skb, pull_size)) {
       
  2919 					DPRINTK(DRV, ERR,
       
  2920 						"__pskb_pull_tail failed.\n");
       
  2921 					dev_kfree_skb_any(skb);
       
  2922 					return NETDEV_TX_OK;
       
  2923 				}
       
  2924 				len = skb->len - skb->data_len;
       
  2925 				break;
       
  2926 			default:
       
  2927 				/* do nothing */
       
  2928 				break;
       
  2929 			}
       
  2930 		}
       
  2931 	}
       
  2932 
       
  2933 	/* reserve a descriptor for the offload context */
       
  2934 	if ((mss) || (skb->ip_summed == CHECKSUM_HW))
       
  2935 		count++;
       
  2936 	count++;
       
  2937 #else
       
  2938 	if (skb->ip_summed == CHECKSUM_HW)
       
  2939 		count++;
       
  2940 #endif
       
  2941 
       
  2942 #ifdef NETIF_F_TSO
       
  2943 	/* Controller Erratum workaround */
       
  2944 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
       
  2945 		count++;
       
  2946 #endif
       
  2947 
       
  2948 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  2949 
       
  2950 	if (adapter->pcix_82544)
       
  2951 		count++;
       
  2952 
       
  2953 	/* work-around for errata 10 and it applies to all controllers
       
  2954 	 * in PCI-X mode, so add one more descriptor to the count
       
  2955 	 */
       
  2956 	if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
       
  2957 			(len > 2015)))
       
  2958 		count++;
       
  2959 
       
  2960 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  2961 	for (f = 0; f < nr_frags; f++)
       
  2962 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
       
  2963 				       max_txd_pwr);
       
  2964 	if (adapter->pcix_82544)
       
  2965 		count += nr_frags;
       
  2966 
       
  2967 
       
  2968 	if (adapter->hw.tx_pkt_filtering &&
       
  2969 	    (adapter->hw.mac_type == e1000_82573))
       
  2970 		e1000_transfer_dhcp_info(adapter, skb);
       
  2971 
       
  2972 	local_irq_save(flags);
       
  2973 	if (!spin_trylock(&tx_ring->tx_lock)) {
       
  2974 		/* Collision - tell upper layer to requeue */
       
  2975 		local_irq_restore(flags);
       
  2976 		return NETDEV_TX_LOCKED;
       
  2977 	}
       
  2978 
       
  2979 	/* need: count + 2 desc gap to keep tail from touching
       
  2980 	 * head, otherwise try next time */
       
  2981 	if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
       
  2982 		netif_stop_queue(netdev);
       
  2983 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  2984 		return NETDEV_TX_BUSY;
       
  2985 	}
       
  2986 
       
  2987 	if (unlikely(adapter->hw.mac_type == e1000_82547)) {
       
  2988 		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
       
  2989 			netif_stop_queue(netdev);
       
  2990 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
       
  2991 			spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  2992 			return NETDEV_TX_BUSY;
       
  2993 		}
       
  2994 	}
       
  2995 
       
  2996 	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
       
  2997 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  2998 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  2999 	}
       
  3000 
       
  3001 	first = tx_ring->next_to_use;
       
  3002 
       
  3003 	tso = e1000_tso(adapter, tx_ring, skb);
       
  3004 	if (tso < 0) {
       
  3005 		dev_kfree_skb_any(skb);
       
  3006 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3007 		return NETDEV_TX_OK;
       
  3008 	}
       
  3009 
       
  3010 	if (likely(tso)) {
       
  3011 		tx_ring->last_tx_tso = 1;
       
  3012 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  3013 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
       
  3014 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  3015 
       
  3016 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
       
  3017 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
       
  3018 	 * no longer assume, we must. */
       
  3019 	if (likely(skb->protocol == htons(ETH_P_IP)))
       
  3020 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  3021 
       
  3022 	e1000_tx_queue(adapter, tx_ring, tx_flags,
       
  3023 	               e1000_tx_map(adapter, tx_ring, skb, first,
       
  3024 	                            max_per_txd, nr_frags, mss));
       
  3025 
       
  3026 	netdev->trans_start = jiffies;
       
  3027 
       
  3028 	/* Make sure there is space in the ring for the next send. */
       
  3029 	if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
       
  3030 		netif_stop_queue(netdev);
       
  3031 
       
  3032 	spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3033 	return NETDEV_TX_OK;
       
  3034 }
       
  3035 
       
  3036 /**
       
  3037  * e1000_tx_timeout - Respond to a Tx Hang
       
  3038  * @netdev: network interface device structure
       
  3039  **/
       
  3040 
       
  3041 static void
       
  3042 e1000_tx_timeout(struct net_device *netdev)
       
  3043 {
       
  3044 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3045 
       
  3046 	/* Do the reset outside of interrupt context */
       
  3047 	adapter->tx_timeout_count++;
       
  3048 	schedule_work(&adapter->reset_task);
       
  3049 }
       
  3050 
       
  3051 static void
       
  3052 e1000_reset_task(struct net_device *netdev)
       
  3053 {
       
  3054 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3055 
       
  3056 	e1000_reinit_locked(adapter);
       
  3057 }
       
  3058 
       
  3059 /**
       
  3060  * e1000_get_stats - Get System Network Statistics
       
  3061  * @netdev: network interface device structure
       
  3062  *
       
  3063  * Returns the address of the device statistics structure.
       
  3064  * The statistics are actually updated from the timer callback.
       
  3065  **/
       
  3066 
       
  3067 static struct net_device_stats *
       
  3068 e1000_get_stats(struct net_device *netdev)
       
  3069 {
       
  3070 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3071 
       
  3072 	/* only return the current stats */
       
  3073 	return &adapter->net_stats;
       
  3074 }
       
  3075 
       
  3076 /**
       
  3077  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  3078  * @netdev: network interface device structure
       
  3079  * @new_mtu: new value for maximum frame size
       
  3080  *
       
  3081  * Returns 0 on success, negative on failure
       
  3082  **/
       
  3083 
       
  3084 static int
       
  3085 e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  3086 {
       
  3087 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3088 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  3089 	uint16_t eeprom_data = 0;
       
  3090 
       
  3091 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
       
  3092 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
       
  3093 		DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
       
  3094 		return -EINVAL;
       
  3095 	}
       
  3096 
       
  3097 	/* Adapter-specific max frame size limits. */
       
  3098 	switch (adapter->hw.mac_type) {
       
  3099 	case e1000_undefined ... e1000_82542_rev2_1:
       
  3100 	case e1000_ich8lan:
       
  3101 		if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3102 			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
       
  3103 			return -EINVAL;
       
  3104 		}
       
  3105 		break;
       
  3106 	case e1000_82573:
       
  3107 		/* only enable jumbo frames if ASPM is disabled completely
       
  3108 		 * this means both bits must be zero in 0x1A bits 3:2 */
       
  3109 		e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
       
  3110 		                  &eeprom_data);
       
  3111 		if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
       
  3112 			if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3113 				DPRINTK(PROBE, ERR,
       
  3114 			            	"Jumbo Frames not supported.\n");
       
  3115 				return -EINVAL;
       
  3116 			}
       
  3117 			break;
       
  3118 		}
       
  3119 		/* fall through to get support */
       
  3120 	case e1000_82571:
       
  3121 	case e1000_82572:
       
  3122 	case e1000_80003es2lan:
       
  3123 #define MAX_STD_JUMBO_FRAME_SIZE 9234
       
  3124 		if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
       
  3125 			DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
       
  3126 			return -EINVAL;
       
  3127 		}
       
  3128 		break;
       
  3129 	default:
       
  3130 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
       
  3131 		break;
       
  3132 	}
       
  3133 
       
  3134 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  3135 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  3136 	 * larger slab size
       
  3137 	 * i.e. RXBUFFER_2048 --> size-4096 slab */
       
  3138 
       
  3139 	if (max_frame <= E1000_RXBUFFER_256)
       
  3140 		adapter->rx_buffer_len = E1000_RXBUFFER_256;
       
  3141 	else if (max_frame <= E1000_RXBUFFER_512)
       
  3142 		adapter->rx_buffer_len = E1000_RXBUFFER_512;
       
  3143 	else if (max_frame <= E1000_RXBUFFER_1024)
       
  3144 		adapter->rx_buffer_len = E1000_RXBUFFER_1024;
       
  3145 	else if (max_frame <= E1000_RXBUFFER_2048)
       
  3146 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
       
  3147 	else if (max_frame <= E1000_RXBUFFER_4096)
       
  3148 		adapter->rx_buffer_len = E1000_RXBUFFER_4096;
       
  3149 	else if (max_frame <= E1000_RXBUFFER_8192)
       
  3150 		adapter->rx_buffer_len = E1000_RXBUFFER_8192;
       
  3151 	else if (max_frame <= E1000_RXBUFFER_16384)
       
  3152 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
       
  3153 
       
  3154 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  3155 	if (!adapter->hw.tbi_compatibility_on &&
       
  3156 	    ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
       
  3157 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
       
  3158 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  3159 
       
  3160 	netdev->mtu = new_mtu;
       
  3161 
       
  3162 	if (netif_running(netdev))
       
  3163 		e1000_reinit_locked(adapter);
       
  3164 
       
  3165 	adapter->hw.max_frame_size = max_frame;
       
  3166 
       
  3167 	return 0;
       
  3168 }
       
  3169 
       
  3170 /**
       
  3171  * e1000_update_stats - Update the board statistics counters
       
  3172  * @adapter: board private structure
       
  3173  **/
       
  3174 
       
  3175 void
       
  3176 e1000_update_stats(struct e1000_adapter *adapter)
       
  3177 {
       
  3178 	struct e1000_hw *hw = &adapter->hw;
       
  3179 	struct pci_dev *pdev = adapter->pdev;
       
  3180 	unsigned long flags;
       
  3181 	uint16_t phy_tmp;
       
  3182 
       
  3183 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
       
  3184 
       
  3185 	/*
       
  3186 	 * Prevent stats update while adapter is being reset, or if the pci
       
  3187 	 * connection is down.
       
