devices/e1000/e1000_ethtool-2.6.20-orig.c
branchstable-1.3
changeset 1744 7bc131b92039
equal deleted inserted replaced
1743:1a7067207637 1744:7bc131b92039
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* ethtool support for e1000 */
       
    30 
       
    31 #include "e1000.h"
       
    32 
       
    33 #include <asm/uaccess.h>
       
    34 
       
    35 extern char e1000_driver_name[];
       
    36 extern char e1000_driver_version[];
       
    37 
       
    38 extern int e1000_up(struct e1000_adapter *adapter);
       
    39 extern void e1000_down(struct e1000_adapter *adapter);
       
    40 extern void e1000_reinit_locked(struct e1000_adapter *adapter);
       
    41 extern void e1000_reset(struct e1000_adapter *adapter);
       
    42 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
       
    43 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
       
    44 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
       
    45 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
       
    46 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
       
    47 extern void e1000_update_stats(struct e1000_adapter *adapter);
       
    48 
       
    49 
       
    50 struct e1000_stats {
       
    51 	char stat_string[ETH_GSTRING_LEN];
       
    52 	int sizeof_stat;
       
    53 	int stat_offset;
       
    54 };
       
    55 
       
    56 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
       
    57 		      offsetof(struct e1000_adapter, m)
       
    58 static const struct e1000_stats e1000_gstrings_stats[] = {
       
    59 	{ "rx_packets", E1000_STAT(stats.gprc) },
       
    60 	{ "tx_packets", E1000_STAT(stats.gptc) },
       
    61 	{ "rx_bytes", E1000_STAT(stats.gorcl) },
       
    62 	{ "tx_bytes", E1000_STAT(stats.gotcl) },
       
    63 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
       
    64 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
       
    65 	{ "rx_multicast", E1000_STAT(stats.mprc) },
       
    66 	{ "tx_multicast", E1000_STAT(stats.mptc) },
       
    67 	{ "rx_errors", E1000_STAT(stats.rxerrc) },
       
    68 	{ "tx_errors", E1000_STAT(stats.txerrc) },
       
    69 	{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
       
    70 	{ "multicast", E1000_STAT(stats.mprc) },
       
    71 	{ "collisions", E1000_STAT(stats.colc) },
       
    72 	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
       
    73 	{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
       
    74 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
       
    75 	{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
       
    76 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
       
    77 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
       
    78 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
       
    79 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
       
    80 	{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
       
    81 	{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
       
    82 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
       
    83 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
       
    84 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
       
    85 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
       
    86 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
       
    87 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
       
    88 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
       
    89 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
       
    90 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
       
    91 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
       
    92 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
       
    93 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
       
    94 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
       
    95 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
       
    96 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
       
    97 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
       
    98 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
       
    99 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
       
   100 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
       
   101 	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
       
   102 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
       
   103 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
       
   104 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
       
   105 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
       
   106 };
       
   107 
       
   108 #define E1000_QUEUE_STATS_LEN 0
       
   109 #define E1000_GLOBAL_STATS_LEN	\
       
   110 	sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
       
   111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
       
   112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
       
   113 	"Register test  (offline)", "Eeprom test    (offline)",
       
   114 	"Interrupt test (offline)", "Loopback test  (offline)",
       
   115 	"Link test   (on/offline)"
       
   116 };
       
   117 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
       
   118 
       
   119 static int
       
   120 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
       
   121 {
       
   122 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   123 	struct e1000_hw *hw = &adapter->hw;
       
   124 
       
   125 	if (hw->media_type == e1000_media_type_copper) {
       
   126 
       
   127 		ecmd->supported = (SUPPORTED_10baseT_Half |
       
   128 		                   SUPPORTED_10baseT_Full |
       
   129 		                   SUPPORTED_100baseT_Half |
       
   130 		                   SUPPORTED_100baseT_Full |
       
   131 		                   SUPPORTED_1000baseT_Full|
       
   132 		                   SUPPORTED_Autoneg |
       
   133 		                   SUPPORTED_TP);
       
   134 		if (hw->phy_type == e1000_phy_ife)
       
   135 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
       
   136 		ecmd->advertising = ADVERTISED_TP;
       
   137 
       
   138 		if (hw->autoneg == 1) {
       
   139 			ecmd->advertising |= ADVERTISED_Autoneg;
       
   140 			/* the e1000 autoneg seems to match ethtool nicely */
       
   141 			ecmd->advertising |= hw->autoneg_advertised;
       
   142 		}
       
   143 
       
   144 		ecmd->port = PORT_TP;
       
   145 		ecmd->phy_address = hw->phy_addr;
       
   146 
       
   147 		if (hw->mac_type == e1000_82543)
       
   148 			ecmd->transceiver = XCVR_EXTERNAL;
       
   149 		else
       
   150 			ecmd->transceiver = XCVR_INTERNAL;
       
   151 
       
   152 	} else {
       
   153 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
       
   154 				     SUPPORTED_FIBRE |
       
   155 				     SUPPORTED_Autoneg);
       
   156 
       
   157 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
       
   158 				     ADVERTISED_FIBRE |
       
   159 				     ADVERTISED_Autoneg);
       
   160 
       
   161 		ecmd->port = PORT_FIBRE;
       
   162 
       
   163 		if (hw->mac_type >= e1000_82545)
       
   164 			ecmd->transceiver = XCVR_INTERNAL;
       
   165 		else
       
   166 			ecmd->transceiver = XCVR_EXTERNAL;
       
   167 	}
       
   168 
       
   169 	if (netif_carrier_ok(adapter->netdev)) {
       
   170 
       
   171 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
       
   172 		                                   &adapter->link_duplex);
       
   173 		ecmd->speed = adapter->link_speed;
       
   174 
       
   175 		/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
       
   176 		 *          and HALF_DUPLEX != DUPLEX_HALF */
       
   177 
       
   178 		if (adapter->link_duplex == FULL_DUPLEX)
       
   179 			ecmd->duplex = DUPLEX_FULL;
       
   180 		else
       
   181 			ecmd->duplex = DUPLEX_HALF;
       
   182 	} else {
       
   183 		ecmd->speed = -1;
       
   184 		ecmd->duplex = -1;
       
   185 	}
       
   186 
       
   187 	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
       
   188 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
       
   189 	return 0;
       
   190 }
       
   191 
       
   192 static int
       
   193 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
       
   194 {
       
   195 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   196 	struct e1000_hw *hw = &adapter->hw;
       
   197 
       
   198 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
       
   199 	 * cannot be changed */
       
   200 	if (e1000_check_phy_reset_block(hw)) {
       
   201 		DPRINTK(DRV, ERR, "Cannot change link characteristics "
       
   202 		        "when SoL/IDER is active.\n");
       
   203 		return -EINVAL;
       
   204 	}
       
   205 
       
   206 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   207 		msleep(1);
       
   208 
       
   209 	if (ecmd->autoneg == AUTONEG_ENABLE) {
       
   210 		hw->autoneg = 1;
       
   211 		if (hw->media_type == e1000_media_type_fiber)
       
   212 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
       
   213 				     ADVERTISED_FIBRE |
       
   214 				     ADVERTISED_Autoneg;
       
   215 		else
       
   216 			hw->autoneg_advertised = ecmd->advertising |
       
   217 			                         ADVERTISED_TP |
       
   218 			                         ADVERTISED_Autoneg;
       
   219 		ecmd->advertising = hw->autoneg_advertised;
       
   220 	} else
       
   221 		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
       
   222 			clear_bit(__E1000_RESETTING, &adapter->flags);
       
   223 			return -EINVAL;
       
   224 		}
       
   225 
       
   226 	/* reset the link */
       
   227 
       
   228 	if (netif_running(adapter->netdev)) {
       
   229 		e1000_down(adapter);
       
   230 		e1000_up(adapter);
       
   231 	} else
       
   232 		e1000_reset(adapter);
       
   233 
       
   234 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   235 	return 0;
       
   236 }
       
   237 
       
   238 static void
       
   239 e1000_get_pauseparam(struct net_device *netdev,
       
   240                      struct ethtool_pauseparam *pause)
       
   241 {
       
   242 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   243 	struct e1000_hw *hw = &adapter->hw;
       
   244 
       
   245 	pause->autoneg =
       
   246 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
       
   247 
       
   248 	if (hw->fc == E1000_FC_RX_PAUSE)
       
   249 		pause->rx_pause = 1;
       
   250 	else if (hw->fc == E1000_FC_TX_PAUSE)
       
   251 		pause->tx_pause = 1;
       
   252 	else if (hw->fc == E1000_FC_FULL) {
       
   253 		pause->rx_pause = 1;
       
   254 		pause->tx_pause = 1;
       
   255 	}
       
   256 }
       
   257 
       
   258 static int
       
   259 e1000_set_pauseparam(struct net_device *netdev,
       
   260                      struct ethtool_pauseparam *pause)
       
   261 {
       
   262 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   263 	struct e1000_hw *hw = &adapter->hw;
       
   264 	int retval = 0;
       
   265 
       
   266 	adapter->fc_autoneg = pause->autoneg;
       
   267 
       
   268 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   269 		msleep(1);
       
   270 
       
   271 	if (pause->rx_pause && pause->tx_pause)
       
   272 		hw->fc = E1000_FC_FULL;
       
   273 	else if (pause->rx_pause && !pause->tx_pause)
       
   274 		hw->fc = E1000_FC_RX_PAUSE;
       
   275 	else if (!pause->rx_pause && pause->tx_pause)
       
   276 		hw->fc = E1000_FC_TX_PAUSE;
       
   277 	else if (!pause->rx_pause && !pause->tx_pause)
       
   278 		hw->fc = E1000_FC_NONE;
       
   279 
       
   280 	hw->original_fc = hw->fc;
       
   281 
       
   282 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
       
   283 		if (netif_running(adapter->netdev)) {
       
   284 			e1000_down(adapter);
       
   285 			e1000_up(adapter);
       
   286 		} else
       
   287 			e1000_reset(adapter);
       
   288 	} else
       
   289 		retval = ((hw->media_type == e1000_media_type_fiber) ?
       
