devices/e1000/e1000_main-2.6.22-orig.c
changeset 788 9999ca1a1953
equal deleted inserted replaced
787:efa24cde53a7 788:9999ca1a1953
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000.h"
       
    30 #include <net/ip6_checksum.h>
       
    31 
       
    32 char e1000_driver_name[] = "e1000";
       
    33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
       
    34 #ifndef CONFIG_E1000_NAPI
       
    35 #define DRIVERNAPI
       
    36 #else
       
    37 #define DRIVERNAPI "-NAPI"
       
    38 #endif
       
    39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
       
    40 char e1000_driver_version[] = DRV_VERSION;
       
    41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
       
    42 
       
    43 /* e1000_pci_tbl - PCI Device ID Table
       
    44  *
       
    45  * Last entry must be all 0s
       
    46  *
       
    47  * Macro expands to...
       
    48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
       
    49  */
       
    50 static struct pci_device_id e1000_pci_tbl[] = {
       
    51 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
       
    52 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
       
    53 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
       
    54 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
       
    55 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
       
    56 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
       
    57 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
       
    58 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
       
    59 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
       
    60 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
       
    61 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
       
    62 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
       
    63 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
       
    64 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
       
    65 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
       
    66 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
       
    67 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
       
    68 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
       
    69 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
       
    70 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
       
    71 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
       
    72 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
       
    73 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
       
    74 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
       
    75 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
       
    76 	INTEL_E1000_ETHERNET_DEVICE(0x1049),
       
    77 	INTEL_E1000_ETHERNET_DEVICE(0x104A),
       
    78 	INTEL_E1000_ETHERNET_DEVICE(0x104B),
       
    79 	INTEL_E1000_ETHERNET_DEVICE(0x104C),
       
    80 	INTEL_E1000_ETHERNET_DEVICE(0x104D),
       
    81 	INTEL_E1000_ETHERNET_DEVICE(0x105E),
       
    82 	INTEL_E1000_ETHERNET_DEVICE(0x105F),
       
    83 	INTEL_E1000_ETHERNET_DEVICE(0x1060),
       
    84 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
       
    85 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
       
    86 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
       
    87 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
       
    88 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
       
    89 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
       
    90 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
       
    91 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
       
    92 	INTEL_E1000_ETHERNET_DEVICE(0x107D),
       
    93 	INTEL_E1000_ETHERNET_DEVICE(0x107E),
       
    94 	INTEL_E1000_ETHERNET_DEVICE(0x107F),
       
    95 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
       
    96 	INTEL_E1000_ETHERNET_DEVICE(0x108B),
       
    97 	INTEL_E1000_ETHERNET_DEVICE(0x108C),
       
    98 	INTEL_E1000_ETHERNET_DEVICE(0x1096),
       
    99 	INTEL_E1000_ETHERNET_DEVICE(0x1098),
       
   100 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
       
   101 	INTEL_E1000_ETHERNET_DEVICE(0x109A),
       
   102 	INTEL_E1000_ETHERNET_DEVICE(0x10A4),
       
   103 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
       
   104 	INTEL_E1000_ETHERNET_DEVICE(0x10B9),
       
   105 	INTEL_E1000_ETHERNET_DEVICE(0x10BA),
       
   106 	INTEL_E1000_ETHERNET_DEVICE(0x10BB),
       
   107 	INTEL_E1000_ETHERNET_DEVICE(0x10BC),
       
   108 	INTEL_E1000_ETHERNET_DEVICE(0x10C4),
       
   109 	INTEL_E1000_ETHERNET_DEVICE(0x10C5),
       
   110 	/* required last entry */
       
   111 	{0,}
       
   112 };
       
   113 
       
   114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
   115 
       
   116 int e1000_up(struct e1000_adapter *adapter);
       
   117 void e1000_down(struct e1000_adapter *adapter);
       
   118 void e1000_reinit_locked(struct e1000_adapter *adapter);
       
   119 void e1000_reset(struct e1000_adapter *adapter);
       
   120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
       
   121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
       
   122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
       
   123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
       
   124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
       
   125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
   126                              struct e1000_tx_ring *txdr);
       
   127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
   128                              struct e1000_rx_ring *rxdr);
       
   129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
   130                              struct e1000_tx_ring *tx_ring);
       
   131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
   132                              struct e1000_rx_ring *rx_ring);
       
   133 void e1000_update_stats(struct e1000_adapter *adapter);
       
   134 
       
   135 static int e1000_init_module(void);
       
   136 static void e1000_exit_module(void);
       
   137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
       
   138 static void __devexit e1000_remove(struct pci_dev *pdev);
       
   139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
       
   140 static int e1000_sw_init(struct e1000_adapter *adapter);
       
   141 static int e1000_open(struct net_device *netdev);
       
   142 static int e1000_close(struct net_device *netdev);
       
   143 static void e1000_configure_tx(struct e1000_adapter *adapter);
       
   144 static void e1000_configure_rx(struct e1000_adapter *adapter);
       
   145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
       
   146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
       
   147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
       
   148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
   149                                 struct e1000_tx_ring *tx_ring);
       
   150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
   151                                 struct e1000_rx_ring *rx_ring);
       
   152 static void e1000_set_multi(struct net_device *netdev);
       
   153 static void e1000_update_phy_info(unsigned long data);
       
   154 static void e1000_watchdog(unsigned long data);
       
   155 static void e1000_82547_tx_fifo_stall(unsigned long data);
       
   156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
       
   157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
       
   158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
       
   159 static int e1000_set_mac(struct net_device *netdev, void *p);
       
   160 static irqreturn_t e1000_intr(int irq, void *data);
       
   161 static irqreturn_t e1000_intr_msi(int irq, void *data);
       
   162 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
   163                                     struct e1000_tx_ring *tx_ring);
       
   164 #ifdef CONFIG_E1000_NAPI
       
   165 static int e1000_clean(struct net_device *poll_dev, int *budget);
       
   166 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   167                                     struct e1000_rx_ring *rx_ring,
       
   168                                     int *work_done, int work_to_do);
       
   169 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   170                                        struct e1000_rx_ring *rx_ring,
       
   171                                        int *work_done, int work_to_do);
       
   172 #else
       
   173 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   174                                     struct e1000_rx_ring *rx_ring);
       
   175 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   176                                        struct e1000_rx_ring *rx_ring);
       
   177 #endif
       
   178 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
   179                                    struct e1000_rx_ring *rx_ring,
       
   180 				   int cleaned_count);
       
   181 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
   182                                       struct e1000_rx_ring *rx_ring,
       
   183 				      int cleaned_count);
       
   184 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
       
   185 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
   186 			   int cmd);
       
   187 void e1000_set_ethtool_ops(struct net_device *netdev);
       
   188 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
       
   189 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
       
   190 static void e1000_tx_timeout(struct net_device *dev);
       
   191 static void e1000_reset_task(struct work_struct *work);
       
   192 static void e1000_smartspeed(struct e1000_adapter *adapter);
       
   193 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
   194                                        struct sk_buff *skb);
       
   195 
       
   196 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
       
   197 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
       
   198 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
       
   199 static void e1000_restore_vlan(struct e1000_adapter *adapter);
       
   200 
       
   201 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
       
   202 #ifdef CONFIG_PM
       
   203 static int e1000_resume(struct pci_dev *pdev);
       
   204 #endif
       
   205 static void e1000_shutdown(struct pci_dev *pdev);
       
   206 
       
   207 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   208 /* for netdump / net console */
       
   209 static void e1000_netpoll (struct net_device *netdev);
       
   210 #endif
       
   211 
       
   212 extern void e1000_check_options(struct e1000_adapter *adapter);
       
   213 
       
   214 #define COPYBREAK_DEFAULT 256
       
   215 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
       
   216 module_param(copybreak, uint, 0644);
       
   217 MODULE_PARM_DESC(copybreak,
       
   218 	"Maximum size of packet that is copied to a new buffer on receive");
       
   219 
       
   220 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
   221                      pci_channel_state_t state);
       
   222 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
       
   223 static void e1000_io_resume(struct pci_dev *pdev);
       
   224 
       
   225 static struct pci_error_handlers e1000_err_handler = {
       
   226 	.error_detected = e1000_io_error_detected,
       
   227 	.slot_reset = e1000_io_slot_reset,
       
   228 	.resume = e1000_io_resume,
       
   229 };
       
   230 
       
   231 static struct pci_driver e1000_driver = {
       
   232 	.name     = e1000_driver_name,
       
   233 	.id_table = e1000_pci_tbl,
       
   234 	.probe    = e1000_probe,
       
   235 	.remove   = __devexit_p(e1000_remove),
       
   236 #ifdef CONFIG_PM
       
   237 	/* Power Managment Hooks */
       
   238 	.suspend  = e1000_suspend,
       
   239 	.resume   = e1000_resume,
       
   240 #endif
       
   241 	.shutdown = e1000_shutdown,
       
   242 	.err_handler = &e1000_err_handler
       
   243 };
       
   244 
       
   245 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
       
   246 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
       
   247 MODULE_LICENSE("GPL");
       
   248 MODULE_VERSION(DRV_VERSION);
       
   249 
       
   250 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
       
   251 module_param(debug, int, 0);
       
   252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   253 
       
   254 /**
       
   255  * e1000_init_module - Driver Registration Routine
       
   256  *
       
   257  * e1000_init_module is the first routine called when the driver is
       
   258  * loaded. All it does is register with the PCI subsystem.
       
   259  **/
       
   260 
       
   261 static int __init
       
   262 e1000_init_module(void)
       
   263 {
       
   264 	int ret;
       
   265 	printk(KERN_INFO "%s - version %s\n",
       
   266 	       e1000_driver_string, e1000_driver_version);
       
   267 
       
   268 	printk(KERN_INFO "%s\n", e1000_copyright);
       
   269 
       
   270 	ret = pci_register_driver(&e1000_driver);
       
   271 	if (copybreak != COPYBREAK_DEFAULT) {
       
   272 		if (copybreak == 0)
       
   273 			printk(KERN_INFO "e1000: copybreak disabled\n");
       
   274 		else
       
   275 			printk(KERN_INFO "e1000: copybreak enabled for "
       
   276 			       "packets <= %u bytes\n", copybreak);
       
   277 	}
       
   278 	return ret;
       
   279 }
       
   280 
       
   281 module_init(e1000_init_module);
       
   282 
       
   283 /**
       
   284  * e1000_exit_module - Driver Exit Cleanup Routine
       
   285  *
       
   286  * e1000_exit_module is called just before the driver is removed
       
   287  * from memory.
       
   288  **/
       
   289 
       
   290 static void __exit
       
   291 e1000_exit_module(void)
       
   292 {
       
   293 	pci_unregister_driver(&e1000_driver);
       
   294 }
       
   295 
       
   296 module_exit(e1000_exit_module);
       
   297 
       
   298 static int e1000_request_irq(struct e1000_adapter *adapter)
       
   299 {
       
   300 	struct net_device *netdev = adapter->netdev;
       
   301 	void (*handler) = &e1000_intr;
       
   302 	int irq_flags = IRQF_SHARED;
       
   303 	int err;
       
   304 
       
   305 	if (adapter->hw.mac_type >= e1000_82571) {
       
   306 		adapter->have_msi = !pci_enable_msi(adapter->pdev);
       
   307 		if (adapter->have_msi) {
       
   308 			handler = &e1000_intr_msi;
       
   309 			irq_flags = 0;
       
   310 		}
       
   311 	}
       
   312 
       
   313 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
       
   314 	                  netdev);
       
   315 	if (err) {
       
   316 		if (adapter->have_msi)
       
   317 			pci_disable_msi(adapter->pdev);
       
   318 		DPRINTK(PROBE, ERR,
       
   319 		        "Unable to allocate interrupt Error: %d\n", err);
       
   320 	}
       
   321 
       
   322 	return err;
       
   323 }
       
   324 
       
   325 static void e1000_free_irq(struct e1000_adapter *adapter)
       
   326 {
       
   327 	struct net_device *netdev = adapter->netdev;
       
   328 
       
   329 	free_irq(adapter->pdev->irq, netdev);
       
   330 
       
   331 	if (adapter->have_msi)
       
   332 		pci_disable_msi(adapter->pdev);
       
   333 }
       
   334 
       
   335 /**
       
   336  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
   337  * @adapter: board private structure
       
   338  **/
       
   339 
       
   340 static void
       
   341 e1000_irq_disable(struct e1000_adapter *adapter)
       
   342 {
       
   343 	atomic_inc(&adapter->irq_sem);
       
   344 	E1000_WRITE_REG(&adapter->hw, IMC, ~0);
       
   345 	E1000_WRITE_FLUSH(&adapter->hw);
       
   346 	synchronize_irq(adapter->pdev->irq);
       
   347 }
       
   348 
       
   349 /**
       
   350  * e1000_irq_enable - Enable default interrupt generation settings
       
   351  * @adapter: board private structure
       
   352  **/
       
   353 
       
   354 static void
       
   355 e1000_irq_enable(struct e1000_adapter *adapter)
       
   356 {
       
   357 	if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
       
   358 		E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
       
   359 		E1000_WRITE_FLUSH(&adapter->hw);
       
   360 	}
       
   361 }
       
   362 
       
   363 static void
       
   364 e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
   365 {
       
   366 	struct net_device *netdev = adapter->netdev;
       
   367 	uint16_t vid = adapter->hw.mng_cookie.vlan_id;
       
   368 	uint16_t old_vid = adapter->mng_vlan_id;
       
   369 	if (adapter->vlgrp) {
       
   370 		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
       
   371 			if (adapter->hw.mng_cookie.status &
       
   372 				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
       
   373 				e1000_vlan_rx_add_vid(netdev, vid);
       
   374 				adapter->mng_vlan_id = vid;
       
   375 			} else
       
   376 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
   377 
       
   378 			if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
       
   379 					(vid != old_vid) &&
       
   380 			    !vlan_group_get_device(adapter->vlgrp, old_vid))
       
   381 				e1000_vlan_rx_kill_vid(netdev, old_vid);
       
   382 		} else
       
   383 			adapter->mng_vlan_id = vid;
       
   384 	}
       
   385 }
       
   386 
       
   387 /**
       
   388  * e1000_release_hw_control - release control of the h/w to f/w
       
   389  * @adapter: address of board private structure
       
   390  *
       
   391  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   392  * For ASF and Pass Through versions of f/w this means that the
       
   393  * driver is no longer loaded. For AMT version (only with 82573) i
       
   394  * of the f/w this means that the network i/f is closed.
       
   395  *
       
   396  **/
       
   397 
       
   398 static void
       
   399 e1000_release_hw_control(struct e1000_adapter *adapter)
       
   400 {
       
   401 	uint32_t ctrl_ext;
       
   402 	uint32_t swsm;
       
   403 
       
   404 	/* Let firmware taken over control of h/w */
       
   405 	switch (adapter->hw.mac_type) {
       
   406 	case e1000_82573:
       
   407 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
   408 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
   409 				swsm & ~E1000_SWSM_DRV_LOAD);
       
   410 		break;
       
   411 	case e1000_82571:
       
   412 	case e1000_82572:
       
   413 	case e1000_80003es2lan:
       
   414 	case e1000_ich8lan:
       
   415 		ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
   416 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
       
   417 				ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
       
   418 		break;
       
   419 	default:
       
   420 		break;
       
   421 	}
       
   422 }
       
   423 
       
   424 /**
       
   425  * e1000_get_hw_control - get control of the h/w from f/w
       
   426  * @adapter: address of board private structure
       
   427  *
       
   428  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   429  * For ASF and Pass Through versions of f/w this means that
       
   430  * the driver is loaded. For AMT version (only with 82573)
       
   431  * of the f/w this means that the network i/f is open.
       
   432  *
       
   433  **/
       
   434 
       
   435 static void
       
   436 e1000_get_hw_control(struct e1000_adapter *adapter)
       
   437 {
       
   438 	uint32_t ctrl_ext;
       
   439 	uint32_t swsm;
       
   440 
       
   441 	/* Let firmware know the driver has taken over */
       
   442 	switch (adapter->hw.mac_type) {
       
   443 	case e1000_82573:
       
   444 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
   445 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
   446 				swsm | E1000_SWSM_DRV_LOAD);
       
   447 		break;
       
   448 	case e1000_82571:
       
   449 	case e1000_82572:
       
   450 	case e1000_80003es2lan:
       
   451 	case e1000_ich8lan:
       
   452 		ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
   453 		E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
       
   454 				ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
       
   455 		break;
       
   456 	default:
       
   457 		break;
       
   458 	}
       
   459 }
       
   460 
       
   461 static void
       
   462 e1000_init_manageability(struct e1000_adapter *adapter)
       
   463 {
       
   464 	if (adapter->en_mng_pt) {
       
   465 		uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
       
   466 
       
   467 		/* disable hardware interception of ARP */
       
   468 		manc &= ~(E1000_MANC_ARP_EN);
       
   469 
       
   470 		/* enable receiving management packets to the host */
       
   471 		/* this will probably generate destination unreachable messages
       
   472 		 * from the host OS, but the packets will be handled on SMBUS */
       
   473 		if (adapter->hw.has_manc2h) {
       
   474 			uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
       
   475 
       
   476 			manc |= E1000_MANC_EN_MNG2HOST;
       
   477 #define E1000_MNG2HOST_PORT_623 (1 << 5)
       
   478 #define E1000_MNG2HOST_PORT_664 (1 << 6)
       
   479 			manc2h |= E1000_MNG2HOST_PORT_623;
       
   480 			manc2h |= E1000_MNG2HOST_PORT_664;
       
   481 			E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
       
   482 		}
       
   483 
       
   484 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
   485 	}
       
   486 }
       
   487 
       
   488 static void
       
   489 e1000_release_manageability(struct e1000_adapter *adapter)
       
   490 {
       
   491 	if (adapter->en_mng_pt) {
       
   492 		uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
       
   493 
       
   494 		/* re-enable hardware interception of ARP */
       
   495 		manc |= E1000_MANC_ARP_EN;
       
   496 
       
   497 		if (adapter->hw.has_manc2h)
       
   498 			manc &= ~E1000_MANC_EN_MNG2HOST;
       
   499 
       
   500 		/* don't explicitly have to mess with MANC2H since
       
   501 		 * MANC has an enable disable that gates MANC2H */
       
   502 
       
   503 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
   504 	}
       
   505 }
       
   506 
       
   507 /**
       
   508  * e1000_configure - configure the hardware for RX and TX
       
   509  * @adapter = private board structure
       
   510  **/
       
   511 static void e1000_configure(struct e1000_adapter *adapter)
       
   512 {
       
   513 	struct net_device *netdev = adapter->netdev;
       
   514 	int i;
       
   515 
       
   516 	e1000_set_multi(netdev);
       
   517 
       
   518 	e1000_restore_vlan(adapter);
       
   519 	e1000_init_manageability(adapter);
       
   520 
       
   521 	e1000_configure_tx(adapter);
       
   522 	e1000_setup_rctl(adapter);
       
   523 	e1000_configure_rx(adapter);
       
   524 	/* call E1000_DESC_UNUSED which always leaves
       
   525 	 * at least 1 descriptor unused to make sure
       
   526 	 * next_to_use != next_to_clean */
       
   527 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
   528 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
       
   529 		adapter->alloc_rx_buf(adapter, ring,
       
   530 		                      E1000_DESC_UNUSED(ring));
       
   531 	}
       
   532 
       
   533 	adapter->tx_queue_len = netdev->tx_queue_len;
       
   534 }
       
   535 
       
   536 int e1000_up(struct e1000_adapter *adapter)
       
   537 {
       
   538 	/* hardware has been reset, we need to reload some things */
       
   539 	e1000_configure(adapter);
       
   540 
       
   541 	clear_bit(__E1000_DOWN, &adapter->flags);
       
   542 
       
   543 #ifdef CONFIG_E1000_NAPI
       
   544 	netif_poll_enable(adapter->netdev);
       
   545 #endif
       
   546 	e1000_irq_enable(adapter);
       
   547 
       
   548 	/* fire a link change interrupt to start the watchdog */
       
   549 	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
       
   550 	return 0;
       
   551 }
       
   552 
       
   553 /**
       
   554  * e1000_power_up_phy - restore link in case the phy was powered down
       
   555  * @adapter: address of board private structure
       
   556  *
       
   557  * The phy may be powered down to save power and turn off link when the
       
   558  * driver is unloaded and wake on lan is not enabled (among others)
       
   559  * *** this routine MUST be followed by a call to e1000_reset ***
       
   560  *
       
   561  **/
       
   562 
       
   563 void e1000_power_up_phy(struct e1000_adapter *adapter)
       
   564 {
       
   565 	uint16_t mii_reg = 0;
       
   566 
       
   567 	/* Just clear the power down bit to wake the phy back up */
       
   568 	if (adapter->hw.media_type == e1000_media_type_copper) {
       
   569 		/* according to the manual, the phy will retain its
       
   570 		 * settings across a power-down/up cycle */
       
   571 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
       
   572 		mii_reg &= ~MII_CR_POWER_DOWN;
       
   573 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
       
   574 	}
       
   575 }
       
   576 
       
   577 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
   578 {
       
   579 	/* Power down the PHY so no link is implied when interface is down *
       
   580 	 * The PHY cannot be powered down if any of the following is TRUE *
       
   581 	 * (a) WoL is enabled
       
   582 	 * (b) AMT is active
       
   583 	 * (c) SoL/IDER session is active */
       
   584 	if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
       
   585 	   adapter->hw.media_type == e1000_media_type_copper) {
       
   586 		uint16_t mii_reg = 0;
       
   587 
       
   588 		switch (adapter->hw.mac_type) {
       
   589 		case e1000_82540:
       
   590 		case e1000_82545:
       
   591 		case e1000_82545_rev_3:
       
   592 		case e1000_82546:
       
   593 		case e1000_82546_rev_3:
       
   594 		case e1000_82541:
       
   595 		case e1000_82541_rev_2:
       
   596 		case e1000_82547:
       
   597 		case e1000_82547_rev_2:
       
   598 			if (E1000_READ_REG(&adapter->hw, MANC) &
       
   599 			    E1000_MANC_SMBUS_EN)
       
   600 				goto out;
       
   601 			break;
       
   602 		case e1000_82571:
       
   603 		case e1000_82572:
       
   604 		case e1000_82573:
       
   605 		case e1000_80003es2lan:
       
   606 		case e1000_ich8lan:
       
   607 			if (e1000_check_mng_mode(&adapter->hw) ||
       
   608 			    e1000_check_phy_reset_block(&adapter->hw))
       
   609 				goto out;
       
   610 			break;
       
   611 		default:
       
   612 			goto out;
       
   613 		}
       
   614 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
       
   615 		mii_reg |= MII_CR_POWER_DOWN;
       
   616 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
       
   617 		mdelay(1);
       
   618 	}
       
   619 out:
       
   620 	return;
       
   621 }
       
   622 
       
   623 void
       
   624 e1000_down(struct e1000_adapter *adapter)
       
   625 {
       
   626 	struct net_device *netdev = adapter->netdev;
       
   627 
       
   628 	/* signal that we're down so the interrupt handler does not
       
   629 	 * reschedule our watchdog timer */
       
   630 	set_bit(__E1000_DOWN, &adapter->flags);
       
   631 
       
   632 #ifdef CONFIG_E1000_NAPI
       
   633 	netif_poll_disable(netdev);
       
   634 #endif
       
   635 	e1000_irq_disable(adapter);
       
   636 
       
   637 	del_timer_sync(&adapter->tx_fifo_stall_timer);
       
   638 	del_timer_sync(&adapter->watchdog_timer);
       
   639 	del_timer_sync(&adapter->phy_info_timer);
       
   640 
       
   641 	netdev->tx_queue_len = adapter->tx_queue_len;
       
   642 	adapter->link_speed = 0;
       
   643 	adapter->link_duplex = 0;
       
   644 	netif_carrier_off(netdev);
       
   645 	netif_stop_queue(netdev);
       
   646 
       
   647 	e1000_reset(adapter);
       
   648 	e1000_clean_all_tx_rings(adapter);
       
   649 	e1000_clean_all_rx_rings(adapter);
       
   650 }
       
   651 
       
   652 void
       
   653 e1000_reinit_locked(struct e1000_adapter *adapter)
       
   654 {
       
   655 	WARN_ON(in_interrupt());
       
   656 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   657 		msleep(1);
       
   658 	e1000_down(adapter);
       
   659 	e1000_up(adapter);
       
   660 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   661 }
       
   662 
       
   663 void
       
   664 e1000_reset(struct e1000_adapter *adapter)
       
   665 {
       
   666 	uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
       
   667 	uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
       
   668 	boolean_t legacy_pba_adjust = FALSE;
       
   669 
       
   670 	/* Repartition Pba for greater than 9k mtu
       
   671 	 * To take effect CTRL.RST is required.
       
