devices/e1000e/ethtool-3.16-ethercat.c
branchstable-1.5
changeset 2588 792892ab4806
equal deleted inserted replaced
2587:afd76ee3aa87 2588:792892ab4806
       
     1 /* Intel PRO/1000 Linux driver
       
     2  * Copyright(c) 1999 - 2014 Intel Corporation.
       
     3  *
       
     4  * This program is free software; you can redistribute it and/or modify it
       
     5  * under the terms and conditions of the GNU General Public License,
       
     6  * version 2, as published by the Free Software Foundation.
       
     7  *
       
     8  * This program is distributed in the hope it will be useful, but WITHOUT
       
     9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    11  * more details.
       
    12  *
       
    13  * The full GNU General Public License is included in this distribution in
       
    14  * the file called "COPYING".
       
    15  *
       
    16  * Contact Information:
       
    17  * Linux NICS <linux.nics@intel.com>
       
    18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    20  */
       
    21 
       
    22 /* ethtool support for e1000 */
       
    23 
       
    24 #include <linux/netdevice.h>
       
    25 #include <linux/interrupt.h>
       
    26 #include <linux/ethtool.h>
       
    27 #include <linux/pci.h>
       
    28 #include <linux/slab.h>
       
    29 #include <linux/delay.h>
       
    30 #include <linux/vmalloc.h>
       
    31 #include <linux/pm_runtime.h>
       
    32 
       
    33 #include "e1000-3.16-ethercat.h"
       
    34 
       
    35 enum { NETDEV_STATS, E1000_STATS };
       
    36 
       
    37 struct e1000_stats {
       
    38 	char stat_string[ETH_GSTRING_LEN];
       
    39 	int type;
       
    40 	int sizeof_stat;
       
    41 	int stat_offset;
       
    42 };
       
    43 
       
    44 #define E1000_STAT(str, m) { \
       
    45 		.stat_string = str, \
       
    46 		.type = E1000_STATS, \
       
    47 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
       
    48 		.stat_offset = offsetof(struct e1000_adapter, m) }
       
    49 #define E1000_NETDEV_STAT(str, m) { \
       
    50 		.stat_string = str, \
       
    51 		.type = NETDEV_STATS, \
       
    52 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
       
    53 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
       
    54 
       
    55 static const struct e1000_stats e1000_gstrings_stats[] = {
       
    56 	E1000_STAT("rx_packets", stats.gprc),
       
    57 	E1000_STAT("tx_packets", stats.gptc),
       
    58 	E1000_STAT("rx_bytes", stats.gorc),
       
    59 	E1000_STAT("tx_bytes", stats.gotc),
       
    60 	E1000_STAT("rx_broadcast", stats.bprc),
       
    61 	E1000_STAT("tx_broadcast", stats.bptc),
       
    62 	E1000_STAT("rx_multicast", stats.mprc),
       
    63 	E1000_STAT("tx_multicast", stats.mptc),
       
    64 	E1000_NETDEV_STAT("rx_errors", rx_errors),
       
    65 	E1000_NETDEV_STAT("tx_errors", tx_errors),
       
    66 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
       
    67 	E1000_STAT("multicast", stats.mprc),
       
    68 	E1000_STAT("collisions", stats.colc),
       
    69 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
       
    70 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
       
    71 	E1000_STAT("rx_crc_errors", stats.crcerrs),
       
    72 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
       
    73 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
       
    74 	E1000_STAT("rx_missed_errors", stats.mpc),
       
    75 	E1000_STAT("tx_aborted_errors", stats.ecol),
       
    76 	E1000_STAT("tx_carrier_errors", stats.tncrs),
       
    77 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
       
    78 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
       
    79 	E1000_STAT("tx_window_errors", stats.latecol),
       
    80 	E1000_STAT("tx_abort_late_coll", stats.latecol),
       
    81 	E1000_STAT("tx_deferred_ok", stats.dc),
       
    82 	E1000_STAT("tx_single_coll_ok", stats.scc),
       
    83 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
       
    84 	E1000_STAT("tx_timeout_count", tx_timeout_count),
       
    85 	E1000_STAT("tx_restart_queue", restart_queue),
       
    86 	E1000_STAT("rx_long_length_errors", stats.roc),
       
    87 	E1000_STAT("rx_short_length_errors", stats.ruc),
       
    88 	E1000_STAT("rx_align_errors", stats.algnerrc),
       
    89 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
       
    90 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
       
    91 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
       
    92 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
       
    93 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
       
    94 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
       
    95 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
       
    96 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
       
    97 	E1000_STAT("rx_header_split", rx_hdr_split),
       
    98 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
       
    99 	E1000_STAT("tx_smbus", stats.mgptc),
       
   100 	E1000_STAT("rx_smbus", stats.mgprc),
       
   101 	E1000_STAT("dropped_smbus", stats.mgpdc),
       
   102 	E1000_STAT("rx_dma_failed", rx_dma_failed),
       
   103 	E1000_STAT("tx_dma_failed", tx_dma_failed),
       
   104 	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
       
   105 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
       
   106 	E1000_STAT("corr_ecc_errors", corr_errors),
       
   107 	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
       
   108 };
       
   109 
       
   110 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
       
   111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
       
   112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
       
   113 	"Register test  (offline)", "Eeprom test    (offline)",
       
   114 	"Interrupt test (offline)", "Loopback test  (offline)",
       
   115 	"Link test   (on/offline)"
       
   116 };
       
   117 
       
   118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
       
   119 
       
   120 static int e1000_get_settings(struct net_device *netdev,
       
   121 			      struct ethtool_cmd *ecmd)
       
   122 {
       
   123 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   124 	struct e1000_hw *hw = &adapter->hw;
       
   125 	u32 speed;
       
   126 
       
   127 	if (hw->phy.media_type == e1000_media_type_copper) {
       
   128 		ecmd->supported = (SUPPORTED_10baseT_Half |
       
   129 				   SUPPORTED_10baseT_Full |
       
   130 				   SUPPORTED_100baseT_Half |
       
   131 				   SUPPORTED_100baseT_Full |
       
   132 				   SUPPORTED_1000baseT_Full |
       
   133 				   SUPPORTED_Autoneg |
       
   134 				   SUPPORTED_TP);
       
   135 		if (hw->phy.type == e1000_phy_ife)
       
   136 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
       
   137 		ecmd->advertising = ADVERTISED_TP;
       
   138 
       
   139 		if (hw->mac.autoneg == 1) {
       
   140 			ecmd->advertising |= ADVERTISED_Autoneg;
       
   141 			/* the e1000 autoneg seems to match ethtool nicely */
       
   142 			ecmd->advertising |= hw->phy.autoneg_advertised;
       
   143 		}
       
   144 
       
   145 		ecmd->port = PORT_TP;
       
   146 		ecmd->phy_address = hw->phy.addr;
       
   147 		ecmd->transceiver = XCVR_INTERNAL;
       
   148 
       
   149 	} else {
       
   150 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
       
   151 				     SUPPORTED_FIBRE |
       
   152 				     SUPPORTED_Autoneg);
       
   153 
       
   154 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
       
   155 				     ADVERTISED_FIBRE |
       
   156 				     ADVERTISED_Autoneg);
       
   157 
       
   158 		ecmd->port = PORT_FIBRE;
       
   159 		ecmd->transceiver = XCVR_EXTERNAL;
       
   160 	}
       
   161 
       
   162 	speed = SPEED_UNKNOWN;
       
   163 	ecmd->duplex = DUPLEX_UNKNOWN;
       
   164 
       
   165 	if (netif_running(netdev)) {
       
   166 		if (netif_carrier_ok(netdev)) {
       
   167 			speed = adapter->link_speed;
       
   168 			ecmd->duplex = adapter->link_duplex - 1;
       
   169 		}
       
   170 	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
       
   171 		u32 status = er32(STATUS);
       
   172 
       
   173 		if (status & E1000_STATUS_LU) {
       
   174 			if (status & E1000_STATUS_SPEED_1000)
       
   175 				speed = SPEED_1000;
       
   176 			else if (status & E1000_STATUS_SPEED_100)
       
   177 				speed = SPEED_100;
       
   178 			else
       
   179 				speed = SPEED_10;
       
   180 
       
   181 			if (status & E1000_STATUS_FD)
       
   182 				ecmd->duplex = DUPLEX_FULL;
       
   183 			else
       
   184 				ecmd->duplex = DUPLEX_HALF;
       
   185 		}
       
   186 	}
       
   187 
       
   188 	ethtool_cmd_speed_set(ecmd, speed);
       
   189 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
       
   190 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
       
   191 
       
   192 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
       
   193 	if ((hw->phy.media_type == e1000_media_type_copper) &&
       
   194 	    netif_carrier_ok(netdev))
       
   195 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
       
   196 	else
       
   197 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
       
   198 
       
   199 	if (hw->phy.mdix == AUTO_ALL_MODES)
       
   200 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
       
   201 	else
       
   202 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
       
   203 
       
   204 	return 0;
       
   205 }
       
   206 
       
   207 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
       
   208 {
       
   209 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
   210 
       
   211 	mac->autoneg = 0;
       
   212 
       
   213 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
       
   214 	 * for the switch() below to work
       
   215 	 */
       
   216 	if ((spd & 1) || (dplx & ~1))
       
   217 		goto err_inval;
       
   218 
       
   219 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
   220 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
       
   221 	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
       
   222 		goto err_inval;
       
   223 	}
       
   224 
       
   225 	switch (spd + dplx) {
       
   226 	case SPEED_10 + DUPLEX_HALF:
       
   227 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
       
   228 		break;
       
   229 	case SPEED_10 + DUPLEX_FULL:
       
   230 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
       
   231 		break;
       
   232 	case SPEED_100 + DUPLEX_HALF:
       
   233 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
       
   234 		break;
       
   235 	case SPEED_100 + DUPLEX_FULL:
       
   236 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
       
   237 		break;
       
   238 	case SPEED_1000 + DUPLEX_FULL:
       
   239 		mac->autoneg = 1;
       
   240 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
       
   241 		break;
       
   242 	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
       
   243 	default:
       
   244 		goto err_inval;
       
   245 	}
       
   246 
       
   247 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
       
   248 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
       
   249 
       
   250 	return 0;
       
   251 
       
   252 err_inval:
       
   253 	e_err("Unsupported Speed/Duplex configuration\n");
       
   254 	return -EINVAL;
       
   255 }
       
   256 
       
   257 static int e1000_set_settings(struct net_device *netdev,
       
   258 			      struct ethtool_cmd *ecmd)
       
   259 {
       
   260 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   261 	struct e1000_hw *hw = &adapter->hw;
       
   262 	int ret_val = 0;
       
   263 
       
   264 	pm_runtime_get_sync(netdev->dev.parent);
       
   265 
       
   266 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
       
   267 	 * cannot be changed
       
   268 	 */
       
   269 	if (hw->phy.ops.check_reset_block &&
       
   270 	    hw->phy.ops.check_reset_block(hw)) {
       
   271 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
       
   272 		ret_val = -EINVAL;
       
   273 		goto out;
       
   274 	}
       
   275 
       
   276 	/* MDI setting is only allowed when autoneg enabled because
       
   277 	 * some hardware doesn't allow MDI setting when speed or
       
   278 	 * duplex is forced.
       
