devices/e1000/e1000_main-2.6.18-ethercat.c
changeset 667 9feff35c9617
child 668 09438628d4a3
equal deleted inserted replaced
666:825ead3e0559 667:9feff35c9617
       
     1 /*******************************************************************************
       
     2 
       
     3   
       
     4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
       
     5   
       
     6   This program is free software; you can redistribute it and/or modify it 
       
     7   under the terms of the GNU General Public License as published by the Free 
       
     8   Software Foundation; either version 2 of the License, or (at your option) 
       
     9   any later version.
       
    10   
       
    11   This program is distributed in the hope that it will be useful, but WITHOUT 
       
    12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
       
    13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
       
    14   more details.
       
    15   
       
    16   You should have received a copy of the GNU General Public License along with
       
    17   this program; if not, write to the Free Software Foundation, Inc., 59 
       
    18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
       
    19   
       
    20   The full GNU General Public License is included in this distribution in the
       
    21   file called LICENSE.
       
    22   
       
    23   Contact Information:
       
    24   Linux NICS <linux.nics@intel.com>
       
    25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    27 
       
    28 *******************************************************************************/
       
    29 
       
    30 #include "e1000-2.6.18-ethercat.h"
       
    31 
       
    32 char e1000_driver_name[] = "ec_e1000";
       
    33 static char e1000_driver_string[] = "EtherCAT Intel(R) PRO/1000 Network Driver";
       
    34 #ifndef CONFIG_E1000_NAPI
       
    35 #define DRIVERNAPI
       
    36 #else
       
    37 #define DRIVERNAPI "-NAPI"
       
    38 #endif
       
    39 #define DRV_VERSION "7.1.9-k4"DRIVERNAPI
       
    40 char e1000_driver_version[] = DRV_VERSION;
       
    41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
       
    42 
       
    43 /* e1000_pci_tbl - PCI Device ID Table
       
    44  *
       
    45  * Last entry must be all 0s
       
    46  *
       
    47  * Macro expands to...
       
    48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
       
    49  */
       
    50 static struct pci_device_id e1000_pci_tbl[] = {
       
    51 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
       
    52 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
       
    53 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
       
    54 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
       
    55 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
       
    56 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
       
    57 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
       
    58 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
       
    59 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
       
    60 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
       
    61 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
       
    62 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
       
    63 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
       
    64 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
       
    65 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
       
    66 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
       
    67 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
       
    68 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
       
    69 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
       
    70 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
       
    71 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
       
    72 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
       
    73 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
       
    74 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
       
    75 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
       
    76 	INTEL_E1000_ETHERNET_DEVICE(0x1049),
       
    77 	INTEL_E1000_ETHERNET_DEVICE(0x104A),
       
    78 	INTEL_E1000_ETHERNET_DEVICE(0x104B),
       
    79 	INTEL_E1000_ETHERNET_DEVICE(0x104C),
       
    80 	INTEL_E1000_ETHERNET_DEVICE(0x104D),
       
    81 	INTEL_E1000_ETHERNET_DEVICE(0x105E),
       
    82 	INTEL_E1000_ETHERNET_DEVICE(0x105F),
       
    83 	INTEL_E1000_ETHERNET_DEVICE(0x1060),
       
    84 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
       
    85 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
       
    86 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
       
    87 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
       
    88 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
       
    89 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
       
    90 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
       
    91 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
       
    92 	INTEL_E1000_ETHERNET_DEVICE(0x107D),
       
    93 	INTEL_E1000_ETHERNET_DEVICE(0x107E),
       
    94 	INTEL_E1000_ETHERNET_DEVICE(0x107F),
       
    95 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
       
    96 	INTEL_E1000_ETHERNET_DEVICE(0x108B),
       
    97 	INTEL_E1000_ETHERNET_DEVICE(0x108C),
       
    98 	INTEL_E1000_ETHERNET_DEVICE(0x1096),
       
    99 	INTEL_E1000_ETHERNET_DEVICE(0x1098),
       
   100 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
       
   101 	INTEL_E1000_ETHERNET_DEVICE(0x109A),
       
   102 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
       
   103 	INTEL_E1000_ETHERNET_DEVICE(0x10B9),
       
   104 	INTEL_E1000_ETHERNET_DEVICE(0x10BA),
       
   105 	INTEL_E1000_ETHERNET_DEVICE(0x10BB),
       
   106 	/* required last entry */
       
   107 	{0,}
       
   108 };
       
   109 
       
   110 // do not auto-load driver
       
   111 // MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
   112 
       
   113 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
   114                                     struct e1000_tx_ring *txdr);
       
   115 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
   116                                     struct e1000_rx_ring *rxdr);
       
   117 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
   118                                     struct e1000_tx_ring *tx_ring);
       
   119 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
   120                                     struct e1000_rx_ring *rx_ring);
       
   121 
       
   122 /* Local Function Prototypes */
       
   123 
       
   124 static int e1000_init_module(void);
       
   125 static void e1000_exit_module(void);
       
   126 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
       
   127 static void __devexit e1000_remove(struct pci_dev *pdev);
       
   128 static int e1000_alloc_queues(struct e1000_adapter *adapter);
       
   129 static int e1000_sw_init(struct e1000_adapter *adapter);
       
   130 static int e1000_open(struct net_device *netdev);
       
   131 static int e1000_close(struct net_device *netdev);
       
   132 static void e1000_configure_tx(struct e1000_adapter *adapter);
       
   133 static void e1000_configure_rx(struct e1000_adapter *adapter);
       
   134 static void e1000_setup_rctl(struct e1000_adapter *adapter);
       
   135 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
       
   136 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
       
   137 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
   138                                 struct e1000_tx_ring *tx_ring);
       
   139 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
   140                                 struct e1000_rx_ring *rx_ring);
       
   141 static void e1000_set_multi(struct net_device *netdev);
       
   142 static void e1000_update_phy_info(unsigned long data);
       
   143 static void e1000_watchdog(unsigned long data);
       
   144 static void e1000_82547_tx_fifo_stall(unsigned long data);
       
   145 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
       
   146 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
       
   147 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
       
   148 static int e1000_set_mac(struct net_device *netdev, void *p);
       
   149 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
       
   150 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
   151                                     struct e1000_tx_ring *tx_ring);
       
   152 #ifdef CONFIG_E1000_NAPI
       
   153 static int e1000_clean(struct net_device *poll_dev, int *budget);
       
   154 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   155                                     struct e1000_rx_ring *rx_ring,
       
   156                                     int *work_done, int work_to_do);
       
   157 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   158                                        struct e1000_rx_ring *rx_ring,
       
   159                                        int *work_done, int work_to_do);
       
   160 #else
       
   161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   162                                     struct e1000_rx_ring *rx_ring);
       
   163 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   164                                        struct e1000_rx_ring *rx_ring);
       
   165 #endif
       
   166 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
   167                                    struct e1000_rx_ring *rx_ring,
       
   168 				   int cleaned_count);
       
   169 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
   170                                       struct e1000_rx_ring *rx_ring,
       
   171 				      int cleaned_count);
       
   172 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
       
   173 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
   174 			   int cmd);
       
   175 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
       
   176 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
       
   177 static void e1000_tx_timeout(struct net_device *dev);
       
   178 static void e1000_reset_task(struct net_device *dev);
       
   179 static void e1000_smartspeed(struct e1000_adapter *adapter);
       
   180 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
   181                                        struct sk_buff *skb);
       
   182 
       
   183 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
       
   184 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
       
   185 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
       
   186 static void e1000_restore_vlan(struct e1000_adapter *adapter);
       
   187 
       
   188 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
       
   189 #ifdef CONFIG_PM
       
   190 static int e1000_resume(struct pci_dev *pdev);
       
   191 #endif
       
   192 static void e1000_shutdown(struct pci_dev *pdev);
       
   193 
       
   194 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   195 /* for netdump / net console */
       
   196 static void e1000_netpoll (struct net_device *netdev);
       
   197 #endif
       
   198 
       
   199 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
   200                      pci_channel_state_t state);
       
   201 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
       
   202 static void e1000_io_resume(struct pci_dev *pdev);
       
   203 
       
   204 static struct pci_error_handlers e1000_err_handler = {
       
   205 	.error_detected = e1000_io_error_detected,
       
   206 	.slot_reset = e1000_io_slot_reset,
       
   207 	.resume = e1000_io_resume,
       
   208 };
       
   209 
       
   210 static struct pci_driver e1000_driver = {
       
   211 	.name     = e1000_driver_name,
       
   212 	.id_table = e1000_pci_tbl,
       
   213 	.probe    = e1000_probe,
       
   214 	.remove   = __devexit_p(e1000_remove),
       
   215 	/* Power Managment Hooks */
       
   216 	.suspend  = e1000_suspend,
       
   217 #ifdef CONFIG_PM
       
   218 	.resume   = e1000_resume,
       
   219 #endif
       
   220 	.shutdown = e1000_shutdown,
       
   221 	.err_handler = &e1000_err_handler
       
   222 };
       
   223 
       
   224 MODULE_AUTHOR("Florian Pose <fp@igh-essen.com>");
       
   225 MODULE_DESCRIPTION("EtherCAT-capable Intel(R) PRO/1000 Network Driver");
       
   226 MODULE_LICENSE("GPL");
       
   227 MODULE_VERSION(DRV_VERSION);
       
   228 
       
   229 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
       
   230 module_param(debug, int, 0);
       
   231 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   232 
       
   233 /**
       
   234  * e1000_init_module - Driver Registration Routine
       
   235  *
       
   236  * e1000_init_module is the first routine called when the driver is
       
   237  * loaded. All it does is register with the PCI subsystem.
       
   238  **/
       
   239 
       
   240 static int __init
       
   241 e1000_init_module(void)
       
   242 {
       
   243 	int ret;
       
   244 	printk(KERN_INFO "%s - version %s\n",
       
   245 	       e1000_driver_string, e1000_driver_version);
       
   246 
       
   247 	printk(KERN_INFO "%s\n", e1000_copyright);
       
   248 
       
   249 	ret = pci_module_init(&e1000_driver);
       
   250 
       
   251 	return ret;
       
   252 }
       
   253 
       
   254 module_init(e1000_init_module);
       
   255 
       
   256 /**
       
   257  * e1000_exit_module - Driver Exit Cleanup Routine
       
   258  *
       
   259  * e1000_exit_module is called just before the driver is removed
       
   260  * from memory.
       
   261  **/
       
   262 
       
   263 static void __exit
       
   264 e1000_exit_module(void)
       
   265 {
       
   266 	pci_unregister_driver(&e1000_driver);
       
   267 }
       
   268 
       
   269 module_exit(e1000_exit_module);
       
   270 
       
   271 static int e1000_request_irq(struct e1000_adapter *adapter) // not called when EtherCAT
       
   272 {
       
   273 	struct net_device *netdev = adapter->netdev;
       
   274 	int flags, err = 0;
       
   275 
       
   276 	flags = IRQF_SHARED;
       
   277 #ifdef CONFIG_PCI_MSI
       
   278 	if (adapter->hw.mac_type > e1000_82547_rev_2) {
       
   279 		adapter->have_msi = TRUE;
       
   280 		if ((err = pci_enable_msi(adapter->pdev))) {
       
   281 			DPRINTK(PROBE, ERR,
       
   282 			 "Unable to allocate MSI interrupt Error: %d\n", err);
       
   283 			adapter->have_msi = FALSE;
       
   284 		}
       
   285 	}
       
   286 	if (adapter->have_msi)
       
   287 		flags &= ~IRQF_SHARED;
       
   288 #endif
       
   289 	if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
       
   290 	                       netdev->name, netdev)))
       
   291 		DPRINTK(PROBE, ERR,
       
   292 		        "Unable to allocate interrupt Error: %d\n", err);
       
   293 
       
   294 	return err;
       
   295 }
       
   296 
       
   297 static void e1000_free_irq(struct e1000_adapter *adapter)
       
   298 {
       
   299 	struct net_device *netdev = adapter->netdev;
       
   300 
       
   301 	free_irq(adapter->pdev->irq, netdev);
       
   302 
       
   303 #ifdef CONFIG_PCI_MSI
       
   304 	if (adapter->have_msi)
       
   305 		pci_disable_msi(adapter->pdev);
       
   306 #endif
       
   307 }
       
   308 
       
   309 /**
       
   310  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
   311  * @adapter: board private structure
       
   312  **/
       
   313 
       
   314 static void
       
   315 e1000_irq_disable(struct e1000_adapter *adapter)
       
   316 {
       
   317 	atomic_inc(&adapter->irq_sem);
       
   318 	E1000_WRITE_REG(&adapter->hw, IMC, ~0);
       
   319 	E1000_WRITE_FLUSH(&adapter->hw);
       
   320 	synchronize_irq(adapter->pdev->irq);
       
   321 }
       
   322 
       
   323 /**
       
   324  * e1000_irq_enable - Enable default interrupt generation settings
       
   325  * @adapter: board private structure
       
   326  **/
       
   327 
       
   328 static void
       
   329 e1000_irq_enable(struct e1000_adapter *adapter)
       
   330 {
       
   331 	if (!adapter->ecdev && likely(atomic_dec_and_test(&adapter->irq_sem))) {
       
   332 		E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
       
   333 		E1000_WRITE_FLUSH(&adapter->hw);
       
   334 	}
       
   335 }
       
   336 
       
   337 static void
       
   338 e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
   339 {
       
   340 	struct net_device *netdev = adapter->netdev;
       
   341 	uint16_t vid = adapter->hw.mng_cookie.vlan_id;
       
   342 	uint16_t old_vid = adapter->mng_vlan_id;
       
   343 	if (adapter->vlgrp) {
       
   344 		if (!adapter->vlgrp->vlan_devices[vid]) {
       
   345 			if (adapter->hw.mng_cookie.status &
       
   346 				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
       
   347 				e1000_vlan_rx_add_vid(netdev, vid);
       
   348 				adapter->mng_vlan_id = vid;
       
   349 			} else
       
   350 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
   351 
       
   352 			if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
       
   353 					(vid != old_vid) &&
       
   354 					!adapter->vlgrp->vlan_devices[old_vid])
       
   355 				e1000_vlan_rx_kill_vid(netdev, old_vid);
       
   356 		} else
       
   357 			adapter->mng_vlan_id = vid;
       
   358 	}
       
   359 }
       
   360 
       
   361 /**
       
   362  * e1000_release_hw_control - release control of the h/w to f/w
       
   363  * @adapter: address of board private structure
       
   364  *
       
   365  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   366  * For ASF and Pass Through versions of f/w this means that the
       
   367  * driver is no longer loaded. For AMT version (only with 82573) i
       
   368  * of the f/w this means that the netowrk i/f is closed.
       
   369  *
       
   370  **/
       
   371 
       
   372 static void
       
   373 e1000_release_hw_control(struct e1000_adapter *adapter)
       
   374 {
       
   375 	uint32_t ctrl_ext;
       
   376 	uint32_t swsm;
       
   377 	uint32_t extcnf;
       
   378 
       
   379 	/* Let firmware taken over control of h/w */
       
   380 	switch (adapter->hw.mac_type) {
       
   381 	case e1000_82571:
       
   382 	case e1000_82572:
       
   383 	case e1000_80003es2lan:
       
   384 		ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
   385 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
       
   386 				ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
       
   387 		break;
       
   388 	case e1000_82573:
       
   389 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
   390 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
   391 				swsm & ~E1000_SWSM_DRV_LOAD);
       
   392 	case e1000_ich8lan:
       
   393 		extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
   394 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
       
   395 				extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
       
   396 		break;
       
   397 	default:
       
   398 		break;
       
   399 	}
       
   400 }
       
   401 
       
   402 /**
       
   403  * e1000_get_hw_control - get control of the h/w from f/w
       
   404  * @adapter: address of board private structure
       
   405  *
       
   406  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   407  * For ASF and Pass Through versions of f/w this means that
       
   408  * the driver is loaded. For AMT version (only with 82573)
       
   409  * of the f/w this means that the netowrk i/f is open.
       
   410  *
       
   411  **/
       
   412 
       
   413 static void
       
   414 e1000_get_hw_control(struct e1000_adapter *adapter)
       
   415 {
       
   416 	uint32_t ctrl_ext;
       
   417 	uint32_t swsm;
       
   418 	uint32_t extcnf;
       
   419 	/* Let firmware know the driver has taken over */
       
   420 	switch (adapter->hw.mac_type) {
       
   421 	case e1000_82571:
       
   422 	case e1000_82572:
       
   423 	case e1000_80003es2lan:
       
   424 		ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
   425 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
       
   426 				ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
       
   427 		break;
       
   428 	case e1000_82573:
       
   429 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
   430 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
   431 				swsm | E1000_SWSM_DRV_LOAD);
       
   432 		break;
       
   433 	case e1000_ich8lan:
       
   434 		extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
       
   435 		E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
       
   436 				extcnf | E1000_EXTCNF_CTRL_SWFLAG);
       
   437 		break;
       
   438 	default:
       
   439 		break;
       
   440 	}
       
   441 }
       
   442 
       
   443 int
       
   444 e1000_up(struct e1000_adapter *adapter)
       
   445 {
       
   446 	struct net_device *netdev = adapter->netdev;
       
   447 	int i;
       
   448 
       
   449 	/* hardware has been reset, we need to reload some things */
       
   450 
       
   451 	e1000_set_multi(netdev);
       
   452 
       
   453 	e1000_restore_vlan(adapter);
       
   454 
       
   455 	e1000_configure_tx(adapter);
       
   456 	e1000_setup_rctl(adapter);
       
   457 	e1000_configure_rx(adapter);
       
   458 	/* call E1000_DESC_UNUSED which always leaves
       
   459 	 * at least 1 descriptor unused to make sure
       
   460 	 * next_to_use != next_to_clean */
       
   461 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
   462 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
       
   463 		adapter->alloc_rx_buf(adapter, ring,
       
   464 		                      E1000_DESC_UNUSED(ring));
       
   465 	}
       
   466 
       
   467 	adapter->tx_queue_len = netdev->tx_queue_len;
       
   468 
       
   469 	mod_timer(&adapter->watchdog_timer, jiffies);
       
   470 
       
   471 #ifdef CONFIG_E1000_NAPI
       
   472 	if (!adapter->ecdev) netif_poll_enable(netdev);
       
   473 #endif
       
   474 	e1000_irq_enable(adapter);
       
   475 
       
   476 	return 0;
       
   477 }
       
   478 
       
   479 /**
       
   480  * e1000_power_up_phy - restore link in case the phy was powered down
       
   481  * @adapter: address of board private structure
       
   482  *
       
   483  * The phy may be powered down to save power and turn off link when the
       
   484  * driver is unloaded and wake on lan is not enabled (among others)
       
   485  * *** this routine MUST be followed by a call to e1000_reset ***
       
   486  *
       
   487  **/
       
   488 
       
   489 static void e1000_power_up_phy(struct e1000_adapter *adapter)
       
   490 {
       
   491 	uint16_t mii_reg = 0;
       
   492 
       
   493 	/* Just clear the power down bit to wake the phy back up */
       
   494 	if (adapter->hw.media_type == e1000_media_type_copper) {
       
   495 		/* according to the manual, the phy will retain its
       
   496 		 * settings across a power-down/up cycle */
       
   497 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
       
   498 		mii_reg &= ~MII_CR_POWER_DOWN;
       
   499 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
       
   500 	}
       
   501 }
       
   502 
       
   503 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
   504 {
       
   505 	boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
       
   506 	                              e1000_check_mng_mode(&adapter->hw);
       
   507 	/* Power down the PHY so no link is implied when interface is down
       
   508 	 * The PHY cannot be powered down if any of the following is TRUE
       
   509 	 * (a) WoL is enabled
       
   510 	 * (b) AMT is active
       
   511 	 * (c) SoL/IDER session is active */
       
   512 	if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
       
   513 	    adapter->hw.mac_type != e1000_ich8lan &&
       
   514 	    adapter->hw.media_type == e1000_media_type_copper &&
       
   515 	    !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
       
   516 	    !mng_mode_enabled &&
       
   517 	    !e1000_check_phy_reset_block(&adapter->hw)) {
       
   518 		uint16_t mii_reg = 0;
       
   519 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
       
   520 		mii_reg |= MII_CR_POWER_DOWN;
       
   521 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
       
   522 		mdelay(1);
       
   523 	}
       
   524 }
       
   525 
       
   526 void
       
   527 e1000_down(struct e1000_adapter *adapter)
       
   528 {
       
   529 	struct net_device *netdev = adapter->netdev;
       
   530 
       
   531 	e1000_irq_disable(adapter);
       
   532 
       
   533 	del_timer_sync(&adapter->tx_fifo_stall_timer);
       
   534 	del_timer_sync(&adapter->watchdog_timer);
       
   535 	del_timer_sync(&adapter->phy_info_timer);
       
   536 
       
   537 #ifdef CONFIG_E1000_NAPI
       
   538 	if (!adapter->ecdev) netif_poll_disable(netdev);
       
   539 #endif
       
   540 	netdev->tx_queue_len = adapter->tx_queue_len;
       
   541 	adapter->link_speed = 0;
       
   542 	adapter->link_duplex = 0;
       
   543 	if (!adapter->ecdev) {
       
   544 		netif_carrier_off(netdev);
       
   545 		netif_stop_queue(netdev);
       
   546 	}
       
   547 
       
   548 	e1000_reset(adapter);
       
   549 	e1000_clean_all_tx_rings(adapter);
       
   550 	e1000_clean_all_rx_rings(adapter);
       
   551 }
       
   552 
       
   553 void
       
   554 e1000_reinit_locked(struct e1000_adapter *adapter)
       
   555 {
       
   556 	WARN_ON(in_interrupt());
       
   557 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   558 		msleep(1);
       
   559 	e1000_down(adapter);
       
   560 	e1000_up(adapter);
       
   561 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   562 }
       
   563 
       
   564 void
       
   565 e1000_reset(struct e1000_adapter *adapter)
       
   566 {
       
   567 	uint32_t pba, manc;
       
   568 	uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
       
   569 
       
   570 	/* Repartition Pba for greater than 9k mtu
       
   571 	 * To take effect CTRL.RST is required.
       
   572 	 */
       
   573 
       
   574 	switch (adapter->hw.mac_type) {
       
   575 	case e1000_82547:
       
   576 	case e1000_82547_rev_2:
       
   577 		pba = E1000_PBA_30K;
       
   578 		break;
       
   579 	case e1000_82571:
       
   580 	case e1000_82572:
       
   581 	case e1000_80003es2lan:
       
   582 		pba = E1000_PBA_38K;
       
   583 		break;
       
   584 	case e1000_82573:
       
   585 		pba = E1000_PBA_12K;
       
   586 		break;
       
   587 	case e1000_ich8lan:
       
   588 		pba = E1000_PBA_8K;
       
   589 		break;
       
   590 	default:
       
   591 		pba = E1000_PBA_48K;
       
   592 		break;
       
   593 	}
       
   594 
       
   595 	if ((adapter->hw.mac_type != e1000_82573) &&
       
   596 	   (adapter->netdev->mtu > E1000_RXBUFFER_8192))
       
   597 		pba -= 8; /* allocate more FIFO for Tx */
       
   598 
       
   599 
       
   600 	if (adapter->hw.mac_type == e1000_82547) {
       
   601 		adapter->tx_fifo_head = 0;
       
   602 		adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
       
   603 		adapter->tx_fifo_size =
       
   604 			(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
       
   605 		atomic_set(&adapter->tx_fifo_stall, 0);
       
   606 	}
       
   607 
       
   608 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
       
   609 
       
   610 	/* flow control settings */
       
   611 	/* Set the FC high water mark to 90% of the FIFO size.
       