  3188 	 */
       
  3189 	if (adapter->link_speed == 0)
       
  3190 		return;
       
  3191 	if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
       
  3192 		return;
       
  3193 
       
  3194 	spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3195 
       
  3196 	/* these counters are modified from e1000_adjust_tbi_stats,
       
  3197 	 * called from the interrupt context, so they must only
       
  3198 	 * be written while holding adapter->stats_lock
       
  3199 	 */
       
  3200 
       
  3201 	adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
       
  3202 	adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
       
  3203 	adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
       
  3204 	adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
       
  3205 	adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
       
  3206 	adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
       
  3207 	adapter->stats.roc += E1000_READ_REG(hw, ROC);
       
  3208 
       
  3209 	if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3210 	adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
       
  3211 	adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
       
  3212 	adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
       
  3213 	adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
       
  3214 	adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
       
  3215 	adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
       
  3216 	}
       
  3217 
       
  3218 	adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
       
  3219 	adapter->stats.mpc += E1000_READ_REG(hw, MPC);
       
  3220 	adapter->stats.scc += E1000_READ_REG(hw, SCC);
       
  3221 	adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
       
  3222 	adapter->stats.mcc += E1000_READ_REG(hw, MCC);
       
  3223 	adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
       
  3224 	adapter->stats.dc += E1000_READ_REG(hw, DC);
       
  3225 	adapter->stats.sec += E1000_READ_REG(hw, SEC);
       
  3226 	adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
       
  3227 	adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
       
  3228 	adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
       
  3229 	adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
       
  3230 	adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
       
  3231 	adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
       
  3232 	adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
       
  3233 	adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
       
  3234 	adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
       
  3235 	adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
       
  3236 	adapter->stats.ruc += E1000_READ_REG(hw, RUC);
       
  3237 	adapter->stats.rfc += E1000_READ_REG(hw, RFC);
       
  3238 	adapter->stats.rjc += E1000_READ_REG(hw, RJC);
       
  3239 	adapter->stats.torl += E1000_READ_REG(hw, TORL);
       
  3240 	adapter->stats.torh += E1000_READ_REG(hw, TORH);
       
  3241 	adapter->stats.totl += E1000_READ_REG(hw, TOTL);
       
  3242 	adapter->stats.toth += E1000_READ_REG(hw, TOTH);
       
  3243 	adapter->stats.tpr += E1000_READ_REG(hw, TPR);
       
  3244 
       
  3245 	if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3246 	adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
       
  3247 	adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
       
  3248 	adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
       
  3249 	adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
       
  3250 	adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
       
  3251 	adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
       
  3252 	}
       
  3253 
       
  3254 	adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
       
  3255 	adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
       
  3256 
       
  3257 	/* used for adaptive IFS */
       
  3258 
       
  3259 	hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
       
  3260 	adapter->stats.tpt += hw->tx_packet_delta;
       
  3261 	hw->collision_delta = E1000_READ_REG(hw, COLC);
       
  3262 	adapter->stats.colc += hw->collision_delta;
       
  3263 
       
  3264 	if (hw->mac_type >= e1000_82543) {
       
  3265 		adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
       
  3266 		adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
       
  3267 		adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
       
  3268 		adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
       
  3269 		adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
       
  3270 		adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
       
  3271 	}
       
  3272 	if (hw->mac_type > e1000_82547_rev_2) {
       
  3273 		adapter->stats.iac += E1000_READ_REG(hw, IAC);
       
  3274 		adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
       
  3275 
       
  3276 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3277 		adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
       
  3278 		adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
       
  3279 		adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
       
  3280 		adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
       
  3281 		adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
       
  3282 		adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
       
  3283 		adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
       
  3284 		}
       
  3285 	}
       
  3286 
       
  3287 	/* Fill out the OS statistics structure */
       
  3288 
       
  3289 	adapter->net_stats.rx_packets = adapter->stats.gprc;
       
  3290 	adapter->net_stats.tx_packets = adapter->stats.gptc;
       
  3291 	adapter->net_stats.rx_bytes = adapter->stats.gorcl;
       
  3292 	adapter->net_stats.tx_bytes = adapter->stats.gotcl;
       
  3293 	adapter->net_stats.multicast = adapter->stats.mprc;
       
  3294 	adapter->net_stats.collisions = adapter->stats.colc;
       
  3295 
       
  3296 	/* Rx Errors */
       
  3297 
       
  3298 	/* RLEC on some newer hardware can be incorrect so build
       
  3299 	* our own version based on RUC and ROC */
       
  3300 	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
       
  3301 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  3302 		adapter->stats.ruc + adapter->stats.roc +
       
  3303 		adapter->stats.cexterr;
       
  3304 	adapter->net_stats.rx_length_errors = adapter->stats.ruc +
       
  3305 	                                      adapter->stats.roc;
       
  3306 	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
       
  3307 	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
       
  3308 	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
       
  3309 
       
  3310 	/* Tx Errors */
       
  3311 
       
  3312 	adapter->net_stats.tx_errors = adapter->stats.ecol +
       
  3313 	                               adapter->stats.latecol;
       
  3314 	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
       
  3315 	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
       
  3316 	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
       
  3317 
       
  3318 	/* Tx Dropped needs to be maintained elsewhere */
       
  3319 
       
  3320 	/* Phy Stats */
       
  3321 
       
  3322 	if (hw->media_type == e1000_media_type_copper) {
       
  3323 		if ((adapter->link_speed == SPEED_1000) &&
       
  3324 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
       
  3325 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
       
  3326 			adapter->phy_stats.idle_errors += phy_tmp;
       
  3327 		}
       
  3328 
       
  3329 		if ((hw->mac_type <= e1000_82546) &&
       
  3330 		   (hw->phy_type == e1000_phy_m88) &&
       
  3331 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
       
  3332 			adapter->phy_stats.receive_errors += phy_tmp;
       
  3333 	}
       
  3334 
       
  3335 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3336 }
       
  3337 
       
  3338 /**
       
  3339  * e1000_intr - Interrupt Handler
       
  3340  * @irq: interrupt number
       
  3341  * @data: pointer to a network interface device structure
       
  3342  * @pt_regs: CPU registers structure
       
  3343  **/
       
  3344 
       
  3345 static irqreturn_t
       
  3346 e1000_intr(int irq, void *data, struct pt_regs *regs)
       
  3347 {
       
  3348 	struct net_device *netdev = data;
       
  3349 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3350 	struct e1000_hw *hw = &adapter->hw;
       
  3351 	uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
       
  3352 #ifndef CONFIG_E1000_NAPI
       
  3353 	int i;
       
  3354 #else
       
  3355 	/* Interrupt Auto-Mask...upon reading ICR,
       
  3356 	 * interrupts are masked.  No need for the
       
  3357 	 * IMC write, but it does mean we should
       
  3358 	 * account for it ASAP. */
       
  3359 	if (likely(hw->mac_type >= e1000_82571))
       
  3360 		atomic_inc(&adapter->irq_sem);
       
  3361 #endif
       
  3362 
       
  3363 	if (unlikely(!icr)) {
       
  3364 #ifdef CONFIG_E1000_NAPI
       
  3365 		if (hw->mac_type >= e1000_82571)
       
  3366 			e1000_irq_enable(adapter);
       
  3367 #endif
       
  3368 		return IRQ_NONE;  /* Not our interrupt */
       
  3369 	}
       
  3370 
       
  3371 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
       
  3372 		hw->get_link_status = 1;
       
  3373 		/* 80003ES2LAN workaround--
       
  3374 		 * For packet buffer work-around on link down event;
       
  3375 		 * disable receives here in the ISR and
       
  3376 		 * reset adapter in watchdog
       
  3377 		 */
       
  3378 		if (netif_carrier_ok(netdev) &&
       
  3379 		    (adapter->hw.mac_type == e1000_80003es2lan)) {
       
  3380 			/* disable receives */
       
  3381 			rctl = E1000_READ_REG(hw, RCTL);
       
  3382 			E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  3383 		}
       
  3384 		mod_timer(&adapter->watchdog_timer, jiffies);
       
  3385 	}
       
  3386 
       
  3387 #ifdef CONFIG_E1000_NAPI
       
  3388 	if (unlikely(hw->mac_type < e1000_82571)) {
       
  3389 		atomic_inc(&adapter->irq_sem);
       
  3390 		E1000_WRITE_REG(hw, IMC, ~0);
       
  3391 		E1000_WRITE_FLUSH(hw);
       
  3392 	}
       
  3393 	if (likely(netif_rx_schedule_prep(netdev)))
       
  3394 		__netif_rx_schedule(netdev);
       
  3395 	else
       
  3396 		e1000_irq_enable(adapter);
       
  3397 #else
       
  3398 	/* Writing IMC and IMS is needed for 82547.
       
  3399 	 * Due to Hub Link bus being occupied, an interrupt
       
  3400 	 * de-assertion message is not able to be sent.
       
  3401 	 * When an interrupt assertion message is generated later,
       
  3402 	 * two messages are re-ordered and sent out.
       
  3403 	 * That causes APIC to think 82547 is in de-assertion
       
  3404 	 * state, while 82547 is in assertion state, resulting
       
  3405 	 * in dead lock. Writing IMC forces 82547 into
       
  3406 	 * de-assertion state.
       
