devices/e1000e/82571-2.6.35-ethercat.c
changeset 2285 8ebecea534d3
equal deleted inserted replaced
2284:08edb009bee8 2285:8ebecea534d3
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2009 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /*
       
    30  * 82571EB Gigabit Ethernet Controller
       
    31  * 82571EB Gigabit Ethernet Controller (Copper)
       
    32  * 82571EB Gigabit Ethernet Controller (Fiber)
       
    33  * 82571EB Dual Port Gigabit Mezzanine Adapter
       
    34  * 82571EB Quad Port Gigabit Mezzanine Adapter
       
    35  * 82571PT Gigabit PT Quad Port Server ExpressModule
       
    36  * 82572EI Gigabit Ethernet Controller (Copper)
       
    37  * 82572EI Gigabit Ethernet Controller (Fiber)
       
    38  * 82572EI Gigabit Ethernet Controller
       
    39  * 82573V Gigabit Ethernet Controller (Copper)
       
    40  * 82573E Gigabit Ethernet Controller (Copper)
       
    41  * 82573L Gigabit Ethernet Controller
       
    42  * 82574L Gigabit Network Connection
       
    43  * 82583V Gigabit Network Connection
       
    44  */
       
    45 
       
    46 #include "e1000-2.6.35-ethercat.h"
       
    47 
       
    48 #define ID_LED_RESERVED_F746 0xF746
       
    49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
       
    50 			      (ID_LED_OFF1_ON2  <<  8) | \
       
    51 			      (ID_LED_DEF1_DEF2 <<  4) | \
       
    52 			      (ID_LED_DEF1_DEF2))
       
    53 
       
    54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
       
    55 
       
    56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
       
    57 
       
    58 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
       
    59 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
       
    60 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
       
    61 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
       
    62 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
       
    63 				      u16 words, u16 *data);
       
    64 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
       
    65 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
       
    66 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
       
    67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
       
    68 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
       
    69 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
       
    70 static s32 e1000_led_on_82574(struct e1000_hw *hw);
       
    71 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
       
    72 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
       
    73 
       
    74 /**
       
    75  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
       
    76  *  @hw: pointer to the HW structure
       
    77  **/
       
    78 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
       
    79 {
       
    80 	struct e1000_phy_info *phy = &hw->phy;
       
    81 	s32 ret_val;
       
    82 
       
    83 	if (hw->phy.media_type != e1000_media_type_copper) {
       
    84 		phy->type = e1000_phy_none;
       
    85 		return 0;
       
    86 	}
       
    87 
       
    88 	phy->addr			 = 1;
       
    89 	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
    90 	phy->reset_delay_us		 = 100;
       
    91 
       
    92 	phy->ops.power_up		 = e1000_power_up_phy_copper;
       
    93 	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;
       
    94 
       
    95 	switch (hw->mac.type) {
       
    96 	case e1000_82571:
       
    97 	case e1000_82572:
       
    98 		phy->type		 = e1000_phy_igp_2;
       
    99 		break;
       
   100 	case e1000_82573:
       
   101 		phy->type		 = e1000_phy_m88;
       
   102 		break;
       
   103 	case e1000_82574:
       
   104 	case e1000_82583:
       
   105 		phy->type		 = e1000_phy_bm;
       
   106 		break;
       
   107 	default:
       
   108 		return -E1000_ERR_PHY;
       
   109 		break;
       
   110 	}
       
   111 
       
   112 	/* This can only be done after all function pointers are setup. */
       
   113 	ret_val = e1000_get_phy_id_82571(hw);
       
   114 
       
   115 	/* Verify phy id */
       
   116 	switch (hw->mac.type) {
       
   117 	case e1000_82571:
       
   118 	case e1000_82572:
       
   119 		if (phy->id != IGP01E1000_I_PHY_ID)
       
   120 			return -E1000_ERR_PHY;
       
   121 		break;
       
   122 	case e1000_82573:
       
   123 		if (phy->id != M88E1111_I_PHY_ID)
       
   124 			return -E1000_ERR_PHY;
       
   125 		break;
       
   126 	case e1000_82574:
       
   127 	case e1000_82583:
       
   128 		if (phy->id != BME1000_E_PHY_ID_R2)
       
   129 			return -E1000_ERR_PHY;
       
   130 		break;
       
   131 	default:
       
   132 		return -E1000_ERR_PHY;
       
   133 		break;
       
   134 	}
       
   135 
       
   136 	return 0;
       
   137 }
       
   138 
       
   139 /**
       
   140  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
       
   141  *  @hw: pointer to the HW structure
       
   142  **/
       
   143 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
       
   144 {
       
   145 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   146 	u32 eecd = er32(EECD);
       
   147 	u16 size;
       
   148 
       
   149 	nvm->opcode_bits = 8;
       
   150 	nvm->delay_usec = 1;
       
   151 	switch (nvm->override) {
       
   152 	case e1000_nvm_override_spi_large:
       
   153 		nvm->page_size = 32;
       
   154 		nvm->address_bits = 16;
       
   155 		break;
       
   156 	case e1000_nvm_override_spi_small:
       
   157 		nvm->page_size = 8;
       
   158 		nvm->address_bits = 8;
       
   159 		break;
       
   160 	default:
       
   161 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
       
   162 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
       
   163 		break;
       
   164 	}
       
   165 
       
   166 	switch (hw->mac.type) {
       
   167 	case e1000_82573:
       
   168 	case e1000_82574:
       
   169 	case e1000_82583:
       
   170 		if (((eecd >> 15) & 0x3) == 0x3) {
       
   171 			nvm->type = e1000_nvm_flash_hw;
       
   172 			nvm->word_size = 2048;
       
   173 			/*
       
   174 			 * Autonomous Flash update bit must be cleared due
       
   175 			 * to Flash update issue.
       
   176 			 */
       
   177 			eecd &= ~E1000_EECD_AUPDEN;
       
   178 			ew32(EECD, eecd);
       
   179 			break;
       
   180 		}
       
   181 		/* Fall Through */
       
   182 	default:
       
   183 		nvm->type = e1000_nvm_eeprom_spi;
       
   184 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
       
   185 				  E1000_EECD_SIZE_EX_SHIFT);
       
   186 		/*
       
   187 		 * Added to a constant, "size" becomes the left-shift value
       
   188 		 * for setting word_size.
       
   189 		 */
       
   190 		size += NVM_WORD_SIZE_BASE_SHIFT;
       
   191 
       
   192 		/* EEPROM access above 16k is unsupported */
       
   193 		if (size > 14)
       
   194 			size = 14;
       
   195 		nvm->word_size	= 1 << size;
       
   196 		break;
       
   197 	}
       
   198 
       
   199 	return 0;
       
   200 }
       
   201 
       
   202 /**
       
   203  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
       
   204  *  @hw: pointer to the HW structure
       
   205  **/
       
   206 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
       
   207 {
       
   208 	struct e1000_hw *hw = &adapter->hw;
       
   209 	struct e1000_mac_info *mac = &hw->mac;
       
   210 	struct e1000_mac_operations *func = &mac->ops;
       
   211 	u32 swsm = 0;
       
   212 	u32 swsm2 = 0;
       
   213 	bool force_clear_smbi = false;
       
   214 
       
   215 	/* Set media type */
       
   216 	switch (adapter->pdev->device) {
       
   217 	case E1000_DEV_ID_82571EB_FIBER:
       
   218 	case E1000_DEV_ID_82572EI_FIBER:
       
   219 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
   220 		hw->phy.media_type = e1000_media_type_fiber;
       
   221 		break;
       
   222 	case E1000_DEV_ID_82571EB_SERDES:
       
   223 	case E1000_DEV_ID_82572EI_SERDES:
       
   224 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
       
   225 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
       
   226 		hw->phy.media_type = e1000_media_type_internal_serdes;
       
   227 		break;
       
   228 	default:
       
   229 		hw->phy.media_type = e1000_media_type_copper;
       
   230 		break;
       
   231 	}
       
   232 
       
   233 	/* Set mta register count */
       
   234 	mac->mta_reg_count = 128;
       
   235 	/* Set rar entry count */
       
   236 	mac->rar_entry_count = E1000_RAR_ENTRIES;
       
   237 	/* Adaptive IFS supported */
       
   238 	mac->adaptive_ifs = true;
       
   239 
       
   240 	/* check for link */
       
   241 	switch (hw->phy.media_type) {
       
   242 	case e1000_media_type_copper:
       
   243 		func->setup_physical_interface = e1000_setup_copper_link_82571;
       
   244 		func->check_for_link = e1000e_check_for_copper_link;
       
   245 		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
       
   246 		break;
       
   247 	case e1000_media_type_fiber:
       
   248 		func->setup_physical_interface =
       
   249 			e1000_setup_fiber_serdes_link_82571;
       
   250 		func->check_for_link = e1000e_check_for_fiber_link;
       
   251 		func->get_link_up_info =
       
   252 			e1000e_get_speed_and_duplex_fiber_serdes;
       
   253 		break;
       
   254 	case e1000_media_type_internal_serdes:
       
   255 		func->setup_physical_interface =
       
   256 			e1000_setup_fiber_serdes_link_82571;
       
   257 		func->check_for_link = e1000_check_for_serdes_link_82571;
       
   258 		func->get_link_up_info =
       
   259 			e1000e_get_speed_and_duplex_fiber_serdes;
       
   260 		break;
       
   261 	default:
       
   262 		return -E1000_ERR_CONFIG;
       
   263 		break;
       
   264 	}
       
   265 
       
   266 	switch (hw->mac.type) {
       
   267 	case e1000_82573:
       
   268 		func->set_lan_id = e1000_set_lan_id_single_port;
       
   269 		func->check_mng_mode = e1000e_check_mng_mode_generic;
       
   270 		func->led_on = e1000e_led_on_generic;
       
   271 
       
   272 		/* FWSM register */
       
   273 		mac->has_fwsm = true;
       
   274 		/*
       
   275 		 * ARC supported; valid only if manageability features are
       
   276 		 * enabled.
       