   279 	 */
       
   280 	if (ecmd->eth_tp_mdix_ctrl) {
       
   281 		if (hw->phy.media_type != e1000_media_type_copper) {
       
   282 			ret_val = -EOPNOTSUPP;
       
   283 			goto out;
       
   284 		}
       
   285 
       
   286 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
       
   287 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
       
   288 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
       
   289 			ret_val = -EINVAL;
       
   290 			goto out;
       
   291 		}
       
   292 	}
       
   293 
       
   294 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   295 		usleep_range(1000, 2000);
       
   296 
       
   297 	if (ecmd->autoneg == AUTONEG_ENABLE) {
       
   298 		hw->mac.autoneg = 1;
       
   299 		if (hw->phy.media_type == e1000_media_type_fiber)
       
   300 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
       
   301 			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
       
   302 		else
       
   303 			hw->phy.autoneg_advertised = ecmd->advertising |
       
   304 			    ADVERTISED_TP | ADVERTISED_Autoneg;
       
   305 		ecmd->advertising = hw->phy.autoneg_advertised;
       
   306 		if (adapter->fc_autoneg)
       
   307 			hw->fc.requested_mode = e1000_fc_default;
       
   308 	} else {
       
   309 		u32 speed = ethtool_cmd_speed(ecmd);
       
   310 		/* calling this overrides forced MDI setting */
       
   311 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
       
   312 			ret_val = -EINVAL;
       
   313 			goto out;
       
   314 		}
       
   315 	}
       
   316 
       
   317 	/* MDI-X => 2; MDI => 1; Auto => 3 */
       
   318 	if (ecmd->eth_tp_mdix_ctrl) {
       
   319 		/* fix up the value for auto (3 => 0) as zero is mapped
       
   320 		 * internally to auto
       
   321 		 */
       
   322 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
       
   323 			hw->phy.mdix = AUTO_ALL_MODES;
       
   324 		else
       
   325 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
       
   326 	}
       
   327 
       
   328 	/* reset the link */
       
   329 	if (netif_running(adapter->netdev)) {
       
   330 		e1000e_down(adapter, true);
       
   331 		e1000e_up(adapter);
       
   332 	} else {
       
   333 		e1000e_reset(adapter);
       
   334 	}
       
   335 
       
   336 out:
       
   337 	pm_runtime_put_sync(netdev->dev.parent);
       
   338 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   339 	return ret_val;
       
   340 }
       
   341 
       
   342 static void e1000_get_pauseparam(struct net_device *netdev,
       
   343 				 struct ethtool_pauseparam *pause)
       
   344 {
       
   345 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   346 	struct e1000_hw *hw = &adapter->hw;
       
   347 
       
   348 	pause->autoneg =
       
   349 	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
       
   350 
       
   351 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
       
   352 		pause->rx_pause = 1;
       
   353 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
       
   354 		pause->tx_pause = 1;
       
   355 	} else if (hw->fc.current_mode == e1000_fc_full) {
       
   356 		pause->rx_pause = 1;
       
   357 		pause->tx_pause = 1;
       
   358 	}
       
   359 }
       
   360 
       
   361 static int e1000_set_pauseparam(struct net_device *netdev,
       
   362 				struct ethtool_pauseparam *pause)
       
   363 {
       
   364 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   365 	struct e1000_hw *hw = &adapter->hw;
       
   366 	int retval = 0;
       
   367 
       
   368 	adapter->fc_autoneg = pause->autoneg;
       
   369 
       
   370 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   371 		usleep_range(1000, 2000);
       
   372 
       
   373 	pm_runtime_get_sync(netdev->dev.parent);
       
   374 
       
   375 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
       
   376 		hw->fc.requested_mode = e1000_fc_default;
       
   377 		if (netif_running(adapter->netdev)) {
       
   378 			e1000e_down(adapter, true);
       
   379 			e1000e_up(adapter);
       
   380 		} else {
       
   381 			e1000e_reset(adapter);
       
   382 		}
       
   383 	} else {
       
   384 		if (pause->rx_pause && pause->tx_pause)
       
   385 			hw->fc.requested_mode = e1000_fc_full;
       
   386 		else if (pause->rx_pause && !pause->tx_pause)
       
   387 			hw->fc.requested_mode = e1000_fc_rx_pause;
       
   388 		else if (!pause->rx_pause && pause->tx_pause)
       
   389 			hw->fc.requested_mode = e1000_fc_tx_pause;
       
   390 		else if (!pause->rx_pause && !pause->tx_pause)
       
   391 			hw->fc.requested_mode = e1000_fc_none;
       
   392 
       
   393 		hw->fc.current_mode = hw->fc.requested_mode;
       
   394 
       
   395 		if (hw->phy.media_type == e1000_media_type_fiber) {
       
   396 			retval = hw->mac.ops.setup_link(hw);
       
   397 			/* implicit goto out */
       
   398 		} else {
       
   399 			retval = e1000e_force_mac_fc(hw);
       
   400 			if (retval)
       
   401 				goto out;
       
   402 			e1000e_set_fc_watermarks(hw);
       
   403 		}
       
   404 	}
       
   405 
       
   406 out:
       
   407 	pm_runtime_put_sync(netdev->dev.parent);
       
   408 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   409 	return retval;
       
   410 }
       
   411 
       
   412 static u32 e1000_get_msglevel(struct net_device *netdev)
       
   413 {
       
   414 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   415 	return adapter->msg_enable;
       
   416 }
       
   417 
       
   418 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
       
   419 {
       
   420 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   421 	adapter->msg_enable = data;
       
   422 }
       
   423 
       
   424 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
       
   425 {
       
   426 #define E1000_REGS_LEN 32	/* overestimate */
       
   427 	return E1000_REGS_LEN * sizeof(u32);
       
   428 }
       
   429 
       
   430 static void e1000_get_regs(struct net_device *netdev,
       
   431 			   struct ethtool_regs *regs, void *p)
       
   432 {
       
   433 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   434 	struct e1000_hw *hw = &adapter->hw;
       
   435 	u32 *regs_buff = p;
       
   436 	u16 phy_data;
       
   437 
       
   438 	pm_runtime_get_sync(netdev->dev.parent);
       
   439 
       
   440 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
       
   441 
       
   442 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
       
   443 	    adapter->pdev->device;
       
   444 
       
   445 	regs_buff[0] = er32(CTRL);
       
   446 	regs_buff[1] = er32(STATUS);
       
   447 
       
   448 	regs_buff[2] = er32(RCTL);
       
   449 	regs_buff[3] = er32(RDLEN(0));
       
   450 	regs_buff[4] = er32(RDH(0));
       
   451 	regs_buff[5] = er32(RDT(0));
       
   452 	regs_buff[6] = er32(RDTR);
       
   453 
       
   454 	regs_buff[7] = er32(TCTL);
       
   455 	regs_buff[8] = er32(TDLEN(0));
       
   456 	regs_buff[9] = er32(TDH(0));
       
   457 	regs_buff[10] = er32(TDT(0));
       
   458 	regs_buff[11] = er32(TIDV);
       
   459 
       
   460 	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
       
   461 
       
   462 	/* ethtool doesn't use anything past this point, so all this
       
   463 	 * code is likely legacy junk for apps that may or may not exist
       
   464 	 */
       
   465 	if (hw->phy.type == e1000_phy_m88) {
       
   466 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
   467 		regs_buff[13] = (u32)phy_data; /* cable length */
       
   468 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   469 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   470 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   471 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   472 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
       
   473 		regs_buff[18] = regs_buff[13]; /* cable polarity */
       
   474 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   475 		regs_buff[20] = regs_buff[17]; /* polarity correction */
       
   476 		/* phy receive errors */
       
   477 		regs_buff[22] = adapter->phy_stats.receive_errors;
       
   478 		regs_buff[23] = regs_buff[13]; /* mdix mode */
       
   479 	}
       
   480 	regs_buff[21] = 0;	/* was idle_errors */
       
   481 	e1e_rphy(hw, MII_STAT1000, &phy_data);
       
   482 	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
       
   483 	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
       
   484 
       
   485 	pm_runtime_put_sync(netdev->dev.parent);
       
   486 }
       
   487 
       
   488 static int e1000_get_eeprom_len(struct net_device *netdev)
       
   489 {
       
   490 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   491 	return adapter->hw.nvm.word_size * 2;
       
   492 }
       
   493 
       
   494 static int e1000_get_eeprom(struct net_device *netdev,
       
   495 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   496 {
       
   497 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   498 	struct e1000_hw *hw = &adapter->hw;
       
   499 	u16 *eeprom_buff;
       
   500 	int first_word;
       
   501 	int last_word;
       
   502 	int ret_val = 0;
       
   503 	u16 i;
       
   504 
       
   505 	if (eeprom->len == 0)
       
   506 		return -EINVAL;
       
   507 
       
   508 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
       
   509 
       
   510 	first_word = eeprom->offset >> 1;
       
   511 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   512 
       
   513 	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
       
   514 			      GFP_KERNEL);
       
   515 	if (!eeprom_buff)
       
   516 		return -ENOMEM;
       
   517 
       
   518 	pm_runtime_get_sync(netdev->dev.parent);
       
   519 
       
   520 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
       
   521 		ret_val = e1000_read_nvm(hw, first_word,
       
   522 					 last_word - first_word + 1,
       
   523 					 eeprom_buff);
       
   524 	} else {
       
   525 		for (i = 0; i < last_word - first_word + 1; i++) {
       
   526 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
       
   527 						 &eeprom_buff[i]);
       
   528 			if (ret_val)
       
   529 				break;
       
   530 		}
       
   531 	}
       
   532 
       
   533 	pm_runtime_put_sync(netdev->dev.parent);
       
   534 
       
   535 	if (ret_val) {
       
   536 		/* a read error occurred, throw away the result */
       
   537 		memset(eeprom_buff, 0xff, sizeof(u16) *
       
   538 		       (last_word - first_word + 1));
       
   539 	} else {
       
   540 		/* Device's eeprom is always little-endian, word addressable */
       
   541 		for (i = 0; i < last_word - first_word + 1; i++)
       
   542 			le16_to_cpus(&eeprom_buff[i]);
       
   543 	}
       
   544 
       
   545 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
       
   546 	kfree(eeprom_buff);
       
   547 
       
   548 	return ret_val;
       
   549 }
       
   550 
       
   551 static int e1000_set_eeprom(struct net_device *netdev,
       
   552 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   553 {
       
   554 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   555 	struct e1000_hw *hw = &adapter->hw;
       
   556 	u16 *eeprom_buff;
       
   557 	void *ptr;
       
   558 	int max_len;
       
   559 	int first_word;
       
   560 	int last_word;
       
   561 	int ret_val = 0;
       
   562 	u16 i;
       
   563 
       
   564 	if (eeprom->len == 0)
       
   565 		return -EOPNOTSUPP;
       
   566 
       
   567 	if (eeprom->magic !=
       
   568 	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
       
   569 		return -EFAULT;
       
   570 
       
   571 	if (adapter->flags & FLAG_READ_ONLY_NVM)
       
   572 		return -EINVAL;
       
   573 
       
   574 	max_len = hw->nvm.word_size * 2;
       
   575 
       
   576 	first_word = eeprom->offset >> 1;
       
   577 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   578 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
       
   579 	if (!eeprom_buff)
       