  3407 	 */
       
  3408 	if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
       
  3409 		atomic_inc(&adapter->irq_sem);
       
  3410 		E1000_WRITE_REG(hw, IMC, ~0);
       
  3411 	}
       
  3412 
       
  3413 	for (i = 0; i < E1000_MAX_INTR; i++)
       
  3414 		if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
       
  3415 		   !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
       
  3416 			break;
       
  3417 
       
  3418 	if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
       
  3419 		e1000_irq_enable(adapter);
       
  3420 
       
  3421 #endif
       
  3422 
       
  3423 	return IRQ_HANDLED;
       
  3424 }
       
  3425 
       
  3426 #ifdef CONFIG_E1000_NAPI
       
  3427 /**
       
  3428  * e1000_clean - NAPI Rx polling callback
       
  3429  * @adapter: board private structure
       
  3430  **/
       
  3431 
       
  3432 static int
       
  3433 e1000_clean(struct net_device *poll_dev, int *budget)
       
  3434 {
       
  3435 	struct e1000_adapter *adapter;
       
  3436 	int work_to_do = min(*budget, poll_dev->quota);
       
  3437 	int tx_cleaned = 0, work_done = 0;
       
  3438 
       
  3439 	/* Must NOT use netdev_priv macro here. */
       
  3440 	adapter = poll_dev->priv;
       
  3441 
       
  3442 	/* Keep link state information with original netdev */
       
  3443 	if (!netif_carrier_ok(poll_dev))
       
  3444 		goto quit_polling;
       
  3445 
       
  3446 	/* e1000_clean is called per-cpu.  This lock protects
       
  3447 	 * tx_ring[0] from being cleaned by multiple cpus
       
  3448 	 * simultaneously.  A failure obtaining the lock means
       
  3449 	 * tx_ring[0] is currently being cleaned anyway. */
       
  3450 	if (spin_trylock(&adapter->tx_queue_lock)) {
       
  3451 		tx_cleaned = e1000_clean_tx_irq(adapter,
       
  3452 		                                &adapter->tx_ring[0]);
       
  3453 		spin_unlock(&adapter->tx_queue_lock);
       
  3454 	}
       
  3455 
       
  3456 	adapter->clean_rx(adapter, &adapter->rx_ring[0],
       
  3457 	                  &work_done, work_to_do);
       
  3458 
       
  3459 	*budget -= work_done;
       
  3460 	poll_dev->quota -= work_done;
       
  3461 
       
  3462 	/* If no Tx and not enough Rx work done, exit the polling mode */
       
  3463 	if ((!tx_cleaned && (work_done == 0)) ||
       
  3464 	   !netif_running(poll_dev)) {
       
  3465 quit_polling:
       
  3466 		netif_rx_complete(poll_dev);
       
  3467 		e1000_irq_enable(adapter);
       
  3468 		return 0;
       
  3469 	}
       
  3470 
       
  3471 	return 1;
       
  3472 }
       
  3473 
       
  3474 #endif
       
  3475 /**
       
  3476  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
  3477  * @adapter: board private structure
       
  3478  **/
       
  3479 
       
  3480 static boolean_t
       
  3481 e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
  3482                    struct e1000_tx_ring *tx_ring)
       
  3483 {
       
  3484 	struct net_device *netdev = adapter->netdev;
       
  3485 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
  3486 	struct e1000_buffer *buffer_info;
       
  3487 	unsigned int i, eop;
       
  3488 #ifdef CONFIG_E1000_NAPI
       
  3489 	unsigned int count = 0;
       
  3490 #endif
       
  3491 	boolean_t cleaned = FALSE;
       
  3492 
       
  3493 	i = tx_ring->next_to_clean;
       
  3494 	eop = tx_ring->buffer_info[i].next_to_watch;
       
  3495 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3496 
       
  3497 	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
       
  3498 		for (cleaned = FALSE; !cleaned; ) {
       
  3499 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3500 			buffer_info = &tx_ring->buffer_info[i];
       
  3501 			cleaned = (i == eop);
       
  3502 
       
  3503 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  3504 			memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
       
  3505 
       
  3506 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  3507 		}
       
  3508 
       
  3509 
       
  3510 		eop = tx_ring->buffer_info[i].next_to_watch;
       
  3511 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3512 #ifdef CONFIG_E1000_NAPI
       
  3513 #define E1000_TX_WEIGHT 64
       
  3514 		/* weight of a sort for tx, to avoid endless transmit cleanup */
       
  3515 		if (count++ == E1000_TX_WEIGHT) break;
       
  3516 #endif
       
  3517 	}
       
  3518 
       
  3519 	tx_ring->next_to_clean = i;
       
  3520 
       
  3521 #define TX_WAKE_THRESHOLD 32
       
  3522 	if (unlikely(cleaned && netif_queue_stopped(netdev) &&
       
  3523 	             netif_carrier_ok(netdev))) {
       
  3524 		spin_lock(&tx_ring->tx_lock);
       
  3525 		if (netif_queue_stopped(netdev) &&
       
  3526 		    (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
       
  3527 			netif_wake_queue(netdev);
       
  3528 		spin_unlock(&tx_ring->tx_lock);
       
  3529 	}
       
  3530 
       
  3531 	if (adapter->detect_tx_hung) {
       
  3532 		/* Detect a transmit hang in hardware, this serializes the
       
  3533 		 * check with the clearing of time_stamp and movement of i */
       
  3534 		adapter->detect_tx_hung = FALSE;
       
  3535 		if (tx_ring->buffer_info[eop].dma &&
       
  3536 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
       
  3537 		               (adapter->tx_timeout_factor * HZ))
       
  3538 		    && !(E1000_READ_REG(&adapter->hw, STATUS) &
       
  3539 		         E1000_STATUS_TXOFF)) {
       
  3540 
       
  3541 			/* detected Tx unit hang */
       
  3542 			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
       
  3543 					"  Tx Queue             <%lu>\n"
       
  3544 					"  TDH                  <%x>\n"
       
  3545 					"  TDT                  <%x>\n"
       
  3546 					"  next_to_use          <%x>\n"
       
  3547 					"  next_to_clean        <%x>\n"
       
  3548 					"buffer_info[next_to_clean]\n"
       
  3549 					"  time_stamp           <%lx>\n"
       
  3550 					"  next_to_watch        <%x>\n"
       
  3551 					"  jiffies              <%lx>\n"
       
  3552 					"  next_to_watch.status <%x>\n",
       
  3553 				(unsigned long)((tx_ring - adapter->tx_ring) /
       
  3554 					sizeof(struct e1000_tx_ring)),
       
  3555 				readl(adapter->hw.hw_addr + tx_ring->tdh),
       
  3556 				readl(adapter->hw.hw_addr + tx_ring->tdt),
       
  3557 				tx_ring->next_to_use,
       
  3558 				tx_ring->next_to_clean,
       
  3559 				tx_ring->buffer_info[eop].time_stamp,
       
  3560 				eop,
       
  3561 				jiffies,
       
  3562 				eop_desc->upper.fields.status);
       
  3563 			netif_stop_queue(netdev);
       
  3564 		}
       
  3565 	}
       
  3566 	return cleaned;
       
  3567 }
       
  3568 
       
  3569 /**
       
  3570  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
  3571  * @adapter:     board private structure
       
  3572  * @status_err:  receive descriptor status and error fields
       
  3573  * @csum:        receive descriptor csum field
       
  3574  * @sk_buff:     socket buffer with received data
       
  3575  **/
       
  3576 
       
  3577 static void
       
  3578 e1000_rx_checksum(struct e1000_adapter *adapter,
       
  3579 		  uint32_t status_err, uint32_t csum,
       
  3580 		  struct sk_buff *skb)
       
  3581 {
       
  3582 	uint16_t status = (uint16_t)status_err;
       
  3583 	uint8_t errors = (uint8_t)(status_err >> 24);
       
  3584 	skb->ip_summed = CHECKSUM_NONE;
       
  3585 
       
  3586 	/* 82543 or newer only */
       
  3587 	if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
       
  3588 	/* Ignore Checksum bit is set */
       
  3589 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
       
  3590 	/* TCP/UDP checksum error bit is set */
       
  3591 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
       
  3592 		/* let the stack verify checksum errors */
       
  3593 		adapter->hw_csum_err++;
       
  3594 		return;
       
  3595 	}
       
  3596 	/* TCP/UDP Checksum has not been calculated */
       
  3597 	if (adapter->hw.mac_type <= e1000_82547_rev_2) {
       
  3598 		if (!(status & E1000_RXD_STAT_TCPCS))
       
  3599 			return;
       
  3600 	} else {
       
  3601 		if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
       
  3602 			return;
       
  3603 	}
       
  3604 	/* It must be a TCP or UDP packet with a valid checksum */
       
  3605 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
       
  3606 		/* TCP checksum is good */
       
  3607 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
  3608 	} else if (adapter->hw.mac_type > e1000_82547_rev_2) {
       
  3609 		/* IP fragment with UDP payload */
       
  3610 		/* Hardware complements the payload checksum, so we undo it
       
  3611 		 * and then put the value in host order for further stack use.
       
