devices/e1000/e1000_main-2.6.13-ethercat.c
branchstable-1.3
changeset 1744 7bc131b92039
child 1746 72e7507b3f1b
equal deleted inserted replaced
1743:1a7067207637 1744:7bc131b92039
       
     1 /*******************************************************************************
       
     2 
       
     3   
       
     4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
       
     5   
       
     6   This program is free software; you can redistribute it and/or modify it 
       
     7   under the terms of the GNU General Public License as published by the Free 
       
     8   Software Foundation; either version 2 of the License, or (at your option) 
       
     9   any later version.
       
    10   
       
    11   This program is distributed in the hope that it will be useful, but WITHOUT 
       
    12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
       
    13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
       
    14   more details.
       
    15   
       
    16   You should have received a copy of the GNU General Public License along with
       
    17   this program; if not, write to the Free Software Foundation, Inc., 59 
       
    18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
       
    19   
       
    20   The full GNU General Public License is included in this distribution in the
       
    21   file called LICENSE.
       
    22   
       
    23   Contact Information:
       
    24   Linux NICS <linux.nics@intel.com>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000-2.6.13-ethercat.h"
       
    30 
       
    31 /* Change Log
       
    32  * 6.0.58       4/20/05
       
    33  *   o Accepted ethtool cleanup patch from Stephen Hemminger 
       
    34  * 6.0.44+	2/15/05
       
    35  *   o applied Anton's patch to resolve tx hang in hardware
       
    36  *   o Applied Andrew Mortons patch - e1000 stops working after resume
       
    37  */
       
    38 
       
    39 char e1000_driver_name[] = "ec_e1000";
       
    40 static char e1000_driver_string[] = "EtherCAT Intel(R) PRO/1000 Network Driver";
       
    41 #ifndef CONFIG_E1000_NAPI
       
    42 #define DRIVERNAPI
       
    43 #else
       
    44 #define DRIVERNAPI "-NAPI"
       
    45 #endif
       
    46 #define DRV_VERSION		"6.0.60-k2"DRIVERNAPI
       
    47 char e1000_driver_version[] = DRV_VERSION;
       
    48 char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
       
    49 
       
    50 /* e1000_pci_tbl - PCI Device ID Table
       
    51  *
       
    52  * Last entry must be all 0s
       
    53  *
       
    54  * Macro expands to...
       
    55  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
       
    56  */
       
    57 static struct pci_device_id e1000_pci_tbl[] = {
       
    58 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
       
    59 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
       
    60 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
       
    61 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
       
    62 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
       
    63 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
       
    64 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
       
    65 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
       
    66 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
       
    67 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
       
    68 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
       
    69 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
       
    70 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
       
    71 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
       
    72 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
       
    73 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
       
    74 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
       
    75 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
       
    76 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
       
    77 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
       
    78 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
       
    79 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
       
    80 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
       
    81 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
       
    82 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
       
    83 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
       
    84 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
       
    85 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
       
    86 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
       
    87 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
       
    88 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
       
    89 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
       
    90 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
       
    91 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
       
    92 	INTEL_E1000_ETHERNET_DEVICE(0x108B),
       
    93 	INTEL_E1000_ETHERNET_DEVICE(0x108C),
       
    94 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
       
    95 	/* required last entry */
       
    96 	{0,}
       
    97 };
       
    98 
       
    99 // do not auto-load driver
       
   100 // MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
   101 
       
   102 int e1000_up(struct e1000_adapter *adapter);
       
   103 void e1000_down(struct e1000_adapter *adapter);
       
   104 void e1000_reset(struct e1000_adapter *adapter);
       
   105 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
       
   106 int e1000_setup_tx_resources(struct e1000_adapter *adapter);
       
   107 int e1000_setup_rx_resources(struct e1000_adapter *adapter);
       
   108 void e1000_free_tx_resources(struct e1000_adapter *adapter);
       
   109 void e1000_free_rx_resources(struct e1000_adapter *adapter);
       
   110 void e1000_update_stats(struct e1000_adapter *adapter);
       
   111 
       
   112 /* Local Function Prototypes */
       
   113 
       
   114 static int e1000_init_module(void);
       
   115 static void e1000_exit_module(void);
       
   116 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
       
   117 static void __devexit e1000_remove(struct pci_dev *pdev);
       
   118 static int e1000_sw_init(struct e1000_adapter *adapter);
       
   119 static int e1000_open(struct net_device *netdev);
       
   120 static int e1000_close(struct net_device *netdev);
       
   121 static void e1000_configure_tx(struct e1000_adapter *adapter);
       
   122 static void e1000_configure_rx(struct e1000_adapter *adapter);
       
   123 static void e1000_setup_rctl(struct e1000_adapter *adapter);
       
   124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
       
   125 static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
       
   126 static void e1000_set_multi(struct net_device *netdev);
       
   127 static void e1000_update_phy_info(unsigned long data);
       
   128 static void e1000_watchdog(unsigned long data);
       
   129 static void e1000_watchdog_task(struct e1000_adapter *adapter);
       
   130 static void e1000_82547_tx_fifo_stall(unsigned long data);
       
   131 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
       
   132 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
       
   133 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
       
   134 static int e1000_set_mac(struct net_device *netdev, void *p);
       
   135 void ec_poll(struct net_device *);
       
   136 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
       
   137 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
       
   138 #ifdef CONFIG_E1000_NAPI
       
   139 static int e1000_clean(struct net_device *netdev, int *budget);
       
   140 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   141                                     int *work_done, int work_to_do);
       
   142 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   143                                        int *work_done, int work_to_do);
       
   144 #else
       
   145 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
       
   146 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
       
   147 #endif
       
   148 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
       
   149 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
       
   150 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
       
   151 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
   152 			   int cmd);
       
   153 void e1000_set_ethtool_ops(struct net_device *netdev);
       
   154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
       
   155 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
       
   156 static void e1000_tx_timeout(struct net_device *dev);
       
   157 static void e1000_tx_timeout_task(struct net_device *dev);
       
   158 static void e1000_smartspeed(struct e1000_adapter *adapter);
       
   159 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
   160 					      struct sk_buff *skb);
       
   161 
       
   162 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
       
   163 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
       
   164 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
       
   165 static void e1000_restore_vlan(struct e1000_adapter *adapter);
       
   166 
       
   167 static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
       
   168 #ifdef CONFIG_PM
       
   169 static int e1000_resume(struct pci_dev *pdev);
       
   170 #endif
       
   171 
       
   172 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   173 /* for netdump / net console */
       
   174 static void e1000_netpoll (struct net_device *netdev);
       
   175 #endif
       
   176 
       
   177 /* Exported from other modules */
       
   178 
       
   179 extern void e1000_check_options(struct e1000_adapter *adapter);
       
   180 
       
   181 static struct pci_driver e1000_driver = {
       
   182 	.name     = e1000_driver_name,
       
   183 	.id_table = e1000_pci_tbl,
       
   184 	.probe    = e1000_probe,
       
   185 	.remove   = __devexit_p(e1000_remove),
       
   186 	/* Power Managment Hooks */
       
   187 #ifdef CONFIG_PM
       
   188 	.suspend  = e1000_suspend,
       
   189 	.resume   = e1000_resume
       
   190 #endif
       
   191 };
       
   192 
       
   193 MODULE_AUTHOR("Florian Pose <fp@igh-essen.com>");
       
   194 MODULE_DESCRIPTION("EtherCAT-capable Intel(R) PRO/1000 Network Driver");
       
   195 MODULE_LICENSE("GPL");
       
   196 MODULE_VERSION(DRV_VERSION);
       
   197 
       
   198 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
       
   199 module_param(debug, int, 0);
       
   200 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   201 
       
   202 /**
       
   203  * e1000_init_module - Driver Registration Routine
       
   204  *
       
   205  * e1000_init_module is the first routine called when the driver is
       
   206  * loaded. All it does is register with the PCI subsystem.
       
   207  **/
       
   208 
       
   209 static int __init
       
   210 e1000_init_module(void)
       
   211 {
       
   212 	int ret;
       
   213 	printk(KERN_INFO "%s - version %s\n",
       
   214 	       e1000_driver_string, e1000_driver_version);
       
   215 
       
   216 	printk(KERN_INFO "%s\n", e1000_copyright);
       
   217 
       
   218 	ret = pci_module_init(&e1000_driver);
       
   219 
       
   220 	return ret;
       
   221 }
       
   222 
       
   223 module_init(e1000_init_module);
       
   224 
       
   225 /**
       
   226  * e1000_exit_module - Driver Exit Cleanup Routine
       
   227  *
       
   228  * e1000_exit_module is called just before the driver is removed
       
   229  * from memory.
       
   230  **/
       
   231 
       
   232 static void __exit
       
   233 e1000_exit_module(void)
       
   234 {
       
   235 	pci_unregister_driver(&e1000_driver);
       
   236 }
       
   237 
       
   238 module_exit(e1000_exit_module);
       
   239 
       
   240 /**
       
   241  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
   242  * @adapter: board private structure
       
   243  **/
       
   244 
       
   245 static inline void
       
   246 e1000_irq_disable(struct e1000_adapter *adapter)
       
   247 {
       
   248     if (adapter->ecdev)
       
   249         return;
       
   250 	atomic_inc(&adapter->irq_sem);
       
   251 	E1000_WRITE_REG(&adapter->hw, IMC, ~0);
       
   252 	E1000_WRITE_FLUSH(&adapter->hw);
       
   253 	synchronize_irq(adapter->pdev->irq);
       
   254 }
       
   255 
       
   256 /**
       
   257  * e1000_irq_enable - Enable default interrupt generation settings
       
   258  * @adapter: board private structure
       
   259  **/
       
   260 
       
   261 static inline void
       
   262 e1000_irq_enable(struct e1000_adapter *adapter)
       
   263 {
       
   264     if (adapter->ecdev)
       
   265         return;
       
   266 	if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
       
   267 		E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
       
   268 		E1000_WRITE_FLUSH(&adapter->hw);
       
   269 	}
       
   270 }
       
   271 void
       
   272 e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
   273 {
       
   274 	struct net_device *netdev = adapter->netdev;
       
   275 	uint16_t vid = adapter->hw.mng_cookie.vlan_id;
       
   276 	uint16_t old_vid = adapter->mng_vlan_id;
       
   277 	if(adapter->vlgrp) {
       
   278 		if(!adapter->vlgrp->vlan_devices[vid]) {
       
   279 			if(adapter->hw.mng_cookie.status &
       
   280 				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
       
   281 				e1000_vlan_rx_add_vid(netdev, vid);
       
   282 				adapter->mng_vlan_id = vid;
       
   283 			} else
       
   284 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
   285 				
       
   286 			if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
       
   287 					(vid != old_vid) && 
       
   288 					!adapter->vlgrp->vlan_devices[old_vid])
       
   289 				e1000_vlan_rx_kill_vid(netdev, old_vid);
       
   290 		}
       
   291 	}
       
   292 }
       
   293 	
       
   294 int
       
   295 e1000_up(struct e1000_adapter *adapter)
       
   296 {
       
   297 	struct net_device *netdev = adapter->netdev;
       
   298 	int err;
       
   299 
       
   300 	/* hardware has been reset, we need to reload some things */
       
   301 
       
   302 	/* Reset the PHY if it was previously powered down */
       
   303 	if(adapter->hw.media_type == e1000_media_type_copper) {
       
   304 		uint16_t mii_reg;
       
   305 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
       
   306 		if(mii_reg & MII_CR_POWER_DOWN)
       
   307 			e1000_phy_reset(&adapter->hw);
       
   308 	}
       
   309 
       
   310 	e1000_set_multi(netdev);
       
   311 
       
   312 	e1000_restore_vlan(adapter);
       
   313 
       
   314 	e1000_configure_tx(adapter);
       
   315 	e1000_setup_rctl(adapter);
       
   316 	e1000_configure_rx(adapter);
       
   317 	adapter->alloc_rx_buf(adapter);
       
   318 
       
   319 #ifdef CONFIG_PCI_MSI
       
   320 	if(adapter->hw.mac_type > e1000_82547_rev_2) {
       
   321 		adapter->have_msi = TRUE;
       
   322 		if((err = pci_enable_msi(adapter->pdev))) {
       
   323 			DPRINTK(PROBE, ERR,
       
   324 			 "Unable to allocate MSI interrupt Error: %d\n", err);
       
   325 			adapter->have_msi = FALSE;
       
   326 		}
       
   327 	}
       
   328 #endif
       
   329     if (!adapter->ecdev) {
       
   330         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
       
   331                         SA_SHIRQ | SA_SAMPLE_RANDOM,
       
   332                         netdev->name, netdev))) {
       
   333             DPRINTK(PROBE, ERR,
       
   334                     "Unable to allocate interrupt Error: %d\n", err);
       
   335             return err;
       
   336         }
       
   337 
       
   338         mod_timer(&adapter->watchdog_timer, jiffies);
       
   339 
       
   340 #ifdef CONFIG_E1000_NAPI
       
   341         netif_poll_enable(netdev);
       
   342 #endif
       
   343         e1000_irq_enable(adapter);
       
   344     }
       
   345 
       
   346 	return 0;
       
   347 }
       
   348 
       
   349 void
       
   350 e1000_down(struct e1000_adapter *adapter)
       
   351 {
       
   352 	struct net_device *netdev = adapter->netdev;
       
   353 
       
   354     if (!adapter->ecdev) {
       
   355         e1000_irq_disable(adapter);
       
   356         free_irq(adapter->pdev->irq, netdev);
       
   357     }
       
   358 #ifdef CONFIG_PCI_MSI
       
   359 	if(adapter->hw.mac_type > e1000_82547_rev_2 &&
       
   360 	   adapter->have_msi == TRUE)
       
   361 		pci_disable_msi(adapter->pdev);
       
   362 #endif
       
   363     if (!adapter->ecdev) {
       
   364         del_timer_sync(&adapter->tx_fifo_stall_timer);
       
   365         del_timer_sync(&adapter->watchdog_timer);
       
   366         del_timer_sync(&adapter->phy_info_timer);
       
   367 
       
   368 #ifdef CONFIG_E1000_NAPI
       
   369         netif_poll_disable(netdev);
       
   370 #endif
       
   371     }
       
   372 	adapter->link_speed = 0;
       
   373 	adapter->link_duplex = 0;
       
   374 	if (!adapter->ecdev) {
       
   375 		netif_carrier_off(netdev);
       
   376 		netif_stop_queue(netdev);
       
   377 	}
       
   378 
       
   379 	e1000_reset(adapter);
       
   380 	e1000_clean_tx_ring(adapter);
       
   381 	e1000_clean_rx_ring(adapter);
       
   382 
       
   383 	/* If WoL is not enabled
       
   384 	 * and management mode is not IAMT
       
   385 	 * Power down the PHY so no link is implied when interface is down */
       
   386 	if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
       
   387 	   adapter->hw.media_type == e1000_media_type_copper &&
       
   388 	   !e1000_check_mng_mode(&adapter->hw) &&
       
   389 	   !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
       
   390 		uint16_t mii_reg;
       
   391 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
       
   392 		mii_reg |= MII_CR_POWER_DOWN;
       
   393 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
       
   394 		mdelay(1);
       
   395 	}
       
   396 }
       
   397 
       
   398 void
       
   399 e1000_reset(struct e1000_adapter *adapter)
       
   400 {
       
   401 	struct net_device *netdev = adapter->netdev;
       
   402 	uint32_t pba, manc;
       
   403 	uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
       
   404 	uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
       
   405 
       
   406 	/* Repartition Pba for greater than 9k mtu
       
   407 	 * To take effect CTRL.RST is required.
       
   408 	 */
       
   409 
       
   410 	switch (adapter->hw.mac_type) {
       
   411 	case e1000_82547:
       
   412 	case e1000_82547_rev_2:
       
   413 		pba = E1000_PBA_30K;
       
   414 		break;
       
   415 	case e1000_82573:
       
   416 		pba = E1000_PBA_12K;
       
   417 		break;
       
   418 	default:
       
   419 		pba = E1000_PBA_48K;
       
   420 		break;
       
   421 	}
       
   422 
       
   423 	if((adapter->hw.mac_type != e1000_82573) &&
       
   424 	   (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
       
   425 		pba -= 8; /* allocate more FIFO for Tx */
       
   426 		/* send an XOFF when there is enough space in the
       
   427 		 * Rx FIFO to hold one extra full size Rx packet 
       
   428 		*/
       
   429 		fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE + 
       
   430 					ETHERNET_FCS_SIZE + 1;
       
   431 		fc_low_water_mark = fc_high_water_mark + 8;
       
   432 	}
       
   433 
       
   434 
       
   435 	if(adapter->hw.mac_type == e1000_82547) {
       
   436 		adapter->tx_fifo_head = 0;
       
   437 		adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
       
   438 		adapter->tx_fifo_size =
       
   439 			(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
       
   440 		atomic_set(&adapter->tx_fifo_stall, 0);
       
   441 	}
       
   442 
       
   443 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
       
   444 
       
   445 	/* flow control settings */
       
   446 	adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
       
   447 				    fc_high_water_mark;
       
   448 	adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
       
   449 				   fc_low_water_mark;
       
   450 	adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
       
   451 	adapter->hw.fc_send_xon = 1;
       
   452 	adapter->hw.fc = adapter->hw.original_fc;
       
   453 
       
   454 	/* Allow time for pending master requests to run */
       
   455 	e1000_reset_hw(&adapter->hw);
       
   456 	if(adapter->hw.mac_type >= e1000_82544)
       
   457 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
       
   458 	if(e1000_init_hw(&adapter->hw))
       
   459 		DPRINTK(PROBE, ERR, "Hardware Error\n");
       
   460 	e1000_update_mng_vlan(adapter);
       
   461 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
   462 	E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
       
   463 
       
   464 	e1000_reset_adaptive(&adapter->hw);
       
   465 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
       
   466 	if (adapter->en_mng_pt) {
       
   467 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
   468 		manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
       
   469 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
   470 	}
       
   471 }
       
   472 
       
   473 /**
       
   474  * e1000_probe - Device Initialization Routine
       
   475  * @pdev: PCI device information struct
       
   476  * @ent: entry in e1000_pci_tbl
       
   477  *
       
   478  * Returns 0 on success, negative on failure
       
   479  *
       
   480  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
   481  * The OS initialization, configuring of the adapter private structure,
       
   482  * and a hardware reset occur.
       