   612 	 * Required to clear last 3 LSB */
       
   613 	fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
       
   614 	/* We can't use 90% on small FIFOs because the remainder
       
   615 	 * would be less than 1 full frame.  In this case, we size
       
   616 	 * it to allow at least a full frame above the high water
       
   617 	 *  mark. */
       
   618 	if (pba < E1000_PBA_16K)
       
   619 		fc_high_water_mark = (pba * 1024) - 1600;
       
   620 
       
   621 	adapter->hw.fc_high_water = fc_high_water_mark;
       
   622 	adapter->hw.fc_low_water = fc_high_water_mark - 8;
       
   623 	if (adapter->hw.mac_type == e1000_80003es2lan)
       
   624 		adapter->hw.fc_pause_time = 0xFFFF;
       
   625 	else
       
   626 		adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
       
   627 	adapter->hw.fc_send_xon = 1;
       
   628 	adapter->hw.fc = adapter->hw.original_fc;
       
   629 
       
   630 	/* Allow time for pending master requests to run */
       
   631 	e1000_reset_hw(&adapter->hw);
       
   632 	if (adapter->hw.mac_type >= e1000_82544)
       
   633 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
       
   634 	if (e1000_init_hw(&adapter->hw))
       
   635 		DPRINTK(PROBE, ERR, "Hardware Error\n");
       
   636 	e1000_update_mng_vlan(adapter);
       
   637 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
   638 	E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
       
   639 
       
   640 	e1000_reset_adaptive(&adapter->hw);
       
   641 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
       
   642 
       
   643 	if (!adapter->smart_power_down &&
       
   644 	    (adapter->hw.mac_type == e1000_82571 ||
       
   645 	     adapter->hw.mac_type == e1000_82572)) {
       
   646 		uint16_t phy_data = 0;
       
   647 		/* speed up time to link by disabling smart power down, ignore
       
   648 		 * the return value of this function because there is nothing
       
   649 		 * different we would do if it failed */
       
   650 		e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
       
   651 		                   &phy_data);
       
   652 		phy_data &= ~IGP02E1000_PM_SPD;
       
   653 		e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
       
   654 		                    phy_data);
       
   655 	}
       
   656 
       
   657 	if (adapter->hw.mac_type < e1000_ich8lan)
       
   658 	/* FIXME: this code is duplicate and wrong for PCI Express */
       
   659 	if (adapter->en_mng_pt) {
       
   660 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
   661 		manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
       
   662 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
   663 	}
       
   664 }
       
   665 
       
   666 /**
       
   667  * e1000_probe - Device Initialization Routine
       
   668  * @pdev: PCI device information struct
       
   669  * @ent: entry in e1000_pci_tbl
       
   670  *
       
   671  * Returns 0 on success, negative on failure
       
   672  *
       
   673  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
   674  * The OS initialization, configuring of the adapter private structure,
       
   675  * and a hardware reset occur.
       
   676  **/
       
   677 
       
   678 static int __devinit
       
   679 e1000_probe(struct pci_dev *pdev,
       
   680             const struct pci_device_id *ent)
       
   681 {
       
   682 	struct net_device *netdev;
       
   683 	struct e1000_adapter *adapter;
       
   684 	unsigned long mmio_start, mmio_len;
       
   685 	unsigned long flash_start, flash_len;
       
   686 
       
   687 	static int cards_found = 0;
       
   688 	static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
       
   689 	int i, err, pci_using_dac;
       
   690 	uint16_t eeprom_data;
       
   691 	uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
       
   692 	if ((err = pci_enable_device(pdev)))
       
   693 		return err;
       
   694 
       
   695 	if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
       
   696 	    !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
       
   697 		pci_using_dac = 1;
       
   698 	} else {
       
   699 		if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
       
   700 		    (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
       
   701 			E1000_ERR("No usable DMA configuration, aborting\n");
       
   702 			return err;
       
   703 		}
       
   704 		pci_using_dac = 0;
       
   705 	}
       
   706 
       
   707 	if ((err = pci_request_regions(pdev, e1000_driver_name)))
       
   708 		return err;
       
   709 
       
   710 	pci_set_master(pdev);
       
   711 
       
   712 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
   713 	if (!netdev) {
       
   714 		err = -ENOMEM;
       
   715 		goto err_alloc_etherdev;
       
   716 	}
       
   717 
       
   718 	SET_MODULE_OWNER(netdev);
       
   719 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
   720 
       
   721 	pci_set_drvdata(pdev, netdev);
       
   722 	adapter = netdev_priv(netdev);
       
   723 	adapter->netdev = netdev;
       
   724 	adapter->pdev = pdev;
       
   725 	adapter->hw.back = adapter;
       
   726 	adapter->msg_enable = (1 << debug) - 1;
       
   727 
       
   728 	mmio_start = pci_resource_start(pdev, BAR_0);
       
   729 	mmio_len = pci_resource_len(pdev, BAR_0);
       
   730 
       
   731 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
       
   732 	if (!adapter->hw.hw_addr) {
       
   733 		err = -EIO;
       
   734 		goto err_ioremap;
       
   735 	}
       
   736 
       
   737 	for (i = BAR_1; i <= BAR_5; i++) {
       
   738 		if (pci_resource_len(pdev, i) == 0)
       
   739 			continue;
       
   740 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
       
   741 			adapter->hw.io_base = pci_resource_start(pdev, i);
       
   742 			break;
       
   743 		}
       
   744 	}
       
   745 
       
   746 	netdev->open = &e1000_open;
       
   747 	netdev->stop = &e1000_close;
       
   748 	netdev->hard_start_xmit = &e1000_xmit_frame;
       
   749 	netdev->get_stats = &e1000_get_stats;
       
   750 	netdev->set_multicast_list = &e1000_set_multi;
       
   751 	netdev->set_mac_address = &e1000_set_mac;
       
   752 	netdev->change_mtu = &e1000_change_mtu;
       
   753 	netdev->do_ioctl = &e1000_ioctl;
       
   754 	e1000_set_ethtool_ops(netdev);
       
   755 	netdev->tx_timeout = &e1000_tx_timeout;
       
   756 	netdev->watchdog_timeo = 5 * HZ;
       
   757 #ifdef CONFIG_E1000_NAPI
       
   758 	netdev->poll = &e1000_clean;
       
   759 	netdev->weight = 64;
       
   760 #endif
       
   761 	netdev->vlan_rx_register = e1000_vlan_rx_register;
       
   762 	netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
       
   763 	netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
       
   764 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   765 	netdev->poll_controller = e1000_netpoll;
       
   766 #endif
       
   767 	strcpy(netdev->name, pci_name(pdev));
       
   768 
       
   769 	netdev->mem_start = mmio_start;
       
   770 	netdev->mem_end = mmio_start + mmio_len;
       
   771 	netdev->base_addr = adapter->hw.io_base;
       
   772 
       
   773 	adapter->bd_number = cards_found;
       
   774 
       
   775 	/* setup the private structure */
       
   776 
       
   777 	if ((err = e1000_sw_init(adapter)))
       
   778 		goto err_sw_init;
       
   779 
       
   780 	/* Flash BAR mapping must happen after e1000_sw_init
       
   781 	 * because it depends on mac_type */
       
   782 	if ((adapter->hw.mac_type == e1000_ich8lan) &&
       
   783 	   (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
       
   784 		flash_start = pci_resource_start(pdev, 1);
       
   785 		flash_len = pci_resource_len(pdev, 1);
       
   786 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
       
   787 		if (!adapter->hw.flash_address) {
       
   788 			err = -EIO;
       
   789 			goto err_flashmap;
       
   790 		}
       
   791 	}
       
   792 
       
   793 	if ((err = e1000_check_phy_reset_block(&adapter->hw)))
       
   794 		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
       
   795 
       
   796 	/* if ksp3, indicate if it's port a being setup */
       
   797 	if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
       
   798 			e1000_ksp3_port_a == 0)
       
   799 		adapter->ksp3_port_a = 1;
       
   800 	e1000_ksp3_port_a++;
       
   801 	/* Reset for multiple KP3 adapters */
       
   802 	if (e1000_ksp3_port_a == 4)
       
   803 		e1000_ksp3_port_a = 0;
       
   804 
       
   805 	if (adapter->hw.mac_type >= e1000_82543) {
       
   806 		netdev->features = NETIF_F_SG |
       
   807 				   NETIF_F_HW_CSUM |
       
   808 				   NETIF_F_HW_VLAN_TX |
       
   809 				   NETIF_F_HW_VLAN_RX |
       
   810 				   NETIF_F_HW_VLAN_FILTER;
       
   811 		if (adapter->hw.mac_type == e1000_ich8lan)
       
   812 			netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
       
   813 	}
       
   814 
       
   815 #ifdef NETIF_F_TSO
       
   816 	if ((adapter->hw.mac_type >= e1000_82544) &&
       
   817 	   (adapter->hw.mac_type != e1000_82547))
       
   818 		netdev->features |= NETIF_F_TSO;
       
   819 
       
   820 #ifdef NETIF_F_TSO_IPV6
       
   821 	if (adapter->hw.mac_type > e1000_82547_rev_2)
       
   822 		netdev->features |= NETIF_F_TSO_IPV6;
       
   823 #endif
       
   824 #endif
       
   825 	if (pci_using_dac)
       
   826 		netdev->features |= NETIF_F_HIGHDMA;
       
   827 
       
   828 	netdev->features |= NETIF_F_LLTX;
       
   829 
       
   830 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
       
   831 
       
   832 	/* initialize eeprom parameters */
       
   833 
       
   834 	if (e1000_init_eeprom_params(&adapter->hw)) {
       
   835 		E1000_ERR("EEPROM initialization failed\n");
       
   836 		return -EIO;
       
   837 	}
       
   838 
       
   839 	/* before reading the EEPROM, reset the controller to
       
   840 	 * put the device in a known good starting state */
       
   841 
       
   842 	e1000_reset_hw(&adapter->hw);
       
   843 
       
   844 	/* make sure the EEPROM is good */
       
   845 
       
   846 	if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
       
   847 		/* On some hardware the first attemp fails */
       
   848 		if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
       
   849 			DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
       
   850 			err = -EIO;
       
   851 			goto err_eeprom;
       
   852 		} else
       
   853 			DPRINTK(PROBE, INFO, "The EEPROM Checksum failed in the first read, now OK\n");
       
   854 	}
       
   855 
       
   856 	/* copy the MAC address out of the EEPROM */
       
   857 
       
   858 	if (e1000_read_mac_addr(&adapter->hw))
       
   859 		DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
       
   860 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
       
   861 	memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
       
   862 
       
   863 	if (!is_valid_ether_addr(netdev->perm_addr)) {
       
   864 		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
       
   865 		err = -EIO;
       
   866 		goto err_eeprom;
       
   867 	}
       
   868 
       
   869 	e1000_read_part_num(&adapter->hw, &(adapter->part_num));
       
   870 
       
   871 	e1000_get_bus_info(&adapter->hw);
       
   872 
       
   873 	init_timer(&adapter->tx_fifo_stall_timer);
       
   874 	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
       
   875 	adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
       
   876 
       
   877 	init_timer(&adapter->watchdog_timer);
       
   878 	adapter->watchdog_timer.function = &e1000_watchdog;
       
   879 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
   880 
       
   881 	init_timer(&adapter->phy_info_timer);
       
   882 	adapter->phy_info_timer.function = &e1000_update_phy_info;
       
   883 	adapter->phy_info_timer.data = (unsigned long) adapter;
       
   884 
       
   885 	INIT_WORK(&adapter->reset_task,
       
   886 		(void (*)(void *))e1000_reset_task, netdev);
       
   887 
       
   888 	/* we're going to reset, so assume we have no link for now */
       
   889 
       
   890 	if (!adapter->ecdev) {
       
   891 		netif_carrier_off(netdev);
       
   892 		netif_stop_queue(netdev);
       
   893 	}
       
   894 
       
   895 	e1000_check_options(adapter);
       
   896 
       
   897 	/* Initial Wake on LAN setting
       
   898 	 * If APM wake is enabled in the EEPROM,
       
   899 	 * enable the ACPI Magic Packet filter
       
   900 	 */
       
   901 
       
   902 	switch (adapter->hw.mac_type) {
       
   903 	case e1000_82542_rev2_0:
       
   904 	case e1000_82542_rev2_1:
       
   905 	case e1000_82543:
       
   906 		break;
       
   907 	case e1000_82544:
       
   908 		e1000_read_eeprom(&adapter->hw,
       
   909 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
       
   910 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
       
   911 		break;
       
   912 	case e1000_ich8lan:
       
   913 		e1000_read_eeprom(&adapter->hw,
       
   914 			EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
       
   915 		eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
       
   916 		break;
       
   917 	case e1000_82546:
       
   918 	case e1000_82546_rev_3:
       
   919 	case e1000_82571:
       
   920 	case e1000_80003es2lan:
       
   921 		if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
       
   922 			e1000_read_eeprom(&adapter->hw,
       
   923 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
   924 			break;
       
   925 		}
       
   926 		/* Fall Through */
       
   927 	default:
       
   928 		e1000_read_eeprom(&adapter->hw,
       
   929 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
   930 		break;
       
   931 	}
       
   932 	if (eeprom_data & eeprom_apme_mask)
       
   933 		adapter->wol |= E1000_WUFC_MAG;
       
   934 
       
   935 	/* print bus type/speed/width info */
       
   936 	{
       
   937 	struct e1000_hw *hw = &adapter->hw;
       
   938 	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
       
   939 		((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
       
   940 		 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
       
   941 		((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
       
   942 		 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
       
   943 		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
       
   944 		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
       
   945 		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
       
   946 		((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
       
   947 		 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
       
   948 		 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
       
   949 		 "32-bit"));
       
   950 	}
       
   951 
       
   952 	for (i = 0; i < 6; i++)
       
   953 		printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
       
   954 
       
   955 	/* reset the hardware with the new settings */
       
   956 	e1000_reset(adapter);
       
   957 
       
   958 	/* If the controller is 82573 and f/w is AMT, do not set
       
   959 	 * DRV_LOAD until the interface is up.  For all other cases,
       
   960 	 * let the f/w know that the h/w is now under the control
       
   961 	 * of the driver. */
       
   962 	if (adapter->hw.mac_type != e1000_82573 ||
       
   963 	    !e1000_check_mng_mode(&adapter->hw))
       
   964 		e1000_get_hw_control(adapter);
       
   965 
       
   966 	strcpy(netdev->name, "eth%d");
       
   967 	if ((err = register_netdev(netdev)))
       
   968 		goto err_register;
       
   969 
       
   970 	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
       
   971 
       
   972 	cards_found++;
       
   973 	return 0;
       
   974 
       
   975 err_register:
       
   976 	if (adapter->hw.flash_address)
       
   977 		iounmap(adapter->hw.flash_address);
       
   978 err_flashmap:
       
   979 err_sw_init:
       
   980 err_eeprom:
       
   981 	iounmap(adapter->hw.hw_addr);
       
   982 err_ioremap:
       
   983 	free_netdev(netdev);
       
   984 err_alloc_etherdev:
       
   985 	pci_release_regions(pdev);
       
   986 	return err;
       
   987 }
       
   988 
       
   989 /**
       
   990  * e1000_remove - Device Removal Routine
       
   991  * @pdev: PCI device information struct
       
   992  *
       
   993  * e1000_remove is called by the PCI subsystem to alert the driver
       
   994  * that it should release a PCI device.  The could be caused by a
       
   995  * Hot-Plug event, or because the driver is going to be removed from
       
   996  * memory.
       
   997  **/
       
   998 
       
   999 static void __devexit
       
  1000 e1000_remove(struct pci_dev *pdev)
       
  1001 {
       
  1002 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  1003 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1004 	uint32_t manc;
       
  1005 #ifdef CONFIG_E1000_NAPI
       
  1006 	int i;
       
  1007 #endif
       
  1008 
       
  1009 	flush_scheduled_work();
       
  1010 
       
  1011 	if (adapter->hw.mac_type >= e1000_82540 &&
       
  1012 	   adapter->hw.mac_type != e1000_ich8lan &&
       
  1013 	   adapter->hw.media_type == e1000_media_type_copper) {
       
  1014 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
  1015 		if (manc & E1000_MANC_SMBUS_EN) {
       
  1016 			manc |= E1000_MANC_ARP_EN;
       
  1017 			E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
  1018 		}
       
  1019 	}
       
  1020 
       
  1021 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  1022 	 * would have already happened in close and is redundant. */
       
  1023 	e1000_release_hw_control(adapter);
       
  1024 
       
  1025 	unregister_netdev(netdev);
       
  1026 #ifdef CONFIG_E1000_NAPI
       
  1027 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  1028 		dev_put(&adapter->polling_netdev[i]);
       
  1029 #endif
       
  1030 
       
  1031 	if (!e1000_check_phy_reset_block(&adapter->hw))
       
  1032 		e1000_phy_hw_reset(&adapter->hw);
       
  1033 
       
  1034 	kfree(adapter->tx_ring);
       
  1035 	kfree(adapter->rx_ring);
       
  1036 #ifdef CONFIG_E1000_NAPI
       
  1037 	kfree(adapter->polling_netdev);
       
  1038 #endif
       
  1039 
       
  1040 	iounmap(adapter->hw.hw_addr);
       
  1041 	if (adapter->hw.flash_address)
       
  1042 		iounmap(adapter->hw.flash_address);
       
  1043 	pci_release_regions(pdev);
       
  1044 
       
  1045 	free_netdev(netdev);
       
  1046 
       
  1047 	pci_disable_device(pdev);
       
  1048 }
       
  1049 
       
  1050 /**
       
  1051  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  1052  * @adapter: board private structure to initialize
       
  1053  *
       
  1054  * e1000_sw_init initializes the Adapter private data structure.
       
  1055  * Fields are initialized based on PCI device information and
       
  1056  * OS network device settings (MTU size).
       
  1057  **/
       
  1058 
       
  1059 static int __devinit
       
  1060 e1000_sw_init(struct e1000_adapter *adapter)
       
  1061 {
       
  1062 	struct e1000_hw *hw = &adapter->hw;
       
  1063 	struct net_device *netdev = adapter->netdev;
       
  1064 	struct pci_dev *pdev = adapter->pdev;
       
  1065 #ifdef CONFIG_E1000_NAPI
       
  1066 	int i;
       
  1067 #endif
       
  1068 
       
  1069 	/* PCI config space info */
       
  1070 
       
  1071 	hw->vendor_id = pdev->vendor;
       
  1072 	hw->device_id = pdev->device;
       
  1073 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
       
  1074 	hw->subsystem_id = pdev->subsystem_device;
       
  1075 
       
  1076 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
       
  1077 
       
  1078 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
       
  1079 
       
  1080 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  1081 	adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
       
  1082 	hw->max_frame_size = netdev->mtu +
       
  1083 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  1084 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
       
  1085 
       
  1086 	/* identify the MAC */
       
  1087 
       
  1088 	if (e1000_set_mac_type(hw)) {
       
  1089 		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
       
  1090 		return -EIO;
       
  1091 	}
       
  1092 
       
  1093 	switch (hw->mac_type) {
       
  1094 	default:
       
  1095 		break;
       
  1096 	case e1000_82541:
       
  1097 	case e1000_82547:
       
  1098 	case e1000_82541_rev_2:
       
  1099 	case e1000_82547_rev_2:
       
  1100 		hw->phy_init_script = 1;
       
  1101 		break;
       
  1102 	}
       
  1103 
       
  1104 	e1000_set_media_type(hw);
       
  1105 
       
  1106 	hw->wait_autoneg_complete = FALSE;
       
  1107 	hw->tbi_compatibility_en = TRUE;
       
  1108 	hw->adaptive_ifs = TRUE;
       
  1109 
       
  1110 	/* Copper options */
       
  1111 
       
  1112 	if (hw->media_type == e1000_media_type_copper) {
       
  1113 		hw->mdix = AUTO_ALL_MODES;
       
  1114 		hw->disable_polarity_correction = FALSE;
       
  1115 		hw->master_slave = E1000_MASTER_SLAVE;
       
  1116 	}
       
  1117 
       
  1118 	adapter->num_tx_queues = 1;
       
  1119 	adapter->num_rx_queues = 1;
       
  1120 
       
  1121 	if (e1000_alloc_queues(adapter)) {
       
  1122 		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
       
  1123 		return -ENOMEM;
       
  1124 	}
       
  1125 
       
  1126 #ifdef CONFIG_E1000_NAPI
       
  1127 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1128 		adapter->polling_netdev[i].priv = adapter;
       
  1129 		adapter->polling_netdev[i].poll = &e1000_clean;
       
  1130 		adapter->polling_netdev[i].weight = 64;
       
  1131 		dev_hold(&adapter->polling_netdev[i]);
       
  1132 		set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
       
  1133 	}
       
  1134 	spin_lock_init(&adapter->tx_queue_lock);
       
  1135 #endif
       
  1136 
       
  1137 	atomic_set(&adapter->irq_sem, 1);
       
  1138 	spin_lock_init(&adapter->stats_lock);
       
  1139 
       
  1140 	return 0;
       
  1141 }
       
  1142 
       
  1143 /**
       
  1144  * e1000_alloc_queues - Allocate memory for all rings
       
  1145  * @adapter: board private structure to initialize
       
  1146  *
       
  1147  * We allocate one ring per queue at run-time since we don't know the
       
  1148  * number of queues at compile-time.  The polling_netdev array is
       
  1149  * intended for Multiqueue, but should work fine with a single queue.
       
  1150  **/
       
  1151 
       
  1152 static int __devinit
       
  1153 e1000_alloc_queues(struct e1000_adapter *adapter)
       
  1154 {
       
  1155 	int size;
       
  1156 
       
  1157 	size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
       
  1158 	adapter->tx_ring = kmalloc(size, GFP_KERNEL);
       
  1159 	if (!adapter->tx_ring)
       
  1160 		return -ENOMEM;
       
  1161 	memset(adapter->tx_ring, 0, size);
       
  1162 
       
  1163 	size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
       
  1164 	adapter->rx_ring = kmalloc(size, GFP_KERNEL);
       
  1165 	if (!adapter->rx_ring) {
       
  1166 		kfree(adapter->tx_ring);
       
  1167 		return -ENOMEM;
       
  1168 	}
       
  1169 	memset(adapter->rx_ring, 0, size);
       
  1170 
       
  1171 #ifdef CONFIG_E1000_NAPI
       
  1172 	size = sizeof(struct net_device) * adapter->num_rx_queues;
       
  1173 	adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
       
  1174 	if (!adapter->polling_netdev) {
       
  1175 		kfree(adapter->tx_ring);
       
  1176 		kfree(adapter->rx_ring);
       
  1177 		return -ENOMEM;
       
  1178 	}
       
  1179 	memset(adapter->polling_netdev, 0, size);
       
  1180 #endif
       
  1181 
       
  1182 	return E1000_SUCCESS;
       
  1183 }
       
  1184 
       
  1185 /**
       
  1186  * e1000_open - Called when a network interface is made active
       
  1187  * @netdev: network interface device structure
       
  1188  *
       
  1189  * Returns 0 on success, negative value on failure
       
  1190  *
       
  1191  * The open entry point is called when a network interface is made
       
  1192  * active by the system (IFF_UP).  At this point all resources needed
       
  1193  * for transmit and receive operations are allocated, the interrupt
       
  1194  * handler is registered with the OS, the watchdog timer is started,
       
  1195  * and the stack is notified that the interface is ready.
       