   672 	 */
       
   673 
       
   674 	switch (adapter->hw.mac_type) {
       
   675 	case e1000_82542_rev2_0:
       
   676 	case e1000_82542_rev2_1:
       
   677 	case e1000_82543:
       
   678 	case e1000_82544:
       
   679 	case e1000_82540:
       
   680 	case e1000_82541:
       
   681 	case e1000_82541_rev_2:
       
   682 		legacy_pba_adjust = TRUE;
       
   683 		pba = E1000_PBA_48K;
       
   684 		break;
       
   685 	case e1000_82545:
       
   686 	case e1000_82545_rev_3:
       
   687 	case e1000_82546:
       
   688 	case e1000_82546_rev_3:
       
   689 		pba = E1000_PBA_48K;
       
   690 		break;
       
   691 	case e1000_82547:
       
   692 	case e1000_82547_rev_2:
       
   693 		legacy_pba_adjust = TRUE;
       
   694 		pba = E1000_PBA_30K;
       
   695 		break;
       
   696 	case e1000_82571:
       
   697 	case e1000_82572:
       
   698 	case e1000_80003es2lan:
       
   699 		pba = E1000_PBA_38K;
       
   700 		break;
       
   701 	case e1000_82573:
       
   702 		pba = E1000_PBA_20K;
       
   703 		break;
       
   704 	case e1000_ich8lan:
       
   705 		pba = E1000_PBA_8K;
       
   706 	case e1000_undefined:
       
   707 	case e1000_num_macs:
       
   708 		break;
       
   709 	}
       
   710 
       
   711 	if (legacy_pba_adjust == TRUE) {
       
   712 		if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
       
   713 			pba -= 8; /* allocate more FIFO for Tx */
       
   714 
       
   715 		if (adapter->hw.mac_type == e1000_82547) {
       
   716 			adapter->tx_fifo_head = 0;
       
   717 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
       
   718 			adapter->tx_fifo_size =
       
   719 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
       
   720 			atomic_set(&adapter->tx_fifo_stall, 0);
       
   721 		}
       
   722 	} else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
   723 		/* adjust PBA for jumbo frames */
       
   724 		E1000_WRITE_REG(&adapter->hw, PBA, pba);
       
   725 
       
   726 		/* To maintain wire speed transmits, the Tx FIFO should be
       
   727 		 * large enough to accomodate two full transmit packets,
       
   728 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
       
   729 		 * the Rx FIFO should be large enough to accomodate at least
       
   730 		 * one full receive packet and is similarly rounded up and
       
   731 		 * expressed in KB. */
       
   732 		pba = E1000_READ_REG(&adapter->hw, PBA);
       
   733 		/* upper 16 bits has Tx packet buffer allocation size in KB */
       
   734 		tx_space = pba >> 16;
       
   735 		/* lower 16 bits has Rx packet buffer allocation size in KB */
       
   736 		pba &= 0xffff;
       
   737 		/* don't include ethernet FCS because hardware appends/strips */
       
   738 		min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
       
   739 		               VLAN_TAG_SIZE;
       
   740 		min_tx_space = min_rx_space;
       
   741 		min_tx_space *= 2;
       
   742 		min_tx_space = ALIGN(min_tx_space, 1024);
       
   743 		min_tx_space >>= 10;
       
   744 		min_rx_space = ALIGN(min_rx_space, 1024);
       
   745 		min_rx_space >>= 10;
       
   746 
       
   747 		/* If current Tx allocation is less than the min Tx FIFO size,
       
   748 		 * and the min Tx FIFO size is less than the current Rx FIFO
       
   749 		 * allocation, take space away from current Rx allocation */
       
   750 		if (tx_space < min_tx_space &&
       
   751 		    ((min_tx_space - tx_space) < pba)) {
       
   752 			pba = pba - (min_tx_space - tx_space);
       
   753 
       
   754 			/* PCI/PCIx hardware has PBA alignment constraints */
       
   755 			switch (adapter->hw.mac_type) {
       
   756 			case e1000_82545 ... e1000_82546_rev_3:
       
   757 				pba &= ~(E1000_PBA_8K - 1);
       
   758 				break;
       
   759 			default:
       
   760 				break;
       
   761 			}
       
   762 
       
   763 			/* if short on rx space, rx wins and must trump tx
       
   764 			 * adjustment or use Early Receive if available */
       
   765 			if (pba < min_rx_space) {
       
   766 				switch (adapter->hw.mac_type) {
       
   767 				case e1000_82573:
       
   768 					/* ERT enabled in e1000_configure_rx */
       
   769 					break;
       
   770 				default:
       
   771 					pba = min_rx_space;
       
   772 					break;
       
   773 				}
       
   774 			}
       
   775 		}
       
   776 	}
       
   777 
       
   778 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
       
   779 
       
   780 	/* flow control settings */
       
   781 	/* Set the FC high water mark to 90% of the FIFO size.
       
   782 	 * Required to clear last 3 LSB */
       
   783 	fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
       
   784 	/* We can't use 90% on small FIFOs because the remainder
       
   785 	 * would be less than 1 full frame.  In this case, we size
       
   786 	 * it to allow at least a full frame above the high water
       
   787 	 *  mark. */
       
   788 	if (pba < E1000_PBA_16K)
       
   789 		fc_high_water_mark = (pba * 1024) - 1600;
       
   790 
       
   791 	adapter->hw.fc_high_water = fc_high_water_mark;
       
   792 	adapter->hw.fc_low_water = fc_high_water_mark - 8;
       
   793 	if (adapter->hw.mac_type == e1000_80003es2lan)
       
   794 		adapter->hw.fc_pause_time = 0xFFFF;
       
   795 	else
       
   796 		adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
       
   797 	adapter->hw.fc_send_xon = 1;
       
   798 	adapter->hw.fc = adapter->hw.original_fc;
       
   799 
       
   800 	/* Allow time for pending master requests to run */
       
   801 	e1000_reset_hw(&adapter->hw);
       
   802 	if (adapter->hw.mac_type >= e1000_82544)
       
   803 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
       
   804 
       
   805 	if (e1000_init_hw(&adapter->hw))
       
   806 		DPRINTK(PROBE, ERR, "Hardware Error\n");
       
   807 	e1000_update_mng_vlan(adapter);
       
   808 
       
   809 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
       
   810 	if (adapter->hw.mac_type >= e1000_82544 &&
       
   811 	    adapter->hw.mac_type <= e1000_82547_rev_2 &&
       
   812 	    adapter->hw.autoneg == 1 &&
       
   813 	    adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
       
   814 		uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
   815 		/* clear phy power management bit if we are in gig only mode,
       
   816 		 * which if enabled will attempt negotiation to 100Mb, which
       
   817 		 * can cause a loss of link at power off or driver unload */
       
   818 		ctrl &= ~E1000_CTRL_SWDPIN3;
       
   819 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
   820 	}
       
   821 
       
   822 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
   823 	E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
       
   824 
       
   825 	e1000_reset_adaptive(&adapter->hw);
       
   826 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
       
   827 
       
   828 	if (!adapter->smart_power_down &&
       
   829 	    (adapter->hw.mac_type == e1000_82571 ||
       
   830 	     adapter->hw.mac_type == e1000_82572)) {
       
   831 		uint16_t phy_data = 0;
       
   832 		/* speed up time to link by disabling smart power down, ignore
       
   833 		 * the return value of this function because there is nothing
       
   834 		 * different we would do if it failed */
       
   835 		e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
       
   836 		                   &phy_data);
       
   837 		phy_data &= ~IGP02E1000_PM_SPD;
       
   838 		e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
       
   839 		                    phy_data);
       
   840 	}
       
   841 
       
   842 	e1000_release_manageability(adapter);
       
   843 }
       
   844 
       
   845 /**
       
   846  * e1000_probe - Device Initialization Routine
       
   847  * @pdev: PCI device information struct
       
   848  * @ent: entry in e1000_pci_tbl
       
   849  *
       
   850  * Returns 0 on success, negative on failure
       
   851  *
       
   852  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
   853  * The OS initialization, configuring of the adapter private structure,
       
   854  * and a hardware reset occur.
       
   855  **/
       
   856 
       
   857 static int __devinit
       
   858 e1000_probe(struct pci_dev *pdev,
       
   859             const struct pci_device_id *ent)
       
   860 {
       
   861 	struct net_device *netdev;
       
   862 	struct e1000_adapter *adapter;
       
   863 	unsigned long mmio_start, mmio_len;
       
   864 	unsigned long flash_start, flash_len;
       
   865 
       
   866 	static int cards_found = 0;
       
   867 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
       
   868 	int i, err, pci_using_dac;
       
   869 	uint16_t eeprom_data = 0;
       
   870 	uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
       
   871 	if ((err = pci_enable_device(pdev)))
       
   872 		return err;
       
   873 
       
   874 	if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
       
   875 	    !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
       
   876 		pci_using_dac = 1;
       
   877 	} else {
       
   878 		if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
       
   879 		    (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
       
   880 			E1000_ERR("No usable DMA configuration, aborting\n");
       
   881 			goto err_dma;
       
   882 		}
       
   883 		pci_using_dac = 0;
       
   884 	}
       
   885 
       
   886 	if ((err = pci_request_regions(pdev, e1000_driver_name)))
       
   887 		goto err_pci_reg;
       
   888 
       
   889 	pci_set_master(pdev);
       
   890 
       
   891 	err = -ENOMEM;
       
   892 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
   893 	if (!netdev)
       
   894 		goto err_alloc_etherdev;
       
   895 
       
   896 	SET_MODULE_OWNER(netdev);
       
   897 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
   898 
       
   899 	pci_set_drvdata(pdev, netdev);
       
   900 	adapter = netdev_priv(netdev);
       
   901 	adapter->netdev = netdev;
       
   902 	adapter->pdev = pdev;
       
   903 	adapter->hw.back = adapter;
       
   904 	adapter->msg_enable = (1 << debug) - 1;
       
   905 
       
   906 	mmio_start = pci_resource_start(pdev, BAR_0);
       
   907 	mmio_len = pci_resource_len(pdev, BAR_0);
       
   908 
       
   909 	err = -EIO;
       
   910 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
       
   911 	if (!adapter->hw.hw_addr)
       
   912 		goto err_ioremap;
       
   913 
       
   914 	for (i = BAR_1; i <= BAR_5; i++) {
       
   915 		if (pci_resource_len(pdev, i) == 0)
       
   916 			continue;
       
   917 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
       
   918 			adapter->hw.io_base = pci_resource_start(pdev, i);
       
   919 			break;
       
   920 		}
       
   921 	}
       
   922 
       
   923 	netdev->open = &e1000_open;
       
   924 	netdev->stop = &e1000_close;
       
   925 	netdev->hard_start_xmit = &e1000_xmit_frame;
       
   926 	netdev->get_stats = &e1000_get_stats;
       
   927 	netdev->set_multicast_list = &e1000_set_multi;
       
   928 	netdev->set_mac_address = &e1000_set_mac;
       
   929 	netdev->change_mtu = &e1000_change_mtu;
       
   930 	netdev->do_ioctl = &e1000_ioctl;
       
   931 	e1000_set_ethtool_ops(netdev);
       
   932 	netdev->tx_timeout = &e1000_tx_timeout;
       
   933 	netdev->watchdog_timeo = 5 * HZ;
       
   934 #ifdef CONFIG_E1000_NAPI
       
   935 	netdev->poll = &e1000_clean;
       
   936 	netdev->weight = 64;
       
   937 #endif
       
   938 	netdev->vlan_rx_register = e1000_vlan_rx_register;
       
   939 	netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
       
   940 	netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
       
   941 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   942 	netdev->poll_controller = e1000_netpoll;
       
   943 #endif
       
   944 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
   945 
       
   946 	netdev->mem_start = mmio_start;
       
   947 	netdev->mem_end = mmio_start + mmio_len;
       
   948 	netdev->base_addr = adapter->hw.io_base;
       
   949 
       
   950 	adapter->bd_number = cards_found;
       
   951 
       
   952 	/* setup the private structure */
       
   953 
       
   954 	if ((err = e1000_sw_init(adapter)))
       
   955 		goto err_sw_init;
       
   956 
       
   957 	err = -EIO;
       
   958 	/* Flash BAR mapping must happen after e1000_sw_init
       
   959 	 * because it depends on mac_type */
       
   960 	if ((adapter->hw.mac_type == e1000_ich8lan) &&
       
   961 	   (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
       
   962 		flash_start = pci_resource_start(pdev, 1);
       
   963 		flash_len = pci_resource_len(pdev, 1);
       
   964 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
       
   965 		if (!adapter->hw.flash_address)
       
   966 			goto err_flashmap;
       
   967 	}
       
   968 
       
   969 	if (e1000_check_phy_reset_block(&adapter->hw))
       
   970 		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
       
   971 
       
   972 	if (adapter->hw.mac_type >= e1000_82543) {
       
   973 		netdev->features = NETIF_F_SG |
       
   974 				   NETIF_F_HW_CSUM |
       
   975 				   NETIF_F_HW_VLAN_TX |
       
   976 				   NETIF_F_HW_VLAN_RX |
       
   977 				   NETIF_F_HW_VLAN_FILTER;
       
   978 		if (adapter->hw.mac_type == e1000_ich8lan)
       
   979 			netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
       
   980 	}
       
   981 
       
   982 	if ((adapter->hw.mac_type >= e1000_82544) &&
       
   983 	   (adapter->hw.mac_type != e1000_82547))
       
   984 		netdev->features |= NETIF_F_TSO;
       
   985 
       
   986 	if (adapter->hw.mac_type > e1000_82547_rev_2)
       
   987 		netdev->features |= NETIF_F_TSO6;
       
   988 	if (pci_using_dac)
       
   989 		netdev->features |= NETIF_F_HIGHDMA;
       
   990 
       
   991 	netdev->features |= NETIF_F_LLTX;
       
   992 
       
   993 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
       
   994 
       
   995 	/* initialize eeprom parameters */
       
   996 
       
   997 	if (e1000_init_eeprom_params(&adapter->hw)) {
       
   998 		E1000_ERR("EEPROM initialization failed\n");
       
   999 		goto err_eeprom;
       
  1000 	}
       
  1001 
       
  1002 	/* before reading the EEPROM, reset the controller to
       
  1003 	 * put the device in a known good starting state */
       
  1004 
       
  1005 	e1000_reset_hw(&adapter->hw);
       
  1006 
       
  1007 	/* make sure the EEPROM is good */
       
  1008 
       
  1009 	if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
       
  1010 		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
       
  1011 		goto err_eeprom;
       
  1012 	}
       
  1013 
       
  1014 	/* copy the MAC address out of the EEPROM */
       
  1015 
       
  1016 	if (e1000_read_mac_addr(&adapter->hw))
       
  1017 		DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
       
  1018 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
       
  1019 	memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
       
  1020 
       
  1021 	if (!is_valid_ether_addr(netdev->perm_addr)) {
       
  1022 		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
       
  1023 		goto err_eeprom;
       
  1024 	}
       
  1025 
       
  1026 	e1000_get_bus_info(&adapter->hw);
       
  1027 
       
  1028 	init_timer(&adapter->tx_fifo_stall_timer);
       
  1029 	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
       
  1030 	adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
       
  1031 
       
  1032 	init_timer(&adapter->watchdog_timer);
       
  1033 	adapter->watchdog_timer.function = &e1000_watchdog;
       
  1034 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
  1035 
       
  1036 	init_timer(&adapter->phy_info_timer);
       
  1037 	adapter->phy_info_timer.function = &e1000_update_phy_info;
       
  1038 	adapter->phy_info_timer.data = (unsigned long) adapter;
       
  1039 
       
  1040 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
       
  1041 
       
  1042 	e1000_check_options(adapter);
       
  1043 
       
  1044 	/* Initial Wake on LAN setting
       
  1045 	 * If APM wake is enabled in the EEPROM,
       
  1046 	 * enable the ACPI Magic Packet filter
       
  1047 	 */
       
  1048 
       
  1049 	switch (adapter->hw.mac_type) {
       
  1050 	case e1000_82542_rev2_0:
       
  1051 	case e1000_82542_rev2_1:
       
  1052 	case e1000_82543:
       
  1053 		break;
       
  1054 	case e1000_82544:
       
  1055 		e1000_read_eeprom(&adapter->hw,
       
  1056 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
       
  1057 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
       
  1058 		break;
       
  1059 	case e1000_ich8lan:
       
  1060 		e1000_read_eeprom(&adapter->hw,
       
  1061 			EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
       
  1062 		eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
       
  1063 		break;
       
  1064 	case e1000_82546:
       
  1065 	case e1000_82546_rev_3:
       
  1066 	case e1000_82571:
       
  1067 	case e1000_80003es2lan:
       
  1068 		if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
       
  1069 			e1000_read_eeprom(&adapter->hw,
       
  1070 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
  1071 			break;
       
  1072 		}
       
  1073 		/* Fall Through */
       
  1074 	default:
       
  1075 		e1000_read_eeprom(&adapter->hw,
       
  1076 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
  1077 		break;
       
  1078 	}
       
  1079 	if (eeprom_data & eeprom_apme_mask)
       
  1080 		adapter->eeprom_wol |= E1000_WUFC_MAG;
       
  1081 
       
  1082 	/* now that we have the eeprom settings, apply the special cases
       
  1083 	 * where the eeprom may be wrong or the board simply won't support
       
  1084 	 * wake on lan on a particular port */
       
  1085 	switch (pdev->device) {
       
  1086 	case E1000_DEV_ID_82546GB_PCIE:
       
  1087 		adapter->eeprom_wol = 0;
       
  1088 		break;
       
  1089 	case E1000_DEV_ID_82546EB_FIBER:
       
  1090 	case E1000_DEV_ID_82546GB_FIBER:
       
  1091 	case E1000_DEV_ID_82571EB_FIBER:
       
  1092 		/* Wake events only supported on port A for dual fiber
       
  1093 		 * regardless of eeprom setting */
       
  1094 		if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
       
  1095 			adapter->eeprom_wol = 0;
       
  1096 		break;
       
  1097 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1098 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
       
  1099 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
       
  1100 		/* if quad port adapter, disable WoL on all but port A */
       
  1101 		if (global_quad_port_a != 0)
       
  1102 			adapter->eeprom_wol = 0;
       
  1103 		else
       
  1104 			adapter->quad_port_a = 1;
       
  1105 		/* Reset for multiple quad port adapters */
       
  1106 		if (++global_quad_port_a == 4)
       
  1107 			global_quad_port_a = 0;
       
  1108 		break;
       
  1109 	}
       
  1110 
       
  1111 	/* initialize the wol settings based on the eeprom settings */
       
  1112 	adapter->wol = adapter->eeprom_wol;
       
  1113 
       
  1114 	/* print bus type/speed/width info */
       
  1115 	{
       
  1116 	struct e1000_hw *hw = &adapter->hw;
       
  1117 	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
       
  1118 		((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
       
  1119 		 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
       
  1120 		((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
       
  1121 		 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
       
  1122 		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
       
  1123 		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
       
  1124 		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
       
  1125 		((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
       
  1126 		 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
       
  1127 		 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
       
  1128 		 "32-bit"));
       
  1129 	}
       
  1130 
       
  1131 	for (i = 0; i < 6; i++)
       
  1132 		printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
       
  1133 
       
  1134 	/* reset the hardware with the new settings */
       
  1135 	e1000_reset(adapter);
       
  1136 
       
  1137 	/* If the controller is 82573 and f/w is AMT, do not set
       
  1138 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  1139 	 * let the f/w know that the h/w is now under the control
       
  1140 	 * of the driver. */
       
  1141 	if (adapter->hw.mac_type != e1000_82573 ||
       
  1142 	    !e1000_check_mng_mode(&adapter->hw))
       
  1143 		e1000_get_hw_control(adapter);
       
  1144 
       
  1145 	/* tell the stack to leave us alone until e1000_open() is called */
       
  1146 	netif_carrier_off(netdev);
       
  1147 	netif_stop_queue(netdev);
       
  1148 #ifdef CONFIG_E1000_NAPI
       
  1149 	netif_poll_disable(netdev);
       
  1150 #endif
       
  1151 
       
  1152 	strcpy(netdev->name, "eth%d");
       
  1153 	if ((err = register_netdev(netdev)))
       
  1154 		goto err_register;
       
  1155 
       
  1156 	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
       
  1157 
       
  1158 	cards_found++;
       
  1159 	return 0;
       
  1160 
       
  1161 err_register:
       
  1162 	e1000_release_hw_control(adapter);
       
  1163 err_eeprom:
       
  1164 	if (!e1000_check_phy_reset_block(&adapter->hw))
       
  1165 		e1000_phy_hw_reset(&adapter->hw);
       
  1166 
       
  1167 	if (adapter->hw.flash_address)
       
  1168 		iounmap(adapter->hw.flash_address);
       
  1169 err_flashmap:
       
  1170 #ifdef CONFIG_E1000_NAPI
       
  1171 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  1172 		dev_put(&adapter->polling_netdev[i]);
       
  1173 #endif
       
  1174 
       
  1175 	kfree(adapter->tx_ring);
       
  1176 	kfree(adapter->rx_ring);
       
  1177 #ifdef CONFIG_E1000_NAPI
       
  1178 	kfree(adapter->polling_netdev);
       
  1179 #endif
       
  1180 err_sw_init:
       
  1181 	iounmap(adapter->hw.hw_addr);
       
  1182 err_ioremap:
       
  1183 	free_netdev(netdev);
       
  1184 err_alloc_etherdev:
       
  1185 	pci_release_regions(pdev);
       
  1186 err_pci_reg:
       
  1187 err_dma:
       
  1188 	pci_disable_device(pdev);
       
  1189 	return err;
       
  1190 }
       
  1191 
       
  1192 /**
       
  1193  * e1000_remove - Device Removal Routine
       
  1194  * @pdev: PCI device information struct
       
  1195  *
       
  1196  * e1000_remove is called by the PCI subsystem to alert the driver
       
  1197  * that it should release a PCI device.  The could be caused by a
       
  1198  * Hot-Plug event, or because the driver is going to be removed from
       
  1199  * memory.
       
  1200  **/
       
  1201 
       
  1202 static void __devexit
       
  1203 e1000_remove(struct pci_dev *pdev)
       
  1204 {
       
  1205 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  1206 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1207 #ifdef CONFIG_E1000_NAPI
       
  1208 	int i;
       
  1209 #endif
       
  1210 
       
  1211 	cancel_work_sync(&adapter->reset_task);
       
  1212 
       
  1213 	e1000_release_manageability(adapter);
       
  1214 
       
  1215 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  1216 	 * would have already happened in close and is redundant. */
       
  1217 	e1000_release_hw_control(adapter);
       
  1218 
       
  1219 	unregister_netdev(netdev);
       
  1220 #ifdef CONFIG_E1000_NAPI
       
  1221 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  1222 		dev_put(&adapter->polling_netdev[i]);
       
  1223 #endif
       
  1224 
       
  1225 	if (!e1000_check_phy_reset_block(&adapter->hw))
       
  1226 		e1000_phy_hw_reset(&adapter->hw);
       
  1227 
       
  1228 	kfree(adapter->tx_ring);
       
  1229 	kfree(adapter->rx_ring);
       
  1230 #ifdef CONFIG_E1000_NAPI
       
  1231 	kfree(adapter->polling_netdev);
       
  1232 #endif
       
  1233 
       
  1234 	iounmap(adapter->hw.hw_addr);
       
  1235 	if (adapter->hw.flash_address)
       
  1236 		iounmap(adapter->hw.flash_address);
       
  1237 	pci_release_regions(pdev);
       
  1238 
       
  1239 	free_netdev(netdev);
       
  1240 
       
  1241 	pci_disable_device(pdev);
       
  1242 }
       
  1243 
       
  1244 /**
       
  1245  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  1246  * @adapter: board private structure to initialize
       
  1247  *
       
  1248  * e1000_sw_init initializes the Adapter private data structure.
       
  1249  * Fields are initialized based on PCI device information and
       
  1250  * OS network device settings (MTU size).
       
  1251  **/
       
  1252 
       
  1253 static int __devinit
       
  1254 e1000_sw_init(struct e1000_adapter *adapter)
       
  1255 {
       
  1256 	struct e1000_hw *hw = &adapter->hw;
       
  1257 	struct net_device *netdev = adapter->netdev;
       
  1258 	struct pci_dev *pdev = adapter->pdev;
       
  1259 #ifdef CONFIG_E1000_NAPI
       
  1260 	int i;
       
  1261 #endif
       
  1262 
       
  1263 	/* PCI config space info */
       
  1264 
       
  1265 	hw->vendor_id = pdev->vendor;
       
  1266 	hw->device_id = pdev->device;
       
  1267 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
       
  1268 	hw->subsystem_id = pdev->subsystem_device;
       
  1269 
       
  1270 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
       
  1271 
       
  1272 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
       
  1273 
       
  1274 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  1275 	adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
       
  1276 	hw->max_frame_size = netdev->mtu +
       
  1277 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  1278 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
       
  1279 
       
  1280 	/* identify the MAC */
       
  1281 
       
  1282 	if (e1000_set_mac_type(hw)) {
       
  1283 		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
       
  1284 		return -EIO;
       
  1285 	}
       
  1286 
       
  1287 	switch (hw->mac_type) {
       
  1288 	default:
       
  1289 		break;
       
  1290 	case e1000_82541:
       
  1291 	case e1000_82547:
       
  1292 	case e1000_82541_rev_2:
       
  1293 	case e1000_82547_rev_2:
       
  1294 		hw->phy_init_script = 1;
       
  1295 		break;
       
  1296 	}
       
  1297 
       
  1298 	e1000_set_media_type(hw);
       
  1299 
       
  1300 	hw->wait_autoneg_complete = FALSE;
       
  1301 	hw->tbi_compatibility_en = TRUE;
       
  1302 	hw->adaptive_ifs = TRUE;
       
  1303 
       
  1304 	/* Copper options */
       
  1305 
       
  1306 	if (hw->media_type == e1000_media_type_copper) {
       
  1307 		hw->mdix = AUTO_ALL_MODES;
       
  1308 		hw->disable_polarity_correction = FALSE;
       
  1309 		hw->master_slave = E1000_MASTER_SLAVE;
       
  1310 	}
       
  1311 
       
  1312 	adapter->num_tx_queues = 1;
       
  1313 	adapter->num_rx_queues = 1;
       
  1314 
       
  1315 	if (e1000_alloc_queues(adapter)) {
       
  1316 		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
       
  1317 		return -ENOMEM;
       
  1318 	}
       
  1319 
       
  1320 #ifdef CONFIG_E1000_NAPI
       
  1321 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1322 		adapter->polling_netdev[i].priv = adapter;
       
  1323 		adapter->polling_netdev[i].poll = &e1000_clean;
       
  1324 		adapter->polling_netdev[i].weight = 64;
       
  1325 		dev_hold(&adapter->polling_netdev[i]);
       
  1326 		set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
       
  1327 	}
       
  1328 	spin_lock_init(&adapter->tx_queue_lock);
       
  1329 #endif
       
  1330 
       
  1331 	/* Explicitly disable IRQ since the NIC can be in any state. */
       
  1332 	atomic_set(&adapter->irq_sem, 0);
       
  1333 	e1000_irq_disable(adapter);
       
  1334 
       
  1335 	spin_lock_init(&adapter->stats_lock);
       
  1336 
       
  1337 	set_bit(__E1000_DOWN, &adapter->flags);
       
  1338 
       
  1339 	return 0;
       
  1340 }
       
  1341 
       
  1342 /**
       
  1343  * e1000_alloc_queues - Allocate memory for all rings
       
  1344  * @adapter: board private structure to initialize
       
  1345  *
       
  1346  * We allocate one ring per queue at run-time since we don't know the
       
  1347  * number of queues at compile-time.  The polling_netdev array is
       
  1348  * intended for Multiqueue, but should work fine with a single queue.
       