   483  **/
       
   484 
       
   485 static int __devinit
       
   486 e1000_probe(struct pci_dev *pdev,
       
   487             const struct pci_device_id *ent)
       
   488 {
       
   489 	struct net_device *netdev;
       
   490 	struct e1000_adapter *adapter;
       
   491 	unsigned long mmio_start, mmio_len;
       
   492 	uint32_t swsm;
       
   493 
       
   494 	static int cards_found = 0;
       
   495 	int i, err, pci_using_dac;
       
   496 	uint16_t eeprom_data;
       
   497 	uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
       
   498 	if((err = pci_enable_device(pdev)))
       
   499 		return err;
       
   500 
       
   501 	if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
       
   502 		pci_using_dac = 1;
       
   503 	} else {
       
   504 		if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
       
   505 			E1000_ERR("No usable DMA configuration, aborting\n");
       
   506 			return err;
       
   507 		}
       
   508 		pci_using_dac = 0;
       
   509 	}
       
   510 
       
   511 	if((err = pci_request_regions(pdev, e1000_driver_name)))
       
   512 		return err;
       
   513 
       
   514 	pci_set_master(pdev);
       
   515 
       
   516 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
   517 	if(!netdev) {
       
   518 		err = -ENOMEM;
       
   519 		goto err_alloc_etherdev;
       
   520 	}
       
   521 
       
   522 	SET_MODULE_OWNER(netdev);
       
   523 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
   524 
       
   525 	pci_set_drvdata(pdev, netdev);
       
   526 	adapter = netdev_priv(netdev);
       
   527 	adapter->netdev = netdev;
       
   528 	adapter->pdev = pdev;
       
   529 	adapter->hw.back = adapter;
       
   530 	adapter->msg_enable = (1 << debug) - 1;
       
   531 
       
   532 	mmio_start = pci_resource_start(pdev, BAR_0);
       
   533 	mmio_len = pci_resource_len(pdev, BAR_0);
       
   534 
       
   535 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
       
   536 	if(!adapter->hw.hw_addr) {
       
   537 		err = -EIO;
       
   538 		goto err_ioremap;
       
   539 	}
       
   540 
       
   541 	for(i = BAR_1; i <= BAR_5; i++) {
       
   542 		if(pci_resource_len(pdev, i) == 0)
       
   543 			continue;
       
   544 		if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
       
   545 			adapter->hw.io_base = pci_resource_start(pdev, i);
       
   546 			break;
       
   547 		}
       
   548 	}
       
   549 
       
   550 	netdev->open = &e1000_open;
       
   551 	netdev->stop = &e1000_close;
       
   552 	netdev->hard_start_xmit = &e1000_xmit_frame;
       
   553 	netdev->get_stats = &e1000_get_stats;
       
   554 	netdev->set_multicast_list = &e1000_set_multi;
       
   555 	netdev->set_mac_address = &e1000_set_mac;
       
   556 	netdev->change_mtu = &e1000_change_mtu;
       
   557 	netdev->do_ioctl = &e1000_ioctl;
       
   558 	e1000_set_ethtool_ops(netdev);
       
   559 	netdev->tx_timeout = &e1000_tx_timeout;
       
   560 	netdev->watchdog_timeo = 5 * HZ;
       
   561 #ifdef CONFIG_E1000_NAPI
       
   562 	netdev->poll = &e1000_clean;
       
   563 	netdev->weight = 64;
       
   564 #endif
       
   565 	netdev->vlan_rx_register = e1000_vlan_rx_register;
       
   566 	netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
       
   567 	netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
       
   568 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   569 	netdev->poll_controller = e1000_netpoll;
       
   570 #endif
       
   571 	strcpy(netdev->name, pci_name(pdev));
       
   572 
       
   573 	netdev->mem_start = mmio_start;
       
   574 	netdev->mem_end = mmio_start + mmio_len;
       
   575 	netdev->base_addr = adapter->hw.io_base;
       
   576 
       
   577 	adapter->bd_number = cards_found;
       
   578 
       
   579 	/* setup the private structure */
       
   580 
       
   581 	if((err = e1000_sw_init(adapter)))
       
   582 		goto err_sw_init;
       
   583 
       
   584 	if((err = e1000_check_phy_reset_block(&adapter->hw)))
       
   585 		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
       
   586 
       
   587 	if(adapter->hw.mac_type >= e1000_82543) {
       
   588 		netdev->features = NETIF_F_SG |
       
   589 				   NETIF_F_HW_CSUM |
       
   590 				   NETIF_F_HW_VLAN_TX |
       
   591 				   NETIF_F_HW_VLAN_RX |
       
   592 				   NETIF_F_HW_VLAN_FILTER;
       
   593 	}
       
   594 
       
   595 #ifdef NETIF_F_TSO
       
   596 	if((adapter->hw.mac_type >= e1000_82544) &&
       
   597 	   (adapter->hw.mac_type != e1000_82547))
       
   598 		netdev->features |= NETIF_F_TSO;
       
   599 
       
   600 #ifdef NETIF_F_TSO_IPV6
       
   601 	if(adapter->hw.mac_type > e1000_82547_rev_2)
       
   602 		netdev->features |= NETIF_F_TSO_IPV6;
       
   603 #endif
       
   604 #endif
       
   605 	if(pci_using_dac)
       
   606 		netdev->features |= NETIF_F_HIGHDMA;
       
   607 
       
   608  	/* hard_start_xmit is safe against parallel locking */
       
   609  	netdev->features |= NETIF_F_LLTX; 
       
   610  
       
   611 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
       
   612 
       
   613 	/* before reading the EEPROM, reset the controller to 
       
   614 	 * put the device in a known good starting state */
       
   615 	
       
   616 	e1000_reset_hw(&adapter->hw);
       
   617 
       
   618 	/* make sure the EEPROM is good */
       
   619 
       
   620 	if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
       
   621 		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
       
   622 		err = -EIO;
       
   623 		goto err_eeprom;
       
   624 	}
       
   625 
       
   626 	/* copy the MAC address out of the EEPROM */
       
   627 
       
   628 	if(e1000_read_mac_addr(&adapter->hw))
       
   629 		DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
       
   630 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
       
   631 
       
   632 	if(!is_valid_ether_addr(netdev->dev_addr)) {
       
   633 		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
       
   634 		err = -EIO;
       
   635 		goto err_eeprom;
       
   636 	}
       
   637 
       
   638 	e1000_read_part_num(&adapter->hw, &(adapter->part_num));
       
   639 
       
   640 	e1000_get_bus_info(&adapter->hw);
       
   641 
       
   642 	init_timer(&adapter->tx_fifo_stall_timer);
       
   643 	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
       
   644 	adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
       
   645 
       
   646 	init_timer(&adapter->watchdog_timer);
       
   647 	adapter->watchdog_timer.function = &e1000_watchdog;
       
   648 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
   649 
       
   650 	INIT_WORK(&adapter->watchdog_task,
       
   651 		(void (*)(void *))e1000_watchdog_task, adapter);
       
   652 
       
   653 	init_timer(&adapter->phy_info_timer);
       
   654 	adapter->phy_info_timer.function = &e1000_update_phy_info;
       
   655 	adapter->phy_info_timer.data = (unsigned long) adapter;
       
   656 
       
   657 	INIT_WORK(&adapter->tx_timeout_task,
       
   658 		(void (*)(void *))e1000_tx_timeout_task, netdev);
       
   659 
       
   660 	/* we're going to reset, so assume we have no link for now */
       
   661 
       
   662 	if (!adapter->ecdev) {
       
   663 		netif_carrier_off(netdev);
       
   664 		netif_stop_queue(netdev);
       
   665 	}
       
   666 
       
   667 	e1000_check_options(adapter);
       
   668 
       
   669 	/* Initial Wake on LAN setting
       
   670 	 * If APM wake is enabled in the EEPROM,
       
   671 	 * enable the ACPI Magic Packet filter
       
   672 	 */
       
   673 
       
   674 	switch(adapter->hw.mac_type) {
       
   675 	case e1000_82542_rev2_0:
       
   676 	case e1000_82542_rev2_1:
       
   677 	case e1000_82543:
       
   678 		break;
       
   679 	case e1000_82544:
       
   680 		e1000_read_eeprom(&adapter->hw,
       
   681 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
       
   682 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
       
   683 		break;
       
   684 	case e1000_82546:
       
   685 	case e1000_82546_rev_3:
       
   686 		if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
       
   687 		   && (adapter->hw.media_type == e1000_media_type_copper)) {
       
   688 			e1000_read_eeprom(&adapter->hw,
       
   689 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
   690 			break;
       
   691 		}
       
   692 		/* Fall Through */
       
   693 	default:
       
   694 		e1000_read_eeprom(&adapter->hw,
       
   695 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
   696 		break;
       
   697 	}
       
   698 	if(eeprom_data & eeprom_apme_mask)
       
   699 		adapter->wol |= E1000_WUFC_MAG;
       
   700 
       
   701 	/* reset the hardware with the new settings */
       
   702 	e1000_reset(adapter);
       
   703 
       
   704 	/* Let firmware know the driver has taken over */
       
   705 	switch(adapter->hw.mac_type) {
       
   706 	case e1000_82573:
       
   707 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
   708 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
   709 				swsm | E1000_SWSM_DRV_LOAD);
       
   710 		break;
       
   711 	default:
       
   712 		break;
       
   713 	}
       
   714 
       
   715 	// offer device to EtherCAT master module
       
   716 	if (ecdev_offer(netdev, ec_poll, THIS_MODULE, &adapter->ecdev)) {
       
   717 		DPRINTK(PROBE, ERR, "Failed to offer device.\n");
       
   718 		goto err_register;
       
   719 	}
       
   720 
       
   721 	if (adapter->ecdev) {
       
   722 		if (ecdev_open(adapter->ecdev)) {
       
   723 			ecdev_withdraw(adapter->ecdev);
       
   724 			goto err_register;
       
   725 		}
       
   726 	} else {
       
   727 		strcpy(netdev->name, "eth%d");
       
   728 		if ((err = register_netdev(netdev)))
       
   729 			goto err_register;
       
   730 	}
       
   731 
       
   732 	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
       
   733 
       
   734 	cards_found++;
       
   735 	return 0;
       
   736 
       
   737 err_register:
       
   738 err_sw_init:
       
   739 err_eeprom:
       
   740 	iounmap(adapter->hw.hw_addr);
       
   741 err_ioremap:
       
   742 	free_netdev(netdev);
       
   743 err_alloc_etherdev:
       
   744 	pci_release_regions(pdev);
       
   745 	return err;
       
   746 }
       
   747 
       
   748 /**
       
   749  * e1000_remove - Device Removal Routine
       
   750  * @pdev: PCI device information struct
       
   751  *
       
   752  * e1000_remove is called by the PCI subsystem to alert the driver
       
   753  * that it should release a PCI device.  The could be caused by a
       
   754  * Hot-Plug event, or because the driver is going to be removed from
       
   755  * memory.
       
   756  **/
       
   757 
       
   758 static void __devexit
       
   759 e1000_remove(struct pci_dev *pdev)
       
   760 {
       
   761 	struct net_device *netdev = pci_get_drvdata(pdev);
       
   762 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   763 	uint32_t manc, swsm;
       
   764 
       
   765 	flush_scheduled_work();
       
   766 
       
   767 	if(adapter->hw.mac_type >= e1000_82540 &&
       
   768 	   adapter->hw.media_type == e1000_media_type_copper) {
       
   769 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
   770 		if(manc & E1000_MANC_SMBUS_EN) {
       
   771 			manc |= E1000_MANC_ARP_EN;
       
   772 			E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
   773 		}
       
   774 	}
       
   775 
       
   776 	switch(adapter->hw.mac_type) {
       
   777 	case e1000_82573:
       
   778 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
   779 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
   780 				swsm & ~E1000_SWSM_DRV_LOAD);
       
   781 		break;
       
   782 
       
   783 	default:
       
   784 		break;
       
   785 	}
       
   786 
       
   787 	if (adapter->ecdev) {
       
   788 		ecdev_close(adapter->ecdev);
       
   789 		ecdev_withdraw(adapter->ecdev);
       
   790 	} else {
       
   791 		unregister_netdev(netdev);
       
   792 	}
       
   793 
       
   794 	if(!e1000_check_phy_reset_block(&adapter->hw))
       
   795 		e1000_phy_hw_reset(&adapter->hw);
       
   796 
       
   797 	iounmap(adapter->hw.hw_addr);
       
   798 	pci_release_regions(pdev);
       
   799 
       
   800 	free_netdev(netdev);
       
   801 
       
   802 	pci_disable_device(pdev);
       
   803 }
       
   804 
       
   805 /**
       
   806  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
   807  * @adapter: board private structure to initialize
       
   808  *
       
   809  * e1000_sw_init initializes the Adapter private data structure.
       
   810  * Fields are initialized based on PCI device information and
       
   811  * OS network device settings (MTU size).
       
   812  **/
       
   813 
       
   814 static int __devinit
       
   815 e1000_sw_init(struct e1000_adapter *adapter)
       
   816 {
       
   817 	struct e1000_hw *hw = &adapter->hw;
       
   818 	struct net_device *netdev = adapter->netdev;
       
   819 	struct pci_dev *pdev = adapter->pdev;
       
   820 
       
   821 	/* PCI config space info */
       
   822 
       
   823 	hw->vendor_id = pdev->vendor;
       
   824 	hw->device_id = pdev->device;
       
   825 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
       
   826 	hw->subsystem_id = pdev->subsystem_device;
       
   827 
       
   828 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
       
   829 
       
   830 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
       
   831 
       
   832 	adapter->rx_buffer_len = E1000_RXBUFFER_2048;
       
   833 	adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
       
   834 	hw->max_frame_size = netdev->mtu +
       
   835 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
   836 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
       
   837 
       
   838 	/* identify the MAC */
       
   839 
       
   840 	if(e1000_set_mac_type(hw)) {
       
   841 		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
       
   842 		return -EIO;
       
   843 	}
       
   844 
       
   845 	/* initialize eeprom parameters */
       
   846 
       
   847 	if(e1000_init_eeprom_params(hw)) {
       
   848 		E1000_ERR("EEPROM initialization failed\n");
       
   849 		return -EIO;
       
   850 	}
       
   851 
       
   852 	switch(hw->mac_type) {
       
   853 	default:
       
   854 		break;
       
   855 	case e1000_82541:
       
   856 	case e1000_82547:
       
   857 	case e1000_82541_rev_2:
       
   858 	case e1000_82547_rev_2:
       
   859 		hw->phy_init_script = 1;
       
   860 		break;
       
   861 	}
       
   862 
       
   863 	e1000_set_media_type(hw);
       
   864 
       
   865 	hw->wait_autoneg_complete = FALSE;
       
   866 	hw->tbi_compatibility_en = TRUE;
       
   867 	hw->adaptive_ifs = TRUE;
       
   868 
       
   869 	/* Copper options */
       
   870 
       
   871 	if(hw->media_type == e1000_media_type_copper) {
       
   872 		hw->mdix = AUTO_ALL_MODES;
       
   873 		hw->disable_polarity_correction = FALSE;
       
   874 		hw->master_slave = E1000_MASTER_SLAVE;
       
   875 	}
       
   876 
       
   877 	atomic_set(&adapter->irq_sem, 1);
       
   878 	spin_lock_init(&adapter->stats_lock);
       
   879 	spin_lock_init(&adapter->tx_lock);
       
   880 
       
   881 	return 0;
       
   882 }
       
   883 
       
   884 /**
       
   885  * e1000_open - Called when a network interface is made active
       
   886  * @netdev: network interface device structure
       
   887  *
       
   888  * Returns 0 on success, negative value on failure
       
   889  *
       
   890  * The open entry point is called when a network interface is made
       
   891  * active by the system (IFF_UP).  At this point all resources needed
       
   892  * for transmit and receive operations are allocated, the interrupt
       
   893  * handler is registered with the OS, the watchdog timer is started,
       
   894  * and the stack is notified that the interface is ready.
       
   895  **/
       
   896 
       
   897 static int
       
   898 e1000_open(struct net_device *netdev)
       
   899 {
       
   900 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   901 	int err;
       
   902 
       
   903 	/* allocate transmit descriptors */
       
   904 
       
   905 	if((err = e1000_setup_tx_resources(adapter)))
       
   906 		goto err_setup_tx;
       
   907 
       
   908 	/* allocate receive descriptors */
       
   909 
       
   910 	if((err = e1000_setup_rx_resources(adapter)))
       
   911 		goto err_setup_rx;
       
   912 
       
   913 	if((err = e1000_up(adapter)))
       
   914 		goto err_up;
       
   915 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
   916 	if((adapter->hw.mng_cookie.status &
       
   917 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
   918 		e1000_update_mng_vlan(adapter);
       
   919 	}
       
   920 
       
   921 	return E1000_SUCCESS;
       
   922 
       
   923 err_up:
       
   924 	e1000_free_rx_resources(adapter);
       
   925 err_setup_rx:
       
   926 	e1000_free_tx_resources(adapter);
       
   927 err_setup_tx:
       
   928 	e1000_reset(adapter);
       
   929 
       
   930 	return err;
       
   931 }
       
   932 
       
   933 /**
       
   934  * e1000_close - Disables a network interface
       
   935  * @netdev: network interface device structure
       
   936  *
       
   937  * Returns 0, this is not allowed to fail
       
   938  *
       
   939  * The close entry point is called when an interface is de-activated
       
   940  * by the OS.  The hardware is still under the drivers control, but
       
   941  * needs to be disabled.  A global MAC reset is issued to stop the
       
   942  * hardware, and all transmit and receive resources are freed.
       
   943  **/
       
   944 
       
   945 static int
       
   946 e1000_close(struct net_device *netdev)
       
   947 {
       
   948 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   949 
       
   950 	e1000_down(adapter);
       
   951 
       
   952 	e1000_free_tx_resources(adapter);
       
   953 	e1000_free_rx_resources(adapter);
       
   954 
       
   955 	if((adapter->hw.mng_cookie.status &
       
   956 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
   957 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
   958 	}
       
   959 	return 0;
       
   960 }
       
   961 
       
   962 /**
       
   963  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
       
   964  * @adapter: address of board private structure
       
   965  * @start: address of beginning of memory
       
   966  * @len: length of memory
       
   967  **/
       
   968 static inline boolean_t
       
   969 e1000_check_64k_bound(struct e1000_adapter *adapter,
       
   970 		      void *start, unsigned long len)
       
   971 {
       
   972 	unsigned long begin = (unsigned long) start;
       
   973 	unsigned long end = begin + len;
       
   974 
       
   975 	/* First rev 82545 and 82546 need to not allow any memory
       
   976 	 * write location to cross 64k boundary due to errata 23 */
       
   977 	if (adapter->hw.mac_type == e1000_82545 ||
       
   978 	    adapter->hw.mac_type == e1000_82546) {
       
   979 		return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
       
   980 	}
       
   981 
       
   982 	return TRUE;
       
   983 }
       
   984 
       
   985 /**
       
   986  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
       
   987  * @adapter: board private structure
       
   988  *
       
   989  * Return 0 on success, negative on failure
       
   990  **/
       
   991 
       
   992 int
       
   993 e1000_setup_tx_resources(struct e1000_adapter *adapter)
       
   994 {
       
   995 	struct e1000_desc_ring *txdr = &adapter->tx_ring;
       
   996 	struct pci_dev *pdev = adapter->pdev;
       
   997 	int size;
       
   998 
       
   999 	size = sizeof(struct e1000_buffer) * txdr->count;
       
  1000 	txdr->buffer_info = vmalloc(size);
       
  1001 	if(!txdr->buffer_info) {
       
  1002 		DPRINTK(PROBE, ERR,
       
  1003 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1004 		return -ENOMEM;
       
  1005 	}
       
  1006 	memset(txdr->buffer_info, 0, size);
       
  1007 
       
  1008 	/* round up to nearest 4K */
       
  1009 
       
  1010 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
  1011 	E1000_ROUNDUP(txdr->size, 4096);
       
  1012 
       
  1013 	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1014 	if(!txdr->desc) {
       
  1015 setup_tx_desc_die:
       
  1016 		vfree(txdr->buffer_info);
       
  1017 		DPRINTK(PROBE, ERR,
       
  1018 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1019 		return -ENOMEM;
       
  1020 	}
       
  1021 
       
  1022 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1023 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1024 		void *olddesc = txdr->desc;
       
  1025 		dma_addr_t olddma = txdr->dma;
       
  1026 		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
       
  1027 				     "at %p\n", txdr->size, txdr->desc);
       
  1028 		/* Try again, without freeing the previous */
       
  1029 		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1030 		if(!txdr->desc) {
       
  1031 		/* Failed allocation, critical failure */
       
  1032 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1033 			goto setup_tx_desc_die;
       
  1034 		}
       
  1035 
       
  1036 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1037 			/* give up */
       
  1038 			pci_free_consistent(pdev, txdr->size, txdr->desc,
       
  1039 					    txdr->dma);
       
  1040 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1041 			DPRINTK(PROBE, ERR,
       
  1042 				"Unable to allocate aligned memory "
       
  1043 				"for the transmit descriptor ring\n");
       
  1044 			vfree(txdr->buffer_info);
       
  1045 			return -ENOMEM;
       
  1046 		} else {
       
  1047 			/* Free old allocation, new allocation was successful */
       
  1048 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1049 		}
       
  1050 	}
       
  1051 	memset(txdr->desc, 0, txdr->size);
       
  1052 
       
  1053 	txdr->next_to_use = 0;
       
  1054 	txdr->next_to_clean = 0;
       
  1055 
       
  1056 	return 0;
       
  1057 }
       
  1058 
       
  1059 /**
       
  1060  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  1061  * @adapter: board private structure
       
  1062  *
       
  1063  * Configure the Tx unit of the MAC after a reset.
       