   290 			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
       
   291 
       
   292 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   293 	return retval;
       
   294 }
       
   295 
       
   296 static uint32_t
       
   297 e1000_get_rx_csum(struct net_device *netdev)
       
   298 {
       
   299 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   300 	return adapter->rx_csum;
       
   301 }
       
   302 
       
   303 static int
       
   304 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
       
   305 {
       
   306 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   307 	adapter->rx_csum = data;
       
   308 
       
   309 	if (netif_running(netdev))
       
   310 		e1000_reinit_locked(adapter);
       
   311 	else
       
   312 		e1000_reset(adapter);
       
   313 	return 0;
       
   314 }
       
   315 
       
   316 static uint32_t
       
   317 e1000_get_tx_csum(struct net_device *netdev)
       
   318 {
       
   319 	return (netdev->features & NETIF_F_HW_CSUM) != 0;
       
   320 }
       
   321 
       
   322 static int
       
   323 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
       
   324 {
       
   325 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   326 
       
   327 	if (adapter->hw.mac_type < e1000_82543) {
       
   328 		if (!data)
       
   329 			return -EINVAL;
       
   330 		return 0;
       
   331 	}
       
   332 
       
   333 	if (data)
       
   334 		netdev->features |= NETIF_F_HW_CSUM;
       
   335 	else
       
   336 		netdev->features &= ~NETIF_F_HW_CSUM;
       
   337 
       
   338 	return 0;
       
   339 }
       
   340 
       
   341 #ifdef NETIF_F_TSO
       
   342 static int
       
   343 e1000_set_tso(struct net_device *netdev, uint32_t data)
       
   344 {
       
   345 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   346 	if ((adapter->hw.mac_type < e1000_82544) ||
       
   347 	    (adapter->hw.mac_type == e1000_82547))
       
   348 		return data ? -EINVAL : 0;
       
   349 
       
   350 	if (data)
       
   351 		netdev->features |= NETIF_F_TSO;
       
   352 	else
       
   353 		netdev->features &= ~NETIF_F_TSO;
       
   354 
       
   355 #ifdef NETIF_F_TSO6
       
   356 	if (data)
       
   357 		netdev->features |= NETIF_F_TSO6;
       
   358 	else
       
   359 		netdev->features &= ~NETIF_F_TSO6;
       
   360 #endif
       
   361 
       
   362 	DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
       
   363 	adapter->tso_force = TRUE;
       
   364 	return 0;
       
   365 }
       
   366 #endif /* NETIF_F_TSO */
       
   367 
       
   368 static uint32_t
       
   369 e1000_get_msglevel(struct net_device *netdev)
       
   370 {
       
   371 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   372 	return adapter->msg_enable;
       
   373 }
       
   374 
       
   375 static void
       
   376 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
       
   377 {
       
   378 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   379 	adapter->msg_enable = data;
       
   380 }
       
   381 
       
   382 static int
       
   383 e1000_get_regs_len(struct net_device *netdev)
       
   384 {
       
   385 #define E1000_REGS_LEN 32
       
   386 	return E1000_REGS_LEN * sizeof(uint32_t);
       
   387 }
       
   388 
       
   389 static void
       
   390 e1000_get_regs(struct net_device *netdev,
       
   391 	       struct ethtool_regs *regs, void *p)
       
   392 {
       
   393 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   394 	struct e1000_hw *hw = &adapter->hw;
       
   395 	uint32_t *regs_buff = p;
       
   396 	uint16_t phy_data;
       
   397 
       
   398 	memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
       
   399 
       
   400 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
       
   401 
       
   402 	regs_buff[0]  = E1000_READ_REG(hw, CTRL);
       
   403 	regs_buff[1]  = E1000_READ_REG(hw, STATUS);
       
   404 
       
   405 	regs_buff[2]  = E1000_READ_REG(hw, RCTL);
       
   406 	regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
       
   407 	regs_buff[4]  = E1000_READ_REG(hw, RDH);
       
   408 	regs_buff[5]  = E1000_READ_REG(hw, RDT);
       
   409 	regs_buff[6]  = E1000_READ_REG(hw, RDTR);
       
   410 
       
   411 	regs_buff[7]  = E1000_READ_REG(hw, TCTL);
       
   412 	regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
       
   413 	regs_buff[9]  = E1000_READ_REG(hw, TDH);
       
   414 	regs_buff[10] = E1000_READ_REG(hw, TDT);
       
   415 	regs_buff[11] = E1000_READ_REG(hw, TIDV);
       
   416 
       
   417 	regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
       
   418 	if (hw->phy_type == e1000_phy_igp) {
       
   419 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   420 				    IGP01E1000_PHY_AGC_A);
       
   421 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
       
   422 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   423 		regs_buff[13] = (uint32_t)phy_data; /* cable length */
       
   424 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   425 				    IGP01E1000_PHY_AGC_B);
       
   426 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
       
   427 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   428 		regs_buff[14] = (uint32_t)phy_data; /* cable length */
       
   429 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   430 				    IGP01E1000_PHY_AGC_C);
       
   431 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
       
   432 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   433 		regs_buff[15] = (uint32_t)phy_data; /* cable length */
       
   434 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   435 				    IGP01E1000_PHY_AGC_D);
       
   436 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
       
   437 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   438 		regs_buff[16] = (uint32_t)phy_data; /* cable length */
       
   439 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
       
   440 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
       
   441 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
       
   442 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   443 		regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
       
   444 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   445 				    IGP01E1000_PHY_PCS_INIT_REG);
       
   446 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
       
   447 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   448 		regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
       
   449 		regs_buff[20] = 0; /* polarity correction enabled (always) */
       
   450 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
       
   451 		regs_buff[23] = regs_buff[18]; /* mdix mode */
       
   452 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
       
   453 	} else {
       
   454 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
   455 		regs_buff[13] = (uint32_t)phy_data; /* cable length */
       
   456 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   457 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   458 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   459 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   460 		regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
       
   461 		regs_buff[18] = regs_buff[13]; /* cable polarity */
       
   462 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   463 		regs_buff[20] = regs_buff[17]; /* polarity correction */
       
   464 		/* phy receive errors */
       
   465 		regs_buff[22] = adapter->phy_stats.receive_errors;
       
   466 		regs_buff[23] = regs_buff[13]; /* mdix mode */
       
   467 	}
       
   468 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
       
   469 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
       
   470 	regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
       
   471 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
       
   472 	if (hw->mac_type >= e1000_82540 &&
       
   473 	    hw->mac_type < e1000_82571 &&
       
   474 	    hw->media_type == e1000_media_type_copper) {
       
   475 		regs_buff[26] = E1000_READ_REG(hw, MANC);
       
   476 	}
       
   477 }
       
   478 
       
   479 static int
       
   480 e1000_get_eeprom_len(struct net_device *netdev)
       
   481 {
       
   482 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   483 	return adapter->hw.eeprom.word_size * 2;
       
   484 }
       
   485 
       
   486 static int
       
   487 e1000_get_eeprom(struct net_device *netdev,
       
   488                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
       
   489 {
       
   490 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   491 	struct e1000_hw *hw = &adapter->hw;
       
   492 	uint16_t *eeprom_buff;
       
   493 	int first_word, last_word;
       
   494 	int ret_val = 0;
       
   495 	uint16_t i;
       
   496 
       
   497 	if (eeprom->len == 0)
       
   498 		return -EINVAL;
       
   499 
       
   500 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
       
   501 
       
   502 	first_word = eeprom->offset >> 1;
       
   503 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   504 
       
   505 	eeprom_buff = kmalloc(sizeof(uint16_t) *
       
   506 			(last_word - first_word + 1), GFP_KERNEL);
       
   507 	if (!eeprom_buff)
       
   508 		return -ENOMEM;
       
   509 
       
   510 	if (hw->eeprom.type == e1000_eeprom_spi)
       
   511 		ret_val = e1000_read_eeprom(hw, first_word,
       
   512 					    last_word - first_word + 1,
       
   513 					    eeprom_buff);
       
   514 	else {
       
   515 		for (i = 0; i < last_word - first_word + 1; i++)
       
   516 			if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
       
   517 							&eeprom_buff[i])))
       
   518 				break;
       
   519 	}
       
   520 
       
   521 	/* Device's eeprom is always little-endian, word addressable */
       
   522 	for (i = 0; i < last_word - first_word + 1; i++)
       
   523 		le16_to_cpus(&eeprom_buff[i]);
       
   524 
       
   525 	memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
       
   526 			eeprom->len);
       
   527 	kfree(eeprom_buff);
       
   528 
       
   529 	return ret_val;
       
   530 }
       
   531 
       
   532 static int
       
   533 e1000_set_eeprom(struct net_device *netdev,
       
   534                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
       
   535 {
       
   536 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   537 	struct e1000_hw *hw = &adapter->hw;
       
   538 	uint16_t *eeprom_buff;
       
   539 	void *ptr;
       
   540 	int max_len, first_word, last_word, ret_val = 0;
       
   541 	uint16_t i;
       
   542 
       
   543 	if (eeprom->len == 0)
       
   544 		return -EOPNOTSUPP;
       
   545 
       
   546 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
       
   547 		return -EFAULT;
       