   580 		return -ENOMEM;
       
   581 
       
   582 	ptr = (void *)eeprom_buff;
       
   583 
       
   584 	pm_runtime_get_sync(netdev->dev.parent);
       
   585 
       
   586 	if (eeprom->offset & 1) {
       
   587 		/* need read/modify/write of first changed EEPROM word */
       
   588 		/* only the second byte of the word is being modified */
       
   589 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
       
   590 		ptr++;
       
   591 	}
       
   592 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
       
   593 		/* need read/modify/write of last changed EEPROM word */
       
   594 		/* only the first byte of the word is being modified */
       
   595 		ret_val = e1000_read_nvm(hw, last_word, 1,
       
   596 					 &eeprom_buff[last_word - first_word]);
       
   597 
       
   598 	if (ret_val)
       
   599 		goto out;
       
   600 
       
   601 	/* Device's eeprom is always little-endian, word addressable */
       
   602 	for (i = 0; i < last_word - first_word + 1; i++)
       
   603 		le16_to_cpus(&eeprom_buff[i]);
       
   604 
       
   605 	memcpy(ptr, bytes, eeprom->len);
       
   606 
       
   607 	for (i = 0; i < last_word - first_word + 1; i++)
       
   608 		cpu_to_le16s(&eeprom_buff[i]);
       
   609 
       
   610 	ret_val = e1000_write_nvm(hw, first_word,
       
   611 				  last_word - first_word + 1, eeprom_buff);
       
   612 
       
   613 	if (ret_val)
       
   614 		goto out;
       
   615 
       
   616 	/* Update the checksum over the first part of the EEPROM if needed
       
   617 	 * and flush shadow RAM for applicable controllers
       
   618 	 */
       
   619 	if ((first_word <= NVM_CHECKSUM_REG) ||
       
   620 	    (hw->mac.type == e1000_82583) ||
       
   621 	    (hw->mac.type == e1000_82574) ||
       
   622 	    (hw->mac.type == e1000_82573))
       
   623 		ret_val = e1000e_update_nvm_checksum(hw);
       
   624 
       
   625 out:
       
   626 	pm_runtime_put_sync(netdev->dev.parent);
       
   627 	kfree(eeprom_buff);
       
   628 	return ret_val;
       
   629 }
       
   630 
       
   631 static void e1000_get_drvinfo(struct net_device *netdev,
       
   632 			      struct ethtool_drvinfo *drvinfo)
       
   633 {
       
   634 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   635 
       
   636 	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
       
   637 	strlcpy(drvinfo->version, e1000e_driver_version,
       
   638 		sizeof(drvinfo->version));
       
   639 
       
   640 	/* EEPROM image version # is reported as firmware version # for
       
   641 	 * PCI-E controllers
       
   642 	 */
       
   643 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
       
   644 		 "%d.%d-%d",
       
   645 		 (adapter->eeprom_vers & 0xF000) >> 12,
       
   646 		 (adapter->eeprom_vers & 0x0FF0) >> 4,
       
   647 		 (adapter->eeprom_vers & 0x000F));
       
   648 
       
   649 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
       
   650 		sizeof(drvinfo->bus_info));
       
   651 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
       
   652 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
       
   653 }
       
   654 
       
   655 static void e1000_get_ringparam(struct net_device *netdev,
       
   656 				struct ethtool_ringparam *ring)
       
   657 {
       
   658 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   659 
       
   660 	ring->rx_max_pending = E1000_MAX_RXD;
       
   661 	ring->tx_max_pending = E1000_MAX_TXD;
       
   662 	ring->rx_pending = adapter->rx_ring_count;
       
   663 	ring->tx_pending = adapter->tx_ring_count;
       
   664 }
       
   665 
       
   666 static int e1000_set_ringparam(struct net_device *netdev,
       
   667 			       struct ethtool_ringparam *ring)
       
   668 {
       
   669 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   670 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
       
   671 	int err = 0, size = sizeof(struct e1000_ring);
       
   672 	bool set_tx = false, set_rx = false;
       
   673 	u16 new_rx_count, new_tx_count;
       
   674 
       
   675 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
   676 		return -EINVAL;
       
   677 
       
   678 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
       
   679 			       E1000_MAX_RXD);
       
   680 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
       
   681 
       
   682 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
       
   683 			       E1000_MAX_TXD);
       
   684 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
       
   685 
       
   686 	if ((new_tx_count == adapter->tx_ring_count) &&
       
   687 	    (new_rx_count == adapter->rx_ring_count))
       
   688 		/* nothing to do */
       
   689 		return 0;
       
   690 
       
   691 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   692 		usleep_range(1000, 2000);
       
   693 
       
   694 	if (!netif_running(adapter->netdev)) {
       
   695 		/* Set counts now and allocate resources during open() */
       
   696 		adapter->tx_ring->count = new_tx_count;
       
   697 		adapter->rx_ring->count = new_rx_count;
       
   698 		adapter->tx_ring_count = new_tx_count;
       
   699 		adapter->rx_ring_count = new_rx_count;
       
   700 		goto clear_reset;
       
   701 	}
       
   702 
       
   703 	set_tx = (new_tx_count != adapter->tx_ring_count);
       
   704 	set_rx = (new_rx_count != adapter->rx_ring_count);
       
   705 
       
   706 	/* Allocate temporary storage for ring updates */
       
   707 	if (set_tx) {
       
   708 		temp_tx = vmalloc(size);
       
   709 		if (!temp_tx) {
       
   710 			err = -ENOMEM;
       
   711 			goto free_temp;
       
   712 		}
       
   713 	}
       
   714 	if (set_rx) {
       
   715 		temp_rx = vmalloc(size);
       
   716 		if (!temp_rx) {
       
   717 			err = -ENOMEM;
       
   718 			goto free_temp;
       
   719 		}
       
   720 	}
       
   721 
       
   722 	pm_runtime_get_sync(netdev->dev.parent);
       
   723 
       
   724 	e1000e_down(adapter, true);
       
   725 
       
   726 	/* We can't just free everything and then setup again, because the
       
   727 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
       
   728 	 * structs.  First, attempt to allocate new resources...
       
   729 	 */
       
   730 	if (set_tx) {
       
   731 		memcpy(temp_tx, adapter->tx_ring, size);
       
   732 		temp_tx->count = new_tx_count;
       
   733 		err = e1000e_setup_tx_resources(temp_tx);
       
   734 		if (err)
       
   735 			goto err_setup;
       
   736 	}
       
   737 	if (set_rx) {
       
   738 		memcpy(temp_rx, adapter->rx_ring, size);
       
   739 		temp_rx->count = new_rx_count;
       
   740 		err = e1000e_setup_rx_resources(temp_rx);
       
   741 		if (err)
       
   742 			goto err_setup_rx;
       
   743 	}
       
   744 
       
   745 	/* ...then free the old resources and copy back any new ring data */
       
   746 	if (set_tx) {
       
   747 		e1000e_free_tx_resources(adapter->tx_ring);
       
   748 		memcpy(adapter->tx_ring, temp_tx, size);
       
   749 		adapter->tx_ring_count = new_tx_count;
       
   750 	}
       
   751 	if (set_rx) {
       
   752 		e1000e_free_rx_resources(adapter->rx_ring);
       
   753 		memcpy(adapter->rx_ring, temp_rx, size);
       
   754 		adapter->rx_ring_count = new_rx_count;
       
   755 	}
       
   756 
       
   757 err_setup_rx:
       
   758 	if (err && set_tx)
       
   759 		e1000e_free_tx_resources(temp_tx);
       
   760 err_setup:
       
   761 	e1000e_up(adapter);
       
   762 	pm_runtime_put_sync(netdev->dev.parent);
       
   763 free_temp:
       
   764 	vfree(temp_tx);
       
   765 	vfree(temp_rx);
       
   766 clear_reset:
       
   767 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   768 	return err;
       
   769 }
       
   770 
       
   771 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
       
   772 			     int reg, int offset, u32 mask, u32 write)
       
   773 {
       
   774 	u32 pat, val;
       
   775 	static const u32 test[] = {
       
   776 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
       
   777 	};
       
   778 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
       
   779 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
       
   780 				      (test[pat] & write));
       
   781 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
       
   782 		if (val != (test[pat] & write & mask)) {
       
   783 			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
       
   784 			      reg + (offset << 2), val,
       
   785 			      (test[pat] & write & mask));
       
   786 			*data = reg;
       
   787 			return true;
       
   788 		}
       
   789 	}
       
   790 	return false;
       
   791 }
       
   792 
       
   793 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
       
   794 			      int reg, u32 mask, u32 write)
       
   795 {
       
   796 	u32 val;
       
   797 
       
   798 	__ew32(&adapter->hw, reg, write & mask);
       
   799 	val = __er32(&adapter->hw, reg);
       
   800 	if ((write & mask) != (val & mask)) {
       
   801 		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
       
   802 		      reg, (val & mask), (write & mask));
       
   803 		*data = reg;
       
   804 		return true;
       
   805 	}
       
   806 	return false;
       
   807 }
       
   808 
       
   809 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
       
   810 	do {                                                                   \
       
   811 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
       
   812 			return 1;                                              \
       
   813 	} while (0)
       
   814 #define REG_PATTERN_TEST(reg, mask, write)                                     \
       
   815 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
       
   816 
       
   817 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
       
   818 	do {                                                                   \
       
   819 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
       
   820 			return 1;                                              \
       
   821 	} while (0)
       
   822 
       
   823 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
       
   824 {
       
   825 	struct e1000_hw *hw = &adapter->hw;
       
   826 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
   827 	u32 value;
       
   828 	u32 before;
       
   829 	u32 after;
       
   830 	u32 i;
       
   831 	u32 toggle;
       
   832 	u32 mask;
       
   833 	u32 wlock_mac = 0;
       
   834 
       
   835 	/* The status register is Read Only, so a write should fail.
       
   836 	 * Some bits that get toggled are ignored.  There are several bits
       
   837 	 * on newer hardware that are r/w.
       