  1064  **/
       
  1065 
       
  1066 static void
       
  1067 e1000_configure_tx(struct e1000_adapter *adapter)
       
  1068 {
       
  1069 	uint64_t tdba = adapter->tx_ring.dma;
       
  1070 	uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
       
  1071 	uint32_t tctl, tipg;
       
  1072 
       
  1073 	E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
       
  1074 	E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
       
  1075 
       
  1076 	E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
       
  1077 
       
  1078 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  1079 
       
  1080 	E1000_WRITE_REG(&adapter->hw, TDH, 0);
       
  1081 	E1000_WRITE_REG(&adapter->hw, TDT, 0);
       
  1082 
       
  1083 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  1084 
       
  1085 	switch (adapter->hw.mac_type) {
       
  1086 	case e1000_82542_rev2_0:
       
  1087 	case e1000_82542_rev2_1:
       
  1088 		tipg = DEFAULT_82542_TIPG_IPGT;
       
  1089 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
       
  1090 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
       
  1091 		break;
       
  1092 	default:
       
  1093 		if(adapter->hw.media_type == e1000_media_type_fiber ||
       
  1094 		   adapter->hw.media_type == e1000_media_type_internal_serdes)
       
  1095 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
       
  1096 		else
       
  1097 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
       
  1098 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
       
  1099 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
       
  1100 	}
       
  1101 	E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
       
  1102 
       
  1103 	/* Set the Tx Interrupt Delay register */
       
  1104 
       
  1105 	E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
       
  1106 	if(adapter->hw.mac_type >= e1000_82540)
       
  1107 		E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
       
  1108 
       
  1109 	/* Program the Transmit Control Register */
       
  1110 
       
  1111 	tctl = E1000_READ_REG(&adapter->hw, TCTL);
       
  1112 
       
  1113 	tctl &= ~E1000_TCTL_CT;
       
  1114 	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
       
  1115 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  1116 
       
  1117 	E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
       
  1118 
       
  1119 	e1000_config_collision_dist(&adapter->hw);
       
  1120 
       
  1121 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  1122 	adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
       
  1123 		E1000_TXD_CMD_IFCS;
       
  1124 
       
  1125 	if(adapter->hw.mac_type < e1000_82543)
       
  1126 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
       
  1127 	else
       
  1128 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  1129 
       
  1130 	/* Cache if we're 82544 running in PCI-X because we'll
       
  1131 	 * need this to apply a workaround later in the send path. */
       
  1132 	if(adapter->hw.mac_type == e1000_82544 &&
       
  1133 	   adapter->hw.bus_type == e1000_bus_type_pcix)
       
  1134 		adapter->pcix_82544 = 1;
       
  1135 }
       
  1136 
       
  1137 /**
       
  1138  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
       
  1139  * @adapter: board private structure
       
  1140  *
       
  1141  * Returns 0 on success, negative on failure
       
  1142  **/
       
  1143 
       
  1144 int
       
  1145 e1000_setup_rx_resources(struct e1000_adapter *adapter)
       
  1146 {
       
  1147 	struct e1000_desc_ring *rxdr = &adapter->rx_ring;
       
  1148 	struct pci_dev *pdev = adapter->pdev;
       
  1149 	int size, desc_len;
       
  1150 
       
  1151 	size = sizeof(struct e1000_buffer) * rxdr->count;
       
  1152 	rxdr->buffer_info = vmalloc(size);
       
  1153 	if(!rxdr->buffer_info) {
       
  1154 		DPRINTK(PROBE, ERR,
       
  1155 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1156 		return -ENOMEM;
       
  1157 	}
       
  1158 	memset(rxdr->buffer_info, 0, size);
       
  1159 
       
  1160 	size = sizeof(struct e1000_ps_page) * rxdr->count;
       
  1161 	rxdr->ps_page = kmalloc(size, GFP_KERNEL);
       
  1162 	if(!rxdr->ps_page) {
       
  1163 		vfree(rxdr->buffer_info);
       
  1164 		DPRINTK(PROBE, ERR,
       
  1165 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1166 		return -ENOMEM;
       
  1167 	}
       
  1168 	memset(rxdr->ps_page, 0, size);
       
  1169 
       
  1170 	size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
       
  1171 	rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
       
  1172 	if(!rxdr->ps_page_dma) {
       
  1173 		vfree(rxdr->buffer_info);
       
  1174 		kfree(rxdr->ps_page);
       
  1175 		DPRINTK(PROBE, ERR,
       
  1176 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1177 		return -ENOMEM;
       
  1178 	}
       
  1179 	memset(rxdr->ps_page_dma, 0, size);
       
  1180 
       
  1181 	if(adapter->hw.mac_type <= e1000_82547_rev_2)
       
  1182 		desc_len = sizeof(struct e1000_rx_desc);
       
  1183 	else
       
  1184 		desc_len = sizeof(union e1000_rx_desc_packet_split);
       
  1185 
       
  1186 	/* Round up to nearest 4K */
       
  1187 
       
  1188 	rxdr->size = rxdr->count * desc_len;
       
  1189 	E1000_ROUNDUP(rxdr->size, 4096);
       
  1190 
       
  1191 	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1192 
       
  1193 	if(!rxdr->desc) {
       
  1194 setup_rx_desc_die:
       
  1195 		vfree(rxdr->buffer_info);
       
  1196 		kfree(rxdr->ps_page);
       
  1197 		kfree(rxdr->ps_page_dma);
       
  1198 		DPRINTK(PROBE, ERR,
       
  1199 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1200 		return -ENOMEM;
       
  1201 	}
       
  1202 
       
  1203 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1204 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1205 		void *olddesc = rxdr->desc;
       
  1206 		dma_addr_t olddma = rxdr->dma;
       
  1207 		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
       
  1208 				     "at %p\n", rxdr->size, rxdr->desc);
       
  1209 		/* Try again, without freeing the previous */
       
  1210 		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1211 		if(!rxdr->desc) {
       
  1212 		/* Failed allocation, critical failure */
       
  1213 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1214 			goto setup_rx_desc_die;
       
  1215 		}
       
  1216 
       
  1217 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1218 			/* give up */
       
  1219 			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
       
  1220 					    rxdr->dma);
       
  1221 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1222 			DPRINTK(PROBE, ERR,
       
  1223 				"Unable to allocate aligned memory "
       
  1224 				"for the receive descriptor ring\n");
       
  1225 			vfree(rxdr->buffer_info);
       
  1226 			kfree(rxdr->ps_page);
       
  1227 			kfree(rxdr->ps_page_dma);
       
  1228 			return -ENOMEM;
       
  1229 		} else {
       
  1230 			/* Free old allocation, new allocation was successful */
       
  1231 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1232 		}
       
  1233 	}
       
  1234 	memset(rxdr->desc, 0, rxdr->size);
       
  1235 
       
  1236 	rxdr->next_to_clean = 0;
       
  1237 	rxdr->next_to_use = 0;
       
  1238 
       
  1239 	return 0;
       
  1240 }
       
  1241 
       
  1242 /**
       
  1243  * e1000_setup_rctl - configure the receive control registers
       
  1244  * @adapter: Board private structure
       
  1245  **/
       
  1246 
       
  1247 static void
       
  1248 e1000_setup_rctl(struct e1000_adapter *adapter)
       
  1249 {
       
  1250 	uint32_t rctl, rfctl;
       
  1251 	uint32_t psrctl = 0;
       
  1252 
       
  1253 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1254 
       
  1255 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  1256 
       
  1257 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  1258 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1259 		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1260 
       
  1261 	if(adapter->hw.tbi_compatibility_on == 1)
       
  1262 		rctl |= E1000_RCTL_SBP;
       
  1263 	else
       
  1264 		rctl &= ~E1000_RCTL_SBP;
       
  1265 
       
  1266 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  1267 		rctl &= ~E1000_RCTL_LPE;
       
  1268 	else
       
  1269 		rctl |= E1000_RCTL_LPE;
       
  1270 
       
  1271 	/* Setup buffer sizes */
       
  1272 	if(adapter->hw.mac_type == e1000_82573) {
       
  1273 		/* We can now specify buffers in 1K increments.
       
  1274 		 * BSIZE and BSEX are ignored in this case. */
       
  1275 		rctl |= adapter->rx_buffer_len << 0x11;
       
  1276 	} else {
       
  1277 		rctl &= ~E1000_RCTL_SZ_4096;
       
  1278 		rctl |= E1000_RCTL_BSEX; 
       
  1279 		switch (adapter->rx_buffer_len) {
       
  1280 		case E1000_RXBUFFER_2048:
       
  1281 		default:
       
  1282 			rctl |= E1000_RCTL_SZ_2048;
       
  1283 			rctl &= ~E1000_RCTL_BSEX;
       
  1284 			break;
       
  1285 		case E1000_RXBUFFER_4096:
       
  1286 			rctl |= E1000_RCTL_SZ_4096;
       
  1287 			break;
       
  1288 		case E1000_RXBUFFER_8192:
       
  1289 			rctl |= E1000_RCTL_SZ_8192;
       
  1290 			break;
       
  1291 		case E1000_RXBUFFER_16384:
       
  1292 			rctl |= E1000_RCTL_SZ_16384;
       
  1293 			break;
       
  1294 		}
       
  1295 	}
       
  1296 
       
  1297 #ifdef CONFIG_E1000_PACKET_SPLIT
       
  1298 	/* 82571 and greater support packet-split where the protocol
       
  1299 	 * header is placed in skb->data and the packet data is
       
  1300 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
       
  1301 	 * In the case of a non-split, skb->data is linearly filled,
       
  1302 	 * followed by the page buffers.  Therefore, skb->data is
       
  1303 	 * sized to hold the largest protocol header.
       
  1304 	 */
       
  1305 	adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2) 
       
  1306 			  && (adapter->netdev->mtu 
       
  1307 	                      < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
       
  1308 #endif
       
  1309 	if(adapter->rx_ps) {
       
  1310 		/* Configure extra packet-split registers */
       
  1311 		rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
       
  1312 		rfctl |= E1000_RFCTL_EXTEN;
       
  1313 		/* disable IPv6 packet split support */
       
  1314 		rfctl |= E1000_RFCTL_IPV6_DIS;
       
  1315 		E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
       
  1316 
       
  1317 		rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
       
  1318 		
       
  1319 		psrctl |= adapter->rx_ps_bsize0 >>
       
  1320 			E1000_PSRCTL_BSIZE0_SHIFT;
       
  1321 		psrctl |= PAGE_SIZE >>
       
  1322 			E1000_PSRCTL_BSIZE1_SHIFT;
       
  1323 		psrctl |= PAGE_SIZE <<
       
  1324 			E1000_PSRCTL_BSIZE2_SHIFT;
       
  1325 		psrctl |= PAGE_SIZE <<
       
  1326 			E1000_PSRCTL_BSIZE3_SHIFT;
       
  1327 
       
  1328 		E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
       
  1329 	}
       
  1330 
       
  1331 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1332 }
       
  1333 
       
  1334 /**
       
  1335  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
       
  1336  * @adapter: board private structure
       
  1337  *
       
  1338  * Configure the Rx unit of the MAC after a reset.
       
  1339  **/
       
  1340 
       
  1341 static void
       
  1342 e1000_configure_rx(struct e1000_adapter *adapter)
       
  1343 {
       
  1344 	uint64_t rdba = adapter->rx_ring.dma;
       
  1345 	uint32_t rdlen, rctl, rxcsum;
       
  1346 
       
  1347 	if(adapter->rx_ps) {
       
  1348 		rdlen = adapter->rx_ring.count *
       
  1349 			sizeof(union e1000_rx_desc_packet_split);
       
  1350 		adapter->clean_rx = e1000_clean_rx_irq_ps;
       
  1351 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
       
  1352 	} else {
       
  1353 		rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
       
  1354 		adapter->clean_rx = e1000_clean_rx_irq;
       
  1355 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  1356 	}
       
  1357 
       
  1358 	/* disable receives while setting up the descriptors */
       
  1359 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1360 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  1361 
       
  1362 	/* set the Receive Delay Timer Register */
       
  1363 	E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
       
  1364 
       
  1365 	if(adapter->hw.mac_type >= e1000_82540) {
       
  1366 		E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
       
  1367 		if(adapter->itr > 1)
       
  1368 			E1000_WRITE_REG(&adapter->hw, ITR,
       
  1369 				1000000000 / (adapter->itr * 256));
       
  1370 	}
       
  1371 
       
  1372 	/* Setup the Base and Length of the Rx Descriptor Ring */
       
  1373 	E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
       
  1374 	E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
       
  1375 
       
  1376 	E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
       
  1377 
       
  1378 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
       
  1379 	E1000_WRITE_REG(&adapter->hw, RDH, 0);
       
  1380 	E1000_WRITE_REG(&adapter->hw, RDT, 0);
       
  1381 
       
  1382 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
       
  1383 	if(adapter->hw.mac_type >= e1000_82543) {
       
  1384 		rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
       
  1385 		if(adapter->rx_csum == TRUE) {
       
  1386 			rxcsum |= E1000_RXCSUM_TUOFL;
       
  1387 
       
  1388 			/* Enable 82573 IPv4 payload checksum for UDP fragments
       
  1389 			 * Must be used in conjunction with packet-split. */
       
  1390 			if((adapter->hw.mac_type > e1000_82547_rev_2) && 
       
  1391 			   (adapter->rx_ps)) {
       
  1392 				rxcsum |= E1000_RXCSUM_IPPCSE;
       
  1393 			}
       
  1394 		} else {
       
  1395 			rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  1396 			/* don't need to clear IPPCSE as it defaults to 0 */
       
  1397 		}
       
  1398 		E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
       
  1399 	}
       
  1400 
       
  1401 	if (adapter->hw.mac_type == e1000_82573)
       
  1402 		E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);
       
  1403 
       
  1404 	/* Enable Receives */
       
  1405 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1406 }
       
  1407 
       
  1408 /**
       
  1409  * e1000_free_tx_resources - Free Tx Resources
       
  1410  * @adapter: board private structure
       
  1411  *
       
  1412  * Free all transmit software resources
       
  1413  **/
       
  1414 
       
  1415 void
       
  1416 e1000_free_tx_resources(struct e1000_adapter *adapter)
       
  1417 {
       
  1418 	struct pci_dev *pdev = adapter->pdev;
       
  1419 
       
  1420 	e1000_clean_tx_ring(adapter);
       
  1421 
       
  1422 	vfree(adapter->tx_ring.buffer_info);
       
  1423 	adapter->tx_ring.buffer_info = NULL;
       
  1424 
       
  1425 	pci_free_consistent(pdev, adapter->tx_ring.size,
       
  1426 	                    adapter->tx_ring.desc, adapter->tx_ring.dma);
       
  1427 
       
  1428 	adapter->tx_ring.desc = NULL;
       
  1429 }
       
  1430 
       
  1431 static inline void
       
  1432 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
       
  1433 			struct e1000_buffer *buffer_info)
       
  1434 {
       
  1435 	if (adapter->ecdev)
       
  1436 		return;
       
  1437 
       
  1438 	if(buffer_info->dma) {
       
  1439 		pci_unmap_page(adapter->pdev,
       
  1440 				buffer_info->dma,
       
  1441 				buffer_info->length,
       
  1442 				PCI_DMA_TODEVICE);
       
  1443 		buffer_info->dma = 0;
       
  1444 	}
       
  1445 	if(buffer_info->skb) {
       
  1446 		dev_kfree_skb_any(buffer_info->skb);
       
  1447 		buffer_info->skb = NULL;
       
  1448 	}
       
  1449 }
       
  1450 
       
  1451 /**
       
  1452  * e1000_clean_tx_ring - Free Tx Buffers
       
  1453  * @adapter: board private structure
       
  1454  **/
       
  1455 
       
  1456 static void
       
  1457 e1000_clean_tx_ring(struct e1000_adapter *adapter)
       
  1458 {
       
  1459 	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
       
  1460 	struct e1000_buffer *buffer_info;
       
  1461 	unsigned long size;
       
  1462 	unsigned int i;
       
  1463 
       
  1464 	/* Free all the Tx ring sk_buffs */
       
  1465 
       
  1466 	if (likely(adapter->previous_buffer_info.skb != NULL)) {
       
  1467 		e1000_unmap_and_free_tx_resource(adapter,
       
  1468 				&adapter->previous_buffer_info);
       
  1469 	}
       
  1470 
       
  1471 	for(i = 0; i < tx_ring->count; i++) {
       
  1472 		buffer_info = &tx_ring->buffer_info[i];
       
  1473 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  1474 	}
       
  1475 
       
  1476 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  1477 	memset(tx_ring->buffer_info, 0, size);
       
  1478 
       
  1479 	/* Zero out the descriptor ring */
       
  1480 
       
  1481 	memset(tx_ring->desc, 0, tx_ring->size);
       
  1482 
       
  1483 	tx_ring->next_to_use = 0;
       
  1484 	tx_ring->next_to_clean = 0;
       
  1485 
       
  1486 	E1000_WRITE_REG(&adapter->hw, TDH, 0);
       
  1487 	E1000_WRITE_REG(&adapter->hw, TDT, 0);
       
  1488 }
       
  1489 
       
  1490 /**
       
  1491  * e1000_free_rx_resources - Free Rx Resources
       
  1492  * @adapter: board private structure
       
  1493  *
       
  1494  * Free all receive software resources
       
  1495  **/
       
  1496 
       
  1497 void
       
  1498 e1000_free_rx_resources(struct e1000_adapter *adapter)
       
  1499 {
       
  1500 	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
       
  1501 	struct pci_dev *pdev = adapter->pdev;
       
  1502 
       
  1503 	e1000_clean_rx_ring(adapter);
       
  1504 
       
  1505 	vfree(rx_ring->buffer_info);
       
  1506 	rx_ring->buffer_info = NULL;
       
  1507 	kfree(rx_ring->ps_page);
       
  1508 	rx_ring->ps_page = NULL;
       
  1509 	kfree(rx_ring->ps_page_dma);
       
  1510 	rx_ring->ps_page_dma = NULL;
       
  1511 
       
  1512 	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
       
  1513 
       
  1514 	rx_ring->desc = NULL;
       
  1515 }
       
  1516 
       
  1517 /**
       
  1518  * e1000_clean_rx_ring - Free Rx Buffers
       
  1519  * @adapter: board private structure
       
  1520  **/
       
  1521 
       
  1522 static void
       
  1523 e1000_clean_rx_ring(struct e1000_adapter *adapter)
       