  3612 		 */
       
  3613 		csum = ntohl(csum ^ 0xFFFF);
       
  3614 		skb->csum = csum;
       
  3615 		skb->ip_summed = CHECKSUM_HW;
       
  3616 	}
       
  3617 	adapter->hw_csum_good++;
       
  3618 }
       
  3619 
       
  3620 /**
       
  3621  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
  3622  * @adapter: board private structure
       
  3623  **/
       
  3624 
       
  3625 static boolean_t
       
  3626 #ifdef CONFIG_E1000_NAPI
       
  3627 e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  3628                    struct e1000_rx_ring *rx_ring,
       
  3629                    int *work_done, int work_to_do)
       
  3630 #else
       
  3631 e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  3632                    struct e1000_rx_ring *rx_ring)
       
  3633 #endif
       
  3634 {
       
  3635 	struct net_device *netdev = adapter->netdev;
       
  3636 	struct pci_dev *pdev = adapter->pdev;
       
  3637 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
  3638 	struct e1000_buffer *buffer_info, *next_buffer;
       
  3639 	unsigned long flags;
       
  3640 	uint32_t length;
       
  3641 	uint8_t last_byte;
       
  3642 	unsigned int i;
       
  3643 	int cleaned_count = 0;
       
  3644 	boolean_t cleaned = FALSE;
       
  3645 
       
  3646 	i = rx_ring->next_to_clean;
       
  3647 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  3648 	buffer_info = &rx_ring->buffer_info[i];
       
  3649 
       
  3650 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
  3651 		struct sk_buff *skb;
       
  3652 		u8 status;
       
  3653 #ifdef CONFIG_E1000_NAPI
       
  3654 		if (*work_done >= work_to_do)
       
  3655 			break;
       
  3656 		(*work_done)++;
       
  3657 #endif
       
  3658 		status = rx_desc->status;
       
  3659 		skb = buffer_info->skb;
       
  3660 		buffer_info->skb = NULL;
       
  3661 
       
  3662 		prefetch(skb->data - NET_IP_ALIGN);
       
  3663 
       
  3664 		if (++i == rx_ring->count) i = 0;
       
  3665 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
  3666 		prefetch(next_rxd);
       
  3667 
       
  3668 		next_buffer = &rx_ring->buffer_info[i];
       
  3669 
       
  3670 		cleaned = TRUE;
       
  3671 		cleaned_count++;
       
  3672 		pci_unmap_single(pdev,
       
  3673 		                 buffer_info->dma,
       
  3674 		                 buffer_info->length,
       
  3675 		                 PCI_DMA_FROMDEVICE);
       
  3676 
       
  3677 		length = le16_to_cpu(rx_desc->length);
       
  3678 
       
  3679 		/* adjust length to remove Ethernet CRC */
       
  3680 		length -= 4;
       
  3681 
       
  3682 		if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
       
  3683 			/* All receives must fit into a single buffer */
       
  3684 			E1000_DBG("%s: Receive packet consumed multiple"
       
  3685 				  " buffers\n", netdev->name);
       
  3686 			/* recycle */
       
  3687 			buffer_info-> skb = skb;
       
  3688 			goto next_desc;
       
  3689 		}
       
  3690 
       
  3691 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
       
  3692 			last_byte = *(skb->data + length - 1);
       
  3693 			if (TBI_ACCEPT(&adapter->hw, status,
       
  3694 			              rx_desc->errors, length, last_byte)) {
       
  3695 				spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3696 				e1000_tbi_adjust_stats(&adapter->hw,
       
  3697 				                       &adapter->stats,
       
  3698 				                       length, skb->data);
       
  3699 				spin_unlock_irqrestore(&adapter->stats_lock,
       
  3700 				                       flags);
       
  3701 				length--;
       
  3702 			} else {
       
  3703 				/* recycle */
       
  3704 				buffer_info->skb = skb;
       
  3705 				goto next_desc;
       
  3706 			}
       
  3707 		}
       
  3708 
       
  3709 		/* code added for copybreak, this should improve
       
  3710 		 * performance for small packets with large amounts
       
  3711 		 * of reassembly being done in the stack */
       
  3712 #define E1000_CB_LENGTH 256
       
  3713 		if (length < E1000_CB_LENGTH) {
       
  3714 			struct sk_buff *new_skb =
       
  3715 			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
       
  3716 			if (new_skb) {
       
  3717 				skb_reserve(new_skb, NET_IP_ALIGN);
       
  3718 				new_skb->dev = netdev;
       
  3719 				memcpy(new_skb->data - NET_IP_ALIGN,
       
  3720 				       skb->data - NET_IP_ALIGN,
       
  3721 				       length + NET_IP_ALIGN);
       
  3722 				/* save the skb in buffer_info as good */
       
  3723 				buffer_info->skb = skb;
       
  3724 				skb = new_skb;
       
  3725 				skb_put(skb, length);
       
  3726 			}
       
  3727 		} else
       
  3728 			skb_put(skb, length);
       
  3729 
       
  3730 		/* end copybreak code */
       
  3731 
       
  3732 		/* Receive Checksum Offload */
       
  3733 		e1000_rx_checksum(adapter,
       
  3734 				  (uint32_t)(status) |
       
  3735 				  ((uint32_t)(rx_desc->errors) << 24),
       
  3736 				  le16_to_cpu(rx_desc->csum), skb);
       
  3737 
       
  3738 		skb->protocol = eth_type_trans(skb, netdev);
       
  3739 #ifdef CONFIG_E1000_NAPI
       
  3740 		if (unlikely(adapter->vlgrp &&
       
  3741 			    (status & E1000_RXD_STAT_VP))) {
       
  3742 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  3743 						 le16_to_cpu(rx_desc->special) &
       
  3744 						 E1000_RXD_SPC_VLAN_MASK);
       
  3745 		} else {
       
  3746 			netif_receive_skb(skb);
       
  3747 		}
       
  3748 #else /* CONFIG_E1000_NAPI */
       
  3749 		if (unlikely(adapter->vlgrp &&
       
  3750 			    (status & E1000_RXD_STAT_VP))) {
       
  3751 			vlan_hwaccel_rx(skb, adapter->vlgrp,
       
  3752 					le16_to_cpu(rx_desc->special) &
       
  3753 					E1000_RXD_SPC_VLAN_MASK);
       
  3754 		} else {
       
  3755 			netif_rx(skb);
       
  3756 		}
       
  3757 #endif /* CONFIG_E1000_NAPI */
       
  3758 		netdev->last_rx = jiffies;
       
  3759 
       
  3760 next_desc:
       
  3761 		rx_desc->status = 0;
       
  3762 
       
  3763 		/* return some buffers to hardware, one at a time is too slow */
       
  3764 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  3765 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3766 			cleaned_count = 0;
       
  3767 		}
       
  3768 
       
  3769 		/* use prefetched values */
       
  3770 		rx_desc = next_rxd;
       
  3771 		buffer_info = next_buffer;
       
  3772 	}
       
  3773 	rx_ring->next_to_clean = i;
       
  3774 
       
  3775 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  3776 	if (cleaned_count)
       
  3777 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3778 
       
  3779 	return cleaned;
       
  3780 }
       
  3781 
       
  3782 /**
       
  3783  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
       
  3784  * @adapter: board private structure
       
  3785  **/
       
  3786 
       
  3787 static boolean_t
       
  3788 #ifdef CONFIG_E1000_NAPI
       
  3789 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
  3790                       struct e1000_rx_ring *rx_ring,
       
  3791                       int *work_done, int work_to_do)
       
  3792 #else
       
  3793 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
  3794                       struct e1000_rx_ring *rx_ring)
       
  3795 #endif
       
  3796 {
       
  3797 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
       
  3798 	struct net_device *netdev = adapter->netdev;
       
  3799 	struct pci_dev *pdev = adapter->pdev;
       
  3800 	struct e1000_buffer *buffer_info, *next_buffer;
       
  3801 	struct e1000_ps_page *ps_page;
       
  3802 	struct e1000_ps_page_dma *ps_page_dma;
       
  3803 	struct sk_buff *skb;
       
  3804 	unsigned int i, j;
       
  3805 	uint32_t length, staterr;
       
  3806 	int cleaned_count = 0;
       
  3807 	boolean_t cleaned = FALSE;
       
  3808 
       
  3809 	i = rx_ring->next_to_clean;
       
  3810 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  3811 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  3812 	buffer_info = &rx_ring->buffer_info[i];
       
  3813 
       
  3814 	while (staterr & E1000_RXD_STAT_DD) {
       
  3815 		ps_page = &rx_ring->ps_page[i];
       
  3816 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  3817 #ifdef CONFIG_E1000_NAPI
       
  3818 		if (unlikely(*work_done >= work_to_do))
       
  3819 			break;
       
  3820 		(*work_done)++;
       
  3821 #endif
       
  3822 		skb = buffer_info->skb;
       
  3823 
       
  3824 		/* in the packet split case this is header only */
       
  3825 		prefetch(skb->data - NET_IP_ALIGN);
       
  3826 
       
  3827 		if (++i == rx_ring->count) i = 0;
       
  3828 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
       
  3829 		prefetch(next_rxd);
       
  3830 
       
  3831 		next_buffer = &rx_ring->buffer_info[i];
       
  3832 
       
  3833 		cleaned = TRUE;
       
  3834 		cleaned_count++;
       
  3835 		pci_unmap_single(pdev, buffer_info->dma,
       
  3836 				 buffer_info->length,
       
  3837 				 PCI_DMA_FROMDEVICE);
       
  3838 
       
  3839 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
       
  3840 			E1000_DBG("%s: Packet Split buffers didn't pick up"
       
  3841 				  " the full packet\n", netdev->name);
       
  3842 			dev_kfree_skb_irq(skb);
       
  3843 			goto next_desc;
       
  3844 		}
       
  3845 
       
  3846 		if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
       
  3847 			dev_kfree_skb_irq(skb);
       
  3848 			goto next_desc;
       
  3849 		}
       
  3850 
       
  3851 		length = le16_to_cpu(rx_desc->wb.middle.length0);
       
  3852 
       
  3853 		if (unlikely(!length)) {
       
  3854 			E1000_DBG("%s: Last part of the packet spanning"
       
  3855 				  " multiple descriptors\n", netdev->name);
       
  3856 			dev_kfree_skb_irq(skb);
       
  3857 			goto next_desc;
       
  3858 		}
       
  3859 
       
  3860 		/* Good Receive */
       
  3861 		skb_put(skb, length);
       
  3862 
       
  3863 		{
       
  3864 		/* this looks ugly, but it seems compiler issues make it
       
  3865 		   more efficient than reusing j */
       
  3866 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
       
  3867 
       
  3868 		/* page alloc/put takes too long and effects small packet
       
  3869 		 * throughput, so unsplit small packets and save the alloc/put*/
       
  3870 		if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
       
  3871 			u8 *vaddr;
       