  1196  **/
       
  1197 
       
  1198 static int
       
  1199 e1000_open(struct net_device *netdev)
       
  1200 {
       
  1201 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1202 	int err;
       
  1203 
       
  1204 	/* disallow open during test */
       
  1205 	if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
       
  1206 		return -EBUSY;
       
  1207 
       
  1208 	/* allocate transmit descriptors */
       
  1209 
       
  1210 	if ((err = e1000_setup_all_tx_resources(adapter)))
       
  1211 		goto err_setup_tx;
       
  1212 
       
  1213 	/* allocate receive descriptors */
       
  1214 
       
  1215 	if ((err = e1000_setup_all_rx_resources(adapter)))
       
  1216 		goto err_setup_rx;
       
  1217 
       
  1218     if (!adapter->ecdev) {
       
  1219 		err = e1000_request_irq(adapter);
       
  1220 		if (err)
       
  1221 			goto err_up;
       
  1222 	}
       
  1223 
       
  1224 	e1000_power_up_phy(adapter);
       
  1225 
       
  1226 	if ((err = e1000_up(adapter)))
       
  1227 		goto err_up;
       
  1228 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  1229 	if ((adapter->hw.mng_cookie.status &
       
  1230 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
  1231 		e1000_update_mng_vlan(adapter);
       
  1232 	}
       
  1233 
       
  1234 	/* If AMT is enabled, let the firmware know that the network
       
  1235 	 * interface is now open */
       
  1236 	if (adapter->hw.mac_type == e1000_82573 &&
       
  1237 	    e1000_check_mng_mode(&adapter->hw))
       
  1238 		e1000_get_hw_control(adapter);
       
  1239 
       
  1240 	return E1000_SUCCESS;
       
  1241 
       
  1242 err_up:
       
  1243 	e1000_free_all_rx_resources(adapter);
       
  1244 err_setup_rx:
       
  1245 	e1000_free_all_tx_resources(adapter);
       
  1246 err_setup_tx:
       
  1247 	e1000_reset(adapter);
       
  1248 
       
  1249 	return err;
       
  1250 }
       
  1251 
       
  1252 /**
       
  1253  * e1000_close - Disables a network interface
       
  1254  * @netdev: network interface device structure
       
  1255  *
       
  1256  * Returns 0, this is not allowed to fail
       
  1257  *
       
  1258  * The close entry point is called when an interface is de-activated
       
  1259  * by the OS.  The hardware is still under the drivers control, but
       
  1260  * needs to be disabled.  A global MAC reset is issued to stop the
       
  1261  * hardware, and all transmit and receive resources are freed.
       
  1262  **/
       
  1263 
       
  1264 static int
       
  1265 e1000_close(struct net_device *netdev)
       
  1266 {
       
  1267 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1268 
       
  1269 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  1270 	e1000_down(adapter);
       
  1271 	e1000_power_down_phy(adapter);
       
  1272 	e1000_free_irq(adapter);
       
  1273 
       
  1274 	e1000_free_all_tx_resources(adapter);
       
  1275 	e1000_free_all_rx_resources(adapter);
       
  1276 
       
  1277 	if ((adapter->hw.mng_cookie.status &
       
  1278 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
  1279 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  1280 	}
       
  1281 
       
  1282 	/* If AMT is enabled, let the firmware know that the network
       
  1283 	 * interface is now closed */
       
  1284 	if (adapter->hw.mac_type == e1000_82573 &&
       
  1285 	    e1000_check_mng_mode(&adapter->hw))
       
  1286 		e1000_release_hw_control(adapter);
       
  1287 
       
  1288 	return 0;
       
  1289 }
       
  1290 
       
  1291 /**
       
  1292  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
       
  1293  * @adapter: address of board private structure
       
  1294  * @start: address of beginning of memory
       
  1295  * @len: length of memory
       
  1296  **/
       
  1297 static boolean_t
       
  1298 e1000_check_64k_bound(struct e1000_adapter *adapter,
       
  1299 		      void *start, unsigned long len)
       
  1300 {
       
  1301 	unsigned long begin = (unsigned long) start;
       
  1302 	unsigned long end = begin + len;
       
  1303 
       
  1304 	/* First rev 82545 and 82546 need to not allow any memory
       
  1305 	 * write location to cross 64k boundary due to errata 23 */
       
  1306 	if (adapter->hw.mac_type == e1000_82545 ||
       
  1307 	    adapter->hw.mac_type == e1000_82546) {
       
  1308 		return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
       
  1309 	}
       
  1310 
       
  1311 	return TRUE;
       
  1312 }
       
  1313 
       
  1314 /**
       
  1315  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
       
  1316  * @adapter: board private structure
       
  1317  * @txdr:    tx descriptor ring (for a specific queue) to setup
       
  1318  *
       
  1319  * Return 0 on success, negative on failure
       
  1320  **/
       
  1321 
       
  1322 static int
       
  1323 e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
  1324                          struct e1000_tx_ring *txdr)
       
  1325 {
       
  1326 	struct pci_dev *pdev = adapter->pdev;
       
  1327 	int size;
       
  1328 
       
  1329 	size = sizeof(struct e1000_buffer) * txdr->count;
       
  1330 	txdr->buffer_info = vmalloc(size);
       
  1331 	if (!txdr->buffer_info) {
       
  1332 		DPRINTK(PROBE, ERR,
       
  1333 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1334 		return -ENOMEM;
       
  1335 	}
       
  1336 	memset(txdr->buffer_info, 0, size);
       
  1337 
       
  1338 	/* round up to nearest 4K */
       
  1339 
       
  1340 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
  1341 	E1000_ROUNDUP(txdr->size, 4096);
       
  1342 
       
  1343 	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1344 	if (!txdr->desc) {
       
  1345 setup_tx_desc_die:
       
  1346 		vfree(txdr->buffer_info);
       
  1347 		DPRINTK(PROBE, ERR,
       
  1348 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1349 		return -ENOMEM;
       
  1350 	}
       
  1351 
       
  1352 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1353 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1354 		void *olddesc = txdr->desc;
       
  1355 		dma_addr_t olddma = txdr->dma;
       
  1356 		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
       
  1357 				     "at %p\n", txdr->size, txdr->desc);
       
  1358 		/* Try again, without freeing the previous */
       
  1359 		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1360 		/* Failed allocation, critical failure */
       
  1361 		if (!txdr->desc) {
       
  1362 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1363 			goto setup_tx_desc_die;
       
  1364 		}
       
  1365 
       
  1366 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1367 			/* give up */
       
  1368 			pci_free_consistent(pdev, txdr->size, txdr->desc,
       
  1369 					    txdr->dma);
       
  1370 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1371 			DPRINTK(PROBE, ERR,
       
  1372 				"Unable to allocate aligned memory "
       
  1373 				"for the transmit descriptor ring\n");
       
  1374 			vfree(txdr->buffer_info);
       
  1375 			return -ENOMEM;
       
  1376 		} else {
       
  1377 			/* Free old allocation, new allocation was successful */
       
  1378 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1379 		}
       
  1380 	}
       
  1381 	memset(txdr->desc, 0, txdr->size);
       
  1382 
       
  1383 	txdr->next_to_use = 0;
       
  1384 	txdr->next_to_clean = 0;
       
  1385 	spin_lock_init(&txdr->tx_lock);
       
  1386 
       
  1387 	return 0;
       
  1388 }
       
  1389 
       
  1390 /**
       
  1391  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
       
  1392  * 				  (Descriptors) for all queues
       
  1393  * @adapter: board private structure
       
  1394  *
       
  1395  * If this function returns with an error, then it's possible one or
       
  1396  * more of the rings is populated (while the rest are not).  It is the
       
  1397  * callers duty to clean those orphaned rings.
       
  1398  *
       
  1399  * Return 0 on success, negative on failure
       
  1400  **/
       
  1401 
       
  1402 int
       
  1403 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
       
  1404 {
       
  1405 	int i, err = 0;
       
  1406 
       
  1407 	for (i = 0; i < adapter->num_tx_queues; i++) {
       
  1408 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1409 		if (err) {
       
  1410 			DPRINTK(PROBE, ERR,
       
  1411 				"Allocation for Tx Queue %u failed\n", i);
       
  1412 			break;
       
  1413 		}
       
  1414 	}
       
  1415 
       
  1416 	return err;
       
  1417 }
       
  1418 
       
  1419 /**
       
  1420  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  1421  * @adapter: board private structure
       
  1422  *
       
  1423  * Configure the Tx unit of the MAC after a reset.
       
  1424  **/
       
  1425 
       
  1426 static void
       
  1427 e1000_configure_tx(struct e1000_adapter *adapter)
       
  1428 {
       
  1429 	uint64_t tdba;
       
  1430 	struct e1000_hw *hw = &adapter->hw;
       
  1431 	uint32_t tdlen, tctl, tipg, tarc;
       
  1432 	uint32_t ipgr1, ipgr2;
       
  1433 
       
  1434 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  1435 
       
  1436 	switch (adapter->num_tx_queues) {
       
  1437 	case 1:
       
  1438 	default:
       
  1439 		tdba = adapter->tx_ring[0].dma;
       
  1440 		tdlen = adapter->tx_ring[0].count *
       
  1441 			sizeof(struct e1000_tx_desc);
       
  1442 		E1000_WRITE_REG(hw, TDLEN, tdlen);
       
  1443 		E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
       
  1444 		E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
       
  1445 		E1000_WRITE_REG(hw, TDT, 0);
       
  1446 		E1000_WRITE_REG(hw, TDH, 0);
       
  1447 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
       
  1448 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
       
  1449 		break;
       
  1450 	}
       
  1451 
       
  1452 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  1453 
       
  1454 	if (hw->media_type == e1000_media_type_fiber ||
       
  1455 	    hw->media_type == e1000_media_type_internal_serdes)
       
  1456 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
       
  1457 	else
       
  1458 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
       
  1459 
       
  1460 	switch (hw->mac_type) {
       
  1461 	case e1000_82542_rev2_0:
       
  1462 	case e1000_82542_rev2_1:
       
  1463 		tipg = DEFAULT_82542_TIPG_IPGT;
       
  1464 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
       
  1465 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
       
  1466 		break;
       
  1467 	case e1000_80003es2lan:
       
  1468 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1469 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
       
  1470 		break;
       
  1471 	default:
       
  1472 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1473 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
       
  1474 		break;
       
  1475 	}
       
  1476 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
       
  1477 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
       
  1478 	E1000_WRITE_REG(hw, TIPG, tipg);
       
  1479 
       
  1480 	/* Set the Tx Interrupt Delay register */
       
  1481 
       
  1482 	E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
       
  1483 	if (hw->mac_type >= e1000_82540)
       
  1484 		E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
       
  1485 
       
  1486 	/* Program the Transmit Control Register */
       
  1487 
       
  1488 	tctl = E1000_READ_REG(hw, TCTL);
       
  1489 
       
  1490 	tctl &= ~E1000_TCTL_CT;
       
  1491 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  1492 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  1493 
       
  1494 #ifdef DISABLE_MULR
       
  1495 	/* disable Multiple Reads for debugging */
       
  1496 	tctl &= ~E1000_TCTL_MULR;
       
  1497 #endif
       
  1498 
       
  1499 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
       
  1500 		tarc = E1000_READ_REG(hw, TARC0);
       
  1501 		tarc |= ((1 << 25) | (1 << 21));
       
  1502 		E1000_WRITE_REG(hw, TARC0, tarc);
       
  1503 		tarc = E1000_READ_REG(hw, TARC1);
       
  1504 		tarc |= (1 << 25);
       
  1505 		if (tctl & E1000_TCTL_MULR)
       
  1506 			tarc &= ~(1 << 28);
       
  1507 		else
       
  1508 			tarc |= (1 << 28);
       
  1509 		E1000_WRITE_REG(hw, TARC1, tarc);
       
  1510 	} else if (hw->mac_type == e1000_80003es2lan) {
       
  1511 		tarc = E1000_READ_REG(hw, TARC0);
       
  1512 		tarc |= 1;
       
  1513 		if (hw->media_type == e1000_media_type_internal_serdes)
       
  1514 			tarc |= (1 << 20);
       
  1515 		E1000_WRITE_REG(hw, TARC0, tarc);
       
  1516 		tarc = E1000_READ_REG(hw, TARC1);
       
  1517 		tarc |= 1;
       
  1518 		E1000_WRITE_REG(hw, TARC1, tarc);
       
  1519 	}
       
  1520 
       
  1521 	e1000_config_collision_dist(hw);
       
  1522 
       
  1523 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  1524 	adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
       
  1525 		E1000_TXD_CMD_IFCS;
       
  1526 
       
  1527 	if (hw->mac_type < e1000_82543)
       
  1528 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
       
  1529 	else
       
  1530 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  1531 
       
  1532 	/* Cache if we're 82544 running in PCI-X because we'll
       
  1533 	 * need this to apply a workaround later in the send path. */
       
  1534 	if (hw->mac_type == e1000_82544 &&
       
  1535 	    hw->bus_type == e1000_bus_type_pcix)
       
  1536 		adapter->pcix_82544 = 1;
       
  1537 
       
  1538 	E1000_WRITE_REG(hw, TCTL, tctl);
       
  1539 
       
  1540 }
       
  1541 
       
  1542 /**
       
  1543  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
       
  1544  * @adapter: board private structure
       
  1545  * @rxdr:    rx descriptor ring (for a specific queue) to setup
       
  1546  *
       
  1547  * Returns 0 on success, negative on failure
       
  1548  **/
       
  1549 
       
  1550 static int
       
  1551 e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
  1552                          struct e1000_rx_ring *rxdr)
       
  1553 {
       
  1554 	struct pci_dev *pdev = adapter->pdev;
       
  1555 	int size, desc_len;
       
  1556 
       
  1557 	size = sizeof(struct e1000_buffer) * rxdr->count;
       
  1558 	rxdr->buffer_info = vmalloc(size);
       
  1559 	if (!rxdr->buffer_info) {
       
  1560 		DPRINTK(PROBE, ERR,
       
  1561 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1562 		return -ENOMEM;
       
  1563 	}
       
  1564 	memset(rxdr->buffer_info, 0, size);
       
  1565 
       
  1566 	size = sizeof(struct e1000_ps_page) * rxdr->count;
       
  1567 	rxdr->ps_page = kmalloc(size, GFP_KERNEL);
       
  1568 	if (!rxdr->ps_page) {
       
  1569 		vfree(rxdr->buffer_info);
       
  1570 		DPRINTK(PROBE, ERR,
       
  1571 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1572 		return -ENOMEM;
       
  1573 	}
       
  1574 	memset(rxdr->ps_page, 0, size);
       
  1575 
       
  1576 	size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
       
  1577 	rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
       
  1578 	if (!rxdr->ps_page_dma) {
       
  1579 		vfree(rxdr->buffer_info);
       
  1580 		kfree(rxdr->ps_page);
       
  1581 		DPRINTK(PROBE, ERR,
       
  1582 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1583 		return -ENOMEM;
       
  1584 	}
       
  1585 	memset(rxdr->ps_page_dma, 0, size);
       
  1586 
       
  1587 	if (adapter->hw.mac_type <= e1000_82547_rev_2)
       
  1588 		desc_len = sizeof(struct e1000_rx_desc);
       
  1589 	else
       
  1590 		desc_len = sizeof(union e1000_rx_desc_packet_split);
       
  1591 
       
  1592 	/* Round up to nearest 4K */
       
  1593 
       
  1594 	rxdr->size = rxdr->count * desc_len;
       
  1595 	E1000_ROUNDUP(rxdr->size, 4096);
       
  1596 
       
  1597 	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1598 
       
  1599 	if (!rxdr->desc) {
       
  1600 		DPRINTK(PROBE, ERR,
       
  1601 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1602 setup_rx_desc_die:
       
  1603 		vfree(rxdr->buffer_info);
       
  1604 		kfree(rxdr->ps_page);
       
  1605 		kfree(rxdr->ps_page_dma);
       
  1606 		return -ENOMEM;
       
  1607 	}
       
  1608 
       
  1609 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1610 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1611 		void *olddesc = rxdr->desc;
       
  1612 		dma_addr_t olddma = rxdr->dma;
       
  1613 		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
       
  1614 				     "at %p\n", rxdr->size, rxdr->desc);
       
  1615 		/* Try again, without freeing the previous */
       
  1616 		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1617 		/* Failed allocation, critical failure */
       
  1618 		if (!rxdr->desc) {
       
  1619 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1620 			DPRINTK(PROBE, ERR,
       
  1621 				"Unable to allocate memory "
       
  1622 				"for the receive descriptor ring\n");
       
  1623 			goto setup_rx_desc_die;
       
  1624 		}
       
  1625 
       
  1626 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1627 			/* give up */
       
  1628 			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
       
  1629 					    rxdr->dma);
       
  1630 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1631 			DPRINTK(PROBE, ERR,
       
  1632 				"Unable to allocate aligned memory "
       
  1633 				"for the receive descriptor ring\n");
       
  1634 			goto setup_rx_desc_die;
       
  1635 		} else {
       
  1636 			/* Free old allocation, new allocation was successful */
       
  1637 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1638 		}
       
  1639 	}
       
  1640 	memset(rxdr->desc, 0, rxdr->size);
       
  1641 
       
  1642 	rxdr->next_to_clean = 0;
       
  1643 	rxdr->next_to_use = 0;
       
  1644 
       
  1645 	return 0;
       
  1646 }
       
  1647 
       
  1648 /**
       
  1649  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
       
  1650  * 				  (Descriptors) for all queues
       
  1651  * @adapter: board private structure
       
  1652  *
       
  1653  * If this function returns with an error, then it's possible one or
       
  1654  * more of the rings is populated (while the rest are not).  It is the
       
  1655  * callers duty to clean those orphaned rings.
       
  1656  *
       
  1657  * Return 0 on success, negative on failure
       
  1658  **/
       
  1659 
       
  1660 int
       
  1661 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
       
  1662 {
       
  1663 	int i, err = 0;
       
  1664 
       
  1665 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1666 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
       
  1667 		if (err) {
       
  1668 			DPRINTK(PROBE, ERR,
       
  1669 				"Allocation for Rx Queue %u failed\n", i);
       
  1670 			break;
       
  1671 		}
       
  1672 	}
       
  1673 
       
  1674 	return err;
       
  1675 }
       
  1676 
       
  1677 /**
       
  1678  * e1000_setup_rctl - configure the receive control registers
       
  1679  * @adapter: Board private structure
       
  1680  **/
       
  1681 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
       
  1682 			(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
       
  1683 static void
       
  1684 e1000_setup_rctl(struct e1000_adapter *adapter)
       
  1685 {
       
  1686 	uint32_t rctl, rfctl;
       
  1687 	uint32_t psrctl = 0;
       
  1688 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
       
  1689 	uint32_t pages = 0;
       
  1690 #endif
       
  1691 
       
  1692 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1693 
       
  1694 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  1695 
       
  1696 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  1697 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1698 		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1699 
       
  1700 	if (adapter->hw.tbi_compatibility_on == 1)
       
  1701 		rctl |= E1000_RCTL_SBP;
       
  1702 	else
       
  1703 		rctl &= ~E1000_RCTL_SBP;
       
  1704 
       
  1705 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  1706 		rctl &= ~E1000_RCTL_LPE;
       
  1707 	else
       
  1708 		rctl |= E1000_RCTL_LPE;
       
  1709 
       
  1710 	/* Setup buffer sizes */
       
  1711 	rctl &= ~E1000_RCTL_SZ_4096;
       
  1712 	rctl |= E1000_RCTL_BSEX;
       
  1713 	switch (adapter->rx_buffer_len) {
       
  1714 		case E1000_RXBUFFER_256:
       
  1715 			rctl |= E1000_RCTL_SZ_256;
       
  1716 			rctl &= ~E1000_RCTL_BSEX;
       
  1717 			break;
       
  1718 		case E1000_RXBUFFER_512:
       
  1719 			rctl |= E1000_RCTL_SZ_512;
       
  1720 			rctl &= ~E1000_RCTL_BSEX;
       
  1721 			break;
       
  1722 		case E1000_RXBUFFER_1024:
       
  1723 			rctl |= E1000_RCTL_SZ_1024;
       
  1724 			rctl &= ~E1000_RCTL_BSEX;
       
  1725 			break;
       
  1726 		case E1000_RXBUFFER_2048:
       
  1727 		default:
       
  1728 			rctl |= E1000_RCTL_SZ_2048;
       
  1729 			rctl &= ~E1000_RCTL_BSEX;
       
  1730 			break;
       
  1731 		case E1000_RXBUFFER_4096:
       
  1732 			rctl |= E1000_RCTL_SZ_4096;
       
  1733 			break;
       
  1734 		case E1000_RXBUFFER_8192:
       
  1735 			rctl |= E1000_RCTL_SZ_8192;
       
  1736 			break;
       
  1737 		case E1000_RXBUFFER_16384:
       
  1738 			rctl |= E1000_RCTL_SZ_16384;
       
  1739 			break;
       
  1740 	}
       
  1741 
       
  1742 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
       
  1743 	/* 82571 and greater support packet-split where the protocol
       
  1744 	 * header is placed in skb->data and the packet data is
       
  1745 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
       
  1746 	 * In the case of a non-split, skb->data is linearly filled,
       
  1747 	 * followed by the page buffers.  Therefore, skb->data is
       
  1748 	 * sized to hold the largest protocol header.
       
  1749 	 */
       
  1750 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
       
  1751 	if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
       
  1752 	    PAGE_SIZE <= 16384)
       
  1753 		adapter->rx_ps_pages = pages;
       
  1754 	else
       
  1755 		adapter->rx_ps_pages = 0;
       
  1756 #endif
       
  1757 	if (adapter->rx_ps_pages) {
       
  1758 		/* Configure extra packet-split registers */
       
  1759 		rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
       
  1760 		rfctl |= E1000_RFCTL_EXTEN;
       
  1761 		/* disable IPv6 packet split support */
       
  1762 		rfctl |= E1000_RFCTL_IPV6_DIS;
       
  1763 		E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
       
  1764 
       
  1765 		rctl |= E1000_RCTL_DTYP_PS;
       
  1766 
       
  1767 		psrctl |= adapter->rx_ps_bsize0 >>
       
  1768 			E1000_PSRCTL_BSIZE0_SHIFT;
       
  1769 
       
  1770 		switch (adapter->rx_ps_pages) {
       
  1771 		case 3:
       
  1772 			psrctl |= PAGE_SIZE <<
       
  1773 				E1000_PSRCTL_BSIZE3_SHIFT;
       
  1774 		case 2:
       
  1775 			psrctl |= PAGE_SIZE <<
       
  1776 				E1000_PSRCTL_BSIZE2_SHIFT;
       
  1777 		case 1:
       
  1778 			psrctl |= PAGE_SIZE >>
       
  1779 				E1000_PSRCTL_BSIZE1_SHIFT;
       
  1780 			break;
       
  1781 		}
       
  1782 
       
  1783 		E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
       
  1784 	}
       
  1785 
       
  1786 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1787 }
       
  1788 
       
  1789 /**
       
  1790  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
       
  1791  * @adapter: board private structure
       
  1792  *
       
  1793  * Configure the Rx unit of the MAC after a reset.
       