   838 	 */
       
   839 	switch (mac->type) {
       
   840 	case e1000_82571:
       
   841 	case e1000_82572:
       
   842 	case e1000_80003es2lan:
       
   843 		toggle = 0x7FFFF3FF;
       
   844 		break;
       
   845 	default:
       
   846 		toggle = 0x7FFFF033;
       
   847 		break;
       
   848 	}
       
   849 
       
   850 	before = er32(STATUS);
       
   851 	value = (er32(STATUS) & toggle);
       
   852 	ew32(STATUS, toggle);
       
   853 	after = er32(STATUS) & toggle;
       
   854 	if (value != after) {
       
   855 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
       
   856 		      after, value);
       
   857 		*data = 1;
       
   858 		return 1;
       
   859 	}
       
   860 	/* restore previous status */
       
   861 	ew32(STATUS, before);
       
   862 
       
   863 	if (!(adapter->flags & FLAG_IS_ICH)) {
       
   864 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
       
   865 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
       
   866 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
       
   867 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
       
   868 	}
       
   869 
       
   870 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
       
   871 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
       
   872 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
       
   873 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
       
   874 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
       
   875 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
       
   876 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
       
   877 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
       
   878 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
       
   879 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
       
   880 
       
   881 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
       
   882 
       
   883 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
       
   884 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
       
   885 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
       
   886 
       
   887 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
       
   888 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
       
   889 	if (!(adapter->flags & FLAG_IS_ICH))
       
   890 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
       
   891 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
       
   892 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
       
   893 	mask = 0x8003FFFF;
       
   894 	switch (mac->type) {
       
   895 	case e1000_ich10lan:
       
   896 	case e1000_pchlan:
       
   897 	case e1000_pch2lan:
       
   898 	case e1000_pch_lpt:
       
   899 		mask |= (1 << 18);
       
   900 		break;
       
   901 	default:
       
   902 		break;
       
   903 	}
       
   904 
       
   905 	if (mac->type == e1000_pch_lpt)
       
   906 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
       
   907 		    E1000_FWSM_WLOCK_MAC_SHIFT;
       
   908 
       
   909 	for (i = 0; i < mac->rar_entry_count; i++) {
       
   910 		if (mac->type == e1000_pch_lpt) {
       
   911 			/* Cannot test write-protected SHRAL[n] registers */
       
   912 			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
       
   913 				continue;
       
   914 
       
   915 			/* SHRAH[9] different than the others */
       
   916 			if (i == 10)
       
   917 				mask |= (1 << 30);
       
   918 			else
       
   919 				mask &= ~(1 << 30);
       
   920 		}
       
   921 		if (mac->type == e1000_pch2lan) {
       
   922 			/* SHRAH[0,1,2] different than previous */
       
   923 			if (i == 1)
       
   924 				mask &= 0xFFF4FFFF;
       
   925 			/* SHRAH[3] different than SHRAH[0,1,2] */
       
   926 			if (i == 4)
       
   927 				mask |= (1 << 30);
       
   928 			/* RAR[1-6] owned by management engine - skipping */
       
   929 			if (i > 0)
       
   930 				i += 6;
       
   931 		}
       
   932 
       
   933 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
       
   934 				       0xFFFFFFFF);
       
   935 		/* reset index to actual value */
       
   936 		if ((mac->type == e1000_pch2lan) && (i > 6))
       
   937 			i -= 6;
       
   938 	}
       
   939 
       
   940 	for (i = 0; i < mac->mta_reg_count; i++)
       
   941 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
       
   942 
       
   943 	*data = 0;
       
   944 
       
   945 	return 0;
       
   946 }
       
   947 
       
   948 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
       
   949 {
       
   950 	u16 temp;
       
   951 	u16 checksum = 0;
       
   952 	u16 i;
       
   953 
       
   954 	*data = 0;
       
   955 	/* Read and add up the contents of the EEPROM */
       
   956 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
       
   957 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
       
   958 			*data = 1;
       
   959 			return *data;
       
   960 		}
       
   961 		checksum += temp;
       
   962 	}
       
   963 
       
   964 	/* If Checksum is not Correct return error else test passed */
       
   965 	if ((checksum != (u16)NVM_SUM) && !(*data))
       
   966 		*data = 2;
       
   967 
       
   968 	return *data;
       
   969 }
       
   970 
       
   971 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
       
   972 {
       
   973 	struct net_device *netdev = (struct net_device *)data;
       
   974 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   975 	struct e1000_hw *hw = &adapter->hw;
       
   976 
       
   977 	adapter->test_icr |= er32(ICR);
       
   978 
       
   979 	return IRQ_HANDLED;
       
   980 }
       
   981 
       
   982 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
       
   983 {
       
   984 	struct net_device *netdev = adapter->netdev;
       
   985 	struct e1000_hw *hw = &adapter->hw;
       
   986 	u32 mask;
       
   987 	u32 shared_int = 1;
       
   988 	u32 irq = adapter->pdev->irq;
       
   989 	int i;
       
   990 	int ret_val = 0;
       
   991 	int int_mode = E1000E_INT_MODE_LEGACY;
       
   992 
       
   993 	*data = 0;
       
   994 
       
   995 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
       
   996 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
       
   997 		int_mode = adapter->int_mode;
       
   998 		e1000e_reset_interrupt_capability(adapter);
       
   999 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  1000 		e1000e_set_interrupt_capability(adapter);
       
  1001 	}
       
  1002 	/* Hook up test interrupt handler just for this test */
       
  1003 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
       
  1004 			 netdev)) {
       
  1005 		shared_int = 0;
       
  1006 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
       
  1007 			       netdev)) {
       
  1008 		*data = 1;
       
  1009 		ret_val = -1;
       
  1010 		goto out;
       
  1011 	}
       
  1012 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
       
  1013 
       
  1014 	/* Disable all the interrupts */
       
  1015 	ew32(IMC, 0xFFFFFFFF);
       
  1016 	e1e_flush();
       
  1017 	usleep_range(10000, 20000);
       
  1018 
       
  1019 	/* Test each interrupt */
       
  1020 	for (i = 0; i < 10; i++) {
       
  1021 		/* Interrupt to test */
       
  1022 		mask = 1 << i;
       
  1023 
       
  1024 		if (adapter->flags & FLAG_IS_ICH) {
       
  1025 			switch (mask) {
       
  1026 			case E1000_ICR_RXSEQ:
       
  1027 				continue;
       
  1028 			case 0x00000100:
       
  1029 				if (adapter->hw.mac.type == e1000_ich8lan ||
       
  1030 				    adapter->hw.mac.type == e1000_ich9lan)
       
  1031 					continue;
       
  1032 				break;
       
  1033 			default:
       
  1034 				break;
       
  1035 			}
       
  1036 		}
       
  1037 
       
  1038 		if (!shared_int) {
       
  1039 			/* Disable the interrupt to be reported in
       
  1040 			 * the cause register and then force the same
       
  1041 			 * interrupt and see if one gets posted.  If
       
  1042 			 * an interrupt was posted to the bus, the
       
  1043 			 * test failed.
       
  1044 			 */
       
  1045 			adapter->test_icr = 0;
       
  1046 			ew32(IMC, mask);
       
  1047 			ew32(ICS, mask);
       
  1048 			e1e_flush();
       
  1049 			usleep_range(10000, 20000);
       
  1050 
       
  1051 			if (adapter->test_icr & mask) {
       
  1052 				*data = 3;
       
  1053 				break;
       
  1054 			}
       
  1055 		}
       
  1056 
       
  1057 		/* Enable the interrupt to be reported in
       
  1058 		 * the cause register and then force the same
       
  1059 		 * interrupt and see if one gets posted.  If
       
  1060 		 * an interrupt was not posted to the bus, the
       
  1061 		 * test failed.
       
  1062 		 */
       
  1063 		adapter->test_icr = 0;
       
  1064 		ew32(IMS, mask);
       
  1065 		ew32(ICS, mask);
       
  1066 		e1e_flush();
       
  1067 		usleep_range(10000, 20000);
       
  1068 
       
  1069 		if (!(adapter->test_icr & mask)) {
       
  1070 			*data = 4;
       
  1071 			break;
       
  1072 		}
       
  1073 
       
  1074 		if (!shared_int) {
       
  1075 			/* Disable the other interrupts to be reported in
       
  1076 			 * the cause register and then force the other
       
  1077 			 * interrupts and see if any get posted.  If
       
  1078 			 * an interrupt was posted to the bus, the
       
  1079 			 * test failed.
       
  1080 			 */
       
  1081 			adapter->test_icr = 0;
       
  1082 			ew32(IMC, ~mask & 0x00007FFF);
       
  1083 			ew32(ICS, ~mask & 0x00007FFF);
       
  1084 			e1e_flush();
       
  1085 			usleep_range(10000, 20000);
       
  1086 
       
  1087 			if (adapter->test_icr) {
       
  1088 				*data = 5;
       
  1089 				break;
       
  1090 			}
       
  1091 		}
       
  1092 	}
       
  1093 
       
  1094 	/* Disable all the interrupts */
       
  1095 	ew32(IMC, 0xFFFFFFFF);
       
  1096 	e1e_flush();
       
  1097 	usleep_range(10000, 20000);
       
  1098 
       
  1099 	/* Unhook test interrupt handler */
       
  1100 	free_irq(irq, netdev);
       
  1101 
       
  1102 out:
       
  1103 	if (int_mode == E1000E_INT_MODE_MSIX) {
       
  1104 		e1000e_reset_interrupt_capability(adapter);
       
  1105 		adapter->int_mode = int_mode;
       
  1106 		e1000e_set_interrupt_capability(adapter);
       
  1107 	}
       
  1108 
       
  1109 	return ret_val;
       
  1110 }
       
  1111 
       
  1112 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
       
  1113 {
       
  1114 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1115 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1116 	struct pci_dev *pdev = adapter->pdev;
       
  1117 	struct e1000_buffer *buffer_info;
       
  1118 	int i;
       
  1119 
       
  1120 	if (tx_ring->desc && tx_ring->buffer_info) {
       
  1121 		for (i = 0; i < tx_ring->count; i++) {
       
  1122 			buffer_info = &tx_ring->buffer_info[i];
       
  1123 
       
  1124 			if (buffer_info->dma)
       
  1125 				dma_unmap_single(&pdev->dev,
       
  1126 						 buffer_info->dma,
       
  1127 						 buffer_info->length,
       
  1128 						 DMA_TO_DEVICE);
       
  1129 			if (buffer_info->skb)
       
  1130 				dev_kfree_skb(buffer_info->skb);
       
  1131 		}
       
  1132 	}
       
  1133 
       
  1134 	if (rx_ring->desc && rx_ring->buffer_info) {
       
  1135 		for (i = 0; i < rx_ring->count; i++) {
       
  1136 			buffer_info = &rx_ring->buffer_info[i];
       
  1137 
       
  1138 			if (buffer_info->dma)
       
  1139 				dma_unmap_single(&pdev->dev,
       
  1140 						 buffer_info->dma,
       
  1141 						 2048, DMA_FROM_DEVICE);
       
  1142 			if (buffer_info->skb)
       
  1143 				dev_kfree_skb(buffer_info->skb);
       
  1144 		}
       
  1145 	}
       
  1146 
       
  1147 	if (tx_ring->desc) {
       
  1148 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
       
  1149 				  tx_ring->dma);
       
  1150 		tx_ring->desc = NULL;
       
  1151 	}
       
  1152 	if (rx_ring->desc) {
       
  1153 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
       
  1154 				  rx_ring->dma);
       
  1155 		rx_ring->desc = NULL;
       
  1156 	}
       
  1157 
       
  1158 	kfree(tx_ring->buffer_info);
       
  1159 	tx_ring->buffer_info = NULL;
       
  1160 	kfree(rx_ring->buffer_info);
       
  1161 	rx_ring->buffer_info = NULL;
       
  1162 }
       
  1163 
       
  1164 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
       
  1165 {
       
  1166 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1167 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1168 	struct pci_dev *pdev = adapter->pdev;
       
  1169 	struct e1000_hw *hw = &adapter->hw;
       
  1170 	u32 rctl;
       
  1171 	int i;
       
  1172 	int ret_val;
       
  1173 
       
  1174 	/* Setup Tx descriptor ring and Tx buffers */
       
  1175 
       
  1176 	if (!tx_ring->count)
       
  1177 		tx_ring->count = E1000_DEFAULT_TXD;
       
  1178 
       
  1179 	tx_ring->buffer_info = kcalloc(tx_ring->count,
       
  1180 				       sizeof(struct e1000_buffer), GFP_KERNEL);
       