  3872 			/* there is no documentation about how to call
       
  3873 			 * kmap_atomic, so we can't hold the mapping
       
  3874 			 * very long */
       
  3875 			pci_dma_sync_single_for_cpu(pdev,
       
  3876 				ps_page_dma->ps_page_dma[0],
       
  3877 				PAGE_SIZE,
       
  3878 				PCI_DMA_FROMDEVICE);
       
  3879 			vaddr = kmap_atomic(ps_page->ps_page[0],
       
  3880 			                    KM_SKB_DATA_SOFTIRQ);
       
  3881 			memcpy(skb->tail, vaddr, l1);
       
  3882 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
       
  3883 			pci_dma_sync_single_for_device(pdev,
       
  3884 				ps_page_dma->ps_page_dma[0],
       
  3885 				PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  3886 			/* remove the CRC */
       
  3887 			l1 -= 4;
       
  3888 			skb_put(skb, l1);
       
  3889 			goto copydone;
       
  3890 		} /* if */
       
  3891 		}
       
  3892 		
       
  3893 		for (j = 0; j < adapter->rx_ps_pages; j++) {
       
  3894 			if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
       
  3895 				break;
       
  3896 			pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
       
  3897 					PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  3898 			ps_page_dma->ps_page_dma[j] = 0;
       
  3899 			skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
       
  3900 			                   length);
       
  3901 			ps_page->ps_page[j] = NULL;
       
  3902 			skb->len += length;
       
  3903 			skb->data_len += length;
       
  3904 			skb->truesize += length;
       
  3905 		}
       
  3906 
       
  3907 		/* strip the ethernet crc, problem is we're using pages now so
       
  3908 		 * this whole operation can get a little cpu intensive */
       
  3909 		pskb_trim(skb, skb->len - 4);
       
  3910 
       
  3911 copydone:
       
  3912 		e1000_rx_checksum(adapter, staterr,
       
  3913 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
       
  3914 		skb->protocol = eth_type_trans(skb, netdev);
       
  3915 
       
  3916 		if (likely(rx_desc->wb.upper.header_status &
       
  3917 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
       
  3918 			adapter->rx_hdr_split++;
       
  3919 #ifdef CONFIG_E1000_NAPI
       
  3920 		if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
       
  3921 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  3922 				le16_to_cpu(rx_desc->wb.middle.vlan) &
       
  3923 				E1000_RXD_SPC_VLAN_MASK);
       
  3924 		} else {
       
  3925 			netif_receive_skb(skb);
       
  3926 		}
       
  3927 #else /* CONFIG_E1000_NAPI */
       
  3928 		if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
       
  3929 			vlan_hwaccel_rx(skb, adapter->vlgrp,
       
  3930 				le16_to_cpu(rx_desc->wb.middle.vlan) &
       
  3931 				E1000_RXD_SPC_VLAN_MASK);
       
  3932 		} else {
       
  3933 			netif_rx(skb);
       
  3934 		}
       
  3935 #endif /* CONFIG_E1000_NAPI */
       
  3936 		netdev->last_rx = jiffies;
       
  3937 
       
  3938 next_desc:
       
  3939 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
       
  3940 		buffer_info->skb = NULL;
       
  3941 
       
  3942 		/* return some buffers to hardware, one at a time is too slow */
       
  3943 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  3944 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3945 			cleaned_count = 0;
       
  3946 		}
       
  3947 
       
  3948 		/* use prefetched values */
       
  3949 		rx_desc = next_rxd;
       
  3950 		buffer_info = next_buffer;
       
  3951 
       
  3952 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  3953 	}
       
  3954 	rx_ring->next_to_clean = i;
       
  3955 
       
  3956 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  3957 	if (cleaned_count)
       
  3958 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3959 
       
  3960 	return cleaned;
       
  3961 }
       
  3962 
       
  3963 /**
       
  3964  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
  3965  * @adapter: address of board private structure
       
  3966  **/
       
  3967 
       
  3968 static void
       
  3969 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
  3970                        struct e1000_rx_ring *rx_ring,
       
  3971 		       int cleaned_count)
       
  3972 {
       
  3973 	struct net_device *netdev = adapter->netdev;
       
  3974 	struct pci_dev *pdev = adapter->pdev;
       
  3975 	struct e1000_rx_desc *rx_desc;
       
  3976 	struct e1000_buffer *buffer_info;
       
  3977 	struct sk_buff *skb;
       
  3978 	unsigned int i;
       
  3979 	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
       
  3980 
       
  3981 	i = rx_ring->next_to_use;
       
  3982 	buffer_info = &rx_ring->buffer_info[i];
       
  3983 
       
  3984 	while (cleaned_count--) {
       
  3985 		if (!(skb = buffer_info->skb))
       
  3986 			skb = netdev_alloc_skb(netdev, bufsz);
       
  3987 		else {
       
  3988 			skb_trim(skb, 0);
       
  3989 			goto map_skb;
       
  3990 		}
       
  3991 
       
  3992 		if (unlikely(!skb)) {
       
  3993 			/* Better luck next round */
       
  3994 			adapter->alloc_rx_buff_failed++;
       
  3995 			break;
       
  3996 		}
       
  3997 
       
  3998 		/* Fix for errata 23, can't cross 64kB boundary */
       
  3999 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4000 			struct sk_buff *oldskb = skb;
       
  4001 			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
       
  4002 					     "at %p\n", bufsz, skb->data);
       
  4003 			/* Try again, without freeing the previous */
       
  4004 			skb = netdev_alloc_skb(netdev, bufsz);
       
  4005 			/* Failed allocation, critical failure */
       
  4006 			if (!skb) {
       
  4007 				dev_kfree_skb(oldskb);
       
  4008 				break;
       
  4009 			}
       
  4010 
       
  4011 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4012 				/* give up */
       
  4013 				dev_kfree_skb(skb);
       
  4014 				dev_kfree_skb(oldskb);
       
  4015 				break; /* while !buffer_info->skb */
       
  4016 			} else {
       
  4017 				/* Use new allocation */
       
  4018 				dev_kfree_skb(oldskb);
       
  4019 			}
       
  4020 		}
       
  4021 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  4022 		 * this will result in a 16 byte aligned IP header after
       
  4023 		 * the 14 byte MAC header is removed
       
  4024 		 */
       
  4025 		skb_reserve(skb, NET_IP_ALIGN);
       
  4026 
       
  4027 		skb->dev = netdev;
       
  4028 
       
  4029 		buffer_info->skb = skb;
       
  4030 		buffer_info->length = adapter->rx_buffer_len;
       
  4031 map_skb:
       
  4032 		buffer_info->dma = pci_map_single(pdev,
       
  4033 						  skb->data,
       
  4034 						  adapter->rx_buffer_len,
       
  4035 						  PCI_DMA_FROMDEVICE);
       
  4036 
       
  4037 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4038 		if (!e1000_check_64k_bound(adapter,
       
  4039 					(void *)(unsigned long)buffer_info->dma,
       
  4040 					adapter->rx_buffer_len)) {
       
  4041 			DPRINTK(RX_ERR, ERR,
       
  4042 				"dma align check failed: %u bytes at %p\n",
       
  4043 				adapter->rx_buffer_len,
       
  4044 				(void *)(unsigned long)buffer_info->dma);
       
  4045 			dev_kfree_skb(skb);
       
  4046 			buffer_info->skb = NULL;
       
  4047 
       
  4048 			pci_unmap_single(pdev, buffer_info->dma,
       
  4049 					 adapter->rx_buffer_len,
       
  4050 					 PCI_DMA_FROMDEVICE);
       
  4051 
       
  4052 			break; /* while !buffer_info->skb */
       
  4053 		}
       
  4054 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4055 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4056 
       
  4057 		if (unlikely(++i == rx_ring->count))
       
  4058 			i = 0;
       
  4059 		buffer_info = &rx_ring->buffer_info[i];
       
  4060 	}
       
  4061 
       
  4062 	if (likely(rx_ring->next_to_use != i)) {
       
  4063 		rx_ring->next_to_use = i;
       
  4064 		if (unlikely(i-- == 0))
       
  4065 			i = (rx_ring->count - 1);
       
  4066 
       
  4067 		/* Force memory writes to complete before letting h/w
       
  4068 		 * know there are new descriptors to fetch.  (Only
       
  4069 		 * applicable for weak-ordered memory model archs,
       
  4070 		 * such as IA-64). */
       
  4071 		wmb();
       
  4072 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
       
  4073 	}
       
  4074 }
       
  4075 
       
  4076 /**
       
  4077  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
       
  4078  * @adapter: address of board private structure
       
  4079  **/
       
  4080 
       
  4081 static void
       
  4082 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
  4083                           struct e1000_rx_ring *rx_ring,
       
  4084 			  int cleaned_count)
       
  4085 {
       
  4086 	struct net_device *netdev = adapter->netdev;
       
  4087 	struct pci_dev *pdev = adapter->pdev;
       
  4088 	union e1000_rx_desc_packet_split *rx_desc;
       
  4089 	struct e1000_buffer *buffer_info;
       
  4090 	struct e1000_ps_page *ps_page;
       
  4091 	struct e1000_ps_page_dma *ps_page_dma;
       
  4092 	struct sk_buff *skb;
       
  4093 	unsigned int i, j;
       
  4094 
       
  4095 	i = rx_ring->next_to_use;
       
  4096 	buffer_info = &rx_ring->buffer_info[i];
       
  4097 	ps_page = &rx_ring->ps_page[i];
       
  4098 	ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4099 
       
  4100 	while (cleaned_count--) {
       
  4101 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  4102 
       
  4103 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  4104 			if (j < adapter->rx_ps_pages) {
       
  4105 				if (likely(!ps_page->ps_page[j])) {
       
  4106 					ps_page->ps_page[j] =
       
  4107 						alloc_page(GFP_ATOMIC);
       
  4108 					if (unlikely(!ps_page->ps_page[j])) {
       
  4109 						adapter->alloc_rx_buff_failed++;
       
  4110 						goto no_buffers;
       
  4111 					}
       
  4112 					ps_page_dma->ps_page_dma[j] =
       
  4113 						pci_map_page(pdev,
       
  4114 							    ps_page->ps_page[j],
       
  4115 							    0, PAGE_SIZE,
       
  4116 							    PCI_DMA_FROMDEVICE);
       
  4117 				}
       
  4118 				/* Refresh the desc even if buffer_addrs didn't
       
  4119 				 * change because each write-back erases
       
  4120 				 * this info.
       