  1794  **/
       
  1795 
       
  1796 static void
       
  1797 e1000_configure_rx(struct e1000_adapter *adapter)
       
  1798 {
       
  1799 	uint64_t rdba;
       
  1800 	struct e1000_hw *hw = &adapter->hw;
       
  1801 	uint32_t rdlen, rctl, rxcsum, ctrl_ext;
       
  1802 
       
  1803 	if (adapter->rx_ps_pages) {
       
  1804 		/* this is a 32 byte descriptor */
       
  1805 		rdlen = adapter->rx_ring[0].count *
       
  1806 			sizeof(union e1000_rx_desc_packet_split);
       
  1807 		adapter->clean_rx = e1000_clean_rx_irq_ps;
       
  1808 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
       
  1809 	} else {
       
  1810 		rdlen = adapter->rx_ring[0].count *
       
  1811 			sizeof(struct e1000_rx_desc);
       
  1812 		adapter->clean_rx = e1000_clean_rx_irq;
       
  1813 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  1814 	}
       
  1815 
       
  1816 	/* disable receives while setting up the descriptors */
       
  1817 	rctl = E1000_READ_REG(hw, RCTL);
       
  1818 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  1819 
       
  1820 	/* set the Receive Delay Timer Register */
       
  1821 	E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
       
  1822 
       
  1823 	if (hw->mac_type >= e1000_82540) {
       
  1824 		E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
       
  1825 		if (adapter->itr > 1)
       
  1826 			E1000_WRITE_REG(hw, ITR,
       
  1827 				1000000000 / (adapter->itr * 256));
       
  1828 	}
       
  1829 
       
  1830 	if (hw->mac_type >= e1000_82571) {
       
  1831 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
  1832 		/* Reset delay timers after every interrupt */
       
  1833 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
       
  1834 #ifdef CONFIG_E1000_NAPI
       
  1835 		/* Auto-Mask interrupts upon ICR read. */
       
  1836 		ctrl_ext |= E1000_CTRL_EXT_IAME;
       
  1837 #endif
       
  1838 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
  1839 		E1000_WRITE_REG(hw, IAM, ~0);
       
  1840 		E1000_WRITE_FLUSH(hw);
       
  1841 	}
       
  1842 
       
  1843 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
       
  1844 	 * the Base and Length of the Rx Descriptor Ring */
       
  1845 	switch (adapter->num_rx_queues) {
       
  1846 	case 1:
       
  1847 	default:
       
  1848 		rdba = adapter->rx_ring[0].dma;
       
  1849 		E1000_WRITE_REG(hw, RDLEN, rdlen);
       
  1850 		E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
       
  1851 		E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
       
  1852 		E1000_WRITE_REG(hw, RDT, 0);
       
  1853 		E1000_WRITE_REG(hw, RDH, 0);
       
  1854 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
       
  1855 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
       
  1856 		break;
       
  1857 	}
       
  1858 
       
  1859 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
       
  1860 	if (hw->mac_type >= e1000_82543) {
       
  1861 		rxcsum = E1000_READ_REG(hw, RXCSUM);
       
  1862 		if (adapter->rx_csum == TRUE) {
       
  1863 			rxcsum |= E1000_RXCSUM_TUOFL;
       
  1864 
       
  1865 			/* Enable 82571 IPv4 payload checksum for UDP fragments
       
  1866 			 * Must be used in conjunction with packet-split. */
       
  1867 			if ((hw->mac_type >= e1000_82571) &&
       
  1868 			    (adapter->rx_ps_pages)) {
       
  1869 				rxcsum |= E1000_RXCSUM_IPPCSE;
       
  1870 			}
       
  1871 		} else {
       
  1872 			rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  1873 			/* don't need to clear IPPCSE as it defaults to 0 */
       
  1874 		}
       
  1875 		E1000_WRITE_REG(hw, RXCSUM, rxcsum);
       
  1876 	}
       
  1877 
       
  1878 	/* Enable Receives */
       
  1879 	E1000_WRITE_REG(hw, RCTL, rctl);
       
  1880 }
       
  1881 
       
  1882 /**
       
  1883  * e1000_free_tx_resources - Free Tx Resources per Queue
       
  1884  * @adapter: board private structure
       
  1885  * @tx_ring: Tx descriptor ring for a specific queue
       
  1886  *
       
  1887  * Free all transmit software resources
       
  1888  **/
       
  1889 
       
  1890 static void
       
  1891 e1000_free_tx_resources(struct e1000_adapter *adapter,
       
  1892                         struct e1000_tx_ring *tx_ring)
       
  1893 {
       
  1894 	struct pci_dev *pdev = adapter->pdev;
       
  1895 
       
  1896 	e1000_clean_tx_ring(adapter, tx_ring);
       
  1897 
       
  1898 	vfree(tx_ring->buffer_info);
       
  1899 	tx_ring->buffer_info = NULL;
       
  1900 
       
  1901 	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
       
  1902 
       
  1903 	tx_ring->desc = NULL;
       
  1904 }
       
  1905 
       
  1906 /**
       
  1907  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
       
  1908  * @adapter: board private structure
       
  1909  *
       
  1910  * Free all transmit software resources
       
  1911  **/
       
  1912 
       
  1913 void
       
  1914 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
       
  1915 {
       
  1916 	int i;
       
  1917 
       
  1918 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  1919 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1920 }
       
  1921 
       
  1922 static void
       
  1923 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
       
  1924 			struct e1000_buffer *buffer_info)
       
  1925 {
       
  1926 	if (buffer_info->dma) {
       
  1927 		pci_unmap_page(adapter->pdev,
       
  1928 				buffer_info->dma,
       
  1929 				buffer_info->length,
       
  1930 				PCI_DMA_TODEVICE);
       
  1931 	}
       
  1932 	if (buffer_info->skb)
       
  1933 		dev_kfree_skb_any(buffer_info->skb);
       
  1934 	memset(buffer_info, 0, sizeof(struct e1000_buffer));
       
  1935 }
       
  1936 
       
  1937 /**
       
  1938  * e1000_clean_tx_ring - Free Tx Buffers
       
  1939  * @adapter: board private structure
       
  1940  * @tx_ring: ring to be cleaned
       
  1941  **/
       
  1942 
       
  1943 static void
       
  1944 e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
  1945                     struct e1000_tx_ring *tx_ring)
       
  1946 {
       
  1947 	struct e1000_buffer *buffer_info;
       
  1948 	unsigned long size;
       
  1949 	unsigned int i;
       
  1950 
       
  1951 	/* Free all the Tx ring sk_buffs */
       
  1952 
       
  1953 	for (i = 0; i < tx_ring->count; i++) {
       
  1954 		buffer_info = &tx_ring->buffer_info[i];
       
  1955 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  1956 	}
       
  1957 
       
  1958 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  1959 	memset(tx_ring->buffer_info, 0, size);
       
  1960 
       
  1961 	/* Zero out the descriptor ring */
       
  1962 
       
  1963 	memset(tx_ring->desc, 0, tx_ring->size);
       
  1964 
       
  1965 	tx_ring->next_to_use = 0;
       
  1966 	tx_ring->next_to_clean = 0;
       
  1967 	tx_ring->last_tx_tso = 0;
       
  1968 
       
  1969 	writel(0, adapter->hw.hw_addr + tx_ring->tdh);
       
  1970 	writel(0, adapter->hw.hw_addr + tx_ring->tdt);
       
  1971 }
       
  1972 
       
  1973 /**
       
  1974  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
       
  1975  * @adapter: board private structure
       
  1976  **/
       
  1977 
       
  1978 static void
       
  1979 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
       
  1980 {
       
  1981 	int i;
       
  1982 
       
  1983 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  1984 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
       
  1985 }
       
  1986 
       
  1987 /**
       
  1988  * e1000_free_rx_resources - Free Rx Resources
       
  1989  * @adapter: board private structure
       
  1990  * @rx_ring: ring to clean the resources from
       
  1991  *
       
  1992  * Free all receive software resources
       
  1993  **/
       
  1994 
       
  1995 static void
       
  1996 e1000_free_rx_resources(struct e1000_adapter *adapter,
       
  1997                         struct e1000_rx_ring *rx_ring)
       
  1998 {
       
  1999 	struct pci_dev *pdev = adapter->pdev;
       
  2000 
       
  2001 	e1000_clean_rx_ring(adapter, rx_ring);
       
  2002 
       
  2003 	vfree(rx_ring->buffer_info);
       
  2004 	rx_ring->buffer_info = NULL;
       
  2005 	kfree(rx_ring->ps_page);
       
  2006 	rx_ring->ps_page = NULL;
       
  2007 	kfree(rx_ring->ps_page_dma);
       
  2008 	rx_ring->ps_page_dma = NULL;
       
  2009 
       
  2010 	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
       
  2011 
       
  2012 	rx_ring->desc = NULL;
       
  2013 }
       
  2014 
       
  2015 /**
       
  2016  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
       
  2017  * @adapter: board private structure
       
  2018  *
       
  2019  * Free all receive software resources
       
  2020  **/
       
  2021 
       
  2022 void
       
  2023 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
       
  2024 {
       
  2025 	int i;
       
  2026 
       
  2027 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2028 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
       
  2029 }
       
  2030 
       
  2031 /**
       
  2032  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  2033  * @adapter: board private structure
       
  2034  * @rx_ring: ring to free buffers from
       
  2035  **/
       
  2036 
       
  2037 static void
       
  2038 e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
  2039                     struct e1000_rx_ring *rx_ring)
       
  2040 {
       
  2041 	struct e1000_buffer *buffer_info;
       
  2042 	struct e1000_ps_page *ps_page;
       
  2043 	struct e1000_ps_page_dma *ps_page_dma;
       
  2044 	struct pci_dev *pdev = adapter->pdev;
       
  2045 	unsigned long size;
       
  2046 	unsigned int i, j;
       
  2047 
       
  2048 	/* Free all the Rx ring sk_buffs */
       
  2049 	for (i = 0; i < rx_ring->count; i++) {
       
  2050 		buffer_info = &rx_ring->buffer_info[i];
       
  2051 		if (buffer_info->skb) {
       
  2052 			pci_unmap_single(pdev,
       
  2053 					 buffer_info->dma,
       
  2054 					 buffer_info->length,
       
  2055 					 PCI_DMA_FROMDEVICE);
       
  2056 
       
  2057 			dev_kfree_skb(buffer_info->skb);
       
  2058 			buffer_info->skb = NULL;
       
  2059 		}
       
  2060 		ps_page = &rx_ring->ps_page[i];
       
  2061 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  2062 		for (j = 0; j < adapter->rx_ps_pages; j++) {
       
  2063 			if (!ps_page->ps_page[j]) break;
       
  2064 			pci_unmap_page(pdev,
       
  2065 				       ps_page_dma->ps_page_dma[j],
       
  2066 				       PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  2067 			ps_page_dma->ps_page_dma[j] = 0;
       
  2068 			put_page(ps_page->ps_page[j]);
       
  2069 			ps_page->ps_page[j] = NULL;
       
  2070 		}
       
  2071 	}
       
  2072 
       
  2073 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  2074 	memset(rx_ring->buffer_info, 0, size);
       
  2075 	size = sizeof(struct e1000_ps_page) * rx_ring->count;
       
  2076 	memset(rx_ring->ps_page, 0, size);
       
  2077 	size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
       
  2078 	memset(rx_ring->ps_page_dma, 0, size);
       
  2079 
       
  2080 	/* Zero out the descriptor ring */
       
  2081 
       
  2082 	memset(rx_ring->desc, 0, rx_ring->size);
       
  2083 
       
  2084 	rx_ring->next_to_clean = 0;
       
  2085 	rx_ring->next_to_use = 0;
       
  2086 
       
  2087 	writel(0, adapter->hw.hw_addr + rx_ring->rdh);
       
  2088 	writel(0, adapter->hw.hw_addr + rx_ring->rdt);
       
  2089 }
       
  2090 
       
  2091 /**
       
  2092  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
       
  2093  * @adapter: board private structure
       
  2094  **/
       
  2095 
       
  2096 static void
       
  2097 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
       
  2098 {
       
  2099 	int i;
       
  2100 
       
  2101 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2102 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
       
  2103 }
       
  2104 
       
  2105 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
       
  2106  * and memory write and invalidate disabled for certain operations
       
  2107  */
       
  2108 static void
       
  2109 e1000_enter_82542_rst(struct e1000_adapter *adapter)
       
  2110 {
       
  2111 	struct net_device *netdev = adapter->netdev;
       
  2112 	uint32_t rctl;
       
  2113 
       
  2114 	e1000_pci_clear_mwi(&adapter->hw);
       
  2115 
       
  2116 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  2117 	rctl |= E1000_RCTL_RST;
       
  2118 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  2119 	E1000_WRITE_FLUSH(&adapter->hw);
       
  2120 	mdelay(5);
       
  2121 
       
  2122 	if (!adapter->ecdev || netif_running(netdev))
       
  2123 		e1000_clean_all_rx_rings(adapter);
       
  2124 }
       
  2125 
       
  2126 static void
       
  2127 e1000_leave_82542_rst(struct e1000_adapter *adapter)
       
  2128 {
       
  2129 	struct net_device *netdev = adapter->netdev;
       
  2130 	uint32_t rctl;
       
  2131 
       
  2132 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  2133 	rctl &= ~E1000_RCTL_RST;
       
  2134 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  2135 	E1000_WRITE_FLUSH(&adapter->hw);
       
  2136 	mdelay(5);
       
  2137 
       
  2138 	if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
  2139 		e1000_pci_set_mwi(&adapter->hw);
       
  2140 
       
  2141 	if (!adapter->ecdev || netif_running(netdev)) {
       
  2142 		/* No need to loop, because 82542 supports only 1 queue */
       
  2143 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
       
  2144 		e1000_configure_rx(adapter);
       
  2145 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
       
  2146 	}
       
  2147 }
       
  2148 
       
  2149 /**
       
  2150  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  2151  * @netdev: network interface device structure
       
  2152  * @p: pointer to an address structure
       
  2153  *
       
  2154  * Returns 0 on success, negative on failure
       
  2155  **/
       
  2156 
       
  2157 static int
       
  2158 e1000_set_mac(struct net_device *netdev, void *p)
       
  2159 {
       
  2160 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2161 	struct sockaddr *addr = p;
       
  2162 
       
  2163 	if (!is_valid_ether_addr(addr->sa_data))
       
  2164 		return -EADDRNOTAVAIL;
       
  2165 
       
  2166 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2167 
       
  2168 	if (adapter->hw.mac_type == e1000_82542_rev2_0)
       
  2169 		e1000_enter_82542_rst(adapter);
       
  2170 
       
  2171 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  2172 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
       
  2173 
       
  2174 	e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
       
  2175 
       
  2176 	/* With 82571 controllers, LAA may be overwritten (with the default)
       
  2177 	 * due to controller reset from the other port. */
       
  2178 	if (adapter->hw.mac_type == e1000_82571) {
       
  2179 		/* activate the work around */
       
  2180 		adapter->hw.laa_is_present = 1;
       
  2181 
       
  2182 		/* Hold a copy of the LAA in RAR[14] This is done so that
       
  2183 		 * between the time RAR[0] gets clobbered  and the time it
       
  2184 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
       
  2185 		 * of the RARs and no incoming packets directed to this port
       
  2186 		 * are dropped. Eventaully the LAA will be in RAR[0] and
       
  2187 		 * RAR[14] */
       
  2188 		e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
       
  2189 					E1000_RAR_ENTRIES - 1);
       
  2190 	}
       
  2191 
       
  2192 	if (adapter->hw.mac_type == e1000_82542_rev2_0)
       
  2193 		e1000_leave_82542_rst(adapter);
       
  2194 
       
  2195 	return 0;
       
  2196 }
       
  2197 
       
  2198 /**
       
  2199  * e1000_set_multi - Multicast and Promiscuous mode set
       
  2200  * @netdev: network interface device structure
       
  2201  *
       
  2202  * The set_multi entry point is called whenever the multicast address
       
  2203  * list or the network interface flags are updated.  This routine is
       
  2204  * responsible for configuring the hardware for proper multicast,
       
  2205  * promiscuous mode, and all-multi behavior.
       
  2206  **/
       
  2207 
       
  2208 static void
       
  2209 e1000_set_multi(struct net_device *netdev)
       
  2210 {
       
  2211 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2212 	struct e1000_hw *hw = &adapter->hw;
       
  2213 	struct dev_mc_list *mc_ptr;
       
  2214 	uint32_t rctl;
       
  2215 	uint32_t hash_value;
       
  2216 	int i, rar_entries = E1000_RAR_ENTRIES;
       
  2217 	int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
       
  2218 				E1000_NUM_MTA_REGISTERS_ICH8LAN :
       
  2219 				E1000_NUM_MTA_REGISTERS;
       
  2220 
       
  2221 	if (adapter->hw.mac_type == e1000_ich8lan)
       
  2222 		rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
       
  2223 
       
  2224 	/* reserve RAR[14] for LAA over-write work-around */
       
  2225 	if (adapter->hw.mac_type == e1000_82571)
       
  2226 		rar_entries--;
       
  2227 
       
  2228 	/* Check for Promiscuous and All Multicast modes */
       
  2229 
       
  2230 	rctl = E1000_READ_REG(hw, RCTL);
       
  2231 
       
  2232 	if (netdev->flags & IFF_PROMISC) {
       
  2233 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2234 	} else if (netdev->flags & IFF_ALLMULTI) {
       
  2235 		rctl |= E1000_RCTL_MPE;
       
  2236 		rctl &= ~E1000_RCTL_UPE;
       
  2237 	} else {
       
  2238 		rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2239 	}
       
  2240 
       
  2241 	E1000_WRITE_REG(hw, RCTL, rctl);
       
  2242 
       
  2243 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2244 
       
  2245 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2246 		e1000_enter_82542_rst(adapter);
       
  2247 
       
  2248 	/* load the first 14 multicast address into the exact filters 1-14
       
  2249 	 * RAR 0 is used for the station MAC adddress
       
  2250 	 * if there are not 14 addresses, go ahead and clear the filters
       
  2251 	 * -- with 82571 controllers only 0-13 entries are filled here
       
  2252 	 */
       
  2253 	mc_ptr = netdev->mc_list;
       
  2254 
       
  2255 	for (i = 1; i < rar_entries; i++) {
       
  2256 		if (mc_ptr) {
       
  2257 			e1000_rar_set(hw, mc_ptr->dmi_addr, i);
       
  2258 			mc_ptr = mc_ptr->next;
       
  2259 		} else {
       
  2260 			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
       
  2261 			E1000_WRITE_FLUSH(hw);
       
  2262 			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
       
  2263 			E1000_WRITE_FLUSH(hw);
       
  2264 		}
       
  2265 	}
       
  2266 
       
  2267 	/* clear the old settings from the multicast hash table */
       
  2268 
       
  2269 	for (i = 0; i < mta_reg_count; i++) {
       
  2270 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
       
  2271 		E1000_WRITE_FLUSH(hw);
       
  2272 	}
       
  2273 
       
  2274 	/* load any remaining addresses into the hash table */
       
  2275 
       
  2276 	for (; mc_ptr; mc_ptr = mc_ptr->next) {
       
  2277 		hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
       
  2278 		e1000_mta_set(hw, hash_value);
       
  2279 	}
       
  2280 
       
  2281 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2282 		e1000_leave_82542_rst(adapter);
       
  2283 }
       
  2284 
       
  2285 /* Need to wait a few seconds after link up to get diagnostic information from
       
  2286  * the phy */
       
  2287 
       
  2288 static void
       
  2289 e1000_update_phy_info(unsigned long data)
       
  2290 {
       
  2291 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2292 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
       
  2293 }
       
  2294 
       
  2295 /**
       
  2296  * e1000_82547_tx_fifo_stall - Timer Call-back
       
  2297  * @data: pointer to adapter cast into an unsigned long
       
  2298  **/
       
  2299 
       
  2300 static void
       
  2301 e1000_82547_tx_fifo_stall(unsigned long data)
       
  2302 {
       
  2303 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2304 	struct net_device *netdev = adapter->netdev;
       
  2305 	uint32_t tctl;
       
  2306 
       
  2307 	if (atomic_read(&adapter->tx_fifo_stall)) {
       
  2308 		if ((E1000_READ_REG(&adapter->hw, TDT) ==
       
  2309 		    E1000_READ_REG(&adapter->hw, TDH)) &&
       
  2310 		   (E1000_READ_REG(&adapter->hw, TDFT) ==
       
  2311 		    E1000_READ_REG(&adapter->hw, TDFH)) &&
       
  2312 		   (E1000_READ_REG(&adapter->hw, TDFTS) ==
       
  2313 		    E1000_READ_REG(&adapter->hw, TDFHS))) {
       
  2314 			tctl = E1000_READ_REG(&adapter->hw, TCTL);
       
  2315 			E1000_WRITE_REG(&adapter->hw, TCTL,
       
  2316 					tctl & ~E1000_TCTL_EN);
       
  2317 			E1000_WRITE_REG(&adapter->hw, TDFT,
       
  2318 					adapter->tx_head_addr);
       
  2319 			E1000_WRITE_REG(&adapter->hw, TDFH,
       
  2320 					adapter->tx_head_addr);
       
  2321 			E1000_WRITE_REG(&adapter->hw, TDFTS,
       
  2322 					adapter->tx_head_addr);
       
  2323 			E1000_WRITE_REG(&adapter->hw, TDFHS,
       
  2324 					adapter->tx_head_addr);
       
  2325 			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
       
  2326 			E1000_WRITE_FLUSH(&adapter->hw);
       
  2327 
       
  2328 			adapter->tx_fifo_head = 0;
       
  2329 			atomic_set(&adapter->tx_fifo_stall, 0);
       
  2330 			if (!adapter->ecdev) netif_wake_queue(netdev);
       
  2331 		} else {
       
  2332 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  2333 		}
       
  2334 	}
       
  2335 }
       
  2336 
       
  2337 /**
       
  2338  * e1000_watchdog - Timer Call-back
       
  2339  * @data: pointer to adapter cast into an unsigned long
       
  2340  **/
       
  2341 static void
       
  2342 e1000_watchdog(unsigned long data)
       
  2343 {
       
  2344 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2345 	struct net_device *netdev = adapter->netdev;
       
  2346 	struct e1000_tx_ring *txdr = adapter->tx_ring;
       
  2347 	uint32_t link, tctl;
       
  2348 	int32_t ret_val;
       
  2349 
       
  2350 	ret_val = e1000_check_for_link(&adapter->hw);
       
  2351 	if ((ret_val == E1000_ERR_PHY) &&
       
  2352 	    (adapter->hw.phy_type == e1000_phy_igp_3) &&
       
  2353 	    (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
       
  2354 		/* See e1000_kumeran_lock_loss_workaround() */
       
  2355 		DPRINTK(LINK, INFO,
       
  2356 			"Gigabit has been disabled, downgrading speed\n");
       
  2357 	}
       
  2358 	if (adapter->hw.mac_type == e1000_82573) {
       
  2359 		e1000_enable_tx_pkt_filtering(&adapter->hw);
       
  2360 		if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
       
  2361 			e1000_update_mng_vlan(adapter);
       
  2362 	}
       
  2363 
       
  2364 	if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
       
  2365 	   !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
       
  2366 		link = !adapter->hw.serdes_link_down;
       
  2367 	else
       
  2368 		link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
       
  2369 
       
  2370 	if (link) {
       
  2371 		if (!netif_carrier_ok(netdev)) {
       
  2372 			boolean_t txb2b = 1;
       
  2373 			e1000_get_speed_and_duplex(&adapter->hw,
       
  2374 			                           &adapter->link_speed,
       
  2375 			                           &adapter->link_duplex);
       
  2376 
       
  2377 			DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
       
  2378 			       adapter->link_speed,
       
  2379 			       adapter->link_duplex == FULL_DUPLEX ?
       
  2380 			       "Full Duplex" : "Half Duplex");
       
  2381 
       
  2382 			/* tweak tx_queue_len according to speed/duplex
       
  2383 			 * and adjust the timeout factor */
       
  2384 			netdev->tx_queue_len = adapter->tx_queue_len;
       
  2385 			adapter->tx_timeout_factor = 1;
       
  2386 			switch (adapter->link_speed) {
       
  2387 			case SPEED_10:
       
  2388 				txb2b = 0;
       
  2389 				netdev->tx_queue_len = 10;
       
  2390 				adapter->tx_timeout_factor = 8;
       
  2391 				break;
       
  2392 			case SPEED_100:
       
  2393 				txb2b = 0;
       
  2394 				netdev->tx_queue_len = 100;
       
  2395 				/* maybe add some timeout factor ? */
       
  2396 				break;
       
  2397 			}
       
  2398 
       
  2399 			if ((adapter->hw.mac_type == e1000_82571 ||
       
  2400 			     adapter->hw.mac_type == e1000_82572) &&
       
  2401 			    txb2b == 0) {
       
  2402 #define SPEED_MODE_BIT (1 << 21)
       
  2403 				uint32_t tarc0;
       
  2404 				tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
       
  2405 				tarc0 &= ~SPEED_MODE_BIT;
       
  2406 				E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
       
  2407 			}
       
  2408 				
       
  2409 #ifdef NETIF_F_TSO
       
  2410 			/* disable TSO for pcie and 10/100 speeds, to avoid
       
  2411 			 * some hardware issues */
       
  2412 			if (!adapter->tso_force &&
       
  2413 			    adapter->hw.bus_type == e1000_bus_type_pci_express){
       
  2414 				switch (adapter->link_speed) {
       
  2415 				case SPEED_10:
       
  2416 				case SPEED_100:
       
  2417 					DPRINTK(PROBE,INFO,
       
  2418 				        "10/100 speed: disabling TSO\n");
       
  2419 					netdev->features &= ~NETIF_F_TSO;
       
  2420 					break;
       
  2421 				case SPEED_1000:
       
  2422 					netdev->features |= NETIF_F_TSO;
       
  2423 					break;
       
  2424 				default:
       
  2425 					/* oops */
       
  2426 					break;
       
  2427 				}
       
  2428 			}
       
  2429 #endif
       
  2430 
       
  2431 			/* enable transmits in the hardware, need to do this
       
  2432 			 * after setting TARC0 */
       
  2433 			tctl = E1000_READ_REG(&adapter->hw, TCTL);
       
  2434 			tctl |= E1000_TCTL_EN;
       
  2435 			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
       
  2436 
       
  2437 			netif_carrier_on(netdev);
       
  2438 			netif_wake_queue(netdev);
       
  2439 			mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
       
  2440 			adapter->smartspeed = 0;
       
  2441 		}
       
  2442 	} else {
       
  2443 		if (netif_carrier_ok(netdev)) {
       
  2444 			adapter->link_speed = 0;
       
  2445 			adapter->link_duplex = 0;
       
  2446 			DPRINTK(LINK, INFO, "NIC Link is Down\n");
       
  2447 			netif_carrier_off(netdev);
       
  2448 			netif_stop_queue(netdev);
       
  2449 			mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
       
  2450 
       
  2451 			/* 80003ES2LAN workaround--
       
  2452 			 * For packet buffer work-around on link down event;
       
  2453 			 * disable receives in the ISR and
       
  2454 			 * reset device here in the watchdog
       
  2455 			 */
       
  2456 			if (adapter->hw.mac_type == e1000_80003es2lan) {
       
  2457 				/* reset device */
       
  2458 				schedule_work(&adapter->reset_task);
       
  2459 			}
       
  2460 		}
       
  2461 
       
  2462 		e1000_smartspeed(adapter);
       
  2463 	}
       
  2464 
       
  2465 	e1000_update_stats(adapter);
       
  2466 
       
  2467 	adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  2468 	adapter->tpt_old = adapter->stats.tpt;
       
  2469 	adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
       
  2470 	adapter->colc_old = adapter->stats.colc;
       
  2471 
       
  2472 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
       
  2473 	adapter->gorcl_old = adapter->stats.gorcl;
       
  2474 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
       
  2475 	adapter->gotcl_old = adapter->stats.gotcl;
       
  2476 
       
  2477 	e1000_update_adaptive(&adapter->hw);
       
  2478 
       
  2479 	if (!netif_carrier_ok(netdev)) {
       
  2480 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
       
  2481 			/* We've lost link, so the controller stops DMA,
       
  2482 			 * but we've got queued Tx work that's never going
       
  2483 			 * to get done, so reset controller to flush Tx.
       