  1349  **/
       
  1350 
       
  1351 static int __devinit
       
  1352 e1000_alloc_queues(struct e1000_adapter *adapter)
       
  1353 {
       
  1354 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
       
  1355 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
       
  1356 	if (!adapter->tx_ring)
       
  1357 		return -ENOMEM;
       
  1358 
       
  1359 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
       
  1360 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
       
  1361 	if (!adapter->rx_ring) {
       
  1362 		kfree(adapter->tx_ring);
       
  1363 		return -ENOMEM;
       
  1364 	}
       
  1365 
       
  1366 #ifdef CONFIG_E1000_NAPI
       
  1367 	adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
       
  1368 	                                  sizeof(struct net_device),
       
  1369 	                                  GFP_KERNEL);
       
  1370 	if (!adapter->polling_netdev) {
       
  1371 		kfree(adapter->tx_ring);
       
  1372 		kfree(adapter->rx_ring);
       
  1373 		return -ENOMEM;
       
  1374 	}
       
  1375 #endif
       
  1376 
       
  1377 	return E1000_SUCCESS;
       
  1378 }
       
  1379 
       
  1380 /**
       
  1381  * e1000_open - Called when a network interface is made active
       
  1382  * @netdev: network interface device structure
       
  1383  *
       
  1384  * Returns 0 on success, negative value on failure
       
  1385  *
       
  1386  * The open entry point is called when a network interface is made
       
  1387  * active by the system (IFF_UP).  At this point all resources needed
       
  1388  * for transmit and receive operations are allocated, the interrupt
       
  1389  * handler is registered with the OS, the watchdog timer is started,
       
  1390  * and the stack is notified that the interface is ready.
       
  1391  **/
       
  1392 
       
  1393 static int
       
  1394 e1000_open(struct net_device *netdev)
       
  1395 {
       
  1396 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1397 	int err;
       
  1398 
       
  1399 	/* disallow open during test */
       
  1400 	if (test_bit(__E1000_TESTING, &adapter->flags))
       
  1401 		return -EBUSY;
       
  1402 
       
  1403 	/* allocate transmit descriptors */
       
  1404 	err = e1000_setup_all_tx_resources(adapter);
       
  1405 	if (err)
       
  1406 		goto err_setup_tx;
       
  1407 
       
  1408 	/* allocate receive descriptors */
       
  1409 	err = e1000_setup_all_rx_resources(adapter);
       
  1410 	if (err)
       
  1411 		goto err_setup_rx;
       
  1412 
       
  1413 	e1000_power_up_phy(adapter);
       
  1414 
       
  1415 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  1416 	if ((adapter->hw.mng_cookie.status &
       
  1417 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
  1418 		e1000_update_mng_vlan(adapter);
       
  1419 	}
       
  1420 
       
  1421 	/* If AMT is enabled, let the firmware know that the network
       
  1422 	 * interface is now open */
       
  1423 	if (adapter->hw.mac_type == e1000_82573 &&
       
  1424 	    e1000_check_mng_mode(&adapter->hw))
       
  1425 		e1000_get_hw_control(adapter);
       
  1426 
       
  1427 	/* before we allocate an interrupt, we must be ready to handle it.
       
  1428 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
       
  1429 	 * as soon as we call pci_request_irq, so we have to setup our
       
  1430 	 * clean_rx handler before we do so.  */
       
  1431 	e1000_configure(adapter);
       
  1432 
       
  1433 	err = e1000_request_irq(adapter);
       
  1434 	if (err)
       
  1435 		goto err_req_irq;
       
  1436 
       
  1437 	/* From here on the code is the same as e1000_up() */
       
  1438 	clear_bit(__E1000_DOWN, &adapter->flags);
       
  1439 
       
  1440 #ifdef CONFIG_E1000_NAPI
       
  1441 	netif_poll_enable(netdev);
       
  1442 #endif
       
  1443 
       
  1444 	e1000_irq_enable(adapter);
       
  1445 
       
  1446 	/* fire a link status change interrupt to start the watchdog */
       
  1447 	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
       
  1448 
       
  1449 	return E1000_SUCCESS;
       
  1450 
       
  1451 err_req_irq:
       
  1452 	e1000_release_hw_control(adapter);
       
  1453 	e1000_power_down_phy(adapter);
       
  1454 	e1000_free_all_rx_resources(adapter);
       
  1455 err_setup_rx:
       
  1456 	e1000_free_all_tx_resources(adapter);
       
  1457 err_setup_tx:
       
  1458 	e1000_reset(adapter);
       
  1459 
       
  1460 	return err;
       
  1461 }
       
  1462 
       
  1463 /**
       
  1464  * e1000_close - Disables a network interface
       
  1465  * @netdev: network interface device structure
       
  1466  *
       
  1467  * Returns 0, this is not allowed to fail
       
  1468  *
       
  1469  * The close entry point is called when an interface is de-activated
       
  1470  * by the OS.  The hardware is still under the drivers control, but
       
  1471  * needs to be disabled.  A global MAC reset is issued to stop the
       
  1472  * hardware, and all transmit and receive resources are freed.
       
  1473  **/
       
  1474 
       
  1475 static int
       
  1476 e1000_close(struct net_device *netdev)
       
  1477 {
       
  1478 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1479 
       
  1480 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  1481 	e1000_down(adapter);
       
  1482 	e1000_power_down_phy(adapter);
       
  1483 	e1000_free_irq(adapter);
       
  1484 
       
  1485 	e1000_free_all_tx_resources(adapter);
       
  1486 	e1000_free_all_rx_resources(adapter);
       
  1487 
       
  1488 	/* kill manageability vlan ID if supported, but not if a vlan with
       
  1489 	 * the same ID is registered on the host OS (let 8021q kill it) */
       
  1490 	if ((adapter->hw.mng_cookie.status &
       
  1491 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  1492 	     !(adapter->vlgrp &&
       
  1493 	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
       
  1494 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  1495 	}
       
  1496 
       
  1497 	/* If AMT is enabled, let the firmware know that the network
       
  1498 	 * interface is now closed */
       
  1499 	if (adapter->hw.mac_type == e1000_82573 &&
       
  1500 	    e1000_check_mng_mode(&adapter->hw))
       
  1501 		e1000_release_hw_control(adapter);
       
  1502 
       
  1503 	return 0;
       
  1504 }
       
  1505 
       
  1506 /**
       
  1507  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
       
  1508  * @adapter: address of board private structure
       
  1509  * @start: address of beginning of memory
       
  1510  * @len: length of memory
       
  1511  **/
       
  1512 static boolean_t
       
  1513 e1000_check_64k_bound(struct e1000_adapter *adapter,
       
  1514 		      void *start, unsigned long len)
       
  1515 {
       
  1516 	unsigned long begin = (unsigned long) start;
       
  1517 	unsigned long end = begin + len;
       
  1518 
       
  1519 	/* First rev 82545 and 82546 need to not allow any memory
       
  1520 	 * write location to cross 64k boundary due to errata 23 */
       
  1521 	if (adapter->hw.mac_type == e1000_82545 ||
       
  1522 	    adapter->hw.mac_type == e1000_82546) {
       
  1523 		return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
       
  1524 	}
       
  1525 
       
  1526 	return TRUE;
       
  1527 }
       
  1528 
       
  1529 /**
       
  1530  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
       
  1531  * @adapter: board private structure
       
  1532  * @txdr:    tx descriptor ring (for a specific queue) to setup
       
  1533  *
       
  1534  * Return 0 on success, negative on failure
       
  1535  **/
       
  1536 
       
  1537 static int
       
  1538 e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
  1539                          struct e1000_tx_ring *txdr)
       
  1540 {
       
  1541 	struct pci_dev *pdev = adapter->pdev;
       
  1542 	int size;
       
  1543 
       
  1544 	size = sizeof(struct e1000_buffer) * txdr->count;
       
  1545 	txdr->buffer_info = vmalloc(size);
       
  1546 	if (!txdr->buffer_info) {
       
  1547 		DPRINTK(PROBE, ERR,
       
  1548 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1549 		return -ENOMEM;
       
  1550 	}
       
  1551 	memset(txdr->buffer_info, 0, size);
       
  1552 
       
  1553 	/* round up to nearest 4K */
       
  1554 
       
  1555 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
  1556 	txdr->size = ALIGN(txdr->size, 4096);
       
  1557 
       
  1558 	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1559 	if (!txdr->desc) {
       
  1560 setup_tx_desc_die:
       
  1561 		vfree(txdr->buffer_info);
       
  1562 		DPRINTK(PROBE, ERR,
       
  1563 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1564 		return -ENOMEM;
       
  1565 	}
       
  1566 
       
  1567 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1568 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1569 		void *olddesc = txdr->desc;
       
  1570 		dma_addr_t olddma = txdr->dma;
       
  1571 		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
       
  1572 				     "at %p\n", txdr->size, txdr->desc);
       
  1573 		/* Try again, without freeing the previous */
       
  1574 		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1575 		/* Failed allocation, critical failure */
       
  1576 		if (!txdr->desc) {
       
  1577 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1578 			goto setup_tx_desc_die;
       
  1579 		}
       
  1580 
       
  1581 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1582 			/* give up */
       
  1583 			pci_free_consistent(pdev, txdr->size, txdr->desc,
       
  1584 					    txdr->dma);
       
  1585 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1586 			DPRINTK(PROBE, ERR,
       
  1587 				"Unable to allocate aligned memory "
       
  1588 				"for the transmit descriptor ring\n");
       
  1589 			vfree(txdr->buffer_info);
       
  1590 			return -ENOMEM;
       
  1591 		} else {
       
  1592 			/* Free old allocation, new allocation was successful */
       
  1593 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1594 		}
       
  1595 	}
       
  1596 	memset(txdr->desc, 0, txdr->size);
       
  1597 
       
  1598 	txdr->next_to_use = 0;
       
  1599 	txdr->next_to_clean = 0;
       
  1600 	spin_lock_init(&txdr->tx_lock);
       
  1601 
       
  1602 	return 0;
       
  1603 }
       
  1604 
       
  1605 /**
       
  1606  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
       
  1607  * 				  (Descriptors) for all queues
       
  1608  * @adapter: board private structure
       
  1609  *
       
  1610  * Return 0 on success, negative on failure
       
  1611  **/
       
  1612 
       
  1613 int
       
  1614 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
       
  1615 {
       
  1616 	int i, err = 0;
       
  1617 
       
  1618 	for (i = 0; i < adapter->num_tx_queues; i++) {
       
  1619 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1620 		if (err) {
       
  1621 			DPRINTK(PROBE, ERR,
       
  1622 				"Allocation for Tx Queue %u failed\n", i);
       
  1623 			for (i-- ; i >= 0; i--)
       
  1624 				e1000_free_tx_resources(adapter,
       
  1625 							&adapter->tx_ring[i]);
       
  1626 			break;
       
  1627 		}
       
  1628 	}
       
  1629 
       
  1630 	return err;
       
  1631 }
       
  1632 
       
  1633 /**
       
  1634  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  1635  * @adapter: board private structure
       
  1636  *
       
  1637  * Configure the Tx unit of the MAC after a reset.
       
  1638  **/
       
  1639 
       
  1640 static void
       
  1641 e1000_configure_tx(struct e1000_adapter *adapter)
       
  1642 {
       
  1643 	uint64_t tdba;
       
  1644 	struct e1000_hw *hw = &adapter->hw;
       
  1645 	uint32_t tdlen, tctl, tipg, tarc;
       
  1646 	uint32_t ipgr1, ipgr2;
       
  1647 
       
  1648 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  1649 
       
  1650 	switch (adapter->num_tx_queues) {
       
  1651 	case 1:
       
  1652 	default:
       
  1653 		tdba = adapter->tx_ring[0].dma;
       
  1654 		tdlen = adapter->tx_ring[0].count *
       
  1655 			sizeof(struct e1000_tx_desc);
       
  1656 		E1000_WRITE_REG(hw, TDLEN, tdlen);
       
  1657 		E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
       
  1658 		E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
       
  1659 		E1000_WRITE_REG(hw, TDT, 0);
       
  1660 		E1000_WRITE_REG(hw, TDH, 0);
       
  1661 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
       
  1662 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
       
  1663 		break;
       
  1664 	}
       
  1665 
       
  1666 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  1667 	if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
       
  1668 	    (hw->media_type == e1000_media_type_fiber ||
       
  1669 	     hw->media_type == e1000_media_type_internal_serdes))
       
  1670 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
       
  1671 	else
       
  1672 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
       
  1673 
       
  1674 	switch (hw->mac_type) {
       
  1675 	case e1000_82542_rev2_0:
       
  1676 	case e1000_82542_rev2_1:
       
  1677 		tipg = DEFAULT_82542_TIPG_IPGT;
       
  1678 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
       
  1679 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
       
  1680 		break;
       
  1681 	case e1000_80003es2lan:
       
  1682 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1683 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
       
  1684 		break;
       
  1685 	default:
       
  1686 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1687 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
       
  1688 		break;
       
  1689 	}
       
  1690 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
       
  1691 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
       
  1692 	E1000_WRITE_REG(hw, TIPG, tipg);
       
  1693 
       
  1694 	/* Set the Tx Interrupt Delay register */
       
  1695 
       
  1696 	E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
       
  1697 	if (hw->mac_type >= e1000_82540)
       
  1698 		E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
       
  1699 
       
  1700 	/* Program the Transmit Control Register */
       
  1701 
       
  1702 	tctl = E1000_READ_REG(hw, TCTL);
       
  1703 	tctl &= ~E1000_TCTL_CT;
       
  1704 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  1705 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  1706 
       
  1707 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
       
  1708 		tarc = E1000_READ_REG(hw, TARC0);
       
  1709 		/* set the speed mode bit, we'll clear it if we're not at
       
  1710 		 * gigabit link later */
       
  1711 		tarc |= (1 << 21);
       
  1712 		E1000_WRITE_REG(hw, TARC0, tarc);
       
  1713 	} else if (hw->mac_type == e1000_80003es2lan) {
       
  1714 		tarc = E1000_READ_REG(hw, TARC0);
       
  1715 		tarc |= 1;
       
  1716 		E1000_WRITE_REG(hw, TARC0, tarc);
       
  1717 		tarc = E1000_READ_REG(hw, TARC1);
       
  1718 		tarc |= 1;
       
  1719 		E1000_WRITE_REG(hw, TARC1, tarc);
       
  1720 	}
       
  1721 
       
  1722 	e1000_config_collision_dist(hw);
       
  1723 
       
  1724 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  1725 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
       
  1726 
       
  1727 	/* only set IDE if we are delaying interrupts using the timers */
       
  1728 	if (adapter->tx_int_delay)
       
  1729 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
       
  1730 
       
  1731 	if (hw->mac_type < e1000_82543)
       
  1732 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
       
  1733 	else
       
  1734 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  1735 
       
  1736 	/* Cache if we're 82544 running in PCI-X because we'll
       
  1737 	 * need this to apply a workaround later in the send path. */
       
  1738 	if (hw->mac_type == e1000_82544 &&
       
  1739 	    hw->bus_type == e1000_bus_type_pcix)
       
  1740 		adapter->pcix_82544 = 1;
       
  1741 
       
  1742 	E1000_WRITE_REG(hw, TCTL, tctl);
       
  1743 
       
  1744 }
       
  1745 
       
  1746 /**
       
  1747  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
       
  1748  * @adapter: board private structure
       
  1749  * @rxdr:    rx descriptor ring (for a specific queue) to setup
       
  1750  *
       
  1751  * Returns 0 on success, negative on failure
       
  1752  **/
       
  1753 
       
  1754 static int
       
  1755 e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
  1756                          struct e1000_rx_ring *rxdr)
       
  1757 {
       
  1758 	struct pci_dev *pdev = adapter->pdev;
       
  1759 	int size, desc_len;
       
  1760 
       
  1761 	size = sizeof(struct e1000_buffer) * rxdr->count;
       
  1762 	rxdr->buffer_info = vmalloc(size);
       
  1763 	if (!rxdr->buffer_info) {
       
  1764 		DPRINTK(PROBE, ERR,
       
  1765 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1766 		return -ENOMEM;
       
  1767 	}
       
  1768 	memset(rxdr->buffer_info, 0, size);
       
  1769 
       
  1770 	rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
       
  1771 	                        GFP_KERNEL);
       
  1772 	if (!rxdr->ps_page) {
       
  1773 		vfree(rxdr->buffer_info);
       
  1774 		DPRINTK(PROBE, ERR,
       
  1775 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1776 		return -ENOMEM;
       
  1777 	}
       
  1778 
       
  1779 	rxdr->ps_page_dma = kcalloc(rxdr->count,
       
  1780 	                            sizeof(struct e1000_ps_page_dma),
       
  1781 	                            GFP_KERNEL);
       
  1782 	if (!rxdr->ps_page_dma) {
       
  1783 		vfree(rxdr->buffer_info);
       
  1784 		kfree(rxdr->ps_page);
       
  1785 		DPRINTK(PROBE, ERR,
       
  1786 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1787 		return -ENOMEM;
       
  1788 	}
       
  1789 
       
  1790 	if (adapter->hw.mac_type <= e1000_82547_rev_2)
       
  1791 		desc_len = sizeof(struct e1000_rx_desc);
       
  1792 	else
       
  1793 		desc_len = sizeof(union e1000_rx_desc_packet_split);
       
  1794 
       
  1795 	/* Round up to nearest 4K */
       
  1796 
       
  1797 	rxdr->size = rxdr->count * desc_len;
       
  1798 	rxdr->size = ALIGN(rxdr->size, 4096);
       
  1799 
       
  1800 	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1801 
       
  1802 	if (!rxdr->desc) {
       
  1803 		DPRINTK(PROBE, ERR,
       
  1804 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1805 setup_rx_desc_die:
       
  1806 		vfree(rxdr->buffer_info);
       
  1807 		kfree(rxdr->ps_page);
       
  1808 		kfree(rxdr->ps_page_dma);
       
  1809 		return -ENOMEM;
       
  1810 	}
       
  1811 
       
  1812 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1813 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1814 		void *olddesc = rxdr->desc;
       
  1815 		dma_addr_t olddma = rxdr->dma;
       
  1816 		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
       
  1817 				     "at %p\n", rxdr->size, rxdr->desc);
       
  1818 		/* Try again, without freeing the previous */
       
  1819 		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1820 		/* Failed allocation, critical failure */
       
  1821 		if (!rxdr->desc) {
       
  1822 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1823 			DPRINTK(PROBE, ERR,
       
  1824 				"Unable to allocate memory "
       
  1825 				"for the receive descriptor ring\n");
       
  1826 			goto setup_rx_desc_die;
       
  1827 		}
       
  1828 
       
  1829 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1830 			/* give up */
       
  1831 			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
       
  1832 					    rxdr->dma);
       
  1833 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1834 			DPRINTK(PROBE, ERR,
       
  1835 				"Unable to allocate aligned memory "
       
  1836 				"for the receive descriptor ring\n");
       
  1837 			goto setup_rx_desc_die;
       
  1838 		} else {
       
  1839 			/* Free old allocation, new allocation was successful */
       
  1840 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1841 		}
       
  1842 	}
       
  1843 	memset(rxdr->desc, 0, rxdr->size);
       
  1844 
       
  1845 	rxdr->next_to_clean = 0;
       
  1846 	rxdr->next_to_use = 0;
       
  1847 
       
  1848 	return 0;
       
  1849 }
       
  1850 
       
  1851 /**
       
  1852  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
       
  1853  * 				  (Descriptors) for all queues
       
  1854  * @adapter: board private structure
       
  1855  *
       
  1856  * Return 0 on success, negative on failure
       
  1857  **/
       
  1858 
       
  1859 int
       
  1860 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
       
  1861 {
       
  1862 	int i, err = 0;
       
  1863 
       
  1864 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1865 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
       
  1866 		if (err) {
       
  1867 			DPRINTK(PROBE, ERR,
       
  1868 				"Allocation for Rx Queue %u failed\n", i);
       
  1869 			for (i-- ; i >= 0; i--)
       
  1870 				e1000_free_rx_resources(adapter,
       
  1871 							&adapter->rx_ring[i]);
       
  1872 			break;
       
  1873 		}
       
  1874 	}
       
  1875 
       
  1876 	return err;
       
  1877 }
       
  1878 
       
  1879 /**
       
  1880  * e1000_setup_rctl - configure the receive control registers
       
  1881  * @adapter: Board private structure
       
  1882  **/
       
  1883 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
       
  1884 			(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
       
  1885 static void
       
  1886 e1000_setup_rctl(struct e1000_adapter *adapter)
       
  1887 {
       
  1888 	uint32_t rctl, rfctl;
       
  1889 	uint32_t psrctl = 0;
       
  1890 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
       
  1891 	uint32_t pages = 0;
       
  1892 #endif
       
  1893 
       
  1894 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1895 
       
  1896 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  1897 
       
  1898 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  1899 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1900 		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1901 
       
  1902 	if (adapter->hw.tbi_compatibility_on == 1)
       
  1903 		rctl |= E1000_RCTL_SBP;
       
  1904 	else
       
  1905 		rctl &= ~E1000_RCTL_SBP;
       
  1906 
       
  1907 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  1908 		rctl &= ~E1000_RCTL_LPE;
       
  1909 	else
       
  1910 		rctl |= E1000_RCTL_LPE;
       
  1911 
       
  1912 	/* Setup buffer sizes */
       
  1913 	rctl &= ~E1000_RCTL_SZ_4096;
       
  1914 	rctl |= E1000_RCTL_BSEX;
       
  1915 	switch (adapter->rx_buffer_len) {
       
  1916 		case E1000_RXBUFFER_256:
       
  1917 			rctl |= E1000_RCTL_SZ_256;
       
  1918 			rctl &= ~E1000_RCTL_BSEX;
       
  1919 			break;
       
  1920 		case E1000_RXBUFFER_512:
       
  1921 			rctl |= E1000_RCTL_SZ_512;
       
  1922 			rctl &= ~E1000_RCTL_BSEX;
       
  1923 			break;
       
  1924 		case E1000_RXBUFFER_1024:
       
  1925 			rctl |= E1000_RCTL_SZ_1024;
       
  1926 			rctl &= ~E1000_RCTL_BSEX;
       
  1927 			break;
       
  1928 		case E1000_RXBUFFER_2048:
       
  1929 		default:
       
  1930 			rctl |= E1000_RCTL_SZ_2048;
       
  1931 			rctl &= ~E1000_RCTL_BSEX;
       
  1932 			break;
       
  1933 		case E1000_RXBUFFER_4096:
       
  1934 			rctl |= E1000_RCTL_SZ_4096;
       
  1935 			break;
       
  1936 		case E1000_RXBUFFER_8192:
       
  1937 			rctl |= E1000_RCTL_SZ_8192;
       
  1938 			break;
       
  1939 		case E1000_RXBUFFER_16384:
       
  1940 			rctl |= E1000_RCTL_SZ_16384;
       
  1941 			break;
       
  1942 	}
       
  1943 
       
  1944 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
       
  1945 	/* 82571 and greater support packet-split where the protocol
       
  1946 	 * header is placed in skb->data and the packet data is
       
  1947 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
       
  1948 	 * In the case of a non-split, skb->data is linearly filled,
       
  1949 	 * followed by the page buffers.  Therefore, skb->data is
       
  1950 	 * sized to hold the largest protocol header.
       
  1951 	 */
       
  1952 	/* allocations using alloc_page take too long for regular MTU
       
  1953 	 * so only enable packet split for jumbo frames */
       
  1954 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
       
  1955 	if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
       
  1956 	    PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
       
  1957 		adapter->rx_ps_pages = pages;
       
  1958 	else
       
  1959 		adapter->rx_ps_pages = 0;
       
  1960 #endif
       
  1961 	if (adapter->rx_ps_pages) {
       
  1962 		/* Configure extra packet-split registers */
       
  1963 		rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
       
  1964 		rfctl |= E1000_RFCTL_EXTEN;
       
  1965 		/* disable packet split support for IPv6 extension headers,
       
  1966 		 * because some malformed IPv6 headers can hang the RX */
       
  1967 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
       
  1968 		          E1000_RFCTL_NEW_IPV6_EXT_DIS);
       
  1969 
       
  1970 		E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
       
  1971 
       
  1972 		rctl |= E1000_RCTL_DTYP_PS;
       
  1973 
       
  1974 		psrctl |= adapter->rx_ps_bsize0 >>
       
  1975 			E1000_PSRCTL_BSIZE0_SHIFT;
       
  1976 
       
  1977 		switch (adapter->rx_ps_pages) {
       
  1978 		case 3:
       
  1979 			psrctl |= PAGE_SIZE <<
       
  1980 				E1000_PSRCTL_BSIZE3_SHIFT;
       
  1981 		case 2:
       
  1982 			psrctl |= PAGE_SIZE <<
       
  1983 				E1000_PSRCTL_BSIZE2_SHIFT;
       
  1984 		case 1:
       
  1985 			psrctl |= PAGE_SIZE >>
       
  1986 				E1000_PSRCTL_BSIZE1_SHIFT;
       
  1987 			break;
       
  1988 		}
       
  1989 
       
  1990 		E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
       
  1991 	}
       
  1992 
       
  1993 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1994 }
       
  1995 
       
  1996 /**
       
  1997  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
       
  1998  * @adapter: board private structure
       
  1999  *
       
  2000  * Configure the Rx unit of the MAC after a reset.
       
