devices/e1000e/mac-3.16-ethercat.c
branchstable-1.5
changeset 2588 792892ab4806
equal deleted inserted replaced
2587:afd76ee3aa87 2588:792892ab4806
       
     1 /* Intel PRO/1000 Linux driver
       
     2  * Copyright(c) 1999 - 2014 Intel Corporation.
       
     3  *
       
     4  * This program is free software; you can redistribute it and/or modify it
       
     5  * under the terms and conditions of the GNU General Public License,
       
     6  * version 2, as published by the Free Software Foundation.
       
     7  *
       
     8  * This program is distributed in the hope it will be useful, but WITHOUT
       
     9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    11  * more details.
       
    12  *
       
    13  * The full GNU General Public License is included in this distribution in
       
    14  * the file called "COPYING".
       
    15  *
       
    16  * Contact Information:
       
    17  * Linux NICS <linux.nics@intel.com>
       
    18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    20  */
       
    21 
       
    22 #include "e1000-3.16-ethercat.h"
       
    23 
       
    24 /**
       
    25  *  e1000e_get_bus_info_pcie - Get PCIe bus information
       
    26  *  @hw: pointer to the HW structure
       
    27  *
       
    28  *  Determines and stores the system bus information for a particular
       
    29  *  network interface.  The following bus information is determined and stored:
       
    30  *  bus speed, bus width, type (PCIe), and PCIe function.
       
    31  **/
       
    32 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
       
    33 {
       
    34 	struct e1000_mac_info *mac = &hw->mac;
       
    35 	struct e1000_bus_info *bus = &hw->bus;
       
    36 	struct e1000_adapter *adapter = hw->adapter;
       
    37 	u16 pcie_link_status, cap_offset;
       
    38 
       
    39 	cap_offset = adapter->pdev->pcie_cap;
       
    40 	if (!cap_offset) {
       
    41 		bus->width = e1000_bus_width_unknown;
       
    42 	} else {
       
    43 		pci_read_config_word(adapter->pdev,
       
    44 				     cap_offset + PCIE_LINK_STATUS,
       
    45 				     &pcie_link_status);
       
    46 		bus->width = (enum e1000_bus_width)((pcie_link_status &
       
    47 						     PCIE_LINK_WIDTH_MASK) >>
       
    48 						    PCIE_LINK_WIDTH_SHIFT);
       
    49 	}
       
    50 
       
    51 	mac->ops.set_lan_id(hw);
       
    52 
       
    53 	return 0;
       
    54 }
       
    55 
       
    56 /**
       
    57  *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
       
    58  *
       
    59  *  @hw: pointer to the HW structure
       
    60  *
       
    61  *  Determines the LAN function id by reading memory-mapped registers
       
    62  *  and swaps the port value if requested.
       
    63  **/
       
    64 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
       
    65 {
       
    66 	struct e1000_bus_info *bus = &hw->bus;
       
    67 	u32 reg;
       
    68 
       
    69 	/* The status register reports the correct function number
       
    70 	 * for the device regardless of function swap state.
       
    71 	 */
       
    72 	reg = er32(STATUS);
       
    73 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
       
    74 }
       
    75 
       
    76 /**
       
    77  *  e1000_set_lan_id_single_port - Set LAN id for a single port device
       
    78  *  @hw: pointer to the HW structure
       
    79  *
       
    80  *  Sets the LAN function id to zero for a single port device.
       
    81  **/
       
    82 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
       
    83 {
       
    84 	struct e1000_bus_info *bus = &hw->bus;
       
    85 
       
    86 	bus->func = 0;
       
    87 }
       
    88 
       
    89 /**
       
    90  *  e1000_clear_vfta_generic - Clear VLAN filter table
       
    91  *  @hw: pointer to the HW structure
       
    92  *
       
    93  *  Clears the register array which contains the VLAN filter table by
       
    94  *  setting all the values to 0.
       
    95  **/
       
    96 void e1000_clear_vfta_generic(struct e1000_hw *hw)
       
    97 {
       
    98 	u32 offset;
       
    99 
       
   100 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
   101 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
       
   102 		e1e_flush();
       
   103 	}
       
   104 }
       
   105 
       
   106 /**
       
   107  *  e1000_write_vfta_generic - Write value to VLAN filter table
       
   108  *  @hw: pointer to the HW structure
       
   109  *  @offset: register offset in VLAN filter table
       
   110  *  @value: register value written to VLAN filter table
       
   111  *
       
   112  *  Writes value at the given offset in the register array which stores
       
   113  *  the VLAN filter table.
       
   114  **/
       
   115 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
       
   116 {
       
   117 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
       
   118 	e1e_flush();
       
   119 }
       
   120 
       
   121 /**
       
   122  *  e1000e_init_rx_addrs - Initialize receive address's
       
   123  *  @hw: pointer to the HW structure
       
   124  *  @rar_count: receive address registers
       
   125  *
       
   126  *  Setup the receive address registers by setting the base receive address
       
   127  *  register to the devices MAC address and clearing all the other receive
       
   128  *  address registers to 0.
       
   129  **/
       
   130 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
       
   131 {
       
   132 	u32 i;
       
   133 	u8 mac_addr[ETH_ALEN] = { 0 };
       
   134 
       
   135 	/* Setup the receive address */
       
   136 	e_dbg("Programming MAC Address into RAR[0]\n");
       
   137 
       
   138 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
       
   139 
       
   140 	/* Zero out the other (rar_entry_count - 1) receive addresses */
       
   141 	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
       
   142 	for (i = 1; i < rar_count; i++)
       
   143 		hw->mac.ops.rar_set(hw, mac_addr, i);
       
   144 }
       
   145 
       
   146 /**
       
   147  *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
       
   148  *  @hw: pointer to the HW structure
       
   149  *
       
   150  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
       
   151  *  can be setup by pre-boot software and must be treated like a permanent
       
   152  *  address and must override the actual permanent MAC address. If an
       
   153  *  alternate MAC address is found it is programmed into RAR0, replacing
       
   154  *  the permanent address that was installed into RAR0 by the Si on reset.
       
   155  *  This function will return SUCCESS unless it encounters an error while
       
   156  *  reading the EEPROM.
       
   157  **/
       
   158 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
       
   159 {
       
   160 	u32 i;
       
   161 	s32 ret_val;
       
   162 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
       
   163 	u8 alt_mac_addr[ETH_ALEN];
       
   164 
       
   165 	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
       
   166 	if (ret_val)
       
   167 		return ret_val;
       
   168 
       
   169 	/* not supported on 82573 */
       
   170 	if (hw->mac.type == e1000_82573)
       
   171 		return 0;
       
   172 
       
   173 	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
       
   174 				 &nvm_alt_mac_addr_offset);
       
   175 	if (ret_val) {
       
   176 		e_dbg("NVM Read Error\n");
       
   177 		return ret_val;
       
   178 	}
       
   179 
       
   180 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
       
   181 	    (nvm_alt_mac_addr_offset == 0x0000))
       
   182 		/* There is no Alternate MAC Address */
       
   183 		return 0;
       
   184 
       
   185 	if (hw->bus.func == E1000_FUNC_1)
       
   186 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
       
   187 	for (i = 0; i < ETH_ALEN; i += 2) {
       
   188 		offset = nvm_alt_mac_addr_offset + (i >> 1);
       
   189 		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
       
   190 		if (ret_val) {
       
   191 			e_dbg("NVM Read Error\n");
       
   192 			return ret_val;
       
   193 		}
       
   194 
       
   195 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
       
   196 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
       
   197 	}
       
   198 
       
   199 	/* if multicast bit is set, the alternate address will not be used */
       
   200 	if (is_multicast_ether_addr(alt_mac_addr)) {
       
   201 		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
       
   202 		return 0;
       
   203 	}
       
   204 
       
   205 	/* We have a valid alternate MAC address, and we want to treat it the
       
   206 	 * same as the normal permanent MAC address stored by the HW into the
       
   207 	 * RAR. Do this by mapping this address into RAR0.
       
   208 	 */
       
   209 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
       
   210 
       
   211 	return 0;
       
   212 }
       
   213 
       
   214 u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
       
   215 {
       
   216 	return hw->mac.rar_entry_count;
       
   217 }
       
   218 
       
   219 /**
       
   220  *  e1000e_rar_set_generic - Set receive address register
       
   221  *  @hw: pointer to the HW structure
       
   222  *  @addr: pointer to the receive address
       
   223  *  @index: receive address array register
       
   224  *
       
   225  *  Sets the receive address array register at index to the address passed
       
   226  *  in by addr.
       