   548 
       
   549 	max_len = hw->eeprom.word_size * 2;
       
   550 
       
   551 	first_word = eeprom->offset >> 1;
       
   552 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   553 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
       
   554 	if (!eeprom_buff)
       
   555 		return -ENOMEM;
       
   556 
       
   557 	ptr = (void *)eeprom_buff;
       
   558 
       
   559 	if (eeprom->offset & 1) {
       
   560 		/* need read/modify/write of first changed EEPROM word */
       
   561 		/* only the second byte of the word is being modified */
       
   562 		ret_val = e1000_read_eeprom(hw, first_word, 1,
       
   563 					    &eeprom_buff[0]);
       
   564 		ptr++;
       
   565 	}
       
   566 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
       
   567 		/* need read/modify/write of last changed EEPROM word */
       
   568 		/* only the first byte of the word is being modified */
       
   569 		ret_val = e1000_read_eeprom(hw, last_word, 1,
       
   570 		                  &eeprom_buff[last_word - first_word]);
       
   571 	}
       
   572 
       
   573 	/* Device's eeprom is always little-endian, word addressable */
       
   574 	for (i = 0; i < last_word - first_word + 1; i++)
       
   575 		le16_to_cpus(&eeprom_buff[i]);
       
   576 
       
   577 	memcpy(ptr, bytes, eeprom->len);
       
   578 
       
   579 	for (i = 0; i < last_word - first_word + 1; i++)
       
   580 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
       
   581 
       
   582 	ret_val = e1000_write_eeprom(hw, first_word,
       
   583 				     last_word - first_word + 1, eeprom_buff);
       
   584 
       
   585 	/* Update the checksum over the first part of the EEPROM if needed
       
   586 	 * and flush shadow RAM for 82573 conrollers */
       
   587 	if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
       
   588 				(hw->mac_type == e1000_82573)))
       
   589 		e1000_update_eeprom_checksum(hw);
       
   590 
       
   591 	kfree(eeprom_buff);
       
   592 	return ret_val;
       
   593 }
       
   594 
       
   595 static void
       
   596 e1000_get_drvinfo(struct net_device *netdev,
       
   597                        struct ethtool_drvinfo *drvinfo)
       
   598 {
       
   599 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   600 	char firmware_version[32];
       
   601 	uint16_t eeprom_data;
       
   602 
       
   603 	strncpy(drvinfo->driver,  e1000_driver_name, 32);
       
   604 	strncpy(drvinfo->version, e1000_driver_version, 32);
       
   605 
       
   606 	/* EEPROM image version # is reported as firmware version # for
       
   607 	 * 8257{1|2|3} controllers */
       
   608 	e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
       
   609 	switch (adapter->hw.mac_type) {
       
   610 	case e1000_82571:
       
   611 	case e1000_82572:
       
   612 	case e1000_82573:
       
   613 	case e1000_80003es2lan:
       
   614 	case e1000_ich8lan:
       
   615 		sprintf(firmware_version, "%d.%d-%d",
       
   616 			(eeprom_data & 0xF000) >> 12,
       
   617 			(eeprom_data & 0x0FF0) >> 4,
       
   618 			eeprom_data & 0x000F);
       
   619 		break;
       
   620 	default:
       
   621 		sprintf(firmware_version, "N/A");
       
   622 	}
       
   623 
       
   624 	strncpy(drvinfo->fw_version, firmware_version, 32);
       
   625 	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
       
   626 	drvinfo->n_stats = E1000_STATS_LEN;
       
   627 	drvinfo->testinfo_len = E1000_TEST_LEN;
       
   628 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
       
   629 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
       
   630 }
       
   631 
       
   632 static void
       
   633 e1000_get_ringparam(struct net_device *netdev,
       
   634                     struct ethtool_ringparam *ring)
       
   635 {
       
   636 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   637 	e1000_mac_type mac_type = adapter->hw.mac_type;
       
   638 	struct e1000_tx_ring *txdr = adapter->tx_ring;
       
   639 	struct e1000_rx_ring *rxdr = adapter->rx_ring;
       
   640 
       
   641 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
       
   642 		E1000_MAX_82544_RXD;
       
   643 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
       
   644 		E1000_MAX_82544_TXD;
       
   645 	ring->rx_mini_max_pending = 0;
       
   646 	ring->rx_jumbo_max_pending = 0;
       
   647 	ring->rx_pending = rxdr->count;
       
   648 	ring->tx_pending = txdr->count;
       
   649 	ring->rx_mini_pending = 0;
       
   650 	ring->rx_jumbo_pending = 0;
       
   651 }
       
   652 
       
   653 static int
       
   654 e1000_set_ringparam(struct net_device *netdev,
       
   655                     struct ethtool_ringparam *ring)
       
   656 {
       
   657 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   658 	e1000_mac_type mac_type = adapter->hw.mac_type;
       
   659 	struct e1000_tx_ring *txdr, *tx_old;
       
   660 	struct e1000_rx_ring *rxdr, *rx_old;
       
   661 	int i, err, tx_ring_size, rx_ring_size;
       
   662 
       
   663 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
   664 		return -EINVAL;
       
   665 
       
   666 	tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
       
   667 	rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
       
   668 
       
   669 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   670 		msleep(1);
       
   671 
       
   672 	if (netif_running(adapter->netdev))
       
   673 		e1000_down(adapter);
       
   674 
       
   675 	tx_old = adapter->tx_ring;
       
   676 	rx_old = adapter->rx_ring;
       
   677 
       
   678 	err = -ENOMEM;
       
   679 	txdr = kzalloc(tx_ring_size, GFP_KERNEL);
       
   680 	if (!txdr)
       
   681 		goto err_alloc_tx;
       
   682 
       
   683 	rxdr = kzalloc(rx_ring_size, GFP_KERNEL);
       
   684 	if (!rxdr)
       
   685 		goto err_alloc_rx;
       
   686 
       
   687 	adapter->tx_ring = txdr;
       
   688 	adapter->rx_ring = rxdr;
       
   689 
       
   690 	rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
       
   691 	rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
       
   692 		E1000_MAX_RXD : E1000_MAX_82544_RXD));
       
   693 	E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
       
   694 
       
   695 	txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
       
   696 	txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
       
   697 		E1000_MAX_TXD : E1000_MAX_82544_TXD));
       
   698 	E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
       
   699 
       
   700 	for (i = 0; i < adapter->num_tx_queues; i++)
       
   701 		txdr[i].count = txdr->count;
       
   702 	for (i = 0; i < adapter->num_rx_queues; i++)
       
   703 		rxdr[i].count = rxdr->count;
       
   704 
       
   705 	if (netif_running(adapter->netdev)) {
       
   706 		/* Try to get new resources before deleting old */
       
   707 		if ((err = e1000_setup_all_rx_resources(adapter)))
       
   708 			goto err_setup_rx;
       
   709 		if ((err = e1000_setup_all_tx_resources(adapter)))
       
   710 			goto err_setup_tx;
       
   711 
       
   712 		/* save the new, restore the old in order to free it,
       
   713 		 * then restore the new back again */
       
   714 
       
   715 		adapter->rx_ring = rx_old;
       
   716 		adapter->tx_ring = tx_old;
       
   717 		e1000_free_all_rx_resources(adapter);
       
   718 		e1000_free_all_tx_resources(adapter);
       
   719 		kfree(tx_old);
       
   720 		kfree(rx_old);
       
   721 		adapter->rx_ring = rxdr;
       
   722 		adapter->tx_ring = txdr;
       
   723 		if ((err = e1000_up(adapter)))
       
   724 			goto err_setup;
       
   725 	}
       
   726 
       
   727 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   728 	return 0;
       
   729 err_setup_tx:
       
   730 	e1000_free_all_rx_resources(adapter);
       
   731 err_setup_rx:
       
   732 	adapter->rx_ring = rx_old;
       
   733 	adapter->tx_ring = tx_old;
       
   734 	kfree(rxdr);
       
   735 err_alloc_rx:
       
   736 	kfree(txdr);
       
   737 err_alloc_tx:
       
   738 	e1000_up(adapter);
       
   739 err_setup:
       
   740 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   741 	return err;
       
   742 }
       
   743 
       
   744 #define REG_PATTERN_TEST(R, M, W)                                              \
       
   745 {                                                                              \
       
   746 	uint32_t pat, value;                                                   \
       
   747 	uint32_t test[] =                                                      \
       
   748 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
       
   749 	for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
       
   750 		E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
       
   751 		value = E1000_READ_REG(&adapter->hw, R);                       \
       
   752 		if (value != (test[pat] & W & M)) {                             \
       
   753 			DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
       
   754 			        "0x%08X expected 0x%08X\n",                    \
       
   755 			        E1000_##R, value, (test[pat] & W & M));        \
       
   756 			*data = (adapter->hw.mac_type < e1000_82543) ?         \
       
   757 				E1000_82542_##R : E1000_##R;                   \
       
   758 			return 1;                                              \
       
   759 		}                                                              \
       
   760 	}                                                                      \
       
   761 }
       
   762 
       
   763 #define REG_SET_AND_CHECK(R, M, W)                                             \
       
   764 {                                                                              \
       
   765 	uint32_t value;                                                        \
       
   766 	E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
       
   767 	value = E1000_READ_REG(&adapter->hw, R);                               \
       
   768 	if ((W & M) != (value & M)) {                                          \
       
   769 		DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
       
   770 		        "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
       
   771 		*data = (adapter->hw.mac_type < e1000_82543) ?                 \
       
   772 			E1000_82542_##R : E1000_##R;                           \
       
   773 		return 1;                                                      \
       
   774 	}                                                                      \
       
   775 }
       
   776 
       
   777 static int
       
   778 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
       
   779 {
       
   780 	uint32_t value, before, after;
       
   781 	uint32_t i, toggle;
       
   782 
       
   783 	/* The status register is Read Only, so a write should fail.
       