  2001  **/
       
  2002 
       
  2003 static void
       
  2004 e1000_configure_rx(struct e1000_adapter *adapter)
       
  2005 {
       
  2006 	uint64_t rdba;
       
  2007 	struct e1000_hw *hw = &adapter->hw;
       
  2008 	uint32_t rdlen, rctl, rxcsum, ctrl_ext;
       
  2009 
       
  2010 	if (adapter->rx_ps_pages) {
       
  2011 		/* this is a 32 byte descriptor */
       
  2012 		rdlen = adapter->rx_ring[0].count *
       
  2013 			sizeof(union e1000_rx_desc_packet_split);
       
  2014 		adapter->clean_rx = e1000_clean_rx_irq_ps;
       
  2015 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
       
  2016 	} else {
       
  2017 		rdlen = adapter->rx_ring[0].count *
       
  2018 			sizeof(struct e1000_rx_desc);
       
  2019 		adapter->clean_rx = e1000_clean_rx_irq;
       
  2020 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  2021 	}
       
  2022 
       
  2023 	/* disable receives while setting up the descriptors */
       
  2024 	rctl = E1000_READ_REG(hw, RCTL);
       
  2025 	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  2026 
       
  2027 	/* set the Receive Delay Timer Register */
       
  2028 	E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
       
  2029 
       
  2030 	if (hw->mac_type >= e1000_82540) {
       
  2031 		E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
       
  2032 		if (adapter->itr_setting != 0)
       
  2033 			E1000_WRITE_REG(hw, ITR,
       
  2034 				1000000000 / (adapter->itr * 256));
       
  2035 	}
       
  2036 
       
  2037 	if (hw->mac_type >= e1000_82571) {
       
  2038 		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
       
  2039 		/* Reset delay timers after every interrupt */
       
  2040 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
       
  2041 #ifdef CONFIG_E1000_NAPI
       
  2042 		/* Auto-Mask interrupts upon ICR access */
       
  2043 		ctrl_ext |= E1000_CTRL_EXT_IAME;
       
  2044 		E1000_WRITE_REG(hw, IAM, 0xffffffff);
       
  2045 #endif
       
  2046 		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
       
  2047 		E1000_WRITE_FLUSH(hw);
       
  2048 	}
       
  2049 
       
  2050 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
       
  2051 	 * the Base and Length of the Rx Descriptor Ring */
       
  2052 	switch (adapter->num_rx_queues) {
       
  2053 	case 1:
       
  2054 	default:
       
  2055 		rdba = adapter->rx_ring[0].dma;
       
  2056 		E1000_WRITE_REG(hw, RDLEN, rdlen);
       
  2057 		E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
       
  2058 		E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
       
  2059 		E1000_WRITE_REG(hw, RDT, 0);
       
  2060 		E1000_WRITE_REG(hw, RDH, 0);
       
  2061 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
       
  2062 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
       
  2063 		break;
       
  2064 	}
       
  2065 
       
  2066 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
       
  2067 	if (hw->mac_type >= e1000_82543) {
       
  2068 		rxcsum = E1000_READ_REG(hw, RXCSUM);
       
  2069 		if (adapter->rx_csum == TRUE) {
       
  2070 			rxcsum |= E1000_RXCSUM_TUOFL;
       
  2071 
       
  2072 			/* Enable 82571 IPv4 payload checksum for UDP fragments
       
  2073 			 * Must be used in conjunction with packet-split. */
       
  2074 			if ((hw->mac_type >= e1000_82571) &&
       
  2075 			    (adapter->rx_ps_pages)) {
       
  2076 				rxcsum |= E1000_RXCSUM_IPPCSE;
       
  2077 			}
       
  2078 		} else {
       
  2079 			rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  2080 			/* don't need to clear IPPCSE as it defaults to 0 */
       
  2081 		}
       
  2082 		E1000_WRITE_REG(hw, RXCSUM, rxcsum);
       
  2083 	}
       
  2084 
       
  2085 	/* enable early receives on 82573, only takes effect if using > 2048
       
  2086 	 * byte total frame size.  for example only for jumbo frames */
       
  2087 #define E1000_ERT_2048 0x100
       
  2088 	if (hw->mac_type == e1000_82573)
       
  2089 		E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
       
  2090 
       
  2091 	/* Enable Receives */
       
  2092 	E1000_WRITE_REG(hw, RCTL, rctl);
       
  2093 }
       
  2094 
       
  2095 /**
       
  2096  * e1000_free_tx_resources - Free Tx Resources per Queue
       
  2097  * @adapter: board private structure
       
  2098  * @tx_ring: Tx descriptor ring for a specific queue
       
  2099  *
       
  2100  * Free all transmit software resources
       
  2101  **/
       
  2102 
       
  2103 static void
       
  2104 e1000_free_tx_resources(struct e1000_adapter *adapter,
       
  2105                         struct e1000_tx_ring *tx_ring)
       
  2106 {
       
  2107 	struct pci_dev *pdev = adapter->pdev;
       
  2108 
       
  2109 	e1000_clean_tx_ring(adapter, tx_ring);
       
  2110 
       
  2111 	vfree(tx_ring->buffer_info);
       
  2112 	tx_ring->buffer_info = NULL;
       
  2113 
       
  2114 	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
       
  2115 
       
  2116 	tx_ring->desc = NULL;
       
  2117 }
       
  2118 
       
  2119 /**
       
  2120  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
       
  2121  * @adapter: board private structure
       
  2122  *
       
  2123  * Free all transmit software resources
       
  2124  **/
       
  2125 
       
  2126 void
       
  2127 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
       
  2128 {
       
  2129 	int i;
       
  2130 
       
  2131 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  2132 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
       
  2133 }
       
  2134 
       
  2135 static void
       
  2136 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
       
  2137 			struct e1000_buffer *buffer_info)
       
  2138 {
       
  2139 	if (buffer_info->dma) {
       
  2140 		pci_unmap_page(adapter->pdev,
       
  2141 				buffer_info->dma,
       
  2142 				buffer_info->length,
       
  2143 				PCI_DMA_TODEVICE);
       
  2144 		buffer_info->dma = 0;
       
  2145 	}
       
  2146 	if (buffer_info->skb) {
       
  2147 		dev_kfree_skb_any(buffer_info->skb);
       
  2148 		buffer_info->skb = NULL;
       
  2149 	}
       
  2150 	/* buffer_info must be completely set up in the transmit path */
       
  2151 }
       
  2152 
       
  2153 /**
       
  2154  * e1000_clean_tx_ring - Free Tx Buffers
       
  2155  * @adapter: board private structure
       
  2156  * @tx_ring: ring to be cleaned
       
  2157  **/
       
  2158 
       
  2159 static void
       
  2160 e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
  2161                     struct e1000_tx_ring *tx_ring)
       
  2162 {
       
  2163 	struct e1000_buffer *buffer_info;
       
  2164 	unsigned long size;
       
  2165 	unsigned int i;
       
  2166 
       
  2167 	/* Free all the Tx ring sk_buffs */
       
  2168 
       
  2169 	for (i = 0; i < tx_ring->count; i++) {
       
  2170 		buffer_info = &tx_ring->buffer_info[i];
       
  2171 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  2172 	}
       
  2173 
       
  2174 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  2175 	memset(tx_ring->buffer_info, 0, size);
       
  2176 
       
  2177 	/* Zero out the descriptor ring */
       
  2178 
       
  2179 	memset(tx_ring->desc, 0, tx_ring->size);
       
  2180 
       
  2181 	tx_ring->next_to_use = 0;
       
  2182 	tx_ring->next_to_clean = 0;
       
  2183 	tx_ring->last_tx_tso = 0;
       
  2184 
       
  2185 	writel(0, adapter->hw.hw_addr + tx_ring->tdh);
       
  2186 	writel(0, adapter->hw.hw_addr + tx_ring->tdt);
       
  2187 }
       
  2188 
       
  2189 /**
       
  2190  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
       
  2191  * @adapter: board private structure
       
  2192  **/
       
  2193 
       
  2194 static void
       
  2195 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
       
  2196 {
       
  2197 	int i;
       
  2198 
       
  2199 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  2200 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
       
  2201 }
       
  2202 
       
  2203 /**
       
  2204  * e1000_free_rx_resources - Free Rx Resources
       
  2205  * @adapter: board private structure
       
  2206  * @rx_ring: ring to clean the resources from
       
  2207  *
       
  2208  * Free all receive software resources
       
  2209  **/
       
  2210 
       
  2211 static void
       
  2212 e1000_free_rx_resources(struct e1000_adapter *adapter,
       
  2213                         struct e1000_rx_ring *rx_ring)
       
  2214 {
       
  2215 	struct pci_dev *pdev = adapter->pdev;
       
  2216 
       
  2217 	e1000_clean_rx_ring(adapter, rx_ring);
       
  2218 
       
  2219 	vfree(rx_ring->buffer_info);
       
  2220 	rx_ring->buffer_info = NULL;
       
  2221 	kfree(rx_ring->ps_page);
       
  2222 	rx_ring->ps_page = NULL;
       
  2223 	kfree(rx_ring->ps_page_dma);
       
  2224 	rx_ring->ps_page_dma = NULL;
       
  2225 
       
  2226 	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
       
  2227 
       
  2228 	rx_ring->desc = NULL;
       
  2229 }
       
  2230 
       
  2231 /**
       
  2232  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
       
  2233  * @adapter: board private structure
       
  2234  *
       
  2235  * Free all receive software resources
       
  2236  **/
       
  2237 
       
  2238 void
       
  2239 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
       
  2240 {
       
  2241 	int i;
       
  2242 
       
  2243 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2244 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
       
  2245 }
       
  2246 
       
  2247 /**
       
  2248  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  2249  * @adapter: board private structure
       
  2250  * @rx_ring: ring to free buffers from
       
  2251  **/
       
  2252 
       
  2253 static void
       
  2254 e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
  2255                     struct e1000_rx_ring *rx_ring)
       
  2256 {
       
  2257 	struct e1000_buffer *buffer_info;
       
  2258 	struct e1000_ps_page *ps_page;
       
  2259 	struct e1000_ps_page_dma *ps_page_dma;
       
  2260 	struct pci_dev *pdev = adapter->pdev;
       
  2261 	unsigned long size;
       
  2262 	unsigned int i, j;
       
  2263 
       
  2264 	/* Free all the Rx ring sk_buffs */
       
  2265 	for (i = 0; i < rx_ring->count; i++) {
       
  2266 		buffer_info = &rx_ring->buffer_info[i];
       
  2267 		if (buffer_info->skb) {
       
  2268 			pci_unmap_single(pdev,
       
  2269 					 buffer_info->dma,
       
  2270 					 buffer_info->length,
       
  2271 					 PCI_DMA_FROMDEVICE);
       
  2272 
       
  2273 			dev_kfree_skb(buffer_info->skb);
       
  2274 			buffer_info->skb = NULL;
       
  2275 		}
       
  2276 		ps_page = &rx_ring->ps_page[i];
       
  2277 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  2278 		for (j = 0; j < adapter->rx_ps_pages; j++) {
       
  2279 			if (!ps_page->ps_page[j]) break;
       
  2280 			pci_unmap_page(pdev,
       
  2281 				       ps_page_dma->ps_page_dma[j],
       
  2282 				       PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  2283 			ps_page_dma->ps_page_dma[j] = 0;
       
  2284 			put_page(ps_page->ps_page[j]);
       
  2285 			ps_page->ps_page[j] = NULL;
       
  2286 		}
       
  2287 	}
       
  2288 
       
  2289 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  2290 	memset(rx_ring->buffer_info, 0, size);
       
  2291 	size = sizeof(struct e1000_ps_page) * rx_ring->count;
       
  2292 	memset(rx_ring->ps_page, 0, size);
       
  2293 	size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
       
  2294 	memset(rx_ring->ps_page_dma, 0, size);
       
  2295 
       
  2296 	/* Zero out the descriptor ring */
       
  2297 
       
  2298 	memset(rx_ring->desc, 0, rx_ring->size);
       
  2299 
       
  2300 	rx_ring->next_to_clean = 0;
       
  2301 	rx_ring->next_to_use = 0;
       
  2302 
       
  2303 	writel(0, adapter->hw.hw_addr + rx_ring->rdh);
       
  2304 	writel(0, adapter->hw.hw_addr + rx_ring->rdt);
       
  2305 }
       
  2306 
       
  2307 /**
       
  2308  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
       
  2309  * @adapter: board private structure
       
  2310  **/
       
  2311 
       
  2312 static void
       
  2313 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
       
  2314 {
       
  2315 	int i;
       
  2316 
       
  2317 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2318 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
       
  2319 }
       
  2320 
       
  2321 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
       
  2322  * and memory write and invalidate disabled for certain operations
       
  2323  */
       
  2324 static void
       
  2325 e1000_enter_82542_rst(struct e1000_adapter *adapter)
       
  2326 {
       
  2327 	struct net_device *netdev = adapter->netdev;
       
  2328 	uint32_t rctl;
       
  2329 
       
  2330 	e1000_pci_clear_mwi(&adapter->hw);
       
  2331 
       
  2332 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  2333 	rctl |= E1000_RCTL_RST;
       
  2334 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  2335 	E1000_WRITE_FLUSH(&adapter->hw);
       
  2336 	mdelay(5);
       
  2337 
       
  2338 	if (netif_running(netdev))
       
  2339 		e1000_clean_all_rx_rings(adapter);
       
  2340 }
       
  2341 
       
  2342 static void
       
  2343 e1000_leave_82542_rst(struct e1000_adapter *adapter)
       
  2344 {
       
  2345 	struct net_device *netdev = adapter->netdev;
       
  2346 	uint32_t rctl;
       
  2347 
       
  2348 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  2349 	rctl &= ~E1000_RCTL_RST;
       
  2350 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  2351 	E1000_WRITE_FLUSH(&adapter->hw);
       
  2352 	mdelay(5);
       
  2353 
       
  2354 	if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
  2355 		e1000_pci_set_mwi(&adapter->hw);
       
  2356 
       
  2357 	if (netif_running(netdev)) {
       
  2358 		/* No need to loop, because 82542 supports only 1 queue */
       
  2359 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
       
  2360 		e1000_configure_rx(adapter);
       
  2361 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
       
  2362 	}
       
  2363 }
       
  2364 
       
  2365 /**
       
  2366  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  2367  * @netdev: network interface device structure
       
  2368  * @p: pointer to an address structure
       
  2369  *
       
  2370  * Returns 0 on success, negative on failure
       
  2371  **/
       
  2372 
       
  2373 static int
       
  2374 e1000_set_mac(struct net_device *netdev, void *p)
       
  2375 {
       
  2376 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2377 	struct sockaddr *addr = p;
       
  2378 
       
  2379 	if (!is_valid_ether_addr(addr->sa_data))
       
  2380 		return -EADDRNOTAVAIL;
       
  2381 
       
  2382 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2383 
       
  2384 	if (adapter->hw.mac_type == e1000_82542_rev2_0)
       
  2385 		e1000_enter_82542_rst(adapter);
       
  2386 
       
  2387 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  2388 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
       
  2389 
       
  2390 	e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
       
  2391 
       
  2392 	/* With 82571 controllers, LAA may be overwritten (with the default)
       
  2393 	 * due to controller reset from the other port. */
       
  2394 	if (adapter->hw.mac_type == e1000_82571) {
       
  2395 		/* activate the work around */
       
  2396 		adapter->hw.laa_is_present = 1;
       
  2397 
       
  2398 		/* Hold a copy of the LAA in RAR[14] This is done so that
       
  2399 		 * between the time RAR[0] gets clobbered  and the time it
       
  2400 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
       
  2401 		 * of the RARs and no incoming packets directed to this port
       
  2402 		 * are dropped. Eventaully the LAA will be in RAR[0] and
       
  2403 		 * RAR[14] */
       
  2404 		e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
       
  2405 					E1000_RAR_ENTRIES - 1);
       
  2406 	}
       
  2407 
       
  2408 	if (adapter->hw.mac_type == e1000_82542_rev2_0)
       
  2409 		e1000_leave_82542_rst(adapter);
       
  2410 
       
  2411 	return 0;
       
  2412 }
       
  2413 
       
  2414 /**
       
  2415  * e1000_set_multi - Multicast and Promiscuous mode set
       
  2416  * @netdev: network interface device structure
       
  2417  *
       
  2418  * The set_multi entry point is called whenever the multicast address
       
  2419  * list or the network interface flags are updated.  This routine is
       
  2420  * responsible for configuring the hardware for proper multicast,
       
  2421  * promiscuous mode, and all-multi behavior.
       
  2422  **/
       
  2423 
       
  2424 static void
       
  2425 e1000_set_multi(struct net_device *netdev)
       
  2426 {
       
  2427 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2428 	struct e1000_hw *hw = &adapter->hw;
       
  2429 	struct dev_mc_list *mc_ptr;
       
  2430 	uint32_t rctl;
       
  2431 	uint32_t hash_value;
       
  2432 	int i, rar_entries = E1000_RAR_ENTRIES;
       
  2433 	int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
       
  2434 				E1000_NUM_MTA_REGISTERS_ICH8LAN :
       
  2435 				E1000_NUM_MTA_REGISTERS;
       
  2436 
       
  2437 	if (adapter->hw.mac_type == e1000_ich8lan)
       
  2438 		rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
       
  2439 
       
  2440 	/* reserve RAR[14] for LAA over-write work-around */
       
  2441 	if (adapter->hw.mac_type == e1000_82571)
       
  2442 		rar_entries--;
       
  2443 
       
  2444 	/* Check for Promiscuous and All Multicast modes */
       
  2445 
       
  2446 	rctl = E1000_READ_REG(hw, RCTL);
       
  2447 
       
  2448 	if (netdev->flags & IFF_PROMISC) {
       
  2449 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2450 	} else if (netdev->flags & IFF_ALLMULTI) {
       
  2451 		rctl |= E1000_RCTL_MPE;
       
  2452 		rctl &= ~E1000_RCTL_UPE;
       
  2453 	} else {
       
  2454 		rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2455 	}
       
  2456 
       
  2457 	E1000_WRITE_REG(hw, RCTL, rctl);
       
  2458 
       
  2459 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2460 
       
  2461 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2462 		e1000_enter_82542_rst(adapter);
       
  2463 
       
  2464 	/* load the first 14 multicast address into the exact filters 1-14
       
  2465 	 * RAR 0 is used for the station MAC adddress
       
  2466 	 * if there are not 14 addresses, go ahead and clear the filters
       
  2467 	 * -- with 82571 controllers only 0-13 entries are filled here
       
  2468 	 */
       
  2469 	mc_ptr = netdev->mc_list;
       
  2470 
       
  2471 	for (i = 1; i < rar_entries; i++) {
       
  2472 		if (mc_ptr) {
       
  2473 			e1000_rar_set(hw, mc_ptr->dmi_addr, i);
       
  2474 			mc_ptr = mc_ptr->next;
       
  2475 		} else {
       
  2476 			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
       
  2477 			E1000_WRITE_FLUSH(hw);
       
  2478 			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
       
  2479 			E1000_WRITE_FLUSH(hw);
       
  2480 		}
       
  2481 	}
       
  2482 
       
  2483 	/* clear the old settings from the multicast hash table */
       
  2484 
       
  2485 	for (i = 0; i < mta_reg_count; i++) {
       
  2486 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
       
  2487 		E1000_WRITE_FLUSH(hw);
       
  2488 	}
       
  2489 
       
  2490 	/* load any remaining addresses into the hash table */
       
  2491 
       
  2492 	for (; mc_ptr; mc_ptr = mc_ptr->next) {
       
  2493 		hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
       
  2494 		e1000_mta_set(hw, hash_value);
       
  2495 	}
       
  2496 
       
  2497 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2498 		e1000_leave_82542_rst(adapter);
       
  2499 }
       
  2500 
       
  2501 /* Need to wait a few seconds after link up to get diagnostic information from
       
  2502  * the phy */
       
  2503 
       
  2504 static void
       
  2505 e1000_update_phy_info(unsigned long data)
       
  2506 {
       
  2507 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2508 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
       
  2509 }
       
  2510 
       
  2511 /**
       
  2512  * e1000_82547_tx_fifo_stall - Timer Call-back
       
  2513  * @data: pointer to adapter cast into an unsigned long
       
  2514  **/
       
  2515 
       
  2516 static void
       
  2517 e1000_82547_tx_fifo_stall(unsigned long data)
       
  2518 {
       
  2519 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2520 	struct net_device *netdev = adapter->netdev;
       
  2521 	uint32_t tctl;
       
  2522 
       
  2523 	if (atomic_read(&adapter->tx_fifo_stall)) {
       
  2524 		if ((E1000_READ_REG(&adapter->hw, TDT) ==
       
  2525 		    E1000_READ_REG(&adapter->hw, TDH)) &&
       
  2526 		   (E1000_READ_REG(&adapter->hw, TDFT) ==
       
  2527 		    E1000_READ_REG(&adapter->hw, TDFH)) &&
       
  2528 		   (E1000_READ_REG(&adapter->hw, TDFTS) ==
       
  2529 		    E1000_READ_REG(&adapter->hw, TDFHS))) {
       
  2530 			tctl = E1000_READ_REG(&adapter->hw, TCTL);
       
  2531 			E1000_WRITE_REG(&adapter->hw, TCTL,
       
  2532 					tctl & ~E1000_TCTL_EN);
       
  2533 			E1000_WRITE_REG(&adapter->hw, TDFT,
       
  2534 					adapter->tx_head_addr);
       
  2535 			E1000_WRITE_REG(&adapter->hw, TDFH,
       
  2536 					adapter->tx_head_addr);
       
  2537 			E1000_WRITE_REG(&adapter->hw, TDFTS,
       
  2538 					adapter->tx_head_addr);
       
  2539 			E1000_WRITE_REG(&adapter->hw, TDFHS,
       
  2540 					adapter->tx_head_addr);
       
  2541 			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
       
  2542 			E1000_WRITE_FLUSH(&adapter->hw);
       
  2543 
       
  2544 			adapter->tx_fifo_head = 0;
       
  2545 			atomic_set(&adapter->tx_fifo_stall, 0);
       
  2546 			netif_wake_queue(netdev);
       
  2547 		} else {
       
  2548 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  2549 		}
       
  2550 	}
       
  2551 }
       
  2552 
       
  2553 /**
       
  2554  * e1000_watchdog - Timer Call-back
       
  2555  * @data: pointer to adapter cast into an unsigned long
       
  2556  **/
       
  2557 static void
       
  2558 e1000_watchdog(unsigned long data)
       
  2559 {
       
  2560 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  2561 	struct net_device *netdev = adapter->netdev;
       
  2562 	struct e1000_tx_ring *txdr = adapter->tx_ring;
       
  2563 	uint32_t link, tctl;
       
  2564 	int32_t ret_val;
       
  2565 
       
  2566 	ret_val = e1000_check_for_link(&adapter->hw);
       
  2567 	if ((ret_val == E1000_ERR_PHY) &&
       
  2568 	    (adapter->hw.phy_type == e1000_phy_igp_3) &&
       
  2569 	    (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
       
  2570 		/* See e1000_kumeran_lock_loss_workaround() */
       
  2571 		DPRINTK(LINK, INFO,
       
  2572 			"Gigabit has been disabled, downgrading speed\n");
       
  2573 	}
       
  2574 
       
  2575 	if (adapter->hw.mac_type == e1000_82573) {
       
  2576 		e1000_enable_tx_pkt_filtering(&adapter->hw);
       
  2577 		if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
       
  2578 			e1000_update_mng_vlan(adapter);
       
  2579 	}
       
  2580 
       
  2581 	if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
       
  2582 	   !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
       
  2583 		link = !adapter->hw.serdes_link_down;
       
  2584 	else
       
  2585 		link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
       
  2586 
       
  2587 	if (link) {
       
  2588 		if (!netif_carrier_ok(netdev)) {
       
  2589 			uint32_t ctrl;
       
  2590 			boolean_t txb2b = 1;
       
  2591 			e1000_get_speed_and_duplex(&adapter->hw,
       
  2592 			                           &adapter->link_speed,
       
  2593 			                           &adapter->link_duplex);
       
  2594 
       
  2595 			ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  2596 			DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
       
  2597 			        "Flow Control: %s\n",
       
  2598 			        adapter->link_speed,
       
  2599 			        adapter->link_duplex == FULL_DUPLEX ?
       
  2600 			        "Full Duplex" : "Half Duplex",
       
  2601 			        ((ctrl & E1000_CTRL_TFCE) && (ctrl &
       
  2602 			        E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
       
  2603 			        E1000_CTRL_RFCE) ? "RX" : ((ctrl &
       
  2604 			        E1000_CTRL_TFCE) ? "TX" : "None" )));
       
  2605 
       
  2606 			/* tweak tx_queue_len according to speed/duplex
       
  2607 			 * and adjust the timeout factor */
       
  2608 			netdev->tx_queue_len = adapter->tx_queue_len;
       
  2609 			adapter->tx_timeout_factor = 1;
       
  2610 			switch (adapter->link_speed) {
       
  2611 			case SPEED_10:
       
  2612 				txb2b = 0;
       
  2613 				netdev->tx_queue_len = 10;
       
  2614 				adapter->tx_timeout_factor = 8;
       
  2615 				break;
       
  2616 			case SPEED_100:
       
  2617 				txb2b = 0;
       
  2618 				netdev->tx_queue_len = 100;
       
  2619 				/* maybe add some timeout factor ? */
       
  2620 				break;
       
  2621 			}
       
  2622 
       
  2623 			if ((adapter->hw.mac_type == e1000_82571 ||
       
  2624 			     adapter->hw.mac_type == e1000_82572) &&
       
  2625 			    txb2b == 0) {
       
  2626 				uint32_t tarc0;
       
  2627 				tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
       
  2628 				tarc0 &= ~(1 << 21);
       
  2629 				E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
       
  2630 			}
       
  2631 
       
  2632 			/* disable TSO for pcie and 10/100 speeds, to avoid
       
  2633 			 * some hardware issues */
       
  2634 			if (!adapter->tso_force &&
       
  2635 			    adapter->hw.bus_type == e1000_bus_type_pci_express){
       
  2636 				switch (adapter->link_speed) {
       
  2637 				case SPEED_10:
       
  2638 				case SPEED_100:
       
  2639 					DPRINTK(PROBE,INFO,
       
  2640 				        "10/100 speed: disabling TSO\n");
       
  2641 					netdev->features &= ~NETIF_F_TSO;
       
  2642 					netdev->features &= ~NETIF_F_TSO6;
       
  2643 					break;
       
  2644 				case SPEED_1000:
       
  2645 					netdev->features |= NETIF_F_TSO;
       
  2646 					netdev->features |= NETIF_F_TSO6;
       
  2647 					break;
       
  2648 				default:
       
  2649 					/* oops */
       
  2650 					break;
       
  2651 				}
       
  2652 			}
       
  2653 
       
  2654 			/* enable transmits in the hardware, need to do this
       
  2655 			 * after setting TARC0 */
       
  2656 			tctl = E1000_READ_REG(&adapter->hw, TCTL);
       
  2657 			tctl |= E1000_TCTL_EN;
       
  2658 			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
       
  2659 
       
  2660 			netif_carrier_on(netdev);
       
  2661 			netif_wake_queue(netdev);
       
  2662 			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
       
  2663 			adapter->smartspeed = 0;
       
  2664 		} else {
       
  2665 			/* make sure the receive unit is started */
       
  2666 			if (adapter->hw.rx_needs_kicking) {
       
  2667 				struct e1000_hw *hw = &adapter->hw;
       
  2668 				uint32_t rctl = E1000_READ_REG(hw, RCTL);
       
  2669 				E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
       
  2670 			}
       
  2671 		}
       
  2672 	} else {
       
  2673 		if (netif_carrier_ok(netdev)) {
       
  2674 			adapter->link_speed = 0;
       
  2675 			adapter->link_duplex = 0;
       
  2676 			DPRINTK(LINK, INFO, "NIC Link is Down\n");
       
  2677 			netif_carrier_off(netdev);
       
  2678 			netif_stop_queue(netdev);
       
  2679 			mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
       
  2680 
       
  2681 			/* 80003ES2LAN workaround--
       
  2682 			 * For packet buffer work-around on link down event;
       
  2683 			 * disable receives in the ISR and
       
  2684 			 * reset device here in the watchdog
       
  2685 			 */
       
  2686 			if (adapter->hw.mac_type == e1000_80003es2lan)
       
  2687 				/* reset device */
       
  2688 				schedule_work(&adapter->reset_task);
       
  2689 		}
       
  2690 
       
  2691 		e1000_smartspeed(adapter);
       
  2692 	}
       
  2693 
       
  2694 	e1000_update_stats(adapter);
       
  2695 
       
  2696 	adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  2697 	adapter->tpt_old = adapter->stats.tpt;
       
  2698 	adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
       
  2699 	adapter->colc_old = adapter->stats.colc;
       
  2700 
       
  2701 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
       
  2702 	adapter->gorcl_old = adapter->stats.gorcl;
       
  2703 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
       
  2704 	adapter->gotcl_old = adapter->stats.gotcl;
       
  2705 
       
  2706 	e1000_update_adaptive(&adapter->hw);
       
  2707 
       
  2708 	if (!netif_carrier_ok(netdev)) {
       
  2709 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
       
  2710 			/* We've lost link, so the controller stops DMA,
       
  2711 			 * but we've got queued Tx work that's never going
       
  2712 			 * to get done, so reset controller to flush Tx.
       