  1181 	if (!tx_ring->buffer_info) {
       
  1182 		ret_val = 1;
       
  1183 		goto err_nomem;
       
  1184 	}
       
  1185 
       
  1186 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  1187 	tx_ring->size = ALIGN(tx_ring->size, 4096);
       
  1188 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
       
  1189 					   &tx_ring->dma, GFP_KERNEL);
       
  1190 	if (!tx_ring->desc) {
       
  1191 		ret_val = 2;
       
  1192 		goto err_nomem;
       
  1193 	}
       
  1194 	tx_ring->next_to_use = 0;
       
  1195 	tx_ring->next_to_clean = 0;
       
  1196 
       
  1197 	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
       
  1198 	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
       
  1199 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
       
  1200 	ew32(TDH(0), 0);
       
  1201 	ew32(TDT(0), 0);
       
  1202 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
       
  1203 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
       
  1204 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
       
  1205 
       
  1206 	for (i = 0; i < tx_ring->count; i++) {
       
  1207 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  1208 		struct sk_buff *skb;
       
  1209 		unsigned int skb_size = 1024;
       
  1210 
       
  1211 		skb = alloc_skb(skb_size, GFP_KERNEL);
       
  1212 		if (!skb) {
       
  1213 			ret_val = 3;
       
  1214 			goto err_nomem;
       
  1215 		}
       
  1216 		skb_put(skb, skb_size);
       
  1217 		tx_ring->buffer_info[i].skb = skb;
       
  1218 		tx_ring->buffer_info[i].length = skb->len;
       
  1219 		tx_ring->buffer_info[i].dma =
       
  1220 		    dma_map_single(&pdev->dev, skb->data, skb->len,
       
  1221 				   DMA_TO_DEVICE);
       
  1222 		if (dma_mapping_error(&pdev->dev,
       
  1223 				      tx_ring->buffer_info[i].dma)) {
       
  1224 			ret_val = 4;
       
  1225 			goto err_nomem;
       
  1226 		}
       
  1227 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
       
  1228 		tx_desc->lower.data = cpu_to_le32(skb->len);
       
  1229 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
       
  1230 						   E1000_TXD_CMD_IFCS |
       
  1231 						   E1000_TXD_CMD_RS);
       
  1232 		tx_desc->upper.data = 0;
       
  1233 	}
       
  1234 
       
  1235 	/* Setup Rx descriptor ring and Rx buffers */
       
  1236 
       
  1237 	if (!rx_ring->count)
       
  1238 		rx_ring->count = E1000_DEFAULT_RXD;
       
  1239 
       
  1240 	rx_ring->buffer_info = kcalloc(rx_ring->count,
       
  1241 				       sizeof(struct e1000_buffer), GFP_KERNEL);
       
  1242 	if (!rx_ring->buffer_info) {
       
  1243 		ret_val = 5;
       
  1244 		goto err_nomem;
       
  1245 	}
       
  1246 
       
  1247 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
       
  1248 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
       
  1249 					   &rx_ring->dma, GFP_KERNEL);
       
  1250 	if (!rx_ring->desc) {
       
  1251 		ret_val = 6;
       
  1252 		goto err_nomem;
       
  1253 	}
       
  1254 	rx_ring->next_to_use = 0;
       
  1255 	rx_ring->next_to_clean = 0;
       
  1256 
       
  1257 	rctl = er32(RCTL);
       
  1258 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
       
  1259 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1260 	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
       
  1261 	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
       
  1262 	ew32(RDLEN(0), rx_ring->size);
       
  1263 	ew32(RDH(0), 0);
       
  1264 	ew32(RDT(0), 0);
       
  1265 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
       
  1266 	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
       
  1267 	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
       
  1268 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1269 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1270 	ew32(RCTL, rctl);
       
  1271 
       
  1272 	for (i = 0; i < rx_ring->count; i++) {
       
  1273 		union e1000_rx_desc_extended *rx_desc;
       
  1274 		struct sk_buff *skb;
       
  1275 
       
  1276 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
       
  1277 		if (!skb) {
       
  1278 			ret_val = 7;
       
  1279 			goto err_nomem;
       
  1280 		}
       
  1281 		skb_reserve(skb, NET_IP_ALIGN);
       
  1282 		rx_ring->buffer_info[i].skb = skb;
       
  1283 		rx_ring->buffer_info[i].dma =
       
  1284 		    dma_map_single(&pdev->dev, skb->data, 2048,
       
  1285 				   DMA_FROM_DEVICE);
       
  1286 		if (dma_mapping_error(&pdev->dev,
       
  1287 				      rx_ring->buffer_info[i].dma)) {
       
  1288 			ret_val = 8;
       
  1289 			goto err_nomem;
       
  1290 		}
       
  1291 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
       
  1292 		rx_desc->read.buffer_addr =
       
  1293 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
       
  1294 		memset(skb->data, 0x00, skb->len);
       
  1295 	}
       
  1296 
       
  1297 	return 0;
       
  1298 
       
  1299 err_nomem:
       
  1300 	e1000_free_desc_rings(adapter);
       
  1301 	return ret_val;
       
  1302 }
       
  1303 
       
  1304 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
       
  1305 {
       
  1306 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1307 	e1e_wphy(&adapter->hw, 29, 0x001F);
       
  1308 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
       
  1309 	e1e_wphy(&adapter->hw, 29, 0x001A);
       
  1310 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
       
  1311 }
       
  1312 
       
  1313 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
       
  1314 {
       
  1315 	struct e1000_hw *hw = &adapter->hw;
       
  1316 	u32 ctrl_reg = 0;
       
  1317 	u16 phy_reg = 0;
       
  1318 	s32 ret_val = 0;
       
  1319 
       
  1320 	hw->mac.autoneg = 0;
       
  1321 
       
  1322 	if (hw->phy.type == e1000_phy_ife) {
       
  1323 		/* force 100, set loopback */
       
  1324 		e1e_wphy(hw, MII_BMCR, 0x6100);
       
  1325 
       
  1326 		/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1327 		ctrl_reg = er32(CTRL);
       
  1328 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1329 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1330 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1331 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
       
  1332 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1333 
       
  1334 		ew32(CTRL, ctrl_reg);
       
  1335 		e1e_flush();
       
  1336 		usleep_range(500, 1000);
       
  1337 
       
  1338 		return 0;
       
  1339 	}
       
  1340 
       
  1341 	/* Specific PHY configuration for loopback */
       
  1342 	switch (hw->phy.type) {
       
  1343 	case e1000_phy_m88:
       
  1344 		/* Auto-MDI/MDIX Off */
       
  1345 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
       
  1346 		/* reset to update Auto-MDI/MDIX */
       
  1347 		e1e_wphy(hw, MII_BMCR, 0x9140);
       
  1348 		/* autoneg off */
       
  1349 		e1e_wphy(hw, MII_BMCR, 0x8140);
       
  1350 		break;
       
  1351 	case e1000_phy_gg82563:
       
  1352 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
       
  1353 		break;
       
  1354 	case e1000_phy_bm:
       
  1355 		/* Set Default MAC Interface speed to 1GB */
       
  1356 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
       
  1357 		phy_reg &= ~0x0007;
       
  1358 		phy_reg |= 0x006;
       
  1359 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
       
  1360 		/* Assert SW reset for above settings to take effect */
       
  1361 		hw->phy.ops.commit(hw);
       
  1362 		usleep_range(1000, 2000);
       
  1363 		/* Force Full Duplex */
       
  1364 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
       
  1365 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
       
  1366 		/* Set Link Up (in force link) */
       
  1367 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
       
  1368 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
       
  1369 		/* Force Link */
       
  1370 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
       
  1371 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
       
  1372 		/* Set Early Link Enable */
       
  1373 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
       
  1374 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
       
  1375 		break;
       
  1376 	case e1000_phy_82577:
       
  1377 	case e1000_phy_82578:
       
  1378 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
       
  1379 		ret_val = hw->phy.ops.acquire(hw);
       
  1380 		if (ret_val) {
       
  1381 			e_err("Cannot setup 1Gbps loopback.\n");
       
  1382 			return ret_val;
       
  1383 		}
       
  1384 		e1000_configure_k1_ich8lan(hw, false);
       
  1385 		hw->phy.ops.release(hw);
       
  1386 		break;
       
  1387 	case e1000_phy_82579:
       
  1388 		/* Disable PHY energy detect power down */
       
  1389 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
       
  1390 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
       
  1391 		/* Disable full chip energy detect */
       
  1392 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
       
  1393 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
       
  1394 		/* Enable loopback on the PHY */
       
  1395 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
       
  1396 		break;
       
  1397 	default:
       
  1398 		break;
       
  1399 	}
       
  1400 
       
  1401 	/* force 1000, set loopback */
       
  1402 	e1e_wphy(hw, MII_BMCR, 0x4140);
       
  1403 	msleep(250);
       
  1404 
       
  1405 	/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1406 	ctrl_reg = er32(CTRL);
       
  1407 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1408 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1409 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1410 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
       
  1411 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1412 
       
  1413 	if (adapter->flags & FLAG_IS_ICH)
       
  1414 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
       
  1415 
       
  1416 	if (hw->phy.media_type == e1000_media_type_copper &&
       
  1417 	    hw->phy.type == e1000_phy_m88) {
       
  1418 		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
       
  1419 	} else {
       
  1420 		/* Set the ILOS bit on the fiber Nic if half duplex link is
       
  1421 		 * detected.
       
  1422 		 */
       
  1423 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
       
  1424 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
       
  1425 	}
       
  1426 
       
  1427 	ew32(CTRL, ctrl_reg);
       
  1428 
       
  1429 	/* Disable the receiver on the PHY so when a cable is plugged in, the
       
  1430 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
       
  1431 	 */
       
  1432 	if (hw->phy.type == e1000_phy_m88)
       
  1433 		e1000_phy_disable_receiver(adapter);
       
  1434 
       
  1435 	usleep_range(500, 1000);
       
  1436 
       
  1437 	return 0;
       
  1438 }
       
  1439 
       
  1440 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
       
  1441 {
       
  1442 	struct e1000_hw *hw = &adapter->hw;
       
  1443 	u32 ctrl = er32(CTRL);
       
  1444 	int link;
       
  1445 
       
  1446 	/* special requirements for 82571/82572 fiber adapters */
       
  1447 
       
  1448 	/* jump through hoops to make sure link is up because serdes
       
  1449 	 * link is hardwired up
       
  1450 	 */
       
  1451 	ctrl |= E1000_CTRL_SLU;
       
  1452 	ew32(CTRL, ctrl);
       
  1453 
       
  1454 	/* disable autoneg */
       
  1455 	ctrl = er32(TXCW);
       
  1456 	ctrl &= ~(1 << 31);
       
  1457 	ew32(TXCW, ctrl);
       
  1458 
       
  1459 	link = (er32(STATUS) & E1000_STATUS_LU);
       
  1460 
       
  1461 	if (!link) {
       
  1462 		/* set invert loss of signal */
       
  1463 		ctrl = er32(CTRL);
       
  1464 		ctrl |= E1000_CTRL_ILOS;
       
  1465 		ew32(CTRL, ctrl);
       
  1466 	}
       
  1467 
       
  1468 	/* special write to serdes control register to enable SerDes analog
       
  1469 	 * loopback
       
  1470 	 */
       
  1471 	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
       
  1472 	e1e_flush();
       