   784 	 * Some bits that get toggled are ignored.
       
   785 	 */
       
   786 	switch (adapter->hw.mac_type) {
       
   787 	/* there are several bits on newer hardware that are r/w */
       
   788 	case e1000_82571:
       
   789 	case e1000_82572:
       
   790 	case e1000_80003es2lan:
       
   791 		toggle = 0x7FFFF3FF;
       
   792 		break;
       
   793 	case e1000_82573:
       
   794 	case e1000_ich8lan:
       
   795 		toggle = 0x7FFFF033;
       
   796 		break;
       
   797 	default:
       
   798 		toggle = 0xFFFFF833;
       
   799 		break;
       
   800 	}
       
   801 
       
   802 	before = E1000_READ_REG(&adapter->hw, STATUS);
       
   803 	value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
       
   804 	E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
       
   805 	after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
       
   806 	if (value != after) {
       
   807 		DPRINTK(DRV, ERR, "failed STATUS register test got: "
       
   808 		        "0x%08X expected: 0x%08X\n", after, value);
       
   809 		*data = 1;
       
   810 		return 1;
       
   811 	}
       
   812 	/* restore previous status */
       
   813 	E1000_WRITE_REG(&adapter->hw, STATUS, before);
       
   814 
       
   815 	if (adapter->hw.mac_type != e1000_ich8lan) {
       
   816 		REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
       
   817 		REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
       
   818 		REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
       
   819 		REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
       
   820 	}
       
   821 
       
   822 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
       
   823 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   824 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
       
   825 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
       
   826 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
       
   827 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
       
   828 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
       
   829 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
       
   830 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   831 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
       
   832 
       
   833 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
       
   834 
       
   835 	before = (adapter->hw.mac_type == e1000_ich8lan ?
       
   836 	          0x06C3B33E : 0x06DFB3FE);
       
   837 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
       
   838 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
       
   839 
       
   840 	if (adapter->hw.mac_type >= e1000_82543) {
       
   841 
       
   842 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
       
   843 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   844 		if (adapter->hw.mac_type != e1000_ich8lan)
       
   845 			REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
       
   846 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   847 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
       
   848 		value = (adapter->hw.mac_type == e1000_ich8lan ?
       
   849 		         E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
       
   850 		for (i = 0; i < value; i++) {
       
   851 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
       
   852 			                 0xFFFFFFFF);
       
   853 		}
       
   854 
       
   855 	} else {
       
   856 
       
   857 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
       
   858 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
       
   859 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
       
   860 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
       
   861 
       
   862 	}
       
   863 
       
   864 	value = (adapter->hw.mac_type == e1000_ich8lan ?
       
   865 			E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
       
   866 	for (i = 0; i < value; i++)
       
   867 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
       
   868 
       
   869 	*data = 0;
       
   870 	return 0;
       
   871 }
       
   872 
       
   873 static int
       
   874 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
       
   875 {
       
   876 	uint16_t temp;
       
   877 	uint16_t checksum = 0;
       
   878 	uint16_t i;
       
   879 
       
   880 	*data = 0;
       
   881 	/* Read and add up the contents of the EEPROM */
       
   882 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
       
   883 		if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
       
   884 			*data = 1;
       
   885 			break;
       
   886 		}
       
   887 		checksum += temp;
       
   888 	}
       
   889 
       
   890 	/* If Checksum is not Correct return error else test passed */
       
   891 	if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
       
   892 		*data = 2;
       
   893 
       
   894 	return *data;
       
   895 }
       
   896 
       
   897 static irqreturn_t
       
   898 e1000_test_intr(int irq, void *data)
       
   899 {
       
   900 	struct net_device *netdev = (struct net_device *) data;
       
   901 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   902 
       
   903 	adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
       
   904 
       
   905 	return IRQ_HANDLED;
       
   906 }
       
   907 
       
   908 static int
       
   909 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
       
   910 {
       
   911 	struct net_device *netdev = adapter->netdev;
       
   912 	uint32_t mask, i=0, shared_int = TRUE;
       
   913 	uint32_t irq = adapter->pdev->irq;
       
   914 
       
   915 	*data = 0;
       
   916 
       
   917 	/* NOTE: we don't test MSI interrupts here, yet */
       
   918 	/* Hook up test interrupt handler just for this test */
       
   919 	if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
       
   920 	                 netdev))
       
   921 		shared_int = FALSE;
       
   922 	else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
       
   923 	         netdev->name, netdev)) {
       
   924 		*data = 1;
       
   925 		return -1;
       
   926 	}
       
   927 	DPRINTK(HW, INFO, "testing %s interrupt\n",
       
   928 	        (shared_int ? "shared" : "unshared"));
       
   929 
       
   930 	/* Disable all the interrupts */
       
   931 	E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
       
   932 	msleep(10);
       
   933 
       
   934 	/* Test each interrupt */
       
   935 	for (; i < 10; i++) {
       
   936 
       
   937 		if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
       
   938 			continue;
       
   939 
       
   940 		/* Interrupt to test */
       
   941 		mask = 1 << i;
       
   942 
       
   943 		if (!shared_int) {
       
   944 			/* Disable the interrupt to be reported in
       
   945 			 * the cause register and then force the same
       
   946 			 * interrupt and see if one gets posted.  If
       
   947 			 * an interrupt was posted to the bus, the
       
   948 			 * test failed.
       
   949 			 */
       
   950 			adapter->test_icr = 0;
       
   951 			E1000_WRITE_REG(&adapter->hw, IMC, mask);
       
   952 			E1000_WRITE_REG(&adapter->hw, ICS, mask);
       
   953 			msleep(10);
       
   954 
       
   955 			if (adapter->test_icr & mask) {
       
   956 				*data = 3;
       
   957 				break;
       
   958 			}
       
   959 		}
       
   960 
       
   961 		/* Enable the interrupt to be reported in
       
   962 		 * the cause register and then force the same
       
   963 		 * interrupt and see if one gets posted.  If
       
   964 		 * an interrupt was not posted to the bus, the
       
   965 		 * test failed.
       
   966 		 */
       
   967 		adapter->test_icr = 0;
       
   968 		E1000_WRITE_REG(&adapter->hw, IMS, mask);
       
   969 		E1000_WRITE_REG(&adapter->hw, ICS, mask);
       
   970 		msleep(10);
       
   971 
       
   972 		if (!(adapter->test_icr & mask)) {
       
   973 			*data = 4;
       
   974 			break;
       
   975 		}
       
   976 
       
   977 		if (!shared_int) {
       
   978 			/* Disable the other interrupts to be reported in
       
   979 			 * the cause register and then force the other
       
   980 			 * interrupts and see if any get posted.  If
       
   981 			 * an interrupt was posted to the bus, the
       
   982 			 * test failed.
       
   983 			 */
       
   984 			adapter->test_icr = 0;
       
   985 			E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
       
   986 			E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
       
   987 			msleep(10);
       
   988 
       
   989 			if (adapter->test_icr) {
       
   990 				*data = 5;
       
   991 				break;
       
   992 			}
       
   993 		}
       
   994 	}
       
   995 
       
   996 	/* Disable all the interrupts */
       
   997 	E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
       
   998 	msleep(10);
       
   999 
       
  1000 	/* Unhook test interrupt handler */
       
  1001 	free_irq(irq, netdev);
       
  1002 
       
  1003 	return *data;
       
  1004 }
       
  1005 
       
  1006 static void
       
  1007 e1000_free_desc_rings(struct e1000_adapter *adapter)
       
  1008 {
       
  1009 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
       
  1010 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
       
  1011 	struct pci_dev *pdev = adapter->pdev;
       
  1012 	int i;
       
  1013 
       
  1014 	if (txdr->desc && txdr->buffer_info) {
       
  1015 		for (i = 0; i < txdr->count; i++) {
       
  1016 			if (txdr->buffer_info[i].dma)
       
  1017 				pci_unmap_single(pdev, txdr->buffer_info[i].dma,
       
  1018 						 txdr->buffer_info[i].length,
       
  1019 						 PCI_DMA_TODEVICE);
       
  1020 			if (txdr->buffer_info[i].skb)
       
  1021 				dev_kfree_skb(txdr->buffer_info[i].skb);
       
  1022 		}
       
  1023 	}
       
  1024 
       
  1025 	if (rxdr->desc && rxdr->buffer_info) {
       
  1026 		for (i = 0; i < rxdr->count; i++) {
       
  1027 			if (rxdr->buffer_info[i].dma)
       
  1028 				pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
       
  1029 						 rxdr->buffer_info[i].length,
       
  1030 						 PCI_DMA_FROMDEVICE);
       
  1031 			if (rxdr->buffer_info[i].skb)
       
  1032 				dev_kfree_skb(rxdr->buffer_info[i].skb);
       
  1033 		}
       
  1034 	}
       
  1035 
       
  1036 	if (txdr->desc) {
       
  1037 		pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
       
  1038 		txdr->desc = NULL;
       
  1039 	}
       
  1040 	if (rxdr->desc) {
       
  1041 		pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
       
  1042 		rxdr->desc = NULL;
       
  1043 	}
       
  1044 
       
  1045 	kfree(txdr->buffer_info);
       
  1046 	txdr->buffer_info = NULL;
       
  1047 	kfree(rxdr->buffer_info);
       
  1048 	rxdr->buffer_info = NULL;
       
  1049 
       
  1050 	return;
       
  1051 }
       
  1052 
       
  1053 static int
       
  1054 e1000_setup_desc_rings(struct e1000_adapter *adapter)
       