  2713 			 * (Do the reset outside of interrupt context). */
       
  2714 			adapter->tx_timeout_count++;
       
  2715 			schedule_work(&adapter->reset_task);
       
  2716 		}
       
  2717 	}
       
  2718 
       
  2719 	/* Cause software interrupt to ensure rx ring is cleaned */
       
  2720 	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
       
  2721 
       
  2722 	/* Force detection of hung controller every watchdog period */
       
  2723 	adapter->detect_tx_hung = TRUE;
       
  2724 
       
  2725 	/* With 82571 controllers, LAA may be overwritten due to controller
       
  2726 	 * reset from the other port. Set the appropriate LAA in RAR[0] */
       
  2727 	if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
       
  2728 		e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
       
  2729 
       
  2730 	/* Reset the timer */
       
  2731 	mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
       
  2732 }
       
  2733 
       
  2734 enum latency_range {
       
  2735 	lowest_latency = 0,
       
  2736 	low_latency = 1,
       
  2737 	bulk_latency = 2,
       
  2738 	latency_invalid = 255
       
  2739 };
       
  2740 
       
  2741 /**
       
  2742  * e1000_update_itr - update the dynamic ITR value based on statistics
       
  2743  *      Stores a new ITR value based on packets and byte
       
  2744  *      counts during the last interrupt.  The advantage of per interrupt
       
  2745  *      computation is faster updates and more accurate ITR for the current
       
  2746  *      traffic pattern.  Constants in this function were computed
       
  2747  *      based on theoretical maximum wire speed and thresholds were set based
       
  2748  *      on testing data as well as attempting to minimize response time
       
  2749  *      while increasing bulk throughput.
       
  2750  *      this functionality is controlled by the InterruptThrottleRate module
       
  2751  *      parameter (see e1000_param.c)
       
  2752  * @adapter: pointer to adapter
       
  2753  * @itr_setting: current adapter->itr
       
  2754  * @packets: the number of packets during this measurement interval
       
  2755  * @bytes: the number of bytes during this measurement interval
       
  2756  **/
       
  2757 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
       
  2758                                    uint16_t itr_setting,
       
  2759                                    int packets,
       
  2760                                    int bytes)
       
  2761 {
       
  2762 	unsigned int retval = itr_setting;
       
  2763 	struct e1000_hw *hw = &adapter->hw;
       
  2764 
       
  2765 	if (unlikely(hw->mac_type < e1000_82540))
       
  2766 		goto update_itr_done;
       
  2767 
       
  2768 	if (packets == 0)
       
  2769 		goto update_itr_done;
       
  2770 
       
  2771 	switch (itr_setting) {
       
  2772 	case lowest_latency:
       
  2773 		/* jumbo frames get bulk treatment*/
       
  2774 		if (bytes/packets > 8000)
       
  2775 			retval = bulk_latency;
       
  2776 		else if ((packets < 5) && (bytes > 512))
       
  2777 			retval = low_latency;
       
  2778 		break;
       
  2779 	case low_latency:  /* 50 usec aka 20000 ints/s */
       
  2780 		if (bytes > 10000) {
       
  2781 			/* jumbo frames need bulk latency setting */
       
  2782 			if (bytes/packets > 8000)
       
  2783 				retval = bulk_latency;
       
  2784 			else if ((packets < 10) || ((bytes/packets) > 1200))
       
  2785 				retval = bulk_latency;
       
  2786 			else if ((packets > 35))
       
  2787 				retval = lowest_latency;
       
  2788 		} else if (bytes/packets > 2000)
       
  2789 			retval = bulk_latency;
       
  2790 		else if (packets <= 2 && bytes < 512)
       
  2791 			retval = lowest_latency;
       
  2792 		break;
       
  2793 	case bulk_latency: /* 250 usec aka 4000 ints/s */
       
  2794 		if (bytes > 25000) {
       
  2795 			if (packets > 35)
       
  2796 				retval = low_latency;
       
  2797 		} else if (bytes < 6000) {
       
  2798 			retval = low_latency;
       
  2799 		}
       
  2800 		break;
       
  2801 	}
       
  2802 
       
  2803 update_itr_done:
       
  2804 	return retval;
       
  2805 }
       
  2806 
       
  2807 static void e1000_set_itr(struct e1000_adapter *adapter)
       
  2808 {
       
  2809 	struct e1000_hw *hw = &adapter->hw;
       
  2810 	uint16_t current_itr;
       
  2811 	uint32_t new_itr = adapter->itr;
       
  2812 
       
  2813 	if (unlikely(hw->mac_type < e1000_82540))
       
  2814 		return;
       
  2815 
       
  2816 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
       
  2817 	if (unlikely(adapter->link_speed != SPEED_1000)) {
       
  2818 		current_itr = 0;
       
  2819 		new_itr = 4000;
       
  2820 		goto set_itr_now;
       
  2821 	}
       
  2822 
       
  2823 	adapter->tx_itr = e1000_update_itr(adapter,
       
  2824 	                            adapter->tx_itr,
       
  2825 	                            adapter->total_tx_packets,
       
  2826 	                            adapter->total_tx_bytes);
       
  2827 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2828 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
       
  2829 		adapter->tx_itr = low_latency;
       
  2830 
       
  2831 	adapter->rx_itr = e1000_update_itr(adapter,
       
  2832 	                            adapter->rx_itr,
       
  2833 	                            adapter->total_rx_packets,
       
  2834 	                            adapter->total_rx_bytes);
       
  2835 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2836 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
       
  2837 		adapter->rx_itr = low_latency;
       
  2838 
       
  2839 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
       
  2840 
       
  2841 	switch (current_itr) {
       
  2842 	/* counts and packets in update_itr are dependent on these numbers */
       
  2843 	case lowest_latency:
       
  2844 		new_itr = 70000;
       
  2845 		break;
       
  2846 	case low_latency:
       
  2847 		new_itr = 20000; /* aka hwitr = ~200 */
       
  2848 		break;
       
  2849 	case bulk_latency:
       
  2850 		new_itr = 4000;
       
  2851 		break;
       
  2852 	default:
       
  2853 		break;
       
  2854 	}
       
  2855 
       
  2856 set_itr_now:
       
  2857 	if (new_itr != adapter->itr) {
       
  2858 		/* this attempts to bias the interrupt rate towards Bulk
       
  2859 		 * by adding intermediate steps when interrupt rate is
       
  2860 		 * increasing */
       
  2861 		new_itr = new_itr > adapter->itr ?
       
  2862 		             min(adapter->itr + (new_itr >> 2), new_itr) :
       
  2863 		             new_itr;
       
  2864 		adapter->itr = new_itr;
       
  2865 		E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
       
  2866 	}
       
  2867 
       
  2868 	return;
       
  2869 }
       
  2870 
       
  2871 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  2872 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  2873 #define E1000_TX_FLAGS_TSO		0x00000004
       
  2874 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  2875 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  2876 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  2877 
       
  2878 static int
       
  2879 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2880           struct sk_buff *skb)
       
  2881 {
       
  2882 	struct e1000_context_desc *context_desc;
       
  2883 	struct e1000_buffer *buffer_info;
       
  2884 	unsigned int i;
       
  2885 	uint32_t cmd_length = 0;
       
  2886 	uint16_t ipcse = 0, tucse, mss;
       
  2887 	uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
       
  2888 	int err;
       
  2889 
       
  2890 	if (skb_is_gso(skb)) {
       
  2891 		if (skb_header_cloned(skb)) {
       
  2892 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  2893 			if (err)
       
  2894 				return err;
       
  2895 		}
       
  2896 
       
  2897 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  2898 		mss = skb_shinfo(skb)->gso_size;
       
  2899 		if (skb->protocol == htons(ETH_P_IP)) {
       
  2900 			struct iphdr *iph = ip_hdr(skb);
       
  2901 			iph->tot_len = 0;
       
  2902 			iph->check = 0;
       
  2903 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
       
  2904 								 iph->daddr, 0,
       
  2905 								 IPPROTO_TCP,
       
  2906 								 0);
       
  2907 			cmd_length = E1000_TXD_CMD_IP;
       
  2908 			ipcse = skb_transport_offset(skb) - 1;
       
  2909 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
       
  2910 			ipv6_hdr(skb)->payload_len = 0;
       
  2911 			tcp_hdr(skb)->check =
       
  2912 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
       
  2913 						 &ipv6_hdr(skb)->daddr,
       
  2914 						 0, IPPROTO_TCP, 0);
       
  2915 			ipcse = 0;
       
  2916 		}
       
  2917 		ipcss = skb_network_offset(skb);
       
  2918 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
       
  2919 		tucss = skb_transport_offset(skb);
       
  2920 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
       
  2921 		tucse = 0;
       
  2922 
       
  2923 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  2924 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  2925 
       
  2926 		i = tx_ring->next_to_use;
       
  2927 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2928 		buffer_info = &tx_ring->buffer_info[i];
       
  2929 
       
  2930 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  2931 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  2932 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  2933 		context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  2934 		context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  2935 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  2936 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  2937 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  2938 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  2939 
       
  2940 		buffer_info->time_stamp = jiffies;
       
  2941 		buffer_info->next_to_watch = i;
       
  2942 
       
  2943 		if (++i == tx_ring->count) i = 0;
       
  2944 		tx_ring->next_to_use = i;
       
  2945 
       
  2946 		return TRUE;
       
  2947 	}
       
  2948 	return FALSE;
       
  2949 }
       
  2950 
       
  2951 static boolean_t
       
  2952 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2953               struct sk_buff *skb)
       
  2954 {
       
  2955 	struct e1000_context_desc *context_desc;
       
  2956 	struct e1000_buffer *buffer_info;
       
  2957 	unsigned int i;
       
  2958 	uint8_t css;
       
  2959 
       
  2960 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
       
  2961 		css = skb_transport_offset(skb);
       
  2962 
       
  2963 		i = tx_ring->next_to_use;
       
  2964 		buffer_info = &tx_ring->buffer_info[i];
       
  2965 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2966 
       
  2967 		context_desc->lower_setup.ip_config = 0;
       
  2968 		context_desc->upper_setup.tcp_fields.tucss = css;
       
  2969 		context_desc->upper_setup.tcp_fields.tucso =
       
  2970 			css + skb->csum_offset;
       
  2971 		context_desc->upper_setup.tcp_fields.tucse = 0;
       
  2972 		context_desc->tcp_seg_setup.data = 0;
       
  2973 		context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
       
  2974 
       
  2975 		buffer_info->time_stamp = jiffies;
       
  2976 		buffer_info->next_to_watch = i;
       
  2977 
       
  2978 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  2979 		tx_ring->next_to_use = i;
       
  2980 
       
  2981 		return TRUE;
       
  2982 	}
       
  2983 
       
  2984 	return FALSE;
       
  2985 }
       
  2986 
       
  2987 #define E1000_MAX_TXD_PWR	12
       
  2988 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
       
  2989 
       
  2990 static int
       
  2991 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  2992              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
       
  2993              unsigned int nr_frags, unsigned int mss)
       
  2994 {
       
  2995 	struct e1000_buffer *buffer_info;
       
  2996 	unsigned int len = skb->len;
       
  2997 	unsigned int offset = 0, size, count = 0, i;
       
  2998 	unsigned int f;
       
  2999 	len -= skb->data_len;
       
  3000 
       
  3001 	i = tx_ring->next_to_use;
       
  3002 
       
  3003 	while (len) {
       
  3004 		buffer_info = &tx_ring->buffer_info[i];
       
  3005 		size = min(len, max_per_txd);
       
  3006 		/* Workaround for Controller erratum --
       
  3007 		 * descriptor for non-tso packet in a linear SKB that follows a
       
  3008 		 * tso gets written back prematurely before the data is fully
       
  3009 		 * DMA'd to the controller */
       
  3010 		if (!skb->data_len && tx_ring->last_tx_tso &&
       
  3011 		    !skb_is_gso(skb)) {
       
  3012 			tx_ring->last_tx_tso = 0;
       
  3013 			size -= 4;
       
  3014 		}
       
  3015 
       
  3016 		/* Workaround for premature desc write-backs
       
  3017 		 * in TSO mode.  Append 4-byte sentinel desc */
       
  3018 		if (unlikely(mss && !nr_frags && size == len && size > 8))
       
  3019 			size -= 4;
       
  3020 		/* work-around for errata 10 and it applies
       
  3021 		 * to all controllers in PCI-X mode
       
  3022 		 * The fix is to make sure that the first descriptor of a
       
  3023 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
       
  3024 		 */
       
  3025 		if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
       
  3026 		                (size > 2015) && count == 0))
       
  3027 		        size = 2015;
       
  3028 
       
  3029 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
       
  3030 		 * terminating buffers within evenly-aligned dwords. */
       
  3031 		if (unlikely(adapter->pcix_82544 &&
       
  3032 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
       
  3033 		   size > 4))
       
  3034 			size -= 4;
       
  3035 
       
  3036 		buffer_info->length = size;
       
  3037 		buffer_info->dma =
       
  3038 			pci_map_single(adapter->pdev,
       
  3039 				skb->data + offset,
       
  3040 				size,
       
  3041 				PCI_DMA_TODEVICE);
       
  3042 		buffer_info->time_stamp = jiffies;
       
  3043 		buffer_info->next_to_watch = i;
       
  3044 
       
  3045 		len -= size;
       
  3046 		offset += size;
       
  3047 		count++;
       
  3048 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  3049 	}
       
  3050 
       
  3051 	for (f = 0; f < nr_frags; f++) {
       
  3052 		struct skb_frag_struct *frag;
       
  3053 
       
  3054 		frag = &skb_shinfo(skb)->frags[f];
       
  3055 		len = frag->size;
       
  3056 		offset = frag->page_offset;
       
  3057 
       
  3058 		while (len) {
       
  3059 			buffer_info = &tx_ring->buffer_info[i];
       
  3060 			size = min(len, max_per_txd);
       
  3061 			/* Workaround for premature desc write-backs
       
  3062 			 * in TSO mode.  Append 4-byte sentinel desc */
       
  3063 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
       
  3064 				size -= 4;
       
  3065 			/* Workaround for potential 82544 hang in PCI-X.
       
  3066 			 * Avoid terminating buffers within evenly-aligned
       
  3067 			 * dwords. */
       
  3068 			if (unlikely(adapter->pcix_82544 &&
       
  3069 			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
       
  3070 			   size > 4))
       
  3071 				size -= 4;
       
  3072 
       
  3073 			buffer_info->length = size;
       
  3074 			buffer_info->dma =
       
  3075 				pci_map_page(adapter->pdev,
       
  3076 					frag->page,
       
  3077 					offset,
       
  3078 					size,
       
  3079 					PCI_DMA_TODEVICE);
       
  3080 			buffer_info->time_stamp = jiffies;
       
  3081 			buffer_info->next_to_watch = i;
       
  3082 
       
  3083 			len -= size;
       
  3084 			offset += size;
       
  3085 			count++;
       
  3086 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  3087 		}
       
  3088 	}
       
  3089 
       
  3090 	i = (i == 0) ? tx_ring->count - 1 : i - 1;
       
  3091 	tx_ring->buffer_info[i].skb = skb;
       
  3092 	tx_ring->buffer_info[first].next_to_watch = i;
       
  3093 
       
  3094 	return count;
       
  3095 }
       
  3096 
       
  3097 static void
       
  3098 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
       
  3099                int tx_flags, int count)
       
  3100 {
       
  3101 	struct e1000_tx_desc *tx_desc = NULL;
       
  3102 	struct e1000_buffer *buffer_info;
       
  3103 	uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  3104 	unsigned int i;
       
  3105 
       
  3106 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
       
  3107 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  3108 		             E1000_TXD_CMD_TSE;
       
  3109 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  3110 
       
  3111 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
       
  3112 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  3113 	}
       
  3114 
       
  3115 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
       
  3116 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  3117 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  3118 	}
       
  3119 
       
  3120 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
       
  3121 		txd_lower |= E1000_TXD_CMD_VLE;
       
  3122 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  3123 	}
       
  3124 
       
  3125 	i = tx_ring->next_to_use;
       
  3126 
       
  3127 	while (count--) {
       
  3128 		buffer_info = &tx_ring->buffer_info[i];
       
  3129 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3130 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  3131 		tx_desc->lower.data =
       
  3132 			cpu_to_le32(txd_lower | buffer_info->length);
       
  3133 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  3134 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  3135 	}
       
  3136 
       
  3137 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  3138 
       
  3139 	/* Force memory writes to complete before letting h/w
       
  3140 	 * know there are new descriptors to fetch.  (Only
       
  3141 	 * applicable for weak-ordered memory model archs,
       
  3142 	 * such as IA-64). */
       
  3143 	wmb();
       
  3144 
       
  3145 	tx_ring->next_to_use = i;
       
  3146 	writel(i, adapter->hw.hw_addr + tx_ring->tdt);
       
  3147 	/* we need this if more than one processor can write to our tail
       
  3148 	 * at a time, it syncronizes IO on IA64/Altix systems */
       
  3149 	mmiowb();
       
  3150 }
       
  3151 
       
  3152 /**
       
  3153  * 82547 workaround to avoid controller hang in half-duplex environment.
       
  3154  * The workaround is to avoid queuing a large packet that would span
       
  3155  * the internal Tx FIFO ring boundary by notifying the stack to resend
       
  3156  * the packet at a later time.  This gives the Tx FIFO an opportunity to
       
  3157  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
       
  3158  * to the beginning of the Tx FIFO.
       
  3159  **/
       
  3160 
       
  3161 #define E1000_FIFO_HDR			0x10
       
  3162 #define E1000_82547_PAD_LEN		0x3E0
       
  3163 
       
  3164 static int
       
  3165 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  3166 {
       
  3167 	uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
       
  3168 	uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
       
  3169 
       
  3170 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
       
  3171 
       
  3172 	if (adapter->link_duplex != HALF_DUPLEX)
       
  3173 		goto no_fifo_stall_required;
       
  3174 
       
  3175 	if (atomic_read(&adapter->tx_fifo_stall))
       
  3176 		return 1;
       
  3177 
       
  3178 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
       
  3179 		atomic_set(&adapter->tx_fifo_stall, 1);
       
  3180 		return 1;
       
  3181 	}
       
  3182 
       
  3183 no_fifo_stall_required:
       
  3184 	adapter->tx_fifo_head += skb_fifo_len;
       
  3185 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
       
  3186 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
       
  3187 	return 0;
       
  3188 }
       
  3189 
       
  3190 #define MINIMUM_DHCP_PACKET_SIZE 282
       
  3191 static int
       
  3192 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  3193 {
       
  3194 	struct e1000_hw *hw =  &adapter->hw;
       
  3195 	uint16_t length, offset;
       
  3196 	if (vlan_tx_tag_present(skb)) {
       
  3197 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
       
  3198 			( adapter->hw.mng_cookie.status &
       
  3199 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
       
  3200 			return 0;
       
  3201 	}
       
  3202 	if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
       
  3203 		struct ethhdr *eth = (struct ethhdr *) skb->data;
       
  3204 		if ((htons(ETH_P_IP) == eth->h_proto)) {
       
  3205 			const struct iphdr *ip =
       
  3206 				(struct iphdr *)((uint8_t *)skb->data+14);
       
  3207 			if (IPPROTO_UDP == ip->protocol) {
       
  3208 				struct udphdr *udp =
       
  3209 					(struct udphdr *)((uint8_t *)ip +
       
  3210 						(ip->ihl << 2));
       
  3211 				if (ntohs(udp->dest) == 67) {
       
  3212 					offset = (uint8_t *)udp + 8 - skb->data;
       
  3213 					length = skb->len - offset;
       
  3214 
       
  3215 					return e1000_mng_write_dhcp_info(hw,
       
  3216 							(uint8_t *)udp + 8,
       
  3217 							length);
       
  3218 				}
       
  3219 			}
       
  3220 		}
       
  3221 	}
       
  3222 	return 0;
       
  3223 }
       
  3224 
       
  3225 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  3226 {
       
  3227 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3228 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
       
  3229 
       
  3230 	netif_stop_queue(netdev);
       
  3231 	/* Herbert's original patch had:
       
  3232 	 *  smp_mb__after_netif_stop_queue();
       
  3233 	 * but since that doesn't exist yet, just open code it. */
       
  3234 	smp_mb();
       
  3235 
       
  3236 	/* We need to check again in a case another CPU has just
       
  3237 	 * made room available. */
       
  3238 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
       
  3239 		return -EBUSY;
       
  3240 
       
  3241 	/* A reprieve! */
       
  3242 	netif_start_queue(netdev);
       
  3243 	++adapter->restart_queue;
       
  3244 	return 0;
       
  3245 }
       
  3246 
       
  3247 static int e1000_maybe_stop_tx(struct net_device *netdev,
       
  3248                                struct e1000_tx_ring *tx_ring, int size)
       
  3249 {
       
  3250 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
       
  3251 		return 0;
       
  3252 	return __e1000_maybe_stop_tx(netdev, size);
       
  3253 }
       
  3254 
       
  3255 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  3256 static int
       
  3257 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
       
  3258 {
       
  3259 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3260 	struct e1000_tx_ring *tx_ring;
       
  3261 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
       
  3262 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  3263 	unsigned int tx_flags = 0;
       
  3264 	unsigned int len = skb->len;
       
  3265 	unsigned long flags;
       
  3266 	unsigned int nr_frags = 0;
       
  3267 	unsigned int mss = 0;
       
  3268 	int count = 0;
       
  3269 	int tso;
       
  3270 	unsigned int f;
       
  3271 	len -= skb->data_len;
       
  3272 
       
  3273 	/* This goes back to the question of how to logically map a tx queue
       
  3274 	 * to a flow.  Right now, performance is impacted slightly negatively
       
  3275 	 * if using multiple tx queues.  If the stack breaks away from a
       
  3276 	 * single qdisc implementation, we can look at this again. */
       
  3277 	tx_ring = adapter->tx_ring;
       
  3278 
       
  3279 	if (unlikely(skb->len <= 0)) {
       
  3280 		dev_kfree_skb_any(skb);
       
  3281 		return NETDEV_TX_OK;
       
  3282 	}
       
  3283 
       
  3284 	/* 82571 and newer doesn't need the workaround that limited descriptor
       
  3285 	 * length to 4kB */
       
  3286 	if (adapter->hw.mac_type >= e1000_82571)
       
  3287 		max_per_txd = 8192;
       
  3288 
       
  3289 	mss = skb_shinfo(skb)->gso_size;
       
  3290 	/* The controller does a simple calculation to
       
  3291 	 * make sure there is enough room in the FIFO before
       
  3292 	 * initiating the DMA for each buffer.  The calc is:
       
  3293 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  3294 	 * overrun the FIFO, adjust the max buffer len if mss
       
  3295 	 * drops. */
       
  3296 	if (mss) {
       
  3297 		uint8_t hdr_len;
       
  3298 		max_per_txd = min(mss << 2, max_per_txd);
       
  3299 		max_txd_pwr = fls(max_per_txd) - 1;
       
  3300 
       
  3301 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
       
  3302 		* points to just header, pull a few bytes of payload from
       
  3303 		* frags into skb->data */
       
  3304 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  3305 		if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
       
  3306 			switch (adapter->hw.mac_type) {
       
  3307 				unsigned int pull_size;
       
  3308 			case e1000_82544:
       
  3309 				/* Make sure we have room to chop off 4 bytes,
       
  3310 				 * and that the end alignment will work out to
       
  3311 				 * this hardware's requirements
       
  3312 				 * NOTE: this is a TSO only workaround
       
  3313 				 * if end byte alignment not correct move us
       
  3314 				 * into the next dword */
       
  3315 				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
       
  3316 					break;
       
  3317 				/* fall through */
       
  3318 			case e1000_82571:
       
  3319 			case e1000_82572:
       
  3320 			case e1000_82573:
       
  3321 			case e1000_ich8lan:
       
  3322 				pull_size = min((unsigned int)4, skb->data_len);
       
  3323 				if (!__pskb_pull_tail(skb, pull_size)) {
       
  3324 					DPRINTK(DRV, ERR,
       
  3325 						"__pskb_pull_tail failed.\n");
       
  3326 					dev_kfree_skb_any(skb);
       
  3327 					return NETDEV_TX_OK;
       