   277 		 */
       
   278 		mac->arc_subsystem_valid =
       
   279 			(er32(FWSM) & E1000_FWSM_MODE_MASK)
       
   280 			? true : false;
       
   281 		break;
       
   282 	case e1000_82574:
       
   283 	case e1000_82583:
       
   284 		func->set_lan_id = e1000_set_lan_id_single_port;
       
   285 		func->check_mng_mode = e1000_check_mng_mode_82574;
       
   286 		func->led_on = e1000_led_on_82574;
       
   287 		break;
       
   288 	default:
       
   289 		func->check_mng_mode = e1000e_check_mng_mode_generic;
       
   290 		func->led_on = e1000e_led_on_generic;
       
   291 
       
   292 		/* FWSM register */
       
   293 		mac->has_fwsm = true;
       
   294 		break;
       
   295 	}
       
   296 
       
   297 	/*
       
   298 	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
       
   299 	 * first NVM or PHY acess. This should be done for single-port
       
   300 	 * devices, and for one port only on dual-port devices so that
       
   301 	 * for those devices we can still use the SMBI lock to synchronize
       
   302 	 * inter-port accesses to the PHY & NVM.
       
   303 	 */
       
   304 	switch (hw->mac.type) {
       
   305 	case e1000_82571:
       
   306 	case e1000_82572:
       
   307 		swsm2 = er32(SWSM2);
       
   308 
       
   309 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
       
   310 			/* Only do this for the first interface on this card */
       
   311 			ew32(SWSM2,
       
   312 			    swsm2 | E1000_SWSM2_LOCK);
       
   313 			force_clear_smbi = true;
       
   314 		} else
       
   315 			force_clear_smbi = false;
       
   316 		break;
       
   317 	default:
       
   318 		force_clear_smbi = true;
       
   319 		break;
       
   320 	}
       
   321 
       
   322 	if (force_clear_smbi) {
       
   323 		/* Make sure SWSM.SMBI is clear */
       
   324 		swsm = er32(SWSM);
       
   325 		if (swsm & E1000_SWSM_SMBI) {
       
   326 			/* This bit should not be set on a first interface, and
       
   327 			 * indicates that the bootagent or EFI code has
       
   328 			 * improperly left this bit enabled
       
   329 			 */
       
   330 			e_dbg("Please update your 82571 Bootagent\n");
       
   331 		}
       
   332 		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
       
   333 	}
       
   334 
       
   335 	/*
       
   336 	 * Initialize device specific counter of SMBI acquisition
       
   337 	 * timeouts.
       
   338 	 */
       
   339 	 hw->dev_spec.e82571.smb_counter = 0;
       
   340 
       
   341 	return 0;
       
   342 }
       
   343 
       
   344 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
       
   345 {
       
   346 	struct e1000_hw *hw = &adapter->hw;
       
   347 	static int global_quad_port_a; /* global port a indication */
       
   348 	struct pci_dev *pdev = adapter->pdev;
       
   349 	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
       
   350 	s32 rc;
       
   351 
       
   352 	rc = e1000_init_mac_params_82571(adapter);
       
   353 	if (rc)
       
   354 		return rc;
       
   355 
       
   356 	rc = e1000_init_nvm_params_82571(hw);
       
   357 	if (rc)
       
   358 		return rc;
       
   359 
       
   360 	rc = e1000_init_phy_params_82571(hw);
       
   361 	if (rc)
       
   362 		return rc;
       
   363 
       
   364 	/* tag quad port adapters first, it's used below */
       
   365 	switch (pdev->device) {
       
   366 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
       
   367 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
   368 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
       
   369 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
       
   370 		adapter->flags |= FLAG_IS_QUAD_PORT;
       
   371 		/* mark the first port */
       
   372 		if (global_quad_port_a == 0)
       
   373 			adapter->flags |= FLAG_IS_QUAD_PORT_A;
       
   374 		/* Reset for multiple quad port adapters */
       
   375 		global_quad_port_a++;
       
   376 		if (global_quad_port_a == 4)
       
   377 			global_quad_port_a = 0;
       
   378 		break;
       
   379 	default:
       
   380 		break;
       
   381 	}
       
   382 
       
   383 	switch (adapter->hw.mac.type) {
       
   384 	case e1000_82571:
       
   385 		/* these dual ports don't have WoL on port B at all */
       
   386 		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
       
   387 		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
       
   388 		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
       
   389 		    (is_port_b))
       
   390 			adapter->flags &= ~FLAG_HAS_WOL;
       
   391 		/* quad ports only support WoL on port A */
       
   392 		if (adapter->flags & FLAG_IS_QUAD_PORT &&
       
   393 		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
       
   394 			adapter->flags &= ~FLAG_HAS_WOL;
       
   395 		/* Does not support WoL on any port */
       
   396 		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
       
   397 			adapter->flags &= ~FLAG_HAS_WOL;
       
   398 		break;
       
   399 	case e1000_82573:
       
   400 	case e1000_82574:
       
   401 	case e1000_82583:
       
   402 		/* Disable ASPM L0s due to hardware errata */
       
   403 		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
       
   404 
       
   405 		if (pdev->device == E1000_DEV_ID_82573L) {
       
   406 			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
       
   407 			adapter->max_hw_frame_size = DEFAULT_JUMBO;
       
   408 		}
       
   409 		break;
       
   410 	default:
       
   411 		break;
       
   412 	}
       
   413 
       
   414 	return 0;
       
   415 }
       
   416 
       
   417 /**
       
   418  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
       
   419  *  @hw: pointer to the HW structure
       
   420  *
       
   421  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
       
   422  *  revision in the hardware structure.
       
   423  **/
       
   424 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
       
   425 {
       
   426 	struct e1000_phy_info *phy = &hw->phy;
       
   427 	s32 ret_val;
       
   428 	u16 phy_id = 0;
       
   429 
       
   430 	switch (hw->mac.type) {
       
   431 	case e1000_82571:
       
   432 	case e1000_82572:
       
   433 		/*
       
   434 		 * The 82571 firmware may still be configuring the PHY.
       
   435 		 * In this case, we cannot access the PHY until the
       
   436 		 * configuration is done.  So we explicitly set the
       
   437 		 * PHY ID.
       
   438 		 */
       
   439 		phy->id = IGP01E1000_I_PHY_ID;
       
   440 		break;
       
   441 	case e1000_82573:
       
   442 		return e1000e_get_phy_id(hw);
       
   443 		break;
       
   444 	case e1000_82574:
       
   445 	case e1000_82583:
       
   446 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
       
   447 		if (ret_val)
       
   448 			return ret_val;
       
   449 
       
   450 		phy->id = (u32)(phy_id << 16);
       
   451 		udelay(20);
       
   452 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
       
   453 		if (ret_val)
       
   454 			return ret_val;
       
   455 
       
   456 		phy->id |= (u32)(phy_id);
       
   457 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
       
   458 		break;
       
   459 	default:
       
   460 		return -E1000_ERR_PHY;
       
   461 		break;
       
   462 	}
       
   463 
       
   464 	return 0;
       
   465 }
       
   466 
       
   467 /**
       
   468  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
       
   469  *  @hw: pointer to the HW structure
       
   470  *
       
   471  *  Acquire the HW semaphore to access the PHY or NVM
       
   472  **/
       
   473 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
       
   474 {
       
   475 	u32 swsm;
       
   476 	s32 sw_timeout = hw->nvm.word_size + 1;
       
   477 	s32 fw_timeout = hw->nvm.word_size + 1;
       
   478 	s32 i = 0;
       
   479 
       
   480 	/*
       
   481 	 * If we have timedout 3 times on trying to acquire
       
   482 	 * the inter-port SMBI semaphore, there is old code
       
   483 	 * operating on the other port, and it is not
       
   484 	 * releasing SMBI. Modify the number of times that
       
   485 	 * we try for the semaphore to interwork with this
       
   486 	 * older code.
       