  1473 	usleep_range(10000, 20000);
       
  1474 
       
  1475 	return 0;
       
  1476 }
       
  1477 
       
  1478 /* only call this for fiber/serdes connections to es2lan */
       
  1479 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
       
  1480 {
       
  1481 	struct e1000_hw *hw = &adapter->hw;
       
  1482 	u32 ctrlext = er32(CTRL_EXT);
       
  1483 	u32 ctrl = er32(CTRL);
       
  1484 
       
  1485 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
       
  1486 	 * on mac_type 80003es2lan)
       
  1487 	 */
       
  1488 	adapter->tx_fifo_head = ctrlext;
       
  1489 
       
  1490 	/* clear the serdes mode bits, putting the device into mac loopback */
       
  1491 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
       
  1492 	ew32(CTRL_EXT, ctrlext);
       
  1493 
       
  1494 	/* force speed to 1000/FD, link up */
       
  1495 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1496 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
       
  1497 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
       
  1498 	ew32(CTRL, ctrl);
       
  1499 
       
  1500 	/* set mac loopback */
       
  1501 	ctrl = er32(RCTL);
       
  1502 	ctrl |= E1000_RCTL_LBM_MAC;
       
  1503 	ew32(RCTL, ctrl);
       
  1504 
       
  1505 	/* set testing mode parameters (no need to reset later) */
       
  1506 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
       
  1507 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
       
  1508 	ew32(KMRNCTRLSTA,
       
  1509 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
       
  1510 
       
  1511 	return 0;
       
  1512 }
       
  1513 
       
  1514 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
       
  1515 {
       
  1516 	struct e1000_hw *hw = &adapter->hw;
       
  1517 	u32 rctl;
       
  1518 
       
  1519 	if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1520 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1521 		switch (hw->mac.type) {
       
  1522 		case e1000_80003es2lan:
       
  1523 			return e1000_set_es2lan_mac_loopback(adapter);
       
  1524 			break;
       
  1525 		case e1000_82571:
       
  1526 		case e1000_82572:
       
  1527 			return e1000_set_82571_fiber_loopback(adapter);
       
  1528 			break;
       
  1529 		default:
       
  1530 			rctl = er32(RCTL);
       
  1531 			rctl |= E1000_RCTL_LBM_TCVR;
       
  1532 			ew32(RCTL, rctl);
       
  1533 			return 0;
       
  1534 		}
       
  1535 	} else if (hw->phy.media_type == e1000_media_type_copper) {
       
  1536 		return e1000_integrated_phy_loopback(adapter);
       
  1537 	}
       
  1538 
       
  1539 	return 7;
       
  1540 }
       
  1541 
       
  1542 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
       
  1543 {
       
  1544 	struct e1000_hw *hw = &adapter->hw;
       
  1545 	u32 rctl;
       
  1546 	u16 phy_reg;
       
  1547 
       
  1548 	rctl = er32(RCTL);
       
  1549 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
       
  1550 	ew32(RCTL, rctl);
       
  1551 
       
  1552 	switch (hw->mac.type) {
       
  1553 	case e1000_80003es2lan:
       
  1554 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1555 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1556 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
       
  1557 			ew32(CTRL_EXT, adapter->tx_fifo_head);
       
  1558 			adapter->tx_fifo_head = 0;
       
  1559 		}
       
  1560 		/* fall through */
       
  1561 	case e1000_82571:
       
  1562 	case e1000_82572:
       
  1563 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1564 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1565 			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
       
  1566 			e1e_flush();
       
  1567 			usleep_range(10000, 20000);
       
  1568 			break;
       
  1569 		}
       
  1570 		/* Fall Through */
       
  1571 	default:
       
  1572 		hw->mac.autoneg = 1;
       
  1573 		if (hw->phy.type == e1000_phy_gg82563)
       
  1574 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
       
  1575 		e1e_rphy(hw, MII_BMCR, &phy_reg);
       
  1576 		if (phy_reg & BMCR_LOOPBACK) {
       
  1577 			phy_reg &= ~BMCR_LOOPBACK;
       
  1578 			e1e_wphy(hw, MII_BMCR, phy_reg);
       
  1579 			if (hw->phy.ops.commit)
       
  1580 				hw->phy.ops.commit(hw);
       
  1581 		}
       
  1582 		break;
       
  1583 	}
       
  1584 }
       
  1585 
       
  1586 static void e1000_create_lbtest_frame(struct sk_buff *skb,
       
  1587 				      unsigned int frame_size)
       
  1588 {
       
  1589 	memset(skb->data, 0xFF, frame_size);
       
  1590 	frame_size &= ~1;
       
  1591 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
       
  1592 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
       
  1593 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
       
  1594 }
       
  1595 
       
  1596 static int e1000_check_lbtest_frame(struct sk_buff *skb,
       
  1597 				    unsigned int frame_size)
       
  1598 {
       
  1599 	frame_size &= ~1;
       
  1600 	if (*(skb->data + 3) == 0xFF)
       
  1601 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
       
  1602 		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
       
  1603 			return 0;
       
  1604 	return 13;
       
  1605 }
       
  1606 
       
  1607 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
       
  1608 {
       
  1609 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1610 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1611 	struct pci_dev *pdev = adapter->pdev;
       
  1612 	struct e1000_hw *hw = &adapter->hw;
       
  1613 	struct e1000_buffer *buffer_info;
       
  1614 	int i, j, k, l;
       
  1615 	int lc;
       
  1616 	int good_cnt;
       
  1617 	int ret_val = 0;
       
  1618 	unsigned long time;
       
  1619 
       
  1620 	ew32(RDT(0), rx_ring->count - 1);
       
  1621 
       
  1622 	/* Calculate the loop count based on the largest descriptor ring
       
  1623 	 * The idea is to wrap the largest ring a number of times using 64
       
  1624 	 * send/receive pairs during each loop
       
  1625 	 */
       
  1626 
       
  1627 	if (rx_ring->count <= tx_ring->count)
       
  1628 		lc = ((tx_ring->count / 64) * 2) + 1;
       
  1629 	else
       
  1630 		lc = ((rx_ring->count / 64) * 2) + 1;
       
  1631 
       
  1632 	k = 0;
       
  1633 	l = 0;
       
  1634 	/* loop count loop */
       
  1635 	for (j = 0; j <= lc; j++) {
       
  1636 		/* send the packets */
       
  1637 		for (i = 0; i < 64; i++) {
       
  1638 			buffer_info = &tx_ring->buffer_info[k];
       
  1639 
       
  1640 			e1000_create_lbtest_frame(buffer_info->skb, 1024);
       
  1641 			dma_sync_single_for_device(&pdev->dev,
       
  1642 						   buffer_info->dma,
       
  1643 						   buffer_info->length,
       
  1644 						   DMA_TO_DEVICE);
       
  1645 			k++;
       
  1646 			if (k == tx_ring->count)
       
  1647 				k = 0;
       
  1648 		}
       
  1649 		ew32(TDT(0), k);
       
  1650 		e1e_flush();
       
  1651 		msleep(200);
       
  1652 		time = jiffies;	/* set the start time for the receive */
       
  1653 		good_cnt = 0;
       
  1654 		/* receive the sent packets */
       
  1655 		do {
       
  1656 			buffer_info = &rx_ring->buffer_info[l];
       
  1657 
       
  1658 			dma_sync_single_for_cpu(&pdev->dev,
       
  1659 						buffer_info->dma, 2048,
       
  1660 						DMA_FROM_DEVICE);
       
  1661 
       
  1662 			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
       
  1663 							   1024);
       
  1664 			if (!ret_val)
       
  1665 				good_cnt++;
       
  1666 			l++;
       
  1667 			if (l == rx_ring->count)
       
  1668 				l = 0;
       
  1669 			/* time + 20 msecs (200 msecs on 2.4) is more than
       
  1670 			 * enough time to complete the receives, if it's
       
  1671 			 * exceeded, break and error off
       
  1672 			 */
       
  1673 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
       
  1674 		if (good_cnt != 64) {
       
  1675 			ret_val = 13;	/* ret_val is the same as mis-compare */
       
  1676 			break;
       
  1677 		}
       
  1678 		if (time_after(jiffies, time + 20)) {
       
  1679 			ret_val = 14;	/* error code for time out error */
       
  1680 			break;
       
  1681 		}
       
  1682 	}
       
  1683 	return ret_val;
       
  1684 }
       
  1685 
       
  1686 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
       
  1687 {
       
  1688 	struct e1000_hw *hw = &adapter->hw;
       
  1689 
       
  1690 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
       
  1691 	if (hw->phy.ops.check_reset_block &&
       
  1692 	    hw->phy.ops.check_reset_block(hw)) {
       
  1693 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
       
  1694 		*data = 0;
       
  1695 		goto out;
       
  1696 	}
       
  1697 
       
  1698 	*data = e1000_setup_desc_rings(adapter);
       
  1699 	if (*data)
       
  1700 		goto out;
       
  1701 
       
  1702 	*data = e1000_setup_loopback_test(adapter);
       
  1703 	if (*data)
       
  1704 		goto err_loopback;
       
  1705 
       
  1706 	*data = e1000_run_loopback_test(adapter);
       
  1707 	e1000_loopback_cleanup(adapter);
       
  1708 
       
  1709 err_loopback:
       
  1710 	e1000_free_desc_rings(adapter);
       
  1711 out:
       
  1712 	return *data;
       
  1713 }
       
  1714 
       
  1715 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
       
  1716 {
       
  1717 	struct e1000_hw *hw = &adapter->hw;
       
  1718 
       
  1719 	*data = 0;
       
  1720 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1721 		int i = 0;
       
  1722 
       
  1723 		hw->mac.serdes_has_link = false;
       
  1724 
       
  1725 		/* On some blade server designs, link establishment
       
  1726 		 * could take as long as 2-3 minutes
       
  1727 		 */
       
  1728 		do {
       
  1729 			hw->mac.ops.check_for_link(hw);
       
  1730 			if (hw->mac.serdes_has_link)
       
  1731 				return *data;
       
  1732 			msleep(20);
       
  1733 		} while (i++ < 3750);
       
  1734 
       
  1735 		*data = 1;
       
  1736 	} else {
       
  1737 		hw->mac.ops.check_for_link(hw);
       
  1738 		if (hw->mac.autoneg)
       
  1739 			/* On some Phy/switch combinations, link establishment
       
  1740 			 * can take a few seconds more than expected.
       