  1524 {
       
  1525 	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
       
  1526 	struct e1000_buffer *buffer_info;
       
  1527 	struct e1000_ps_page *ps_page;
       
  1528 	struct e1000_ps_page_dma *ps_page_dma;
       
  1529 	struct pci_dev *pdev = adapter->pdev;
       
  1530 	unsigned long size;
       
  1531 	unsigned int i, j;
       
  1532 
       
  1533 	/* Free all the Rx ring sk_buffs */
       
  1534 
       
  1535 	for(i = 0; i < rx_ring->count; i++) {
       
  1536 		buffer_info = &rx_ring->buffer_info[i];
       
  1537 		if(buffer_info->skb) {
       
  1538 			ps_page = &rx_ring->ps_page[i];
       
  1539 			ps_page_dma = &rx_ring->ps_page_dma[i];
       
  1540 			pci_unmap_single(pdev,
       
  1541 					 buffer_info->dma,
       
  1542 					 buffer_info->length,
       
  1543 					 PCI_DMA_FROMDEVICE);
       
  1544 
       
  1545 			dev_kfree_skb(buffer_info->skb);
       
  1546 			buffer_info->skb = NULL;
       
  1547 
       
  1548 			for(j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  1549 				if(!ps_page->ps_page[j]) break;
       
  1550 				pci_unmap_single(pdev,
       
  1551 						 ps_page_dma->ps_page_dma[j],
       
  1552 						 PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  1553 				ps_page_dma->ps_page_dma[j] = 0;
       
  1554 				put_page(ps_page->ps_page[j]);
       
  1555 				ps_page->ps_page[j] = NULL;
       
  1556 			}
       
  1557 		}
       
  1558 	}
       
  1559 
       
  1560 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  1561 	memset(rx_ring->buffer_info, 0, size);
       
  1562 	size = sizeof(struct e1000_ps_page) * rx_ring->count;
       
  1563 	memset(rx_ring->ps_page, 0, size);
       
  1564 	size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
       
  1565 	memset(rx_ring->ps_page_dma, 0, size);
       
  1566 
       
  1567 	/* Zero out the descriptor ring */
       
  1568 
       
  1569 	memset(rx_ring->desc, 0, rx_ring->size);
       
  1570 
       
  1571 	rx_ring->next_to_clean = 0;
       
  1572 	rx_ring->next_to_use = 0;
       
  1573 
       
  1574 	E1000_WRITE_REG(&adapter->hw, RDH, 0);
       
  1575 	E1000_WRITE_REG(&adapter->hw, RDT, 0);
       
  1576 }
       
  1577 
       
  1578 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
       
  1579  * and memory write and invalidate disabled for certain operations
       
  1580  */
       
  1581 static void
       
  1582 e1000_enter_82542_rst(struct e1000_adapter *adapter)
       
  1583 {
       
  1584 	struct net_device *netdev = adapter->netdev;
       
  1585 	uint32_t rctl;
       
  1586 
       
  1587 	e1000_pci_clear_mwi(&adapter->hw);
       
  1588 
       
  1589 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1590 	rctl |= E1000_RCTL_RST;
       
  1591 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1592 	E1000_WRITE_FLUSH(&adapter->hw);
       
  1593 	mdelay(5);
       
  1594 
       
  1595 	if (!adapter->ecdev && netif_running(netdev))
       
  1596 		e1000_clean_rx_ring(adapter);
       
  1597 }
       
  1598 
       
  1599 static void
       
  1600 e1000_leave_82542_rst(struct e1000_adapter *adapter)
       
  1601 {
       
  1602 	struct net_device *netdev = adapter->netdev;
       
  1603 	uint32_t rctl;
       
  1604 
       
  1605 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1606 	rctl &= ~E1000_RCTL_RST;
       
  1607 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1608 	E1000_WRITE_FLUSH(&adapter->hw);
       
  1609 	mdelay(5);
       
  1610 
       
  1611 	if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
  1612 		e1000_pci_set_mwi(&adapter->hw);
       
  1613 
       
  1614 	if (!adapter->ecdev && netif_running(netdev)) {
       
  1615 		e1000_configure_rx(adapter);
       
  1616 		e1000_alloc_rx_buffers(adapter);
       
  1617 	}
       
  1618 }
       
  1619 
       
  1620 /**
       
  1621  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  1622  * @netdev: network interface device structure
       
  1623  * @p: pointer to an address structure
       
  1624  *
       
  1625  * Returns 0 on success, negative on failure
       
  1626  **/
       
  1627 
       
  1628 static int
       
  1629 e1000_set_mac(struct net_device *netdev, void *p)
       
  1630 {
       
  1631 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1632 	struct sockaddr *addr = p;
       
  1633 
       
  1634 	if(!is_valid_ether_addr(addr->sa_data))
       
  1635 		return -EADDRNOTAVAIL;
       
  1636 
       
  1637 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  1638 
       
  1639 	if(adapter->hw.mac_type == e1000_82542_rev2_0)
       
  1640 		e1000_enter_82542_rst(adapter);
       
  1641 
       
  1642 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  1643 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
       
  1644 
       
  1645 	e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
       
  1646 
       
  1647 	if(adapter->hw.mac_type == e1000_82542_rev2_0)
       
  1648 		e1000_leave_82542_rst(adapter);
       
  1649 
       
  1650 	return 0;
       
  1651 }
       
  1652 
       
  1653 /**
       
  1654  * e1000_set_multi - Multicast and Promiscuous mode set
       
  1655  * @netdev: network interface device structure
       
  1656  *
       
  1657  * The set_multi entry point is called whenever the multicast address
       
  1658  * list or the network interface flags are updated.  This routine is
       
  1659  * responsible for configuring the hardware for proper multicast,
       
  1660  * promiscuous mode, and all-multi behavior.
       
  1661  **/
       
  1662 
       
  1663 static void
       
  1664 e1000_set_multi(struct net_device *netdev)
       
  1665 {
       
  1666 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1667 	struct e1000_hw *hw = &adapter->hw;
       
  1668 	struct dev_mc_list *mc_ptr;
       
  1669 	unsigned long flags = 0;
       
  1670 	uint32_t rctl;
       
  1671 	uint32_t hash_value;
       
  1672 	int i;
       
  1673 
       
  1674     if (!adapter->ecdev)
       
  1675         spin_lock_irqsave(&adapter->tx_lock, flags);
       
  1676 
       
  1677 	/* Check for Promiscuous and All Multicast modes */
       
  1678 
       
  1679 	rctl = E1000_READ_REG(hw, RCTL);
       
  1680 
       
  1681 	if(netdev->flags & IFF_PROMISC) {
       
  1682 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  1683 	} else if(netdev->flags & IFF_ALLMULTI) {
       
  1684 		rctl |= E1000_RCTL_MPE;
       
  1685 		rctl &= ~E1000_RCTL_UPE;
       
  1686 	} else {
       
  1687 		rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  1688 	}
       
  1689 
       
  1690 	E1000_WRITE_REG(hw, RCTL, rctl);
       
  1691 
       
  1692 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  1693 
       
  1694 	if(hw->mac_type == e1000_82542_rev2_0)
       
  1695 		e1000_enter_82542_rst(adapter);
       
  1696 
       
  1697 	/* load the first 14 multicast address into the exact filters 1-14
       
  1698 	 * RAR 0 is used for the station MAC adddress
       
  1699 	 * if there are not 14 addresses, go ahead and clear the filters
       
  1700 	 */
       
  1701 	mc_ptr = netdev->mc_list;
       
  1702 
       
  1703 	for(i = 1; i < E1000_RAR_ENTRIES; i++) {
       
  1704 		if(mc_ptr) {
       
  1705 			e1000_rar_set(hw, mc_ptr->dmi_addr, i);
       
  1706 			mc_ptr = mc_ptr->next;
       
  1707 		} else {
       
  1708 			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
       
  1709 			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
       
  1710 		}
       
  1711 	}
       
  1712 
       
  1713 	/* clear the old settings from the multicast hash table */
       
  1714 
       
  1715 	for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
       
  1716 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
       
  1717 
       
  1718 	/* load any remaining addresses into the hash table */
       
  1719 
       
  1720 	for(; mc_ptr; mc_ptr = mc_ptr->next) {
       
  1721 		hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
       
  1722 		e1000_mta_set(hw, hash_value);
       
  1723 	}
       
  1724 
       
  1725 	if(hw->mac_type == e1000_82542_rev2_0)
       
  1726 		e1000_leave_82542_rst(adapter);
       
  1727 
       
  1728     if (!adapter->ecdev)
       
  1729         spin_unlock_irqrestore(&adapter->tx_lock, flags);
       
  1730 }
       
  1731 
       
  1732 /* Need to wait a few seconds after link up to get diagnostic information from
       
  1733  * the phy */
       
  1734 
       
  1735 static void
       
  1736 e1000_update_phy_info(unsigned long data)
       
  1737 {
       
  1738 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  1739 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
       
  1740 }
       
  1741 
       
  1742 /**
       
  1743  * e1000_82547_tx_fifo_stall - Timer Call-back
       
  1744  * @data: pointer to adapter cast into an unsigned long
       
  1745  **/
       
  1746 
       
  1747 static void
       
  1748 e1000_82547_tx_fifo_stall(unsigned long data)
       
  1749 {
       
  1750 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  1751 	struct net_device *netdev = adapter->netdev;
       
  1752 	uint32_t tctl;
       
  1753 
       
  1754 	if(atomic_read(&adapter->tx_fifo_stall)) {
       
  1755 		if((E1000_READ_REG(&adapter->hw, TDT) ==
       
  1756 		    E1000_READ_REG(&adapter->hw, TDH)) &&
       
  1757 		   (E1000_READ_REG(&adapter->hw, TDFT) ==
       
  1758 		    E1000_READ_REG(&adapter->hw, TDFH)) &&
       
  1759 		   (E1000_READ_REG(&adapter->hw, TDFTS) ==
       
  1760 		    E1000_READ_REG(&adapter->hw, TDFHS))) {
       
  1761 			tctl = E1000_READ_REG(&adapter->hw, TCTL);
       
  1762 			E1000_WRITE_REG(&adapter->hw, TCTL,
       
  1763 					tctl & ~E1000_TCTL_EN);
       
  1764 			E1000_WRITE_REG(&adapter->hw, TDFT,
       
  1765 					adapter->tx_head_addr);
       
  1766 			E1000_WRITE_REG(&adapter->hw, TDFH,
       
  1767 					adapter->tx_head_addr);
       
  1768 			E1000_WRITE_REG(&adapter->hw, TDFTS,
       
  1769 					adapter->tx_head_addr);
       
  1770 			E1000_WRITE_REG(&adapter->hw, TDFHS,
       
  1771 					adapter->tx_head_addr);
       
  1772 			E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
       
  1773 			E1000_WRITE_FLUSH(&adapter->hw);
       
  1774 
       
  1775 			adapter->tx_fifo_head = 0;
       
  1776 			atomic_set(&adapter->tx_fifo_stall, 0);
       
  1777 			if (!adapter->ecdev) netif_wake_queue(netdev);
       
  1778 		} else {
       
  1779 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  1780 		}
       
  1781 	}
       
  1782 }
       
  1783 
       
  1784 /**
       
  1785  * e1000_watchdog - Timer Call-back
       
  1786  * @data: pointer to adapter cast into an unsigned long
       
  1787  **/
       
  1788 static void
       
  1789 e1000_watchdog(unsigned long data)
       
  1790 {
       
  1791 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  1792 
       
  1793 	/* Do the rest outside of interrupt context */
       
  1794 	schedule_work(&adapter->watchdog_task);
       
  1795 }
       
  1796 
       
  1797 static void
       
  1798 e1000_watchdog_task(struct e1000_adapter *adapter)
       
  1799 {
       
  1800 	struct net_device *netdev = adapter->netdev;
       
  1801 	struct e1000_desc_ring *txdr = &adapter->tx_ring;
       
  1802 	uint32_t link;
       
  1803 
       
  1804 	e1000_check_for_link(&adapter->hw);
       
  1805 	if (adapter->hw.mac_type == e1000_82573) {
       
  1806 		e1000_enable_tx_pkt_filtering(&adapter->hw);
       
  1807 		if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
       
  1808 			e1000_update_mng_vlan(adapter);
       
  1809 	}	
       
  1810 
       
  1811 	if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
       
  1812 	   !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
       
  1813 		link = !adapter->hw.serdes_link_down;
       
  1814 	else
       
  1815 		link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
       
  1816 
       
  1817 	if (link) {
       
  1818 		if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev))
       
  1819 				|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
       
  1820 			e1000_get_speed_and_duplex(&adapter->hw,
       
  1821 			                           &adapter->link_speed,
       
  1822 			                           &adapter->link_duplex);
       
  1823 
       
  1824 			DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
       
  1825 			       adapter->link_speed,
       
  1826 			       adapter->link_duplex == FULL_DUPLEX ?
       
  1827 			       "Full Duplex" : "Half Duplex");
       
  1828 
       
  1829 			if (adapter->ecdev) {
       
  1830 				ecdev_set_link(adapter->ecdev, 1);
       
  1831 			} else {
       
  1832 				netif_carrier_on(netdev);
       
  1833 				netif_wake_queue(netdev);
       
  1834                 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
       
  1835 			}
       
  1836 			adapter->smartspeed = 0;
       
  1837 		}
       
  1838 	} else {
       
  1839 		if ((adapter->ecdev && ecdev_get_link(adapter->ecdev))
       
  1840 				|| (!adapter->ecdev && netif_carrier_ok(netdev))) {
       
  1841 			adapter->link_speed = 0;
       
  1842 			adapter->link_duplex = 0;
       
  1843 			DPRINTK(LINK, INFO, "NIC Link is Down\n");
       
  1844 			if (adapter->ecdev) {
       
  1845 				ecdev_set_link(adapter->ecdev, 0);
       
  1846 			} else {
       
  1847 				netif_carrier_off(netdev);
       
  1848 				netif_stop_queue(netdev);
       
  1849                 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
       
  1850 			}
       
  1851 		}
       
  1852 
       
  1853 		e1000_smartspeed(adapter);
       
  1854 	}
       
  1855 
       
  1856 	e1000_update_stats(adapter);
       
  1857 
       
  1858 	adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  1859 	adapter->tpt_old = adapter->stats.tpt;
       
  1860 	adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
       
  1861 	adapter->colc_old = adapter->stats.colc;
       
  1862 
       
  1863 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
       
  1864 	adapter->gorcl_old = adapter->stats.gorcl;
       
  1865 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
       
  1866 	adapter->gotcl_old = adapter->stats.gotcl;
       
  1867 
       
  1868 	e1000_update_adaptive(&adapter->hw);
       
  1869 
       
  1870 	if (!adapter->ecdev && !netif_carrier_ok(netdev)) {
       
  1871 		if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
       
  1872 			/* We've lost link, so the controller stops DMA,
       
  1873 			 * but we've got queued Tx work that's never going
       
  1874 			 * to get done, so reset controller to flush Tx.
       
  1875 			 * (Do the reset outside of interrupt context). */
       
  1876 			schedule_work(&adapter->tx_timeout_task);
       
  1877 		}
       
  1878 	}
       
  1879 
       
  1880 	/* Dynamic mode for Interrupt Throttle Rate (ITR) */
       
  1881 	if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
       
  1882 		/* Symmetric Tx/Rx gets a reduced ITR=2000; Total
       
  1883 		 * asymmetrical Tx or Rx gets ITR=8000; everyone
       
  1884 		 * else is between 2000-8000. */
       
  1885 		uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
       
  1886 		uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
       
  1887 			adapter->gotcl - adapter->gorcl :
       
  1888 			adapter->gorcl - adapter->gotcl) / 10000;
       
  1889 		uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
       
  1890 		E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
       
  1891 	}
       
  1892 
       
  1893 	/* Cause software interrupt to ensure rx ring is cleaned */
       
  1894 	E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
       
  1895 
       
  1896 	/* Force detection of hung controller every watchdog period */
       
  1897 	if (!adapter->ecdev) adapter->detect_tx_hung = TRUE;
       
  1898 
       
  1899 	/* Reset the timer */
       
  1900 	if (!adapter->ecdev)
       
  1901         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
       
  1902 }
       
  1903 
       
  1904 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  1905 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  1906 #define E1000_TX_FLAGS_TSO		0x00000004
       
  1907 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  1908 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  1909 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  1910 
       
  1911 static inline int
       
  1912 e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  1913 {
       
  1914 #ifdef NETIF_F_TSO
       
  1915 	struct e1000_context_desc *context_desc;
       
  1916 	unsigned int i;
       
  1917 	uint32_t cmd_length = 0;
       
  1918 	uint16_t ipcse = 0, tucse, mss;
       
  1919 	uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
       
  1920 	int err;
       
  1921 
       
  1922 	if(skb_shinfo(skb)->tso_size) {
       
  1923 		if (skb_header_cloned(skb)) {
       
  1924 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  1925 			if (err)
       
  1926 				return err;
       
  1927 		}
       
  1928 
       
  1929 		hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
       
  1930 		mss = skb_shinfo(skb)->tso_size;
       
  1931 		if(skb->protocol == ntohs(ETH_P_IP)) {
       
  1932 			skb->nh.iph->tot_len = 0;
       
  1933 			skb->nh.iph->check = 0;
       
  1934 			skb->h.th->check =
       
  1935 				~csum_tcpudp_magic(skb->nh.iph->saddr,
       
  1936 						   skb->nh.iph->daddr,
       
  1937 						   0,
       
  1938 						   IPPROTO_TCP,
       
  1939 						   0);
       
  1940 			cmd_length = E1000_TXD_CMD_IP;
       
  1941 			ipcse = skb->h.raw - skb->data - 1;
       
  1942 #ifdef NETIF_F_TSO_IPV6
       
  1943 		} else if(skb->protocol == ntohs(ETH_P_IPV6)) {
       
  1944 			skb->nh.ipv6h->payload_len = 0;
       
  1945 			skb->h.th->check =
       
  1946 				~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
       
  1947 						 &skb->nh.ipv6h->daddr,
       
  1948 						 0,
       
  1949 						 IPPROTO_TCP,
       
  1950 						 0);
       
  1951 			ipcse = 0;
       
  1952 #endif
       
  1953 		}
       
  1954 		ipcss = skb->nh.raw - skb->data;
       
  1955 		ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
       
  1956 		tucss = skb->h.raw - skb->data;
       
  1957 		tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
       
  1958 		tucse = 0;
       
  1959 
       
  1960 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  1961 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  1962 
       
  1963 		i = adapter->tx_ring.next_to_use;
       
  1964 		context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
       
  1965 
       
  1966 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  1967 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  1968 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  1969 		context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  1970 		context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  1971 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  1972 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  1973 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  1974 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  1975 
       
  1976 		if(++i == adapter->tx_ring.count) i = 0;
       
  1977 		adapter->tx_ring.next_to_use = i;
       
  1978 
       
  1979 		return 1;
       
  1980 	}
       
  1981 #endif
       
  1982 
       
  1983 	return 0;
       
  1984 }
       
  1985 
       
  1986 static inline boolean_t
       
  1987 e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  1988 {
       
  1989 	struct e1000_context_desc *context_desc;
       
  1990 	unsigned int i;
       
  1991 	uint8_t css;
       
  1992 
       
  1993 	if(likely(skb->ip_summed == CHECKSUM_HW)) {
       
  1994 		css = skb->h.raw - skb->data;
       