  4121 				 */
       
  4122 				rx_desc->read.buffer_addr[j+1] =
       
  4123 				     cpu_to_le64(ps_page_dma->ps_page_dma[j]);
       
  4124 			} else
       
  4125 				rx_desc->read.buffer_addr[j+1] = ~0;
       
  4126 		}
       
  4127 
       
  4128 		skb = netdev_alloc_skb(netdev,
       
  4129 				       adapter->rx_ps_bsize0 + NET_IP_ALIGN);
       
  4130 
       
  4131 		if (unlikely(!skb)) {
       
  4132 			adapter->alloc_rx_buff_failed++;
       
  4133 			break;
       
  4134 		}
       
  4135 
       
  4136 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  4137 		 * this will result in a 16 byte aligned IP header after
       
  4138 		 * the 14 byte MAC header is removed
       
  4139 		 */
       
  4140 		skb_reserve(skb, NET_IP_ALIGN);
       
  4141 
       
  4142 		skb->dev = netdev;
       
  4143 
       
  4144 		buffer_info->skb = skb;
       
  4145 		buffer_info->length = adapter->rx_ps_bsize0;
       
  4146 		buffer_info->dma = pci_map_single(pdev, skb->data,
       
  4147 						  adapter->rx_ps_bsize0,
       
  4148 						  PCI_DMA_FROMDEVICE);
       
  4149 
       
  4150 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
       
  4151 
       
  4152 		if (unlikely(++i == rx_ring->count)) i = 0;
       
  4153 		buffer_info = &rx_ring->buffer_info[i];
       
  4154 		ps_page = &rx_ring->ps_page[i];
       
  4155 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4156 	}
       
  4157 
       
  4158 no_buffers:
       
  4159 	if (likely(rx_ring->next_to_use != i)) {
       
  4160 		rx_ring->next_to_use = i;
       
  4161 		if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
       
  4162 
       
  4163 		/* Force memory writes to complete before letting h/w
       
  4164 		 * know there are new descriptors to fetch.  (Only
       
  4165 		 * applicable for weak-ordered memory model archs,
       
  4166 		 * such as IA-64). */
       
  4167 		wmb();
       
  4168 		/* Hardware increments by 16 bytes, but packet split
       
  4169 		 * descriptors are 32 bytes...so we increment tail
       
  4170 		 * twice as much.
       
  4171 		 */
       
  4172 		writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
       
  4173 	}
       
  4174 }
       
  4175 
       
  4176 /**
       
  4177  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
       
  4178  * @adapter:
       
  4179  **/
       
  4180 
       
  4181 static void
       
  4182 e1000_smartspeed(struct e1000_adapter *adapter)
       
  4183 {
       
  4184 	uint16_t phy_status;
       
  4185 	uint16_t phy_ctrl;
       
  4186 
       
  4187 	if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
       
  4188 	   !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
       
  4189 		return;
       
  4190 
       
  4191 	if (adapter->smartspeed == 0) {
       
  4192 		/* If Master/Slave config fault is asserted twice,
       
  4193 		 * we assume back-to-back */
       
  4194 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
       
  4195 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4196 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
       
  4197 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4198 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4199 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
       
  4200 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
       
  4201 			e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
       
  4202 					    phy_ctrl);
       
  4203 			adapter->smartspeed++;
       
  4204 			if (!e1000_phy_setup_autoneg(&adapter->hw) &&
       
  4205 			   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
       
  4206 				   	       &phy_ctrl)) {
       
  4207 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4208 					     MII_CR_RESTART_AUTO_NEG);
       
  4209 				e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
       
  4210 						    phy_ctrl);
       
  4211 			}
       
  4212 		}
       
  4213 		return;
       
  4214 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
       
  4215 		/* If still no link, perhaps using 2/3 pair cable */
       
  4216 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4217 		phy_ctrl |= CR_1000T_MS_ENABLE;
       
  4218 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
       
  4219 		if (!e1000_phy_setup_autoneg(&adapter->hw) &&
       
  4220 		   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
       
  4221 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4222 				     MII_CR_RESTART_AUTO_NEG);
       
  4223 			e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
       
  4224 		}
       
  4225 	}
       
  4226 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
       
  4227 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
       
  4228 		adapter->smartspeed = 0;
       
  4229 }
       
  4230 
       
  4231 /**
       
  4232  * e1000_ioctl -
       
  4233  * @netdev:
       
  4234  * @ifreq:
       
  4235  * @cmd:
       
  4236  **/
       
  4237 
       
  4238 static int
       
  4239 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4240 {
       
  4241 	switch (cmd) {
       
  4242 	case SIOCGMIIPHY:
       
  4243 	case SIOCGMIIREG:
       
  4244 	case SIOCSMIIREG:
       
  4245 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  4246 	default:
       
  4247 		return -EOPNOTSUPP;
       
  4248 	}
       
  4249 }
       
  4250 
       
  4251 /**
       
  4252  * e1000_mii_ioctl -
       
  4253  * @netdev:
       
  4254  * @ifreq:
       
  4255  * @cmd:
       
  4256  **/
       
  4257 
       
  4258 static int
       
  4259 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4260 {
       
  4261 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4262 	struct mii_ioctl_data *data = if_mii(ifr);
       
  4263 	int retval;
       
  4264 	uint16_t mii_reg;
       
  4265 	uint16_t spddplx;
       
  4266 	unsigned long flags;
       
  4267 
       
  4268 	if (adapter->hw.media_type != e1000_media_type_copper)
       
  4269 		return -EOPNOTSUPP;
       
  4270 
       
  4271 	switch (cmd) {
       
  4272 	case SIOCGMIIPHY:
       
  4273 		data->phy_id = adapter->hw.phy_addr;
       
  4274 		break;
       
  4275 	case SIOCGMIIREG:
       
  4276 		if (!capable(CAP_NET_ADMIN))
       
  4277 			return -EPERM;
       
  4278 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4279 		if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
       
  4280 				   &data->val_out)) {
       
  4281 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4282 			return -EIO;
       
  4283 		}
       
  4284 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4285 		break;
       
  4286 	case SIOCSMIIREG:
       
  4287 		if (!capable(CAP_NET_ADMIN))
       
  4288 			return -EPERM;
       
  4289 		if (data->reg_num & ~(0x1F))
       
  4290 			return -EFAULT;
       
  4291 		mii_reg = data->val_in;
       
  4292 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4293 		if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
       
  4294 					mii_reg)) {
       
  4295 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4296 			return -EIO;
       
  4297 		}
       
  4298 		if (adapter->hw.media_type == e1000_media_type_copper) {
       
  4299 			switch (data->reg_num) {
       
  4300 			case PHY_CTRL:
       
  4301 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4302 					break;
       
  4303 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
       
  4304 					adapter->hw.autoneg = 1;
       
  4305 					adapter->hw.autoneg_advertised = 0x2F;
       
  4306 				} else {
       
  4307 					if (mii_reg & 0x40)
       
  4308 						spddplx = SPEED_1000;
       
  4309 					else if (mii_reg & 0x2000)
       
  4310 						spddplx = SPEED_100;
       
  4311 					else
       
  4312 						spddplx = SPEED_10;
       
  4313 					spddplx += (mii_reg & 0x100)
       
  4314 						   ? DUPLEX_FULL :
       
  4315 						   DUPLEX_HALF;
       
  4316 					retval = e1000_set_spd_dplx(adapter,
       
  4317 								    spddplx);
       
  4318 					if (retval) {
       
  4319 						spin_unlock_irqrestore(
       
  4320 							&adapter->stats_lock,
       
  4321 							flags);
       
  4322 						return retval;
       
  4323 					}
       
  4324 				}
       
  4325 				if (netif_running(adapter->netdev))
       
  4326 					e1000_reinit_locked(adapter);
       
  4327 				else
       
  4328 					e1000_reset(adapter);
       
  4329 				break;
       
  4330 			case M88E1000_PHY_SPEC_CTRL:
       
  4331 			case M88E1000_EXT_PHY_SPEC_CTRL:
       
  4332 				if (e1000_phy_reset(&adapter->hw)) {
       
  4333 					spin_unlock_irqrestore(
       
  4334 						&adapter->stats_lock, flags);
       
  4335 					return -EIO;
       
  4336 				}
       
  4337 				break;
       
  4338 			}
       
  4339 		} else {
       
  4340 			switch (data->reg_num) {
       
  4341 			case PHY_CTRL:
       
  4342 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4343 					break;
       
  4344 				if (netif_running(adapter->netdev))
       
  4345 					e1000_reinit_locked(adapter);
       
  4346 				else
       
  4347 					e1000_reset(adapter);
       
  4348 				break;
       
  4349 			}
       
  4350 		}
       
  4351 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4352 		break;
       
  4353 	default:
       
  4354 		return -EOPNOTSUPP;
       
  4355 	}
       
  4356 	return E1000_SUCCESS;
       
  4357 }
       
  4358 
       
  4359 void
       
  4360 e1000_pci_set_mwi(struct e1000_hw *hw)
       
  4361 {
       
  4362 	struct e1000_adapter *adapter = hw->back;
       
  4363 	int ret_val = pci_set_mwi(adapter->pdev);
       