   487 	 */
       
   488 	if (hw->dev_spec.e82571.smb_counter > 2)
       
   489 		sw_timeout = 1;
       
   490 
       
   491 	/* Get the SW semaphore */
       
   492 	while (i < sw_timeout) {
       
   493 		swsm = er32(SWSM);
       
   494 		if (!(swsm & E1000_SWSM_SMBI))
       
   495 			break;
       
   496 
       
   497 		udelay(50);
       
   498 		i++;
       
   499 	}
       
   500 
       
   501 	if (i == sw_timeout) {
       
   502 		e_dbg("Driver can't access device - SMBI bit is set.\n");
       
   503 		hw->dev_spec.e82571.smb_counter++;
       
   504 	}
       
   505 	/* Get the FW semaphore. */
       
   506 	for (i = 0; i < fw_timeout; i++) {
       
   507 		swsm = er32(SWSM);
       
   508 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
       
   509 
       
   510 		/* Semaphore acquired if bit latched */
       
   511 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
       
   512 			break;
       
   513 
       
   514 		udelay(50);
       
   515 	}
       
   516 
       
   517 	if (i == fw_timeout) {
       
   518 		/* Release semaphores */
       
   519 		e1000_put_hw_semaphore_82571(hw);
       
   520 		e_dbg("Driver can't access the NVM\n");
       
   521 		return -E1000_ERR_NVM;
       
   522 	}
       
   523 
       
   524 	return 0;
       
   525 }
       
   526 
       
   527 /**
       
   528  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
       
   529  *  @hw: pointer to the HW structure
       
   530  *
       
   531  *  Release hardware semaphore used to access the PHY or NVM
       
   532  **/
       
   533 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
       
   534 {
       
   535 	u32 swsm;
       
   536 
       
   537 	swsm = er32(SWSM);
       
   538 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
   539 	ew32(SWSM, swsm);
       
   540 }
       
   541 
       
   542 /**
       
   543  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
       
   544  *  @hw: pointer to the HW structure
       
   545  *
       
   546  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
       
   547  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
       
   548  *  for EEPROM access grant bit.  If the access grant bit is not set, release
       
   549  *  hardware semaphore.
       
   550  **/
       
   551 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
       
   552 {
       
   553 	s32 ret_val;
       
   554 
       
   555 	ret_val = e1000_get_hw_semaphore_82571(hw);
       
   556 	if (ret_val)
       
   557 		return ret_val;
       
   558 
       
   559 	switch (hw->mac.type) {
       
   560 	case e1000_82573:
       
   561 	case e1000_82574:
       
   562 	case e1000_82583:
       
   563 		break;
       
   564 	default:
       
   565 		ret_val = e1000e_acquire_nvm(hw);
       
   566 		break;
       
   567 	}
       
   568 
       
   569 	if (ret_val)
       
   570 		e1000_put_hw_semaphore_82571(hw);
       
   571 
       
   572 	return ret_val;
       
   573 }
       
   574 
       
   575 /**
       
   576  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
       
   577  *  @hw: pointer to the HW structure
       
   578  *
       
   579  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
       
   580  **/
       
   581 static void e1000_release_nvm_82571(struct e1000_hw *hw)
       
   582 {
       
   583 	e1000e_release_nvm(hw);
       
   584 	e1000_put_hw_semaphore_82571(hw);
       
   585 }
       
   586 
       
   587 /**
       
   588  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
       
   589  *  @hw: pointer to the HW structure
       
   590  *  @offset: offset within the EEPROM to be written to
       
   591  *  @words: number of words to write
       
   592  *  @data: 16 bit word(s) to be written to the EEPROM
       
   593  *
       
   594  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
       
   595  *
       
   596  *  If e1000e_update_nvm_checksum is not called after this function, the
       
   597  *  EEPROM will most likely contain an invalid checksum.
       
   598  **/
       
   599 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
       
   600 				 u16 *data)
       
   601 {
       
   602 	s32 ret_val;
       
   603 
       
   604 	switch (hw->mac.type) {
       
   605 	case e1000_82573:
       
   606 	case e1000_82574:
       
   607 	case e1000_82583:
       
   608 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
       
   609 		break;
       
   610 	case e1000_82571:
       
   611 	case e1000_82572:
       
   612 		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
       
   613 		break;
       
   614 	default:
       
   615 		ret_val = -E1000_ERR_NVM;
       
   616 		break;
       
   617 	}
       
   618 
       
   619 	return ret_val;
       
   620 }
       
   621 
       
   622 /**
       
   623  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
       
   624  *  @hw: pointer to the HW structure
       
   625  *
       
   626  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
       
   627  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
       
   628  *  value to the EEPROM.
       
   629  **/
       
   630 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
       
   631 {
       
   632 	u32 eecd;
       
   633 	s32 ret_val;
       
   634 	u16 i;
       
   635 
       
   636 	ret_val = e1000e_update_nvm_checksum_generic(hw);
       
   637 	if (ret_val)
       
   638 		return ret_val;
       
   639 
       
   640 	/*
       
   641 	 * If our nvm is an EEPROM, then we're done
       
   642 	 * otherwise, commit the checksum to the flash NVM.
       
   643 	 */
       
   644 	if (hw->nvm.type != e1000_nvm_flash_hw)
       
   645 		return ret_val;
       
   646 
       
   647 	/* Check for pending operations. */
       
   648 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
       
   649 		msleep(1);
       
   650 		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
       
   651 			break;
       
   652 	}
       
   653 
       
   654 	if (i == E1000_FLASH_UPDATES)
       
   655 		return -E1000_ERR_NVM;
       
   656 
       
   657 	/* Reset the firmware if using STM opcode. */
       
   658 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
       
   659 		/*
       
   660 		 * The enabling of and the actual reset must be done
       
   661 		 * in two write cycles.
       
   662 		 */
       
   663 		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
       
   664 		e1e_flush();
       
   665 		ew32(HICR, E1000_HICR_FW_RESET);
       
   666 	}
       
   667 
       
   668 	/* Commit the write to flash */
       
   669 	eecd = er32(EECD) | E1000_EECD_FLUPD;
       
   670 	ew32(EECD, eecd);
       
   671 
       
   672 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
       
   673 		msleep(1);
       
   674 		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
       
   675 			break;
       
   676 	}
       
   677 
       
   678 	if (i == E1000_FLASH_UPDATES)
       
   679 		return -E1000_ERR_NVM;
       
   680 
       
   681 	return 0;
       
   682 }
       
   683 
       
   684 /**
       
   685  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
       
   686  *  @hw: pointer to the HW structure
       
   687  *
       
   688  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
       
   689  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
       
   690  **/
       
   691 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
       
   692 {
       
   693 	if (hw->nvm.type == e1000_nvm_flash_hw)
       
   694 		e1000_fix_nvm_checksum_82571(hw);
       
   695 
       
   696 	return e1000e_validate_nvm_checksum_generic(hw);
       
   697 }
       
   698 
       
   699 /**
       
   700  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
       
   701  *  @hw: pointer to the HW structure
       
   702  *  @offset: offset within the EEPROM to be written to
       
   703  *  @words: number of words to write
       
   704  *  @data: 16 bit word(s) to be written to the EEPROM
       
   705  *
       
   706  *  After checking for invalid values, poll the EEPROM to ensure the previous
       
   707  *  command has completed before trying to write the next word.  After write
       
   708  *  poll for completion.
       
   709  *
       
   710  *  If e1000e_update_nvm_checksum is not called after this function, the
       
   711  *  EEPROM will most likely contain an invalid checksum.
       
   712  **/
       
   713 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
       
   714 				      u16 words, u16 *data)
       
   715 {
       
   716 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   717 	u32 i, eewr = 0;
       
   718 	s32 ret_val = 0;
       
   719 
       
   720 	/*
       
   721 	 * A check for invalid values:  offset too large, too many words,
       
   722 	 * and not enough words.
       
   723 	 */
       
   724 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
   725 	    (words == 0)) {
       
   726 		e_dbg("nvm parameter(s) out of bounds\n");
       
   727 		return -E1000_ERR_NVM;
       
   728 	}
       
   729 
       
   730 	for (i = 0; i < words; i++) {
       
   731 		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
       
   732 		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
       
   733 		       E1000_NVM_RW_REG_START;
       
   734 
       
   735 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
       
   736 		if (ret_val)
       
   737 			break;
       
   738 
       
   739 		ew32(EEWR, eewr);
       
   740 
       
   741 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
       
   742 		if (ret_val)
       
   743 			break;
       
   744 	}
       
   745 
       
   746 	return ret_val;
       
   747 }
       
   748 
       
   749 /**
       
   750  *  e1000_get_cfg_done_82571 - Poll for configuration done
       
   751  *  @hw: pointer to the HW structure
       
   752  *
       
   753  *  Reads the management control register for the config done bit to be set.
       
   754  **/
       
   755 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
       
   756 {
       
   757 	s32 timeout = PHY_CFG_TIMEOUT;
       
   758 
       
   759 	while (timeout) {
       
   760 		if (er32(EEMNGCTL) &
       
   761 		    E1000_NVM_CFG_DONE_PORT_0)
       
   762 			break;
       
   763 		msleep(1);
       
   764 		timeout--;
       
   765 	}
       
   766 	if (!timeout) {
       
   767 		e_dbg("MNG configuration cycle has not completed.\n");
       
   768 		return -E1000_ERR_RESET;
       
   769 	}
       
   770 
       
   771 	return 0;
       
   772 }
       
   773 
       
   774 /**
       
   775  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
       
   776  *  @hw: pointer to the HW structure
       
   777  *  @active: true to enable LPLU, false to disable
       
   778  *
       
   779  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
       
   780  *  this function also disables smart speed and vice versa.  LPLU will not be
       
   781  *  activated unless the device autonegotiation advertisement meets standards
       
   782  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
       
   783  *  pointer entry point only called by PHY setup routines.
       