  1995 
       
  1996 		i = adapter->tx_ring.next_to_use;
       
  1997 		context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
       
  1998 
       
  1999 		context_desc->upper_setup.tcp_fields.tucss = css;
       
  2000 		context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
       
  2001 		context_desc->upper_setup.tcp_fields.tucse = 0;
       
  2002 		context_desc->tcp_seg_setup.data = 0;
       
  2003 		context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
       
  2004 
       
  2005 		if(unlikely(++i == adapter->tx_ring.count)) i = 0;
       
  2006 		adapter->tx_ring.next_to_use = i;
       
  2007 
       
  2008 		return TRUE;
       
  2009 	}
       
  2010 
       
  2011 	return FALSE;
       
  2012 }
       
  2013 
       
  2014 #define E1000_MAX_TXD_PWR	12
       
  2015 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
       
  2016 
       
  2017 static inline int
       
  2018 e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
       
  2019 	unsigned int first, unsigned int max_per_txd,
       
  2020 	unsigned int nr_frags, unsigned int mss)
       
  2021 {
       
  2022 	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
       
  2023 	struct e1000_buffer *buffer_info;
       
  2024 	unsigned int len = skb->len;
       
  2025 	unsigned int offset = 0, size, count = 0, i;
       
  2026 	unsigned int f;
       
  2027 	len -= skb->data_len;
       
  2028 
       
  2029 	i = tx_ring->next_to_use;
       
  2030 
       
  2031 	while(len) {
       
  2032 		buffer_info = &tx_ring->buffer_info[i];
       
  2033 		size = min(len, max_per_txd);
       
  2034 #ifdef NETIF_F_TSO
       
  2035 		/* Workaround for premature desc write-backs
       
  2036 		 * in TSO mode.  Append 4-byte sentinel desc */
       
  2037 		if(unlikely(mss && !nr_frags && size == len && size > 8))
       
  2038 			size -= 4;
       
  2039 #endif
       
  2040 		/* work-around for errata 10 and it applies
       
  2041 		 * to all controllers in PCI-X mode
       
  2042 		 * The fix is to make sure that the first descriptor of a
       
  2043 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
       
  2044 		 */
       
  2045 		if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
       
  2046 		                (size > 2015) && count == 0))
       
  2047 		        size = 2015;
       
  2048                                                                                 
       
  2049 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
       
  2050 		 * terminating buffers within evenly-aligned dwords. */
       
  2051 		if(unlikely(adapter->pcix_82544 &&
       
  2052 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
       
  2053 		   size > 4))
       
  2054 			size -= 4;
       
  2055 
       
  2056 		buffer_info->length = size;
       
  2057 		buffer_info->dma =
       
  2058 			pci_map_single(adapter->pdev,
       
  2059 				skb->data + offset,
       
  2060 				size,
       
  2061 				PCI_DMA_TODEVICE);
       
  2062 		buffer_info->time_stamp = jiffies;
       
  2063 
       
  2064 		len -= size;
       
  2065 		offset += size;
       
  2066 		count++;
       
  2067 		if(unlikely(++i == tx_ring->count)) i = 0;
       
  2068 	}
       
  2069 
       
  2070 	for(f = 0; f < nr_frags; f++) {
       
  2071 		struct skb_frag_struct *frag;
       
  2072 
       
  2073 		frag = &skb_shinfo(skb)->frags[f];
       
  2074 		len = frag->size;
       
  2075 		offset = frag->page_offset;
       
  2076 
       
  2077 		while(len) {
       
  2078 			buffer_info = &tx_ring->buffer_info[i];
       
  2079 			size = min(len, max_per_txd);
       
  2080 #ifdef NETIF_F_TSO
       
  2081 			/* Workaround for premature desc write-backs
       
  2082 			 * in TSO mode.  Append 4-byte sentinel desc */
       
  2083 			if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
       
  2084 				size -= 4;
       
  2085 #endif
       
  2086 			/* Workaround for potential 82544 hang in PCI-X.
       
  2087 			 * Avoid terminating buffers within evenly-aligned
       
  2088 			 * dwords. */
       
  2089 			if(unlikely(adapter->pcix_82544 &&
       
  2090 			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
       
  2091 			   size > 4))
       
  2092 				size -= 4;
       
  2093 
       
  2094 			buffer_info->length = size;
       
  2095 			buffer_info->dma =
       
  2096 				pci_map_page(adapter->pdev,
       
  2097 					frag->page,
       
  2098 					offset,
       
  2099 					size,
       
  2100 					PCI_DMA_TODEVICE);
       
  2101 			buffer_info->time_stamp = jiffies;
       
  2102 
       
  2103 			len -= size;
       
  2104 			offset += size;
       
  2105 			count++;
       
  2106 			if(unlikely(++i == tx_ring->count)) i = 0;
       
  2107 		}
       
  2108 	}
       
  2109 
       
  2110 	i = (i == 0) ? tx_ring->count - 1 : i - 1;
       
  2111 	tx_ring->buffer_info[i].skb = skb;
       
  2112 	tx_ring->buffer_info[first].next_to_watch = i;
       
  2113 
       
  2114 	return count;
       
  2115 }
       
  2116 
       
  2117 static inline void
       
  2118 e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
       
  2119 {
       
  2120 	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
       
  2121 	struct e1000_tx_desc *tx_desc = NULL;
       
  2122 	struct e1000_buffer *buffer_info;
       
  2123 	uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  2124 	unsigned int i;
       
  2125 
       
  2126 	if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
       
  2127 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  2128 		             E1000_TXD_CMD_TSE;
       
  2129 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  2130 
       
  2131 		if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
       
  2132 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  2133 	}
       
  2134 
       
  2135 	if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
       
  2136 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  2137 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  2138 	}
       
  2139 
       
  2140 	if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
       
  2141 		txd_lower |= E1000_TXD_CMD_VLE;
       
  2142 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  2143 	}
       
  2144 
       
  2145 	i = tx_ring->next_to_use;
       
  2146 
       
  2147 	while(count--) {
       
  2148 		buffer_info = &tx_ring->buffer_info[i];
       
  2149 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  2150 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  2151 		tx_desc->lower.data =
       
  2152 			cpu_to_le32(txd_lower | buffer_info->length);
       
  2153 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  2154 		if(unlikely(++i == tx_ring->count)) i = 0;
       
  2155 	}
       
  2156 
       
  2157 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  2158 
       
  2159 	/* Force memory writes to complete before letting h/w
       
  2160 	 * know there are new descriptors to fetch.  (Only
       
  2161 	 * applicable for weak-ordered memory model archs,
       
  2162 	 * such as IA-64). */
       
  2163 	wmb();
       
  2164 
       
  2165 	tx_ring->next_to_use = i;
       
  2166 	E1000_WRITE_REG(&adapter->hw, TDT, i);
       
  2167 }
       
  2168 
       
  2169 /**
       
  2170  * 82547 workaround to avoid controller hang in half-duplex environment.
       
  2171  * The workaround is to avoid queuing a large packet that would span
       
  2172  * the internal Tx FIFO ring boundary by notifying the stack to resend
       
  2173  * the packet at a later time.  This gives the Tx FIFO an opportunity to
       
  2174  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
       
  2175  * to the beginning of the Tx FIFO.
       
  2176  **/
       
  2177 
       
  2178 #define E1000_FIFO_HDR			0x10
       
  2179 #define E1000_82547_PAD_LEN		0x3E0
       
  2180 
       
  2181 static inline int
       
  2182 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  2183 {
       
  2184 	uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
       
  2185 	uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
       
  2186 
       
  2187 	E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
       
  2188 
       
  2189 	if(adapter->link_duplex != HALF_DUPLEX)
       
  2190 		goto no_fifo_stall_required;
       
  2191 
       
  2192 	if(atomic_read(&adapter->tx_fifo_stall))
       
  2193 		return 1;
       
  2194 
       
  2195 	if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
       
  2196 		atomic_set(&adapter->tx_fifo_stall, 1);
       
  2197 		return 1;
       
  2198 	}
       
  2199 
       
  2200 no_fifo_stall_required:
       
  2201 	adapter->tx_fifo_head += skb_fifo_len;
       
  2202 	if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
       
  2203 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
       
  2204 	return 0;
       
  2205 }
       
  2206 
       
  2207 #define MINIMUM_DHCP_PACKET_SIZE 282
       
  2208 static inline int
       
  2209 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  2210 {
       
  2211 	struct e1000_hw *hw =  &adapter->hw;
       
  2212 	uint16_t length, offset;
       
  2213 	if(vlan_tx_tag_present(skb)) {
       
  2214 		if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
       
  2215 			( adapter->hw.mng_cookie.status &
       
  2216 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
       
  2217 			return 0;
       
  2218 	}
       
  2219 	if(htons(ETH_P_IP) == skb->protocol) {
       
  2220 		const struct iphdr *ip = skb->nh.iph;
       
  2221 		if(IPPROTO_UDP == ip->protocol) {
       
  2222 			struct udphdr *udp = (struct udphdr *)(skb->h.uh);
       
  2223 			if(ntohs(udp->dest) == 67) {
       
  2224 				offset = (uint8_t *)udp + 8 - skb->data;
       
  2225 				length = skb->len - offset;
       
  2226 
       
  2227 				return e1000_mng_write_dhcp_info(hw,
       
  2228 						(uint8_t *)udp + 8, length);
       
  2229 			}
       
  2230 		}
       
  2231 	} else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
       
  2232 		struct ethhdr *eth = (struct ethhdr *) skb->data;
       
  2233 		if((htons(ETH_P_IP) == eth->h_proto)) {
       
  2234 			const struct iphdr *ip = 
       
  2235 				(struct iphdr *)((uint8_t *)skb->data+14);
       
  2236 			if(IPPROTO_UDP == ip->protocol) {
       
  2237 				struct udphdr *udp = 
       
  2238 					(struct udphdr *)((uint8_t *)ip + 
       
  2239 						(ip->ihl << 2));
       
  2240 				if(ntohs(udp->dest) == 67) {
       
  2241 					offset = (uint8_t *)udp + 8 - skb->data;
       
  2242 					length = skb->len - offset;
       
  2243 
       
  2244 					return e1000_mng_write_dhcp_info(hw,
       
  2245 							(uint8_t *)udp + 8, 
       
  2246 							length);
       
  2247 				}
       
  2248 			}
       
  2249 		}
       
  2250 	}
       
  2251 	return 0;
       
  2252 }
       
  2253 
       
  2254 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  2255 static int
       
  2256 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
       
  2257 {
       
  2258 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2259 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
       
  2260 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  2261 	unsigned int tx_flags = 0;
       
  2262 	unsigned int len = skb->len;
       
  2263 	unsigned long flags = 0;
       
  2264 	unsigned int nr_frags = 0;
       
  2265 	unsigned int mss = 0;
       
  2266 	int count = 0;
       
  2267 	int tso;
       
  2268 	unsigned int f;
       
  2269 	len -= skb->data_len;
       
  2270 
       
  2271 	if(unlikely(skb->len <= 0)) {
       
  2272 		if (!adapter->ecdev)
       
  2273 			dev_kfree_skb_any(skb);
       
  2274 		return NETDEV_TX_OK;
       
  2275 	}
       
  2276 
       
  2277 #ifdef NETIF_F_TSO
       
  2278 	mss = skb_shinfo(skb)->tso_size;
       
  2279 	/* The controller does a simple calculation to 
       
  2280 	 * make sure there is enough room in the FIFO before
       
  2281 	 * initiating the DMA for each buffer.  The calc is:
       
  2282 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  2283 	 * overrun the FIFO, adjust the max buffer len if mss
       
  2284 	 * drops. */
       
  2285 	if(mss) {
       
  2286 		max_per_txd = min(mss << 2, max_per_txd);
       
  2287 		max_txd_pwr = fls(max_per_txd) - 1;
       
  2288 	}
       
  2289 
       
  2290 	if((mss) || (skb->ip_summed == CHECKSUM_HW))
       
  2291 		count++;
       
  2292 	count++;
       
  2293 #else
       
  2294 	if(skb->ip_summed == CHECKSUM_HW)
       
  2295 		count++;
       
  2296 #endif
       
  2297 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  2298 
       
  2299 	if(adapter->pcix_82544)
       
  2300 		count++;
       
  2301 
       
  2302 	/* work-around for errata 10 and it applies to all controllers 
       
  2303 	 * in PCI-X mode, so add one more descriptor to the count
       
  2304 	 */
       
  2305 	if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
       
  2306 			(len > 2015)))
       
  2307 		count++;
       
  2308 
       
  2309 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  2310 	for(f = 0; f < nr_frags; f++)
       
  2311 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
       
  2312 				       max_txd_pwr);
       
  2313 	if(adapter->pcix_82544)
       
  2314 		count += nr_frags;
       
  2315 
       
  2316 	if (!adapter->ecdev) {
       
  2317 		local_irq_save(flags); 
       
  2318 		if (!spin_trylock(&adapter->tx_lock)) { 
       
  2319 			/* Collision - tell upper layer to requeue */ 
       
  2320 			local_irq_restore(flags); 
       
  2321 			return NETDEV_TX_LOCKED; 
       
  2322 		} 
       
  2323 		if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
       
  2324 			e1000_transfer_dhcp_info(adapter, skb);
       
  2325 	}
       
  2326 
       
  2327 
       
  2328 	/* need: count + 2 desc gap to keep tail from touching
       
  2329 	 * head, otherwise try next time */
       
  2330 	if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
       
  2331 		if (!adapter->ecdev) {
       
  2332 			netif_stop_queue(netdev);
       
  2333 			spin_unlock_irqrestore(&adapter->tx_lock, flags);
       
  2334 		}
       
  2335 		return NETDEV_TX_BUSY;
       
  2336 	}
       
  2337 
       
  2338 	if(unlikely(adapter->hw.mac_type == e1000_82547)) {
       
  2339 		if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
       
  2340 			if (!adapter->ecdev) {
       
  2341 				netif_stop_queue(netdev);
       
  2342                 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
       
  2343 				spin_unlock_irqrestore(&adapter->tx_lock, flags);
       
  2344             }
       
  2345 			return NETDEV_TX_BUSY;
       
  2346 		}
       
  2347 	}
       
  2348 
       
  2349 	if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
       
  2350 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  2351 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  2352 	}
       
  2353 
       
  2354 	first = adapter->tx_ring.next_to_use;
       
  2355 	
       
  2356 	tso = e1000_tso(adapter, skb);
       
  2357 	if (tso < 0) {
       
  2358 		if (!adapter->ecdev) {
       
  2359 			dev_kfree_skb_any(skb);
       
  2360 			spin_unlock_irqrestore(&adapter->tx_lock, flags);
       
  2361 		}
       
  2362 		return NETDEV_TX_OK;
       
  2363 	}
       
  2364 
       
  2365 	if (likely(tso))
       
  2366 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  2367 	else if(likely(e1000_tx_csum(adapter, skb)))
       
  2368 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  2369 
       
  2370 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
       
  2371 	 * 82573 hardware supports TSO capabilities for IPv6 as well...
       
  2372 	 * no longer assume, we must. */
       
  2373 	if(likely(skb->protocol == ntohs(ETH_P_IP)))
       
  2374 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  2375 
       
  2376 	e1000_tx_queue(adapter,
       
  2377 		e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
       
  2378 		tx_flags);
       
  2379 
       
  2380 	netdev->trans_start = jiffies;
       
  2381 
       
  2382 	/* Make sure there is space in the ring for the next send. */
       
  2383 	if (!adapter->ecdev) {
       
  2384 		if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
       
  2385 			netif_stop_queue(netdev);
       
  2386 		spin_unlock_irqrestore(&adapter->tx_lock, flags);
       
  2387 	}
       
  2388 	return NETDEV_TX_OK;
       
  2389 }
       
  2390 
       
  2391 /**
       
  2392  * e1000_tx_timeout - Respond to a Tx Hang
       
  2393  * @netdev: network interface device structure
       
  2394  **/
       
  2395 
       
  2396 static void
       
  2397 e1000_tx_timeout(struct net_device *netdev)
       
  2398 {
       
  2399 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2400 
       
  2401 	/* Do the reset outside of interrupt context */
       
  2402 	schedule_work(&adapter->tx_timeout_task);
       
  2403 }
       
  2404 
       
  2405 static void
       
  2406 e1000_tx_timeout_task(struct net_device *netdev)
       
  2407 {
       
  2408 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2409 
       
  2410 	e1000_down(adapter);
       
  2411 	e1000_up(adapter);
       
  2412 }
       
  2413 
       
  2414 /**
       
  2415  * e1000_get_stats - Get System Network Statistics
       
  2416  * @netdev: network interface device structure
       
  2417  *
       
  2418  * Returns the address of the device statistics structure.
       
  2419  * The statistics are actually updated from the timer callback.
       