  1055 {
       
  1056 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
       
  1057 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
       
  1058 	struct pci_dev *pdev = adapter->pdev;
       
  1059 	uint32_t rctl;
       
  1060 	int size, i, ret_val;
       
  1061 
       
  1062 	/* Setup Tx descriptor ring and Tx buffers */
       
  1063 
       
  1064 	if (!txdr->count)
       
  1065 		txdr->count = E1000_DEFAULT_TXD;
       
  1066 
       
  1067 	size = txdr->count * sizeof(struct e1000_buffer);
       
  1068 	if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
       
  1069 		ret_val = 1;
       
  1070 		goto err_nomem;
       
  1071 	}
       
  1072 	memset(txdr->buffer_info, 0, size);
       
  1073 
       
  1074 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
  1075 	E1000_ROUNDUP(txdr->size, 4096);
       
  1076 	if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
       
  1077 		ret_val = 2;
       
  1078 		goto err_nomem;
       
  1079 	}
       
  1080 	memset(txdr->desc, 0, txdr->size);
       
  1081 	txdr->next_to_use = txdr->next_to_clean = 0;
       
  1082 
       
  1083 	E1000_WRITE_REG(&adapter->hw, TDBAL,
       
  1084 			((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
       
  1085 	E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
       
  1086 	E1000_WRITE_REG(&adapter->hw, TDLEN,
       
  1087 			txdr->count * sizeof(struct e1000_tx_desc));
       
  1088 	E1000_WRITE_REG(&adapter->hw, TDH, 0);
       
  1089 	E1000_WRITE_REG(&adapter->hw, TDT, 0);
       
  1090 	E1000_WRITE_REG(&adapter->hw, TCTL,
       
  1091 			E1000_TCTL_PSP | E1000_TCTL_EN |
       
  1092 			E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
       
  1093 			E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
       
  1094 
       
  1095 	for (i = 0; i < txdr->count; i++) {
       
  1096 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
       
  1097 		struct sk_buff *skb;
       
  1098 		unsigned int size = 1024;
       
  1099 
       
  1100 		if (!(skb = alloc_skb(size, GFP_KERNEL))) {
       
  1101 			ret_val = 3;
       
  1102 			goto err_nomem;
       
  1103 		}
       
  1104 		skb_put(skb, size);
       
  1105 		txdr->buffer_info[i].skb = skb;
       
  1106 		txdr->buffer_info[i].length = skb->len;
       
  1107 		txdr->buffer_info[i].dma =
       
  1108 			pci_map_single(pdev, skb->data, skb->len,
       
  1109 				       PCI_DMA_TODEVICE);
       
  1110 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
       
  1111 		tx_desc->lower.data = cpu_to_le32(skb->len);
       
  1112 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
       
  1113 						   E1000_TXD_CMD_IFCS |
       
  1114 						   E1000_TXD_CMD_RPS);
       
  1115 		tx_desc->upper.data = 0;
       
  1116 	}
       
  1117 
       
  1118 	/* Setup Rx descriptor ring and Rx buffers */
       
  1119 
       
  1120 	if (!rxdr->count)
       
  1121 		rxdr->count = E1000_DEFAULT_RXD;
       
  1122 
       
  1123 	size = rxdr->count * sizeof(struct e1000_buffer);
       
  1124 	if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
       
  1125 		ret_val = 4;
       
  1126 		goto err_nomem;
       
  1127 	}
       
  1128 	memset(rxdr->buffer_info, 0, size);
       
  1129 
       
  1130 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
       
  1131 	if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
       
  1132 		ret_val = 5;
       
  1133 		goto err_nomem;
       
  1134 	}
       
  1135 	memset(rxdr->desc, 0, rxdr->size);
       
  1136 	rxdr->next_to_use = rxdr->next_to_clean = 0;
       
  1137 
       
  1138 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1139 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  1140 	E1000_WRITE_REG(&adapter->hw, RDBAL,
       
  1141 			((uint64_t) rxdr->dma & 0xFFFFFFFF));
       
  1142 	E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
       
  1143 	E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
       
  1144 	E1000_WRITE_REG(&adapter->hw, RDH, 0);
       
  1145 	E1000_WRITE_REG(&adapter->hw, RDT, 0);
       
  1146 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
       
  1147 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1148 		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1149 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1150 
       
  1151 	for (i = 0; i < rxdr->count; i++) {
       
  1152 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
       
  1153 		struct sk_buff *skb;
       
  1154 
       
  1155 		if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
       
  1156 				GFP_KERNEL))) {
       
  1157 			ret_val = 6;
       
  1158 			goto err_nomem;
       
  1159 		}
       
  1160 		skb_reserve(skb, NET_IP_ALIGN);
       
  1161 		rxdr->buffer_info[i].skb = skb;
       
  1162 		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
       
  1163 		rxdr->buffer_info[i].dma =
       
  1164 			pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
       
  1165 				       PCI_DMA_FROMDEVICE);
       
  1166 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
       
  1167 		memset(skb->data, 0x00, skb->len);
       
  1168 	}
       
  1169 
       
  1170 	return 0;
       
  1171 
       
  1172 err_nomem:
       
  1173 	e1000_free_desc_rings(adapter);
       
  1174 	return ret_val;
       
  1175 }
       
  1176 
       
  1177 static void
       
  1178 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
       
  1179 {
       
  1180 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1181 	e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
       
  1182 	e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
       
  1183 	e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
       
  1184 	e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
       
  1185 }
       
  1186 
       
  1187 static void
       
  1188 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
       
  1189 {
       
  1190 	uint16_t phy_reg;
       
  1191 
       
  1192 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
       
  1193 	 * Extended PHY Specific Control Register to 25MHz clock.  This
       
  1194 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
       
  1195 	 */
       
  1196 	e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
       
  1197 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
       
  1198 	e1000_write_phy_reg(&adapter->hw,
       
  1199 		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
       
  1200 
       
  1201 	/* In addition, because of the s/w reset above, we need to enable
       
  1202 	 * CRS on TX.  This must be set for both full and half duplex
       
  1203 	 * operation.
       
  1204 	 */
       
  1205 	e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
       
  1206 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1207 	e1000_write_phy_reg(&adapter->hw,
       
  1208 		M88E1000_PHY_SPEC_CTRL, phy_reg);
       
  1209 }
       
  1210 
       
  1211 static int
       
  1212 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
       
  1213 {
       
  1214 	uint32_t ctrl_reg;
       
  1215 	uint16_t phy_reg;
       
  1216 
       
  1217 	/* Setup the Device Control Register for PHY loopback test. */
       
  1218 
       
  1219 	ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
       
  1220 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
       
  1221 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
       
  1222 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
       
  1223 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
       
  1224 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
       
  1225 
       
  1226 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
       
  1227 
       
  1228 	/* Read the PHY Specific Control Register (0x10) */
       
  1229 	e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
       
  1230 
       
  1231 	/* Clear Auto-Crossover bits in PHY Specific Control Register
       
  1232 	 * (bits 6:5).
       
  1233 	 */
       
  1234 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1235 	e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
       
  1236 
       
  1237 	/* Perform software reset on the PHY */
       
  1238 	e1000_phy_reset(&adapter->hw);
       
  1239 
       
  1240 	/* Have to setup TX_CLK and TX_CRS after software reset */
       
  1241 	e1000_phy_reset_clk_and_crs(adapter);
       
  1242 
       
  1243 	e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
       
  1244 
       
  1245 	/* Wait for reset to complete. */
       
  1246 	udelay(500);
       
  1247 
       
  1248 	/* Have to setup TX_CLK and TX_CRS after software reset */
       
  1249 	e1000_phy_reset_clk_and_crs(adapter);
       
  1250 
       
  1251 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1252 	e1000_phy_disable_receiver(adapter);
       
  1253 
       
  1254 	/* Set the loopback bit in the PHY control register. */
       
  1255 	e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
       
  1256 	phy_reg |= MII_CR_LOOPBACK;
       
  1257 	e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
       
  1258 
       
  1259 	/* Setup TX_CLK and TX_CRS one more time. */
       
  1260 	e1000_phy_reset_clk_and_crs(adapter);
       
  1261 
       
  1262 	/* Check Phy Configuration */
       
  1263 	e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
       
  1264 	if (phy_reg != 0x4100)
       
  1265 		 return 9;
       
  1266 
       
  1267 	e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
       
  1268 	if (phy_reg != 0x0070)
       
  1269 		return 10;
       
  1270 
       
  1271 	e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
       
  1272 	if (phy_reg != 0x001A)
       
  1273 		return 11;
       
  1274 
       
  1275 	return 0;
       
  1276 }
       
  1277 
       
  1278 static int
       
  1279 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
       
  1280 {
       
  1281 	uint32_t ctrl_reg = 0;
       
  1282 	uint32_t stat_reg = 0;
       
  1283 
       
  1284 	adapter->hw.autoneg = FALSE;
       
  1285 
       
  1286 	if (adapter->hw.phy_type == e1000_phy_m88) {
       
  1287 		/* Auto-MDI/MDIX Off */
       
  1288 		e1000_write_phy_reg(&adapter->hw,
       
  1289 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
       
  1290 		/* reset to update Auto-MDI/MDIX */
       
  1291 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
       
  1292 		/* autoneg off */
       
  1293 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
       
  1294 	} else if (adapter->hw.phy_type == e1000_phy_gg82563)
       
  1295 		e1000_write_phy_reg(&adapter->hw,
       
  1296 		                    GG82563_PHY_KMRN_MODE_CTRL,
       
  1297 		                    0x1CC);
       