   227  **/
       
   228 int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
       
   229 {
       
   230 	u32 rar_low, rar_high;
       
   231 
       
   232 	/* HW expects these in little endian so we reverse the byte order
       
   233 	 * from network order (big endian) to little endian
       
   234 	 */
       
   235 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
       
   236 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
       
   237 
       
   238 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
       
   239 
       
   240 	/* If MAC address zero, no need to set the AV bit */
       
   241 	if (rar_low || rar_high)
       
   242 		rar_high |= E1000_RAH_AV;
       
   243 
       
   244 	/* Some bridges will combine consecutive 32-bit writes into
       
   245 	 * a single burst write, which will malfunction on some parts.
       
   246 	 * The flushes avoid this.
       
   247 	 */
       
   248 	ew32(RAL(index), rar_low);
       
   249 	e1e_flush();
       
   250 	ew32(RAH(index), rar_high);
       
   251 	e1e_flush();
       
   252 
       
   253 	return 0;
       
   254 }
       
   255 
       
   256 /**
       
   257  *  e1000_hash_mc_addr - Generate a multicast hash value
       
   258  *  @hw: pointer to the HW structure
       
   259  *  @mc_addr: pointer to a multicast address
       
   260  *
       
   261  *  Generates a multicast address hash value which is used to determine
       
   262  *  the multicast filter table array address and new table value.
       
   263  **/
       
   264 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
       
   265 {
       
   266 	u32 hash_value, hash_mask;
       
   267 	u8 bit_shift = 0;
       
   268 
       
   269 	/* Register count multiplied by bits per register */
       
   270 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
       
   271 
       
   272 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
       
   273 	 * where 0xFF would still fall within the hash mask.
       
   274 	 */
       
   275 	while (hash_mask >> bit_shift != 0xFF)
       
   276 		bit_shift++;
       
   277 
       
   278 	/* The portion of the address that is used for the hash table
       
   279 	 * is determined by the mc_filter_type setting.
       
   280 	 * The algorithm is such that there is a total of 8 bits of shifting.
       
   281 	 * The bit_shift for a mc_filter_type of 0 represents the number of
       
   282 	 * left-shifts where the MSB of mc_addr[5] would still fall within
       
   283 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
       
   284 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
       
   285 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
       
   286 	 * cases are a variation of this algorithm...essentially raising the
       
   287 	 * number of bits to shift mc_addr[5] left, while still keeping the
       
   288 	 * 8-bit shifting total.
       
   289 	 *
       
   290 	 * For example, given the following Destination MAC Address and an
       
   291 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
       
   292 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
       
   293 	 * values resulting from each mc_filter_type...
       
   294 	 * [0] [1] [2] [3] [4] [5]
       
   295 	 * 01  AA  00  12  34  56
       
   296 	 * LSB           MSB
       
   297 	 *
       
   298 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
       
   299 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
       
   300 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
       
   301 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
       
   302 	 */
       
   303 	switch (hw->mac.mc_filter_type) {
       
   304 	default:
       
   305 	case 0:
       
   306 		break;
       
   307 	case 1:
       
   308 		bit_shift += 1;
       
   309 		break;
       
   310 	case 2:
       
   311 		bit_shift += 2;
       
   312 		break;
       
   313 	case 3:
       
   314 		bit_shift += 4;
       
   315 		break;
       
   316 	}
       
   317 
       
   318 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
       
   319 				   (((u16)mc_addr[5]) << bit_shift)));
       
   320 
       
   321 	return hash_value;
       
   322 }
       
   323 
       
   324 /**
       
   325  *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
       
   326  *  @hw: pointer to the HW structure
       
   327  *  @mc_addr_list: array of multicast addresses to program
       
   328  *  @mc_addr_count: number of multicast addresses to program
       
   329  *
       
   330  *  Updates entire Multicast Table Array.
       
   331  *  The caller must have a packed mc_addr_list of multicast addresses.
       
   332  **/
       
   333 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
       
   334 					u8 *mc_addr_list, u32 mc_addr_count)
       
   335 {
       
   336 	u32 hash_value, hash_bit, hash_reg;
       
   337 	int i;
       
   338 
       
   339 	/* clear mta_shadow */
       
   340 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
       
   341 
       
   342 	/* update mta_shadow from mc_addr_list */
       
   343 	for (i = 0; (u32)i < mc_addr_count; i++) {
       
   344 		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
       
   345 
       
   346 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
       
   347 		hash_bit = hash_value & 0x1F;
       
   348 
       
   349 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
       
   350 		mc_addr_list += (ETH_ALEN);
       
   351 	}
       
   352 
       
   353 	/* replace the entire MTA table */
       
   354 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
       
   355 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
       
   356 	e1e_flush();
       
   357 }
       
   358 
       
   359 /**
       
   360  *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
       
   361  *  @hw: pointer to the HW structure
       
   362  *
       
   363  *  Clears the base hardware counters by reading the counter registers.
       
   364  **/
       
   365 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
       
   366 {
       
   367 	er32(CRCERRS);
       
   368 	er32(SYMERRS);
       
   369 	er32(MPC);
       
   370 	er32(SCC);
       
   371 	er32(ECOL);
       
   372 	er32(MCC);
       
   373 	er32(LATECOL);
       
   374 	er32(COLC);
       
   375 	er32(DC);
       
   376 	er32(SEC);
       
   377 	er32(RLEC);
       
   378 	er32(XONRXC);
       
   379 	er32(XONTXC);
       
   380 	er32(XOFFRXC);
       
   381 	er32(XOFFTXC);
       
   382 	er32(FCRUC);
       
   383 	er32(GPRC);
       
   384 	er32(BPRC);
       
   385 	er32(MPRC);
       
   386 	er32(GPTC);
       
   387 	er32(GORCL);
       
   388 	er32(GORCH);
       
   389 	er32(GOTCL);
       
   390 	er32(GOTCH);
       
   391 	er32(RNBC);
       
   392 	er32(RUC);
       
   393 	er32(RFC);
       
   394 	er32(ROC);
       
   395 	er32(RJC);
       
   396 	er32(TORL);
       
   397 	er32(TORH);
       
   398 	er32(TOTL);
       
   399 	er32(TOTH);
       
   400 	er32(TPR);
       
   401 	er32(TPT);
       
   402 	er32(MPTC);
       
   403 	er32(BPTC);
       
   404 }
       
   405 
       
   406 /**
       
   407  *  e1000e_check_for_copper_link - Check for link (Copper)
       
   408  *  @hw: pointer to the HW structure
       
   409  *
       
   410  *  Checks to see of the link status of the hardware has changed.  If a
       
   411  *  change in link status has been detected, then we read the PHY registers
       
   412  *  to get the current speed/duplex if link exists.
       
   413  **/
       
   414 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
       
   415 {
       
   416 	struct e1000_mac_info *mac = &hw->mac;
       
   417 	s32 ret_val;
       
   418 	bool link;
       
   419 
       
   420 	/* We only want to go out to the PHY registers to see if Auto-Neg
       
   421 	 * has completed and/or if our link status has changed.  The
       
   422 	 * get_link_status flag is set upon receiving a Link Status
       
   423 	 * Change or Rx Sequence Error interrupt.
       
   424 	 */
       
   425 	if (!mac->get_link_status)
       
   426 		return 0;
       
   427 
       
   428 	/* First we want to see if the MII Status Register reports
       
   429 	 * link.  If so, then we want to get the current speed/duplex
       
   430 	 * of the PHY.
       
   431 	 */
       
   432 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
   433 	if (ret_val)
       
   434 		return ret_val;
       
   435 
       
   436 	if (!link)
       
   437 		return 0;	/* No link detected */
       
   438 
       
   439 	mac->get_link_status = false;
       
   440 
       
   441 	/* Check if there was DownShift, must be checked
       
   442 	 * immediately after link-up
       
   443 	 */
       
   444 	e1000e_check_downshift(hw);
       
   445 
       
   446 	/* If we are forcing speed/duplex, then we simply return since
       
   447 	 * we have already determined whether we have link or not.
       
   448 	 */
       
   449 	if (!mac->autoneg)
       
   450 		return -E1000_ERR_CONFIG;
       
   451 
       
   452 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
       
   453 	 * of MAC speed/duplex configuration.  So we only need to
       
   454 	 * configure Collision Distance in the MAC.
       
   455 	 */
       
   456 	mac->ops.config_collision_dist(hw);
       
   457 
       
   458 	/* Configure Flow Control now that Auto-Neg has completed.
       
   459 	 * First, we need to restore the desired flow control
       
   460 	 * settings because we may have had to re-autoneg with a
       
   461 	 * different link partner.
       
   462 	 */
       
   463 	ret_val = e1000e_config_fc_after_link_up(hw);
       
   464 	if (ret_val)
       
   465 		e_dbg("Error configuring flow control\n");
       
   466 
       
   467 	return ret_val;
       
   468 }
       
   469 
       
   470 /**
       
   471  *  e1000e_check_for_fiber_link - Check for link (Fiber)
       
   472  *  @hw: pointer to the HW structure
       
   473  *
       
   474  *  Checks for link up on the hardware.  If link is not up and we have
       
   475  *  a signal, then we need to force link up.
       