   784  **/
       
   785 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
       
   786 {
       
   787 	struct e1000_phy_info *phy = &hw->phy;
       
   788 	s32 ret_val;
       
   789 	u16 data;
       
   790 
       
   791 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
       
   792 	if (ret_val)
       
   793 		return ret_val;
       
   794 
       
   795 	if (active) {
       
   796 		data |= IGP02E1000_PM_D0_LPLU;
       
   797 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
   798 		if (ret_val)
       
   799 			return ret_val;
       
   800 
       
   801 		/* When LPLU is enabled, we should disable SmartSpeed */
       
   802 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
   803 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   804 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
   805 		if (ret_val)
       
   806 			return ret_val;
       
   807 	} else {
       
   808 		data &= ~IGP02E1000_PM_D0_LPLU;
       
   809 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
   810 		/*
       
   811 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
   812 		 * during Dx states where the power conservation is most
       
   813 		 * important.  During driver activity we should enable
       
   814 		 * SmartSpeed, so performance is maintained.
       
   815 		 */
       
   816 		if (phy->smart_speed == e1000_smart_speed_on) {
       
   817 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   818 					   &data);
       
   819 			if (ret_val)
       
   820 				return ret_val;
       
   821 
       
   822 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
   823 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   824 					   data);
       
   825 			if (ret_val)
       
   826 				return ret_val;
       
   827 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
   828 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   829 					   &data);
       
   830 			if (ret_val)
       
   831 				return ret_val;
       
   832 
       
   833 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   834 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   835 					   data);
       
   836 			if (ret_val)
       
   837 				return ret_val;
       
   838 		}
       
   839 	}
       
   840 
       
   841 	return 0;
       
   842 }
       
   843 
       
   844 /**
       
   845  *  e1000_reset_hw_82571 - Reset hardware
       
   846  *  @hw: pointer to the HW structure
       
   847  *
       
   848  *  This resets the hardware into a known state.
       
   849  **/
       
   850 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
       
   851 {
       
   852 	u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
       
   853 	s32 ret_val;
       
   854 	u16 i = 0;
       
   855 
       
   856 	/*
       
   857 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
       
   858 	 * on the last TLP read/write transaction when MAC is reset.
       
   859 	 */
       
   860 	ret_val = e1000e_disable_pcie_master(hw);
       
   861 	if (ret_val)
       
   862 		e_dbg("PCI-E Master disable polling has failed.\n");
       
   863 
       
   864 	e_dbg("Masking off all interrupts\n");
       
   865 	ew32(IMC, 0xffffffff);
       
   866 
       
   867 	ew32(RCTL, 0);
       
   868 	ew32(TCTL, E1000_TCTL_PSP);
       
   869 	e1e_flush();
       
   870 
       
   871 	msleep(10);
       
   872 
       
   873 	/*
       
   874 	 * Must acquire the MDIO ownership before MAC reset.
       
   875 	 * Ownership defaults to firmware after a reset.
       
   876 	 */
       
   877 	switch (hw->mac.type) {
       
   878 	case e1000_82573:
       
   879 	case e1000_82574:
       
   880 	case e1000_82583:
       
   881 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
   882 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   883 
       
   884 		do {
       
   885 			ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   886 			extcnf_ctrl = er32(EXTCNF_CTRL);
       
   887 
       
   888 			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
       
   889 				break;
       
   890 
       
   891 			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   892 
       
   893 			msleep(2);
       
   894 			i++;
       
   895 		} while (i < MDIO_OWNERSHIP_TIMEOUT);
       
   896 		break;
       
   897 	default:
       
   898 		break;
       
   899 	}
       
   900 
       
   901 	ctrl = er32(CTRL);
       
   902 
       
   903 	e_dbg("Issuing a global reset to MAC\n");
       
   904 	ew32(CTRL, ctrl | E1000_CTRL_RST);
       
   905 
       
   906 	if (hw->nvm.type == e1000_nvm_flash_hw) {
       
   907 		udelay(10);
       
   908 		ctrl_ext = er32(CTRL_EXT);
       
   909 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
   910 		ew32(CTRL_EXT, ctrl_ext);
       
   911 		e1e_flush();
       
   912 	}
       
   913 
       
   914 	ret_val = e1000e_get_auto_rd_done(hw);
       
   915 	if (ret_val)
       
   916 		/* We don't want to continue accessing MAC registers. */
       
   917 		return ret_val;
       
   918 
       
   919 	/*
       
   920 	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
       
   921 	 * Need to wait for Phy configuration completion before accessing
       
   922 	 * NVM and Phy.
       
   923 	 */
       
   924 
       
   925 	switch (hw->mac.type) {
       
   926 	case e1000_82573:
       
   927 	case e1000_82574:
       
   928 	case e1000_82583:
       
   929 		msleep(25);
       
   930 		break;
       
   931 	default:
       
   932 		break;
       
   933 	}
       
   934 
       
   935 	/* Clear any pending interrupt events. */
       
   936 	ew32(IMC, 0xffffffff);
       
   937 	icr = er32(ICR);
       
   938 
       
   939 	if (hw->mac.type == e1000_82571) {
       
   940 		/* Install any alternate MAC address into RAR0 */
       
   941 		ret_val = e1000_check_alt_mac_addr_generic(hw);
       
   942 		if (ret_val)
       
   943 			return ret_val;
       
   944 
       
   945 		e1000e_set_laa_state_82571(hw, true);
       
   946 	}
       
   947 
       
   948 	/* Reinitialize the 82571 serdes link state machine */
       
   949 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
       
   950 		hw->mac.serdes_link_state = e1000_serdes_link_down;
       
   951 
       
   952 	return 0;
       
   953 }
       
   954 
       
   955 /**
       
   956  *  e1000_init_hw_82571 - Initialize hardware
       
   957  *  @hw: pointer to the HW structure
       
   958  *
       
   959  *  This inits the hardware readying it for operation.
       
   960  **/
       
   961 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
       
   962 {
       
   963 	struct e1000_mac_info *mac = &hw->mac;
       
   964 	u32 reg_data;
       
   965 	s32 ret_val;
       
   966 	u16 i, rar_count = mac->rar_entry_count;
       
   967 
       
   968 	e1000_initialize_hw_bits_82571(hw);
       
   969 
       
   970 	/* Initialize identification LED */
       
   971 	ret_val = e1000e_id_led_init(hw);
       
   972 	if (ret_val)
       
   973 		e_dbg("Error initializing identification LED\n");
       
   974 		/* This is not fatal and we should not stop init due to this */
       
   975 
       
   976 	/* Disabling VLAN filtering */
       
   977 	e_dbg("Initializing the IEEE VLAN\n");
       
   978 	mac->ops.clear_vfta(hw);
       
   979 
       
   980 	/* Setup the receive address. */
       
   981 	/*
       
   982 	 * If, however, a locally administered address was assigned to the
       
   983 	 * 82571, we must reserve a RAR for it to work around an issue where
       
   984 	 * resetting one port will reload the MAC on the other port.
       
   985 	 */
       
   986 	if (e1000e_get_laa_state_82571(hw))
       
   987 		rar_count--;
       
   988 	e1000e_init_rx_addrs(hw, rar_count);
       
   989 
       
   990 	/* Zero out the Multicast HASH table */
       
   991 	e_dbg("Zeroing the MTA\n");
       
   992 	for (i = 0; i < mac->mta_reg_count; i++)
       
   993 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
       
   994 
       
   995 	/* Setup link and flow control */
       
   996 	ret_val = e1000_setup_link_82571(hw);
       
   997 
       
   998 	/* Set the transmit descriptor write-back policy */
       
   999 	reg_data = er32(TXDCTL(0));
       
  1000 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
       
  1001 		   E1000_TXDCTL_FULL_TX_DESC_WB |
       
  1002 		   E1000_TXDCTL_COUNT_DESC;
       
  1003 	ew32(TXDCTL(0), reg_data);
       
  1004 
       
  1005 	/* ...for both queues. */
       
  1006 	switch (mac->type) {
       
  1007 	case e1000_82573:
       
  1008 		e1000e_enable_tx_pkt_filtering(hw);
       
  1009 		/* fall through */
       
  1010 	case e1000_82574:
       
  1011 	case e1000_82583:
       
  1012 		reg_data = er32(GCR);
       
  1013 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
       
  1014 		ew32(GCR, reg_data);
       
  1015 		break;
       
  1016 	default:
       
  1017 		reg_data = er32(TXDCTL(1));
       
  1018 		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
       
  1019 			   E1000_TXDCTL_FULL_TX_DESC_WB |
       
  1020 			   E1000_TXDCTL_COUNT_DESC;
       
  1021 		ew32(TXDCTL(1), reg_data);
       
  1022 		break;
       
  1023 	}
       
  1024 
       
  1025 	/*
       
  1026 	 * Clear all of the statistics registers (clear on read).  It is
       
  1027 	 * important that we do this after we have tried to establish link
       
  1028 	 * because the symbol error count will increment wildly if there
       
  1029 	 * is no link.
       