  1741 			 */
       
  1742 			msleep_interruptible(5000);
       
  1743 
       
  1744 		if (!(er32(STATUS) & E1000_STATUS_LU))
       
  1745 			*data = 1;
       
  1746 	}
       
  1747 	return *data;
       
  1748 }
       
  1749 
       
  1750 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
       
  1751 				 int sset)
       
  1752 {
       
  1753 	switch (sset) {
       
  1754 	case ETH_SS_TEST:
       
  1755 		return E1000_TEST_LEN;
       
  1756 	case ETH_SS_STATS:
       
  1757 		return E1000_STATS_LEN;
       
  1758 	default:
       
  1759 		return -EOPNOTSUPP;
       
  1760 	}
       
  1761 }
       
  1762 
       
  1763 static void e1000_diag_test(struct net_device *netdev,
       
  1764 			    struct ethtool_test *eth_test, u64 *data)
       
  1765 {
       
  1766 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1767 	u16 autoneg_advertised;
       
  1768 	u8 forced_speed_duplex;
       
  1769 	u8 autoneg;
       
  1770 	bool if_running = netif_running(netdev);
       
  1771 
       
  1772 	pm_runtime_get_sync(netdev->dev.parent);
       
  1773 
       
  1774 	set_bit(__E1000_TESTING, &adapter->state);
       
  1775 
       
  1776 	if (!if_running) {
       
  1777 		/* Get control of and reset hardware */
       
  1778 		if (adapter->flags & FLAG_HAS_AMT)
       
  1779 			e1000e_get_hw_control(adapter);
       
  1780 
       
  1781 		e1000e_power_up_phy(adapter);
       
  1782 
       
  1783 		adapter->hw.phy.autoneg_wait_to_complete = 1;
       
  1784 		e1000e_reset(adapter);
       
  1785 		adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  1786 	}
       
  1787 
       
  1788 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
       
  1789 		/* Offline tests */
       
  1790 
       
  1791 		/* save speed, duplex, autoneg settings */
       
  1792 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
       
  1793 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
       
  1794 		autoneg = adapter->hw.mac.autoneg;
       
  1795 
       
  1796 		e_info("offline testing starting\n");
       
  1797 
       
  1798 		if (if_running)
       
  1799 			/* indicate we're in test mode */
       
  1800 			dev_close(netdev);
       
  1801 
       
  1802 		if (e1000_reg_test(adapter, &data[0]))
       
  1803 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1804 
       
  1805 		e1000e_reset(adapter);
       
  1806 		if (e1000_eeprom_test(adapter, &data[1]))
       
  1807 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1808 
       
  1809 		e1000e_reset(adapter);
       
  1810 		if (e1000_intr_test(adapter, &data[2]))
       
  1811 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1812 
       
  1813 		e1000e_reset(adapter);
       
  1814 		if (e1000_loopback_test(adapter, &data[3]))
       
  1815 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1816 
       
  1817 		/* force this routine to wait until autoneg complete/timeout */
       
  1818 		adapter->hw.phy.autoneg_wait_to_complete = 1;
       
  1819 		e1000e_reset(adapter);
       
  1820 		adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  1821 
       
  1822 		if (e1000_link_test(adapter, &data[4]))
       
  1823 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1824 
       
  1825 		/* restore speed, duplex, autoneg settings */
       
  1826 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
       
  1827 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
       
  1828 		adapter->hw.mac.autoneg = autoneg;
       
  1829 		e1000e_reset(adapter);
       
  1830 
       
  1831 		clear_bit(__E1000_TESTING, &adapter->state);
       
  1832 		if (if_running)
       
  1833 			dev_open(netdev);
       
  1834 	} else {
       
  1835 		/* Online tests */
       
  1836 
       
  1837 		e_info("online testing starting\n");
       
  1838 
       
  1839 		/* register, eeprom, intr and loopback tests not run online */
       
  1840 		data[0] = 0;
       
  1841 		data[1] = 0;
       
  1842 		data[2] = 0;
       
  1843 		data[3] = 0;
       
  1844 
       
  1845 		if (e1000_link_test(adapter, &data[4]))
       
  1846 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1847 
       
  1848 		clear_bit(__E1000_TESTING, &adapter->state);
       
  1849 	}
       
  1850 
       
  1851 	if (!if_running) {
       
  1852 		e1000e_reset(adapter);
       
  1853 
       
  1854 		if (adapter->flags & FLAG_HAS_AMT)
       
  1855 			e1000e_release_hw_control(adapter);
       
  1856 	}
       
  1857 
       
  1858 	msleep_interruptible(4 * 1000);
       
  1859 
       
  1860 	pm_runtime_put_sync(netdev->dev.parent);
       
  1861 }
       
  1862 
       
  1863 static void e1000_get_wol(struct net_device *netdev,
       
  1864 			  struct ethtool_wolinfo *wol)
       
  1865 {
       
  1866 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1867 
       
  1868 	wol->supported = 0;
       
  1869 	wol->wolopts = 0;
       
  1870 
       
  1871 	if (!(adapter->flags & FLAG_HAS_WOL) ||
       
  1872 	    !device_can_wakeup(&adapter->pdev->dev))
       
  1873 		return;
       
  1874 
       
  1875 	wol->supported = WAKE_UCAST | WAKE_MCAST |
       
  1876 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
       
  1877 
       
  1878 	/* apply any specific unsupported masks here */
       
  1879 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
       
  1880 		wol->supported &= ~WAKE_UCAST;
       
  1881 
       
  1882 		if (adapter->wol & E1000_WUFC_EX)
       
  1883 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
       
  1884 	}
       
  1885 
       
  1886 	if (adapter->wol & E1000_WUFC_EX)
       
  1887 		wol->wolopts |= WAKE_UCAST;
       
  1888 	if (adapter->wol & E1000_WUFC_MC)
       
  1889 		wol->wolopts |= WAKE_MCAST;
       
  1890 	if (adapter->wol & E1000_WUFC_BC)
       
  1891 		wol->wolopts |= WAKE_BCAST;
       
  1892 	if (adapter->wol & E1000_WUFC_MAG)
       
  1893 		wol->wolopts |= WAKE_MAGIC;
       
  1894 	if (adapter->wol & E1000_WUFC_LNKC)
       
  1895 		wol->wolopts |= WAKE_PHY;
       
  1896 }
       
  1897 
       
  1898 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  1899 {
       
  1900 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1901 
       
  1902 	if (!(adapter->flags & FLAG_HAS_WOL) ||
       
  1903 	    !device_can_wakeup(&adapter->pdev->dev) ||
       
  1904 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
       
  1905 			      WAKE_MAGIC | WAKE_PHY)))
       
  1906 		return -EOPNOTSUPP;
       
  1907 
       
  1908 	/* these settings will always override what we currently have */
       
  1909 	adapter->wol = 0;
       
  1910 
       
  1911 	if (wol->wolopts & WAKE_UCAST)
       
  1912 		adapter->wol |= E1000_WUFC_EX;
       
  1913 	if (wol->wolopts & WAKE_MCAST)
       
  1914 		adapter->wol |= E1000_WUFC_MC;
       
  1915 	if (wol->wolopts & WAKE_BCAST)
       
  1916 		adapter->wol |= E1000_WUFC_BC;
       
  1917 	if (wol->wolopts & WAKE_MAGIC)
       
  1918 		adapter->wol |= E1000_WUFC_MAG;
       
  1919 	if (wol->wolopts & WAKE_PHY)
       
  1920 		adapter->wol |= E1000_WUFC_LNKC;
       
  1921 
       
  1922 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  1923 
       
  1924 	return 0;
       
  1925 }
       
  1926 
       
  1927 static int e1000_set_phys_id(struct net_device *netdev,
       
  1928 			     enum ethtool_phys_id_state state)
       
  1929 {
       
  1930 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1931 	struct e1000_hw *hw = &adapter->hw;
       
  1932 
       
  1933 	switch (state) {
       
  1934 	case ETHTOOL_ID_ACTIVE:
       
  1935 		pm_runtime_get_sync(netdev->dev.parent);
       
  1936 
       
  1937 		if (!hw->mac.ops.blink_led)
       
  1938 			return 2;	/* cycle on/off twice per second */
       
  1939 
       
  1940 		hw->mac.ops.blink_led(hw);
       
  1941 		break;
       
  1942 
       
  1943 	case ETHTOOL_ID_INACTIVE:
       
  1944 		if (hw->phy.type == e1000_phy_ife)
       
  1945 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  1946 		hw->mac.ops.led_off(hw);
       
  1947 		hw->mac.ops.cleanup_led(hw);
       
  1948 		pm_runtime_put_sync(netdev->dev.parent);
       
  1949 		break;
       
  1950 
       
  1951 	case ETHTOOL_ID_ON:
       
  1952 		hw->mac.ops.led_on(hw);
       
  1953 		break;
       
  1954 
       
  1955 	case ETHTOOL_ID_OFF:
       
  1956 		hw->mac.ops.led_off(hw);
       
  1957 		break;
       
  1958 	}
       
  1959 
       
  1960 	return 0;
       
  1961 }
       
  1962 
       
  1963 static int e1000_get_coalesce(struct net_device *netdev,
       
  1964 			      struct ethtool_coalesce *ec)
       
  1965 {
       
  1966 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1967 
       
  1968 	if (adapter->itr_setting <= 4)
       
  1969 		ec->rx_coalesce_usecs = adapter->itr_setting;
       
  1970 	else
       
  1971 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
       
  1972 
       
  1973 	return 0;
       
  1974 }
       
  1975 
       
  1976 static int e1000_set_coalesce(struct net_device *netdev,
       
  1977 			      struct ethtool_coalesce *ec)
       
  1978 {
       
  1979 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1980 
       
  1981 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
       
  1982 	    ((ec->rx_coalesce_usecs > 4) &&
       
  1983 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
       
  1984 	    (ec->rx_coalesce_usecs == 2))
       
  1985 		return -EINVAL;
       
  1986 
       
  1987 	if (ec->rx_coalesce_usecs == 4) {
       
  1988 		adapter->itr_setting = 4;
       
  1989 		adapter->itr = adapter->itr_setting;
       
  1990 	} else if (ec->rx_coalesce_usecs <= 3) {
       
  1991 		adapter->itr = 20000;
       
  1992 		adapter->itr_setting = ec->rx_coalesce_usecs;
       
  1993 	} else {
       
  1994 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
       
  1995 		adapter->itr_setting = adapter->itr & ~3;
       
  1996 	}
       
  1997 
       
  1998 	pm_runtime_get_sync(netdev->dev.parent);
       
  1999 
       
  2000 	if (adapter->itr_setting != 0)
       
  2001 		e1000e_write_itr(adapter, adapter->itr);
       
  2002 	else
       
  2003 		e1000e_write_itr(adapter, 0);
       
  2004 
       
  2005 	pm_runtime_put_sync(netdev->dev.parent);
       
  2006 
       
  2007 	return 0;
       
  2008 }
       
  2009 
       
  2010 static int e1000_nway_reset(struct net_device *netdev)
       
  2011 {
       
  2012 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2013 
       
  2014 	if (!netif_running(netdev))
       
  2015 		return -EAGAIN;
       
  2016 
       
  2017 	if (!adapter->hw.mac.autoneg)
       
  2018 		return -EINVAL;
       
  2019 
       
  2020 	pm_runtime_get_sync(netdev->dev.parent);
       
  2021 	e1000e_reinit_locked(adapter);
       
  2022 	pm_runtime_put_sync(netdev->dev.parent);
       
  2023 
       
  2024 	return 0;
       
  2025 }
       
  2026 
       
  2027 static void e1000_get_ethtool_stats(struct net_device *netdev,
       
  2028 				    struct ethtool_stats __always_unused *stats,
       
  2029 				    u64 *data)
       
  2030 {
       
  2031 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2032 	struct rtnl_link_stats64 net_stats;
       
  2033 	int i;
       
  2034 	char *p = NULL;
       
  2035 
       
  2036 	pm_runtime_get_sync(netdev->dev.parent);
       
  2037 
       
  2038 	e1000e_get_stats64(netdev, &net_stats);
       