  2420  **/
       
  2421 
       
  2422 static struct net_device_stats *
       
  2423 e1000_get_stats(struct net_device *netdev)
       
  2424 {
       
  2425 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2426 
       
  2427 	e1000_update_stats(adapter);
       
  2428 	return &adapter->net_stats;
       
  2429 }
       
  2430 
       
  2431 /**
       
  2432  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  2433  * @netdev: network interface device structure
       
  2434  * @new_mtu: new value for maximum frame size
       
  2435  *
       
  2436  * Returns 0 on success, negative on failure
       
  2437  **/
       
  2438 
       
  2439 static int
       
  2440 e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  2441 {
       
  2442 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2443 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  2444 
       
  2445 	if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
       
  2446 		(max_frame > MAX_JUMBO_FRAME_SIZE)) {
       
  2447 			DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
       
  2448 			return -EINVAL;
       
  2449 	}
       
  2450 
       
  2451 #define MAX_STD_JUMBO_FRAME_SIZE 9216
       
  2452 	/* might want this to be bigger enum check... */
       
  2453 	if (adapter->hw.mac_type == e1000_82573 &&
       
  2454 	    max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  2455 		DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
       
  2456 				    "on 82573\n");
       
  2457 		return -EINVAL;
       
  2458 	}
       
  2459 
       
  2460 	if(adapter->hw.mac_type > e1000_82547_rev_2) {
       
  2461 		adapter->rx_buffer_len = max_frame;
       
  2462 		E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
       
  2463 	} else {
       
  2464 		if(unlikely((adapter->hw.mac_type < e1000_82543) &&
       
  2465 		   (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
       
  2466 			DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
       
  2467 					    "on 82542\n");
       
  2468 			return -EINVAL;
       
  2469 
       
  2470 		} else {
       
  2471 			if(max_frame <= E1000_RXBUFFER_2048) {
       
  2472 				adapter->rx_buffer_len = E1000_RXBUFFER_2048;
       
  2473 			} else if(max_frame <= E1000_RXBUFFER_4096) {
       
  2474 				adapter->rx_buffer_len = E1000_RXBUFFER_4096;
       
  2475 			} else if(max_frame <= E1000_RXBUFFER_8192) {
       
  2476 				adapter->rx_buffer_len = E1000_RXBUFFER_8192;
       
  2477 			} else if(max_frame <= E1000_RXBUFFER_16384) {
       
  2478 				adapter->rx_buffer_len = E1000_RXBUFFER_16384;
       
  2479 			}
       
  2480 		}
       
  2481 	}
       
  2482 
       
  2483 	netdev->mtu = new_mtu;
       
  2484 
       
  2485 	if (adapter->ecdev || netif_running(netdev)) {
       
  2486 		e1000_down(adapter);
       
  2487 		e1000_up(adapter);
       
  2488 	}
       
  2489 
       
  2490 	adapter->hw.max_frame_size = max_frame;
       
  2491 
       
  2492 	return 0;
       
  2493 }
       
  2494 
       
  2495 /**
       
  2496  * e1000_update_stats - Update the board statistics counters
       
  2497  * @adapter: board private structure
       
  2498  **/
       
  2499 
       
  2500 void
       
  2501 e1000_update_stats(struct e1000_adapter *adapter)
       
  2502 {
       
  2503 	struct e1000_hw *hw = &adapter->hw;
       
  2504 	unsigned long flags = 0;
       
  2505 	uint16_t phy_tmp;
       
  2506 
       
  2507 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
       
  2508 
       
  2509 	if (!adapter->ecdev)
       
  2510 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  2511 
       
  2512 	/* these counters are modified from e1000_adjust_tbi_stats,
       
  2513 	 * called from the interrupt context, so they must only
       
  2514 	 * be written while holding adapter->stats_lock
       
  2515 	 */
       
  2516 
       
  2517 	adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
       
  2518 	adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
       
  2519 	adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
       
  2520 	adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
       
  2521 	adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
       
  2522 	adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
       
  2523 	adapter->stats.roc += E1000_READ_REG(hw, ROC);
       
  2524 	adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
       
  2525 	adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
       
  2526 	adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
       
  2527 	adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
       
  2528 	adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
       
  2529 	adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
       
  2530 
       
  2531 	adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
       
  2532 	adapter->stats.mpc += E1000_READ_REG(hw, MPC);
       
  2533 	adapter->stats.scc += E1000_READ_REG(hw, SCC);
       
  2534 	adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
       
  2535 	adapter->stats.mcc += E1000_READ_REG(hw, MCC);
       
  2536 	adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
       
  2537 	adapter->stats.dc += E1000_READ_REG(hw, DC);
       
  2538 	adapter->stats.sec += E1000_READ_REG(hw, SEC);
       
  2539 	adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
       
  2540 	adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
       
  2541 	adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
       
  2542 	adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
       
  2543 	adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
       
  2544 	adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
       
  2545 	adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
       
  2546 	adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
       
  2547 	adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
       
  2548 	adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
       
  2549 	adapter->stats.ruc += E1000_READ_REG(hw, RUC);
       
  2550 	adapter->stats.rfc += E1000_READ_REG(hw, RFC);
       
  2551 	adapter->stats.rjc += E1000_READ_REG(hw, RJC);
       
  2552 	adapter->stats.torl += E1000_READ_REG(hw, TORL);
       
  2553 	adapter->stats.torh += E1000_READ_REG(hw, TORH);
       
  2554 	adapter->stats.totl += E1000_READ_REG(hw, TOTL);
       
  2555 	adapter->stats.toth += E1000_READ_REG(hw, TOTH);
       
  2556 	adapter->stats.tpr += E1000_READ_REG(hw, TPR);
       
  2557 	adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
       
  2558 	adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
       
  2559 	adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
       
  2560 	adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
       
  2561 	adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
       
  2562 	adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
       
  2563 	adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
       
  2564 	adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
       
  2565 
       
  2566 	/* used for adaptive IFS */
       
  2567 
       
  2568 	hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
       
  2569 	adapter->stats.tpt += hw->tx_packet_delta;
       
  2570 	hw->collision_delta = E1000_READ_REG(hw, COLC);
       
  2571 	adapter->stats.colc += hw->collision_delta;
       
  2572 
       
  2573 	if(hw->mac_type >= e1000_82543) {
       
  2574 		adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
       
  2575 		adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
       
  2576 		adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
       
  2577 		adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
       
  2578 		adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
       
  2579 		adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
       
  2580 	}
       
  2581 	if(hw->mac_type > e1000_82547_rev_2) {
       
  2582 		adapter->stats.iac += E1000_READ_REG(hw, IAC);
       
  2583 		adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
       
  2584 		adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
       
  2585 		adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
       
  2586 		adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
       
  2587 		adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
       
  2588 		adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
       
  2589 		adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
       
  2590 		adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
       
  2591 	}
       
  2592 
       
  2593 	/* Fill out the OS statistics structure */
       
  2594 
       
  2595 	adapter->net_stats.rx_packets = adapter->stats.gprc;
       
  2596 	adapter->net_stats.tx_packets = adapter->stats.gptc;
       
  2597 	adapter->net_stats.rx_bytes = adapter->stats.gorcl;
       
  2598 	adapter->net_stats.tx_bytes = adapter->stats.gotcl;
       
  2599 	adapter->net_stats.multicast = adapter->stats.mprc;
       
  2600 	adapter->net_stats.collisions = adapter->stats.colc;
       
  2601 
       
  2602 	/* Rx Errors */
       
  2603 
       
  2604 	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
       
  2605 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  2606 		adapter->stats.rlec + adapter->stats.mpc + 
       
  2607 		adapter->stats.cexterr;
       
  2608 	adapter->net_stats.rx_dropped = adapter->stats.mpc;
       
  2609 	adapter->net_stats.rx_length_errors = adapter->stats.rlec;
       
  2610 	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
       
  2611 	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
       
  2612 	adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
       
  2613 	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
       
  2614 
       
  2615 	/* Tx Errors */
       
  2616 
       
  2617 	adapter->net_stats.tx_errors = adapter->stats.ecol +
       
  2618 	                               adapter->stats.latecol;
       
  2619 	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
       
  2620 	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
       
  2621 	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
       
  2622 
       
  2623 	/* Tx Dropped needs to be maintained elsewhere */
       
  2624 
       
  2625 	/* Phy Stats */
       
  2626 
       
  2627 	if(hw->media_type == e1000_media_type_copper) {
       
  2628 		if((adapter->link_speed == SPEED_1000) &&
       
  2629 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
       
  2630 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
       
  2631 			adapter->phy_stats.idle_errors += phy_tmp;
       
  2632 		}
       
  2633 
       
  2634 		if((hw->mac_type <= e1000_82546) &&
       
  2635 		   (hw->phy_type == e1000_phy_m88) &&
       
  2636 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
       
  2637 			adapter->phy_stats.receive_errors += phy_tmp;
       
  2638 	}
       
  2639 
       
  2640 	if (!adapter->ecdev)
       
  2641 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  2642 }
       
  2643 
       
  2644 void ec_poll(struct net_device *netdev)
       
  2645 {
       
  2646     struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2647 
       
  2648     if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) {
       
  2649         e1000_watchdog_task(adapter);
       
  2650         adapter->ec_watchdog_jiffies = jiffies;
       
  2651     }
       
  2652 
       
  2653     e1000_intr(0, netdev, NULL);
       
  2654 }
       
  2655 
       
  2656 /**
       
  2657  * e1000_intr - Interrupt Handler
       
  2658  * @irq: interrupt number
       
  2659  * @data: pointer to a network interface device structure
       
  2660  * @pt_regs: CPU registers structure
       
  2661  **/
       
  2662 
       
  2663 static irqreturn_t
       
  2664 e1000_intr(int irq, void *data, struct pt_regs *regs)
       
  2665 {
       
  2666 	struct net_device *netdev = data;
       
  2667 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2668 	struct e1000_hw *hw = &adapter->hw;
       
  2669 	uint32_t icr = E1000_READ_REG(hw, ICR);
       
  2670 #ifndef CONFIG_E1000_NAPI
       
  2671 	unsigned int i;
       
  2672 #endif
       
  2673 
       
  2674 	if(unlikely(!icr))
       
  2675 		return IRQ_NONE;  /* Not our interrupt */
       
  2676 
       
  2677 	if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
       
  2678 		hw->get_link_status = 1;
       
  2679 		if (!adapter->ecdev)
       
  2680             mod_timer(&adapter->watchdog_timer, jiffies);
       
  2681 	}
       
  2682 
       
  2683 #ifdef CONFIG_E1000_NAPI
       
  2684 	if(!adapter->ecdev && likely(netif_rx_schedule_prep(netdev))) {
       
  2685 
       
  2686 		/* Disable interrupts and register for poll. The flush 
       
  2687 		  of the posted write is intentionally left out.
       
  2688 		*/
       
  2689 
       
  2690 		atomic_inc(&adapter->irq_sem);
       
  2691 		E1000_WRITE_REG(hw, IMC, ~0);
       
  2692 		__netif_rx_schedule(netdev);
       
  2693 	}
       
  2694 #else
       
  2695 	/* Writing IMC and IMS is needed for 82547.
       
  2696 	   Due to Hub Link bus being occupied, an interrupt
       
  2697 	   de-assertion message is not able to be sent.
       
  2698 	   When an interrupt assertion message is generated later,
       
  2699 	   two messages are re-ordered and sent out.
       
  2700 	   That causes APIC to think 82547 is in de-assertion
       
  2701 	   state, while 82547 is in assertion state, resulting
       
  2702 	   in dead lock. Writing IMC forces 82547 into
       
  2703 	   de-assertion state.
       
  2704 	*/
       
  2705 	if(!adapter->ecdev &&
       
  2706 			(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)){
       
  2707 		atomic_inc(&adapter->irq_sem);
       
  2708 		E1000_WRITE_REG(hw, IMC, ~0);
       
  2709 	}
       
  2710 
       
  2711 	for(i = 0; i < E1000_MAX_INTR; i++)
       
  2712 		if(unlikely(!adapter->clean_rx(adapter) &
       
  2713 		   !e1000_clean_tx_irq(adapter)))
       
  2714 			break;
       
  2715 
       
  2716 	if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
       
  2717 		e1000_irq_enable(adapter);
       
  2718 #endif
       
  2719 
       
  2720 	return IRQ_HANDLED;
       
  2721 }
       
  2722 
       
  2723 #ifdef CONFIG_E1000_NAPI
       
  2724 /**
       
  2725  * e1000_clean - NAPI Rx polling callback
       
  2726  * @adapter: board private structure
       
  2727  **/
       
  2728 
       
  2729 static int
       
  2730 e1000_clean(struct net_device *netdev, int *budget) // never called for EtherCAT
       
  2731 {
       
  2732 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2733 	int work_to_do = min(*budget, netdev->quota);
       
  2734 	int tx_cleaned;
       
  2735 	int work_done = 0;
       
  2736 
       
  2737 	tx_cleaned = e1000_clean_tx_irq(adapter);
       
  2738 	adapter->clean_rx(adapter, &work_done, work_to_do);
       
  2739 
       
  2740 	*budget -= work_done;
       
  2741 	netdev->quota -= work_done;
       
  2742 	
       
  2743 	if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
       
  2744 	/* If no Tx and not enough Rx work done, exit the polling mode */
       
  2745 		netif_rx_complete(netdev);
       
  2746 		e1000_irq_enable(adapter);
       
  2747 		return 0;
       
  2748 	}
       
  2749 
       
  2750 	return 1;
       
  2751 }
       
  2752 
       
  2753 #endif
       
  2754 /**
       
  2755  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
  2756  * @adapter: board private structure
       
  2757  **/
       
  2758 
       
  2759 static boolean_t
       
  2760 e1000_clean_tx_irq(struct e1000_adapter *adapter)
       
  2761 {
       
  2762 	struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
       
  2763 	struct net_device *netdev = adapter->netdev;
       
  2764 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
  2765 	struct e1000_buffer *buffer_info;
       
  2766 	unsigned int i, eop;
       
  2767 	boolean_t cleaned = FALSE;
       
  2768 
       
  2769 	i = tx_ring->next_to_clean;
       
  2770 	eop = tx_ring->buffer_info[i].next_to_watch;
       
  2771 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  2772 
       
  2773 	while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
       
  2774 		/* Premature writeback of Tx descriptors clear (free buffers
       
  2775 		 * and unmap pci_mapping) previous_buffer_info */
       
  2776 		if (likely(adapter->previous_buffer_info.skb != NULL)) {
       
  2777 			e1000_unmap_and_free_tx_resource(adapter,
       
  2778 					&adapter->previous_buffer_info);
       
  2779 		}
       
  2780 
       
  2781 		for(cleaned = FALSE; !cleaned; ) {
       
  2782 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  2783 			buffer_info = &tx_ring->buffer_info[i];
       
  2784 			cleaned = (i == eop);
       
  2785 
       
  2786 #ifdef NETIF_F_TSO
       
  2787 			if (!(netdev->features & NETIF_F_TSO)) {
       
  2788 #endif
       
  2789 				e1000_unmap_and_free_tx_resource(adapter,
       
  2790 				                                 buffer_info);
       
  2791 #ifdef NETIF_F_TSO
       
  2792 			} else {
       
  2793 				if (cleaned) {
       
  2794 					memcpy(&adapter->previous_buffer_info,
       
  2795 					       buffer_info,
       
  2796 					       sizeof(struct e1000_buffer));
       
  2797 					memset(buffer_info, 0,
       
  2798 					       sizeof(struct e1000_buffer));
       
  2799 				} else {
       
  2800 					e1000_unmap_and_free_tx_resource(
       
  2801 					    adapter, buffer_info);
       
  2802 				}
       
  2803 			}
       
  2804 #endif
       
  2805 
       
  2806 			tx_desc->buffer_addr = 0;
       
  2807 			tx_desc->lower.data = 0;
       
  2808 			tx_desc->upper.data = 0;
       
  2809 
       
  2810 			if(unlikely(++i == tx_ring->count)) i = 0;
       
  2811 		}
       
  2812 		
       
  2813 		eop = tx_ring->buffer_info[i].next_to_watch;
       
  2814 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  2815 	}
       
  2816 
       
  2817 	tx_ring->next_to_clean = i;
       
  2818 
       
  2819 	if (!adapter->ecdev) {
       
  2820 		spin_lock(&adapter->tx_lock);
       
  2821 
       
  2822 		if(unlikely(cleaned && netif_queue_stopped(netdev) &&
       
  2823 					netif_carrier_ok(netdev)))
       
  2824 			netif_wake_queue(netdev);
       
  2825 
       
  2826 		spin_unlock(&adapter->tx_lock);
       
  2827 	}
       
  2828 
       
  2829 	if(!adapter->ecdev && adapter->detect_tx_hung) {
       
  2830 
       
  2831 		/* Detect a transmit hang in hardware, this serializes the
       
  2832 		 * check with the clearing of time_stamp and movement of i */
       
  2833 		adapter->detect_tx_hung = FALSE;
       
  2834 		if (tx_ring->buffer_info[i].dma &&
       
  2835 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
       
  2836 		    && !(E1000_READ_REG(&adapter->hw, STATUS) &
       
  2837 			E1000_STATUS_TXOFF)) {
       
  2838 
       
  2839 			/* detected Tx unit hang */
       
  2840 			i = tx_ring->next_to_clean;
       
  2841 			eop = tx_ring->buffer_info[i].next_to_watch;
       
  2842 			eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  2843 			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
       
  2844 					"  TDH                  <%x>\n"
       
  2845 					"  TDT                  <%x>\n"
       
  2846 					"  next_to_use          <%x>\n"
       
  2847 					"  next_to_clean        <%x>\n"
       
  2848 					"buffer_info[next_to_clean]\n"
       
  2849 					"  dma                  <%zx>\n"
       
  2850 					"  time_stamp           <%lx>\n"
       
  2851 					"  next_to_watch        <%x>\n"
       
  2852 					"  jiffies              <%lx>\n"
       
  2853 					"  next_to_watch.status <%x>\n",
       
  2854 				E1000_READ_REG(&adapter->hw, TDH),
       
  2855 				E1000_READ_REG(&adapter->hw, TDT),
       
  2856 				tx_ring->next_to_use,
       
  2857 				i,
       
  2858 				tx_ring->buffer_info[i].dma,
       
  2859 				tx_ring->buffer_info[i].time_stamp,
       
  2860 				eop,
       
  2861 				jiffies,
       
  2862 				eop_desc->upper.fields.status);
       
  2863 			netif_stop_queue(netdev);
       
  2864 		}
       
  2865 	}
       
  2866 #ifdef NETIF_F_TSO
       
  2867 
       
  2868 	if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
       
  2869 	    time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
       
  2870 		e1000_unmap_and_free_tx_resource(
       
  2871 		    adapter, &adapter->previous_buffer_info);
       
  2872 
       
  2873 #endif
       
  2874 	return cleaned;
       
  2875 }
       
  2876 
       
  2877 /**
       
  2878  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
  2879  * @adapter:     board private structure
       
  2880  * @status_err:  receive descriptor status and error fields
       
  2881  * @csum:        receive descriptor csum field
       
  2882  * @sk_buff:     socket buffer with received data
       
  2883  **/
       
  2884 
       
  2885 static inline void
       
  2886 e1000_rx_checksum(struct e1000_adapter *adapter,
       
  2887 		  uint32_t status_err, uint32_t csum,
       
  2888 		  struct sk_buff *skb)
       
  2889 {
       
  2890 	uint16_t status = (uint16_t)status_err;
       
  2891 	uint8_t errors = (uint8_t)(status_err >> 24);
       
  2892 	skb->ip_summed = CHECKSUM_NONE;
       
  2893 
       
  2894 	/* 82543 or newer only */
       
  2895 	if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
       
  2896 	/* Ignore Checksum bit is set */
       
  2897 	if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
       
  2898 	/* TCP/UDP checksum error bit is set */
       
  2899 	if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
       
  2900 		/* let the stack verify checksum errors */
       
  2901 		adapter->hw_csum_err++;
       
  2902 		return;
       
  2903 	}
       
  2904 	/* TCP/UDP Checksum has not been calculated */
       
  2905 	if(adapter->hw.mac_type <= e1000_82547_rev_2) {
       
  2906 		if(!(status & E1000_RXD_STAT_TCPCS))
       
  2907 			return;
       
  2908 	} else {
       
  2909 		if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
       
  2910 			return;
       
  2911 	}
       
  2912 	/* It must be a TCP or UDP packet with a valid checksum */
       
  2913 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
       
  2914 		/* TCP checksum is good */
       
  2915 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
  2916 	} else if (adapter->hw.mac_type > e1000_82547_rev_2) {
       
  2917 		/* IP fragment with UDP payload */
       
  2918 		/* Hardware complements the payload checksum, so we undo it
       
  2919 		 * and then put the value in host order for further stack use.
       