  3328 				}
       
  3329 				len = skb->len - skb->data_len;
       
  3330 				break;
       
  3331 			default:
       
  3332 				/* do nothing */
       
  3333 				break;
       
  3334 			}
       
  3335 		}
       
  3336 	}
       
  3337 
       
  3338 	/* reserve a descriptor for the offload context */
       
  3339 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
       
  3340 		count++;
       
  3341 	count++;
       
  3342 
       
  3343 	/* Controller Erratum workaround */
       
  3344 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
       
  3345 		count++;
       
  3346 
       
  3347 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  3348 
       
  3349 	if (adapter->pcix_82544)
       
  3350 		count++;
       
  3351 
       
  3352 	/* work-around for errata 10 and it applies to all controllers
       
  3353 	 * in PCI-X mode, so add one more descriptor to the count
       
  3354 	 */
       
  3355 	if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
       
  3356 			(len > 2015)))
       
  3357 		count++;
       
  3358 
       
  3359 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  3360 	for (f = 0; f < nr_frags; f++)
       
  3361 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
       
  3362 				       max_txd_pwr);
       
  3363 	if (adapter->pcix_82544)
       
  3364 		count += nr_frags;
       
  3365 
       
  3366 
       
  3367 	if (adapter->hw.tx_pkt_filtering &&
       
  3368 	    (adapter->hw.mac_type == e1000_82573))
       
  3369 		e1000_transfer_dhcp_info(adapter, skb);
       
  3370 
       
  3371 	if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
       
  3372 		/* Collision - tell upper layer to requeue */
       
  3373 		return NETDEV_TX_LOCKED;
       
  3374 
       
  3375 	/* need: count + 2 desc gap to keep tail from touching
       
  3376 	 * head, otherwise try next time */
       
  3377 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
       
  3378 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3379 		return NETDEV_TX_BUSY;
       
  3380 	}
       
  3381 
       
  3382 	if (unlikely(adapter->hw.mac_type == e1000_82547)) {
       
  3383 		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
       
  3384 			netif_stop_queue(netdev);
       
  3385 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  3386 			spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3387 			return NETDEV_TX_BUSY;
       
  3388 		}
       
  3389 	}
       
  3390 
       
  3391 	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
       
  3392 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  3393 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  3394 	}
       
  3395 
       
  3396 	first = tx_ring->next_to_use;
       
  3397 
       
  3398 	tso = e1000_tso(adapter, tx_ring, skb);
       
  3399 	if (tso < 0) {
       
  3400 		dev_kfree_skb_any(skb);
       
  3401 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3402 		return NETDEV_TX_OK;
       
  3403 	}
       
  3404 
       
  3405 	if (likely(tso)) {
       
  3406 		tx_ring->last_tx_tso = 1;
       
  3407 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  3408 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
       
  3409 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  3410 
       
  3411 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
       
  3412 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
       
  3413 	 * no longer assume, we must. */
       
  3414 	if (likely(skb->protocol == htons(ETH_P_IP)))
       
  3415 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  3416 
       
  3417 	e1000_tx_queue(adapter, tx_ring, tx_flags,
       
  3418 	               e1000_tx_map(adapter, tx_ring, skb, first,
       
  3419 	                            max_per_txd, nr_frags, mss));
       
  3420 
       
  3421 	netdev->trans_start = jiffies;
       
  3422 
       
  3423 	/* Make sure there is space in the ring for the next send. */
       
  3424 	e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
       
  3425 
       
  3426 	spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3427 	return NETDEV_TX_OK;
       
  3428 }
       
  3429 
       
  3430 /**
       
  3431  * e1000_tx_timeout - Respond to a Tx Hang
       
  3432  * @netdev: network interface device structure
       
  3433  **/
       
  3434 
       
  3435 static void
       
  3436 e1000_tx_timeout(struct net_device *netdev)
       
  3437 {
       
  3438 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3439 
       
  3440 	/* Do the reset outside of interrupt context */
       
  3441 	adapter->tx_timeout_count++;
       
  3442 	schedule_work(&adapter->reset_task);
       
  3443 }
       
  3444 
       
  3445 static void
       
  3446 e1000_reset_task(struct work_struct *work)
       
  3447 {
       
  3448 	struct e1000_adapter *adapter =
       
  3449 		container_of(work, struct e1000_adapter, reset_task);
       
  3450 
       
  3451 	e1000_reinit_locked(adapter);
       
  3452 }
       
  3453 
       
  3454 /**
       
  3455  * e1000_get_stats - Get System Network Statistics
       
  3456  * @netdev: network interface device structure
       
  3457  *
       
  3458  * Returns the address of the device statistics structure.
       
  3459  * The statistics are actually updated from the timer callback.
       
  3460  **/
       
  3461 
       
  3462 static struct net_device_stats *
       
  3463 e1000_get_stats(struct net_device *netdev)
       
  3464 {
       
  3465 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3466 
       
  3467 	/* only return the current stats */
       
  3468 	return &adapter->net_stats;
       
  3469 }
       
  3470 
       
  3471 /**
       
  3472  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  3473  * @netdev: network interface device structure
       
  3474  * @new_mtu: new value for maximum frame size
       
  3475  *
       
  3476  * Returns 0 on success, negative on failure
       
  3477  **/
       
  3478 
       
  3479 static int
       
  3480 e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  3481 {
       
  3482 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3483 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  3484 	uint16_t eeprom_data = 0;
       
  3485 
       
  3486 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
       
  3487 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
       
  3488 		DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
       
  3489 		return -EINVAL;
       
  3490 	}
       
  3491 
       
  3492 	/* Adapter-specific max frame size limits. */
       
  3493 	switch (adapter->hw.mac_type) {
       
  3494 	case e1000_undefined ... e1000_82542_rev2_1:
       
  3495 	case e1000_ich8lan:
       
  3496 		if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3497 			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
       
  3498 			return -EINVAL;
       
  3499 		}
       
  3500 		break;
       
  3501 	case e1000_82573:
       
  3502 		/* Jumbo Frames not supported if:
       
  3503 		 * - this is not an 82573L device
       
  3504 		 * - ASPM is enabled in any way (0x1A bits 3:2) */
       
  3505 		e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
       
  3506 		                  &eeprom_data);
       
  3507 		if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
       
  3508 		    (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
       
  3509 			if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3510 				DPRINTK(PROBE, ERR,
       
  3511 			            	"Jumbo Frames not supported.\n");
       
  3512 				return -EINVAL;
       
  3513 			}
       
  3514 			break;
       
  3515 		}
       
  3516 		/* ERT will be enabled later to enable wire speed receives */
       
  3517 
       
  3518 		/* fall through to get support */
       
  3519 	case e1000_82571:
       
  3520 	case e1000_82572:
       
  3521 	case e1000_80003es2lan:
       
  3522 #define MAX_STD_JUMBO_FRAME_SIZE 9234
       
  3523 		if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
       
  3524 			DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
       
  3525 			return -EINVAL;
       
  3526 		}
       
  3527 		break;
       
  3528 	default:
       
  3529 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
       
  3530 		break;
       
  3531 	}
       
  3532 
       
  3533 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  3534 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  3535 	 * larger slab size
       
  3536 	 * i.e. RXBUFFER_2048 --> size-4096 slab */
       
  3537 
       
  3538 	if (max_frame <= E1000_RXBUFFER_256)
       
  3539 		adapter->rx_buffer_len = E1000_RXBUFFER_256;
       
  3540 	else if (max_frame <= E1000_RXBUFFER_512)
       
  3541 		adapter->rx_buffer_len = E1000_RXBUFFER_512;
       
  3542 	else if (max_frame <= E1000_RXBUFFER_1024)
       
  3543 		adapter->rx_buffer_len = E1000_RXBUFFER_1024;
       
  3544 	else if (max_frame <= E1000_RXBUFFER_2048)
       
  3545 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
       
  3546 	else if (max_frame <= E1000_RXBUFFER_4096)
       
  3547 		adapter->rx_buffer_len = E1000_RXBUFFER_4096;
       
  3548 	else if (max_frame <= E1000_RXBUFFER_8192)
       
  3549 		adapter->rx_buffer_len = E1000_RXBUFFER_8192;
       
  3550 	else if (max_frame <= E1000_RXBUFFER_16384)
       
  3551 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
       
  3552 
       
  3553 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  3554 	if (!adapter->hw.tbi_compatibility_on &&
       
  3555 	    ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
       
  3556 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
       
  3557 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  3558 
       
  3559 	netdev->mtu = new_mtu;
       
  3560 	adapter->hw.max_frame_size = max_frame;
       
  3561 
       
  3562 	if (netif_running(netdev))
       
  3563 		e1000_reinit_locked(adapter);
       
  3564 
       
  3565 	return 0;
       
  3566 }
       
  3567 
       
  3568 /**
       
  3569  * e1000_update_stats - Update the board statistics counters
       
  3570  * @adapter: board private structure
       
  3571  **/
       
  3572 
       
  3573 void
       
  3574 e1000_update_stats(struct e1000_adapter *adapter)
       
  3575 {
       
  3576 	struct e1000_hw *hw = &adapter->hw;
       
  3577 	struct pci_dev *pdev = adapter->pdev;
       
  3578 	unsigned long flags;
       
  3579 	uint16_t phy_tmp;
       
  3580 
       
  3581 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
       
  3582 
       
  3583 	/*
       
  3584 	 * Prevent stats update while adapter is being reset, or if the pci
       
  3585 	 * connection is down.
       
  3586 	 */
       
  3587 	if (adapter->link_speed == 0)
       
  3588 		return;
       
  3589 	if (pci_channel_offline(pdev))
       
  3590 		return;
       
  3591 
       
  3592 	spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3593 
       
  3594 	/* these counters are modified from e1000_adjust_tbi_stats,
       
  3595 	 * called from the interrupt context, so they must only
       
  3596 	 * be written while holding adapter->stats_lock
       
  3597 	 */
       
  3598 
       
  3599 	adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
       
  3600 	adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
       
  3601 	adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
       
  3602 	adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
       
  3603 	adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
       
  3604 	adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
       
  3605 	adapter->stats.roc += E1000_READ_REG(hw, ROC);
       
  3606 
       
  3607 	if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3608 		adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
       
  3609 		adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
       
  3610 		adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
       
  3611 		adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
       
  3612 		adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
       
  3613 		adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
       
  3614 	}
       
  3615 
       
  3616 	adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
       
  3617 	adapter->stats.mpc += E1000_READ_REG(hw, MPC);
       
  3618 	adapter->stats.scc += E1000_READ_REG(hw, SCC);
       
  3619 	adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
       
  3620 	adapter->stats.mcc += E1000_READ_REG(hw, MCC);
       
  3621 	adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
       
  3622 	adapter->stats.dc += E1000_READ_REG(hw, DC);
       
  3623 	adapter->stats.sec += E1000_READ_REG(hw, SEC);
       
  3624 	adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
       
  3625 	adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
       
  3626 	adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
       
  3627 	adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
       
  3628 	adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
       
  3629 	adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
       
  3630 	adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
       
  3631 	adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
       
  3632 	adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
       
  3633 	adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
       
  3634 	adapter->stats.ruc += E1000_READ_REG(hw, RUC);
       
  3635 	adapter->stats.rfc += E1000_READ_REG(hw, RFC);
       
  3636 	adapter->stats.rjc += E1000_READ_REG(hw, RJC);
       
  3637 	adapter->stats.torl += E1000_READ_REG(hw, TORL);
       
  3638 	adapter->stats.torh += E1000_READ_REG(hw, TORH);
       
  3639 	adapter->stats.totl += E1000_READ_REG(hw, TOTL);
       
  3640 	adapter->stats.toth += E1000_READ_REG(hw, TOTH);
       
  3641 	adapter->stats.tpr += E1000_READ_REG(hw, TPR);
       
  3642 
       
  3643 	if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3644 		adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
       
  3645 		adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
       
  3646 		adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
       
  3647 		adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
       
  3648 		adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
       
  3649 		adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
       
  3650 	}
       
  3651 
       
  3652 	adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
       
  3653 	adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
       
  3654 
       
  3655 	/* used for adaptive IFS */
       
  3656 
       
  3657 	hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
       
  3658 	adapter->stats.tpt += hw->tx_packet_delta;
       
  3659 	hw->collision_delta = E1000_READ_REG(hw, COLC);
       
  3660 	adapter->stats.colc += hw->collision_delta;
       
  3661 
       
  3662 	if (hw->mac_type >= e1000_82543) {
       
  3663 		adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
       
  3664 		adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
       
  3665 		adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
       
  3666 		adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
       
  3667 		adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
       
  3668 		adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
       
  3669 	}
       
  3670 	if (hw->mac_type > e1000_82547_rev_2) {
       
  3671 		adapter->stats.iac += E1000_READ_REG(hw, IAC);
       
  3672 		adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
       
  3673 
       
  3674 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  3675 			adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
       
  3676 			adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
       
  3677 			adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
       
  3678 			adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
       
  3679 			adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
       
  3680 			adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
       
  3681 			adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
       
  3682 		}
       
  3683 	}
       
  3684 
       
  3685 	/* Fill out the OS statistics structure */
       
  3686 	adapter->net_stats.rx_packets = adapter->stats.gprc;
       
  3687 	adapter->net_stats.tx_packets = adapter->stats.gptc;
       
  3688 	adapter->net_stats.rx_bytes = adapter->stats.gorcl;
       
  3689 	adapter->net_stats.tx_bytes = adapter->stats.gotcl;
       
  3690 	adapter->net_stats.multicast = adapter->stats.mprc;
       
  3691 	adapter->net_stats.collisions = adapter->stats.colc;
       
  3692 
       
  3693 	/* Rx Errors */
       
  3694 
       
  3695 	/* RLEC on some newer hardware can be incorrect so build
       
  3696 	* our own version based on RUC and ROC */
       
  3697 	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
       
  3698 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  3699 		adapter->stats.ruc + adapter->stats.roc +
       
  3700 		adapter->stats.cexterr;
       
  3701 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
       
  3702 	adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
       
  3703 	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
       
  3704 	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
       
  3705 	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
       
  3706 
       
  3707 	/* Tx Errors */
       
  3708 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
       
  3709 	adapter->net_stats.tx_errors = adapter->stats.txerrc;
       
  3710 	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
       
  3711 	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
       
  3712 	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
       
  3713 	if (adapter->hw.bad_tx_carr_stats_fd &&
       
  3714 	    adapter->link_duplex == FULL_DUPLEX) {
       
  3715 		adapter->net_stats.tx_carrier_errors = 0;
       
  3716 		adapter->stats.tncrs = 0;
       
  3717 	}
       
  3718 
       
  3719 	/* Tx Dropped needs to be maintained elsewhere */
       
  3720 
       
  3721 	/* Phy Stats */
       
  3722 	if (hw->media_type == e1000_media_type_copper) {
       
  3723 		if ((adapter->link_speed == SPEED_1000) &&
       
  3724 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
       
  3725 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
       
  3726 			adapter->phy_stats.idle_errors += phy_tmp;
       
  3727 		}
       
  3728 
       
  3729 		if ((hw->mac_type <= e1000_82546) &&
       
  3730 		   (hw->phy_type == e1000_phy_m88) &&
       
  3731 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
       
  3732 			adapter->phy_stats.receive_errors += phy_tmp;
       
  3733 	}
       
  3734 
       
  3735 	/* Management Stats */
       
  3736 	if (adapter->hw.has_smbus) {
       
  3737 		adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
       
  3738 		adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
       
  3739 		adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
       
  3740 	}
       
  3741 
       
  3742 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3743 }
       
  3744 
       
  3745 /**
       
  3746  * e1000_intr_msi - Interrupt Handler
       
  3747  * @irq: interrupt number
       
  3748  * @data: pointer to a network interface device structure
       
  3749  **/
       
  3750 
       
  3751 static irqreturn_t
       
  3752 e1000_intr_msi(int irq, void *data)
       
  3753 {
       
  3754 	struct net_device *netdev = data;
       
  3755 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3756 	struct e1000_hw *hw = &adapter->hw;
       
  3757 #ifndef CONFIG_E1000_NAPI
       
  3758 	int i;
       
  3759 #endif
       
  3760 	uint32_t icr = E1000_READ_REG(hw, ICR);
       
  3761 
       
  3762 #ifdef CONFIG_E1000_NAPI
       
  3763 	/* read ICR disables interrupts using IAM, so keep up with our
       
  3764 	 * enable/disable accounting */
       
  3765 	atomic_inc(&adapter->irq_sem);
       
  3766 #endif
       
  3767 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
       
  3768 		hw->get_link_status = 1;
       
  3769 		/* 80003ES2LAN workaround-- For packet buffer work-around on
       
  3770 		 * link down event; disable receives here in the ISR and reset
       
  3771 		 * adapter in watchdog */
       
  3772 		if (netif_carrier_ok(netdev) &&
       
  3773 		    (adapter->hw.mac_type == e1000_80003es2lan)) {
       
  3774 			/* disable receives */
       
  3775 			uint32_t rctl = E1000_READ_REG(hw, RCTL);
       
  3776 			E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  3777 		}
       
  3778 		/* guard against interrupt when we're going down */
       
  3779 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3780 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  3781 	}
       
  3782 
       
  3783 #ifdef CONFIG_E1000_NAPI
       
  3784 	if (likely(netif_rx_schedule_prep(netdev))) {
       
  3785 		adapter->total_tx_bytes = 0;
       
  3786 		adapter->total_tx_packets = 0;
       
  3787 		adapter->total_rx_bytes = 0;
       
  3788 		adapter->total_rx_packets = 0;
       
  3789 		__netif_rx_schedule(netdev);
       
  3790 	} else
       
  3791 		e1000_irq_enable(adapter);
       
  3792 #else
       
  3793 	adapter->total_tx_bytes = 0;
       
  3794 	adapter->total_rx_bytes = 0;
       
  3795 	adapter->total_tx_packets = 0;
       
  3796 	adapter->total_rx_packets = 0;
       
  3797 
       
  3798 	for (i = 0; i < E1000_MAX_INTR; i++)
       
  3799 		if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
       
  3800 		   !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
       
  3801 			break;
       
  3802 
       
  3803 	if (likely(adapter->itr_setting & 3))
       
  3804 		e1000_set_itr(adapter);
       
  3805 #endif
       
  3806 
       
  3807 	return IRQ_HANDLED;
       
  3808 }
       
  3809 
       
  3810 /**
       
  3811  * e1000_intr - Interrupt Handler
       
  3812  * @irq: interrupt number
       
  3813  * @data: pointer to a network interface device structure
       
  3814  **/
       
  3815 
       
  3816 static irqreturn_t
       
  3817 e1000_intr(int irq, void *data)
       
  3818 {
       
  3819 	struct net_device *netdev = data;
       
  3820 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3821 	struct e1000_hw *hw = &adapter->hw;
       
  3822 	uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
       
  3823 #ifndef CONFIG_E1000_NAPI
       
  3824 	int i;
       
  3825 #endif
       
  3826 	if (unlikely(!icr))
       
  3827 		return IRQ_NONE;  /* Not our interrupt */
       
  3828 
       
  3829 #ifdef CONFIG_E1000_NAPI
       
  3830 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
       
  3831 	 * not set, then the adapter didn't send an interrupt */
       
  3832 	if (unlikely(hw->mac_type >= e1000_82571 &&
       
  3833 	             !(icr & E1000_ICR_INT_ASSERTED)))
       
  3834 		return IRQ_NONE;
       
  3835 
       
  3836 	/* Interrupt Auto-Mask...upon reading ICR,
       
  3837 	 * interrupts are masked.  No need for the
       
  3838 	 * IMC write, but it does mean we should
       
  3839 	 * account for it ASAP. */
       
  3840 	if (likely(hw->mac_type >= e1000_82571))
       
  3841 		atomic_inc(&adapter->irq_sem);
       
  3842 #endif
       
  3843 
       
  3844 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
       
  3845 		hw->get_link_status = 1;
       
  3846 		/* 80003ES2LAN workaround--
       
  3847 		 * For packet buffer work-around on link down event;
       
  3848 		 * disable receives here in the ISR and
       
  3849 		 * reset adapter in watchdog
       
  3850 		 */
       
  3851 		if (netif_carrier_ok(netdev) &&
       
  3852 		    (adapter->hw.mac_type == e1000_80003es2lan)) {
       
  3853 			/* disable receives */
       
  3854 			rctl = E1000_READ_REG(hw, RCTL);
       
  3855 			E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  3856 		}
       
  3857 		/* guard against interrupt when we're going down */
       
  3858 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3859 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  3860 	}
       
  3861 
       
  3862 #ifdef CONFIG_E1000_NAPI
       
  3863 	if (unlikely(hw->mac_type < e1000_82571)) {
       
  3864 		/* disable interrupts, without the synchronize_irq bit */
       
  3865 		atomic_inc(&adapter->irq_sem);
       
  3866 		E1000_WRITE_REG(hw, IMC, ~0);
       
  3867 		E1000_WRITE_FLUSH(hw);
       
  3868 	}
       
  3869 	if (likely(netif_rx_schedule_prep(netdev))) {
       
  3870 		adapter->total_tx_bytes = 0;
       
  3871 		adapter->total_tx_packets = 0;
       
  3872 		adapter->total_rx_bytes = 0;
       
  3873 		adapter->total_rx_packets = 0;
       
  3874 		__netif_rx_schedule(netdev);
       
  3875 	} else
       
  3876 		/* this really should not happen! if it does it is basically a
       
  3877 		 * bug, but not a hard error, so enable ints and continue */
       
  3878 		e1000_irq_enable(adapter);
       
  3879 #else
       
  3880 	/* Writing IMC and IMS is needed for 82547.
       
  3881 	 * Due to Hub Link bus being occupied, an interrupt
       
  3882 	 * de-assertion message is not able to be sent.
       
  3883 	 * When an interrupt assertion message is generated later,
       
  3884 	 * two messages are re-ordered and sent out.
       
  3885 	 * That causes APIC to think 82547 is in de-assertion
       
  3886 	 * state, while 82547 is in assertion state, resulting
       
  3887 	 * in dead lock. Writing IMC forces 82547 into
       
  3888 	 * de-assertion state.
       
  3889 	 */
       
  3890 	if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
       
  3891 		atomic_inc(&adapter->irq_sem);
       
  3892 		E1000_WRITE_REG(hw, IMC, ~0);
       
  3893 	}
       
  3894 
       
  3895 	adapter->total_tx_bytes = 0;
       
  3896 	adapter->total_rx_bytes = 0;
       
  3897 	adapter->total_tx_packets = 0;
       
  3898 	adapter->total_rx_packets = 0;
       
  3899 
       
  3900 	for (i = 0; i < E1000_MAX_INTR; i++)
       
  3901 		if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
       
  3902 		   !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
       
  3903 			break;
       
  3904 
       
  3905 	if (likely(adapter->itr_setting & 3))
       
  3906 		e1000_set_itr(adapter);
       
  3907 
       
  3908 	if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
       
  3909 		e1000_irq_enable(adapter);
       
  3910 
       
  3911 #endif
       
  3912 	return IRQ_HANDLED;
       
  3913 }
       
  3914 
       
  3915 #ifdef CONFIG_E1000_NAPI
       
  3916 /**
       
  3917  * e1000_clean - NAPI Rx polling callback
       
  3918  * @adapter: board private structure
       
  3919  **/
       
  3920 
       
  3921 static int
       
  3922 e1000_clean(struct net_device *poll_dev, int *budget)
       
  3923 {
       
  3924 	struct e1000_adapter *adapter;
       
  3925 	int work_to_do = min(*budget, poll_dev->quota);
       
  3926 	int tx_cleaned = 0, work_done = 0;
       
  3927 
       
  3928 	/* Must NOT use netdev_priv macro here. */
       
  3929 	adapter = poll_dev->priv;
       
  3930 
       
  3931 	/* Keep link state information with original netdev */
       
  3932 	if (!netif_carrier_ok(poll_dev))
       
  3933 		goto quit_polling;
       
  3934 
       
  3935 	/* e1000_clean is called per-cpu.  This lock protects
       
  3936 	 * tx_ring[0] from being cleaned by multiple cpus
       
  3937 	 * simultaneously.  A failure obtaining the lock means
       
  3938 	 * tx_ring[0] is currently being cleaned anyway. */
       
  3939 	if (spin_trylock(&adapter->tx_queue_lock)) {
       
  3940 		tx_cleaned = e1000_clean_tx_irq(adapter,
       
  3941 		                                &adapter->tx_ring[0]);
       
  3942 		spin_unlock(&adapter->tx_queue_lock);
       
  3943 	}
       
  3944 
       
  3945 	adapter->clean_rx(adapter, &adapter->rx_ring[0],
       
  3946 	                  &work_done, work_to_do);
       
  3947 
       
  3948 	*budget -= work_done;
       
  3949 	poll_dev->quota -= work_done;
       
  3950 
       
  3951 	/* If no Tx and not enough Rx work done, exit the polling mode */
       
  3952 	if ((!tx_cleaned && (work_done == 0)) ||
       
  3953 	   !netif_running(poll_dev)) {
       
  3954 quit_polling:
       
  3955 		if (likely(adapter->itr_setting & 3))
       
  3956 			e1000_set_itr(adapter);
       
  3957 		netif_rx_complete(poll_dev);
       
  3958 		e1000_irq_enable(adapter);
       
  3959 		return 0;
       
  3960 	}
       
  3961 
       
  3962 	return 1;
       
  3963 }
       
  3964 
       
  3965 #endif
       
  3966 /**
       
  3967  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
  3968  * @adapter: board private structure
       
  3969  **/
       
  3970 
       
  3971 static boolean_t
       
  3972 e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
  3973                    struct e1000_tx_ring *tx_ring)
       
  3974 {
       
  3975 	struct net_device *netdev = adapter->netdev;
       
  3976 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
  3977 	struct e1000_buffer *buffer_info;
       
  3978 	unsigned int i, eop;
       
  3979 #ifdef CONFIG_E1000_NAPI
       
  3980 	unsigned int count = 0;
       
  3981 #endif
       
  3982 	boolean_t cleaned = FALSE;
       
  3983 	unsigned int total_tx_bytes=0, total_tx_packets=0;
       
  3984 
       
  3985 	i = tx_ring->next_to_clean;
       
  3986 	eop = tx_ring->buffer_info[i].next_to_watch;
       
  3987 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3988 
       
  3989 	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
       
  3990 		for (cleaned = FALSE; !cleaned; ) {
       
  3991 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3992 			buffer_info = &tx_ring->buffer_info[i];
       
  3993 			cleaned = (i == eop);
       
  3994 
       
  3995 			if (cleaned) {
       
  3996 				struct sk_buff *skb = buffer_info->skb;
       
  3997 				unsigned int segs, bytecount;
       
  3998 				segs = skb_shinfo(skb)->gso_segs ?: 1;
       
  3999 				/* multiply data chunks by size of headers */
       
  4000 				bytecount = ((segs - 1) * skb_headlen(skb)) +
       
  4001 				            skb->len;
       
  4002 				total_tx_packets += segs;
       
  4003 				total_tx_bytes += bytecount;
       
  4004 			}
       
  4005 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  4006 			tx_desc->upper.data = 0;
       
  4007 
       
  4008 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  4009 		}
       
  4010 
       
  4011 		eop = tx_ring->buffer_info[i].next_to_watch;
       
  4012 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  4013 #ifdef CONFIG_E1000_NAPI
       
  4014 #define E1000_TX_WEIGHT 64
       
  4015 		/* weight of a sort for tx, to avoid endless transmit cleanup */
       
  4016 		if (count++ == E1000_TX_WEIGHT) break;
       
  4017 #endif
       
  4018 	}
       
  4019 
       
  4020 	tx_ring->next_to_clean = i;
       
  4021 
       
  4022 #define TX_WAKE_THRESHOLD 32
       
  4023 	if (unlikely(cleaned && netif_carrier_ok(netdev) &&
       
  4024 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
       
  4025 		/* Make sure that anybody stopping the queue after this
       
  4026 		 * sees the new next_to_clean.
       