   476  **/
       
   477 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
       
   478 {
       
   479 	struct e1000_mac_info *mac = &hw->mac;
       
   480 	u32 rxcw;
       
   481 	u32 ctrl;
       
   482 	u32 status;
       
   483 	s32 ret_val;
       
   484 
       
   485 	ctrl = er32(CTRL);
       
   486 	status = er32(STATUS);
       
   487 	rxcw = er32(RXCW);
       
   488 
       
   489 	/* If we don't have link (auto-negotiation failed or link partner
       
   490 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
       
   491 	 * and our link partner is not trying to auto-negotiate with us (we
       
   492 	 * are receiving idles or data), we need to force link up. We also
       
   493 	 * need to give auto-negotiation time to complete, in case the cable
       
   494 	 * was just plugged in. The autoneg_failed flag does this.
       
   495 	 */
       
   496 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   497 	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
       
   498 	    !(rxcw & E1000_RXCW_C)) {
       
   499 		if (!mac->autoneg_failed) {
       
   500 			mac->autoneg_failed = true;
       
   501 			return 0;
       
   502 		}
       
   503 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
       
   504 
       
   505 		/* Disable auto-negotiation in the TXCW register */
       
   506 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   507 
       
   508 		/* Force link-up and also force full-duplex. */
       
   509 		ctrl = er32(CTRL);
       
   510 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   511 		ew32(CTRL, ctrl);
       
   512 
       
   513 		/* Configure Flow Control after forcing link up. */
       
   514 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   515 		if (ret_val) {
       
   516 			e_dbg("Error configuring flow control\n");
       
   517 			return ret_val;
       
   518 		}
       
   519 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   520 		/* If we are forcing link and we are receiving /C/ ordered
       
   521 		 * sets, re-enable auto-negotiation in the TXCW register
       
   522 		 * and disable forced link in the Device Control register
       
   523 		 * in an attempt to auto-negotiate with our link partner.
       
   524 		 */
       
   525 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
       
   526 		ew32(TXCW, mac->txcw);
       
   527 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   528 
       
   529 		mac->serdes_has_link = true;
       
   530 	}
       
   531 
       
   532 	return 0;
       
   533 }
       
   534 
       
   535 /**
       
   536  *  e1000e_check_for_serdes_link - Check for link (Serdes)
       
   537  *  @hw: pointer to the HW structure
       
   538  *
       
   539  *  Checks for link up on the hardware.  If link is not up and we have
       
   540  *  a signal, then we need to force link up.
       
   541  **/
       
   542 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
       
   543 {
       
   544 	struct e1000_mac_info *mac = &hw->mac;
       
   545 	u32 rxcw;
       
   546 	u32 ctrl;
       
   547 	u32 status;
       
   548 	s32 ret_val;
       
   549 
       
   550 	ctrl = er32(CTRL);
       
   551 	status = er32(STATUS);
       
   552 	rxcw = er32(RXCW);
       
   553 
       
   554 	/* If we don't have link (auto-negotiation failed or link partner
       
   555 	 * cannot auto-negotiate), and our link partner is not trying to
       
   556 	 * auto-negotiate with us (we are receiving idles or data),
       
   557 	 * we need to force link up. We also need to give auto-negotiation
       
   558 	 * time to complete.
       
   559 	 */
       
   560 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   561 	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
       
   562 		if (!mac->autoneg_failed) {
       
   563 			mac->autoneg_failed = true;
       
   564 			return 0;
       
   565 		}
       
   566 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
       
   567 
       
   568 		/* Disable auto-negotiation in the TXCW register */
       
   569 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   570 
       
   571 		/* Force link-up and also force full-duplex. */
       
   572 		ctrl = er32(CTRL);
       
   573 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   574 		ew32(CTRL, ctrl);
       
   575 
       
   576 		/* Configure Flow Control after forcing link up. */
       
   577 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   578 		if (ret_val) {
       
   579 			e_dbg("Error configuring flow control\n");
       
   580 			return ret_val;
       
   581 		}
       
   582 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   583 		/* If we are forcing link and we are receiving /C/ ordered
       
   584 		 * sets, re-enable auto-negotiation in the TXCW register
       
   585 		 * and disable forced link in the Device Control register
       
   586 		 * in an attempt to auto-negotiate with our link partner.
       
   587 		 */
       
   588 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
       
   589 		ew32(TXCW, mac->txcw);
       
   590 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   591 
       
   592 		mac->serdes_has_link = true;
       
   593 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
       
   594 		/* If we force link for non-auto-negotiation switch, check
       
   595 		 * link status based on MAC synchronization for internal
       
   596 		 * serdes media type.
       
   597 		 */
       
   598 		/* SYNCH bit and IV bit are sticky. */
       
   599 		usleep_range(10, 20);
       
   600 		rxcw = er32(RXCW);
       
   601 		if (rxcw & E1000_RXCW_SYNCH) {
       
   602 			if (!(rxcw & E1000_RXCW_IV)) {
       
   603 				mac->serdes_has_link = true;
       
   604 				e_dbg("SERDES: Link up - forced.\n");
       
   605 			}
       
   606 		} else {
       
   607 			mac->serdes_has_link = false;
       
   608 			e_dbg("SERDES: Link down - force failed.\n");
       
   609 		}
       
   610 	}
       
   611 
       
   612 	if (E1000_TXCW_ANE & er32(TXCW)) {
       
   613 		status = er32(STATUS);
       
   614 		if (status & E1000_STATUS_LU) {
       
   615 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
       
   616 			usleep_range(10, 20);
       
   617 			rxcw = er32(RXCW);
       
   618 			if (rxcw & E1000_RXCW_SYNCH) {
       
   619 				if (!(rxcw & E1000_RXCW_IV)) {
       
   620 					mac->serdes_has_link = true;
       
   621 					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
       
   622 				} else {
       
   623 					mac->serdes_has_link = false;
       
   624 					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
       
   625 				}
       
   626 			} else {
       
   627 				mac->serdes_has_link = false;
       
   628 				e_dbg("SERDES: Link down - no sync.\n");
       
   629 			}
       
   630 		} else {
       
   631 			mac->serdes_has_link = false;
       
   632 			e_dbg("SERDES: Link down - autoneg failed\n");
       
   633 		}
       
   634 	}
       
   635 
       
   636 	return 0;
       
   637 }
       
   638 
       
   639 /**
       
   640  *  e1000_set_default_fc_generic - Set flow control default values
       
   641  *  @hw: pointer to the HW structure
       
   642  *
       
   643  *  Read the EEPROM for the default values for flow control and store the
       
   644  *  values.
       
   645  **/
       
   646 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
       
   647 {
       
   648 	s32 ret_val;
       
   649 	u16 nvm_data;
       
   650 
       
   651 	/* Read and store word 0x0F of the EEPROM. This word contains bits
       
   652 	 * that determine the hardware's default PAUSE (flow control) mode,
       
   653 	 * a bit that determines whether the HW defaults to enabling or
       
   654 	 * disabling auto-negotiation, and the direction of the
       
   655 	 * SW defined pins. If there is no SW over-ride of the flow
       
   656 	 * control setting, then the variable hw->fc will
       
   657 	 * be initialized based on a value in the EEPROM.
       
   658 	 */
       
   659 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
       
   660 
       
   661 	if (ret_val) {
       
   662 		e_dbg("NVM Read Error\n");
       
   663 		return ret_val;
       
   664 	}
       
   665 
       
   666 	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
       
   667 		hw->fc.requested_mode = e1000_fc_none;
       
   668 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
       
   669 		hw->fc.requested_mode = e1000_fc_tx_pause;
       
   670 	else
       
   671 		hw->fc.requested_mode = e1000_fc_full;
       
   672 
       
   673 	return 0;
       
   674 }
       
   675 
       
   676 /**
       
   677  *  e1000e_setup_link_generic - Setup flow control and link settings
       
   678  *  @hw: pointer to the HW structure
       
   679  *
       
   680  *  Determines which flow control settings to use, then configures flow
       
   681  *  control.  Calls the appropriate media-specific link configuration
       
   682  *  function.  Assuming the adapter has a valid link partner, a valid link
       
   683  *  should be established.  Assumes the hardware has previously been reset
       
   684  *  and the transmitter and receiver are not enabled.
       
   685  **/
       
   686 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
       
   687 {
       
   688 	s32 ret_val;
       
   689 
       
   690 	/* In the case of the phy reset being blocked, we already have a link.
       
   691 	 * We do not need to set it up again.
       
   692 	 */
       
   693 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
       
   694 		return 0;
       
   695 
       
   696 	/* If requested flow control is set to default, set flow control
       
   697 	 * based on the EEPROM flow control settings.
       