  2484 			 * (Do the reset outside of interrupt context). */
       
  2485 			adapter->tx_timeout_count++;
       
  2486 			schedule_work(&adapter->reset_task);
       
  2487 		}
       
  2488 	}
       
  2489 
       
  2490 	/* Dynamic mode for Interrupt Throttle Rate (ITR) */
       
  2491 	if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
       
  2492 		/* Symmetric Tx/Rx gets a reduced ITR=2000; Total
       
  2493 		 * asymmetrical Tx or Rx gets ITR=8000; everyone
       
  2494 		 * else is between 2000-8000. */
       
  2495 		uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
       
  2496 		uint32_t dif = (adapter->gotcl > adapter->gorcl ?
       
  2497 			adapter->gotcl - adapter->gorcl :
       
  2498 			adapter->gorcl - adapter->gotcl) / 10000;
       
  2499 		uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
       
  2500 		E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
       
  2501 	}
       
  2502 
       
  2503 	/* Cause software interrupt to ensure rx ring is cleaned */
       
  2504 	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
       
  2505 
       
  2506 	/* Force detection of hung controller every watchdog period */
       
  2507 	adapter->detect_tx_hung = TRUE;
       
  2508 
       
  2509 	/* With 82571 controllers, LAA may be overwritten due to controller
       
  2510 	 * reset from the other port. Set the appropriate LAA in RAR[0] */
       
  2511 	if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
       
  2512 		e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
       
  2513 
       
  2514 	/* Reset the timer */
       
  2515 	mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
       
  2516 }
       
  2517 
       
  2518 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  2519 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  2520 #define E1000_TX_FLAGS_TSO		0x00000004
       
  2521 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  2522 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  2523 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  2524 
       
  2525 static int
       
  2526 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2527           struct sk_buff *skb)
       
  2528 {
       
  2529 #ifdef NETIF_F_TSO
       
  2530 	struct e1000_context_desc *context_desc;
       
  2531 	struct e1000_buffer *buffer_info;
       
  2532 	unsigned int i;
       
  2533 	uint32_t cmd_length = 0;
       
  2534 	uint16_t ipcse = 0, tucse, mss;
       
  2535 	uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
       
  2536 	int err;
       
  2537 
       
  2538 	if (skb_is_gso(skb)) {
       
  2539 		if (skb_header_cloned(skb)) {
       
  2540 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  2541 			if (err)
       
  2542 				return err;
       
  2543 		}
       
  2544 
       
  2545 		hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
       
  2546 		mss = skb_shinfo(skb)->gso_size;
       
  2547 		if (skb->protocol == htons(ETH_P_IP)) {
       
  2548 			skb->nh.iph->tot_len = 0;
       
  2549 			skb->nh.iph->check = 0;
       
  2550 			skb->h.th->check =
       
  2551 				~csum_tcpudp_magic(skb->nh.iph->saddr,
       
  2552 						   skb->nh.iph->daddr,
       
  2553 						   0,
       
  2554 						   IPPROTO_TCP,
       
  2555 						   0);
       
  2556 			cmd_length = E1000_TXD_CMD_IP;
       
  2557 			ipcse = skb->h.raw - skb->data - 1;
       
  2558 #ifdef NETIF_F_TSO_IPV6
       
  2559 		} else if (skb->protocol == ntohs(ETH_P_IPV6)) {
       
  2560 			skb->nh.ipv6h->payload_len = 0;
       
  2561 			skb->h.th->check =
       
  2562 				~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
       
  2563 						 &skb->nh.ipv6h->daddr,
       
  2564 						 0,
       
  2565 						 IPPROTO_TCP,
       
  2566 						 0);
       
  2567 			ipcse = 0;
       
  2568 #endif
       
  2569 		}
       
  2570 		ipcss = skb->nh.raw - skb->data;
       
  2571 		ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
       
  2572 		tucss = skb->h.raw - skb->data;
       
  2573 		tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
       
  2574 		tucse = 0;
       
  2575 
       
  2576 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  2577 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  2578 
       
  2579 		i = tx_ring->next_to_use;
       
  2580 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2581 		buffer_info = &tx_ring->buffer_info[i];
       
  2582 
       
  2583 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  2584 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  2585 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  2586 		context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  2587 		context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  2588 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  2589 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  2590 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  2591 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  2592 
       
  2593 		buffer_info->time_stamp = jiffies;
       
  2594 
       
  2595 		if (++i == tx_ring->count) i = 0;
       
  2596 		tx_ring->next_to_use = i;
       
  2597 
       
  2598 		return TRUE;
       
  2599 	}
       
  2600 #endif
       
  2601 
       
  2602 	return FALSE;
       
  2603 }
       
  2604 
       
  2605 static boolean_t
       
  2606 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2607               struct sk_buff *skb)
       
  2608 {
       
  2609 	struct e1000_context_desc *context_desc;
       
  2610 	struct e1000_buffer *buffer_info;
       
  2611 	unsigned int i;
       
  2612 	uint8_t css;
       
  2613 
       
  2614 	if (likely(skb->ip_summed == CHECKSUM_HW)) {
       
  2615 		css = skb->h.raw - skb->data;
       
  2616 
       
  2617 		i = tx_ring->next_to_use;
       
  2618 		buffer_info = &tx_ring->buffer_info[i];
       
  2619 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2620 
       
  2621 		context_desc->upper_setup.tcp_fields.tucss = css;
       
  2622 		context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
       
  2623 		context_desc->upper_setup.tcp_fields.tucse = 0;
       
  2624 		context_desc->tcp_seg_setup.data = 0;
       
  2625 		context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
       
  2626 
       
  2627 		buffer_info->time_stamp = jiffies;
       
  2628 
       
  2629 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  2630 		tx_ring->next_to_use = i;
       
  2631 
       
  2632 		return TRUE;
       
  2633 	}
       
  2634 
       
  2635 	return FALSE;
       
  2636 }
       
  2637 
       
  2638 #define E1000_MAX_TXD_PWR	12
       
  2639 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
       
  2640 
       
  2641 static int
       
  2642 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2643              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
       
  2644              unsigned int nr_frags, unsigned int mss)
       
  2645 {
       
  2646 	struct e1000_buffer *buffer_info;
       
  2647 	unsigned int len = skb->len;
       
  2648 	unsigned int offset = 0, size, count = 0, i;
       
  2649 	unsigned int f;
       
  2650 	len -= skb->data_len;
       
  2651 
       
  2652 	i = tx_ring->next_to_use;
       
  2653 
       
  2654 	while (len) {
       
  2655 		buffer_info = &tx_ring->buffer_info[i];
       
  2656 		size = min(len, max_per_txd);
       
  2657 #ifdef NETIF_F_TSO
       
  2658 		/* Workaround for Controller erratum --
       
  2659 		 * descriptor for non-tso packet in a linear SKB that follows a
       
  2660 		 * tso gets written back prematurely before the data is fully
       
  2661 		 * DMA'd to the controller */
       
  2662 		if (!skb->data_len && tx_ring->last_tx_tso &&
       
  2663 		    !skb_is_gso(skb)) {
       
  2664 			tx_ring->last_tx_tso = 0;
       
  2665 			size -= 4;
       
  2666 		}
       
  2667 
       
  2668 		/* Workaround for premature desc write-backs
       
  2669 		 * in TSO mode.  Append 4-byte sentinel desc */
       
  2670 		if (unlikely(mss && !nr_frags && size == len && size > 8))
       
  2671 			size -= 4;
       
  2672 #endif
       
  2673 		/* work-around for errata 10 and it applies
       
  2674 		 * to all controllers in PCI-X mode
       
  2675 		 * The fix is to make sure that the first descriptor of a
       
  2676 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
       
  2677 		 */
       
  2678 		if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
       
  2679 		                (size > 2015) && count == 0))
       
  2680 		        size = 2015;
       
  2681 
       
  2682 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
       
  2683 		 * terminating buffers within evenly-aligned dwords. */
       
  2684 		if (unlikely(adapter->pcix_82544 &&
       
  2685 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
       
  2686 		   size > 4))
       
  2687 			size -= 4;
       
  2688 
       
  2689 		buffer_info->length = size;
       
  2690 		buffer_info->dma =
       
  2691 			pci_map_single(adapter->pdev,
       
  2692 				skb->data + offset,
       
  2693 				size,
       
  2694 				PCI_DMA_TODEVICE);
       
  2695 		buffer_info->time_stamp = jiffies;
       
  2696 
       
  2697 		len -= size;
       
  2698 		offset += size;
       
  2699 		count++;
       
  2700 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  2701 	}
       
  2702 
       
  2703 	for (f = 0; f < nr_frags; f++) {
       
  2704 		struct skb_frag_struct *frag;
       
  2705 
       
  2706 		frag = &skb_shinfo(skb)->frags[f];
       
  2707 		len = frag->size;
       
  2708 		offset = frag->page_offset;
       
  2709 
       
  2710 		while (len) {
       
  2711 			buffer_info = &tx_ring->buffer_info[i];
       
  2712 			size = min(len, max_per_txd);
       
  2713 #ifdef NETIF_F_TSO
       
  2714 			/* Workaround for premature desc write-backs
       
  2715 			 * in TSO mode.  Append 4-byte sentinel desc */
       
  2716 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
       
  2717 				size -= 4;
       
  2718 #endif
       
  2719 			/* Workaround for potential 82544 hang in PCI-X.
       
  2720 			 * Avoid terminating buffers within evenly-aligned
       
  2721 			 * dwords. */
       
  2722 			if (unlikely(adapter->pcix_82544 &&
       
  2723 			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
       
  2724 			   size > 4))
       
  2725 				size -= 4;
       
  2726 
       
  2727 			buffer_info->length = size;
       
  2728 			buffer_info->dma =
       
  2729 				pci_map_page(adapter->pdev,
       
  2730 					frag->page,
       
  2731 					offset,
       
  2732 					size,
       
  2733 					PCI_DMA_TODEVICE);
       
  2734 			buffer_info->time_stamp = jiffies;
       
  2735 
       
  2736 			len -= size;
       
  2737 			offset += size;
       
  2738 			count++;
       
  2739 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  2740 		}
       
  2741 	}
       
  2742 
       
  2743 	i = (i == 0) ? tx_ring->count - 1 : i - 1;
       
  2744 	tx_ring->buffer_info[i].skb = skb;
       
  2745 	tx_ring->buffer_info[first].next_to_watch = i;
       
  2746 
       
  2747 	return count;
       
  2748 }
       
  2749 
       
  2750 static void
       
  2751 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2752                int tx_flags, int count)
       
  2753 {
       
  2754 	struct e1000_tx_desc *tx_desc = NULL;
       
  2755 	struct e1000_buffer *buffer_info;
       
  2756 	uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  2757 	unsigned int i;
       
  2758 
       
  2759 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
       
  2760 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  2761 		             E1000_TXD_CMD_TSE;
       
  2762 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  2763 
       
  2764 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
       
  2765 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  2766 	}
       
  2767 
       
  2768 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
       
  2769 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  2770 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  2771 	}
       
  2772 
       
  2773 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
       
  2774 		txd_lower |= E1000_TXD_CMD_VLE;
       
  2775 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  2776 	}
       
  2777 
       
  2778 	i = tx_ring->next_to_use;
       
  2779 
       
  2780 	while (count--) {
       
  2781 		buffer_info = &tx_ring->buffer_info[i];
       
  2782 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  2783 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  2784 		tx_desc->lower.data =
       
  2785 			cpu_to_le32(txd_lower | buffer_info->length);
       
  2786 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  2787 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  2788 	}
       
  2789 
       
  2790 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  2791 
       
  2792 	/* Force memory writes to complete before letting h/w
       
  2793 	 * know there are new descriptors to fetch.  (Only
       
  2794 	 * applicable for weak-ordered memory model archs,
       
  2795 	 * such as IA-64). */
       
  2796 	wmb();
       
  2797 
       
  2798 	tx_ring->next_to_use = i;
       
  2799 	writel(i, adapter->hw.hw_addr + tx_ring->tdt);
       
  2800 }
       
  2801 
       
  2802 /**
       
  2803  * 82547 workaround to avoid controller hang in half-duplex environment.
       
  2804  * The workaround is to avoid queuing a large packet that would span
       
  2805  * the internal Tx FIFO ring boundary by notifying the stack to resend
       
  2806  * the packet at a later time.  This gives the Tx FIFO an opportunity to
       
  2807  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
       
  2808  * to the beginning of the Tx FIFO.
       
  2809  **/
       
  2810 
       
  2811 #define E1000_FIFO_HDR			0x10
       
  2812 #define E1000_82547_PAD_LEN		0x3E0
       
  2813 
       
  2814 static int
       
  2815 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  2816 {
       
  2817 	uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
       
  2818 	uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
       
  2819 
       
  2820 	E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
       
  2821 
       
  2822 	if (adapter->link_duplex != HALF_DUPLEX)
       
  2823 		goto no_fifo_stall_required;
       
  2824 
       
  2825 	if (atomic_read(&adapter->tx_fifo_stall))
       
  2826 		return 1;
       
  2827 
       
  2828 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
       
  2829 		atomic_set(&adapter->tx_fifo_stall, 1);
       
  2830 		return 1;
       
  2831 	}
       
  2832 
       
  2833 no_fifo_stall_required:
       
  2834 	adapter->tx_fifo_head += skb_fifo_len;
       
  2835 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
       
  2836 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
       
  2837 	return 0;
       
  2838 }
       
  2839 
       
  2840 #define MINIMUM_DHCP_PACKET_SIZE 282
       
  2841 static int
       
  2842 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  2843 {
       
  2844 	struct e1000_hw *hw =  &adapter->hw;
       
  2845 	uint16_t length, offset;
       
  2846 	if (vlan_tx_tag_present(skb)) {
       
  2847 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
       
  2848 			( adapter->hw.mng_cookie.status &
       
  2849 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
       
  2850 			return 0;
       
  2851 	}
       
  2852 	if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
       
  2853 		struct ethhdr *eth = (struct ethhdr *) skb->data;
       
  2854 		if ((htons(ETH_P_IP) == eth->h_proto)) {
       
  2855 			const struct iphdr *ip =
       
  2856 				(struct iphdr *)((uint8_t *)skb->data+14);
       
  2857 			if (IPPROTO_UDP == ip->protocol) {
       
  2858 				struct udphdr *udp =
       
  2859 					(struct udphdr *)((uint8_t *)ip +
       
  2860 						(ip->ihl << 2));
       
  2861 				if (ntohs(udp->dest) == 67) {
       
  2862 					offset = (uint8_t *)udp + 8 - skb->data;
       
  2863 					length = skb->len - offset;
       
  2864 
       
  2865 					return e1000_mng_write_dhcp_info(hw,
       
  2866 							(uint8_t *)udp + 8,
       
  2867 							length);
       
  2868 				}
       
  2869 			}
       
  2870 		}
       
  2871 	}
       
  2872 	return 0;
       
  2873 }
       
  2874 
       
  2875 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  2876 static int
       
  2877 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
       
  2878 {
       
  2879 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2880 	struct e1000_tx_ring *tx_ring;
       
  2881 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
       
  2882 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  2883 	unsigned int tx_flags = 0;
       
  2884 	unsigned int len = skb->len;
       
  2885 	unsigned long flags;
       
  2886 	unsigned int nr_frags = 0;
       
  2887 	unsigned int mss = 0;
       
  2888 	int count = 0;
       
  2889 	int tso;
       
  2890 	unsigned int f;
       
  2891 	len -= skb->data_len;
       
  2892 
       
  2893 	tx_ring = adapter->tx_ring;
       
  2894 
       
  2895 	if (unlikely(skb->len <= 0)) {
       
  2896 		dev_kfree_skb_any(skb);
       
  2897 		return NETDEV_TX_OK;
       
  2898 	}
       
  2899 
       
  2900 #ifdef NETIF_F_TSO
       
  2901 	mss = skb_shinfo(skb)->gso_size;
       
  2902 	/* The controller does a simple calculation to
       
  2903 	 * make sure there is enough room in the FIFO before
       
  2904 	 * initiating the DMA for each buffer.  The calc is:
       
  2905 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  2906 	 * overrun the FIFO, adjust the max buffer len if mss
       
  2907 	 * drops. */
       
  2908 	if (mss) {
       
  2909 		uint8_t hdr_len;
       
  2910 		max_per_txd = min(mss << 2, max_per_txd);
       
  2911 		max_txd_pwr = fls(max_per_txd) - 1;
       
  2912 
       
  2913 	/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
       
  2914 	 * points to just header, pull a few bytes of payload from
       
  2915 	 * frags into skb->data */
       
  2916 		hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
       
  2917 		if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
       
  2918 			switch (adapter->hw.mac_type) {
       
  2919 				unsigned int pull_size;
       
  2920 			case e1000_82571:
       
  2921 			case e1000_82572:
       
  2922 			case e1000_82573:
       
  2923 			case e1000_ich8lan:
       
  2924 				pull_size = min((unsigned int)4, skb->data_len);
       
  2925 				if (!__pskb_pull_tail(skb, pull_size)) {
       
  2926 					DPRINTK(DRV, ERR,
       
  2927 						"__pskb_pull_tail failed.\n");
       
  2928 					dev_kfree_skb_any(skb);
       
  2929 					return NETDEV_TX_OK;
       
  2930 				}
       
  2931 				len = skb->len - skb->data_len;
       
  2932 				break;
       
  2933 			default:
       
  2934 				/* do nothing */
       
  2935 				break;
       
  2936 			}
       
  2937 		}
       
  2938 	}
       
  2939 
       
  2940 	/* reserve a descriptor for the offload context */
       
  2941 	if ((mss) || (skb->ip_summed == CHECKSUM_HW))
       
  2942 		count++;
       
  2943 	count++;
       
  2944 #else
       
  2945 	if (skb->ip_summed == CHECKSUM_HW)
       
  2946 		count++;
       
  2947 #endif
       
  2948 
       
  2949 #ifdef NETIF_F_TSO
       
  2950 	/* Controller Erratum workaround */
       
  2951 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
       
  2952 		count++;
       
  2953 #endif
       
  2954 
       
  2955 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  2956 
       
  2957 	if (adapter->pcix_82544)
       
  2958 		count++;
       
  2959 
       
  2960 	/* work-around for errata 10 and it applies to all controllers
       
  2961 	 * in PCI-X mode, so add one more descriptor to the count
       
  2962 	 */
       
  2963 	if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
       
  2964 			(len > 2015)))
       
  2965 		count++;
       
  2966 
       
  2967 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  2968 	for (f = 0; f < nr_frags; f++)
       
  2969 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
       
  2970 				       max_txd_pwr);
       
  2971 	if (adapter->pcix_82544)
       
  2972 		count += nr_frags;
       
  2973 
       
  2974 
       
  2975 	if (adapter->hw.tx_pkt_filtering &&
       
  2976 	    (adapter->hw.mac_type == e1000_82573))
       
  2977 		e1000_transfer_dhcp_info(adapter, skb);
       
  2978 
       
  2979 	local_irq_save(flags);
       
  2980 	if (!spin_trylock(&tx_ring->tx_lock)) {
       
  2981 		/* Collision - tell upper layer to requeue */
       
  2982 		local_irq_restore(flags);
       
  2983 		return NETDEV_TX_LOCKED;
       
  2984 	}
       
  2985 
       
  2986 	/* need: count + 2 desc gap to keep tail from touching
       
  2987 	 * head, otherwise try next time */
       
  2988 	if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
       
  2989 		netif_stop_queue(netdev);
       
  2990 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  2991 		return NETDEV_TX_BUSY;
       
  2992 	}
       
  2993 
       
  2994 	if (unlikely(adapter->hw.mac_type == e1000_82547)) {
       
  2995 		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
       
  2996 			netif_stop_queue(netdev);
       
  2997 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
       
  2998 			spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  2999 			return NETDEV_TX_BUSY;
       
  3000 		}
       
  3001 	}
       
  3002 
       
  3003 	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
       
  3004 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  3005 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  3006 	}
       
  3007 
       
  3008 	first = tx_ring->next_to_use;
       
  3009 
       
  3010 	tso = e1000_tso(adapter, tx_ring, skb);
       
  3011 	if (tso < 0) {
       
  3012 		dev_kfree_skb_any(skb);
       
  3013 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3014 		return NETDEV_TX_OK;
       
  3015 	}
       
  3016 
       
  3017 	if (likely(tso)) {
       
  3018 		tx_ring->last_tx_tso = 1;
       
  3019 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  3020 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
       
  3021 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  3022 
       
  3023 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
       
  3024 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
       
  3025 	 * no longer assume, we must. */
       
  3026 	if (likely(skb->protocol == htons(ETH_P_IP)))
       
  3027 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  3028 
       
  3029 	e1000_tx_queue(adapter, tx_ring, tx_flags,
       
  3030 	               e1000_tx_map(adapter, tx_ring, skb, first,
       
  3031 	                            max_per_txd, nr_frags, mss));
       
  3032 
       
  3033 	netdev->trans_start = jiffies;
       
  3034 
       
  3035 	/* Make sure there is space in the ring for the next send. */
       
  3036 	if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
       
  3037 		netif_stop_queue(netdev);
       
  3038 
       
  3039 	spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3040 	return NETDEV_TX_OK;
       
  3041 }
       
  3042 
       
  3043 /**
       
  3044  * e1000_tx_timeout - Respond to a Tx Hang
       
  3045  * @netdev: network interface device structure
       
  3046  **/
       
  3047 
       
  3048 static void
       
  3049 e1000_tx_timeout(struct net_device *netdev)
       
  3050 {
       
  3051 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3052 
       
  3053 	/* Do the reset outside of interrupt context */
       
  3054 	adapter->tx_timeout_count++;
       
  3055 	schedule_work(&adapter->reset_task);
       
  3056 }
       
  3057 
       
  3058 static void
       
  3059 e1000_reset_task(struct net_device *netdev)
       
  3060 {
       
  3061 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3062 
       
  3063 	e1000_reinit_locked(adapter);
       
  3064 }
       
  3065 
       
  3066 /**
       
  3067  * e1000_get_stats - Get System Network Statistics
       
  3068  * @netdev: network interface device structure
       
  3069  *
       
  3070  * Returns the address of the device statistics structure.
       