  4364 
       
  4365 	if (ret_val)
       
  4366 		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
       
  4367 }
       
  4368 
       
  4369 void
       
  4370 e1000_pci_clear_mwi(struct e1000_hw *hw)
       
  4371 {
       
  4372 	struct e1000_adapter *adapter = hw->back;
       
  4373 
       
  4374 	pci_clear_mwi(adapter->pdev);
       
  4375 }
       
  4376 
       
  4377 void
       
  4378 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
       
  4379 {
       
  4380 	struct e1000_adapter *adapter = hw->back;
       
  4381 
       
  4382 	pci_read_config_word(adapter->pdev, reg, value);
       
  4383 }
       
  4384 
       
  4385 void
       
  4386 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
       
  4387 {
       
  4388 	struct e1000_adapter *adapter = hw->back;
       
  4389 
       
  4390 	pci_write_config_word(adapter->pdev, reg, *value);
       
  4391 }
       
  4392 
       
  4393 #if 0
       
  4394 uint32_t
       
  4395 e1000_io_read(struct e1000_hw *hw, unsigned long port)
       
  4396 {
       
  4397 	return inl(port);
       
  4398 }
       
  4399 #endif  /*  0  */
       
  4400 
       
  4401 void
       
  4402 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
       
  4403 {
       
  4404 	outl(value, port);
       
  4405 }
       
  4406 
       
  4407 static void
       
  4408 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
       
  4409 {
       
  4410 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4411 	uint32_t ctrl, rctl;
       
  4412 
       
  4413 	e1000_irq_disable(adapter);
       
  4414 	adapter->vlgrp = grp;
       
  4415 
       
  4416 	if (grp) {
       
  4417 		/* enable VLAN tag insert/strip */
       
  4418 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  4419 		ctrl |= E1000_CTRL_VME;
       
  4420 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  4421 
       
  4422 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  4423 		/* enable VLAN receive filtering */
       
  4424 		rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  4425 		rctl |= E1000_RCTL_VFE;
       
  4426 		rctl &= ~E1000_RCTL_CFIEN;
       
  4427 		E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  4428 		e1000_update_mng_vlan(adapter);
       
  4429 		}
       
  4430 	} else {
       
  4431 		/* disable VLAN tag insert/strip */
       
  4432 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  4433 		ctrl &= ~E1000_CTRL_VME;
       
  4434 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  4435 
       
  4436 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  4437 		/* disable VLAN filtering */
       
  4438 		rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  4439 		rctl &= ~E1000_RCTL_VFE;
       
  4440 		E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  4441 		if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
       
  4442 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  4443 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  4444 		}
       
  4445 		}
       
  4446 	}
       
  4447 
       
  4448 	e1000_irq_enable(adapter);
       
  4449 }
       
  4450 
       
  4451 static void
       
  4452 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
       
  4453 {
       
  4454 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4455 	uint32_t vfta, index;
       
  4456 
       
  4457 	if ((adapter->hw.mng_cookie.status &
       
  4458 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  4459 	    (vid == adapter->mng_vlan_id))
       
  4460 		return;
       
  4461 	/* add VID to filter table */
       
  4462 	index = (vid >> 5) & 0x7F;
       
  4463 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
       
  4464 	vfta |= (1 << (vid & 0x1F));
       
  4465 	e1000_write_vfta(&adapter->hw, index, vfta);
       
  4466 }
       
  4467 
       
  4468 static void
       
  4469 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
       
  4470 {
       
  4471 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4472 	uint32_t vfta, index;
       
  4473 
       
  4474 	e1000_irq_disable(adapter);
       
  4475 
       
  4476 	if (adapter->vlgrp)
       
  4477 		adapter->vlgrp->vlan_devices[vid] = NULL;
       
  4478 
       
  4479 	e1000_irq_enable(adapter);
       
  4480 
       
  4481 	if ((adapter->hw.mng_cookie.status &
       
  4482 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  4483 	    (vid == adapter->mng_vlan_id)) {
       
  4484 		/* release control to f/w */
       
  4485 		e1000_release_hw_control(adapter);
       
  4486 		return;
       
  4487 	}
       
  4488 
       
  4489 	/* remove VID from filter table */
       
  4490 	index = (vid >> 5) & 0x7F;
       
  4491 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
       
  4492 	vfta &= ~(1 << (vid & 0x1F));
       
  4493 	e1000_write_vfta(&adapter->hw, index, vfta);
       
  4494 }
       
  4495 
       
  4496 static void
       
  4497 e1000_restore_vlan(struct e1000_adapter *adapter)
       
  4498 {
       
  4499 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
       
  4500 
       
  4501 	if (adapter->vlgrp) {
       
  4502 		uint16_t vid;
       
  4503 		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
       
  4504 			if (!adapter->vlgrp->vlan_devices[vid])
       
  4505 				continue;
       
  4506 			e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  4507 		}
       
  4508 	}
       
  4509 }
       
  4510 
       
  4511 int
       
  4512 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
       
  4513 {
       
  4514 	adapter->hw.autoneg = 0;
       
  4515 
       
  4516 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
  4517 	if ((adapter->hw.media_type == e1000_media_type_fiber) &&
       
  4518 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
       
  4519 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  4520 		return -EINVAL;
       
  4521 	}
       
  4522 
       
  4523 	switch (spddplx) {
       
  4524 	case SPEED_10 + DUPLEX_HALF:
       
  4525 		adapter->hw.forced_speed_duplex = e1000_10_half;
       
  4526 		break;
       
  4527 	case SPEED_10 + DUPLEX_FULL:
       
  4528 		adapter->hw.forced_speed_duplex = e1000_10_full;
       
  4529 		break;
       
  4530 	case SPEED_100 + DUPLEX_HALF:
       
  4531 		adapter->hw.forced_speed_duplex = e1000_100_half;
       
  4532 		break;
       
  4533 	case SPEED_100 + DUPLEX_FULL:
       
  4534 		adapter->hw.forced_speed_duplex = e1000_100_full;
       
  4535 		break;
       
  4536 	case SPEED_1000 + DUPLEX_FULL:
       
  4537 		adapter->hw.autoneg = 1;
       
  4538 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
       
  4539 		break;
       
  4540 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
  4541 	default:
       
  4542 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  4543 		return -EINVAL;
       
  4544 	}
       
  4545 	return 0;
       
  4546 }
       
  4547 
       
  4548 #ifdef CONFIG_PM
       
  4549 /* Save/restore 16 or 64 dwords of PCI config space depending on which
       
  4550  * bus we're on (PCI(X) vs. PCI-E)
       
  4551  */
       
  4552 #define PCIE_CONFIG_SPACE_LEN 256
       
  4553 #define PCI_CONFIG_SPACE_LEN 64
       
  4554 static int
       
  4555 e1000_pci_save_state(struct e1000_adapter *adapter)
       
  4556 {
       
  4557 	struct pci_dev *dev = adapter->pdev;
       
  4558 	int size;
       
  4559 	int i;
       
  4560 
       
  4561 	if (adapter->hw.mac_type >= e1000_82571)
       
  4562 		size = PCIE_CONFIG_SPACE_LEN;
       
  4563 	else
       
  4564 		size = PCI_CONFIG_SPACE_LEN;
       
  4565 
       
  4566 	WARN_ON(adapter->config_space != NULL);
       
  4567 
       
  4568 	adapter->config_space = kmalloc(size, GFP_KERNEL);
       
  4569 	if (!adapter->config_space) {
       
  4570 		DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
       
  4571 		return -ENOMEM;
       
  4572 	}
       
  4573 	for (i = 0; i < (size / 4); i++)
       
  4574 		pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
       
  4575 	return 0;
       
  4576 }
       
  4577 
       
  4578 static void
       
  4579 e1000_pci_restore_state(struct e1000_adapter *adapter)
       
  4580 {
       
  4581 	struct pci_dev *dev = adapter->pdev;
       
  4582 	int size;
       
  4583 	int i;
       
  4584 
       
  4585 	if (adapter->config_space == NULL)
       
  4586 		return;
       
  4587 
       
  4588 	if (adapter->hw.mac_type >= e1000_82571)
       
  4589 		size = PCIE_CONFIG_SPACE_LEN;
       
  4590 	else
       
  4591 		size = PCI_CONFIG_SPACE_LEN;
       
  4592 	for (i = 0; i < (size / 4); i++)
       
  4593 		pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
       
  4594 	kfree(adapter->config_space);
       
  4595 	adapter->config_space = NULL;
       
  4596 	return;
       
  4597 }
       
  4598 #endif /* CONFIG_PM */
       
  4599 
       
  4600 static int
       
  4601 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
       
  4602 {
       
  4603 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4604 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4605 	uint32_t ctrl, ctrl_ext, rctl, manc, status;
       
  4606 	uint32_t wufc = adapter->wol;
       
  4607 #ifdef CONFIG_PM
       
  4608 	int retval = 0;
       
  4609 #endif
       
  4610 
       
  4611 	netif_device_detach(netdev);
       
  4612 
       
  4613 	if (netif_running(netdev)) {
       
  4614 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  4615 		e1000_down(adapter);
       
  4616 	}
       
  4617 
       
  4618 #ifdef CONFIG_PM
       
  4619 	/* Implement our own version of pci_save_state(pdev) because pci-
       
  4620 	 * express adapters have 256-byte config spaces. */
       
  4621 	retval = e1000_pci_save_state(adapter);
       
  4622 	if (retval)
       
  4623 		return retval;
       
  4624 #endif
       
  4625 
       
  4626 	status = E1000_READ_REG(&adapter->hw, STATUS);
       
  4627 	if (status & E1000_STATUS_LU)
       
  4628 		wufc &= ~E1000_WUFC_LNKC;
       
  4629 
       
  4630 	if (wufc) {
       
  4631 		e1000_setup_rctl(adapter);
       