  2920 		 */
       
  2921 		csum = ntohl(csum ^ 0xFFFF);
       
  2922 		skb->csum = csum;
       
  2923 		skb->ip_summed = CHECKSUM_HW;
       
  2924 	}
       
  2925 	adapter->hw_csum_good++;
       
  2926 }
       
  2927 
       
  2928 /**
       
  2929  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
  2930  * @adapter: board private structure
       
  2931  **/
       
  2932 
       
  2933 static boolean_t
       
  2934 #ifdef CONFIG_E1000_NAPI
       
  2935 e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
       
  2936                    int work_to_do)
       
  2937 #else
       
  2938 e1000_clean_rx_irq(struct e1000_adapter *adapter)
       
  2939 #endif
       
  2940 {
       
  2941 	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
       
  2942 	struct net_device *netdev = adapter->netdev;
       
  2943 	struct pci_dev *pdev = adapter->pdev;
       
  2944 	struct e1000_rx_desc *rx_desc;
       
  2945 	struct e1000_buffer *buffer_info;
       
  2946 	struct sk_buff *skb;
       
  2947 	unsigned long flags;
       
  2948 	uint32_t length;
       
  2949 	uint8_t last_byte;
       
  2950 	unsigned int i;
       
  2951 	boolean_t cleaned = FALSE;
       
  2952 
       
  2953 	i = rx_ring->next_to_clean;
       
  2954 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  2955 
       
  2956 	while(rx_desc->status & E1000_RXD_STAT_DD) {
       
  2957 		buffer_info = &rx_ring->buffer_info[i];
       
  2958 #ifdef CONFIG_E1000_NAPI
       
  2959 		if(*work_done >= work_to_do)
       
  2960 			break;
       
  2961 		(*work_done)++;
       
  2962 #endif
       
  2963 		cleaned = TRUE;
       
  2964 
       
  2965 		pci_unmap_single(pdev,
       
  2966 		                 buffer_info->dma,
       
  2967 		                 buffer_info->length,
       
  2968 		                 PCI_DMA_FROMDEVICE);
       
  2969 
       
  2970 		skb = buffer_info->skb;
       
  2971 		length = le16_to_cpu(rx_desc->length);
       
  2972 
       
  2973 		if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
       
  2974 			/* All receives must fit into a single buffer */
       
  2975 			E1000_DBG("%s: Receive packet consumed multiple"
       
  2976 				  " buffers\n", netdev->name);
       
  2977 			if (!adapter->ecdev) dev_kfree_skb_irq(skb);
       
  2978 			goto next_desc;
       
  2979 		}
       
  2980 
       
  2981 		if(!adapter->ecdev && unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
       
  2982 			last_byte = *(skb->data + length - 1);
       
  2983 			if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
       
  2984 			              rx_desc->errors, length, last_byte)) {
       
  2985 				spin_lock_irqsave(&adapter->stats_lock, flags);
       
  2986 				e1000_tbi_adjust_stats(&adapter->hw,
       
  2987 				                       &adapter->stats,
       
  2988 				                       length, skb->data);
       
  2989 				spin_unlock_irqrestore(&adapter->stats_lock,
       
  2990 				                       flags);
       
  2991 				length--;
       
  2992 			} else {
       
  2993 				dev_kfree_skb_irq(skb);
       
  2994 				goto next_desc;
       
  2995 			}
       
  2996 		}
       
  2997 
       
  2998 		/* Good Receive */
       
  2999 		skb_put(skb, length - ETHERNET_FCS_SIZE);
       
  3000 
       
  3001 		/* Receive Checksum Offload */
       
  3002 		e1000_rx_checksum(adapter,
       
  3003 				  (uint32_t)(rx_desc->status) |
       
  3004 				  ((uint32_t)(rx_desc->errors) << 24),
       
  3005 				  rx_desc->csum, skb);
       
  3006 		if (adapter->ecdev) {
       
  3007 			ecdev_receive(adapter->ecdev, skb->data, length);
       
  3008 			skb_trim(skb, 0);
       
  3009 
       
  3010 			if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
       
  3011 				/* Force memory writes to complete before letting h/w
       
  3012 				 * know there are new descriptors to fetch.  (Only
       
  3013 				 * applicable for weak-ordered memory model archs,
       
  3014 				 * such as IA-64). */
       
  3015 				wmb();
       
  3016 				E1000_WRITE_REG(&adapter->hw, RDT, i);
       
  3017 			}
       
  3018 		} else {
       
  3019 			skb->protocol = eth_type_trans(skb, netdev);
       
  3020 #ifdef CONFIG_E1000_NAPI
       
  3021 			if(unlikely(adapter->vlgrp &&
       
  3022 						(rx_desc->status & E1000_RXD_STAT_VP))) {
       
  3023 				vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  3024 						le16_to_cpu(rx_desc->special) &
       
  3025 						E1000_RXD_SPC_VLAN_MASK);
       
  3026 			} else {
       
  3027 				netif_receive_skb(skb);
       
  3028 			}
       
  3029 #else /* CONFIG_E1000_NAPI */
       
  3030 			if(unlikely(adapter->vlgrp &&
       
  3031 						(rx_desc->status & E1000_RXD_STAT_VP))) {
       
  3032 				vlan_hwaccel_rx(skb, adapter->vlgrp,
       
  3033 						le16_to_cpu(rx_desc->special) &
       
  3034 						E1000_RXD_SPC_VLAN_MASK);
       
  3035 			} else {
       
  3036 				netif_rx(skb);
       
  3037 			}
       
  3038 #endif /* CONFIG_E1000_NAPI */
       
  3039 		}
       
  3040 		netdev->last_rx = jiffies;
       
  3041 
       
  3042 next_desc:
       
  3043 		rx_desc->status = 0;
       
  3044 		if (!adapter->ecdev) buffer_info->skb = NULL;
       
  3045 		if(unlikely(++i == rx_ring->count)) i = 0;
       
  3046 
       
  3047 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  3048 	}
       
  3049 	rx_ring->next_to_clean = i;
       
  3050 	if (adapter->ecdev) {
       
  3051 		rx_ring->next_to_use = i;
       
  3052 	} else {
       
  3053 		adapter->alloc_rx_buf(adapter);
       
  3054 	}
       
  3055 
       
  3056 	return cleaned;
       
  3057 }
       
  3058 
       
  3059 /**
       
  3060  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
       
  3061  * @adapter: board private structure
       
  3062  **/
       
  3063 
       
  3064 static boolean_t
       
  3065 #ifdef CONFIG_E1000_NAPI
       
  3066 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
       
  3067                       int work_to_do)
       
  3068 #else
       
  3069 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
       
  3070 #endif
       
  3071 {
       
  3072 	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
       
  3073 	union e1000_rx_desc_packet_split *rx_desc;
       
  3074 	struct net_device *netdev = adapter->netdev;
       
  3075 	struct pci_dev *pdev = adapter->pdev;
       
  3076 	struct e1000_buffer *buffer_info;
       
  3077 	struct e1000_ps_page *ps_page;
       
  3078 	struct e1000_ps_page_dma *ps_page_dma;
       
  3079 	struct sk_buff *skb;
       
  3080 	unsigned int i, j;
       
  3081 	uint32_t length, staterr;
       
  3082 	boolean_t cleaned = FALSE;
       
  3083 
       
  3084 	i = rx_ring->next_to_clean;
       
  3085 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  3086 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  3087 
       
  3088 	while(staterr & E1000_RXD_STAT_DD) {
       
  3089 		buffer_info = &rx_ring->buffer_info[i];
       
  3090 		ps_page = &rx_ring->ps_page[i];
       
  3091 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  3092 #ifdef CONFIG_E1000_NAPI
       
  3093 		if(unlikely(*work_done >= work_to_do))
       
  3094 			break;
       
  3095 		(*work_done)++;
       
  3096 #endif
       
  3097 		cleaned = TRUE;
       
  3098 		pci_unmap_single(pdev, buffer_info->dma,
       
  3099 				 buffer_info->length,
       
  3100 				 PCI_DMA_FROMDEVICE);
       
  3101 
       
  3102 		skb = buffer_info->skb;
       
  3103 
       
  3104 		if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
       
  3105 			E1000_DBG("%s: Packet Split buffers didn't pick up"
       
  3106 				  " the full packet\n", netdev->name);
       
  3107 			if (!adapter->ecdev) dev_kfree_skb_irq(skb);
       
  3108 			goto next_desc;
       
  3109 		}
       
  3110 
       
  3111 		if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
       
  3112 			if (!adapter->ecdev) dev_kfree_skb_irq(skb);
       
  3113 			goto next_desc;
       
  3114 		}
       
  3115 
       
  3116 		length = le16_to_cpu(rx_desc->wb.middle.length0);
       
  3117 
       
  3118 		if(unlikely(!length)) {
       
  3119 			E1000_DBG("%s: Last part of the packet spanning"
       
  3120 				  " multiple descriptors\n", netdev->name);
       
  3121 			if (!adapter->ecdev) dev_kfree_skb_irq(skb);
       
  3122 			goto next_desc;
       
  3123 		}
       
  3124 
       
  3125 		/* Good Receive */
       
  3126 		skb_put(skb, length);
       
  3127 
       
  3128 		for(j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  3129 			if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
       
  3130 				break;
       
  3131 
       
  3132 			pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
       
  3133 					PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
  3134 			ps_page_dma->ps_page_dma[j] = 0;
       
  3135 			skb_shinfo(skb)->frags[j].page =
       
  3136 				ps_page->ps_page[j];
       
  3137 			ps_page->ps_page[j] = NULL;
       
  3138 			skb_shinfo(skb)->frags[j].page_offset = 0;
       
  3139 			skb_shinfo(skb)->frags[j].size = length;
       
  3140 			skb_shinfo(skb)->nr_frags++;
       
  3141 			skb->len += length;
       
  3142 			skb->data_len += length;
       
  3143 		}
       
  3144 
       
  3145 		e1000_rx_checksum(adapter, staterr,
       
  3146 				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
       
  3147 
       
  3148 #ifdef HAVE_RX_ZERO_COPY
       
  3149 		if(likely(rx_desc->wb.upper.header_status &
       
  3150 			  E1000_RXDPS_HDRSTAT_HDRSP))
       
  3151 			skb_shinfo(skb)->zero_copy = TRUE;
       
  3152 #endif
       
  3153 		if (adapter->ecdev) {
       
  3154 			ecdev_receive(adapter->ecdev, skb->data, length);
       
  3155 			skb_trim(skb, 0);
       
  3156 
       
  3157 			if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
       
  3158 				/* Force memory writes to complete before letting h/w
       
  3159 				 * know there are new descriptors to fetch.  (Only
       
  3160 				 * applicable for weak-ordered memory model archs,
       
  3161 				 * such as IA-64). */
       
  3162 				wmb();
       
  3163 				/* Hardware increments by 16 bytes, but packet split
       
  3164 				 * descriptors are 32 bytes...so we increment tail
       
  3165 				 * twice as much.
       
  3166 				 */
       
  3167 				E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
       
  3168 			}
       
  3169 		} else {
       
  3170 			skb->protocol = eth_type_trans(skb, netdev);
       
  3171 #ifdef CONFIG_E1000_NAPI
       
  3172 			if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
       
  3173 				vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  3174 						le16_to_cpu(rx_desc->wb.middle.vlan) &
       
  3175 						E1000_RXD_SPC_VLAN_MASK);
       
  3176 			} else {
       
  3177 				netif_receive_skb(skb);
       
  3178 			}
       
  3179 #else /* CONFIG_E1000_NAPI */
       
  3180 			if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
       
  3181 				vlan_hwaccel_rx(skb, adapter->vlgrp,
       
  3182 						le16_to_cpu(rx_desc->wb.middle.vlan) &
       
  3183 						E1000_RXD_SPC_VLAN_MASK);
       
  3184 			} else {
       
  3185 				netif_rx(skb);
       
  3186 			}
       
  3187 #endif /* CONFIG_E1000_NAPI */
       
  3188 		}
       
  3189 		netdev->last_rx = jiffies;
       
  3190 
       
  3191 next_desc:
       
  3192 		rx_desc->wb.middle.status_error &= ~0xFF;
       
  3193 		if (!adapter->ecdev) buffer_info->skb = NULL;
       
  3194 		if(unlikely(++i == rx_ring->count)) i = 0;
       
  3195 
       
  3196 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  3197 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  3198 	}
       
  3199 	rx_ring->next_to_clean = i;
       
  3200 	if (adapter->ecdev) { 
       
  3201 		rx_ring->next_to_use = i;
       
  3202 	} else {
       
  3203 		adapter->alloc_rx_buf(adapter);
       
  3204 	}
       
  3205 
       
  3206 	return cleaned;
       
  3207 }
       
  3208 
       
  3209 /**
       
  3210  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
  3211  * @adapter: address of board private structure
       
  3212  **/
       
  3213 
       
  3214 static void
       
  3215 e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
       
  3216 {
       
  3217 	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
       
  3218 	struct net_device *netdev = adapter->netdev;
       
  3219 	struct pci_dev *pdev = adapter->pdev;
       
  3220 	struct e1000_rx_desc *rx_desc;
       
  3221 	struct e1000_buffer *buffer_info;
       
  3222 	struct sk_buff *skb;
       
  3223 	unsigned int i;
       
  3224 	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
       
  3225 
       
  3226 	i = rx_ring->next_to_use;
       
  3227 	buffer_info = &rx_ring->buffer_info[i];
       
  3228 
       
  3229 	while(!buffer_info->skb) {
       
  3230 		skb = dev_alloc_skb(bufsz);
       
  3231 
       
  3232 		if(unlikely(!skb)) {
       
  3233 			/* Better luck next round */
       
  3234 			break;
       
  3235 		}
       
  3236 
       
  3237 		/* Fix for errata 23, can't cross 64kB boundary */
       
  3238 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  3239 			struct sk_buff *oldskb = skb;
       
  3240 			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
       
  3241 					     "at %p\n", bufsz, skb->data);
       
  3242 			/* Try again, without freeing the previous */
       
  3243 			skb = dev_alloc_skb(bufsz);
       
  3244 			/* Failed allocation, critical failure */
       
  3245 			if (!skb) {
       
  3246 				dev_kfree_skb(oldskb);
       
  3247 				break;
       
  3248 			}
       
  3249 
       
  3250 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  3251 				/* give up */
       
  3252 				dev_kfree_skb(skb);
       
  3253 				dev_kfree_skb(oldskb);
       
  3254 				break; /* while !buffer_info->skb */
       
  3255 			} else {
       
  3256 				/* Use new allocation */
       
  3257 				dev_kfree_skb(oldskb);
       
  3258 			}
       
  3259 		}
       
  3260 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  3261 		 * this will result in a 16 byte aligned IP header after
       
  3262 		 * the 14 byte MAC header is removed
       
  3263 		 */
       
  3264 		skb_reserve(skb, NET_IP_ALIGN);
       
  3265 
       
  3266 		skb->dev = netdev;
       
  3267 
       
  3268 		buffer_info->skb = skb;
       
  3269 		buffer_info->length = adapter->rx_buffer_len;
       
  3270 		buffer_info->dma = pci_map_single(pdev,
       
  3271 						  skb->data,
       
  3272 						  adapter->rx_buffer_len,
       
  3273 						  PCI_DMA_FROMDEVICE);
       
  3274 
       
  3275 		/* Fix for errata 23, can't cross 64kB boundary */
       
  3276 		if (!e1000_check_64k_bound(adapter,
       
  3277 					(void *)(unsigned long)buffer_info->dma,
       
  3278 					adapter->rx_buffer_len)) {
       
  3279 			DPRINTK(RX_ERR, ERR,
       
  3280 				"dma align check failed: %u bytes at %p\n",
       
  3281 				adapter->rx_buffer_len,
       
  3282 				(void *)(unsigned long)buffer_info->dma);
       
  3283 			dev_kfree_skb(skb);
       
  3284 			buffer_info->skb = NULL;
       
  3285 
       
  3286 			pci_unmap_single(pdev, buffer_info->dma,
       
  3287 					 adapter->rx_buffer_len,
       
  3288 					 PCI_DMA_FROMDEVICE);
       
  3289 
       
  3290 			break; /* while !buffer_info->skb */
       
  3291 		}
       
  3292 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  3293 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  3294 
       
  3295 		if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
       
  3296 			/* Force memory writes to complete before letting h/w
       
  3297 			 * know there are new descriptors to fetch.  (Only
       
  3298 			 * applicable for weak-ordered memory model archs,
       
  3299 			 * such as IA-64). */
       
  3300 			wmb();
       
  3301 			E1000_WRITE_REG(&adapter->hw, RDT, i);
       
  3302 		}
       
  3303 
       
  3304 		if(unlikely(++i == rx_ring->count)) i = 0;
       
  3305 		buffer_info = &rx_ring->buffer_info[i];
       
  3306 	}
       
  3307 
       
  3308 	rx_ring->next_to_use = i;
       
  3309 }
       
  3310 
       
  3311 /**
       
  3312  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
       
  3313  * @adapter: address of board private structure
       
  3314  **/
       
  3315 
       
  3316 static void
       
  3317 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter)
       
  3318 {
       
  3319 	struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
       
  3320 	struct net_device *netdev = adapter->netdev;
       
  3321 	struct pci_dev *pdev = adapter->pdev;
       
  3322 	union e1000_rx_desc_packet_split *rx_desc;
       
  3323 	struct e1000_buffer *buffer_info;
       
  3324 	struct e1000_ps_page *ps_page;
       
  3325 	struct e1000_ps_page_dma *ps_page_dma;
       
  3326 	struct sk_buff *skb;
       
  3327 	unsigned int i, j;
       
  3328 
       
  3329 	i = rx_ring->next_to_use;
       
  3330 	buffer_info = &rx_ring->buffer_info[i];
       
  3331 	ps_page = &rx_ring->ps_page[i];
       
  3332 	ps_page_dma = &rx_ring->ps_page_dma[i];
       
  3333 
       
  3334 	while(!buffer_info->skb) {
       
  3335 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  3336 
       
  3337 		for(j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  3338 			if(unlikely(!ps_page->ps_page[j])) {
       
  3339 				ps_page->ps_page[j] =
       
  3340 					alloc_page(GFP_ATOMIC);
       
  3341 				if(unlikely(!ps_page->ps_page[j]))
       
  3342 					goto no_buffers;
       
  3343 				ps_page_dma->ps_page_dma[j] =
       
  3344 					pci_map_page(pdev,
       
  3345 						     ps_page->ps_page[j],
       
  3346 						     0, PAGE_SIZE,
       
  3347 						     PCI_DMA_FROMDEVICE);
       
  3348 			}
       
  3349 			/* Refresh the desc even if buffer_addrs didn't
       
  3350 			 * change because each write-back erases this info.
       
  3351 			 */
       
  3352 			rx_desc->read.buffer_addr[j+1] =
       
  3353 				cpu_to_le64(ps_page_dma->ps_page_dma[j]);
       
  3354 		}
       
  3355 
       
  3356 		skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
       
  3357 
       
  3358 		if(unlikely(!skb))
       
  3359 			break;
       
  3360 
       
  3361 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  3362 		 * this will result in a 16 byte aligned IP header after
       
  3363 		 * the 14 byte MAC header is removed
       
  3364 		 */
       
  3365 		skb_reserve(skb, NET_IP_ALIGN);
       
  3366 
       
  3367 		skb->dev = netdev;
       
  3368 
       
  3369 		buffer_info->skb = skb;
       
  3370 		buffer_info->length = adapter->rx_ps_bsize0;
       
  3371 		buffer_info->dma = pci_map_single(pdev, skb->data,
       
  3372 						  adapter->rx_ps_bsize0,
       
  3373 						  PCI_DMA_FROMDEVICE);
       
  3374 
       
  3375 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
       
  3376 
       
  3377 		if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
       
  3378 			/* Force memory writes to complete before letting h/w
       
  3379 			 * know there are new descriptors to fetch.  (Only
       
  3380 			 * applicable for weak-ordered memory model archs,
       
  3381 			 * such as IA-64). */
       
  3382 			wmb();
       
  3383 			/* Hardware increments by 16 bytes, but packet split
       
  3384 			 * descriptors are 32 bytes...so we increment tail
       
  3385 			 * twice as much.
       