  3071  * The statistics are actually updated from the timer callback.
       
  3072  **/
       
  3073 
       
  3074 static struct net_device_stats *
       
  3075 e1000_get_stats(struct net_device *netdev)
       
  3076 {
       
  3077 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3078 
       
  3079 	/* only return the current stats */
       
  3080 	return &adapter->net_stats;
       
  3081 }
       
  3082 
       
  3083 /**
       
  3084  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  3085  * @netdev: network interface device structure
       
  3086  * @new_mtu: new value for maximum frame size
       
  3087  *
       
  3088  * Returns 0 on success, negative on failure
       
  3089  **/
       
  3090 
       
  3091 static int
       
  3092 e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  3093 {
       
  3094 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3095 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  3096 	uint16_t eeprom_data = 0;
       
  3097 
       
  3098 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
       
  3099 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
       
  3100 		DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
       
  3101 		return -EINVAL;
       
  3102 	}
       
  3103 
       
  3104 	/* Adapter-specific max frame size limits. */
       
  3105 	switch (adapter->hw.mac_type) {
       
  3106 	case e1000_undefined ... e1000_82542_rev2_1:
       
  3107 	case e1000_ich8lan:
       
  3108 		if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3109 			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
       
  3110 			return -EINVAL;
       
  3111 		}
       
  3112 		break;
       
  3113 	case e1000_82573:
       
  3114 		/* only enable jumbo frames if ASPM is disabled completely
       
  3115 		 * this means both bits must be zero in 0x1A bits 3:2 */
       
  3116 		e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
       
  3117 		                  &eeprom_data);
       
  3118 		if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
       
  3119 			if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3120 				DPRINTK(PROBE, ERR,
       
  3121 			            	"Jumbo Frames not supported.\n");
       
  3122 				return -EINVAL;
       
  3123 			}
       
  3124 			break;
       
  3125 		}
       
  3126 		/* fall through to get support */
       
  3127 	case e1000_82571:
       
  3128 	case e1000_82572:
       
  3129 	case e1000_80003es2lan:
       
  3130 #define MAX_STD_JUMBO_FRAME_SIZE 9234
       
  3131 		if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
       
  3132 			DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
       
  3133 			return -EINVAL;
       
  3134 		}
       
  3135 		break;
       
  3136 	default:
       
  3137 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
       
  3138 		break;
       
  3139 	}
       
  3140 
       
  3141 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  3142 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  3143 	 * larger slab size
       
  3144 	 * i.e. RXBUFFER_2048 --> size-4096 slab */
       
  3145 
       
  3146 	if (max_frame <= E1000_RXBUFFER_256)
       
  3147 		adapter->rx_buffer_len = E1000_RXBUFFER_256;
       
  3148 	else if (max_frame <= E1000_RXBUFFER_512)
       
  3149 		adapter->rx_buffer_len = E1000_RXBUFFER_512;
       
  3150 	else if (max_frame <= E1000_RXBUFFER_1024)
       
  3151 		adapter->rx_buffer_len = E1000_RXBUFFER_1024;
       
  3152 	else if (max_frame <= E1000_RXBUFFER_2048)
       
  3153 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
       
  3154 	else if (max_frame <= E1000_RXBUFFER_4096)
       
  3155 		adapter->rx_buffer_len = E1000_RXBUFFER_4096;
       
  3156 	else if (max_frame <= E1000_RXBUFFER_8192)
       
  3157 		adapter->rx_buffer_len = E1000_RXBUFFER_8192;
       
  3158 	else if (max_frame <= E1000_RXBUFFER_16384)
       
  3159 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
       
  3160 
       
  3161 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  3162 	if (!adapter->hw.tbi_compatibility_on &&
       
  3163 	    ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
       
  3164 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
       
  3165 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  3166 
       
  3167 	netdev->mtu = new_mtu;
       
  3168 
       
  3169 	if (netif_running(netdev))
       
  3170 		e1000_reinit_locked(adapter);
       
  3171 
       
  3172 	adapter->hw.max_frame_size = max_frame;
       
  3173 
       
  3174 	return 0;
       
  3175 }
       
  3176 
       
  3177 /**
       
  3178  * e1000_update_stats - Update the board statistics counters
       
  3179  * @adapter: board private structure
       
  3180  **/
       
  3181 
       
  3182 void
       
  3183 e1000_update_stats(struct e1000_adapter *adapter)
       
  3184 {
       
  3185 	struct e1000_hw *hw = &adapter->hw;
       
  3186 	struct pci_dev *pdev = adapter->pdev;
       
  3187 	unsigned long flags;
       
  3188 	uint16_t phy_tmp;
       
  3189 
       
  3190 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
       
  3191 
       
  3192 	/*
       
  3193 	 * Prevent stats update while adapter is being reset, or if the pci
       
  3194 	 * connection is down.
       
  3195 	 */
       
  3196 	if (adapter->link_speed == 0)
       
  3197 		return;
       
  3198 	if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
       
  3199 		return;
       
  3200 
       
  3201 	spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3202 
       
  3203 	/* these counters are modified from e1000_adjust_tbi_stats,
       
  3204 	 * called from the interrupt context, so they must only
       
  3205 	 * be written while holding adapter->stats_lock
       
  3206 	 */
       
  3207 
       
  3208 	adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
       
  3209 	adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
       
  3210 	adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
       
  3211 	adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
       
  3212 	adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
       
  3213 	adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
       
  3214 	adapter->stats.roc += E1000_READ_REG(hw, ROC);
       
  3215 
       
  3216 	if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3217 	adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
       
  3218 	adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
       
  3219 	adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
       
  3220 	adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
       
  3221 	adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
       
  3222 	adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
       
  3223 	}
       
  3224 
       
  3225 	adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
       
  3226 	adapter->stats.mpc += E1000_READ_REG(hw, MPC);
       
  3227 	adapter->stats.scc += E1000_READ_REG(hw, SCC);
       
  3228 	adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
       
  3229 	adapter->stats.mcc += E1000_READ_REG(hw, MCC);
       
  3230 	adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
       
  3231 	adapter->stats.dc += E1000_READ_REG(hw, DC);
       
  3232 	adapter->stats.sec += E1000_READ_REG(hw, SEC);
       
  3233 	adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
       
  3234 	adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
       
  3235 	adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
       
  3236 	adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
       
  3237 	adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
       
  3238 	adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
       
  3239 	adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
       
  3240 	adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
       
  3241 	adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
       
  3242 	adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
       
  3243 	adapter->stats.ruc += E1000_READ_REG(hw, RUC);
       
  3244 	adapter->stats.rfc += E1000_READ_REG(hw, RFC);
       
  3245 	adapter->stats.rjc += E1000_READ_REG(hw, RJC);
       
  3246 	adapter->stats.torl += E1000_READ_REG(hw, TORL);
       
  3247 	adapter->stats.torh += E1000_READ_REG(hw, TORH);
       
  3248 	adapter->stats.totl += E1000_READ_REG(hw, TOTL);
       
  3249 	adapter->stats.toth += E1000_READ_REG(hw, TOTH);
       
  3250 	adapter->stats.tpr += E1000_READ_REG(hw, TPR);
       
  3251 
       
  3252 	if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3253 	adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
       
  3254 	adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
       
  3255 	adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
       
  3256 	adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
       
  3257 	adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
       
  3258 	adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
       
  3259 	}
       
  3260 
       
  3261 	adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
       
  3262 	adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
       
  3263 
       
  3264 	/* used for adaptive IFS */
       
  3265 
       
  3266 	hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
       
  3267 	adapter->stats.tpt += hw->tx_packet_delta;
       
  3268 	hw->collision_delta = E1000_READ_REG(hw, COLC);
       
  3269 	adapter->stats.colc += hw->collision_delta;
       
  3270 
       
  3271 	if (hw->mac_type >= e1000_82543) {
       
  3272 		adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
       
  3273 		adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
       
  3274 		adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
       
  3275 		adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
       
  3276 		adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
       
  3277 		adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
       
  3278 	}
       
  3279 	if (hw->mac_type > e1000_82547_rev_2) {
       
  3280 		adapter->stats.iac += E1000_READ_REG(hw, IAC);
       
  3281 		adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
       
  3282 
       
  3283 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3284 		adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
       
  3285 		adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
       
  3286 		adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
       
  3287 		adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
       
  3288 		adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
       
  3289 		adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
       
  3290 		adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
       
  3291 		}
       
  3292 	}
       
  3293 
       
  3294 	/* Fill out the OS statistics structure */
       
  3295 
       
  3296 	adapter->net_stats.rx_packets = adapter->stats.gprc;
       
  3297 	adapter->net_stats.tx_packets = adapter->stats.gptc;
       
  3298 	adapter->net_stats.rx_bytes = adapter->stats.gorcl;
       
  3299 	adapter->net_stats.tx_bytes = adapter->stats.gotcl;
       
  3300 	adapter->net_stats.multicast = adapter->stats.mprc;
       
  3301 	adapter->net_stats.collisions = adapter->stats.colc;
       
  3302 
       
  3303 	/* Rx Errors */
       
  3304 
       
  3305 	/* RLEC on some newer hardware can be incorrect so build
       
  3306 	* our own version based on RUC and ROC */
       
  3307 	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
       
  3308 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  3309 		adapter->stats.ruc + adapter->stats.roc +
       
  3310 		adapter->stats.cexterr;
       
  3311 	adapter->net_stats.rx_length_errors = adapter->stats.ruc +
       
  3312 	                                      adapter->stats.roc;
       
  3313 	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
       
  3314 	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
       
  3315 	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
       
  3316 
       
  3317 	/* Tx Errors */
       
  3318 
       
  3319 	adapter->net_stats.tx_errors = adapter->stats.ecol +
       
  3320 	                               adapter->stats.latecol;
       
  3321 	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
       
  3322 	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
       
  3323 	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
       
  3324 
       
  3325 	/* Tx Dropped needs to be maintained elsewhere */
       
  3326 
       
  3327 	/* Phy Stats */
       
  3328 
       
  3329 	if (hw->media_type == e1000_media_type_copper) {
       
  3330 		if ((adapter->link_speed == SPEED_1000) &&
       
  3331 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
       
  3332 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
       
  3333 			adapter->phy_stats.idle_errors += phy_tmp;
       
  3334 		}
       
  3335 
       
  3336 		if ((hw->mac_type <= e1000_82546) &&
       
  3337 		   (hw->phy_type == e1000_phy_m88) &&
       
  3338 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
       
  3339 			adapter->phy_stats.receive_errors += phy_tmp;
       
  3340 	}
       
  3341 
       
  3342 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3343 }
       
  3344 
       
  3345 /**
       
  3346  * e1000_intr - Interrupt Handler
       
  3347  * @irq: interrupt number
       
  3348  * @data: pointer to a network interface device structure
       
  3349  * @pt_regs: CPU registers structure
       
  3350  **/
       
  3351 
       
  3352 static irqreturn_t
       
  3353 e1000_intr(int irq, void *data, struct pt_regs *regs)
       
  3354 {
       
  3355 	struct net_device *netdev = data;
       
  3356 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3357 	struct e1000_hw *hw = &adapter->hw;
       
  3358 	uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
       
  3359 #ifndef CONFIG_E1000_NAPI
       
  3360 	int i;
       
  3361 #else
       
  3362 	/* Interrupt Auto-Mask...upon reading ICR,
       
  3363 	 * interrupts are masked.  No need for the
       
  3364 	 * IMC write, but it does mean we should
       
  3365 	 * account for it ASAP. */
       
  3366 	if (likely(hw->mac_type >= e1000_82571))
       
  3367 		atomic_inc(&adapter->irq_sem);
       
  3368 #endif
       
  3369 
       
  3370 	if (unlikely(!icr)) {
       
  3371 #ifdef CONFIG_E1000_NAPI
       
  3372 		if (hw->mac_type >= e1000_82571)
       
  3373 			e1000_irq_enable(adapter);
       
  3374 #endif
       
  3375 		return IRQ_NONE;  /* Not our interrupt */
       
  3376 	}
       
  3377 
       
  3378 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
       
  3379 		hw->get_link_status = 1;
       
  3380 		/* 80003ES2LAN workaround--
       
  3381 		 * For packet buffer work-around on link down event;
       
  3382 		 * disable receives here in the ISR and
       
  3383 		 * reset adapter in watchdog
       
  3384 		 */
       
  3385 		if (netif_carrier_ok(netdev) &&
       
  3386 		    (adapter->hw.mac_type == e1000_80003es2lan)) {
       
  3387 			/* disable receives */
       
  3388 			rctl = E1000_READ_REG(hw, RCTL);
       
  3389 			E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  3390 		}
       
  3391 		mod_timer(&adapter->watchdog_timer, jiffies);
       
  3392 	}
       
  3393 
       
  3394 #ifdef CONFIG_E1000_NAPI
       
  3395 	if (unlikely(hw->mac_type < e1000_82571)) {
       
  3396 		atomic_inc(&adapter->irq_sem);
       
  3397 		E1000_WRITE_REG(hw, IMC, ~0);
       
  3398 		E1000_WRITE_FLUSH(hw);
       
  3399 	}
       
  3400 	if (likely(netif_rx_schedule_prep(netdev)))
       
  3401 		__netif_rx_schedule(netdev);
       
  3402 	else
       
  3403 		e1000_irq_enable(adapter);
       
  3404 #else
       
  3405 	/* Writing IMC and IMS is needed for 82547.
       
  3406 	 * Due to Hub Link bus being occupied, an interrupt
       
  3407 	 * de-assertion message is not able to be sent.
       
  3408 	 * When an interrupt assertion message is generated later,
       
  3409 	 * two messages are re-ordered and sent out.
       
  3410 	 * That causes APIC to think 82547 is in de-assertion
       
  3411 	 * state, while 82547 is in assertion state, resulting
       
  3412 	 * in dead lock. Writing IMC forces 82547 into
       
  3413 	 * de-assertion state.
       
  3414 	 */
       
  3415 	if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
       
  3416 		atomic_inc(&adapter->irq_sem);
       
  3417 		E1000_WRITE_REG(hw, IMC, ~0);
       
  3418 	}
       
  3419 
       
  3420 	for (i = 0; i < E1000_MAX_INTR; i++)
       
  3421 		if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
       
  3422 		   !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
       
  3423 			break;
       
  3424 
       
  3425 	if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
       
  3426 		e1000_irq_enable(adapter);
       
  3427 
       
  3428 #endif
       
  3429 
       
  3430 	return IRQ_HANDLED;
       
  3431 }
       
  3432 
       
  3433 #ifdef CONFIG_E1000_NAPI
       
  3434 /**
       
  3435  * e1000_clean - NAPI Rx polling callback
       
  3436  * @adapter: board private structure
       
  3437  **/
       
  3438 
       
  3439 static int
       
  3440 e1000_clean(struct net_device *poll_dev, int *budget)
       
  3441 {
       
  3442 	struct e1000_adapter *adapter;
       
  3443 	int work_to_do = min(*budget, poll_dev->quota);
       
  3444 	int tx_cleaned = 0, work_done = 0;
       
  3445 
       
  3446 	/* Must NOT use netdev_priv macro here. */
       
  3447 	adapter = poll_dev->priv;
       
  3448 
       
  3449 	/* Keep link state information with original netdev */
       
  3450 	if (!netif_carrier_ok(poll_dev))
       
  3451 		goto quit_polling;
       
  3452 
       
  3453 	/* e1000_clean is called per-cpu.  This lock protects
       
  3454 	 * tx_ring[0] from being cleaned by multiple cpus
       
  3455 	 * simultaneously.  A failure obtaining the lock means
       
  3456 	 * tx_ring[0] is currently being cleaned anyway. */
       
  3457 	if (spin_trylock(&adapter->tx_queue_lock)) {
       
  3458 		tx_cleaned = e1000_clean_tx_irq(adapter,
       
  3459 		                                &adapter->tx_ring[0]);
       
  3460 		spin_unlock(&adapter->tx_queue_lock);
       
  3461 	}
       
  3462 
       
  3463 	adapter->clean_rx(adapter, &adapter->rx_ring[0],
       
  3464 	                  &work_done, work_to_do);
       
  3465 
       
  3466 	*budget -= work_done;
       
  3467 	poll_dev->quota -= work_done;
       
  3468 
       
  3469 	/* If no Tx and not enough Rx work done, exit the polling mode */
       
  3470 	if ((!tx_cleaned && (work_done == 0)) ||
       
  3471 	   !netif_running(poll_dev)) {
       
  3472 quit_polling:
       
  3473 		netif_rx_complete(poll_dev);
       
  3474 		e1000_irq_enable(adapter);
       
  3475 		return 0;
       
  3476 	}
       
  3477 
       
  3478 	return 1;
       
  3479 }
       
  3480 
       
  3481 #endif
       
  3482 /**
       
  3483  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
  3484  * @adapter: board private structure
       
  3485  **/
       
  3486 
       
  3487 static boolean_t
       
  3488 e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
  3489                    struct e1000_tx_ring *tx_ring)
       
  3490 {
       
  3491 	struct net_device *netdev = adapter->netdev;
       
  3492 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
  3493 	struct e1000_buffer *buffer_info;
       
  3494 	unsigned int i, eop;
       
  3495 #ifdef CONFIG_E1000_NAPI
       
  3496 	unsigned int count = 0;
       
  3497 #endif
       
  3498 	boolean_t cleaned = FALSE;
       
  3499 
       
  3500 	i = tx_ring->next_to_clean;
       
  3501 	eop = tx_ring->buffer_info[i].next_to_watch;
       
  3502 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3503 
       
  3504 	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
       
  3505 		for (cleaned = FALSE; !cleaned; ) {
       
  3506 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3507 			buffer_info = &tx_ring->buffer_info[i];
       
  3508 			cleaned = (i == eop);
       
  3509 
       
  3510 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  3511 			memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
       
  3512 
       
  3513 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  3514 		}
       
  3515 
       
  3516 
       
  3517 		eop = tx_ring->buffer_info[i].next_to_watch;
       
  3518 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3519 #ifdef CONFIG_E1000_NAPI
       
  3520 #define E1000_TX_WEIGHT 64
       
  3521 		/* weight of a sort for tx, to avoid endless transmit cleanup */
       
  3522 		if (count++ == E1000_TX_WEIGHT) break;
       
  3523 #endif
       
  3524 	}
       
  3525 
       
  3526 	tx_ring->next_to_clean = i;
       
  3527 
       
  3528 #define TX_WAKE_THRESHOLD 32
       
  3529 	if (unlikely(cleaned && netif_queue_stopped(netdev) &&
       
  3530 	             netif_carrier_ok(netdev))) {
       
  3531 		spin_lock(&tx_ring->tx_lock);
       
  3532 		if (netif_queue_stopped(netdev) &&
       
  3533 		    (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
       
  3534 			netif_wake_queue(netdev);
       
  3535 		spin_unlock(&tx_ring->tx_lock);
       
  3536 	}
       
  3537 
       
  3538 	if (adapter->detect_tx_hung) {
       
  3539 		/* Detect a transmit hang in hardware, this serializes the
       
  3540 		 * check with the clearing of time_stamp and movement of i */
       
  3541 		adapter->detect_tx_hung = FALSE;
       
  3542 		if (tx_ring->buffer_info[eop].dma &&
       
  3543 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
       
  3544 		               (adapter->tx_timeout_factor * HZ))
       
  3545 		    && !(E1000_READ_REG(&adapter->hw, STATUS) &
       
  3546 		         E1000_STATUS_TXOFF)) {
       
  3547 
       
  3548 			/* detected Tx unit hang */
       
  3549 			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
       
  3550 					"  Tx Queue             <%lu>\n"
       
  3551 					"  TDH                  <%x>\n"
       
  3552 					"  TDT                  <%x>\n"
       
  3553 					"  next_to_use          <%x>\n"
       
  3554 					"  next_to_clean        <%x>\n"
       
  3555 					"buffer_info[next_to_clean]\n"
       
  3556 					"  time_stamp           <%lx>\n"
       
  3557 					"  next_to_watch        <%x>\n"
       
  3558 					"  jiffies              <%lx>\n"
       
  3559 					"  next_to_watch.status <%x>\n",
       
  3560 				(unsigned long)((tx_ring - adapter->tx_ring) /
       
  3561 					sizeof(struct e1000_tx_ring)),
       
  3562 				readl(adapter->hw.hw_addr + tx_ring->tdh),
       
  3563 				readl(adapter->hw.hw_addr + tx_ring->tdt),
       
  3564 				tx_ring->next_to_use,
       
  3565 				tx_ring->next_to_clean,
       
  3566 				tx_ring->buffer_info[eop].time_stamp,
       
  3567 				eop,
       
  3568 				jiffies,
       
  3569 				eop_desc->upper.fields.status);
       
  3570 			netif_stop_queue(netdev);
       
  3571 		}
       
  3572 	}
       
  3573 	return cleaned;
       
  3574 }
       
  3575 
       
  3576 /**
       
  3577  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
  3578  * @adapter:     board private structure
       
  3579  * @status_err:  receive descriptor status and error fields
       
  3580  * @csum:        receive descriptor csum field
       
  3581  * @sk_buff:     socket buffer with received data
       
  3582  **/
       
  3583 
       
  3584 static void
       
  3585 e1000_rx_checksum(struct e1000_adapter *adapter,
       
  3586 		  uint32_t status_err, uint32_t csum,
       
  3587 		  struct sk_buff *skb)
       
  3588 {
       
  3589 	uint16_t status = (uint16_t)status_err;
       
  3590 	uint8_t errors = (uint8_t)(status_err >> 24);
       
  3591 	skb->ip_summed = CHECKSUM_NONE;
       
  3592 
       
  3593 	/* 82543 or newer only */
       
  3594 	if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
       
  3595 	/* Ignore Checksum bit is set */
       
  3596 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
       
  3597 	/* TCP/UDP checksum error bit is set */
       
  3598 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
       
  3599 		/* let the stack verify checksum errors */
       
  3600 		adapter->hw_csum_err++;
       
  3601 		return;
       
  3602 	}
       
  3603 	/* TCP/UDP Checksum has not been calculated */
       
  3604 	if (adapter->hw.mac_type <= e1000_82547_rev_2) {
       
  3605 		if (!(status & E1000_RXD_STAT_TCPCS))
       
  3606 			return;
       
  3607 	} else {
       
  3608 		if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
       
  3609 			return;
       
  3610 	}
       
  3611 	/* It must be a TCP or UDP packet with a valid checksum */
       
  3612 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
       
  3613 		/* TCP checksum is good */
       
  3614 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
  3615 	} else if (adapter->hw.mac_type > e1000_82547_rev_2) {
       
  3616 		/* IP fragment with UDP payload */
       
  3617 		/* Hardware complements the payload checksum, so we undo it
       
  3618 		 * and then put the value in host order for further stack use.
       