  1030 	 */
       
  1031 	e1000_clear_hw_cntrs_82571(hw);
       
  1032 
       
  1033 	return ret_val;
       
  1034 }
       
  1035 
       
  1036 /**
       
  1037  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
       
  1038  *  @hw: pointer to the HW structure
       
  1039  *
       
  1040  *  Initializes required hardware-dependent bits needed for normal operation.
       
  1041  **/
       
  1042 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
       
  1043 {
       
  1044 	u32 reg;
       
  1045 
       
  1046 	/* Transmit Descriptor Control 0 */
       
  1047 	reg = er32(TXDCTL(0));
       
  1048 	reg |= (1 << 22);
       
  1049 	ew32(TXDCTL(0), reg);
       
  1050 
       
  1051 	/* Transmit Descriptor Control 1 */
       
  1052 	reg = er32(TXDCTL(1));
       
  1053 	reg |= (1 << 22);
       
  1054 	ew32(TXDCTL(1), reg);
       
  1055 
       
  1056 	/* Transmit Arbitration Control 0 */
       
  1057 	reg = er32(TARC(0));
       
  1058 	reg &= ~(0xF << 27); /* 30:27 */
       
  1059 	switch (hw->mac.type) {
       
  1060 	case e1000_82571:
       
  1061 	case e1000_82572:
       
  1062 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
       
  1063 		break;
       
  1064 	default:
       
  1065 		break;
       
  1066 	}
       
  1067 	ew32(TARC(0), reg);
       
  1068 
       
  1069 	/* Transmit Arbitration Control 1 */
       
  1070 	reg = er32(TARC(1));
       
  1071 	switch (hw->mac.type) {
       
  1072 	case e1000_82571:
       
  1073 	case e1000_82572:
       
  1074 		reg &= ~((1 << 29) | (1 << 30));
       
  1075 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
       
  1076 		if (er32(TCTL) & E1000_TCTL_MULR)
       
  1077 			reg &= ~(1 << 28);
       
  1078 		else
       
  1079 			reg |= (1 << 28);
       
  1080 		ew32(TARC(1), reg);
       
  1081 		break;
       
  1082 	default:
       
  1083 		break;
       
  1084 	}
       
  1085 
       
  1086 	/* Device Control */
       
  1087 	switch (hw->mac.type) {
       
  1088 	case e1000_82573:
       
  1089 	case e1000_82574:
       
  1090 	case e1000_82583:
       
  1091 		reg = er32(CTRL);
       
  1092 		reg &= ~(1 << 29);
       
  1093 		ew32(CTRL, reg);
       
  1094 		break;
       
  1095 	default:
       
  1096 		break;
       
  1097 	}
       
  1098 
       
  1099 	/* Extended Device Control */
       
  1100 	switch (hw->mac.type) {
       
  1101 	case e1000_82573:
       
  1102 	case e1000_82574:
       
  1103 	case e1000_82583:
       
  1104 		reg = er32(CTRL_EXT);
       
  1105 		reg &= ~(1 << 23);
       
  1106 		reg |= (1 << 22);
       
  1107 		ew32(CTRL_EXT, reg);
       
  1108 		break;
       
  1109 	default:
       
  1110 		break;
       
  1111 	}
       
  1112 
       
  1113 	if (hw->mac.type == e1000_82571) {
       
  1114 		reg = er32(PBA_ECC);
       
  1115 		reg |= E1000_PBA_ECC_CORR_EN;
       
  1116 		ew32(PBA_ECC, reg);
       
  1117 	}
       
  1118 	/*
       
  1119 	 * Workaround for hardware errata.
       
  1120 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
       
  1121 	 */
       
  1122 
       
  1123         if ((hw->mac.type == e1000_82571) ||
       
  1124            (hw->mac.type == e1000_82572)) {
       
  1125                 reg = er32(CTRL_EXT);
       
  1126                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
       
  1127                 ew32(CTRL_EXT, reg);
       
  1128         }
       
  1129 
       
  1130 
       
  1131 	/* PCI-Ex Control Registers */
       
  1132 	switch (hw->mac.type) {
       
  1133 	case e1000_82574:
       
  1134 	case e1000_82583:
       
  1135 		reg = er32(GCR);
       
  1136 		reg |= (1 << 22);
       
  1137 		ew32(GCR, reg);
       
  1138 
       
  1139 		/*
       
  1140 		 * Workaround for hardware errata.
       
  1141 		 * apply workaround for hardware errata documented in errata
       
  1142 		 * docs Fixes issue where some error prone or unreliable PCIe
       
  1143 		 * completions are occurring, particularly with ASPM enabled.
       
  1144 		 * Without fix, issue can cause tx timeouts.
       
  1145 		 */
       
  1146 		reg = er32(GCR2);
       
  1147 		reg |= 1;
       
  1148 		ew32(GCR2, reg);
       
  1149 		break;
       
  1150 	default:
       
  1151 		break;
       
  1152 	}
       
  1153 }
       
  1154 
       
  1155 /**
       
  1156  *  e1000_clear_vfta_82571 - Clear VLAN filter table
       
  1157  *  @hw: pointer to the HW structure
       
  1158  *
       
  1159  *  Clears the register array which contains the VLAN filter table by
       
  1160  *  setting all the values to 0.
       
  1161  **/
       
  1162 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
       
  1163 {
       
  1164 	u32 offset;
       
  1165 	u32 vfta_value = 0;
       
  1166 	u32 vfta_offset = 0;
       
  1167 	u32 vfta_bit_in_reg = 0;
       
  1168 
       
  1169 	switch (hw->mac.type) {
       
  1170 	case e1000_82573:
       
  1171 	case e1000_82574:
       
  1172 	case e1000_82583:
       
  1173 		if (hw->mng_cookie.vlan_id != 0) {
       
  1174 			/*
       
  1175 			 * The VFTA is a 4096b bit-field, each identifying
       
  1176 			 * a single VLAN ID.  The following operations
       
  1177 			 * determine which 32b entry (i.e. offset) into the
       
  1178 			 * array we want to set the VLAN ID (i.e. bit) of
       
  1179 			 * the manageability unit.
       
  1180 			 */
       
  1181 			vfta_offset = (hw->mng_cookie.vlan_id >>
       
  1182 				       E1000_VFTA_ENTRY_SHIFT) &
       
  1183 				      E1000_VFTA_ENTRY_MASK;
       
  1184 			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
       
  1185 					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
       
  1186 		}
       
  1187 		break;
       
  1188 	default:
       
  1189 		break;
       
  1190 	}
       
  1191 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
  1192 		/*
       
  1193 		 * If the offset we want to clear is the same offset of the
       
  1194 		 * manageability VLAN ID, then clear all bits except that of
       
  1195 		 * the manageability unit.
       
  1196 		 */
       
  1197 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
       
  1198 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
       
  1199 		e1e_flush();
       
  1200 	}
       
  1201 }
       
  1202 
       
  1203 /**
       
  1204  *  e1000_check_mng_mode_82574 - Check manageability is enabled
       
  1205  *  @hw: pointer to the HW structure
       
  1206  *
       
  1207  *  Reads the NVM Initialization Control Word 2 and returns true
       
  1208  *  (>0) if any manageability is enabled, else false (0).
       
  1209  **/
       
  1210 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
       
  1211 {
       
  1212 	u16 data;
       
  1213 
       
  1214 	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
       
  1215 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
       
  1216 }
       
  1217 
       
  1218 /**
       
  1219  *  e1000_led_on_82574 - Turn LED on
       
  1220  *  @hw: pointer to the HW structure
       
  1221  *
       
  1222  *  Turn LED on.
       
  1223  **/
       
  1224 static s32 e1000_led_on_82574(struct e1000_hw *hw)
       
  1225 {
       
  1226 	u32 ctrl;
       
  1227 	u32 i;
       
  1228 
       
  1229 	ctrl = hw->mac.ledctl_mode2;
       
  1230 	if (!(E1000_STATUS_LU & er32(STATUS))) {
       
  1231 		/*
       
  1232 		 * If no link, then turn LED on by setting the invert bit
       
  1233 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
       
  1234 		 */
       
  1235 		for (i = 0; i < 4; i++)
       
  1236 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
       
  1237 			    E1000_LEDCTL_MODE_LED_ON)
       
  1238 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
       
  1239 	}
       
  1240 	ew32(LEDCTL, ctrl);
       
  1241 
       
  1242 	return 0;
       
  1243 }
       
  1244 
       
  1245 /**
       
  1246  *  e1000_setup_link_82571 - Setup flow control and link settings
       
  1247  *  @hw: pointer to the HW structure
       
  1248  *
       
  1249  *  Determines which flow control settings to use, then configures flow
       
  1250  *  control.  Calls the appropriate media-specific link configuration
       
  1251  *  function.  Assuming the adapter has a valid link partner, a valid link
       
  1252  *  should be established.  Assumes the hardware has previously been reset
       
  1253  *  and the transmitter and receiver are not enabled.
       