  2039 
       
  2040 	pm_runtime_put_sync(netdev->dev.parent);
       
  2041 
       
  2042 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  2043 		switch (e1000_gstrings_stats[i].type) {
       
  2044 		case NETDEV_STATS:
       
  2045 			p = (char *)&net_stats +
       
  2046 			    e1000_gstrings_stats[i].stat_offset;
       
  2047 			break;
       
  2048 		case E1000_STATS:
       
  2049 			p = (char *)adapter +
       
  2050 			    e1000_gstrings_stats[i].stat_offset;
       
  2051 			break;
       
  2052 		default:
       
  2053 			data[i] = 0;
       
  2054 			continue;
       
  2055 		}
       
  2056 
       
  2057 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
       
  2058 			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
       
  2059 	}
       
  2060 }
       
  2061 
       
  2062 static void e1000_get_strings(struct net_device __always_unused *netdev,
       
  2063 			      u32 stringset, u8 *data)
       
  2064 {
       
  2065 	u8 *p = data;
       
  2066 	int i;
       
  2067 
       
  2068 	switch (stringset) {
       
  2069 	case ETH_SS_TEST:
       
  2070 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
       
  2071 		break;
       
  2072 	case ETH_SS_STATS:
       
  2073 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  2074 			memcpy(p, e1000_gstrings_stats[i].stat_string,
       
  2075 			       ETH_GSTRING_LEN);
       
  2076 			p += ETH_GSTRING_LEN;
       
  2077 		}
       
  2078 		break;
       
  2079 	}
       
  2080 }
       
  2081 
       
  2082 static int e1000_get_rxnfc(struct net_device *netdev,
       
  2083 			   struct ethtool_rxnfc *info,
       
  2084 			   u32 __always_unused *rule_locs)
       
  2085 {
       
  2086 	info->data = 0;
       
  2087 
       
  2088 	switch (info->cmd) {
       
  2089 	case ETHTOOL_GRXFH: {
       
  2090 		struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2091 		struct e1000_hw *hw = &adapter->hw;
       
  2092 		u32 mrqc;
       
  2093 
       
  2094 		pm_runtime_get_sync(netdev->dev.parent);
       
  2095 		mrqc = er32(MRQC);
       
  2096 		pm_runtime_put_sync(netdev->dev.parent);
       
  2097 
       
  2098 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
       
  2099 			return 0;
       
  2100 
       
  2101 		switch (info->flow_type) {
       
  2102 		case TCP_V4_FLOW:
       
  2103 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
       
  2104 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
       
  2105 			/* fall through */
       
  2106 		case UDP_V4_FLOW:
       
  2107 		case SCTP_V4_FLOW:
       
  2108 		case AH_ESP_V4_FLOW:
       
  2109 		case IPV4_FLOW:
       
  2110 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
       
  2111 				info->data |= RXH_IP_SRC | RXH_IP_DST;
       
  2112 			break;
       
  2113 		case TCP_V6_FLOW:
       
  2114 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
       
  2115 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
       
  2116 			/* fall through */
       
  2117 		case UDP_V6_FLOW:
       
  2118 		case SCTP_V6_FLOW:
       
  2119 		case AH_ESP_V6_FLOW:
       
  2120 		case IPV6_FLOW:
       
  2121 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
       
  2122 				info->data |= RXH_IP_SRC | RXH_IP_DST;
       
  2123 			break;
       
  2124 		default:
       
  2125 			break;
       
  2126 		}
       
  2127 		return 0;
       
  2128 	}
       
  2129 	default:
       
  2130 		return -EOPNOTSUPP;
       
  2131 	}
       
  2132 }
       
  2133 
       
  2134 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
       
  2135 {
       
  2136 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2137 	struct e1000_hw *hw = &adapter->hw;
       
  2138 	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
       
  2139 	u32 ret_val;
       
  2140 
       
  2141 	if (!(adapter->flags2 & FLAG2_HAS_EEE))
       
  2142 		return -EOPNOTSUPP;
       
  2143 
       
  2144 	switch (hw->phy.type) {
       
  2145 	case e1000_phy_82579:
       
  2146 		cap_addr = I82579_EEE_CAPABILITY;
       
  2147 		lpa_addr = I82579_EEE_LP_ABILITY;
       
  2148 		pcs_stat_addr = I82579_EEE_PCS_STATUS;
       
  2149 		break;
       
  2150 	case e1000_phy_i217:
       
  2151 		cap_addr = I217_EEE_CAPABILITY;
       
  2152 		lpa_addr = I217_EEE_LP_ABILITY;
       
  2153 		pcs_stat_addr = I217_EEE_PCS_STATUS;
       
  2154 		break;
       
  2155 	default:
       
  2156 		return -EOPNOTSUPP;
       
  2157 	}
       
  2158 
       
  2159 	pm_runtime_get_sync(netdev->dev.parent);
       
  2160 
       
  2161 	ret_val = hw->phy.ops.acquire(hw);
       
  2162 	if (ret_val) {
       
  2163 		pm_runtime_put_sync(netdev->dev.parent);
       
  2164 		return -EBUSY;
       
  2165 	}
       
  2166 
       
  2167 	/* EEE Capability */
       
  2168 	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
       
  2169 	if (ret_val)
       
  2170 		goto release;
       
  2171 	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
       
  2172 
       
  2173 	/* EEE Advertised */
       
  2174 	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
       
  2175 
       
  2176 	/* EEE Link Partner Advertised */
       
  2177 	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
       
  2178 	if (ret_val)
       
  2179 		goto release;
       
  2180 	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
       
  2181 
       
  2182 	/* EEE PCS Status */
       
  2183 	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
       
  2184 	if (ret_val)
       
  2185 		goto release;
       
  2186 	if (hw->phy.type == e1000_phy_82579)
       
  2187 		phy_data <<= 8;
       
  2188 
       
  2189 	/* Result of the EEE auto negotiation - there is no register that
       
  2190 	 * has the status of the EEE negotiation so do a best-guess based
       
  2191 	 * on whether Tx or Rx LPI indications have been received.
       
  2192 	 */
       
  2193 	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
       
  2194 		edata->eee_active = true;
       
  2195 
       
  2196 	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
       
  2197 	edata->tx_lpi_enabled = true;
       
  2198 	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
       
  2199 
       
  2200 release:
       
  2201 	hw->phy.ops.release(hw);
       
  2202 	if (ret_val)
       
  2203 		ret_val = -ENODATA;
       
  2204 
       
  2205 	pm_runtime_put_sync(netdev->dev.parent);
       
  2206 
       
  2207 	return ret_val;
       
  2208 }
       
  2209 
       
  2210 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
       
  2211 {
       
  2212 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2213 	struct e1000_hw *hw = &adapter->hw;
       
  2214 	struct ethtool_eee eee_curr;
       
  2215 	s32 ret_val;
       
  2216 
       
  2217 	ret_val = e1000e_get_eee(netdev, &eee_curr);
       
  2218 	if (ret_val)
       
  2219 		return ret_val;
       
  2220 
       
  2221 	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
       
  2222 		e_err("Setting EEE tx-lpi is not supported\n");
       
  2223 		return -EINVAL;
       
  2224 	}
       
  2225 
       
  2226 	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
       
  2227 		e_err("Setting EEE Tx LPI timer is not supported\n");
       
  2228 		return -EINVAL;
       
  2229 	}
       
  2230 
       
  2231 	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
       
  2232 		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
       
  2233 		return -EINVAL;
       
  2234 	}
       
  2235 
       
  2236 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
       
  2237 
       
  2238 	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
       
  2239 
       
  2240 	pm_runtime_get_sync(netdev->dev.parent);
       
  2241 
       
  2242 	/* reset the link */
       
  2243 	if (netif_running(netdev))
       
  2244 		e1000e_reinit_locked(adapter);
       
  2245 	else
       
  2246 		e1000e_reset(adapter);
       
  2247 
       
  2248 	pm_runtime_put_sync(netdev->dev.parent);
       
  2249 
       
  2250 	return 0;
       
  2251 }
       
  2252 
       
  2253 static int e1000e_get_ts_info(struct net_device *netdev,
       
  2254 			      struct ethtool_ts_info *info)
       
  2255 {
       
  2256 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2257 
       
  2258 	ethtool_op_get_ts_info(netdev, info);
       
  2259 
       
  2260 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
       
  2261 		return 0;
       
  2262 
       
  2263 	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
       
  2264 				  SOF_TIMESTAMPING_RX_HARDWARE |
       
  2265 				  SOF_TIMESTAMPING_RAW_HARDWARE);
       
  2266 
       
  2267 	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
       
  2268 
       
  2269 	info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
       
  2270 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
       
  2271 			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
       
  2272 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
       
  2273 			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
       
  2274 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
       
  2275 			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
       
  2276 			    (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
       
  2277 			    (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
       
  2278 			    (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
       
  2279 			    (1 << HWTSTAMP_FILTER_ALL));
       
  2280 
       
  2281 	if (adapter->ptp_clock)
       
  2282 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
       
  2283 
       
  2284 	return 0;
       
  2285 }
       
  2286 
       
  2287 static const struct ethtool_ops e1000_ethtool_ops = {
       
  2288 	.get_settings		= e1000_get_settings,
       
  2289 	.set_settings		= e1000_set_settings,
       
  2290 	.get_drvinfo		= e1000_get_drvinfo,
       
  2291 	.get_regs_len		= e1000_get_regs_len,
       
  2292 	.get_regs		= e1000_get_regs,
       
  2293 	.get_wol		= e1000_get_wol,
       
  2294 	.set_wol		= e1000_set_wol,
       
  2295 	.get_msglevel		= e1000_get_msglevel,
       
  2296 	.set_msglevel		= e1000_set_msglevel,
       
  2297 	.nway_reset		= e1000_nway_reset,
       
  2298 	.get_link		= ethtool_op_get_link,
       
  2299 	.get_eeprom_len		= e1000_get_eeprom_len,
       
  2300 	.get_eeprom		= e1000_get_eeprom,
       
  2301 	.set_eeprom		= e1000_set_eeprom,
       
  2302 	.get_ringparam		= e1000_get_ringparam,
       
  2303 	.set_ringparam		= e1000_set_ringparam,
       
  2304 	.get_pauseparam		= e1000_get_pauseparam,
       
  2305 	.set_pauseparam		= e1000_set_pauseparam,
       
  2306 	.self_test		= e1000_diag_test,
       
  2307 	.get_strings		= e1000_get_strings,
       
  2308 	.set_phys_id		= e1000_set_phys_id,
       
  2309 	.get_ethtool_stats	= e1000_get_ethtool_stats,
       
  2310 	.get_sset_count		= e1000e_get_sset_count,
       
  2311 	.get_coalesce		= e1000_get_coalesce,
       
  2312 	.set_coalesce		= e1000_set_coalesce,
       
  2313 	.get_rxnfc		= e1000_get_rxnfc,
       
  2314 	.get_ts_info		= e1000e_get_ts_info,
       
  2315 	.get_eee		= e1000e_get_eee,
       
  2316 	.set_eee		= e1000e_set_eee,
       
  2317 };
       
  2318 
       
  2319 void e1000e_set_ethtool_ops(struct net_device *netdev)
       
  2320 {
       
  2321 	netdev->ethtool_ops = &e1000_ethtool_ops;
       
  2322 }