  1298 
       
  1299 	ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
       
  1300 
       
  1301 	if (adapter->hw.phy_type == e1000_phy_ife) {
       
  1302 		/* force 100, set loopback */
       
  1303 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
       
  1304 
       
  1305 		/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1306 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1307 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1308 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1309 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
       
  1310 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1311 	} else {
       
  1312 		/* force 1000, set loopback */
       
  1313 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
       
  1314 
       
  1315 		/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1316 		ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
       
  1317 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1318 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1319 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1320 			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
       
  1321 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1322 	}
       
  1323 
       
  1324 	if (adapter->hw.media_type == e1000_media_type_copper &&
       
  1325 	   adapter->hw.phy_type == e1000_phy_m88)
       
  1326 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
       
  1327 	else {
       
  1328 		/* Set the ILOS bit on the fiber Nic is half
       
  1329 		 * duplex link is detected. */
       
  1330 		stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
       
  1331 		if ((stat_reg & E1000_STATUS_FD) == 0)
       
  1332 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
       
  1333 	}
       
  1334 
       
  1335 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
       
  1336 
       
  1337 	/* Disable the receiver on the PHY so when a cable is plugged in, the
       
  1338 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
       
  1339 	 */
       
  1340 	if (adapter->hw.phy_type == e1000_phy_m88)
       
  1341 		e1000_phy_disable_receiver(adapter);
       
  1342 
       
  1343 	udelay(500);
       
  1344 
       
  1345 	return 0;
       
  1346 }
       
  1347 
       
  1348 static int
       
  1349 e1000_set_phy_loopback(struct e1000_adapter *adapter)
       
  1350 {
       
  1351 	uint16_t phy_reg = 0;
       
  1352 	uint16_t count = 0;
       
  1353 
       
  1354 	switch (adapter->hw.mac_type) {
       
  1355 	case e1000_82543:
       
  1356 		if (adapter->hw.media_type == e1000_media_type_copper) {
       
  1357 			/* Attempt to setup Loopback mode on Non-integrated PHY.
       
  1358 			 * Some PHY registers get corrupted at random, so
       
  1359 			 * attempt this 10 times.
       
  1360 			 */
       
  1361 			while (e1000_nonintegrated_phy_loopback(adapter) &&
       
  1362 			      count++ < 10);
       
  1363 			if (count < 11)
       
  1364 				return 0;
       
  1365 		}
       
  1366 		break;
       
  1367 
       
  1368 	case e1000_82544:
       
  1369 	case e1000_82540:
       
  1370 	case e1000_82545:
       
  1371 	case e1000_82545_rev_3:
       
  1372 	case e1000_82546:
       
  1373 	case e1000_82546_rev_3:
       
  1374 	case e1000_82541:
       
  1375 	case e1000_82541_rev_2:
       
  1376 	case e1000_82547:
       
  1377 	case e1000_82547_rev_2:
       
  1378 	case e1000_82571:
       
  1379 	case e1000_82572:
       
  1380 	case e1000_82573:
       
  1381 	case e1000_80003es2lan:
       
  1382 	case e1000_ich8lan:
       
  1383 		return e1000_integrated_phy_loopback(adapter);
       
  1384 		break;
       
  1385 
       
  1386 	default:
       
  1387 		/* Default PHY loopback work is to read the MII
       
  1388 		 * control register and assert bit 14 (loopback mode).
       
  1389 		 */
       
  1390 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
       
  1391 		phy_reg |= MII_CR_LOOPBACK;
       
  1392 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
       
  1393 		return 0;
       
  1394 		break;
       
  1395 	}
       
  1396 
       
  1397 	return 8;
       
  1398 }
       
  1399 
       
  1400 static int
       
  1401 e1000_setup_loopback_test(struct e1000_adapter *adapter)
       
  1402 {
       
  1403 	struct e1000_hw *hw = &adapter->hw;
       
  1404 	uint32_t rctl;
       
  1405 
       
  1406 	if (hw->media_type == e1000_media_type_fiber ||
       
  1407 	    hw->media_type == e1000_media_type_internal_serdes) {
       
  1408 		switch (hw->mac_type) {
       
  1409 		case e1000_82545:
       
  1410 		case e1000_82546:
       
  1411 		case e1000_82545_rev_3:
       
  1412 		case e1000_82546_rev_3:
       
  1413 			return e1000_set_phy_loopback(adapter);
       
  1414 			break;
       
  1415 		case e1000_82571:
       
  1416 		case e1000_82572:
       
  1417 #define E1000_SERDES_LB_ON 0x410
       
  1418 			e1000_set_phy_loopback(adapter);
       
  1419 			E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
       
  1420 			msleep(10);
       
  1421 			return 0;
       
  1422 			break;
       
  1423 		default:
       
  1424 			rctl = E1000_READ_REG(hw, RCTL);
       
  1425 			rctl |= E1000_RCTL_LBM_TCVR;
       
  1426 			E1000_WRITE_REG(hw, RCTL, rctl);
       
  1427 			return 0;
       
  1428 		}
       
  1429 	} else if (hw->media_type == e1000_media_type_copper)
       
  1430 		return e1000_set_phy_loopback(adapter);
       
  1431 
       
  1432 	return 7;
       
  1433 }
       
  1434 
       
  1435 static void
       
  1436 e1000_loopback_cleanup(struct e1000_adapter *adapter)
       
  1437 {
       
  1438 	struct e1000_hw *hw = &adapter->hw;
       
  1439 	uint32_t rctl;
       
  1440 	uint16_t phy_reg;
       
  1441 
       
  1442 	rctl = E1000_READ_REG(hw, RCTL);
       
  1443 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
       
  1444 	E1000_WRITE_REG(hw, RCTL, rctl);
       
  1445 
       
  1446 	switch (hw->mac_type) {
       
  1447 	case e1000_82571:
       
  1448 	case e1000_82572:
       
  1449 		if (hw->media_type == e1000_media_type_fiber ||
       
  1450 		    hw->media_type == e1000_media_type_internal_serdes) {
       
  1451 #define E1000_SERDES_LB_OFF 0x400
       
  1452 			E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
       
  1453 			msleep(10);
       
  1454 			break;
       
  1455 		}
       
  1456 		/* Fall Through */
       
  1457 	case e1000_82545:
       
  1458 	case e1000_82546:
       
  1459 	case e1000_82545_rev_3:
       
  1460 	case e1000_82546_rev_3:
       
  1461 	default:
       
  1462 		hw->autoneg = TRUE;
       
  1463 		if (hw->phy_type == e1000_phy_gg82563)
       
  1464 			e1000_write_phy_reg(hw,
       
  1465 					    GG82563_PHY_KMRN_MODE_CTRL,
       
  1466 					    0x180);
       
  1467 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
       
  1468 		if (phy_reg & MII_CR_LOOPBACK) {
       
  1469 			phy_reg &= ~MII_CR_LOOPBACK;
       
  1470 			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
       
  1471 			e1000_phy_reset(hw);
       
  1472 		}
       
  1473 		break;
       
  1474 	}
       
  1475 }
       
  1476 
       
  1477 static void
       
  1478 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
       
  1479 {
       
  1480 	memset(skb->data, 0xFF, frame_size);
       
  1481 	frame_size &= ~1;
       
  1482 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
       
  1483 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
       
  1484 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
       
  1485 }
       
  1486 
       
  1487 static int
       
  1488 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
       
  1489 {
       
  1490 	frame_size &= ~1;
       
  1491 	if (*(skb->data + 3) == 0xFF) {
       
  1492 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
       
  1493 		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
       
  1494 			return 0;
       
  1495 		}
       
  1496 	}
       
  1497 	return 13;
       
  1498 }
       
  1499 
       
  1500 static int
       
  1501 e1000_run_loopback_test(struct e1000_adapter *adapter)
       
  1502 {
       
  1503 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
       
  1504 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
       
  1505 	struct pci_dev *pdev = adapter->pdev;
       
  1506 	int i, j, k, l, lc, good_cnt, ret_val=0;
       
  1507 	unsigned long time;
       
  1508 
       
  1509 	E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
       
  1510 
       
  1511 	/* Calculate the loop count based on the largest descriptor ring
       
  1512 	 * The idea is to wrap the largest ring a number of times using 64
       
  1513 	 * send/receive pairs during each loop
       
  1514 	 */
       
  1515 
       
  1516 	if (rxdr->count <= txdr->count)
       
  1517 		lc = ((txdr->count / 64) * 2) + 1;
       
  1518 	else
       
  1519 		lc = ((rxdr->count / 64) * 2) + 1;
       
  1520 
       
  1521 	k = l = 0;
       
  1522 	for (j = 0; j <= lc; j++) { /* loop count loop */
       
  1523 		for (i = 0; i < 64; i++) { /* send the packets */
       
  1524 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
       
  1525 					1024);
       
  1526 			pci_dma_sync_single_for_device(pdev,
       
  1527 					txdr->buffer_info[k].dma,
       
  1528 				    	txdr->buffer_info[k].length,
       
  1529 				    	PCI_DMA_TODEVICE);
       
  1530 			if (unlikely(++k == txdr->count)) k = 0;
       
  1531 		}
       
  1532 		E1000_WRITE_REG(&adapter->hw, TDT, k);
       
  1533 		msleep(200);
       
  1534 		time = jiffies; /* set the start time for the receive */
       
  1535 		good_cnt = 0;
       
  1536 		do { /* receive the sent packets */
       
  1537 			pci_dma_sync_single_for_cpu(pdev,
       
  1538 					rxdr->buffer_info[l].dma,
       
  1539 				    	rxdr->buffer_info[l].length,
       
  1540 				    	PCI_DMA_FROMDEVICE);
       
  1541 
       
  1542 			ret_val = e1000_check_lbtest_frame(
       
  1543 					rxdr->buffer_info[l].skb,
       
  1544 				   	1024);
       