  1254  **/
       
  1255 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
       
  1256 {
       
  1257 	/*
       
  1258 	 * 82573 does not have a word in the NVM to determine
       
  1259 	 * the default flow control setting, so we explicitly
       
  1260 	 * set it to full.
       
  1261 	 */
       
  1262 	switch (hw->mac.type) {
       
  1263 	case e1000_82573:
       
  1264 	case e1000_82574:
       
  1265 	case e1000_82583:
       
  1266 		if (hw->fc.requested_mode == e1000_fc_default)
       
  1267 			hw->fc.requested_mode = e1000_fc_full;
       
  1268 		break;
       
  1269 	default:
       
  1270 		break;
       
  1271 	}
       
  1272 
       
  1273 	return e1000e_setup_link(hw);
       
  1274 }
       
  1275 
       
  1276 /**
       
  1277  *  e1000_setup_copper_link_82571 - Configure copper link settings
       
  1278  *  @hw: pointer to the HW structure
       
  1279  *
       
  1280  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
       
  1281  *  for link, once link is established calls to configure collision distance
       
  1282  *  and flow control are called.
       
  1283  **/
       
  1284 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
       
  1285 {
       
  1286 	u32 ctrl;
       
  1287 	s32 ret_val;
       
  1288 
       
  1289 	ctrl = er32(CTRL);
       
  1290 	ctrl |= E1000_CTRL_SLU;
       
  1291 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1292 	ew32(CTRL, ctrl);
       
  1293 
       
  1294 	switch (hw->phy.type) {
       
  1295 	case e1000_phy_m88:
       
  1296 	case e1000_phy_bm:
       
  1297 		ret_val = e1000e_copper_link_setup_m88(hw);
       
  1298 		break;
       
  1299 	case e1000_phy_igp_2:
       
  1300 		ret_val = e1000e_copper_link_setup_igp(hw);
       
  1301 		break;
       
  1302 	default:
       
  1303 		return -E1000_ERR_PHY;
       
  1304 		break;
       
  1305 	}
       
  1306 
       
  1307 	if (ret_val)
       
  1308 		return ret_val;
       
  1309 
       
  1310 	ret_val = e1000e_setup_copper_link(hw);
       
  1311 
       
  1312 	return ret_val;
       
  1313 }
       
  1314 
       
  1315 /**
       
  1316  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
       
  1317  *  @hw: pointer to the HW structure
       
  1318  *
       
  1319  *  Configures collision distance and flow control for fiber and serdes links.
       
  1320  *  Upon successful setup, poll for link.
       
  1321  **/
       
  1322 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
       
  1323 {
       
  1324 	switch (hw->mac.type) {
       
  1325 	case e1000_82571:
       
  1326 	case e1000_82572:
       
  1327 		/*
       
  1328 		 * If SerDes loopback mode is entered, there is no form
       
  1329 		 * of reset to take the adapter out of that mode.  So we
       
  1330 		 * have to explicitly take the adapter out of loopback
       
  1331 		 * mode.  This prevents drivers from twiddling their thumbs
       
  1332 		 * if another tool failed to take it out of loopback mode.
       
  1333 		 */
       
  1334 		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
       
  1335 		break;
       
  1336 	default:
       
  1337 		break;
       
  1338 	}
       
  1339 
       
  1340 	return e1000e_setup_fiber_serdes_link(hw);
       
  1341 }
       
  1342 
       
  1343 /**
       
  1344  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
       
  1345  *  @hw: pointer to the HW structure
       
  1346  *
       
  1347  *  Reports the link state as up or down.
       
  1348  *
       
  1349  *  If autonegotiation is supported by the link partner, the link state is
       
  1350  *  determined by the result of autonegotiation. This is the most likely case.
       
  1351  *  If autonegotiation is not supported by the link partner, and the link
       
  1352  *  has a valid signal, force the link up.
       
  1353  *
       
  1354  *  The link state is represented internally here by 4 states:
       
  1355  *
       
  1356  *  1) down
       
  1357  *  2) autoneg_progress
       
  1358  *  3) autoneg_complete (the link successfully autonegotiated)
       
  1359  *  4) forced_up (the link has been forced up, it did not autonegotiate)
       
  1360  *
       
  1361  **/
       
  1362 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
       
  1363 {
       
  1364 	struct e1000_mac_info *mac = &hw->mac;
       
  1365 	u32 rxcw;
       
  1366 	u32 ctrl;
       
  1367 	u32 status;
       
  1368 	s32 ret_val = 0;
       
  1369 
       
  1370 	ctrl = er32(CTRL);
       
  1371 	status = er32(STATUS);
       
  1372 	rxcw = er32(RXCW);
       
  1373 
       
  1374 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
       
  1375 
       
  1376 		/* Receiver is synchronized with no invalid bits.  */
       
  1377 		switch (mac->serdes_link_state) {
       
  1378 		case e1000_serdes_link_autoneg_complete:
       
  1379 			if (!(status & E1000_STATUS_LU)) {
       
  1380 				/*
       
  1381 				 * We have lost link, retry autoneg before
       
  1382 				 * reporting link failure
       
  1383 				 */
       
  1384 				mac->serdes_link_state =
       
  1385 				    e1000_serdes_link_autoneg_progress;
       
  1386 				mac->serdes_has_link = false;
       
  1387 				e_dbg("AN_UP     -> AN_PROG\n");
       
  1388 			}
       
  1389 		break;
       
  1390 
       
  1391 		case e1000_serdes_link_forced_up:
       
  1392 			/*
       
  1393 			 * If we are receiving /C/ ordered sets, re-enable
       
  1394 			 * auto-negotiation in the TXCW register and disable
       
  1395 			 * forced link in the Device Control register in an
       
  1396 			 * attempt to auto-negotiate with our link partner.
       
  1397 			 */
       
  1398 			if (rxcw & E1000_RXCW_C) {
       
  1399 				/* Enable autoneg, and unforce link up */
       
  1400 				ew32(TXCW, mac->txcw);
       
  1401 				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
  1402 				mac->serdes_link_state =
       
  1403 				    e1000_serdes_link_autoneg_progress;
       
  1404 				mac->serdes_has_link = false;
       
  1405 				e_dbg("FORCED_UP -> AN_PROG\n");
       
  1406 			}
       
  1407 			break;
       
  1408 
       
  1409 		case e1000_serdes_link_autoneg_progress:
       
  1410 			if (rxcw & E1000_RXCW_C) {
       
  1411 				/*
       
  1412 				 * We received /C/ ordered sets, meaning the
       
  1413 				 * link partner has autonegotiated, and we can
       
  1414 				 * trust the Link Up (LU) status bit.
       
  1415 				 */
       
  1416 				if (status & E1000_STATUS_LU) {
       
  1417 					mac->serdes_link_state =
       
  1418 					    e1000_serdes_link_autoneg_complete;
       
  1419 					e_dbg("AN_PROG   -> AN_UP\n");
       
  1420 					mac->serdes_has_link = true;
       
  1421 				} else {
       
  1422 					/* Autoneg completed, but failed. */
       
  1423 					mac->serdes_link_state =
       
  1424 					    e1000_serdes_link_down;
       
  1425 					e_dbg("AN_PROG   -> DOWN\n");
       
  1426 				}
       
  1427 			} else {
       
  1428 				/*
       
  1429 				 * The link partner did not autoneg.
       
  1430 				 * Force link up and full duplex, and change
       
  1431 				 * state to forced.
       
  1432 				 */
       
  1433 				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
  1434 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
  1435 				ew32(CTRL, ctrl);
       
  1436 
       
  1437 				/* Configure Flow Control after link up. */
       
  1438 				ret_val = e1000e_config_fc_after_link_up(hw);
       
  1439 				if (ret_val) {
       
  1440 					e_dbg("Error config flow control\n");
       
  1441 					break;
       
  1442 				}
       
  1443 				mac->serdes_link_state =
       
  1444 				    e1000_serdes_link_forced_up;
       
  1445 				mac->serdes_has_link = true;
       
  1446 				e_dbg("AN_PROG   -> FORCED_UP\n");
       
  1447 			}
       
  1448 			break;
       
  1449 
       
  1450 		case e1000_serdes_link_down:
       
  1451 		default:
       
  1452 			/*
       
  1453 			 * The link was down but the receiver has now gained
       
  1454 			 * valid sync, so lets see if we can bring the link
       
  1455 			 * up.
       
  1456 			 */
       
  1457 			ew32(TXCW, mac->txcw);
       
  1458 			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
  1459 			mac->serdes_link_state =
       
  1460 			    e1000_serdes_link_autoneg_progress;
       
  1461 			e_dbg("DOWN      -> AN_PROG\n");
       
  1462 			break;
       
  1463 		}
       
  1464 	} else {
       
  1465 		if (!(rxcw & E1000_RXCW_SYNCH)) {
       
  1466 			mac->serdes_has_link = false;
       
  1467 			mac->serdes_link_state = e1000_serdes_link_down;
       
  1468 			e_dbg("ANYSTATE  -> DOWN\n");
       
  1469 		} else {
       
  1470 			/*
       
  1471 			 * We have sync, and can tolerate one invalid (IV)
       
  1472 			 * codeword before declaring link down, so reread
       
  1473 			 * to look again.
       