  3619 		 */
       
  3620 		csum = ntohl(csum ^ 0xFFFF);
       
  3621 		skb->csum = csum;
       
  3622 		skb->ip_summed = CHECKSUM_HW;
       
  3623 	}
       
  3624 	adapter->hw_csum_good++;
       
  3625 }
       
  3626 
       
  3627 /**
       
  3628  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
  3629  * @adapter: board private structure
       
  3630  **/
       
  3631 
       
  3632 static boolean_t
       
  3633 #ifdef CONFIG_E1000_NAPI
       
  3634 e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  3635                    struct e1000_rx_ring *rx_ring,
       
  3636                    int *work_done, int work_to_do)
       
  3637 #else
       
  3638 e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  3639                    struct e1000_rx_ring *rx_ring)
       
  3640 #endif
       
  3641 {
       
  3642 	struct net_device *netdev = adapter->netdev;
       
  3643 	struct pci_dev *pdev = adapter->pdev;
       
  3644 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
  3645 	struct e1000_buffer *buffer_info, *next_buffer;
       
  3646 	unsigned long flags;
       
  3647 	uint32_t length;
       
  3648 	uint8_t last_byte;
       
  3649 	unsigned int i;
       
  3650 	int cleaned_count = 0;
       
  3651 	boolean_t cleaned = FALSE;
       
  3652 
       
  3653 	i = rx_ring->next_to_clean;
       
  3654 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  3655 	buffer_info = &rx_ring->buffer_info[i];
       
  3656 
       
  3657 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
  3658 		struct sk_buff *skb;
       
  3659 		u8 status;
       
  3660 #ifdef CONFIG_E1000_NAPI
       
  3661 		if (*work_done >= work_to_do)
       
  3662 			break;
       
  3663 		(*work_done)++;
       
  3664 #endif
       
  3665 		status = rx_desc->status;
       
  3666 		skb = buffer_info->skb;
       
  3667 		buffer_info->skb = NULL;
       
  3668 
       
  3669 		prefetch(skb->data - NET_IP_ALIGN);
       
  3670 
       
  3671 		if (++i == rx_ring->count) i = 0;
       
  3672 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
  3673 		prefetch(next_rxd);
       
  3674 
       
  3675 		next_buffer = &rx_ring->buffer_info[i];
       
  3676 
       
  3677 		cleaned = TRUE;
       
  3678 		cleaned_count++;
       
  3679 		pci_unmap_single(pdev,
       
  3680 		                 buffer_info->dma,
       
  3681 		                 buffer_info->length,
       
  3682 		                 PCI_DMA_FROMDEVICE);
       
  3683 
       
  3684 		length = le16_to_cpu(rx_desc->length);
       
  3685 
       
  3686 		/* adjust length to remove Ethernet CRC */
       
  3687 		length -= 4;
       
  3688 
       
  3689 		if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
       
  3690 			/* All receives must fit into a single buffer */
       
  3691 			E1000_DBG("%s: Receive packet consumed multiple"
       
  3692 				  " buffers\n", netdev->name);
       
  3693 			/* recycle */
       
  3694 			buffer_info-> skb = skb;
       
  3695 			goto next_desc;
       
  3696 		}
       
  3697 
       
  3698 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
       
  3699 			last_byte = *(skb->data + length - 1);
       
  3700 			if (TBI_ACCEPT(&adapter->hw, status,
       
  3701 			              rx_desc->errors, length, last_byte)) {
       
  3702 				spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3703 				e1000_tbi_adjust_stats(&adapter->hw,
       
  3704 				                       &adapter->stats,
       
  3705 				                       length, skb->data);
       
  3706 				spin_unlock_irqrestore(&adapter->stats_lock,
       
  3707 				                       flags);
       
  3708 				length--;
       
  3709 			} else {
       
  3710 				/* recycle */
       
  3711 				buffer_info->skb = skb;
       
  3712 				goto next_desc;
       
  3713 			}
       
  3714 		}
       
  3715 
       
  3716 		/* code added for copybreak, this should improve
       
  3717 		 * performance for small packets with large amounts
       
  3718 		 * of reassembly being done in the stack */
       
  3719 #define E1000_CB_LENGTH 256
       
  3720 		if (length < E1000_CB_LENGTH) {
       
  3721 			struct sk_buff *new_skb =
       
  3722 			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
       
  3723 			if (new_skb) {
       
  3724 				skb_reserve(new_skb, NET_IP_ALIGN);
       
  3725 				new_skb->dev = netdev;
       
  3726 				memcpy(new_skb->data - NET_IP_ALIGN,
       
  3727 				       skb->data - NET_IP_ALIGN,
       
  3728 				       length + NET_IP_ALIGN);
       
  3729 				/* save the skb in buffer_info as good */
       
  3730 				buffer_info->skb = skb;
       
  3731 				skb = new_skb;
       
  3732 				skb_put(skb, length);
       
  3733 			}
       
  3734 		} else
       
  3735 			skb_put(skb, length);
       
  3736 
       
  3737 		/* end copybreak code */
       
  3738 
       
  3739 		/* Receive Checksum Offload */
       
  3740 		e1000_rx_checksum(adapter,
       
  3741 				  (uint32_t)(status) |
       
  3742 				  ((uint32_t)(rx_desc->errors) << 24),
       
  3743 				  le16_to_cpu(rx_desc->csum), skb);
       
  3744 
       
  3745 		skb->protocol = eth_type_trans(skb, netdev);
       
  3746 #ifdef CONFIG_E1000_NAPI
       
  3747 		if (unlikely(adapter->vlgrp &&
       
  3748 			    (status & E1000_RXD_STAT_VP))) {
       
  3749 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  3750 						 le16_to_cpu(rx_desc->special) &
       
  3751 						 E1000_RXD_SPC_VLAN_MASK);
       
  3752 		} else {
       
  3753 			netif_receive_skb(skb);
       
  3754 		}
       
  3755 #else /* CONFIG_E1000_NAPI */
       
  3756 		if (unlikely(adapter->vlgrp &&
       
  3757 			    (status & E1000_RXD_STAT_VP))) {
       
  3758 			vlan_hwaccel_rx(skb, adapter->vlgrp,
       
  3759 					le16_to_cpu(rx_desc->special) &
       
  3760 					E1000_RXD_SPC_VLAN_MASK);
       
  3761 		} else {
       
  3762 			netif_rx(skb);
       
  3763 		}
       
  3764 #endif /* CONFIG_E1000_NAPI */
       
  3765 		netdev->last_rx = jiffies;
       
  3766 
       
  3767 next_desc:
       
  3768 		rx_desc->status = 0;
       
  3769 
       
  3770 		/* return some buffers to hardware, one at a time is too slow */
       
  3771 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  3772 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3773 			cleaned_count = 0;
       
  3774 		}
       
  3775 
       
  3776 		/* use prefetched values */
       
  3777 		rx_desc = next_rxd;
       
  3778 		buffer_info = next_buffer;
       
  3779 	}
       
  3780 	rx_ring->next_to_clean = i;
       
  3781 
       
  3782 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  3783 	if (cleaned_count)
       
  3784 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3785 
       
  3786 	return cleaned;
       
  3787 }
       
  3788 
       
  3789 /**
       
  3790  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
       
  3791  * @adapter: board private structure
       
  3792  **/
       
  3793 
       
  3794 static boolean_t
       
  3795 #ifdef CONFIG_E1000_NAPI
       
  3796 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
  3797                       struct e1000_rx_ring *rx_ring,
       
  3798                       int *work_done, int work_to_do)
       
  3799 #else
       
  3800 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
  3801                       struct e1000_rx_ring *rx_ring)
       
  3802 #endif
       
  3803 {
       
  3804 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
       
  3805 	struct net_device *netdev = adapter->netdev;
       
  3806 	struct pci_dev *pdev = adapter->pdev;
       
  3807 	struct e1000_buffer *buffer_info, *next_buffer;
       
  3808 	struct e1000_ps_page *ps_page;
       
  3809 	struct e1000_ps_page_dma *ps_page_dma;
       
  3810 	struct sk_buff *skb;
       
  3811 	unsigned int i, j;
       
  3812 	uint32_t length, staterr;
       
  3813 	int cleaned_count = 0;
       
  3814 	boolean_t cleaned = FALSE;
       
  3815 
       
  3816 	i = rx_ring->next_to_clean;
       
  3817 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  3818 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  3819 	buffer_info = &rx_ring->buffer_info[i];
       
  3820 
       
  3821 	while (staterr & E1000_RXD_STAT_DD) {
       
  3822 		ps_page = &rx_ring->ps_page[i];
       
  3823 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  3824 #ifdef CONFIG_E1000_NAPI
       
  3825 		if (unlikely(*work_done >= work_to_do))
       
  3826 			break;
       
  3827 		(*work_done)++;
       
  3828 #endif
       
  3829 		skb = buffer_info->skb;
       
  3830 
       
  3831 		/* in the packet split case this is header only */
       
  3832 		prefetch(skb->data - NET_IP_ALIGN);
       
  3833 
       
  3834 		if (++i == rx_ring->count) i = 0;
       
  3835 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
       
  3836 		prefetch(next_rxd);
       
  3837 
       
  3838 		next_buffer = &rx_ring->buffer_info[i];
       
  3839 
       
  3840 		cleaned = TRUE;
       
  3841 		cleaned_count++;
       
  3842 		pci_unmap_single(pdev, buffer_info->dma,
       
  3843 				 buffer_info->length,
       
  3844 				 PCI_DMA_FROMDEVICE);
       
  3845 
       
  3846 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
       
  3847 			E1000_DBG("%s: Packet Split buffers didn't pick up"
       
  3848 				  " the full packet\n", netdev->name);
       
  3849 			dev_kfree_skb_irq(skb);
       
  3850 			goto next_desc;
       
  3851 		}
       
  3852 
       
  3853 		if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
       
  3854 			dev_kfree_skb_irq(skb);
       
  3855 			goto next_desc;
       
  3856 		}
       
  3857 
       
  3858 		length = le16_to_cpu(rx_desc->wb.middle.length0);
       
  3859 
       
  3860 		if (unlikely(!length)) {
       
  3861 			E1000_DBG("%s: Last part of the packet spanning"
       
  3862 				  " multiple descriptors\n", netdev->name);
       
  3863 			dev_kfree_skb_irq(skb);
       
  3864 			goto next_desc;
       
  3865 		}
       
  3866 
       
  3867 		/* Good Receive */
       
  3868 		skb_put(skb, length);
       
  3869 
       
  3870 		{
       
  3871 		/* this looks ugly, but it seems compiler issues make it
       
  3872 		   more efficient than reusing j */
       
  3873 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
       
  3874 
       
  3875 		/* page alloc/put takes too long and effects small packet
       
  3876 		 * throughput, so unsplit small packets and save the alloc/put*/
       
  3877 		if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
       
  3878 			u8 *vaddr;
       
  3879 			/* there is no documentation about how to call
       
  3880 			 * kmap_atomic, so we can't hold the mapping
       
  3881 			 * very long */
       
  3882 			pci_dma_sync_single_for_cpu(pdev,
       
  3883 				ps_page_dma->ps_page_dma[0],
       
  3884 				PAGE_SIZE,
       
  3885 				PCI_DMA_FROMDEVICE);
       
  3886 			vaddr = kmap_atomic(ps_page->ps_page[0],
       
  3887 			                    KM_SKB_DATA_SOFTIRQ);
       
  3888 			memcpy(skb->tail, vaddr, l1);
       
  3889 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
       
  3890 			pci_dma_sync_single_for_device(pdev,
       
  3891 				ps_page_dma->ps_page_dma[0],
       
  3892 				PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  3893 			/* remove the CRC */
       
  3894 			l1 -= 4;
       
  3895 			skb_put(skb, l1);
       
  3896 			goto copydone;
       
  3897 		} /* if */
       
  3898 		}
       
  3899 		
       
  3900 		for (j = 0; j < adapter->rx_ps_pages; j++) {
       
  3901 			if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
       
  3902 				break;
       
  3903 			pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
       
  3904 					PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  3905 			ps_page_dma->ps_page_dma[j] = 0;
       
  3906 			skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
       
  3907 			                   length);
       
  3908 			ps_page->ps_page[j] = NULL;
       
  3909 			skb->len += length;
       
  3910 			skb->data_len += length;
       
  3911 			skb->truesize += length;
       
  3912 		}
       
  3913 
       
  3914 		/* strip the ethernet crc, problem is we're using pages now so
       
  3915 		 * this whole operation can get a little cpu intensive */
       
  3916 		pskb_trim(skb, skb->len - 4);
       
  3917 
       
  3918 copydone:
       
  3919 		e1000_rx_checksum(adapter, staterr,
       
  3920 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
       
  3921 		skb->protocol = eth_type_trans(skb, netdev);
       
  3922 
       
  3923 		if (likely(rx_desc->wb.upper.header_status &
       
  3924 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
       
  3925 			adapter->rx_hdr_split++;
       
  3926 #ifdef CONFIG_E1000_NAPI
       
  3927 		if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
       
  3928 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  3929 				le16_to_cpu(rx_desc->wb.middle.vlan) &
       
  3930 				E1000_RXD_SPC_VLAN_MASK);
       
  3931 		} else {
       
  3932 			netif_receive_skb(skb);
       
  3933 		}
       
  3934 #else /* CONFIG_E1000_NAPI */
       
  3935 		if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
       
  3936 			vlan_hwaccel_rx(skb, adapter->vlgrp,
       
  3937 				le16_to_cpu(rx_desc->wb.middle.vlan) &
       
  3938 				E1000_RXD_SPC_VLAN_MASK);
       
  3939 		} else {
       
  3940 			netif_rx(skb);
       
  3941 		}
       
  3942 #endif /* CONFIG_E1000_NAPI */
       
  3943 		netdev->last_rx = jiffies;
       
  3944 
       
  3945 next_desc:
       
  3946 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
       
  3947 		buffer_info->skb = NULL;
       
  3948 
       
  3949 		/* return some buffers to hardware, one at a time is too slow */
       
  3950 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  3951 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3952 			cleaned_count = 0;
       
  3953 		}
       
  3954 
       
  3955 		/* use prefetched values */
       
  3956 		rx_desc = next_rxd;
       
  3957 		buffer_info = next_buffer;
       
  3958 
       
  3959 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  3960 	}
       
  3961 	rx_ring->next_to_clean = i;
       
  3962 
       
  3963 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  3964 	if (cleaned_count)
       
  3965 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3966 
       
  3967 	return cleaned;
       
  3968 }
       
  3969 
       
  3970 /**
       
  3971  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
  3972  * @adapter: address of board private structure
       
  3973  **/
       
  3974 
       
  3975 static void
       
  3976 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
  3977                        struct e1000_rx_ring *rx_ring,
       
  3978 		       int cleaned_count)
       
  3979 {
       
  3980 	struct net_device *netdev = adapter->netdev;
       
  3981 	struct pci_dev *pdev = adapter->pdev;
       
  3982 	struct e1000_rx_desc *rx_desc;
       
  3983 	struct e1000_buffer *buffer_info;
       
  3984 	struct sk_buff *skb;
       
  3985 	unsigned int i;
       
  3986 	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
       
  3987 
       
  3988 	i = rx_ring->next_to_use;
       
  3989 	buffer_info = &rx_ring->buffer_info[i];
       
  3990 
       
  3991 	while (cleaned_count--) {
       
  3992 		if (!(skb = buffer_info->skb))
       
  3993 			skb = netdev_alloc_skb(netdev, bufsz);
       
  3994 		else {
       
  3995 			skb_trim(skb, 0);
       
  3996 			goto map_skb;
       
  3997 		}
       
  3998 
       
  3999 		if (unlikely(!skb)) {
       
  4000 			/* Better luck next round */
       
  4001 			adapter->alloc_rx_buff_failed++;
       
  4002 			break;
       
  4003 		}
       
  4004 
       
  4005 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4006 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4007 			struct sk_buff *oldskb = skb;
       
  4008 			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
       
  4009 					     "at %p\n", bufsz, skb->data);
       
  4010 			/* Try again, without freeing the previous */
       
  4011 			skb = netdev_alloc_skb(netdev, bufsz);
       
  4012 			/* Failed allocation, critical failure */
       
  4013 			if (!skb) {
       
  4014 				dev_kfree_skb(oldskb);
       
  4015 				break;
       
  4016 			}
       
  4017 
       
  4018 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4019 				/* give up */
       
  4020 				dev_kfree_skb(skb);
       
  4021 				dev_kfree_skb(oldskb);
       
  4022 				break; /* while !buffer_info->skb */
       
  4023 			} else {
       
  4024 				/* Use new allocation */
       
  4025 				dev_kfree_skb(oldskb);
       
  4026 			}
       
  4027 		}
       
  4028 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  4029 		 * this will result in a 16 byte aligned IP header after
       
  4030 		 * the 14 byte MAC header is removed
       
  4031 		 */
       
  4032 		skb_reserve(skb, NET_IP_ALIGN);
       
  4033 
       
  4034 		skb->dev = netdev;
       
  4035 
       
  4036 		buffer_info->skb = skb;
       
  4037 		buffer_info->length = adapter->rx_buffer_len;
       
  4038 map_skb:
       
  4039 		buffer_info->dma = pci_map_single(pdev,
       
  4040 						  skb->data,
       
  4041 						  adapter->rx_buffer_len,
       
  4042 						  PCI_DMA_FROMDEVICE);
       
  4043 
       
  4044 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4045 		if (!e1000_check_64k_bound(adapter,
       
  4046 					(void *)(unsigned long)buffer_info->dma,
       
  4047 					adapter->rx_buffer_len)) {
       
  4048 			DPRINTK(RX_ERR, ERR,
       
  4049 				"dma align check failed: %u bytes at %p\n",
       
  4050 				adapter->rx_buffer_len,
       
  4051 				(void *)(unsigned long)buffer_info->dma);
       
  4052 			dev_kfree_skb(skb);
       
  4053 			buffer_info->skb = NULL;
       
  4054 
       
  4055 			pci_unmap_single(pdev, buffer_info->dma,
       
  4056 					 adapter->rx_buffer_len,
       
  4057 					 PCI_DMA_FROMDEVICE);
       
  4058 
       
  4059 			break; /* while !buffer_info->skb */
       
  4060 		}
       
  4061 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4062 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4063 
       
  4064 		if (unlikely(++i == rx_ring->count))
       
  4065 			i = 0;
       
  4066 		buffer_info = &rx_ring->buffer_info[i];
       
  4067 	}
       
  4068 
       
  4069 	if (likely(rx_ring->next_to_use != i)) {
       
  4070 		rx_ring->next_to_use = i;
       
  4071 		if (unlikely(i-- == 0))
       
  4072 			i = (rx_ring->count - 1);
       
  4073 
       
  4074 		/* Force memory writes to complete before letting h/w
       
  4075 		 * know there are new descriptors to fetch.  (Only
       
  4076 		 * applicable for weak-ordered memory model archs,
       
  4077 		 * such as IA-64). */
       
  4078 		wmb();
       
  4079 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
       
  4080 	}
       
  4081 }
       
  4082 
       
  4083 /**
       
  4084  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
       
  4085  * @adapter: address of board private structure
       
  4086  **/
       
  4087 
       
  4088 static void
       
  4089 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
  4090                           struct e1000_rx_ring *rx_ring,
       
  4091 			  int cleaned_count)
       
  4092 {
       
  4093 	struct net_device *netdev = adapter->netdev;
       
  4094 	struct pci_dev *pdev = adapter->pdev;
       
  4095 	union e1000_rx_desc_packet_split *rx_desc;
       
  4096 	struct e1000_buffer *buffer_info;
       
  4097 	struct e1000_ps_page *ps_page;
       
  4098 	struct e1000_ps_page_dma *ps_page_dma;
       
  4099 	struct sk_buff *skb;
       
  4100 	unsigned int i, j;
       
  4101 
       
  4102 	i = rx_ring->next_to_use;
       
  4103 	buffer_info = &rx_ring->buffer_info[i];
       
  4104 	ps_page = &rx_ring->ps_page[i];
       
  4105 	ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4106 
       
  4107 	while (cleaned_count--) {
       
  4108 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  4109 
       
  4110 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  4111 			if (j < adapter->rx_ps_pages) {
       
  4112 				if (likely(!ps_page->ps_page[j])) {
       
  4113 					ps_page->ps_page[j] =
       
  4114 						alloc_page(GFP_ATOMIC);
       
  4115 					if (unlikely(!ps_page->ps_page[j])) {
       
  4116 						adapter->alloc_rx_buff_failed++;
       
  4117 						goto no_buffers;
       
  4118 					}
       
  4119 					ps_page_dma->ps_page_dma[j] =
       
  4120 						pci_map_page(pdev,
       
  4121 							    ps_page->ps_page[j],
       
  4122 							    0, PAGE_SIZE,
       
  4123 							    PCI_DMA_FROMDEVICE);
       
  4124 				}
       
  4125 				/* Refresh the desc even if buffer_addrs didn't
       
  4126 				 * change because each write-back erases
       
  4127 				 * this info.
       
  4128 				 */
       
  4129 				rx_desc->read.buffer_addr[j+1] =
       
  4130 				     cpu_to_le64(ps_page_dma->ps_page_dma[j]);
       
  4131 			} else
       
  4132 				rx_desc->read.buffer_addr[j+1] = ~0;
       
  4133 		}
       
  4134 
       
  4135 		skb = netdev_alloc_skb(netdev,
       
  4136 				       adapter->rx_ps_bsize0 + NET_IP_ALIGN);
       
  4137 
       
  4138 		if (unlikely(!skb)) {
       
  4139 			adapter->alloc_rx_buff_failed++;
       
  4140 			break;
       
  4141 		}
       
  4142 
       
  4143 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  4144 		 * this will result in a 16 byte aligned IP header after
       
  4145 		 * the 14 byte MAC header is removed
       
  4146 		 */
       
  4147 		skb_reserve(skb, NET_IP_ALIGN);
       
  4148 
       
  4149 		skb->dev = netdev;
       
  4150 
       
  4151 		buffer_info->skb = skb;
       
  4152 		buffer_info->length = adapter->rx_ps_bsize0;
       
  4153 		buffer_info->dma = pci_map_single(pdev, skb->data,
       
  4154 						  adapter->rx_ps_bsize0,
       
  4155 						  PCI_DMA_FROMDEVICE);
       
  4156 
       
  4157 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
       
  4158 
       
  4159 		if (unlikely(++i == rx_ring->count)) i = 0;
       
  4160 		buffer_info = &rx_ring->buffer_info[i];
       
  4161 		ps_page = &rx_ring->ps_page[i];
       
  4162 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4163 	}
       
  4164 
       
  4165 no_buffers:
       
  4166 	if (likely(rx_ring->next_to_use != i)) {
       
  4167 		rx_ring->next_to_use = i;
       
  4168 		if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
       
  4169 
       
  4170 		/* Force memory writes to complete before letting h/w
       
  4171 		 * know there are new descriptors to fetch.  (Only
       
  4172 		 * applicable for weak-ordered memory model archs,
       
  4173 		 * such as IA-64). */
       
  4174 		wmb();
       
  4175 		/* Hardware increments by 16 bytes, but packet split
       
  4176 		 * descriptors are 32 bytes...so we increment tail
       
  4177 		 * twice as much.
       