  4027 		 */
       
  4028 		smp_mb();
       
  4029 		if (netif_queue_stopped(netdev)) {
       
  4030 			netif_wake_queue(netdev);
       
  4031 			++adapter->restart_queue;
       
  4032 		}
       
  4033 	}
       
  4034 
       
  4035 	if (adapter->detect_tx_hung) {
       
  4036 		/* Detect a transmit hang in hardware, this serializes the
       
  4037 		 * check with the clearing of time_stamp and movement of i */
       
  4038 		adapter->detect_tx_hung = FALSE;
       
  4039 		if (tx_ring->buffer_info[eop].dma &&
       
  4040 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
       
  4041 		               (adapter->tx_timeout_factor * HZ))
       
  4042 		    && !(E1000_READ_REG(&adapter->hw, STATUS) &
       
  4043 		         E1000_STATUS_TXOFF)) {
       
  4044 
       
  4045 			/* detected Tx unit hang */
       
  4046 			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
       
  4047 					"  Tx Queue             <%lu>\n"
       
  4048 					"  TDH                  <%x>\n"
       
  4049 					"  TDT                  <%x>\n"
       
  4050 					"  next_to_use          <%x>\n"
       
  4051 					"  next_to_clean        <%x>\n"
       
  4052 					"buffer_info[next_to_clean]\n"
       
  4053 					"  time_stamp           <%lx>\n"
       
  4054 					"  next_to_watch        <%x>\n"
       
  4055 					"  jiffies              <%lx>\n"
       
  4056 					"  next_to_watch.status <%x>\n",
       
  4057 				(unsigned long)((tx_ring - adapter->tx_ring) /
       
  4058 					sizeof(struct e1000_tx_ring)),
       
  4059 				readl(adapter->hw.hw_addr + tx_ring->tdh),
       
  4060 				readl(adapter->hw.hw_addr + tx_ring->tdt),
       
  4061 				tx_ring->next_to_use,
       
  4062 				tx_ring->next_to_clean,
       
  4063 				tx_ring->buffer_info[eop].time_stamp,
       
  4064 				eop,
       
  4065 				jiffies,
       
  4066 				eop_desc->upper.fields.status);
       
  4067 			netif_stop_queue(netdev);
       
  4068 		}
       
  4069 	}
       
  4070 	adapter->total_tx_bytes += total_tx_bytes;
       
  4071 	adapter->total_tx_packets += total_tx_packets;
       
  4072 	return cleaned;
       
  4073 }
       
  4074 
       
  4075 /**
       
  4076  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
  4077  * @adapter:     board private structure
       
  4078  * @status_err:  receive descriptor status and error fields
       
  4079  * @csum:        receive descriptor csum field
       
  4080  * @sk_buff:     socket buffer with received data
       
  4081  **/
       
  4082 
       
  4083 static void
       
  4084 e1000_rx_checksum(struct e1000_adapter *adapter,
       
  4085 		  uint32_t status_err, uint32_t csum,
       
  4086 		  struct sk_buff *skb)
       
  4087 {
       
  4088 	uint16_t status = (uint16_t)status_err;
       
  4089 	uint8_t errors = (uint8_t)(status_err >> 24);
       
  4090 	skb->ip_summed = CHECKSUM_NONE;
       
  4091 
       
  4092 	/* 82543 or newer only */
       
  4093 	if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
       
  4094 	/* Ignore Checksum bit is set */
       
  4095 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
       
  4096 	/* TCP/UDP checksum error bit is set */
       
  4097 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
       
  4098 		/* let the stack verify checksum errors */
       
  4099 		adapter->hw_csum_err++;
       
  4100 		return;
       
  4101 	}
       
  4102 	/* TCP/UDP Checksum has not been calculated */
       
  4103 	if (adapter->hw.mac_type <= e1000_82547_rev_2) {
       
  4104 		if (!(status & E1000_RXD_STAT_TCPCS))
       
  4105 			return;
       
  4106 	} else {
       
  4107 		if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
       
  4108 			return;
       
  4109 	}
       
  4110 	/* It must be a TCP or UDP packet with a valid checksum */
       
  4111 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
       
  4112 		/* TCP checksum is good */
       
  4113 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
  4114 	} else if (adapter->hw.mac_type > e1000_82547_rev_2) {
       
  4115 		/* IP fragment with UDP payload */
       
  4116 		/* Hardware complements the payload checksum, so we undo it
       
  4117 		 * and then put the value in host order for further stack use.
       
  4118 		 */
       
  4119 		csum = ntohl(csum ^ 0xFFFF);
       
  4120 		skb->csum = csum;
       
  4121 		skb->ip_summed = CHECKSUM_COMPLETE;
       
  4122 	}
       
  4123 	adapter->hw_csum_good++;
       
  4124 }
       
  4125 
       
  4126 /**
       
  4127  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
  4128  * @adapter: board private structure
       
  4129  **/
       
  4130 
       
  4131 static boolean_t
       
  4132 #ifdef CONFIG_E1000_NAPI
       
  4133 e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  4134                    struct e1000_rx_ring *rx_ring,
       
  4135                    int *work_done, int work_to_do)
       
  4136 #else
       
  4137 e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  4138                    struct e1000_rx_ring *rx_ring)
       
  4139 #endif
       
  4140 {
       
  4141 	struct net_device *netdev = adapter->netdev;
       
  4142 	struct pci_dev *pdev = adapter->pdev;
       
  4143 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
  4144 	struct e1000_buffer *buffer_info, *next_buffer;
       
  4145 	unsigned long flags;
       
  4146 	uint32_t length;
       
  4147 	uint8_t last_byte;
       
  4148 	unsigned int i;
       
  4149 	int cleaned_count = 0;
       
  4150 	boolean_t cleaned = FALSE;
       
  4151 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  4152 
       
  4153 	i = rx_ring->next_to_clean;
       
  4154 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4155 	buffer_info = &rx_ring->buffer_info[i];
       
  4156 
       
  4157 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
  4158 		struct sk_buff *skb;
       
  4159 		u8 status;
       
  4160 
       
  4161 #ifdef CONFIG_E1000_NAPI
       
  4162 		if (*work_done >= work_to_do)
       
  4163 			break;
       
  4164 		(*work_done)++;
       
  4165 #endif
       
  4166 		status = rx_desc->status;
       
  4167 		skb = buffer_info->skb;
       
  4168 		buffer_info->skb = NULL;
       
  4169 
       
  4170 		prefetch(skb->data - NET_IP_ALIGN);
       
  4171 
       
  4172 		if (++i == rx_ring->count) i = 0;
       
  4173 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
  4174 		prefetch(next_rxd);
       
  4175 
       
  4176 		next_buffer = &rx_ring->buffer_info[i];
       
  4177 
       
  4178 		cleaned = TRUE;
       
  4179 		cleaned_count++;
       
  4180 		pci_unmap_single(pdev,
       
  4181 		                 buffer_info->dma,
       
  4182 		                 buffer_info->length,
       
  4183 		                 PCI_DMA_FROMDEVICE);
       
  4184 
       
  4185 		length = le16_to_cpu(rx_desc->length);
       
  4186 
       
  4187 		if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
       
  4188 			/* All receives must fit into a single buffer */
       
  4189 			E1000_DBG("%s: Receive packet consumed multiple"
       
  4190 				  " buffers\n", netdev->name);
       
  4191 			/* recycle */
       
  4192 			buffer_info->skb = skb;
       
  4193 			goto next_desc;
       
  4194 		}
       
  4195 
       
  4196 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
       
  4197 			last_byte = *(skb->data + length - 1);
       
  4198 			if (TBI_ACCEPT(&adapter->hw, status,
       
  4199 			              rx_desc->errors, length, last_byte)) {
       
  4200 				spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4201 				e1000_tbi_adjust_stats(&adapter->hw,
       
  4202 				                       &adapter->stats,
       
  4203 				                       length, skb->data);
       
  4204 				spin_unlock_irqrestore(&adapter->stats_lock,
       
  4205 				                       flags);
       
  4206 				length--;
       
  4207 			} else {
       
  4208 				/* recycle */
       
  4209 				buffer_info->skb = skb;
       
  4210 				goto next_desc;
       
  4211 			}
       
  4212 		}
       
  4213 
       
  4214 		/* adjust length to remove Ethernet CRC, this must be
       
  4215 		 * done after the TBI_ACCEPT workaround above */
       
  4216 		length -= 4;
       
  4217 
       
  4218 		/* probably a little skewed due to removing CRC */
       
  4219 		total_rx_bytes += length;
       
  4220 		total_rx_packets++;
       
  4221 
       
  4222 		/* code added for copybreak, this should improve
       
  4223 		 * performance for small packets with large amounts
       
  4224 		 * of reassembly being done in the stack */
       
  4225 		if (length < copybreak) {
       
  4226 			struct sk_buff *new_skb =
       
  4227 			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
       
  4228 			if (new_skb) {
       
  4229 				skb_reserve(new_skb, NET_IP_ALIGN);
       
  4230 				skb_copy_to_linear_data_offset(new_skb,
       
  4231 							       -NET_IP_ALIGN,
       
  4232 							       (skb->data -
       
  4233 							        NET_IP_ALIGN),
       
  4234 							       (length +
       
  4235 							        NET_IP_ALIGN));
       
  4236 				/* save the skb in buffer_info as good */
       
  4237 				buffer_info->skb = skb;
       
  4238 				skb = new_skb;
       
  4239 			}
       
  4240 			/* else just continue with the old one */
       
  4241 		}
       
  4242 		/* end copybreak code */
       
  4243 		skb_put(skb, length);
       
  4244 
       
  4245 		/* Receive Checksum Offload */
       
  4246 		e1000_rx_checksum(adapter,
       
  4247 				  (uint32_t)(status) |
       
  4248 				  ((uint32_t)(rx_desc->errors) << 24),
       
  4249 				  le16_to_cpu(rx_desc->csum), skb);
       
  4250 
       
  4251 		skb->protocol = eth_type_trans(skb, netdev);
       
  4252 #ifdef CONFIG_E1000_NAPI
       
  4253 		if (unlikely(adapter->vlgrp &&
       
  4254 			    (status & E1000_RXD_STAT_VP))) {
       
  4255 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  4256 						 le16_to_cpu(rx_desc->special) &
       
  4257 						 E1000_RXD_SPC_VLAN_MASK);
       
  4258 		} else {
       
  4259 			netif_receive_skb(skb);
       
  4260 		}
       
  4261 #else /* CONFIG_E1000_NAPI */
       
  4262 		if (unlikely(adapter->vlgrp &&
       
  4263 			    (status & E1000_RXD_STAT_VP))) {
       
  4264 			vlan_hwaccel_rx(skb, adapter->vlgrp,
       
  4265 					le16_to_cpu(rx_desc->special) &
       
  4266 					E1000_RXD_SPC_VLAN_MASK);
       
  4267 		} else {
       
  4268 			netif_rx(skb);
       
  4269 		}
       
  4270 #endif /* CONFIG_E1000_NAPI */
       
  4271 		netdev->last_rx = jiffies;
       
  4272 
       
  4273 next_desc:
       
  4274 		rx_desc->status = 0;
       
  4275 
       
  4276 		/* return some buffers to hardware, one at a time is too slow */
       
  4277 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  4278 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4279 			cleaned_count = 0;
       
  4280 		}
       
  4281 
       
  4282 		/* use prefetched values */
       
  4283 		rx_desc = next_rxd;
       
  4284 		buffer_info = next_buffer;
       
  4285 	}
       
  4286 	rx_ring->next_to_clean = i;
       
  4287 
       
  4288 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  4289 	if (cleaned_count)
       
  4290 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4291 
       
  4292 	adapter->total_rx_packets += total_rx_packets;
       
  4293 	adapter->total_rx_bytes += total_rx_bytes;
       
  4294 	return cleaned;
       
  4295 }
       
  4296 
       
  4297 /**
       
  4298  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
       
  4299  * @adapter: board private structure
       
  4300  **/
       
  4301 
       
  4302 static boolean_t
       
  4303 #ifdef CONFIG_E1000_NAPI
       
  4304 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
  4305                       struct e1000_rx_ring *rx_ring,
       
  4306                       int *work_done, int work_to_do)
       
  4307 #else
       
  4308 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
  4309                       struct e1000_rx_ring *rx_ring)
       
  4310 #endif
       
  4311 {
       
  4312 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
       
  4313 	struct net_device *netdev = adapter->netdev;
       
  4314 	struct pci_dev *pdev = adapter->pdev;
       
  4315 	struct e1000_buffer *buffer_info, *next_buffer;
       
  4316 	struct e1000_ps_page *ps_page;
       
  4317 	struct e1000_ps_page_dma *ps_page_dma;
       
  4318 	struct sk_buff *skb;
       
  4319 	unsigned int i, j;
       
  4320 	uint32_t length, staterr;
       
  4321 	int cleaned_count = 0;
       
  4322 	boolean_t cleaned = FALSE;
       
  4323 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  4324 
       
  4325 	i = rx_ring->next_to_clean;
       
  4326 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  4327 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  4328 	buffer_info = &rx_ring->buffer_info[i];
       
  4329 
       
  4330 	while (staterr & E1000_RXD_STAT_DD) {
       
  4331 		ps_page = &rx_ring->ps_page[i];
       
  4332 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4333 #ifdef CONFIG_E1000_NAPI
       
  4334 		if (unlikely(*work_done >= work_to_do))
       
  4335 			break;
       
  4336 		(*work_done)++;
       
  4337 #endif
       
  4338 		skb = buffer_info->skb;
       
  4339 
       
  4340 		/* in the packet split case this is header only */
       
  4341 		prefetch(skb->data - NET_IP_ALIGN);
       
  4342 
       
  4343 		if (++i == rx_ring->count) i = 0;
       
  4344 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
       
  4345 		prefetch(next_rxd);
       
  4346 
       
  4347 		next_buffer = &rx_ring->buffer_info[i];
       
  4348 
       
  4349 		cleaned = TRUE;
       
  4350 		cleaned_count++;
       
  4351 		pci_unmap_single(pdev, buffer_info->dma,
       
  4352 				 buffer_info->length,
       
  4353 				 PCI_DMA_FROMDEVICE);
       
  4354 
       
  4355 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
       
  4356 			E1000_DBG("%s: Packet Split buffers didn't pick up"
       
  4357 				  " the full packet\n", netdev->name);
       
  4358 			dev_kfree_skb_irq(skb);
       
  4359 			goto next_desc;
       
  4360 		}
       
  4361 
       
  4362 		if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
       
  4363 			dev_kfree_skb_irq(skb);
       
  4364 			goto next_desc;
       
  4365 		}
       
  4366 
       
  4367 		length = le16_to_cpu(rx_desc->wb.middle.length0);
       
  4368 
       
  4369 		if (unlikely(!length)) {
       
  4370 			E1000_DBG("%s: Last part of the packet spanning"
       
  4371 				  " multiple descriptors\n", netdev->name);
       
  4372 			dev_kfree_skb_irq(skb);
       
  4373 			goto next_desc;
       
  4374 		}
       
  4375 
       
  4376 		/* Good Receive */
       
  4377 		skb_put(skb, length);
       
  4378 
       
  4379 		{
       
  4380 		/* this looks ugly, but it seems compiler issues make it
       
  4381 		   more efficient than reusing j */
       
  4382 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
       
  4383 
       
  4384 		/* page alloc/put takes too long and effects small packet
       
  4385 		 * throughput, so unsplit small packets and save the alloc/put*/
       
  4386 		if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
       
  4387 			u8 *vaddr;
       
  4388 			/* there is no documentation about how to call
       
  4389 			 * kmap_atomic, so we can't hold the mapping
       
  4390 			 * very long */
       
  4391 			pci_dma_sync_single_for_cpu(pdev,
       
  4392 				ps_page_dma->ps_page_dma[0],
       
  4393 				PAGE_SIZE,
       
  4394 				PCI_DMA_FROMDEVICE);
       
  4395 			vaddr = kmap_atomic(ps_page->ps_page[0],
       
  4396 			                    KM_SKB_DATA_SOFTIRQ);
       
  4397 			memcpy(skb_tail_pointer(skb), vaddr, l1);
       
  4398 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
       
  4399 			pci_dma_sync_single_for_device(pdev,
       
  4400 				ps_page_dma->ps_page_dma[0],
       
  4401 				PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  4402 			/* remove the CRC */
       
  4403 			l1 -= 4;
       
  4404 			skb_put(skb, l1);
       
  4405 			goto copydone;
       
  4406 		} /* if */
       
  4407 		}
       
  4408 
       
  4409 		for (j = 0; j < adapter->rx_ps_pages; j++) {
       
  4410 			if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
       
  4411 				break;
       
  4412 			pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
       
  4413 					PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  4414 			ps_page_dma->ps_page_dma[j] = 0;
       
  4415 			skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
       
  4416 			                   length);
       
  4417 			ps_page->ps_page[j] = NULL;
       
  4418 			skb->len += length;
       
  4419 			skb->data_len += length;
       
  4420 			skb->truesize += length;
       
  4421 		}
       
  4422 
       
  4423 		/* strip the ethernet crc, problem is we're using pages now so
       
  4424 		 * this whole operation can get a little cpu intensive */
       
  4425 		pskb_trim(skb, skb->len - 4);
       
  4426 
       
  4427 copydone:
       
  4428 		total_rx_bytes += skb->len;
       
  4429 		total_rx_packets++;
       
  4430 
       
  4431 		e1000_rx_checksum(adapter, staterr,
       
  4432 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
       
  4433 		skb->protocol = eth_type_trans(skb, netdev);
       
  4434 
       
  4435 		if (likely(rx_desc->wb.upper.header_status &
       
  4436 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
       
  4437 			adapter->rx_hdr_split++;
       
  4438 #ifdef CONFIG_E1000_NAPI
       
  4439 		if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
       
  4440 			vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  4441 				le16_to_cpu(rx_desc->wb.middle.vlan) &
       
  4442 				E1000_RXD_SPC_VLAN_MASK);
       
  4443 		} else {
       
  4444 			netif_receive_skb(skb);
       
  4445 		}
       
  4446 #else /* CONFIG_E1000_NAPI */
       
  4447 		if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
       
  4448 			vlan_hwaccel_rx(skb, adapter->vlgrp,
       
  4449 				le16_to_cpu(rx_desc->wb.middle.vlan) &
       
  4450 				E1000_RXD_SPC_VLAN_MASK);
       
  4451 		} else {
       
  4452 			netif_rx(skb);
       
  4453 		}
       
  4454 #endif /* CONFIG_E1000_NAPI */
       
  4455 		netdev->last_rx = jiffies;
       
  4456 
       
  4457 next_desc:
       
  4458 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
       
  4459 		buffer_info->skb = NULL;
       
  4460 
       
  4461 		/* return some buffers to hardware, one at a time is too slow */
       
  4462 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  4463 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4464 			cleaned_count = 0;
       
  4465 		}
       
  4466 
       
  4467 		/* use prefetched values */
       
  4468 		rx_desc = next_rxd;
       
  4469 		buffer_info = next_buffer;
       
  4470 
       
  4471 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  4472 	}
       
  4473 	rx_ring->next_to_clean = i;
       
  4474 
       
  4475 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  4476 	if (cleaned_count)
       
  4477 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4478 
       
  4479 	adapter->total_rx_packets += total_rx_packets;
       
  4480 	adapter->total_rx_bytes += total_rx_bytes;
       
  4481 	return cleaned;
       
  4482 }
       
  4483 
       
  4484 /**
       
  4485  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
  4486  * @adapter: address of board private structure
       
  4487  **/
       
  4488 
       
  4489 static void
       
  4490 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
  4491                        struct e1000_rx_ring *rx_ring,
       
  4492 		       int cleaned_count)
       
  4493 {
       
  4494 	struct net_device *netdev = adapter->netdev;
       
  4495 	struct pci_dev *pdev = adapter->pdev;
       
  4496 	struct e1000_rx_desc *rx_desc;
       
  4497 	struct e1000_buffer *buffer_info;
       
  4498 	struct sk_buff *skb;
       
  4499 	unsigned int i;
       
  4500 	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
       
  4501 
       
  4502 	i = rx_ring->next_to_use;
       
  4503 	buffer_info = &rx_ring->buffer_info[i];
       
  4504 
       
  4505 	while (cleaned_count--) {
       
  4506 		skb = buffer_info->skb;
       
  4507 		if (skb) {
       
  4508 			skb_trim(skb, 0);
       
  4509 			goto map_skb;
       
  4510 		}
       
  4511 
       
  4512 		skb = netdev_alloc_skb(netdev, bufsz);
       
  4513 		if (unlikely(!skb)) {
       
  4514 			/* Better luck next round */
       
  4515 			adapter->alloc_rx_buff_failed++;
       
  4516 			break;
       
  4517 		}
       
  4518 
       
  4519 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4520 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4521 			struct sk_buff *oldskb = skb;
       
  4522 			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
       
  4523 					     "at %p\n", bufsz, skb->data);
       
  4524 			/* Try again, without freeing the previous */
       
  4525 			skb = netdev_alloc_skb(netdev, bufsz);
       
  4526 			/* Failed allocation, critical failure */
       
  4527 			if (!skb) {
       
  4528 				dev_kfree_skb(oldskb);
       
  4529 				break;
       
  4530 			}
       
  4531 
       
  4532 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4533 				/* give up */
       
  4534 				dev_kfree_skb(skb);
       
  4535 				dev_kfree_skb(oldskb);
       
  4536 				break; /* while !buffer_info->skb */
       
  4537 			}
       
  4538 
       
  4539 			/* Use new allocation */
       
  4540 			dev_kfree_skb(oldskb);
       
  4541 		}
       
  4542 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  4543 		 * this will result in a 16 byte aligned IP header after
       
  4544 		 * the 14 byte MAC header is removed
       
  4545 		 */
       
  4546 		skb_reserve(skb, NET_IP_ALIGN);
       
  4547 
       
  4548 		buffer_info->skb = skb;
       
  4549 		buffer_info->length = adapter->rx_buffer_len;
       
  4550 map_skb:
       
  4551 		buffer_info->dma = pci_map_single(pdev,
       
  4552 						  skb->data,
       
  4553 						  adapter->rx_buffer_len,
       
  4554 						  PCI_DMA_FROMDEVICE);
       
  4555 
       
  4556 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4557 		if (!e1000_check_64k_bound(adapter,
       
  4558 					(void *)(unsigned long)buffer_info->dma,
       
  4559 					adapter->rx_buffer_len)) {
       
  4560 			DPRINTK(RX_ERR, ERR,
       
  4561 				"dma align check failed: %u bytes at %p\n",
       
  4562 				adapter->rx_buffer_len,
       
  4563 				(void *)(unsigned long)buffer_info->dma);
       
  4564 			dev_kfree_skb(skb);
       
  4565 			buffer_info->skb = NULL;
       
  4566 
       
  4567 			pci_unmap_single(pdev, buffer_info->dma,
       
  4568 					 adapter->rx_buffer_len,
       
  4569 					 PCI_DMA_FROMDEVICE);
       
  4570 
       
  4571 			break; /* while !buffer_info->skb */
       
  4572 		}
       
  4573 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4574 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4575 
       
  4576 		if (unlikely(++i == rx_ring->count))
       
  4577 			i = 0;
       
  4578 		buffer_info = &rx_ring->buffer_info[i];
       
  4579 	}
       
  4580 
       
  4581 	if (likely(rx_ring->next_to_use != i)) {
       
  4582 		rx_ring->next_to_use = i;
       
  4583 		if (unlikely(i-- == 0))
       
  4584 			i = (rx_ring->count - 1);
       
  4585 
       
  4586 		/* Force memory writes to complete before letting h/w
       
  4587 		 * know there are new descriptors to fetch.  (Only
       
  4588 		 * applicable for weak-ordered memory model archs,
       
  4589 		 * such as IA-64). */
       
  4590 		wmb();
       
  4591 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
       
  4592 	}
       
  4593 }
       
  4594 
       
  4595 /**
       
  4596  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
       
  4597  * @adapter: address of board private structure
       
  4598  **/
       
  4599 
       
  4600 static void
       
  4601 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
  4602                           struct e1000_rx_ring *rx_ring,
       
  4603 			  int cleaned_count)
       
  4604 {
       
  4605 	struct net_device *netdev = adapter->netdev;
       
  4606 	struct pci_dev *pdev = adapter->pdev;
       
  4607 	union e1000_rx_desc_packet_split *rx_desc;
       
  4608 	struct e1000_buffer *buffer_info;
       
  4609 	struct e1000_ps_page *ps_page;
       
  4610 	struct e1000_ps_page_dma *ps_page_dma;
       
  4611 	struct sk_buff *skb;
       
  4612 	unsigned int i, j;
       
  4613 
       
  4614 	i = rx_ring->next_to_use;
       
  4615 	buffer_info = &rx_ring->buffer_info[i];
       
  4616 	ps_page = &rx_ring->ps_page[i];
       
  4617 	ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4618 
       
  4619 	while (cleaned_count--) {
       
  4620 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  4621 
       
  4622 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  4623 			if (j < adapter->rx_ps_pages) {
       
  4624 				if (likely(!ps_page->ps_page[j])) {
       
  4625 					ps_page->ps_page[j] =
       
  4626 						alloc_page(GFP_ATOMIC);
       
  4627 					if (unlikely(!ps_page->ps_page[j])) {
       
  4628 						adapter->alloc_rx_buff_failed++;
       
  4629 						goto no_buffers;
       
  4630 					}
       
  4631 					ps_page_dma->ps_page_dma[j] =
       
  4632 						pci_map_page(pdev,
       
  4633 							    ps_page->ps_page[j],
       
  4634 							    0, PAGE_SIZE,
       
  4635 							    PCI_DMA_FROMDEVICE);
       
  4636 				}
       
  4637 				/* Refresh the desc even if buffer_addrs didn't
       
  4638 				 * change because each write-back erases
       
  4639 				 * this info.
       