  1474 			 */
       
  1475 			udelay(10);
       
  1476 			rxcw = er32(RXCW);
       
  1477 			if (rxcw & E1000_RXCW_IV) {
       
  1478 				mac->serdes_link_state = e1000_serdes_link_down;
       
  1479 				mac->serdes_has_link = false;
       
  1480 				e_dbg("ANYSTATE  -> DOWN\n");
       
  1481 			}
       
  1482 		}
       
  1483 	}
       
  1484 
       
  1485 	return ret_val;
       
  1486 }
       
  1487 
       
  1488 /**
       
  1489  *  e1000_valid_led_default_82571 - Verify a valid default LED config
       
  1490  *  @hw: pointer to the HW structure
       
  1491  *  @data: pointer to the NVM (EEPROM)
       
  1492  *
       
  1493  *  Read the EEPROM for the current default LED configuration.  If the
       
  1494  *  LED configuration is not valid, set to a valid LED configuration.
       
  1495  **/
       
  1496 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
       
  1497 {
       
  1498 	s32 ret_val;
       
  1499 
       
  1500 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  1501 	if (ret_val) {
       
  1502 		e_dbg("NVM Read Error\n");
       
  1503 		return ret_val;
       
  1504 	}
       
  1505 
       
  1506 	switch (hw->mac.type) {
       
  1507 	case e1000_82573:
       
  1508 	case e1000_82574:
       
  1509 	case e1000_82583:
       
  1510 		if (*data == ID_LED_RESERVED_F746)
       
  1511 			*data = ID_LED_DEFAULT_82573;
       
  1512 		break;
       
  1513 	default:
       
  1514 		if (*data == ID_LED_RESERVED_0000 ||
       
  1515 		    *data == ID_LED_RESERVED_FFFF)
       
  1516 			*data = ID_LED_DEFAULT;
       
  1517 		break;
       
  1518 	}
       
  1519 
       
  1520 	return 0;
       
  1521 }
       
  1522 
       
  1523 /**
       
  1524  *  e1000e_get_laa_state_82571 - Get locally administered address state
       
  1525  *  @hw: pointer to the HW structure
       
  1526  *
       
  1527  *  Retrieve and return the current locally administered address state.
       
  1528  **/
       
  1529 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
       
  1530 {
       
  1531 	if (hw->mac.type != e1000_82571)
       
  1532 		return false;
       
  1533 
       
  1534 	return hw->dev_spec.e82571.laa_is_present;
       
  1535 }
       
  1536 
       
  1537 /**
       
  1538  *  e1000e_set_laa_state_82571 - Set locally administered address state
       
  1539  *  @hw: pointer to the HW structure
       
  1540  *  @state: enable/disable locally administered address
       
  1541  *
       
  1542  *  Enable/Disable the current locally administered address state.
       
  1543  **/
       
  1544 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
       
  1545 {
       
  1546 	if (hw->mac.type != e1000_82571)
       
  1547 		return;
       
  1548 
       
  1549 	hw->dev_spec.e82571.laa_is_present = state;
       
  1550 
       
  1551 	/* If workaround is activated... */
       
  1552 	if (state)
       
  1553 		/*
       
  1554 		 * Hold a copy of the LAA in RAR[14] This is done so that
       
  1555 		 * between the time RAR[0] gets clobbered and the time it
       
  1556 		 * gets fixed, the actual LAA is in one of the RARs and no
       
  1557 		 * incoming packets directed to this port are dropped.
       
  1558 		 * Eventually the LAA will be in RAR[0] and RAR[14].
       
  1559 		 */
       
  1560 		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
       
  1561 }
       
  1562 
       
  1563 /**
       
  1564  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
       
  1565  *  @hw: pointer to the HW structure
       
  1566  *
       
  1567  *  Verifies that the EEPROM has completed the update.  After updating the
       
  1568  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
       
  1569  *  the checksum fix is not implemented, we need to set the bit and update
       
  1570  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
       
  1571  *  we need to return bad checksum.
       
  1572  **/
       
  1573 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
       
  1574 {
       
  1575 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1576 	s32 ret_val;
       
  1577 	u16 data;
       
  1578 
       
  1579 	if (nvm->type != e1000_nvm_flash_hw)
       
  1580 		return 0;
       
  1581 
       
  1582 	/*
       
  1583 	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
       
  1584 	 * 10h-12h.  Checksum may need to be fixed.
       
  1585 	 */
       
  1586 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
       
  1587 	if (ret_val)
       
  1588 		return ret_val;
       
  1589 
       
  1590 	if (!(data & 0x10)) {
       
  1591 		/*
       
  1592 		 * Read 0x23 and check bit 15.  This bit is a 1
       
  1593 		 * when the checksum has already been fixed.  If
       
  1594 		 * the checksum is still wrong and this bit is a
       
  1595 		 * 1, we need to return bad checksum.  Otherwise,
       
  1596 		 * we need to set this bit to a 1 and update the
       
  1597 		 * checksum.
       
  1598 		 */
       
  1599 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
       
  1600 		if (ret_val)
       
  1601 			return ret_val;
       
  1602 
       
  1603 		if (!(data & 0x8000)) {
       
  1604 			data |= 0x8000;
       
  1605 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
       
  1606 			if (ret_val)
       
  1607 				return ret_val;
       
  1608 			ret_val = e1000e_update_nvm_checksum(hw);
       
  1609 		}
       
  1610 	}
       
  1611 
       
  1612 	return 0;
       
  1613 }
       
  1614 
       
  1615 /**
       
  1616  *  e1000_read_mac_addr_82571 - Read device MAC address
       
  1617  *  @hw: pointer to the HW structure
       
  1618  **/
       
  1619 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
       
  1620 {
       
  1621 	s32 ret_val = 0;
       
  1622 
       
  1623 	if (hw->mac.type == e1000_82571) {
       
  1624 		/*
       
  1625 		 * If there's an alternate MAC address place it in RAR0
       
  1626 		 * so that it will override the Si installed default perm
       
  1627 		 * address.
       
  1628 		 */
       
  1629 		ret_val = e1000_check_alt_mac_addr_generic(hw);
       
  1630 		if (ret_val)
       
  1631 			goto out;
       
  1632 	}
       
  1633 
       
  1634 	ret_val = e1000_read_mac_addr_generic(hw);
       
  1635 
       
  1636 out:
       
  1637 	return ret_val;
       
  1638 }
       
  1639 
       
  1640 /**
       
  1641  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
       
  1642  * @hw: pointer to the HW structure
       
  1643  *
       
  1644  * In the case of a PHY power down to save power, or to turn off link during a
       
  1645  * driver unload, or wake on lan is not enabled, remove the link.
       
  1646  **/
       
  1647 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
       
  1648 {
       
  1649 	struct e1000_phy_info *phy = &hw->phy;
       
  1650 	struct e1000_mac_info *mac = &hw->mac;
       
  1651 
       
  1652 	if (!(phy->ops.check_reset_block))
       
  1653 		return;
       
  1654 
       
  1655 	/* If the management interface is not enabled, then power down */
       
  1656 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
       
  1657 		e1000_power_down_phy_copper(hw);
       
  1658 }
       
  1659 
       
  1660 /**
       
  1661  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
       
  1662  *  @hw: pointer to the HW structure
       
  1663  *
       
  1664  *  Clears the hardware counters by reading the counter registers.
       
  1665  **/
       
  1666 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
       
  1667 {
       
  1668 	e1000e_clear_hw_cntrs_base(hw);
       
  1669 
       
  1670 	er32(PRC64);
       
  1671 	er32(PRC127);
       
  1672 	er32(PRC255);
       
  1673 	er32(PRC511);
       
  1674 	er32(PRC1023);
       
  1675 	er32(PRC1522);
       
  1676 	er32(PTC64);
       
  1677 	er32(PTC127);
       
  1678 	er32(PTC255);
       
  1679 	er32(PTC511);
       
  1680 	er32(PTC1023);
       
  1681 	er32(PTC1522);
       
  1682 
       
  1683 	er32(ALGNERRC);
       
  1684 	er32(RXERRC);
       
  1685 	er32(TNCRS);
       
  1686 	er32(CEXTERR);
       
  1687 	er32(TSCTC);
       
  1688 	er32(TSCTFC);
       
  1689 
       
  1690 	er32(MGTPRC);
       
  1691 	er32(MGTPDC);
       
  1692 	er32(MGTPTC);
       
  1693 
       
  1694 	er32(IAC);
       
  1695 	er32(ICRXOC);
       
  1696 
       
  1697 	er32(ICRXPTC);
       
  1698 	er32(ICRXATC);
       
  1699 	er32(ICTXPTC);
       
  1700 	er32(ICTXATC);
       
  1701 	er32(ICTXQEC);
       
  1702 	er32(ICTXQMTC);
       
  1703 	er32(ICRXDMTC);
       