   698 	 */
       
   699 	if (hw->fc.requested_mode == e1000_fc_default) {
       
   700 		ret_val = e1000_set_default_fc_generic(hw);
       
   701 		if (ret_val)
       
   702 			return ret_val;
       
   703 	}
       
   704 
       
   705 	/* Save off the requested flow control mode for use later.  Depending
       
   706 	 * on the link partner's capabilities, we may or may not use this mode.
       
   707 	 */
       
   708 	hw->fc.current_mode = hw->fc.requested_mode;
       
   709 
       
   710 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
       
   711 
       
   712 	/* Call the necessary media_type subroutine to configure the link. */
       
   713 	ret_val = hw->mac.ops.setup_physical_interface(hw);
       
   714 	if (ret_val)
       
   715 		return ret_val;
       
   716 
       
   717 	/* Initialize the flow control address, type, and PAUSE timer
       
   718 	 * registers to their default values.  This is done even if flow
       
   719 	 * control is disabled, because it does not hurt anything to
       
   720 	 * initialize these registers.
       
   721 	 */
       
   722 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
       
   723 	ew32(FCT, FLOW_CONTROL_TYPE);
       
   724 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
       
   725 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
       
   726 
       
   727 	ew32(FCTTV, hw->fc.pause_time);
       
   728 
       
   729 	return e1000e_set_fc_watermarks(hw);
       
   730 }
       
   731 
       
   732 /**
       
   733  *  e1000_commit_fc_settings_generic - Configure flow control
       
   734  *  @hw: pointer to the HW structure
       
   735  *
       
   736  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
       
   737  *  base on the flow control settings in e1000_mac_info.
       
   738  **/
       
   739 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
       
   740 {
       
   741 	struct e1000_mac_info *mac = &hw->mac;
       
   742 	u32 txcw;
       
   743 
       
   744 	/* Check for a software override of the flow control settings, and
       
   745 	 * setup the device accordingly.  If auto-negotiation is enabled, then
       
   746 	 * software will have to set the "PAUSE" bits to the correct value in
       
   747 	 * the Transmit Config Word Register (TXCW) and re-start auto-
       
   748 	 * negotiation.  However, if auto-negotiation is disabled, then
       
   749 	 * software will have to manually configure the two flow control enable
       
   750 	 * bits in the CTRL register.
       
   751 	 *
       
   752 	 * The possible values of the "fc" parameter are:
       
   753 	 *      0:  Flow control is completely disabled
       
   754 	 *      1:  Rx flow control is enabled (we can receive pause frames,
       
   755 	 *          but not send pause frames).
       
   756 	 *      2:  Tx flow control is enabled (we can send pause frames but we
       
   757 	 *          do not support receiving pause frames).
       
   758 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
       
   759 	 */
       
   760 	switch (hw->fc.current_mode) {
       
   761 	case e1000_fc_none:
       
   762 		/* Flow control completely disabled by a software over-ride. */
       
   763 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
       
   764 		break;
       
   765 	case e1000_fc_rx_pause:
       
   766 		/* Rx Flow control is enabled and Tx Flow control is disabled
       
   767 		 * by a software over-ride. Since there really isn't a way to
       
   768 		 * advertise that we are capable of Rx Pause ONLY, we will
       
   769 		 * advertise that we support both symmetric and asymmetric Rx
       
   770 		 * PAUSE.  Later, we will disable the adapter's ability to send
       
   771 		 * PAUSE frames.
       
   772 		 */
       
   773 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   774 		break;
       
   775 	case e1000_fc_tx_pause:
       
   776 		/* Tx Flow control is enabled, and Rx Flow control is disabled,
       
   777 		 * by a software over-ride.
       
   778 		 */
       
   779 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
       
   780 		break;
       
   781 	case e1000_fc_full:
       
   782 		/* Flow control (both Rx and Tx) is enabled by a software
       
   783 		 * over-ride.
       
   784 		 */
       
   785 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   786 		break;
       
   787 	default:
       
   788 		e_dbg("Flow control param set incorrectly\n");
       
   789 		return -E1000_ERR_CONFIG;
       
   790 		break;
       
   791 	}
       
   792 
       
   793 	ew32(TXCW, txcw);
       
   794 	mac->txcw = txcw;
       
   795 
       
   796 	return 0;
       
   797 }
       
   798 
       
   799 /**
       
   800  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
       
   801  *  @hw: pointer to the HW structure
       
   802  *
       
   803  *  Polls for link up by reading the status register, if link fails to come
       
   804  *  up with auto-negotiation, then the link is forced if a signal is detected.
       
   805  **/
       
   806 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
       
   807 {
       
   808 	struct e1000_mac_info *mac = &hw->mac;
       
   809 	u32 i, status;
       
   810 	s32 ret_val;
       
   811 
       
   812 	/* If we have a signal (the cable is plugged in, or assumed true for
       
   813 	 * serdes media) then poll for a "Link-Up" indication in the Device
       
   814 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
       
   815 	 * seconds (Auto-negotiation should complete in less than 500
       
   816 	 * milliseconds even if the other end is doing it in SW).
       
   817 	 */
       
   818 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
       
   819 		usleep_range(10000, 20000);
       
   820 		status = er32(STATUS);
       
   821 		if (status & E1000_STATUS_LU)
       
   822 			break;
       
   823 	}
       
   824 	if (i == FIBER_LINK_UP_LIMIT) {
       
   825 		e_dbg("Never got a valid link from auto-neg!!!\n");
       
   826 		mac->autoneg_failed = true;
       
   827 		/* AutoNeg failed to achieve a link, so we'll call
       
   828 		 * mac->check_for_link. This routine will force the
       
   829 		 * link up if we detect a signal. This will allow us to
       
   830 		 * communicate with non-autonegotiating link partners.
       
   831 		 */
       
   832 		ret_val = mac->ops.check_for_link(hw);
       
   833 		if (ret_val) {
       
   834 			e_dbg("Error while checking for link\n");
       
   835 			return ret_val;
       
   836 		}
       
   837 		mac->autoneg_failed = false;
       
   838 	} else {
       
   839 		mac->autoneg_failed = false;
       
   840 		e_dbg("Valid Link Found\n");
       
   841 	}
       
   842 
       
   843 	return 0;
       
   844 }
       
   845 
       
   846 /**
       
   847  *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
       
   848  *  @hw: pointer to the HW structure
       
   849  *
       
   850  *  Configures collision distance and flow control for fiber and serdes
       
   851  *  links.  Upon successful setup, poll for link.
       
   852  **/
       
   853 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
       
   854 {
       
   855 	u32 ctrl;
       
   856 	s32 ret_val;
       
   857 
       
   858 	ctrl = er32(CTRL);
       
   859 
       
   860 	/* Take the link out of reset */
       
   861 	ctrl &= ~E1000_CTRL_LRST;
       
   862 
       
   863 	hw->mac.ops.config_collision_dist(hw);
       
   864 
       
   865 	ret_val = e1000_commit_fc_settings_generic(hw);
       
   866 	if (ret_val)
       
   867 		return ret_val;
       
   868 
       
   869 	/* Since auto-negotiation is enabled, take the link out of reset (the
       
   870 	 * link will be in reset, because we previously reset the chip). This
       
   871 	 * will restart auto-negotiation.  If auto-negotiation is successful
       
   872 	 * then the link-up status bit will be set and the flow control enable
       
   873 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
       
   874 	 */
       
   875 	e_dbg("Auto-negotiation enabled\n");
       
   876 
       
   877 	ew32(CTRL, ctrl);
       
   878 	e1e_flush();
       
   879 	usleep_range(1000, 2000);
       
   880 
       
   881 	/* For these adapters, the SW definable pin 1 is set when the optics
       
   882 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
       
   883 	 * indication.
       
   884 	 */
       
   885 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
       
   886 	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
       
   887 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
       
   888 	} else {
       
   889 		e_dbg("No signal detected\n");
       
   890 	}
       
   891 
       
   892 	return ret_val;
       
   893 }
       
   894 
       
   895 /**
       
   896  *  e1000e_config_collision_dist_generic - Configure collision distance
       
   897  *  @hw: pointer to the HW structure
       
   898  *
       
   899  *  Configures the collision distance to the default value and is used
       
   900  *  during link setup.
       
   901  **/
       
   902 void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
       
   903 {
       
   904 	u32 tctl;
       
   905 
       
   906 	tctl = er32(TCTL);
       
   907 
       
   908 	tctl &= ~E1000_TCTL_COLD;
       
   909 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
       
   910 
       
   911 	ew32(TCTL, tctl);
       
   912 	e1e_flush();
       
   913 }
       
   914 
       
   915 /**
       
   916  *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
       
   917  *  @hw: pointer to the HW structure
       
   918  *
       
   919  *  Sets the flow control high/low threshold (watermark) registers.  If
       
   920  *  flow control XON frame transmission is enabled, then set XON frame
       
   921  *  transmission as well.
       