  1545 			if (!ret_val)
       
  1546 				good_cnt++;
       
  1547 			if (unlikely(++l == rxdr->count)) l = 0;
       
  1548 			/* time + 20 msecs (200 msecs on 2.4) is more than
       
  1549 			 * enough time to complete the receives, if it's
       
  1550 			 * exceeded, break and error off
       
  1551 			 */
       
  1552 		} while (good_cnt < 64 && jiffies < (time + 20));
       
  1553 		if (good_cnt != 64) {
       
  1554 			ret_val = 13; /* ret_val is the same as mis-compare */
       
  1555 			break;
       
  1556 		}
       
  1557 		if (jiffies >= (time + 2)) {
       
  1558 			ret_val = 14; /* error code for time out error */
       
  1559 			break;
       
  1560 		}
       
  1561 	} /* end loop count loop */
       
  1562 	return ret_val;
       
  1563 }
       
  1564 
       
  1565 static int
       
  1566 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
       
  1567 {
       
  1568 	/* PHY loopback cannot be performed if SoL/IDER
       
  1569 	 * sessions are active */
       
  1570 	if (e1000_check_phy_reset_block(&adapter->hw)) {
       
  1571 		DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
       
  1572 		        "when SoL/IDER is active.\n");
       
  1573 		*data = 0;
       
  1574 		goto out;
       
  1575 	}
       
  1576 
       
  1577 	if ((*data = e1000_setup_desc_rings(adapter)))
       
  1578 		goto out;
       
  1579 	if ((*data = e1000_setup_loopback_test(adapter)))
       
  1580 		goto err_loopback;
       
  1581 	*data = e1000_run_loopback_test(adapter);
       
  1582 	e1000_loopback_cleanup(adapter);
       
  1583 
       
  1584 err_loopback:
       
  1585 	e1000_free_desc_rings(adapter);
       
  1586 out:
       
  1587 	return *data;
       
  1588 }
       
  1589 
       
  1590 static int
       
  1591 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
       
  1592 {
       
  1593 	*data = 0;
       
  1594 	if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
       
  1595 		int i = 0;
       
  1596 		adapter->hw.serdes_link_down = TRUE;
       
  1597 
       
  1598 		/* On some blade server designs, link establishment
       
  1599 		 * could take as long as 2-3 minutes */
       
  1600 		do {
       
  1601 			e1000_check_for_link(&adapter->hw);
       
  1602 			if (adapter->hw.serdes_link_down == FALSE)
       
  1603 				return *data;
       
  1604 			msleep(20);
       
  1605 		} while (i++ < 3750);
       
  1606 
       
  1607 		*data = 1;
       
  1608 	} else {
       
  1609 		e1000_check_for_link(&adapter->hw);
       
  1610 		if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
       
  1611 			msleep(4000);
       
  1612 
       
  1613 		if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
       
  1614 			*data = 1;
       
  1615 		}
       
  1616 	}
       
  1617 	return *data;
       
  1618 }
       
  1619 
       
  1620 static int
       
  1621 e1000_diag_test_count(struct net_device *netdev)
       
  1622 {
       
  1623 	return E1000_TEST_LEN;
       
  1624 }
       
  1625 
       
  1626 extern void e1000_power_up_phy(struct e1000_adapter *);
       
  1627 
       
  1628 static void
       
  1629 e1000_diag_test(struct net_device *netdev,
       
  1630 		   struct ethtool_test *eth_test, uint64_t *data)
       
  1631 {
       
  1632 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1633 	boolean_t if_running = netif_running(netdev);
       
  1634 
       
  1635 	set_bit(__E1000_TESTING, &adapter->flags);
       
  1636 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
       
  1637 		/* Offline tests */
       
  1638 
       
  1639 		/* save speed, duplex, autoneg settings */
       
  1640 		uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
       
  1641 		uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
       
  1642 		uint8_t autoneg = adapter->hw.autoneg;
       
  1643 
       
  1644 		DPRINTK(HW, INFO, "offline testing starting\n");
       
  1645 
       
  1646 		/* Link test performed before hardware reset so autoneg doesn't
       
  1647 		 * interfere with test result */
       
  1648 		if (e1000_link_test(adapter, &data[4]))
       
  1649 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1650 
       
  1651 		if (if_running)
       
  1652 			/* indicate we're in test mode */
       
  1653 			dev_close(netdev);
       
  1654 		else
       
  1655 			e1000_reset(adapter);
       
  1656 
       
  1657 		if (e1000_reg_test(adapter, &data[0]))
       
  1658 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1659 
       
  1660 		e1000_reset(adapter);
       
  1661 		if (e1000_eeprom_test(adapter, &data[1]))
       
  1662 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1663 
       
  1664 		e1000_reset(adapter);
       
  1665 		if (e1000_intr_test(adapter, &data[2]))
       
  1666 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1667 
       
  1668 		e1000_reset(adapter);
       
  1669 		/* make sure the phy is powered up */
       
  1670 		e1000_power_up_phy(adapter);
       
  1671 		if (e1000_loopback_test(adapter, &data[3]))
       
  1672 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1673 
       
  1674 		/* restore speed, duplex, autoneg settings */
       
  1675 		adapter->hw.autoneg_advertised = autoneg_advertised;
       
  1676 		adapter->hw.forced_speed_duplex = forced_speed_duplex;
       
  1677 		adapter->hw.autoneg = autoneg;
       
  1678 
       
  1679 		e1000_reset(adapter);
       
  1680 		clear_bit(__E1000_TESTING, &adapter->flags);
       
  1681 		if (if_running)
       
  1682 			dev_open(netdev);
       
  1683 	} else {
       
  1684 		DPRINTK(HW, INFO, "online testing starting\n");
       
  1685 		/* Online tests */
       
  1686 		if (e1000_link_test(adapter, &data[4]))
       
  1687 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1688 
       
  1689 		/* Online tests aren't run; pass by default */
       
  1690 		data[0] = 0;
       
  1691 		data[1] = 0;
       
  1692 		data[2] = 0;
       
  1693 		data[3] = 0;
       
  1694 
       
  1695 		clear_bit(__E1000_TESTING, &adapter->flags);
       
  1696 	}
       
  1697 	msleep_interruptible(4 * 1000);
       
  1698 }
       
  1699 
       
  1700 static int e1000_wol_exclusion(struct e1000_adapter *adapter, struct ethtool_wolinfo *wol)
       
  1701 {
       
  1702 	struct e1000_hw *hw = &adapter->hw;
       
  1703 	int retval = 1; /* fail by default */
       
  1704 
       
  1705 	switch (hw->device_id) {
       
  1706 	case E1000_DEV_ID_82542:
       
  1707 	case E1000_DEV_ID_82543GC_FIBER:
       
  1708 	case E1000_DEV_ID_82543GC_COPPER:
       
  1709 	case E1000_DEV_ID_82544EI_FIBER:
       
  1710 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
       
  1711 	case E1000_DEV_ID_82545EM_FIBER:
       
  1712 	case E1000_DEV_ID_82545EM_COPPER:
       
  1713 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
       
  1714 	case E1000_DEV_ID_82546GB_PCIE:
       
  1715 		/* these don't support WoL at all */
       
  1716 		wol->supported = 0;
       
  1717 		break;
       
  1718 	case E1000_DEV_ID_82546EB_FIBER:
       
  1719 	case E1000_DEV_ID_82546GB_FIBER:
       
  1720 	case E1000_DEV_ID_82571EB_FIBER:
       
  1721 	case E1000_DEV_ID_82571EB_SERDES:
       
  1722 	case E1000_DEV_ID_82571EB_COPPER:
       
  1723 		/* Wake events not supported on port B */
       
  1724 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
       
  1725 			wol->supported = 0;
       
  1726 			break;
       
  1727 		}
       
  1728 		/* return success for non excluded adapter ports */
       
  1729 		retval = 0;
       
  1730 		break;
       
  1731 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
       
  1732 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
       
  1733 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1734 		/* quad port adapters only support WoL on port A */
       
  1735 		if (!adapter->quad_port_a) {
       
  1736 			wol->supported = 0;
       
  1737 			break;
       
  1738 		}
       
  1739 		/* return success for non excluded adapter ports */
       
  1740 		retval = 0;
       
  1741 		break;
       
  1742 	default:
       
  1743 		/* dual port cards only support WoL on port A from now on
       
  1744 		 * unless it was enabled in the eeprom for port B
       
  1745 		 * so exclude FUNC_1 ports from having WoL enabled */
       
  1746 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
       
  1747 		    !adapter->eeprom_wol) {
       
  1748 			wol->supported = 0;
       
  1749 			break;
       
  1750 		}
       
  1751 
       
  1752 		retval = 0;
       
  1753 	}
       
  1754 
       
  1755 	return retval;
       
  1756 }
       
  1757 
       
  1758 static void
       
  1759 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  1760 {
       
  1761 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1762 
       
  1763 	wol->supported = WAKE_UCAST | WAKE_MCAST |
       
  1764 	                 WAKE_BCAST | WAKE_MAGIC;
       
  1765 	wol->wolopts = 0;
       
  1766 
       
  1767 	/* this function will set ->supported = 0 and return 1 if wol is not
       
  1768 	 * supported by this hardware */
       
  1769 	if (e1000_wol_exclusion(adapter, wol))
       
  1770 		return;
       
  1771 
       
  1772 	/* apply any specific unsupported masks here */
       
  1773 	switch (adapter->hw.device_id) {
       
  1774 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1775 		/* KSP3 does not suppport UCAST wake-ups */
       