  4632 		e1000_set_multi(netdev);
       
  4633 
       
  4634 		/* turn on all-multi mode if wake on multicast is enabled */
       
  4635 		if (adapter->wol & E1000_WUFC_MC) {
       
  4636 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  4637 			rctl |= E1000_RCTL_MPE;
       
  4638 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  4639 		}
       
  4640 
       
  4641 		if (adapter->hw.mac_type >= e1000_82540) {
       
  4642 			ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  4643 			/* advertise wake from D3Cold */
       
  4644 			#define E1000_CTRL_ADVD3WUC 0x00100000
       
  4645 			/* phy power management enable */
       
  4646 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  4647 			ctrl |= E1000_CTRL_ADVD3WUC |
       
  4648 				E1000_CTRL_EN_PHY_PWR_MGMT;
       
  4649 			E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  4650 		}
       
  4651 
       
  4652 		if (adapter->hw.media_type == e1000_media_type_fiber ||
       
  4653 		   adapter->hw.media_type == e1000_media_type_internal_serdes) {
       
  4654 			/* keep the laser running in D3 */
       
  4655 			ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
  4656 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
       
  4657 			E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
       
  4658 		}
       
  4659 
       
  4660 		/* Allow time for pending master requests to run */
       
  4661 		e1000_disable_pciex_master(&adapter->hw);
       
  4662 
       
  4663 		E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
       
  4664 		E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
       
  4665 		pci_enable_wake(pdev, PCI_D3hot, 1);
       
  4666 		pci_enable_wake(pdev, PCI_D3cold, 1);
       
  4667 	} else {
       
  4668 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
       
  4669 		E1000_WRITE_REG(&adapter->hw, WUFC, 0);
       
  4670 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4671 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4672 	}
       
  4673 
       
  4674 	/* FIXME: this code is incorrect for PCI Express */
       
  4675 	if (adapter->hw.mac_type >= e1000_82540 &&
       
  4676 	   adapter->hw.mac_type != e1000_ich8lan &&
       
  4677 	   adapter->hw.media_type == e1000_media_type_copper) {
       
  4678 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
  4679 		if (manc & E1000_MANC_SMBUS_EN) {
       
  4680 			manc |= E1000_MANC_ARP_EN;
       
  4681 			E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
  4682 			pci_enable_wake(pdev, PCI_D3hot, 1);
       
  4683 			pci_enable_wake(pdev, PCI_D3cold, 1);
       
  4684 		}
       
  4685 	}
       
  4686 
       
  4687 	if (adapter->hw.phy_type == e1000_phy_igp_3)
       
  4688 		e1000_phy_powerdown_workaround(&adapter->hw);
       
  4689 
       
  4690 	if (netif_running(netdev))
       
  4691 		e1000_free_irq(adapter);
       
  4692 
       
  4693 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  4694 	 * would have already happened in close and is redundant. */
       
  4695 	e1000_release_hw_control(adapter);
       
  4696 
       
  4697 	pci_disable_device(pdev);
       
  4698 
       
  4699 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
       
  4700 
       
  4701 	return 0;
       
  4702 }
       
  4703 
       
  4704 #ifdef CONFIG_PM
       
  4705 static int
       
  4706 e1000_resume(struct pci_dev *pdev)
       
  4707 {
       
  4708 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4709 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4710 	uint32_t manc, ret_val;
       
  4711 
       
  4712 	pci_set_power_state(pdev, PCI_D0);
       
  4713 	e1000_pci_restore_state(adapter);
       
  4714 	ret_val = pci_enable_device(pdev);
       
  4715 	pci_set_master(pdev);
       
  4716 
       
  4717 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4718 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4719 
       
  4720 	if (netif_running(netdev) && (ret_val = e1000_request_irq(adapter)))
       
  4721 		return ret_val;
       
  4722 
       
  4723 	e1000_power_up_phy(adapter);
       
  4724 	e1000_reset(adapter);
       
  4725 	E1000_WRITE_REG(&adapter->hw, WUS, ~0);
       
  4726 
       
  4727 	if (netif_running(netdev))
       
  4728 		e1000_up(adapter);
       
  4729 
       
  4730 	netif_device_attach(netdev);
       
  4731 
       
  4732 	/* FIXME: this code is incorrect for PCI Express */
       
  4733 	if (adapter->hw.mac_type >= e1000_82540 &&
       
  4734 	   adapter->hw.mac_type != e1000_ich8lan &&
       
  4735 	   adapter->hw.media_type == e1000_media_type_copper) {
       
  4736 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
  4737 		manc &= ~(E1000_MANC_ARP_EN);
       
  4738 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
  4739 	}
       
  4740 
       
  4741 	/* If the controller is 82573 and f/w is AMT, do not set
       
  4742 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  4743 	 * let the f/w know that the h/w is now under the control
       
  4744 	 * of the driver. */
       
  4745 	if (adapter->hw.mac_type != e1000_82573 ||
       
  4746 	    !e1000_check_mng_mode(&adapter->hw))
       
  4747 		e1000_get_hw_control(adapter);
       
  4748 
       
  4749 	return 0;
       
  4750 }
       
  4751 #endif
       
  4752 
       
  4753 static void e1000_shutdown(struct pci_dev *pdev)
       
  4754 {
       
  4755 	e1000_suspend(pdev, PMSG_SUSPEND);
       
  4756 }
       
  4757 
       
  4758 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  4759 /*
       
  4760  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  4761  * without having to re-enable interrupts. It's not called while
       
  4762  * the interrupt routine is executing.
       
  4763  */
       
  4764 static void
       
  4765 e1000_netpoll(struct net_device *netdev)
       
  4766 {
       
  4767 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4768 
       
  4769 	disable_irq(adapter->pdev->irq);
       
  4770 	e1000_intr(adapter->pdev->irq, netdev, NULL);
       
  4771 	e1000_clean_tx_irq(adapter, adapter->tx_ring);
       
  4772 #ifndef CONFIG_E1000_NAPI
       
  4773 	adapter->clean_rx(adapter, adapter->rx_ring);
       
  4774 #endif
       
  4775 	enable_irq(adapter->pdev->irq);
       
  4776 }
       
  4777 #endif
       
  4778 
       
  4779 /**
       
  4780  * e1000_io_error_detected - called when PCI error is detected
       
  4781  * @pdev: Pointer to PCI device
       
  4782  * @state: The current pci conneection state
       
  4783  *
       
  4784  * This function is called after a PCI bus error affecting
       
  4785  * this device has been detected.
       
  4786  */
       
  4787 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
       
  4788 {
       
  4789 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4790 	struct e1000_adapter *adapter = netdev->priv;
       
  4791 
       
  4792 	netif_device_detach(netdev);
       
  4793 
       
  4794 	if (netif_running(netdev))
       
  4795 		e1000_down(adapter);
       
  4796 
       
  4797 	/* Request a slot slot reset. */
       
  4798 	return PCI_ERS_RESULT_NEED_RESET;
       
  4799 }
       
  4800 
       
  4801 /**
       
  4802  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  4803  * @pdev: Pointer to PCI device
       
  4804  *
       
  4805  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  4806  * resembles the first-half of the e1000_resume routine.
       
  4807  */
       
  4808 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  4809 {
       
  4810 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4811 	struct e1000_adapter *adapter = netdev->priv;
       
  4812 
       
  4813 	if (pci_enable_device(pdev)) {
       
  4814 		printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
       
  4815 		return PCI_ERS_RESULT_DISCONNECT;
       
  4816 	}
       
  4817 	pci_set_master(pdev);
       
  4818 
       
  4819 	pci_enable_wake(pdev, 3, 0);
       
  4820 	pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
       
  4821 
       
  4822 	/* Perform card reset only on one instance of the card */
       
  4823 	if (PCI_FUNC (pdev->devfn) != 0)
       
  4824 		return PCI_ERS_RESULT_RECOVERED;
       
  4825 
       
  4826 	e1000_reset(adapter);
       
  4827 	E1000_WRITE_REG(&adapter->hw, WUS, ~0);
       
  4828 
       
  4829 	return PCI_ERS_RESULT_RECOVERED;
       
  4830 }
       
  4831 
       
  4832 /**
       
  4833  * e1000_io_resume - called when traffic can start flowing again.
       
  4834  * @pdev: Pointer to PCI device
       
  4835  *
       
  4836  * This callback is called when the error recovery driver tells us that
       
  4837  * its OK to resume normal operation. Implementation resembles the
       
  4838  * second-half of the e1000_resume routine.
       
  4839  */
       
  4840 static void e1000_io_resume(struct pci_dev *pdev)
       
  4841 {
       
  4842 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4843 	struct e1000_adapter *adapter = netdev->priv;
       
  4844 	uint32_t manc, swsm;
       
  4845 
       
  4846 	if (netif_running(netdev)) {
       
  4847 		if (e1000_up(adapter)) {
       
  4848 			printk("e1000: can't bring device back up after reset\n");
       
  4849 			return;
       
  4850 		}
       
  4851 	}
       
  4852 
       
  4853 	netif_device_attach(netdev);
       
  4854 
       
  4855 	if (adapter->hw.mac_type >= e1000_82540 &&
       
  4856 	    adapter->hw.media_type == e1000_media_type_copper) {
       
  4857 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
  4858 		manc &= ~(E1000_MANC_ARP_EN);
       
  4859 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
  4860 	}
       
  4861 
       
  4862 	switch (adapter->hw.mac_type) {
       
  4863 	case e1000_82573:
       
  4864 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
  4865 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
  4866 				swsm | E1000_SWSM_DRV_LOAD);
       
  4867 		break;
       
  4868 	default:
       
  4869 		break;
       
  4870 	}
       
  4871 
       
  4872 	if (netif_running(netdev))
       
  4873 		mod_timer(&adapter->watchdog_timer, jiffies);
       
  4874 }
       
  4875 
       
  4876 /* e1000_main.c */