   922  **/
       
   923 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
       
   924 {
       
   925 	u32 fcrtl = 0, fcrth = 0;
       
   926 
       
   927 	/* Set the flow control receive threshold registers.  Normally,
       
   928 	 * these registers will be set to a default threshold that may be
       
   929 	 * adjusted later by the driver's runtime code.  However, if the
       
   930 	 * ability to transmit pause frames is not enabled, then these
       
   931 	 * registers will be set to 0.
       
   932 	 */
       
   933 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
       
   934 		/* We need to set up the Receive Threshold high and low water
       
   935 		 * marks as well as (optionally) enabling the transmission of
       
   936 		 * XON frames.
       
   937 		 */
       
   938 		fcrtl = hw->fc.low_water;
       
   939 		if (hw->fc.send_xon)
       
   940 			fcrtl |= E1000_FCRTL_XONE;
       
   941 
       
   942 		fcrth = hw->fc.high_water;
       
   943 	}
       
   944 	ew32(FCRTL, fcrtl);
       
   945 	ew32(FCRTH, fcrth);
       
   946 
       
   947 	return 0;
       
   948 }
       
   949 
       
   950 /**
       
   951  *  e1000e_force_mac_fc - Force the MAC's flow control settings
       
   952  *  @hw: pointer to the HW structure
       
   953  *
       
   954  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
       
   955  *  device control register to reflect the adapter settings.  TFCE and RFCE
       
   956  *  need to be explicitly set by software when a copper PHY is used because
       
   957  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
       
   958  *  also configure these bits when link is forced on a fiber connection.
       
   959  **/
       
   960 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
       
   961 {
       
   962 	u32 ctrl;
       
   963 
       
   964 	ctrl = er32(CTRL);
       
   965 
       
   966 	/* Because we didn't get link via the internal auto-negotiation
       
   967 	 * mechanism (we either forced link or we got link via PHY
       
   968 	 * auto-neg), we have to manually enable/disable transmit an
       
   969 	 * receive flow control.
       
   970 	 *
       
   971 	 * The "Case" statement below enables/disable flow control
       
   972 	 * according to the "hw->fc.current_mode" parameter.
       
   973 	 *
       
   974 	 * The possible values of the "fc" parameter are:
       
   975 	 *      0:  Flow control is completely disabled
       
   976 	 *      1:  Rx flow control is enabled (we can receive pause
       
   977 	 *          frames but not send pause frames).
       
   978 	 *      2:  Tx flow control is enabled (we can send pause frames
       
   979 	 *          frames but we do not receive pause frames).
       
   980 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
       
   981 	 *  other:  No other values should be possible at this point.
       
   982 	 */
       
   983 	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
       
   984 
       
   985 	switch (hw->fc.current_mode) {
       
   986 	case e1000_fc_none:
       
   987 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
       
   988 		break;
       
   989 	case e1000_fc_rx_pause:
       
   990 		ctrl &= (~E1000_CTRL_TFCE);
       
   991 		ctrl |= E1000_CTRL_RFCE;
       
   992 		break;
       
   993 	case e1000_fc_tx_pause:
       
   994 		ctrl &= (~E1000_CTRL_RFCE);
       
   995 		ctrl |= E1000_CTRL_TFCE;
       
   996 		break;
       
   997 	case e1000_fc_full:
       
   998 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
       
   999 		break;
       
  1000 	default:
       
  1001 		e_dbg("Flow control param set incorrectly\n");
       
  1002 		return -E1000_ERR_CONFIG;
       
  1003 	}
       
  1004 
       
  1005 	ew32(CTRL, ctrl);
       
  1006 
       
  1007 	return 0;
       
  1008 }
       
  1009 
       
  1010 /**
       
  1011  *  e1000e_config_fc_after_link_up - Configures flow control after link
       
  1012  *  @hw: pointer to the HW structure
       
  1013  *
       
  1014  *  Checks the status of auto-negotiation after link up to ensure that the
       
  1015  *  speed and duplex were not forced.  If the link needed to be forced, then
       
  1016  *  flow control needs to be forced also.  If auto-negotiation is enabled
       
  1017  *  and did not fail, then we configure flow control based on our link
       
  1018  *  partner.
       
  1019  **/
       
  1020 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
       
  1021 {
       
  1022 	struct e1000_mac_info *mac = &hw->mac;
       
  1023 	s32 ret_val = 0;
       
  1024 	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
       
  1025 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
       
  1026 	u16 speed, duplex;
       
  1027 
       
  1028 	/* Check for the case where we have fiber media and auto-neg failed
       
  1029 	 * so we had to force link.  In this case, we need to force the
       
  1030 	 * configuration of the MAC to match the "fc" parameter.
       
  1031 	 */
       
  1032 	if (mac->autoneg_failed) {
       
  1033 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1034 		    hw->phy.media_type == e1000_media_type_internal_serdes)
       
  1035 			ret_val = e1000e_force_mac_fc(hw);
       
  1036 	} else {
       
  1037 		if (hw->phy.media_type == e1000_media_type_copper)
       
  1038 			ret_val = e1000e_force_mac_fc(hw);
       
  1039 	}
       
  1040 
       
  1041 	if (ret_val) {
       
  1042 		e_dbg("Error forcing flow control settings\n");
       
  1043 		return ret_val;
       
  1044 	}
       
  1045 
       
  1046 	/* Check for the case where we have copper media and auto-neg is
       
  1047 	 * enabled.  In this case, we need to check and see if Auto-Neg
       
  1048 	 * has completed, and if so, how the PHY and link partner has
       
  1049 	 * flow control configured.
       
  1050 	 */
       
  1051 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
       
  1052 		/* Read the MII Status Register and check to see if AutoNeg
       
  1053 		 * has completed.  We read this twice because this reg has
       
  1054 		 * some "sticky" (latched) bits.
       
  1055 		 */
       
  1056 		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
       
  1057 		if (ret_val)
       
  1058 			return ret_val;
       
  1059 		ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
       
  1060 		if (ret_val)
       
  1061 			return ret_val;
       
  1062 
       
  1063 		if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
       
  1064 			e_dbg("Copper PHY and Auto Neg has not completed.\n");
       
  1065 			return ret_val;
       
  1066 		}
       
  1067 
       
  1068 		/* The AutoNeg process has completed, so we now need to
       
  1069 		 * read both the Auto Negotiation Advertisement
       
  1070 		 * Register (Address 4) and the Auto_Negotiation Base
       
  1071 		 * Page Ability Register (Address 5) to determine how
       
  1072 		 * flow control was negotiated.
       
  1073 		 */
       
  1074 		ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
       
  1075 		if (ret_val)
       
  1076 			return ret_val;
       
  1077 		ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
       
  1078 		if (ret_val)
       
  1079 			return ret_val;
       
  1080 
       
  1081 		/* Two bits in the Auto Negotiation Advertisement Register
       
  1082 		 * (Address 4) and two bits in the Auto Negotiation Base
       
  1083 		 * Page Ability Register (Address 5) determine flow control
       
  1084 		 * for both the PHY and the link partner.  The following
       
  1085 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
       
  1086 		 * 1999, describes these PAUSE resolution bits and how flow
       
  1087 		 * control is determined based upon these settings.
       
  1088 		 * NOTE:  DC = Don't Care
       
  1089 		 *
       
  1090 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1091 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
       
  1092 		 *-------|---------|-------|---------|--------------------
       
  1093 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
       
  1094 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
       
  1095 		 *   0   |    1    |   1   |    0    | e1000_fc_none
       
  1096 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1097 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
       
  1098 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
       
  1099 		 *   1   |    1    |   0   |    0    | e1000_fc_none
       
  1100 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1101 		 *
       
  1102 		 * Are both PAUSE bits set to 1?  If so, this implies
       
  1103 		 * Symmetric Flow Control is enabled at both ends.  The
       
  1104 		 * ASM_DIR bits are irrelevant per the spec.
       
  1105 		 *
       
  1106 		 * For Symmetric Flow Control:
       
  1107 		 *
       
  1108 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1109 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1110 		 *-------|---------|-------|---------|--------------------
       
  1111 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
       
  1112 		 *
       
  1113 		 */
       
  1114 		if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
       
  1115 		    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
       
  1116 			/* Now we need to check if the user selected Rx ONLY
       
  1117 			 * of pause frames.  In this case, we had to advertise
       
  1118 			 * FULL flow control because we could not advertise Rx
       
  1119 			 * ONLY. Hence, we must now check to see if we need to
       
  1120 			 * turn OFF the TRANSMISSION of PAUSE frames.
       