  1776 		wol->supported &= ~WAKE_UCAST;
       
  1777 
       
  1778 		if (adapter->wol & E1000_WUFC_EX)
       
  1779 			DPRINTK(DRV, ERR, "Interface does not support "
       
  1780 		        "directed (unicast) frame wake-up packets\n");
       
  1781 		break;
       
  1782 	default:
       
  1783 		break;
       
  1784 	}
       
  1785 
       
  1786 	if (adapter->wol & E1000_WUFC_EX)
       
  1787 		wol->wolopts |= WAKE_UCAST;
       
  1788 	if (adapter->wol & E1000_WUFC_MC)
       
  1789 		wol->wolopts |= WAKE_MCAST;
       
  1790 	if (adapter->wol & E1000_WUFC_BC)
       
  1791 		wol->wolopts |= WAKE_BCAST;
       
  1792 	if (adapter->wol & E1000_WUFC_MAG)
       
  1793 		wol->wolopts |= WAKE_MAGIC;
       
  1794 
       
  1795 	return;
       
  1796 }
       
  1797 
       
  1798 static int
       
  1799 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  1800 {
       
  1801 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1802 	struct e1000_hw *hw = &adapter->hw;
       
  1803 
       
  1804 	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
       
  1805 		return -EOPNOTSUPP;
       
  1806 
       
  1807 	if (e1000_wol_exclusion(adapter, wol))
       
  1808 		return wol->wolopts ? -EOPNOTSUPP : 0;
       
  1809 
       
  1810 	switch (hw->device_id) {
       
  1811 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1812 		if (wol->wolopts & WAKE_UCAST) {
       
  1813 			DPRINTK(DRV, ERR, "Interface does not support "
       
  1814 		        "directed (unicast) frame wake-up packets\n");
       
  1815 			return -EOPNOTSUPP;
       
  1816 		}
       
  1817 		break;
       
  1818 	default:
       
  1819 		break;
       
  1820 	}
       
  1821 
       
  1822 	/* these settings will always override what we currently have */
       
  1823 	adapter->wol = 0;
       
  1824 
       
  1825 	if (wol->wolopts & WAKE_UCAST)
       
  1826 		adapter->wol |= E1000_WUFC_EX;
       
  1827 	if (wol->wolopts & WAKE_MCAST)
       
  1828 		adapter->wol |= E1000_WUFC_MC;
       
  1829 	if (wol->wolopts & WAKE_BCAST)
       
  1830 		adapter->wol |= E1000_WUFC_BC;
       
  1831 	if (wol->wolopts & WAKE_MAGIC)
       
  1832 		adapter->wol |= E1000_WUFC_MAG;
       
  1833 
       
  1834 	return 0;
       
  1835 }
       
  1836 
       
  1837 /* toggle LED 4 times per second = 2 "blinks" per second */
       
  1838 #define E1000_ID_INTERVAL	(HZ/4)
       
  1839 
       
  1840 /* bit defines for adapter->led_status */
       
  1841 #define E1000_LED_ON		0
       
  1842 
       
  1843 static void
       
  1844 e1000_led_blink_callback(unsigned long data)
       
  1845 {
       
  1846 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  1847 
       
  1848 	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
       
  1849 		e1000_led_off(&adapter->hw);
       
  1850 	else
       
  1851 		e1000_led_on(&adapter->hw);
       
  1852 
       
  1853 	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
       
  1854 }
       
  1855 
       
  1856 static int
       
  1857 e1000_phys_id(struct net_device *netdev, uint32_t data)
       
  1858 {
       
  1859 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1860 
       
  1861 	if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
       
  1862 		data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
       
  1863 
       
  1864 	if (adapter->hw.mac_type < e1000_82571) {
       
  1865 		if (!adapter->blink_timer.function) {
       
  1866 			init_timer(&adapter->blink_timer);
       
  1867 			adapter->blink_timer.function = e1000_led_blink_callback;
       
  1868 			adapter->blink_timer.data = (unsigned long) adapter;
       
  1869 		}
       
  1870 		e1000_setup_led(&adapter->hw);
       
  1871 		mod_timer(&adapter->blink_timer, jiffies);
       
  1872 		msleep_interruptible(data * 1000);
       
  1873 		del_timer_sync(&adapter->blink_timer);
       
  1874 	} else if (adapter->hw.phy_type == e1000_phy_ife) {
       
  1875 		if (!adapter->blink_timer.function) {
       
  1876 			init_timer(&adapter->blink_timer);
       
  1877 			adapter->blink_timer.function = e1000_led_blink_callback;
       
  1878 			adapter->blink_timer.data = (unsigned long) adapter;
       
  1879 		}
       
  1880 		mod_timer(&adapter->blink_timer, jiffies);
       
  1881 		msleep_interruptible(data * 1000);
       
  1882 		del_timer_sync(&adapter->blink_timer);
       
  1883 		e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  1884 	} else {
       
  1885 		e1000_blink_led_start(&adapter->hw);
       
  1886 		msleep_interruptible(data * 1000);
       
  1887 	}
       
  1888 
       
  1889 	e1000_led_off(&adapter->hw);
       
  1890 	clear_bit(E1000_LED_ON, &adapter->led_status);
       
  1891 	e1000_cleanup_led(&adapter->hw);
       
  1892 
       
  1893 	return 0;
       
  1894 }
       
  1895 
       
  1896 static int
       
  1897 e1000_nway_reset(struct net_device *netdev)
       
  1898 {
       
  1899 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1900 	if (netif_running(netdev))
       
  1901 		e1000_reinit_locked(adapter);
       
  1902 	return 0;
       
  1903 }
       
  1904 
       
  1905 static int
       
  1906 e1000_get_stats_count(struct net_device *netdev)
       
  1907 {
       
  1908 	return E1000_STATS_LEN;
       
  1909 }
       
  1910 
       
  1911 static void
       
  1912 e1000_get_ethtool_stats(struct net_device *netdev,
       
  1913 		struct ethtool_stats *stats, uint64_t *data)
       
  1914 {
       
  1915 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1916 	int i;
       
  1917 
       
  1918 	e1000_update_stats(adapter);
       
  1919 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1920 		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
       
  1921 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
       
  1922 			sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
       
  1923 	}
       
  1924 /*	BUG_ON(i != E1000_STATS_LEN); */
       
  1925 }
       
  1926 
       
  1927 static void
       
  1928 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
       
  1929 {
       
  1930 	uint8_t *p = data;
       
  1931 	int i;
       
  1932 
       
  1933 	switch (stringset) {
       
  1934 	case ETH_SS_TEST:
       
  1935 		memcpy(data, *e1000_gstrings_test,
       
  1936 			E1000_TEST_LEN*ETH_GSTRING_LEN);
       
  1937 		break;
       
  1938 	case ETH_SS_STATS:
       
  1939 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1940 			memcpy(p, e1000_gstrings_stats[i].stat_string,
       
  1941 			       ETH_GSTRING_LEN);
       
  1942 			p += ETH_GSTRING_LEN;
       
  1943 		}
       
  1944 /*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
       
  1945 		break;
       
  1946 	}
       
  1947 }
       
  1948 
       
  1949 static const struct ethtool_ops e1000_ethtool_ops = {
       
  1950 	.get_settings           = e1000_get_settings,
       
  1951 	.set_settings           = e1000_set_settings,
       
  1952 	.get_drvinfo            = e1000_get_drvinfo,
       
  1953 	.get_regs_len           = e1000_get_regs_len,
       
  1954 	.get_regs               = e1000_get_regs,
       
  1955 	.get_wol                = e1000_get_wol,
       
  1956 	.set_wol                = e1000_set_wol,
       
  1957 	.get_msglevel           = e1000_get_msglevel,
       
  1958 	.set_msglevel           = e1000_set_msglevel,
       
  1959 	.nway_reset             = e1000_nway_reset,
       
  1960 	.get_link               = ethtool_op_get_link,
       
  1961 	.get_eeprom_len         = e1000_get_eeprom_len,
       
  1962 	.get_eeprom             = e1000_get_eeprom,
       
  1963 	.set_eeprom             = e1000_set_eeprom,
       
  1964 	.get_ringparam          = e1000_get_ringparam,
       
  1965 	.set_ringparam          = e1000_set_ringparam,
       
  1966 	.get_pauseparam         = e1000_get_pauseparam,
       
  1967 	.set_pauseparam         = e1000_set_pauseparam,
       
  1968 	.get_rx_csum            = e1000_get_rx_csum,
       
  1969 	.set_rx_csum            = e1000_set_rx_csum,
       
  1970 	.get_tx_csum            = e1000_get_tx_csum,
       
  1971 	.set_tx_csum            = e1000_set_tx_csum,
       
  1972 	.get_sg                 = ethtool_op_get_sg,
       
  1973 	.set_sg                 = ethtool_op_set_sg,
       
  1974 #ifdef NETIF_F_TSO
       
  1975 	.get_tso                = ethtool_op_get_tso,
       
  1976 	.set_tso                = e1000_set_tso,
       
  1977 #endif
       
  1978 	.self_test_count        = e1000_diag_test_count,
       
  1979 	.self_test              = e1000_diag_test,
       
  1980 	.get_strings            = e1000_get_strings,
       
  1981 	.phys_id                = e1000_phys_id,
       
  1982 	.get_stats_count        = e1000_get_stats_count,
       
  1983 	.get_ethtool_stats      = e1000_get_ethtool_stats,
       
  1984 	.get_perm_addr          = ethtool_op_get_perm_addr,
       
  1985 };
       
  1986 
       
  1987 void e1000_set_ethtool_ops(struct net_device *netdev)
       
  1988 {
       
  1989 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
       
  1990 }