  1704 }
       
  1705 
       
  1706 static struct e1000_mac_operations e82571_mac_ops = {
       
  1707 	/* .check_mng_mode: mac type dependent */
       
  1708 	/* .check_for_link: media type dependent */
       
  1709 	.id_led_init		= e1000e_id_led_init,
       
  1710 	.cleanup_led		= e1000e_cleanup_led_generic,
       
  1711 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
       
  1712 	.get_bus_info		= e1000e_get_bus_info_pcie,
       
  1713 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
       
  1714 	/* .get_link_up_info: media type dependent */
       
  1715 	/* .led_on: mac type dependent */
       
  1716 	.led_off		= e1000e_led_off_generic,
       
  1717 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
       
  1718 	.write_vfta		= e1000_write_vfta_generic,
       
  1719 	.clear_vfta		= e1000_clear_vfta_82571,
       
  1720 	.reset_hw		= e1000_reset_hw_82571,
       
  1721 	.init_hw		= e1000_init_hw_82571,
       
  1722 	.setup_link		= e1000_setup_link_82571,
       
  1723 	/* .setup_physical_interface: media type dependent */
       
  1724 	.setup_led		= e1000e_setup_led_generic,
       
  1725 	.read_mac_addr		= e1000_read_mac_addr_82571,
       
  1726 };
       
  1727 
       
  1728 static struct e1000_phy_operations e82_phy_ops_igp = {
       
  1729 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1730 	.check_polarity		= e1000_check_polarity_igp,
       
  1731 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1732 	.commit			= NULL,
       
  1733 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
       
  1734 	.get_cfg_done		= e1000_get_cfg_done_82571,
       
  1735 	.get_cable_length	= e1000e_get_cable_length_igp_2,
       
  1736 	.get_info		= e1000e_get_phy_info_igp,
       
  1737 	.read_reg		= e1000e_read_phy_reg_igp,
       
  1738 	.release		= e1000_put_hw_semaphore_82571,
       
  1739 	.reset			= e1000e_phy_hw_reset_generic,
       
  1740 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  1741 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1742 	.write_reg		= e1000e_write_phy_reg_igp,
       
  1743 	.cfg_on_link_up      	= NULL,
       
  1744 };
       
  1745 
       
  1746 static struct e1000_phy_operations e82_phy_ops_m88 = {
       
  1747 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1748 	.check_polarity		= e1000_check_polarity_m88,
       
  1749 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1750 	.commit			= e1000e_phy_sw_reset,
       
  1751 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
       
  1752 	.get_cfg_done		= e1000e_get_cfg_done,
       
  1753 	.get_cable_length	= e1000e_get_cable_length_m88,
       
  1754 	.get_info		= e1000e_get_phy_info_m88,
       
  1755 	.read_reg		= e1000e_read_phy_reg_m88,
       
  1756 	.release		= e1000_put_hw_semaphore_82571,
       
  1757 	.reset			= e1000e_phy_hw_reset_generic,
       
  1758 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  1759 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1760 	.write_reg		= e1000e_write_phy_reg_m88,
       
  1761 	.cfg_on_link_up      	= NULL,
       
  1762 };
       
  1763 
       
  1764 static struct e1000_phy_operations e82_phy_ops_bm = {
       
  1765 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1766 	.check_polarity		= e1000_check_polarity_m88,
       
  1767 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1768 	.commit			= e1000e_phy_sw_reset,
       
  1769 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
       
  1770 	.get_cfg_done		= e1000e_get_cfg_done,
       
  1771 	.get_cable_length	= e1000e_get_cable_length_m88,
       
  1772 	.get_info		= e1000e_get_phy_info_m88,
       
  1773 	.read_reg		= e1000e_read_phy_reg_bm2,
       
  1774 	.release		= e1000_put_hw_semaphore_82571,
       
  1775 	.reset			= e1000e_phy_hw_reset_generic,
       
  1776 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  1777 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1778 	.write_reg		= e1000e_write_phy_reg_bm2,
       
  1779 	.cfg_on_link_up      	= NULL,
       
  1780 };
       
  1781 
       
  1782 static struct e1000_nvm_operations e82571_nvm_ops = {
       
  1783 	.acquire		= e1000_acquire_nvm_82571,
       
  1784 	.read			= e1000e_read_nvm_eerd,
       
  1785 	.release		= e1000_release_nvm_82571,
       
  1786 	.update			= e1000_update_nvm_checksum_82571,
       
  1787 	.valid_led_default	= e1000_valid_led_default_82571,
       
  1788 	.validate		= e1000_validate_nvm_checksum_82571,
       
  1789 	.write			= e1000_write_nvm_82571,
       
  1790 };
       
  1791 
       
  1792 struct e1000_info e1000_82571_info = {
       
  1793 	.mac			= e1000_82571,
       
  1794 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1795 				  | FLAG_HAS_JUMBO_FRAMES
       
  1796 				  | FLAG_HAS_WOL
       
  1797 				  | FLAG_APME_IN_CTRL3
       
  1798 				  | FLAG_RX_CSUM_ENABLED
       
  1799 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  1800 				  | FLAG_HAS_SMART_POWER_DOWN
       
  1801 				  | FLAG_RESET_OVERWRITES_LAA /* errata */
       
  1802 				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
       
  1803 				  | FLAG_APME_CHECK_PORT_B,
       
  1804 	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
       
  1805 	.pba			= 38,
       
  1806 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  1807 	.get_variants		= e1000_get_variants_82571,
       
  1808 	.mac_ops		= &e82571_mac_ops,
       
  1809 	.phy_ops		= &e82_phy_ops_igp,
       
  1810 	.nvm_ops		= &e82571_nvm_ops,
       
  1811 };
       
  1812 
       
  1813 struct e1000_info e1000_82572_info = {
       
  1814 	.mac			= e1000_82572,
       
  1815 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1816 				  | FLAG_HAS_JUMBO_FRAMES
       
  1817 				  | FLAG_HAS_WOL
       
  1818 				  | FLAG_APME_IN_CTRL3
       
  1819 				  | FLAG_RX_CSUM_ENABLED
       
  1820 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  1821 				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
       
  1822 	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
       
  1823 	.pba			= 38,
       
  1824 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  1825 	.get_variants		= e1000_get_variants_82571,
       
  1826 	.mac_ops		= &e82571_mac_ops,
       
  1827 	.phy_ops		= &e82_phy_ops_igp,
       
  1828 	.nvm_ops		= &e82571_nvm_ops,
       
  1829 };
       
  1830 
       
  1831 struct e1000_info e1000_82573_info = {
       
  1832 	.mac			= e1000_82573,
       
  1833 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1834 				  | FLAG_HAS_WOL
       
  1835 				  | FLAG_APME_IN_CTRL3
       
  1836 				  | FLAG_RX_CSUM_ENABLED
       
  1837 				  | FLAG_HAS_SMART_POWER_DOWN
       
  1838 				  | FLAG_HAS_AMT
       
  1839 				  | FLAG_HAS_SWSM_ON_LOAD,
       
  1840 	.flags2			= FLAG2_DISABLE_ASPM_L1,
       
  1841 	.pba			= 20,
       
  1842 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
       
  1843 	.get_variants		= e1000_get_variants_82571,
       
  1844 	.mac_ops		= &e82571_mac_ops,
       
  1845 	.phy_ops		= &e82_phy_ops_m88,
       
  1846 	.nvm_ops		= &e82571_nvm_ops,
       
  1847 };
       
  1848 
       
  1849 struct e1000_info e1000_82574_info = {
       
  1850 	.mac			= e1000_82574,
       
  1851 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1852 				  | FLAG_HAS_MSIX
       
  1853 				  | FLAG_HAS_JUMBO_FRAMES
       
  1854 				  | FLAG_HAS_WOL
       
  1855 				  | FLAG_APME_IN_CTRL3
       
  1856 				  | FLAG_RX_CSUM_ENABLED
       
  1857 				  | FLAG_HAS_SMART_POWER_DOWN
       
  1858 				  | FLAG_HAS_AMT
       
  1859 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
       
  1860 	.pba			= 36,
       
  1861 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  1862 	.get_variants		= e1000_get_variants_82571,
       
  1863 	.mac_ops		= &e82571_mac_ops,
       
  1864 	.phy_ops		= &e82_phy_ops_bm,
       
  1865 	.nvm_ops		= &e82571_nvm_ops,
       
  1866 };
       
  1867 
       
  1868 struct e1000_info e1000_82583_info = {
       
  1869 	.mac			= e1000_82583,
       
  1870 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1871 				  | FLAG_HAS_WOL
       
  1872 				  | FLAG_APME_IN_CTRL3
       
  1873 				  | FLAG_RX_CSUM_ENABLED
       
  1874 				  | FLAG_HAS_SMART_POWER_DOWN
       
  1875 				  | FLAG_HAS_AMT
       
  1876 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
       
  1877 	.pba			= 36,
       
  1878 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
       
  1879 	.get_variants		= e1000_get_variants_82571,
       
  1880 	.mac_ops		= &e82571_mac_ops,
       
  1881 	.phy_ops		= &e82_phy_ops_bm,
       
  1882 	.nvm_ops		= &e82571_nvm_ops,
       
  1883 };
       
  1884