  3386 			 */
       
  3387 			E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
       
  3388 		}
       
  3389 
       
  3390 		if(unlikely(++i == rx_ring->count)) i = 0;
       
  3391 		buffer_info = &rx_ring->buffer_info[i];
       
  3392 		ps_page = &rx_ring->ps_page[i];
       
  3393 		ps_page_dma = &rx_ring->ps_page_dma[i];
       
  3394 	}
       
  3395 
       
  3396 no_buffers:
       
  3397 	rx_ring->next_to_use = i;
       
  3398 }
       
  3399 
       
  3400 /**
       
  3401  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
       
  3402  * @adapter:
       
  3403  **/
       
  3404 
       
  3405 static void
       
  3406 e1000_smartspeed(struct e1000_adapter *adapter)
       
  3407 {
       
  3408 	uint16_t phy_status;
       
  3409 	uint16_t phy_ctrl;
       
  3410 
       
  3411 	if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
       
  3412 	   !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
       
  3413 		return;
       
  3414 
       
  3415 	if(adapter->smartspeed == 0) {
       
  3416 		/* If Master/Slave config fault is asserted twice,
       
  3417 		 * we assume back-to-back */
       
  3418 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
       
  3419 		if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  3420 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
       
  3421 		if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  3422 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
       
  3423 		if(phy_ctrl & CR_1000T_MS_ENABLE) {
       
  3424 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
       
  3425 			e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
       
  3426 					    phy_ctrl);
       
  3427 			adapter->smartspeed++;
       
  3428 			if(!e1000_phy_setup_autoneg(&adapter->hw) &&
       
  3429 			   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
       
  3430 				   	       &phy_ctrl)) {
       
  3431 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  3432 					     MII_CR_RESTART_AUTO_NEG);
       
  3433 				e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
       
  3434 						    phy_ctrl);
       
  3435 			}
       
  3436 		}
       
  3437 		return;
       
  3438 	} else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
       
  3439 		/* If still no link, perhaps using 2/3 pair cable */
       
  3440 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
       
  3441 		phy_ctrl |= CR_1000T_MS_ENABLE;
       
  3442 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
       
  3443 		if(!e1000_phy_setup_autoneg(&adapter->hw) &&
       
  3444 		   !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
       
  3445 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  3446 				     MII_CR_RESTART_AUTO_NEG);
       
  3447 			e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
       
  3448 		}
       
  3449 	}
       
  3450 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
       
  3451 	if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
       
  3452 		adapter->smartspeed = 0;
       
  3453 }
       
  3454 
       
  3455 /**
       
  3456  * e1000_ioctl -
       
  3457  * @netdev:
       
  3458  * @ifreq:
       
  3459  * @cmd:
       
  3460  **/
       
  3461 
       
  3462 static int
       
  3463 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  3464 {
       
  3465 	switch (cmd) {
       
  3466 	case SIOCGMIIPHY:
       
  3467 	case SIOCGMIIREG:
       
  3468 	case SIOCSMIIREG:
       
  3469 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  3470 	default:
       
  3471 		return -EOPNOTSUPP;
       
  3472 	}
       
  3473 }
       
  3474 
       
  3475 /**
       
  3476  * e1000_mii_ioctl -
       
  3477  * @netdev:
       
  3478  * @ifreq:
       
  3479  * @cmd:
       
  3480  **/
       
  3481 
       
  3482 static int
       
  3483 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  3484 {
       
  3485 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3486 	struct mii_ioctl_data *data = if_mii(ifr);
       
  3487 	int retval;
       
  3488 	uint16_t mii_reg;
       
  3489 	uint16_t spddplx;
       
  3490 	unsigned long flags;
       
  3491 
       
  3492 	if(adapter->hw.media_type != e1000_media_type_copper)
       
  3493 		return -EOPNOTSUPP;
       
  3494 
       
  3495 	switch (cmd) {
       
  3496 	case SIOCGMIIPHY:
       
  3497 		data->phy_id = adapter->hw.phy_addr;
       
  3498 		break;
       
  3499 	case SIOCGMIIREG:
       
  3500 		if(adapter->ecdev || !capable(CAP_NET_ADMIN))
       
  3501 			return -EPERM;
       
  3502 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3503 		if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
       
  3504 				   &data->val_out)) {
       
  3505 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3506 			return -EIO;
       
  3507 		}
       
  3508 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3509 		break;
       
  3510 	case SIOCSMIIREG:
       
  3511 		if(adapter->ecdev || !capable(CAP_NET_ADMIN))
       
  3512 			return -EPERM;
       
  3513 		if(data->reg_num & ~(0x1F))
       
  3514 			return -EFAULT;
       
  3515 		mii_reg = data->val_in;
       
  3516 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3517 		if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
       
  3518 					mii_reg)) {
       
  3519 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3520 			return -EIO;
       
  3521 		}
       
  3522 		if(adapter->hw.phy_type == e1000_phy_m88) {
       
  3523 			switch (data->reg_num) {
       
  3524 			case PHY_CTRL:
       
  3525 				if(mii_reg & MII_CR_POWER_DOWN)
       
  3526 					break;
       
  3527 				if(mii_reg & MII_CR_AUTO_NEG_EN) {
       
  3528 					adapter->hw.autoneg = 1;
       
  3529 					adapter->hw.autoneg_advertised = 0x2F;
       
  3530 				} else {
       
  3531 					if (mii_reg & 0x40)
       
  3532 						spddplx = SPEED_1000;
       
  3533 					else if (mii_reg & 0x2000)
       
  3534 						spddplx = SPEED_100;
       
  3535 					else
       
  3536 						spddplx = SPEED_10;
       
  3537 					spddplx += (mii_reg & 0x100)
       
  3538 						   ? FULL_DUPLEX :
       
  3539 						   HALF_DUPLEX;
       
  3540 					retval = e1000_set_spd_dplx(adapter,
       
  3541 								    spddplx);
       
  3542 					if(retval) {
       
  3543 						spin_unlock_irqrestore(
       
  3544 							&adapter->stats_lock, 
       
  3545 							flags);
       
  3546 						return retval;
       
  3547 					}
       
  3548 				}
       
  3549 				if(adapter->ecdev || netif_running(adapter->netdev)) {
       
  3550 					e1000_down(adapter);
       
  3551 					e1000_up(adapter);
       
  3552 				} else
       
  3553 					e1000_reset(adapter);
       
  3554 				break;
       
  3555 			case M88E1000_PHY_SPEC_CTRL:
       
  3556 			case M88E1000_EXT_PHY_SPEC_CTRL:
       
  3557 				if(e1000_phy_reset(&adapter->hw)) {
       
  3558 					spin_unlock_irqrestore(
       
  3559 						&adapter->stats_lock, flags);
       
  3560 					return -EIO;
       
  3561 				}
       
  3562 				break;
       
  3563 			}
       
  3564 		} else {
       
  3565 			switch (data->reg_num) {
       
  3566 			case PHY_CTRL:
       
  3567 				if(mii_reg & MII_CR_POWER_DOWN)
       
  3568 					break;
       
  3569 				if(adapter->ecdev || netif_running(adapter->netdev)) {
       
  3570 					e1000_down(adapter);
       
  3571 					e1000_up(adapter);
       
  3572 				} else
       
  3573 					e1000_reset(adapter);
       
  3574 				break;
       
  3575 			}
       
  3576 		}
       
  3577 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3578 		break;
       
  3579 	default:
       
  3580 		return -EOPNOTSUPP;
       
  3581 	}
       
  3582 	return E1000_SUCCESS;
       
  3583 }
       
  3584 
       
  3585 void
       
  3586 e1000_pci_set_mwi(struct e1000_hw *hw)
       
  3587 {
       
  3588 	struct e1000_adapter *adapter = hw->back;
       
  3589 	int ret_val = pci_set_mwi(adapter->pdev);
       
  3590 
       
  3591 	if(ret_val)
       
  3592 		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
       
  3593 }
       
  3594 
       
  3595 void
       
  3596 e1000_pci_clear_mwi(struct e1000_hw *hw)
       
  3597 {
       
  3598 	struct e1000_adapter *adapter = hw->back;
       
  3599 
       
  3600 	pci_clear_mwi(adapter->pdev);
       
  3601 }
       
  3602 
       
  3603 void
       
  3604 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
       
  3605 {
       
  3606 	struct e1000_adapter *adapter = hw->back;
       
  3607 
       
  3608 	pci_read_config_word(adapter->pdev, reg, value);
       
  3609 }
       
  3610 
       
  3611 void
       
  3612 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
       
  3613 {
       
  3614 	struct e1000_adapter *adapter = hw->back;
       
  3615 
       
  3616 	pci_write_config_word(adapter->pdev, reg, *value);
       
  3617 }
       
  3618 
       
  3619 uint32_t
       
  3620 e1000_io_read(struct e1000_hw *hw, unsigned long port)
       
  3621 {
       
  3622 	return inl(port);
       
  3623 }
       
  3624 
       
  3625 void
       
  3626 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
       
  3627 {
       
  3628 	outl(value, port);
       
  3629 }
       
  3630 
       
  3631 static void
       
  3632 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
       
  3633 {
       
  3634 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3635 	uint32_t ctrl, rctl;
       
  3636 
       
  3637 	e1000_irq_disable(adapter);
       
  3638 	adapter->vlgrp = grp;
       
  3639 
       
  3640 	if(grp) {
       
  3641 		/* enable VLAN tag insert/strip */
       
  3642 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  3643 		ctrl |= E1000_CTRL_VME;
       
  3644 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  3645 
       
  3646 		/* enable VLAN receive filtering */
       
  3647 		rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  3648 		rctl |= E1000_RCTL_VFE;
       
  3649 		rctl &= ~E1000_RCTL_CFIEN;
       
  3650 		E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  3651 		e1000_update_mng_vlan(adapter);
       
  3652 	} else {
       
  3653 		/* disable VLAN tag insert/strip */
       
  3654 		ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  3655 		ctrl &= ~E1000_CTRL_VME;
       
  3656 		E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  3657 
       
  3658 		/* disable VLAN filtering */
       
  3659 		rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  3660 		rctl &= ~E1000_RCTL_VFE;
       
  3661 		E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  3662 		if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
       
  3663 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  3664 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  3665 		}
       
  3666 	}
       
  3667 
       
  3668 	e1000_irq_enable(adapter);
       
  3669 }
       
  3670 
       
  3671 static void
       
  3672 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
       
  3673 {
       
  3674 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3675 	uint32_t vfta, index;
       
  3676 	if((adapter->hw.mng_cookie.status &
       
  3677 		E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  3678 		(vid == adapter->mng_vlan_id))
       
  3679 		return;
       
  3680 	/* add VID to filter table */
       
  3681 	index = (vid >> 5) & 0x7F;
       
  3682 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
       
  3683 	vfta |= (1 << (vid & 0x1F));
       
  3684 	e1000_write_vfta(&adapter->hw, index, vfta);
       
  3685 }
       
  3686 
       
  3687 static void
       
  3688 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
       
  3689 {
       
  3690 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3691 	uint32_t vfta, index;
       
  3692 
       
  3693 	e1000_irq_disable(adapter);
       
  3694 
       
  3695 	if(adapter->vlgrp)
       
  3696 		adapter->vlgrp->vlan_devices[vid] = NULL;
       
  3697 
       
  3698 	e1000_irq_enable(adapter);
       
  3699 
       
  3700 	if((adapter->hw.mng_cookie.status &
       
  3701 		E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  3702 		(vid == adapter->mng_vlan_id))
       
  3703 		return;
       
  3704 	/* remove VID from filter table */
       
  3705 	index = (vid >> 5) & 0x7F;
       
  3706 	vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
       
  3707 	vfta &= ~(1 << (vid & 0x1F));
       
  3708 	e1000_write_vfta(&adapter->hw, index, vfta);
       
  3709 }
       
  3710 
       
  3711 static void
       
  3712 e1000_restore_vlan(struct e1000_adapter *adapter)
       
  3713 {
       
  3714 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
       
  3715 
       
  3716 	if(adapter->vlgrp) {
       
  3717 		uint16_t vid;
       
  3718 		for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
       
  3719 			if(!adapter->vlgrp->vlan_devices[vid])
       
  3720 				continue;
       
  3721 			e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  3722 		}
       
  3723 	}
       
  3724 }
       
  3725 
       
  3726 int
       
  3727 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
       
  3728 {
       
  3729 	adapter->hw.autoneg = 0;
       
  3730 
       
  3731 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
  3732 	if((adapter->hw.media_type == e1000_media_type_fiber) &&
       
  3733 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
       
  3734 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  3735 		return -EINVAL;
       
  3736 	}
       
  3737 
       
  3738 	switch(spddplx) {
       
  3739 	case SPEED_10 + DUPLEX_HALF:
       
  3740 		adapter->hw.forced_speed_duplex = e1000_10_half;
       
  3741 		break;
       
  3742 	case SPEED_10 + DUPLEX_FULL:
       
  3743 		adapter->hw.forced_speed_duplex = e1000_10_full;
       
  3744 		break;
       
  3745 	case SPEED_100 + DUPLEX_HALF:
       
  3746 		adapter->hw.forced_speed_duplex = e1000_100_half;
       
  3747 		break;
       
  3748 	case SPEED_100 + DUPLEX_FULL:
       
  3749 		adapter->hw.forced_speed_duplex = e1000_100_full;
       
  3750 		break;
       
  3751 	case SPEED_1000 + DUPLEX_FULL:
       
  3752 		adapter->hw.autoneg = 1;
       
  3753 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
       
  3754 		break;
       
  3755 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
  3756 	default:
       
  3757 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  3758 		return -EINVAL;
       
  3759 	}
       
  3760 	return 0;
       
  3761 }
       
  3762 
       
  3763 static int
       
  3764 e1000_suspend(struct pci_dev *pdev, uint32_t state)
       
  3765 {
       
  3766 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  3767 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3768 	uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
       
  3769 	uint32_t wufc = adapter->wol;
       
  3770 
       
  3771 	if (!adapter->ecdev)
       
  3772 		netif_device_detach(netdev);
       
  3773 
       
  3774 	if (adapter->ecdev || netif_running(netdev))
       
  3775 		e1000_down(adapter);
       
  3776 
       
  3777 	status = E1000_READ_REG(&adapter->hw, STATUS);
       
  3778 	if(status & E1000_STATUS_LU)
       
  3779 		wufc &= ~E1000_WUFC_LNKC;
       
  3780 
       
  3781 	if(wufc) {
       
  3782 		e1000_setup_rctl(adapter);
       
  3783 		e1000_set_multi(netdev);
       
  3784 
       
  3785 		/* turn on all-multi mode if wake on multicast is enabled */
       
  3786 		if(adapter->wol & E1000_WUFC_MC) {
       
  3787 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  3788 			rctl |= E1000_RCTL_MPE;
       
  3789 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  3790 		}
       
  3791 
       
  3792 		if(adapter->hw.mac_type >= e1000_82540) {
       
  3793 			ctrl = E1000_READ_REG(&adapter->hw, CTRL);
       
  3794 			/* advertise wake from D3Cold */
       
  3795 			#define E1000_CTRL_ADVD3WUC 0x00100000
       
  3796 			/* phy power management enable */
       
  3797 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  3798 			ctrl |= E1000_CTRL_ADVD3WUC |
       
  3799 				E1000_CTRL_EN_PHY_PWR_MGMT;
       
  3800 			E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
       
  3801 		}
       
  3802 
       
  3803 		if(adapter->hw.media_type == e1000_media_type_fiber ||
       
  3804 		   adapter->hw.media_type == e1000_media_type_internal_serdes) {
       
  3805 			/* keep the laser running in D3 */
       
  3806 			ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
       
  3807 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
       
  3808 			E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
       
  3809 		}
       
  3810 
       
  3811 		/* Allow time for pending master requests to run */
       
  3812 		e1000_disable_pciex_master(&adapter->hw);
       
  3813 
       
  3814 		E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
       
  3815 		E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
       
  3816 		pci_enable_wake(pdev, 3, 1);
       
  3817 		pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
       
  3818 	} else {
       
  3819 		E1000_WRITE_REG(&adapter->hw, WUC, 0);
       
  3820 		E1000_WRITE_REG(&adapter->hw, WUFC, 0);
       
  3821 		pci_enable_wake(pdev, 3, 0);
       
  3822 		pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
       
  3823 	}
       
  3824 
       
  3825 	pci_save_state(pdev);
       
  3826 
       
  3827 	if(adapter->hw.mac_type >= e1000_82540 &&
       
  3828 	   adapter->hw.media_type == e1000_media_type_copper) {
       
  3829 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
  3830 		if(manc & E1000_MANC_SMBUS_EN) {
       
  3831 			manc |= E1000_MANC_ARP_EN;
       
  3832 			E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
  3833 			pci_enable_wake(pdev, 3, 1);
       
  3834 			pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
       
  3835 		}
       
  3836 	}
       
  3837 
       
  3838 	switch(adapter->hw.mac_type) {
       
  3839 	case e1000_82573:
       
  3840 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
  3841 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
  3842 				swsm & ~E1000_SWSM_DRV_LOAD);
       
  3843 		break;
       
  3844 	default:
       
  3845 		break;
       
  3846 	}
       
  3847 
       
  3848 	pci_disable_device(pdev);
       
  3849 
       
  3850 	state = (state > 0) ? 3 : 0;
       
  3851 	pci_set_power_state(pdev, state);
       
  3852 
       
  3853 	return 0;
       
  3854 }
       
  3855 
       
  3856 #ifdef CONFIG_PM
       
  3857 static int
       
  3858 e1000_resume(struct pci_dev *pdev)
       
  3859 {
       
  3860 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  3861 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3862 	uint32_t manc, ret_val, swsm;
       
  3863 
       
  3864 	pci_set_power_state(pdev, 0);
       
  3865 	pci_restore_state(pdev);
       
  3866 	ret_val = pci_enable_device(pdev);
       
  3867 	pci_set_master(pdev);
       
  3868 
       
  3869 	pci_enable_wake(pdev, 3, 0);
       
  3870 	pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
       
  3871 
       
  3872 	e1000_reset(adapter);
       
  3873 	E1000_WRITE_REG(&adapter->hw, WUS, ~0);
       
  3874 
       
  3875 	if(adapter->ecdev || netif_running(netdev))
       
  3876 		e1000_up(adapter);
       
  3877 
       
  3878 	if (!adapter->ecdev) netif_device_attach(netdev);
       
  3879 
       
  3880 	if(adapter->hw.mac_type >= e1000_82540 &&
       
  3881 	   adapter->hw.media_type == e1000_media_type_copper) {
       
  3882 		manc = E1000_READ_REG(&adapter->hw, MANC);
       
  3883 		manc &= ~(E1000_MANC_ARP_EN);
       
  3884 		E1000_WRITE_REG(&adapter->hw, MANC, manc);
       
  3885 	}
       
  3886 
       
  3887 	switch(adapter->hw.mac_type) {
       
  3888 	case e1000_82573:
       
  3889 		swsm = E1000_READ_REG(&adapter->hw, SWSM);
       
  3890 		E1000_WRITE_REG(&adapter->hw, SWSM,
       
  3891 				swsm | E1000_SWSM_DRV_LOAD);
       
  3892 		break;
       
  3893 	default:
       
  3894 		break;
       
  3895 	}
       
  3896 
       
  3897 	return 0;
       
  3898 }
       
  3899 #endif
       
  3900 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  3901 /*
       
  3902  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  3903  * without having to re-enable interrupts. It's not called while
       
  3904  * the interrupt routine is executing.
       
  3905  */
       
  3906 static void
       
  3907 e1000_netpoll(struct net_device *netdev)
       
  3908 {
       
  3909 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3910 	disable_irq(adapter->pdev->irq);
       
  3911 	e1000_intr(adapter->pdev->irq, netdev, NULL);
       
  3912 	e1000_clean_tx_irq(adapter);
       
  3913 	enable_irq(adapter->pdev->irq);
       
  3914 }
       
  3915 #endif
       
  3916 
       
  3917 /* e1000_main.c */