  1121 			 */
       
  1122 			if (hw->fc.requested_mode == e1000_fc_full) {
       
  1123 				hw->fc.current_mode = e1000_fc_full;
       
  1124 				e_dbg("Flow Control = FULL.\n");
       
  1125 			} else {
       
  1126 				hw->fc.current_mode = e1000_fc_rx_pause;
       
  1127 				e_dbg("Flow Control = Rx PAUSE frames only.\n");
       
  1128 			}
       
  1129 		}
       
  1130 		/* For receiving PAUSE frames ONLY.
       
  1131 		 *
       
  1132 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1133 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1134 		 *-------|---------|-------|---------|--------------------
       
  1135 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1136 		 */
       
  1137 		else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
       
  1138 			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
       
  1139 			 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
       
  1140 			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
       
  1141 			hw->fc.current_mode = e1000_fc_tx_pause;
       
  1142 			e_dbg("Flow Control = Tx PAUSE frames only.\n");
       
  1143 		}
       
  1144 		/* For transmitting PAUSE frames ONLY.
       
  1145 		 *
       
  1146 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1147 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1148 		 *-------|---------|-------|---------|--------------------
       
  1149 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1150 		 */
       
  1151 		else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
       
  1152 			 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
       
  1153 			 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
       
  1154 			 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
       
  1155 			hw->fc.current_mode = e1000_fc_rx_pause;
       
  1156 			e_dbg("Flow Control = Rx PAUSE frames only.\n");
       
  1157 		} else {
       
  1158 			/* Per the IEEE spec, at this point flow control
       
  1159 			 * should be disabled.
       
  1160 			 */
       
  1161 			hw->fc.current_mode = e1000_fc_none;
       
  1162 			e_dbg("Flow Control = NONE.\n");
       
  1163 		}
       
  1164 
       
  1165 		/* Now we need to do one last check...  If we auto-
       
  1166 		 * negotiated to HALF DUPLEX, flow control should not be
       
  1167 		 * enabled per IEEE 802.3 spec.
       
  1168 		 */
       
  1169 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
       
  1170 		if (ret_val) {
       
  1171 			e_dbg("Error getting link speed and duplex\n");
       
  1172 			return ret_val;
       
  1173 		}
       
  1174 
       
  1175 		if (duplex == HALF_DUPLEX)
       
  1176 			hw->fc.current_mode = e1000_fc_none;
       
  1177 
       
  1178 		/* Now we call a subroutine to actually force the MAC
       
  1179 		 * controller to use the correct flow control settings.
       
  1180 		 */
       
  1181 		ret_val = e1000e_force_mac_fc(hw);
       
  1182 		if (ret_val) {
       
  1183 			e_dbg("Error forcing flow control settings\n");
       
  1184 			return ret_val;
       
  1185 		}
       
  1186 	}
       
  1187 
       
  1188 	/* Check for the case where we have SerDes media and auto-neg is
       
  1189 	 * enabled.  In this case, we need to check and see if Auto-Neg
       
  1190 	 * has completed, and if so, how the PHY and link partner has
       
  1191 	 * flow control configured.
       
  1192 	 */
       
  1193 	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
       
  1194 	    mac->autoneg) {
       
  1195 		/* Read the PCS_LSTS and check to see if AutoNeg
       
  1196 		 * has completed.
       
  1197 		 */
       
  1198 		pcs_status_reg = er32(PCS_LSTAT);
       
  1199 
       
  1200 		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
       
  1201 			e_dbg("PCS Auto Neg has not completed.\n");
       
  1202 			return ret_val;
       
  1203 		}
       
  1204 
       
  1205 		/* The AutoNeg process has completed, so we now need to
       
  1206 		 * read both the Auto Negotiation Advertisement
       
  1207 		 * Register (PCS_ANADV) and the Auto_Negotiation Base
       
  1208 		 * Page Ability Register (PCS_LPAB) to determine how
       
  1209 		 * flow control was negotiated.
       
  1210 		 */
       
  1211 		pcs_adv_reg = er32(PCS_ANADV);
       
  1212 		pcs_lp_ability_reg = er32(PCS_LPAB);
       
  1213 
       
  1214 		/* Two bits in the Auto Negotiation Advertisement Register
       
  1215 		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
       
  1216 		 * Page Ability Register (PCS_LPAB) determine flow control
       
  1217 		 * for both the PHY and the link partner.  The following
       
  1218 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
       
  1219 		 * 1999, describes these PAUSE resolution bits and how flow
       
  1220 		 * control is determined based upon these settings.
       
  1221 		 * NOTE:  DC = Don't Care
       
  1222 		 *
       
  1223 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1224 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
       
  1225 		 *-------|---------|-------|---------|--------------------
       
  1226 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
       
  1227 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
       
  1228 		 *   0   |    1    |   1   |    0    | e1000_fc_none
       
  1229 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1230 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
       
  1231 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
       
  1232 		 *   1   |    1    |   0   |    0    | e1000_fc_none
       
  1233 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1234 		 *
       
  1235 		 * Are both PAUSE bits set to 1?  If so, this implies
       
  1236 		 * Symmetric Flow Control is enabled at both ends.  The
       
  1237 		 * ASM_DIR bits are irrelevant per the spec.
       
  1238 		 *
       
  1239 		 * For Symmetric Flow Control:
       
  1240 		 *
       
  1241 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1242 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1243 		 *-------|---------|-------|---------|--------------------
       
  1244 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
       
  1245 		 *
       
  1246 		 */
       
  1247 		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
       
  1248 		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
       
  1249 			/* Now we need to check if the user selected Rx ONLY
       
  1250 			 * of pause frames.  In this case, we had to advertise
       
  1251 			 * FULL flow control because we could not advertise Rx
       
  1252 			 * ONLY. Hence, we must now check to see if we need to
       
  1253 			 * turn OFF the TRANSMISSION of PAUSE frames.
       
  1254 			 */
       
  1255 			if (hw->fc.requested_mode == e1000_fc_full) {
       
  1256 				hw->fc.current_mode = e1000_fc_full;
       
  1257 				e_dbg("Flow Control = FULL.\n");
       
  1258 			} else {
       
  1259 				hw->fc.current_mode = e1000_fc_rx_pause;
       
  1260 				e_dbg("Flow Control = Rx PAUSE frames only.\n");
       
  1261 			}
       
  1262 		}
       
  1263 		/* For receiving PAUSE frames ONLY.
       
  1264 		 *
       
  1265 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1266 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1267 		 *-------|---------|-------|---------|--------------------
       
  1268 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1269 		 */
       
  1270 		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
       
  1271 			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
       
  1272 			 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
       
  1273 			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
       
  1274 			hw->fc.current_mode = e1000_fc_tx_pause;
       
  1275 			e_dbg("Flow Control = Tx PAUSE frames only.\n");
       
  1276 		}
       
  1277 		/* For transmitting PAUSE frames ONLY.
       
  1278 		 *
       
  1279 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1280 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1281 		 *-------|---------|-------|---------|--------------------
       
  1282 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1283 		 */
       
  1284 		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
       
  1285 			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
       
  1286 			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
       
  1287 			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
       
  1288 			hw->fc.current_mode = e1000_fc_rx_pause;
       
  1289 			e_dbg("Flow Control = Rx PAUSE frames only.\n");
       
  1290 		} else {
       
  1291 			/* Per the IEEE spec, at this point flow control
       
  1292 			 * should be disabled.
       
  1293 			 */
       
  1294 			hw->fc.current_mode = e1000_fc_none;
       
  1295 			e_dbg("Flow Control = NONE.\n");
       
  1296 		}
       
  1297 
       
  1298 		/* Now we call a subroutine to actually force the MAC
       
  1299 		 * controller to use the correct flow control settings.
       
  1300 		 */
       
  1301 		pcs_ctrl_reg = er32(PCS_LCTL);
       
  1302 		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
       
  1303 		ew32(PCS_LCTL, pcs_ctrl_reg);
       
  1304 
       
  1305 		ret_val = e1000e_force_mac_fc(hw);
       
  1306 		if (ret_val) {
       
  1307 			e_dbg("Error forcing flow control settings\n");
       
  1308 			return ret_val;
       
  1309 		}
       
  1310 	}
       
  1311 
       
  1312 	return 0;
       
  1313 }
       
  1314 
       
  1315 /**
       
  1316  *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
       
  1317  *  @hw: pointer to the HW structure
       
  1318  *  @speed: stores the current speed
       
  1319  *  @duplex: stores the current duplex
       
  1320  *
       
  1321  *  Read the status register for the current speed/duplex and store the current
       
  1322  *  speed and duplex for copper connections.
       