  4640 				 */
       
  4641 				rx_desc->read.buffer_addr[j+1] =
       
  4642 				     cpu_to_le64(ps_page_dma->ps_page_dma[j]);
       
  4643 			} else
       
  4644 				rx_desc->read.buffer_addr[j+1] = ~0;
       
  4645 		}
       
  4646 
       
  4647 		skb = netdev_alloc_skb(netdev,
       
  4648 		                       adapter->rx_ps_bsize0 + NET_IP_ALIGN);
       
  4649 
       
  4650 		if (unlikely(!skb)) {
       
  4651 			adapter->alloc_rx_buff_failed++;
       
  4652 			break;
       
  4653 		}
       
  4654 
       
  4655 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  4656 		 * this will result in a 16 byte aligned IP header after
       
  4657 		 * the 14 byte MAC header is removed
       
  4658 		 */
       
  4659 		skb_reserve(skb, NET_IP_ALIGN);
       
  4660 
       
  4661 		buffer_info->skb = skb;
       
  4662 		buffer_info->length = adapter->rx_ps_bsize0;
       
  4663 		buffer_info->dma = pci_map_single(pdev, skb->data,
       
  4664 						  adapter->rx_ps_bsize0,
       
  4665 						  PCI_DMA_FROMDEVICE);
       
  4666 
       
  4667 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
       
  4668 
       
  4669 		if (unlikely(++i == rx_ring->count)) i = 0;
       
  4670 		buffer_info = &rx_ring->buffer_info[i];
       
  4671 		ps_page = &rx_ring->ps_page[i];
       
  4672 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  4673 	}
       
  4674 
       
  4675 no_buffers:
       
  4676 	if (likely(rx_ring->next_to_use != i)) {
       
  4677 		rx_ring->next_to_use = i;
       
  4678 		if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
       
  4679 
       
  4680 		/* Force memory writes to complete before letting h/w
       
  4681 		 * know there are new descriptors to fetch.  (Only
       
  4682 		 * applicable for weak-ordered memory model archs,
       
  4683 		 * such as IA-64). */
       
  4684 		wmb();
       
  4685 		/* Hardware increments by 16 bytes, but packet split
       
  4686 		 * descriptors are 32 bytes...so we increment tail
       
  4687 		 * twice as much.
       
  4688 		 */
       
  4689 		writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
       
  4690 	}
       
  4691 }
       
  4692 
       
  4693 /**
       
  4694  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
       
  4695  * @adapter:
       
  4696  **/
       
  4697 
       
  4698 static void
       
  4699 e1000_smartspeed(struct e1000_adapter *adapter)
       
  4700 {
       
  4701 	uint16_t phy_status;
       
  4702 	uint16_t phy_ctrl;
       
  4703 
       
  4704 	if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
       
  4705 	   !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
       
  4706 		return;
       
  4707 
       
  4708 	if (adapter->smartspeed == 0) {
       
  4709 		/* If Master/Slave config fault is asserted twice,
       
  4710 		 * we assume back-to-back */
       
  4711 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
       
  4712 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4713 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
       
  4714 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4715 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4716 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
       
  4717 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
       
  4718 			e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
       
  4719 					    phy_ctrl);
       
  4720 			adapter->smartspeed++;
       
  4721 			if (!e1000_phy_setup_autoneg(&adapter->hw) &&
       
  4722 			   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
       
  4723 				   	       &phy_ctrl)) {
       
  4724 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4725 					     MII_CR_RESTART_AUTO_NEG);
       
  4726 				e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
       
  4727 						    phy_ctrl);
       
  4728 			}
       
  4729 		}
       
  4730 		return;
       
  4731 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
       
  4732 		/* If still no link, perhaps using 2/3 pair cable */
       
  4733 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4734 		phy_ctrl |= CR_1000T_MS_ENABLE;
       
  4735 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
       
  4736 		if (!e1000_phy_setup_autoneg(&adapter->hw) &&
       
  4737 		   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
       
  4738 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4739 				     MII_CR_RESTART_AUTO_NEG);
       
  4740 			e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
       
  4741 		}
       
  4742 	}
       
  4743 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
       
  4744 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
       
  4745 		adapter->smartspeed = 0;
       
  4746 }
       
  4747 
       
  4748 /**
       
  4749  * e1000_ioctl -
       
  4750  * @netdev:
       
  4751  * @ifreq:
       
  4752  * @cmd:
       
  4753  **/
       
  4754 
       
  4755 static int
       
  4756 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4757 {
       
  4758 	switch (cmd) {
       
  4759 	case SIOCGMIIPHY:
       
  4760 	case SIOCGMIIREG:
       
  4761 	case SIOCSMIIREG:
       
  4762 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  4763 	default:
       
  4764 		return -EOPNOTSUPP;
       
  4765 	}
       
  4766 }
       
  4767 
       
  4768 /**
       
  4769  * e1000_mii_ioctl -
       
  4770  * @netdev:
       
  4771  * @ifreq:
       
  4772  * @cmd:
       
  4773  **/
       
  4774 
       
  4775 static int
       
  4776 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4777 {
       
  4778 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4779 	struct mii_ioctl_data *data = if_mii(ifr);
       
  4780 	int retval;
       
  4781 	uint16_t mii_reg;
       
  4782 	uint16_t spddplx;
       
  4783 	unsigned long flags;
       
  4784 
       
  4785 	if (adapter->hw.media_type != e1000_media_type_copper)
       
  4786 		return -EOPNOTSUPP;
       
  4787 
       
  4788 	switch (cmd) {
       
  4789 	case SIOCGMIIPHY:
       
  4790 		data->phy_id = adapter->hw.phy_addr;
       
  4791 		break;
       
  4792 	case SIOCGMIIREG:
       
  4793 		if (!capable(CAP_NET_ADMIN))
       
  4794 			return -EPERM;
       
  4795 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4796 		if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
       
  4797 				   &data->val_out)) {
       
  4798 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4799 			return -EIO;
       
  4800 		}
       
  4801 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4802 		break;
       
  4803 	case SIOCSMIIREG:
       
  4804 		if (!capable(CAP_NET_ADMIN))
       
  4805 			return -EPERM;
       
  4806 		if (data->reg_num & ~(0x1F))
       
  4807 			return -EFAULT;
       
  4808 		mii_reg = data->val_in;
       
  4809 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4810 		if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
       
  4811 					mii_reg)) {
       
  4812 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4813 			return -EIO;
       
  4814 		}
       
  4815 		if (adapter->hw.media_type == e1000_media_type_copper) {
       
  4816 			switch (data->reg_num) {
       
  4817 			case PHY_CTRL:
       
  4818 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4819 					break;
       
  4820 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
       
  4821 					adapter->hw.autoneg = 1;
       
  4822 					adapter->hw.autoneg_advertised = 0x2F;
       
  4823 				} else {
       
  4824 					if (mii_reg & 0x40)
       
  4825 						spddplx = SPEED_1000;
       
  4826 					else if (mii_reg & 0x2000)
       
  4827 						spddplx = SPEED_100;
       
  4828 					else
       
  4829 						spddplx = SPEED_10;
       
  4830 					spddplx += (mii_reg & 0x100)
       
  4831 						   ? DUPLEX_FULL :
       
  4832 						   DUPLEX_HALF;
       
  4833 					retval = e1000_set_spd_dplx(adapter,
       
  4834 								    spddplx);
       
  4835 					if (retval) {
       
  4836 						spin_unlock_irqrestore(
       
  4837 							&adapter->stats_lock,
       
  4838 							flags);
       
  4839 						return retval;
       
  4840 					}
       
  4841 				}
       
  4842 				if (netif_running(adapter->netdev))
       
  4843 					e1000_reinit_locked(adapter);
       
  4844 				else
       
  4845 					e1000_reset(adapter);
       
  4846 				break;
       
  4847 			case M88E1000_PHY_SPEC_CTRL:
       
  4848 			case M88E1000_EXT_PHY_SPEC_CTRL:
       
  4849 				if (e1000_phy_reset(&adapter->hw)) {
       
  4850 					spin_unlock_irqrestore(
       
  4851 						&adapter->stats_lock, flags);
       
  4852 					return -EIO;
       
  4853 				}
       
  4854 				break;
       
  4855 			}
       
  4856 		} else {
       
  4857 			switch (data->reg_num) {
       
  4858 			case PHY_CTRL:
       
  4859 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4860 					break;
       
  4861 				if (netif_running(adapter->netdev))
       
  4862 					e1000_reinit_locked(adapter);
       
  4863 				else
       
  4864 					e1000_reset(adapter);
       
  4865 				break;
       
  4866 			}
       
  4867 		}
       
  4868 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4869 		break;
       
  4870 	default:
       
  4871 		return -EOPNOTSUPP;
       
  4872 	}
       
  4873 	return E1000_SUCCESS;
       
  4874 }
       
  4875 
       
  4876 void
       
  4877 e1000_pci_set_mwi(struct e1000_hw *hw)
       
  4878 {
       
  4879 	struct e1000_adapter *adapter = hw->back;
       
  4880 	int ret_val = pci_set_mwi(adapter->pdev);
       
  4881 
       
  4882 	if (ret_val)
       
  4883 		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
       
  4884 }
       
  4885 
       
  4886 void
       
  4887 e1000_pci_clear_mwi(struct e1000_hw *hw)
       
  4888 {
       
  4889 	struct e1000_adapter *adapter = hw->back;
       
  4890 
       
  4891 	pci_clear_mwi(adapter->pdev);
       
  4892 }
       
  4893 
       
  4894 void
       
  4895 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
       
  4896 {
       
  4897 	struct e1000_adapter *adapter = hw->back;
       
  4898 
       
  4899 	pci_read_config_word(adapter->pdev, reg, value);
       
  4900 }
       
  4901 
       
  4902 void
       
  4903 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
       
  4904 {
       
  4905 	struct e1000_adapter *adapter = hw->back;
       
  4906 
       
  4907 	pci_write_config_word(adapter->pdev, reg, *value);
       
  4908 }
       
  4909 
       
  4910 int32_t
       
  4911 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
       
  4912 {
       
  4913     struct e1000_adapter *adapter = hw->back;
       
  4914     uint16_t cap_offset;
       
  4915 
       
  4916     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
       
  4917     if (!cap_offset)
       
  4918         return -E1000_ERR_CONFIG;
       
  4919 
       
  4920     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
       
  4921 
       
  4922     return E1000_SUCCESS;
       
  4923 }
       
  4924 
       
  4925 void
       
  4926 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
       
  4927 {
       
  4928 	outl(value, port);
       
  4929 }
       
  4930 
       
  4931 static void
       
  4932 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
       
  4933 {
       
  4934 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4935 	uint32_t ctrl, rctl;
       
  4936 
       
  4937 	e1000_irq_disable(adapter);
       
  4938 	adapter->vlgrp = grp;
       
  4939 
       
  4940 	if (grp) {
       
  4941 		/* enable VLAN tag insert/strip */
       
  4942 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  4943 		ctrl |= E1000_CTRL_VME;
       
  4944 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  4945 
       
  4946 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  4947 			/* enable VLAN receive filtering */
       
  4948 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  4949 			rctl |= E1000_RCTL_VFE;
       
  4950 			rctl &= ~E1000_RCTL_CFIEN;
       
  4951 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  4952 			e1000_update_mng_vlan(adapter);
       
  4953 		}
       
  4954 	} else {
       
  4955 		/* disable VLAN tag insert/strip */
       
  4956 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  4957 		ctrl &= ~E1000_CTRL_VME;
       
  4958 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  4959 
       
  4960 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  4961 			/* disable VLAN filtering */
       
  4962 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  4963 			rctl &= ~E1000_RCTL_VFE;
       
  4964 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  4965 			if (adapter->mng_vlan_id !=
       
  4966 			    (uint16_t)E1000_MNG_VLAN_NONE) {
       
  4967 				e1000_vlan_rx_kill_vid(netdev,
       
  4968 				                       adapter->mng_vlan_id);
       
  4969 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  4970 			}
       
  4971 		}
       
  4972 	}
       
  4973 
       
  4974 	e1000_irq_enable(adapter);
       
  4975 }
       
  4976 
       
  4977 static void
       
  4978 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
       
  4979 {
       
  4980 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4981 	uint32_t vfta, index;
       
  4982 
       
  4983 	if ((adapter->hw.mng_cookie.status &
       
  4984 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  4985 	    (vid == adapter->mng_vlan_id))
       
  4986 		return;
       
  4987 	/* add VID to filter table */
       
  4988 	index = (vid >> 5) & 0x7F;
       
  4989 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
       
  4990 	vfta |= (1 << (vid & 0x1F));
       
  4991 	e1000_write_vfta(&adapter->hw, index, vfta);
       
  4992 }
       
  4993 
       
  4994 static void
       
  4995 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
       
  4996 {
       
  4997 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4998 	uint32_t vfta, index;
       
  4999 
       
  5000 	e1000_irq_disable(adapter);
       
  5001 	vlan_group_set_device(adapter->vlgrp, vid, NULL);
       
  5002 	e1000_irq_enable(adapter);
       
  5003 
       
  5004 	if ((adapter->hw.mng_cookie.status &
       
  5005 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  5006 	    (vid == adapter->mng_vlan_id)) {
       
  5007 		/* release control to f/w */
       
  5008 		e1000_release_hw_control(adapter);
       
  5009 		return;
       
  5010 	}
       
  5011 
       
  5012 	/* remove VID from filter table */
       
  5013 	index = (vid >> 5) & 0x7F;
       
  5014 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
       
  5015 	vfta &= ~(1 << (vid & 0x1F));
       
  5016 	e1000_write_vfta(&adapter->hw, index, vfta);
       
  5017 }
       
  5018 
       
  5019 static void
       
  5020 e1000_restore_vlan(struct e1000_adapter *adapter)
       
  5021 {
       
  5022 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
       
  5023 
       
  5024 	if (adapter->vlgrp) {
       
  5025 		uint16_t vid;
       
  5026 		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
       
  5027 			if (!vlan_group_get_device(adapter->vlgrp, vid))
       
  5028 				continue;
       
  5029 			e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  5030 		}
       
  5031 	}
       
  5032 }
       
  5033 
       
  5034 int
       
  5035 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
       
  5036 {
       
  5037 	adapter->hw.autoneg = 0;
       
  5038 
       
  5039 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
  5040 	if ((adapter->hw.media_type == e1000_media_type_fiber) &&
       
  5041 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
       
  5042 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  5043 		return -EINVAL;
       
  5044 	}
       
  5045 
       
  5046 	switch (spddplx) {
       
  5047 	case SPEED_10 + DUPLEX_HALF:
       
  5048 		adapter->hw.forced_speed_duplex = e1000_10_half;
       
  5049 		break;
       
  5050 	case SPEED_10 + DUPLEX_FULL:
       
  5051 		adapter->hw.forced_speed_duplex = e1000_10_full;
       
  5052 		break;
       
  5053 	case SPEED_100 + DUPLEX_HALF:
       
  5054 		adapter->hw.forced_speed_duplex = e1000_100_half;
       
  5055 		break;
       
  5056 	case SPEED_100 + DUPLEX_FULL:
       
  5057 		adapter->hw.forced_speed_duplex = e1000_100_full;
       
  5058 		break;
       
  5059 	case SPEED_1000 + DUPLEX_FULL:
       
  5060 		adapter->hw.autoneg = 1;
       
  5061 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
       
  5062 		break;
       
  5063 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
  5064 	default:
       
  5065 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  5066 		return -EINVAL;
       
  5067 	}
       
  5068 	return 0;
       
  5069 }
       
  5070 
       
  5071 static int
       
  5072 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
       
  5073 {
       
  5074 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5075 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5076 	uint32_t ctrl, ctrl_ext, rctl, status;
       
  5077 	uint32_t wufc = adapter->wol;
       
  5078 #ifdef CONFIG_PM
       
  5079 	int retval = 0;
       
  5080 #endif
       
  5081 
       
  5082 	netif_device_detach(netdev);
       
  5083 
       
  5084 	if (netif_running(netdev)) {
       
  5085 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  5086 		e1000_down(adapter);
       
  5087 	}
       
  5088 
       
  5089 #ifdef CONFIG_PM
       
  5090 	retval = pci_save_state(pdev);
       
  5091 	if (retval)
       
  5092 		return retval;
       
  5093 #endif
       
  5094 
       
  5095 	status = E1000_READ_REG(&adapter->hw, STATUS);
       
  5096 	if (status & E1000_STATUS_LU)
       
  5097 		wufc &= ~E1000_WUFC_LNKC;
       
  5098 
       
  5099 	if (wufc) {
       
  5100 		e1000_setup_rctl(adapter);
       
  5101 		e1000_set_multi(netdev);
       
  5102 
       
  5103 		/* turn on all-multi mode if wake on multicast is enabled */
       
  5104 		if (wufc & E1000_WUFC_MC) {
       
  5105 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  5106 			rctl |= E1000_RCTL_MPE;
       
  5107 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  5108 		}
       
  5109 
       
  5110 		if (adapter->hw.mac_type >= e1000_82540) {
       
  5111 			ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  5112 			/* advertise wake from D3Cold */
       
  5113 			#define E1000_CTRL_ADVD3WUC 0x00100000
       
  5114 			/* phy power management enable */
       
  5115 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  5116 			ctrl |= E1000_CTRL_ADVD3WUC |
       
  5117 				E1000_CTRL_EN_PHY_PWR_MGMT;
       
  5118 			E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  5119 		}
       
  5120 
       
  5121 		if (adapter->hw.media_type == e1000_media_type_fiber ||
       
  5122 		   adapter->hw.media_type == e1000_media_type_internal_serdes) {
       
  5123 			/* keep the laser running in D3 */
       
  5124 			ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
  5125 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
       
  5126 			E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
       
  5127 		}
       
  5128 
       
  5129 		/* Allow time for pending master requests to run */
       
  5130 		e1000_disable_pciex_master(&adapter->hw);
       
  5131 
       
  5132 		E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
       
  5133 		E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
       
  5134 		pci_enable_wake(pdev, PCI_D3hot, 1);
       
  5135 		pci_enable_wake(pdev, PCI_D3cold, 1);
       
  5136 	} else {
       
  5137 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
       
  5138 		E1000_WRITE_REG(&adapter->hw, WUFC, 0);
       
  5139 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5140 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5141 	}
       
  5142 
       
  5143 	e1000_release_manageability(adapter);
       
  5144 
       
  5145 	/* make sure adapter isn't asleep if manageability is enabled */
       
  5146 	if (adapter->en_mng_pt) {
       
  5147 		pci_enable_wake(pdev, PCI_D3hot, 1);
       
  5148 		pci_enable_wake(pdev, PCI_D3cold, 1);
       
  5149 	}
       
  5150 
       
  5151 	if (adapter->hw.phy_type == e1000_phy_igp_3)
       
  5152 		e1000_phy_powerdown_workaround(&adapter->hw);
       
  5153 
       
  5154 	if (netif_running(netdev))
       
  5155 		e1000_free_irq(adapter);
       
  5156 
       
  5157 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  5158 	 * would have already happened in close and is redundant. */
       
  5159 	e1000_release_hw_control(adapter);
       
  5160 
       
  5161 	pci_disable_device(pdev);
       
  5162 
       
  5163 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
       
  5164 
       
  5165 	return 0;
       
  5166 }
       
  5167 
       
  5168 #ifdef CONFIG_PM
       
  5169 static int
       
  5170 e1000_resume(struct pci_dev *pdev)
       
  5171 {
       
  5172 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5173 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5174 	uint32_t err;
       
  5175 
       
  5176 	pci_set_power_state(pdev, PCI_D0);
       
  5177 	pci_restore_state(pdev);
       
  5178 	if ((err = pci_enable_device(pdev))) {
       
  5179 		printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
       
  5180 		return err;
       
  5181 	}
       
  5182 	pci_set_master(pdev);
       
  5183 
       
  5184 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5185 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5186 
       
  5187 	if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
       
  5188 		return err;
       
  5189 
       
  5190 	e1000_power_up_phy(adapter);
       
  5191 	e1000_reset(adapter);
       
  5192 	E1000_WRITE_REG(&adapter->hw, WUS, ~0);
       
  5193 
       
  5194 	e1000_init_manageability(adapter);
       
  5195 
       
  5196 	if (netif_running(netdev))
       
  5197 		e1000_up(adapter);
       
  5198 
       
  5199 	netif_device_attach(netdev);
       
  5200 
       
  5201 	/* If the controller is 82573 and f/w is AMT, do not set
       
  5202 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  5203 	 * let the f/w know that the h/w is now under the control
       
  5204 	 * of the driver. */
       
  5205 	if (adapter->hw.mac_type != e1000_82573 ||
       
  5206 	    !e1000_check_mng_mode(&adapter->hw))
       
  5207 		e1000_get_hw_control(adapter);
       
  5208 
       
  5209 	return 0;
       
  5210 }
       
  5211 #endif
       
  5212 
       
  5213 static void e1000_shutdown(struct pci_dev *pdev)
       
  5214 {
       
  5215 	e1000_suspend(pdev, PMSG_SUSPEND);
       
  5216 }
       
  5217 
       
  5218 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  5219 /*
       
  5220  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  5221  * without having to re-enable interrupts. It's not called while
       
  5222  * the interrupt routine is executing.
       
  5223  */
       
  5224 static void
       
  5225 e1000_netpoll(struct net_device *netdev)
       
  5226 {
       
  5227 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5228 
       
  5229 	disable_irq(adapter->pdev->irq);
       
  5230 	e1000_intr(adapter->pdev->irq, netdev);
       
  5231 	e1000_clean_tx_irq(adapter, adapter->tx_ring);
       
  5232 #ifndef CONFIG_E1000_NAPI
       
  5233 	adapter->clean_rx(adapter, adapter->rx_ring);
       
  5234 #endif
       
  5235 	enable_irq(adapter->pdev->irq);
       
  5236 }
       
  5237 #endif
       
  5238 
       
  5239 /**
       
  5240  * e1000_io_error_detected - called when PCI error is detected
       
  5241  * @pdev: Pointer to PCI device
       
  5242  * @state: The current pci conneection state
       
  5243  *
       
  5244  * This function is called after a PCI bus error affecting
       
  5245  * this device has been detected.
       
  5246  */
       
  5247 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
       
  5248 {
       
  5249 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5250 	struct e1000_adapter *adapter = netdev->priv;
       
  5251 
       
  5252 	netif_device_detach(netdev);
       
  5253 
       
  5254 	if (netif_running(netdev))
       
  5255 		e1000_down(adapter);
       
  5256 	pci_disable_device(pdev);
       
  5257 
       
  5258 	/* Request a slot slot reset. */
       
  5259 	return PCI_ERS_RESULT_NEED_RESET;
       
  5260 }
       
  5261 
       
  5262 /**
       
  5263  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  5264  * @pdev: Pointer to PCI device
       
  5265  *
       
  5266  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  5267  * resembles the first-half of the e1000_resume routine.
       
  5268  */
       
  5269 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  5270 {
       
  5271 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5272 	struct e1000_adapter *adapter = netdev->priv;
       
  5273 
       
  5274 	if (pci_enable_device(pdev)) {
       
  5275 		printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
       
  5276 		return PCI_ERS_RESULT_DISCONNECT;
       
  5277 	}
       
  5278 	pci_set_master(pdev);
       
  5279 
       
  5280 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  5281 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  5282 
       
  5283 	e1000_reset(adapter);
       
  5284 	E1000_WRITE_REG(&adapter->hw, WUS, ~0);
       
  5285 
       
  5286 	return PCI_ERS_RESULT_RECOVERED;
       
  5287 }
       
  5288 
       
  5289 /**
       
  5290  * e1000_io_resume - called when traffic can start flowing again.
       
  5291  * @pdev: Pointer to PCI device
       
  5292  *
       
  5293  * This callback is called when the error recovery driver tells us that
       
  5294  * its OK to resume normal operation. Implementation resembles the
       
  5295  * second-half of the e1000_resume routine.
       
  5296  */
       
  5297 static void e1000_io_resume(struct pci_dev *pdev)
       
  5298 {
       
  5299 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5300 	struct e1000_adapter *adapter = netdev->priv;
       
  5301 
       
  5302 	e1000_init_manageability(adapter);
       
  5303 
       
  5304 	if (netif_running(netdev)) {
       
  5305 		if (e1000_up(adapter)) {
       
  5306 			printk("e1000: can't bring device back up after reset\n");
       
  5307 			return;
       
  5308 		}
       
  5309 	}
       
  5310 
       
  5311 	netif_device_attach(netdev);
       
  5312 
       
  5313 	/* If the controller is 82573 and f/w is AMT, do not set
       
  5314 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  5315 	 * let the f/w know that the h/w is now under the control
       
  5316 	 * of the driver. */
       
  5317 	if (adapter->hw.mac_type != e1000_82573 ||
       
  5318 	    !e1000_check_mng_mode(&adapter->hw))
       
  5319 		e1000_get_hw_control(adapter);
       
  5320 
       
  5321 }
       
  5322 
       
  5323 /* e1000_main.c */