  4178 		 */
       
  4179 		writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
       
  4180 	}
       
  4181 }
       
  4182 
       
  4183 /**
       
  4184  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
       
  4185  * @adapter:
       
  4186  **/
       
  4187 
       
  4188 static void
       
  4189 e1000_smartspeed(struct e1000_adapter *adapter)
       
  4190 {
       
  4191 	uint16_t phy_status;
       
  4192 	uint16_t phy_ctrl;
       
  4193 
       
  4194 	if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
       
  4195 	   !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
       
  4196 		return;
       
  4197 
       
  4198 	if (adapter->smartspeed == 0) {
       
  4199 		/* If Master/Slave config fault is asserted twice,
       
  4200 		 * we assume back-to-back */
       
  4201 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
       
  4202 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4203 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
       
  4204 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4205 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4206 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
       
  4207 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
       
  4208 			e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
       
  4209 					    phy_ctrl);
       
  4210 			adapter->smartspeed++;
       
  4211 			if (!e1000_phy_setup_autoneg(&adapter->hw) &&
       
  4212 			   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
       
  4213 				   	       &phy_ctrl)) {
       
  4214 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4215 					     MII_CR_RESTART_AUTO_NEG);
       
  4216 				e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
       
  4217 						    phy_ctrl);
       
  4218 			}
       
  4219 		}
       
  4220 		return;
       
  4221 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
       
  4222 		/* If still no link, perhaps using 2/3 pair cable */
       
  4223 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4224 		phy_ctrl |= CR_1000T_MS_ENABLE;
       
  4225 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
       
  4226 		if (!e1000_phy_setup_autoneg(&adapter->hw) &&
       
  4227 		   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
       
  4228 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4229 				     MII_CR_RESTART_AUTO_NEG);
       
  4230 			e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
       
  4231 		}
       
  4232 	}
       
  4233 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
       
  4234 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
       
  4235 		adapter->smartspeed = 0;
       
  4236 }
       
  4237 
       
  4238 /**
       
  4239  * e1000_ioctl -
       
  4240  * @netdev:
       
  4241  * @ifreq:
       
  4242  * @cmd:
       
  4243  **/
       
  4244 
       
  4245 static int
       
  4246 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4247 {
       
  4248 	switch (cmd) {
       
  4249 	case SIOCGMIIPHY:
       
  4250 	case SIOCGMIIREG:
       
  4251 	case SIOCSMIIREG:
       
  4252 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  4253 	default:
       
  4254 		return -EOPNOTSUPP;
       
  4255 	}
       
  4256 }
       
  4257 
       
  4258 /**
       
  4259  * e1000_mii_ioctl -
       
  4260  * @netdev:
       
  4261  * @ifreq:
       
  4262  * @cmd:
       
  4263  **/
       
  4264 
       
  4265 static int
       
  4266 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4267 {
       
  4268 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4269 	struct mii_ioctl_data *data = if_mii(ifr);
       
  4270 	int retval;
       
  4271 	uint16_t mii_reg;
       
  4272 	uint16_t spddplx;
       
  4273 	unsigned long flags;
       
  4274 
       
  4275 	if (adapter->hw.media_type != e1000_media_type_copper)
       
  4276 		return -EOPNOTSUPP;
       
  4277 
       
  4278 	switch (cmd) {
       
  4279 	case SIOCGMIIPHY:
       
  4280 		data->phy_id = adapter->hw.phy_addr;
       
  4281 		break;
       
  4282 	case SIOCGMIIREG:
       
  4283 		if (!capable(CAP_NET_ADMIN))
       
  4284 			return -EPERM;
       
  4285 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4286 		if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
       
  4287 				   &data->val_out)) {
       
  4288 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4289 			return -EIO;
       
  4290 		}
       
  4291 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4292 		break;
       
  4293 	case SIOCSMIIREG:
       
  4294 		if (!capable(CAP_NET_ADMIN))
       
  4295 			return -EPERM;
       
  4296 		if (data->reg_num & ~(0x1F))
       
  4297 			return -EFAULT;
       
  4298 		mii_reg = data->val_in;
       
  4299 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4300 		if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
       
  4301 					mii_reg)) {
       
  4302 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4303 			return -EIO;
       
  4304 		}
       
  4305 		if (adapter->hw.media_type == e1000_media_type_copper) {
       
  4306 			switch (data->reg_num) {
       
  4307 			case PHY_CTRL:
       
  4308 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4309 					break;
       
  4310 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
       
  4311 					adapter->hw.autoneg = 1;
       
  4312 					adapter->hw.autoneg_advertised = 0x2F;
       
  4313 				} else {
       
  4314 					if (mii_reg & 0x40)
       
  4315 						spddplx = SPEED_1000;
       
  4316 					else if (mii_reg & 0x2000)
       
  4317 						spddplx = SPEED_100;
       
  4318 					else
       
  4319 						spddplx = SPEED_10;
       
  4320 					spddplx += (mii_reg & 0x100)
       
  4321 						   ? DUPLEX_FULL :
       
  4322 						   DUPLEX_HALF;
       
  4323 					retval = e1000_set_spd_dplx(adapter,
       
  4324 								    spddplx);
       
  4325 					if (retval) {
       
  4326 						spin_unlock_irqrestore(
       
  4327 							&adapter->stats_lock,
       
  4328 							flags);
       
  4329 						return retval;
       
  4330 					}
       
  4331 				}
       
  4332 				if (netif_running(adapter->netdev))
       
  4333 					e1000_reinit_locked(adapter);
       
  4334 				else
       
  4335 					e1000_reset(adapter);
       
  4336 				break;
       
  4337 			case M88E1000_PHY_SPEC_CTRL:
       
  4338 			case M88E1000_EXT_PHY_SPEC_CTRL:
       
  4339 				if (e1000_phy_reset(&adapter->hw)) {
       
  4340 					spin_unlock_irqrestore(
       
  4341 						&adapter->stats_lock, flags);
       
  4342 					return -EIO;
       
  4343 				}
       
  4344 				break;
       
  4345 			}
       
  4346 		} else {
       
  4347 			switch (data->reg_num) {
       
  4348 			case PHY_CTRL:
       
  4349 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4350 					break;
       
  4351 				if (netif_running(adapter->netdev))
       
  4352 					e1000_reinit_locked(adapter);
       
  4353 				else
       
  4354 					e1000_reset(adapter);
       
  4355 				break;
       
  4356 			}
       
  4357 		}
       
  4358 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4359 		break;
       
  4360 	default:
       
  4361 		return -EOPNOTSUPP;
       
  4362 	}
       
  4363 	return E1000_SUCCESS;
       
  4364 }
       
  4365 
       
  4366 void
       
  4367 e1000_pci_set_mwi(struct e1000_hw *hw)
       
  4368 {
       
  4369 	struct e1000_adapter *adapter = hw->back;
       
  4370 	int ret_val = pci_set_mwi(adapter->pdev);
       
  4371 
       
  4372 	if (ret_val)
       
  4373 		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
       
  4374 }
       
  4375 
       
  4376 void
       
  4377 e1000_pci_clear_mwi(struct e1000_hw *hw)
       
  4378 {
       
  4379 	struct e1000_adapter *adapter = hw->back;
       
  4380 
       
  4381 	pci_clear_mwi(adapter->pdev);
       
  4382 }
       
  4383 
       
  4384 void
       
  4385 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
       
  4386 {
       
  4387 	struct e1000_adapter *adapter = hw->back;
       
  4388 
       
  4389 	pci_read_config_word(adapter->pdev, reg, value);
       
  4390 }
       
  4391 
       
  4392 void
       
  4393 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
       
  4394 {
       
  4395 	struct e1000_adapter *adapter = hw->back;
       
  4396 
       
  4397 	pci_write_config_word(adapter->pdev, reg, *value);
       
  4398 }
       
  4399 
       
  4400 #if 0
       
  4401 uint32_t
       
  4402 e1000_io_read(struct e1000_hw *hw, unsigned long port)
       
  4403 {
       
  4404 	return inl(port);
       
  4405 }
       
  4406 #endif  /*  0  */
       
  4407 
       
  4408 void
       
  4409 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
       
  4410 {
       
  4411 	outl(value, port);
       
  4412 }
       
  4413 
       
  4414 static void
       
  4415 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
       
  4416 {
       
  4417 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4418 	uint32_t ctrl, rctl;
       
  4419 
       
  4420 	e1000_irq_disable(adapter);
       
  4421 	adapter->vlgrp = grp;
       
  4422 
       
  4423 	if (grp) {
       
  4424 		/* enable VLAN tag insert/strip */
       
  4425 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  4426 		ctrl |= E1000_CTRL_VME;
       
  4427 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  4428 
       
  4429 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  4430 		/* enable VLAN receive filtering */
       
  4431 		rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  4432 		rctl |= E1000_RCTL_VFE;
       
  4433 		rctl &= ~E1000_RCTL_CFIEN;
       
  4434 		E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  4435 		e1000_update_mng_vlan(adapter);
       
  4436 		}
       
  4437 	} else {
       
  4438 		/* disable VLAN tag insert/strip */
       
  4439 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  4440 		ctrl &= ~E1000_CTRL_VME;
       
  4441 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  4442 
       
  4443 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  4444 		/* disable VLAN filtering */
       
  4445 		rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  4446 		rctl &= ~E1000_RCTL_VFE;
       
  4447 		E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  4448 		if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
       
  4449 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  4450 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  4451 		}
       
  4452 		}
       
  4453 	}
       
  4454 
       
  4455 	e1000_irq_enable(adapter);
       
  4456 }
       
  4457 
       
  4458 static void
       
  4459 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
       
  4460 {
       
  4461 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4462 	uint32_t vfta, index;
       
  4463 
       
  4464 	if ((adapter->hw.mng_cookie.status &
       
  4465 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  4466 	    (vid == adapter->mng_vlan_id))
       
  4467 		return;
       
  4468 	/* add VID to filter table */
       
  4469 	index = (vid >> 5) & 0x7F;
       
  4470 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
       
  4471 	vfta |= (1 << (vid & 0x1F));
       
  4472 	e1000_write_vfta(&adapter->hw, index, vfta);
       
  4473 }
       
  4474 
       
  4475 static void
       
  4476 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
       
  4477 {
       
  4478 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4479 	uint32_t vfta, index;
       
  4480 
       
  4481 	e1000_irq_disable(adapter);
       
  4482 
       
  4483 	if (adapter->vlgrp)
       
  4484 		adapter->vlgrp->vlan_devices[vid] = NULL;
       
  4485 
       
  4486 	e1000_irq_enable(adapter);
       
  4487 
       
  4488 	if ((adapter->hw.mng_cookie.status &
       
  4489 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  4490 	    (vid == adapter->mng_vlan_id)) {
       
  4491 		/* release control to f/w */
       
  4492 		e1000_release_hw_control(adapter);
       
  4493 		return;
       
  4494 	}
       
  4495 
       
  4496 	/* remove VID from filter table */
       
  4497 	index = (vid >> 5) & 0x7F;
       
  4498 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
       
  4499 	vfta &= ~(1 << (vid & 0x1F));
       
  4500 	e1000_write_vfta(&adapter->hw, index, vfta);
       
  4501 }
       
  4502 
       
  4503 static void
       
  4504 e1000_restore_vlan(struct e1000_adapter *adapter)
       
  4505 {
       
  4506 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
       
  4507 
       
  4508 	if (adapter->vlgrp) {
       
  4509 		uint16_t vid;
       
  4510 		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
       
  4511 			if (!adapter->vlgrp->vlan_devices[vid])
       
  4512 				continue;
       
  4513 			e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  4514 		}
       
  4515 	}
       
  4516 }
       
  4517 
       
  4518 int
       
  4519 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
       
  4520 {
       
  4521 	adapter->hw.autoneg = 0;
       
  4522 
       
  4523 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
  4524 	if ((adapter->hw.media_type == e1000_media_type_fiber) &&
       
  4525 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
       
  4526 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  4527 		return -EINVAL;
       
  4528 	}
       
  4529 
       
  4530 	switch (spddplx) {
       
  4531 	case SPEED_10 + DUPLEX_HALF:
       
  4532 		adapter->hw.forced_speed_duplex = e1000_10_half;
       
  4533 		break;
       
  4534 	case SPEED_10 + DUPLEX_FULL:
       
  4535 		adapter->hw.forced_speed_duplex = e1000_10_full;
       
  4536 		break;
       
  4537 	case SPEED_100 + DUPLEX_HALF:
       
  4538 		adapter->hw.forced_speed_duplex = e1000_100_half;
       
  4539 		break;
       
  4540 	case SPEED_100 + DUPLEX_FULL:
       
  4541 		adapter->hw.forced_speed_duplex = e1000_100_full;
       
  4542 		break;
       
  4543 	case SPEED_1000 + DUPLEX_FULL:
       
  4544 		adapter->hw.autoneg = 1;
       
  4545 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
       
  4546 		break;
       
  4547 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
  4548 	default:
       
  4549 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  4550 		return -EINVAL;
       
  4551 	}
       
  4552 	return 0;
       
  4553 }
       
  4554 
       
  4555 #ifdef CONFIG_PM
       
  4556 /* Save/restore 16 or 64 dwords of PCI config space depending on which
       
  4557  * bus we're on (PCI(X) vs. PCI-E)
       
  4558  */
       
  4559 #define PCIE_CONFIG_SPACE_LEN 256
       
  4560 #define PCI_CONFIG_SPACE_LEN 64
       
  4561 static int
       
  4562 e1000_pci_save_state(struct e1000_adapter *adapter)
       
  4563 {
       
  4564 	struct pci_dev *dev = adapter->pdev;
       
  4565 	int size;
       
  4566 	int i;
       
  4567 
       
  4568 	if (adapter->hw.mac_type >= e1000_82571)
       
  4569 		size = PCIE_CONFIG_SPACE_LEN;
       
  4570 	else
       
  4571 		size = PCI_CONFIG_SPACE_LEN;
       
  4572 
       
  4573 	WARN_ON(adapter->config_space != NULL);
       
  4574 
       
  4575 	adapter->config_space = kmalloc(size, GFP_KERNEL);
       
  4576 	if (!adapter->config_space) {
       
  4577 		DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
       
  4578 		return -ENOMEM;
       
  4579 	}
       
  4580 	for (i = 0; i < (size / 4); i++)
       
  4581 		pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
       
  4582 	return 0;
       
  4583 }
       
  4584 
       
  4585 static void
       
  4586 e1000_pci_restore_state(struct e1000_adapter *adapter)
       
  4587 {
       
  4588 	struct pci_dev *dev = adapter->pdev;
       
  4589 	int size;
       
  4590 	int i;
       
  4591 
       
  4592 	if (adapter->config_space == NULL)
       
  4593 		return;
       
  4594 
       
  4595 	if (adapter->hw.mac_type >= e1000_82571)
       
  4596 		size = PCIE_CONFIG_SPACE_LEN;
       
  4597 	else
       
  4598 		size = PCI_CONFIG_SPACE_LEN;
       
  4599 	for (i = 0; i < (size / 4); i++)
       
  4600 		pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
       
  4601 	kfree(adapter->config_space);
       
  4602 	adapter->config_space = NULL;
       
  4603 	return;
       
  4604 }
       
  4605 #endif /* CONFIG_PM */
       
  4606 
       
  4607 static int
       
  4608 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
       
  4609 {
       
  4610 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4611 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4612 	uint32_t ctrl, ctrl_ext, rctl, manc, status;
       
  4613 	uint32_t wufc = adapter->wol;
       
  4614 #ifdef CONFIG_PM
       
  4615 	int retval = 0;
       
  4616 #endif
       
  4617 
       
  4618 	netif_device_detach(netdev);
       
  4619 
       
  4620 	if (netif_running(netdev)) {
       
  4621 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  4622 		e1000_down(adapter);
       
  4623 	}
       
  4624 
       
  4625 #ifdef CONFIG_PM
       
  4626 	/* Implement our own version of pci_save_state(pdev) because pci-
       
  4627 	 * express adapters have 256-byte config spaces. */
       
  4628 	retval = e1000_pci_save_state(adapter);
       
  4629 	if (retval)
       
  4630 		return retval;
       
  4631 #endif
       
  4632 
       
  4633 	status = E1000_READ_REG(&adapter->hw, STATUS);
       
  4634 	if (status & E1000_STATUS_LU)
       
  4635 		wufc &= ~E1000_WUFC_LNKC;
       
  4636 
       
  4637 	if (wufc) {
       
  4638 		e1000_setup_rctl(adapter);
       
  4639 		e1000_set_multi(netdev);
       
  4640 
       
  4641 		/* turn on all-multi mode if wake on multicast is enabled */
       
  4642 		if (adapter->wol & E1000_WUFC_MC) {
       
  4643 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  4644 			rctl |= E1000_RCTL_MPE;
       
  4645 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  4646 		}
       
  4647 
       
  4648 		if (adapter->hw.mac_type >= e1000_82540) {
       
  4649 			ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  4650 			/* advertise wake from D3Cold */
       
  4651 			#define E1000_CTRL_ADVD3WUC 0x00100000
       
  4652 			/* phy power management enable */
       
  4653 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  4654 			ctrl |= E1000_CTRL_ADVD3WUC |
       
  4655 				E1000_CTRL_EN_PHY_PWR_MGMT;
       
  4656 			E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  4657 		}
       
  4658 
       
  4659 		if (adapter->hw.media_type == e1000_media_type_fiber ||
       
  4660 		   adapter->hw.media_type == e1000_media_type_internal_serdes) {
       
  4661 			/* keep the laser running in D3 */
       
  4662 			ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
  4663 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
       
  4664 			E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
       
  4665 		}
       
  4666 
       
  4667 		/* Allow time for pending master requests to run */
       
  4668 		e1000_disable_pciex_master(&adapter->hw);
       
  4669 
       
  4670 		E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
       
  4671 		E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
       
  4672 		pci_enable_wake(pdev, PCI_D3hot, 1);
       
  4673 		pci_enable_wake(pdev, PCI_D3cold, 1);
       
  4674 	} else {
       
  4675 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
       
  4676 		E1000_WRITE_REG(&adapter->hw, WUFC, 0);
       
  4677 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4678 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4679 	}
       
  4680 
       
  4681 	/* FIXME: this code is incorrect for PCI Express */
       
  4682 	if (adapter->hw.mac_type >= e1000_82540 &&
       
  4683 	   adapter->hw.mac_type != e1000_ich8lan &&
       
  4684 	   adapter->hw.media_type == e1000_media_type_copper) {
       
  4685 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
  4686 		if (manc & E1000_MANC_SMBUS_EN) {
       
  4687 			manc |= E1000_MANC_ARP_EN;
       
  4688 			E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
  4689 			pci_enable_wake(pdev, PCI_D3hot, 1);
       
  4690 			pci_enable_wake(pdev, PCI_D3cold, 1);
       
  4691 		}
       
  4692 	}
       
  4693 
       
  4694 	if (adapter->hw.phy_type == e1000_phy_igp_3)
       
  4695 		e1000_phy_powerdown_workaround(&adapter->hw);
       
  4696 
       
  4697 	if (netif_running(netdev))
       
  4698 		e1000_free_irq(adapter);
       
  4699 
       
  4700 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  4701 	 * would have already happened in close and is redundant. */
       
  4702 	e1000_release_hw_control(adapter);
       
  4703 
       
  4704 	pci_disable_device(pdev);
       
  4705 
       
  4706 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
       
  4707 
       
  4708 	return 0;
       
  4709 }
       
  4710 
       
  4711 #ifdef CONFIG_PM
       
  4712 static int
       
  4713 e1000_resume(struct pci_dev *pdev)
       
  4714 {
       
  4715 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4716 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4717 	uint32_t manc, ret_val;
       
  4718 
       
  4719 	pci_set_power_state(pdev, PCI_D0);
       
  4720 	e1000_pci_restore_state(adapter);
       
  4721 	ret_val = pci_enable_device(pdev);
       
  4722 	pci_set_master(pdev);
       
  4723 
       
  4724 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4725 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4726 
       
  4727 	if (!adapter->ecdev) {
       
  4728 		if (netif_running(netdev) && (ret_val = e1000_request_irq(adapter)))
       
  4729 			return ret_val;
       
  4730 	}
       
  4731 
       
  4732 	e1000_power_up_phy(adapter);
       
  4733 	e1000_reset(adapter);
       
  4734 	E1000_WRITE_REG(&adapter->hw, WUS, ~0);
       
  4735 
       
  4736 	if (adapter->ecdev || netif_running(netdev))
       
  4737 		e1000_up(adapter);
       
  4738 
       
  4739 	if (adapter->ecdev) netif_device_attach(netdev);
       
  4740 
       
  4741 	/* FIXME: this code is incorrect for PCI Express */
       
  4742 	if (adapter->hw.mac_type >= e1000_82540 &&
       
  4743 	   adapter->hw.mac_type != e1000_ich8lan &&
       
  4744 	   adapter->hw.media_type == e1000_media_type_copper) {
       
  4745 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
  4746 		manc &= ~(E1000_MANC_ARP_EN);
       
  4747 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
  4748 	}
       
  4749 
       
  4750 	/* If the controller is 82573 and f/w is AMT, do not set
       
  4751 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  4752 	 * let the f/w know that the h/w is now under the control
       
  4753 	 * of the driver. */
       
  4754 	if (adapter->hw.mac_type != e1000_82573 ||
       
  4755 	    !e1000_check_mng_mode(&adapter->hw))
       
  4756 		e1000_get_hw_control(adapter);
       
  4757 
       
  4758 	return 0;
       
  4759 }
       
  4760 #endif
       
  4761 
       
  4762 static void e1000_shutdown(struct pci_dev *pdev)
       
  4763 {
       
  4764 	e1000_suspend(pdev, PMSG_SUSPEND);
       
  4765 }
       
  4766 
       
  4767 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  4768 /*
       
  4769  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  4770  * without having to re-enable interrupts. It's not called while
       
  4771  * the interrupt routine is executing.
       
  4772  */
       
  4773 static void
       
  4774 e1000_netpoll(struct net_device *netdev)
       
  4775 {
       
  4776 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4777 
       
  4778 	disable_irq(adapter->pdev->irq);
       
  4779 	e1000_intr(adapter->pdev->irq, netdev, NULL);
       
  4780 	e1000_clean_tx_irq(adapter, adapter->tx_ring);
       
  4781 #ifndef CONFIG_E1000_NAPI
       
  4782 	adapter->clean_rx(adapter, adapter->rx_ring);
       
  4783 #endif
       
  4784 	enable_irq(adapter->pdev->irq);
       
  4785 }
       
  4786 #endif
       
  4787 
       
  4788 /**
       
  4789  * e1000_io_error_detected - called when PCI error is detected
       
  4790  * @pdev: Pointer to PCI device
       
  4791  * @state: The current pci conneection state
       
  4792  *
       
  4793  * This function is called after a PCI bus error affecting
       
  4794  * this device has been detected.
       
  4795  */
       
  4796 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
       
  4797 {
       
  4798 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4799 	struct e1000_adapter *adapter = netdev->priv;
       
  4800 
       
  4801 	netif_device_detach(netdev);
       
  4802 
       
  4803 	if (netif_running(netdev))
       
  4804 		e1000_down(adapter);
       
  4805 
       
  4806 	/* Request a slot slot reset. */
       
  4807 	return PCI_ERS_RESULT_NEED_RESET;
       
  4808 }
       
  4809 
       
  4810 /**
       
  4811  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  4812  * @pdev: Pointer to PCI device
       
  4813  *
       
  4814  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  4815  * resembles the first-half of the e1000_resume routine.
       
  4816  */
       
  4817 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  4818 {
       
  4819 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4820 	struct e1000_adapter *adapter = netdev->priv;
       
  4821 
       
  4822 	if (pci_enable_device(pdev)) {
       
  4823 		printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
       
  4824 		return PCI_ERS_RESULT_DISCONNECT;
       
  4825 	}
       
  4826 	pci_set_master(pdev);
       
  4827 
       
  4828 	pci_enable_wake(pdev, 3, 0);
       
  4829 	pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
       
  4830 
       
  4831 	/* Perform card reset only on one instance of the card */
       
  4832 	if (PCI_FUNC (pdev->devfn) != 0)
       
  4833 		return PCI_ERS_RESULT_RECOVERED;
       
  4834 
       
  4835 	e1000_reset(adapter);
       
  4836 	E1000_WRITE_REG(&adapter->hw, WUS, ~0);
       
  4837 
       
  4838 	return PCI_ERS_RESULT_RECOVERED;
       
  4839 }
       
  4840 
       
  4841 /**
       
  4842  * e1000_io_resume - called when traffic can start flowing again.
       
  4843  * @pdev: Pointer to PCI device
       
  4844  *
       
  4845  * This callback is called when the error recovery driver tells us that
       
  4846  * its OK to resume normal operation. Implementation resembles the
       
  4847  * second-half of the e1000_resume routine.
       
  4848  */
       
  4849 static void e1000_io_resume(struct pci_dev *pdev)
       
  4850 {
       
  4851 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4852 	struct e1000_adapter *adapter = netdev->priv;
       
  4853 	uint32_t manc, swsm;
       
  4854 
       
  4855 	if (netif_running(netdev)) {
       
  4856 		if (e1000_up(adapter)) {
       
  4857 			printk("e1000: can't bring device back up after reset\n");
       
  4858 			return;
       
  4859 		}
       
  4860 	}
       
  4861 
       
  4862 	netif_device_attach(netdev);
       
  4863 
       
  4864 	if (adapter->hw.mac_type >= e1000_82540 &&
       
  4865 	    adapter->hw.media_type == e1000_media_type_copper) {
       
  4866 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
  4867 		manc &= ~(E1000_MANC_ARP_EN);
       
  4868 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
  4869 	}
       
  4870 
       
  4871 	switch (adapter->hw.mac_type) {
       
  4872 	case e1000_82573:
       
  4873 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
  4874 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
  4875 				swsm | E1000_SWSM_DRV_LOAD);
       
  4876 		break;
       
  4877 	default:
       
  4878 		break;
       
  4879 	}
       
  4880 
       
  4881 	if (netif_running(netdev))
       
  4882 		mod_timer(&adapter->watchdog_timer, jiffies);
       
  4883 }
       
  4884 
       
  4885 /* e1000_main.c */