  1323  **/
       
  1324 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
       
  1325 				       u16 *duplex)
       
  1326 {
       
  1327 	u32 status;
       
  1328 
       
  1329 	status = er32(STATUS);
       
  1330 	if (status & E1000_STATUS_SPEED_1000)
       
  1331 		*speed = SPEED_1000;
       
  1332 	else if (status & E1000_STATUS_SPEED_100)
       
  1333 		*speed = SPEED_100;
       
  1334 	else
       
  1335 		*speed = SPEED_10;
       
  1336 
       
  1337 	if (status & E1000_STATUS_FD)
       
  1338 		*duplex = FULL_DUPLEX;
       
  1339 	else
       
  1340 		*duplex = HALF_DUPLEX;
       
  1341 
       
  1342 	e_dbg("%u Mbps, %s Duplex\n",
       
  1343 	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
       
  1344 	      *duplex == FULL_DUPLEX ? "Full" : "Half");
       
  1345 
       
  1346 	return 0;
       
  1347 }
       
  1348 
       
  1349 /**
       
  1350  *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
       
  1351  *  @hw: pointer to the HW structure
       
  1352  *  @speed: stores the current speed
       
  1353  *  @duplex: stores the current duplex
       
  1354  *
       
  1355  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
       
  1356  *  for fiber/serdes links.
       
  1357  **/
       
  1358 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
       
  1359 					     *hw, u16 *speed, u16 *duplex)
       
  1360 {
       
  1361 	*speed = SPEED_1000;
       
  1362 	*duplex = FULL_DUPLEX;
       
  1363 
       
  1364 	return 0;
       
  1365 }
       
  1366 
       
  1367 /**
       
  1368  *  e1000e_get_hw_semaphore - Acquire hardware semaphore
       
  1369  *  @hw: pointer to the HW structure
       
  1370  *
       
  1371  *  Acquire the HW semaphore to access the PHY or NVM
       
  1372  **/
       
  1373 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
       
  1374 {
       
  1375 	u32 swsm;
       
  1376 	s32 timeout = hw->nvm.word_size + 1;
       
  1377 	s32 i = 0;
       
  1378 
       
  1379 	/* Get the SW semaphore */
       
  1380 	while (i < timeout) {
       
  1381 		swsm = er32(SWSM);
       
  1382 		if (!(swsm & E1000_SWSM_SMBI))
       
  1383 			break;
       
  1384 
       
  1385 		usleep_range(50, 100);
       
  1386 		i++;
       
  1387 	}
       
  1388 
       
  1389 	if (i == timeout) {
       
  1390 		e_dbg("Driver can't access device - SMBI bit is set.\n");
       
  1391 		return -E1000_ERR_NVM;
       
  1392 	}
       
  1393 
       
  1394 	/* Get the FW semaphore. */
       
  1395 	for (i = 0; i < timeout; i++) {
       
  1396 		swsm = er32(SWSM);
       
  1397 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
       
  1398 
       
  1399 		/* Semaphore acquired if bit latched */
       
  1400 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
       
  1401 			break;
       
  1402 
       
  1403 		usleep_range(50, 100);
       
  1404 	}
       
  1405 
       
  1406 	if (i == timeout) {
       
  1407 		/* Release semaphores */
       
  1408 		e1000e_put_hw_semaphore(hw);
       
  1409 		e_dbg("Driver can't access the NVM\n");
       
  1410 		return -E1000_ERR_NVM;
       
  1411 	}
       
  1412 
       
  1413 	return 0;
       
  1414 }
       
  1415 
       
  1416 /**
       
  1417  *  e1000e_put_hw_semaphore - Release hardware semaphore
       
  1418  *  @hw: pointer to the HW structure
       
  1419  *
       
  1420  *  Release hardware semaphore used to access the PHY or NVM
       
  1421  **/
       
  1422 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
       
  1423 {
       
  1424 	u32 swsm;
       
  1425 
       
  1426 	swsm = er32(SWSM);
       
  1427 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
  1428 	ew32(SWSM, swsm);
       
  1429 }
       
  1430 
       
  1431 /**
       
  1432  *  e1000e_get_auto_rd_done - Check for auto read completion
       
  1433  *  @hw: pointer to the HW structure
       
  1434  *
       
  1435  *  Check EEPROM for Auto Read done bit.
       
  1436  **/
       
  1437 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
       
  1438 {
       
  1439 	s32 i = 0;
       
  1440 
       
  1441 	while (i < AUTO_READ_DONE_TIMEOUT) {
       
  1442 		if (er32(EECD) & E1000_EECD_AUTO_RD)
       
  1443 			break;
       
  1444 		usleep_range(1000, 2000);
       
  1445 		i++;
       
  1446 	}
       
  1447 
       
  1448 	if (i == AUTO_READ_DONE_TIMEOUT) {
       
  1449 		e_dbg("Auto read by HW from NVM has not completed.\n");
       
  1450 		return -E1000_ERR_RESET;
       
  1451 	}
       
  1452 
       
  1453 	return 0;
       
  1454 }
       
  1455 
       
  1456 /**
       
  1457  *  e1000e_valid_led_default - Verify a valid default LED config
       
  1458  *  @hw: pointer to the HW structure
       
  1459  *  @data: pointer to the NVM (EEPROM)
       
  1460  *
       
  1461  *  Read the EEPROM for the current default LED configuration.  If the
       
  1462  *  LED configuration is not valid, set to a valid LED configuration.
       
  1463  **/
       
  1464 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
       
  1465 {
       
  1466 	s32 ret_val;
       
  1467 
       
  1468 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  1469 	if (ret_val) {
       
  1470 		e_dbg("NVM Read Error\n");
       
  1471 		return ret_val;
       
  1472 	}
       
  1473 
       
  1474 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
       
  1475 		*data = ID_LED_DEFAULT;
       
  1476 
       
  1477 	return 0;
       
  1478 }
       
  1479 
       
  1480 /**
       
  1481  *  e1000e_id_led_init_generic -
       
  1482  *  @hw: pointer to the HW structure
       
  1483  *
       
  1484  **/
       
  1485 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
       
  1486 {
       
  1487 	struct e1000_mac_info *mac = &hw->mac;
       
  1488 	s32 ret_val;
       
  1489 	const u32 ledctl_mask = 0x000000FF;
       
  1490 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
       
  1491 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
       
  1492 	u16 data, i, temp;
       
  1493 	const u16 led_mask = 0x0F;
       
  1494 
       
  1495 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
       
  1496 	if (ret_val)
       
  1497 		return ret_val;
       
  1498 
       
  1499 	mac->ledctl_default = er32(LEDCTL);
       
  1500 	mac->ledctl_mode1 = mac->ledctl_default;
       
  1501 	mac->ledctl_mode2 = mac->ledctl_default;
       
  1502 
       
  1503 	for (i = 0; i < 4; i++) {
       
  1504 		temp = (data >> (i << 2)) & led_mask;
       
  1505 		switch (temp) {
       
  1506 		case ID_LED_ON1_DEF2:
       
  1507 		case ID_LED_ON1_ON2:
       
  1508 		case ID_LED_ON1_OFF2:
       
  1509 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1510 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
       
  1511 			break;
       
  1512 		case ID_LED_OFF1_DEF2:
       
  1513 		case ID_LED_OFF1_ON2:
       
  1514 		case ID_LED_OFF1_OFF2:
       
  1515 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1516 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
       
  1517 			break;
       
  1518 		default:
       
  1519 			/* Do nothing */
       
  1520 			break;
       
  1521 		}
       
  1522 		switch (temp) {
       
  1523 		case ID_LED_DEF1_ON2:
       
  1524 		case ID_LED_ON1_ON2:
       
  1525 		case ID_LED_OFF1_ON2:
       
  1526 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1527 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
       
  1528 			break;
       
  1529 		case ID_LED_DEF1_OFF2:
       
  1530 		case ID_LED_ON1_OFF2:
       
  1531 		case ID_LED_OFF1_OFF2:
       
  1532 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1533 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
       
  1534 			break;
       
  1535 		default:
       
  1536 			/* Do nothing */
       
  1537 			break;
       
  1538 		}
       
  1539 	}
       
  1540 
       
  1541 	return 0;
       
  1542 }
       
  1543 
       
  1544 /**
       
  1545  *  e1000e_setup_led_generic - Configures SW controllable LED
       
  1546  *  @hw: pointer to the HW structure
       
  1547  *
       
  1548  *  This prepares the SW controllable LED for use and saves the current state
       
  1549  *  of the LED so it can be later restored.
       
  1550  **/
       
  1551 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
       
  1552 {
       
  1553 	u32 ledctl;
       
  1554 
       
  1555 	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
       
  1556 		return -E1000_ERR_CONFIG;
       
  1557 
       
  1558 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1559 		ledctl = er32(LEDCTL);
       
  1560 		hw->mac.ledctl_default = ledctl;
       
  1561 		/* Turn off LED0 */
       
  1562 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
       
  1563 			    E1000_LEDCTL_LED0_MODE_MASK);
       
  1564 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
       
  1565 			   E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1566 		ew32(LEDCTL, ledctl);
       
  1567 	} else if (hw->phy.media_type == e1000_media_type_copper) {
       
  1568 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1569 	}
       
  1570 
       
  1571 	return 0;
       
  1572 }
       
  1573 
       
  1574 /**
       
  1575  *  e1000e_cleanup_led_generic - Set LED config to default operation
       
  1576  *  @hw: pointer to the HW structure
       
  1577  *
       
  1578  *  Remove the current LED configuration and set the LED configuration
       
  1579  *  to the default value, saved from the EEPROM.
       
  1580  **/
       
  1581 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
       
  1582 {
       
  1583 	ew32(LEDCTL, hw->mac.ledctl_default);
       
  1584 	return 0;
       
  1585 }
       
  1586 
       
  1587 /**
       
  1588  *  e1000e_blink_led_generic - Blink LED
       
  1589  *  @hw: pointer to the HW structure
       
  1590  *
       
  1591  *  Blink the LEDs which are set to be on.
       
  1592  **/
       
  1593 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
       
  1594 {
       
  1595 	u32 ledctl_blink = 0;
       
  1596 	u32 i;
       
  1597 
       
  1598 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1599 		/* always blink LED0 for PCI-E fiber */
       
  1600 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
       
  1601 		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1602 	} else {
       
  1603 		/* Set the blink bit for each LED that's "on" (0x0E)
       
  1604 		 * (or "off" if inverted) in ledctl_mode2.  The blink
       
  1605 		 * logic in hardware only works when mode is set to "on"
       
  1606 		 * so it must be changed accordingly when the mode is
       
  1607 		 * "off" and inverted.
       
  1608 		 */
       
  1609 		ledctl_blink = hw->mac.ledctl_mode2;
       
  1610 		for (i = 0; i < 32; i += 8) {
       
  1611 			u32 mode = (hw->mac.ledctl_mode2 >> i) &
       
  1612 			    E1000_LEDCTL_LED0_MODE_MASK;
       
  1613 			u32 led_default = hw->mac.ledctl_default >> i;
       
  1614 
       
  1615 			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
       
  1616 			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
       
  1617 			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
       
  1618 			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
       
  1619 				ledctl_blink &=
       
  1620 				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
       
  1621 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
       
  1622 						 E1000_LEDCTL_MODE_LED_ON) << i;
       
  1623 			}
       
  1624 		}
       
  1625 	}
       
  1626 
       
  1627 	ew32(LEDCTL, ledctl_blink);
       
  1628 
       
  1629 	return 0;
       
  1630 }
       
  1631 
       
  1632 /**
       
  1633  *  e1000e_led_on_generic - Turn LED on
       
  1634  *  @hw: pointer to the HW structure
       
  1635  *
       
  1636  *  Turn LED on.
       
  1637  **/
       
  1638 s32 e1000e_led_on_generic(struct e1000_hw *hw)
       
  1639 {
       
  1640 	u32 ctrl;
       
  1641 
       
  1642 	switch (hw->phy.media_type) {
       
  1643 	case e1000_media_type_fiber:
       
  1644 		ctrl = er32(CTRL);
       
  1645 		ctrl &= ~E1000_CTRL_SWDPIN0;
       
  1646 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1647 		ew32(CTRL, ctrl);
       
  1648 		break;
       
  1649 	case e1000_media_type_copper:
       
  1650 		ew32(LEDCTL, hw->mac.ledctl_mode2);
       
  1651 		break;
       
  1652 	default:
       
  1653 		break;
       
  1654 	}
       
  1655 
       
  1656 	return 0;
       
  1657 }
       
  1658 
       
  1659 /**
       
  1660  *  e1000e_led_off_generic - Turn LED off
       
  1661  *  @hw: pointer to the HW structure
       
  1662  *
       
  1663  *  Turn LED off.
       
  1664  **/
       
  1665 s32 e1000e_led_off_generic(struct e1000_hw *hw)
       
  1666 {
       
  1667 	u32 ctrl;
       
  1668 
       
  1669 	switch (hw->phy.media_type) {
       
  1670 	case e1000_media_type_fiber:
       
  1671 		ctrl = er32(CTRL);
       
  1672 		ctrl |= E1000_CTRL_SWDPIN0;
       
  1673 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1674 		ew32(CTRL, ctrl);
       
  1675 		break;
       
  1676 	case e1000_media_type_copper:
       
  1677 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1678 		break;
       
  1679 	default:
       
  1680 		break;
       
  1681 	}
       
  1682 
       
  1683 	return 0;
       
  1684 }
       
  1685 
       
  1686 /**
       
  1687  *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
       
  1688  *  @hw: pointer to the HW structure
       
  1689  *  @no_snoop: bitmap of snoop events
       
  1690  *
       
  1691  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
       
  1692  **/
       
  1693 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
       
  1694 {
       
  1695 	u32 gcr;
       
  1696 
       
  1697 	if (no_snoop) {
       
  1698 		gcr = er32(GCR);
       
  1699 		gcr &= ~(PCIE_NO_SNOOP_ALL);
       
  1700 		gcr |= no_snoop;
       
  1701 		ew32(GCR, gcr);
       
  1702 	}
       
  1703 }
       
  1704 
       
  1705 /**
       
  1706  *  e1000e_disable_pcie_master - Disables PCI-express master access
       
  1707  *  @hw: pointer to the HW structure
       
  1708  *
       
  1709  *  Returns 0 if successful, else returns -10
       
  1710  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
       
  1711  *  the master requests to be disabled.
       
  1712  *
       
  1713  *  Disables PCI-Express master access and verifies there are no pending
       
  1714  *  requests.
       
  1715  **/
       
  1716 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
       
  1717 {
       
  1718 	u32 ctrl;
       
  1719 	s32 timeout = MASTER_DISABLE_TIMEOUT;
       
  1720 
       
  1721 	ctrl = er32(CTRL);
       
  1722 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
       
  1723 	ew32(CTRL, ctrl);
       
  1724 
       
  1725 	while (timeout) {
       
  1726 		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
       
  1727 			break;
       
  1728 		usleep_range(100, 200);
       
  1729 		timeout--;
       
  1730 	}
       
  1731 
       
  1732 	if (!timeout) {
       
  1733 		e_dbg("Master requests are pending.\n");
       
  1734 		return -E1000_ERR_MASTER_REQUESTS_PENDING;
       
  1735 	}
       
  1736 
       
  1737 	return 0;
       
  1738 }
       
  1739 
       
  1740 /**
       
  1741  *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
       
  1742  *  @hw: pointer to the HW structure
       
  1743  *
       
  1744  *  Reset the Adaptive Interframe Spacing throttle to default values.
       
  1745  **/
       
  1746 void e1000e_reset_adaptive(struct e1000_hw *hw)
       
  1747 {
       
  1748 	struct e1000_mac_info *mac = &hw->mac;
       
  1749 
       
  1750 	if (!mac->adaptive_ifs) {
       
  1751 		e_dbg("Not in Adaptive IFS mode!\n");
       
  1752 		return;
       
  1753 	}
       
  1754 
       
  1755 	mac->current_ifs_val = 0;
       
  1756 	mac->ifs_min_val = IFS_MIN;
       
  1757 	mac->ifs_max_val = IFS_MAX;
       
  1758 	mac->ifs_step_size = IFS_STEP;
       
  1759 	mac->ifs_ratio = IFS_RATIO;
       
  1760 
       
  1761 	mac->in_ifs_mode = false;
       
  1762 	ew32(AIT, 0);
       
  1763 }
       
  1764 
       
  1765 /**
       
  1766  *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
       
  1767  *  @hw: pointer to the HW structure
       
  1768  *
       
  1769  *  Update the Adaptive Interframe Spacing Throttle value based on the
       
  1770  *  time between transmitted packets and time between collisions.
       
  1771  **/
       
  1772 void e1000e_update_adaptive(struct e1000_hw *hw)
       
  1773 {
       
  1774 	struct e1000_mac_info *mac = &hw->mac;
       
  1775 
       
  1776 	if (!mac->adaptive_ifs) {
       
  1777 		e_dbg("Not in Adaptive IFS mode!\n");
       
  1778 		return;
       
  1779 	}
       
  1780 
       
  1781 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
       
  1782 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
       
  1783 			mac->in_ifs_mode = true;
       
  1784 			if (mac->current_ifs_val < mac->ifs_max_val) {
       
  1785 				if (!mac->current_ifs_val)
       
  1786 					mac->current_ifs_val = mac->ifs_min_val;
       
  1787 				else
       
  1788 					mac->current_ifs_val +=
       
  1789 					    mac->ifs_step_size;
       
  1790 				ew32(AIT, mac->current_ifs_val);
       
  1791 			}
       
  1792 		}
       
  1793 	} else {
       
  1794 		if (mac->in_ifs_mode &&
       
  1795 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
       
  1796 			mac->current_ifs_val = 0;
       
  1797 			mac->in_ifs_mode = false;
       
  1798 			ew32(AIT, 0);
       
  1799 		}
       
  1800 	}
       
  1801 }