devices/e1000e/80003es2lan-3.16-orig.c
branchstable-1.5
changeset 2588 792892ab4806
equal deleted inserted replaced
2587:afd76ee3aa87 2588:792892ab4806
       
     1 /* Intel PRO/1000 Linux driver
       
     2  * Copyright(c) 1999 - 2014 Intel Corporation.
       
     3  *
       
     4  * This program is free software; you can redistribute it and/or modify it
       
     5  * under the terms and conditions of the GNU General Public License,
       
     6  * version 2, as published by the Free Software Foundation.
       
     7  *
       
     8  * This program is distributed in the hope it will be useful, but WITHOUT
       
     9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    11  * more details.
       
    12  *
       
    13  * The full GNU General Public License is included in this distribution in
       
    14  * the file called "COPYING".
       
    15  *
       
    16  * Contact Information:
       
    17  * Linux NICS <linux.nics@intel.com>
       
    18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    20  */
       
    21 
       
    22 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
       
    23  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
       
    24  */
       
    25 
       
    26 #include "e1000.h"
       
    27 
       
    28 /* A table for the GG82563 cable length where the range is defined
       
    29  * with a lower bound at "index" and the upper bound at
       
    30  * "index + 5".
       
    31  */
       
    32 static const u16 e1000_gg82563_cable_length_table[] = {
       
    33 	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
       
    34 };
       
    35 
       
    36 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
       
    37 		ARRAY_SIZE(e1000_gg82563_cable_length_table)
       
    38 
       
    39 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
       
    40 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
       
    41 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
       
    42 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
       
    43 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
       
    44 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
       
    45 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
       
    46 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
       
    47 					   u16 *data);
       
    48 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
       
    49 					    u16 data);
       
    50 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
       
    51 
       
    52 /**
       
    53  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
       
    54  *  @hw: pointer to the HW structure
       
    55  **/
       
    56 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
       
    57 {
       
    58 	struct e1000_phy_info *phy = &hw->phy;
       
    59 	s32 ret_val;
       
    60 
       
    61 	if (hw->phy.media_type != e1000_media_type_copper) {
       
    62 		phy->type = e1000_phy_none;
       
    63 		return 0;
       
    64 	} else {
       
    65 		phy->ops.power_up = e1000_power_up_phy_copper;
       
    66 		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
       
    67 	}
       
    68 
       
    69 	phy->addr = 1;
       
    70 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
    71 	phy->reset_delay_us = 100;
       
    72 	phy->type = e1000_phy_gg82563;
       
    73 
       
    74 	/* This can only be done after all function pointers are setup. */
       
    75 	ret_val = e1000e_get_phy_id(hw);
       
    76 
       
    77 	/* Verify phy id */
       
    78 	if (phy->id != GG82563_E_PHY_ID)
       
    79 		return -E1000_ERR_PHY;
       
    80 
       
    81 	return ret_val;
       
    82 }
       
    83 
       
    84 /**
       
    85  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
       
    86  *  @hw: pointer to the HW structure
       
    87  **/
       
    88 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
       
    89 {
       
    90 	struct e1000_nvm_info *nvm = &hw->nvm;
       
    91 	u32 eecd = er32(EECD);
       
    92 	u16 size;
       
    93 
       
    94 	nvm->opcode_bits = 8;
       
    95 	nvm->delay_usec = 1;
       
    96 	switch (nvm->override) {
       
    97 	case e1000_nvm_override_spi_large:
       
    98 		nvm->page_size = 32;
       
    99 		nvm->address_bits = 16;
       
   100 		break;
       
   101 	case e1000_nvm_override_spi_small:
       
   102 		nvm->page_size = 8;
       
   103 		nvm->address_bits = 8;
       
   104 		break;
       
   105 	default:
       
   106 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
       
   107 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
       
   108 		break;
       
   109 	}
       
   110 
       
   111 	nvm->type = e1000_nvm_eeprom_spi;
       
   112 
       
   113 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
       
   114 		     E1000_EECD_SIZE_EX_SHIFT);
       
   115 
       
   116 	/* Added to a constant, "size" becomes the left-shift value
       
   117 	 * for setting word_size.
       
   118 	 */
       
   119 	size += NVM_WORD_SIZE_BASE_SHIFT;
       
   120 
       
   121 	/* EEPROM access above 16k is unsupported */
       
   122 	if (size > 14)
       
   123 		size = 14;
       
   124 	nvm->word_size = 1 << size;
       
   125 
       
   126 	return 0;
       
   127 }
       
   128 
       
   129 /**
       
   130  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
       
   131  *  @hw: pointer to the HW structure
       
   132  **/
       
   133 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
       
   134 {
       
   135 	struct e1000_mac_info *mac = &hw->mac;
       
   136 
       
   137 	/* Set media type and media-dependent function pointers */
       
   138 	switch (hw->adapter->pdev->device) {
       
   139 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
       
   140 		hw->phy.media_type = e1000_media_type_internal_serdes;
       
   141 		mac->ops.check_for_link = e1000e_check_for_serdes_link;
       
   142 		mac->ops.setup_physical_interface =
       
   143 		    e1000e_setup_fiber_serdes_link;
       
   144 		break;
       
   145 	default:
       
   146 		hw->phy.media_type = e1000_media_type_copper;
       
   147 		mac->ops.check_for_link = e1000e_check_for_copper_link;
       
   148 		mac->ops.setup_physical_interface =
       
   149 		    e1000_setup_copper_link_80003es2lan;
       
   150 		break;
       
   151 	}
       
   152 
       
   153 	/* Set mta register count */
       
   154 	mac->mta_reg_count = 128;
       
   155 	/* Set rar entry count */
       
   156 	mac->rar_entry_count = E1000_RAR_ENTRIES;
       
   157 	/* FWSM register */
       
   158 	mac->has_fwsm = true;
       
   159 	/* ARC supported; valid only if manageability features are enabled. */
       
   160 	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
       
   161 	/* Adaptive IFS not supported */
       
   162 	mac->adaptive_ifs = false;
       
   163 
       
   164 	/* set lan id for port to determine which phy lock to use */
       
   165 	hw->mac.ops.set_lan_id(hw);
       
   166 
       
   167 	return 0;
       
   168 }
       
   169 
       
   170 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
       
   171 {
       
   172 	struct e1000_hw *hw = &adapter->hw;
       
   173 	s32 rc;
       
   174 
       
   175 	rc = e1000_init_mac_params_80003es2lan(hw);
       
   176 	if (rc)
       
   177 		return rc;
       
   178 
       
   179 	rc = e1000_init_nvm_params_80003es2lan(hw);
       
   180 	if (rc)
       
   181 		return rc;
       
   182 
       
   183 	rc = e1000_init_phy_params_80003es2lan(hw);
       
   184 	if (rc)
       
   185 		return rc;
       
   186 
       
   187 	return 0;
       
   188 }
       
   189 
       
   190 /**
       
   191  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
       
   192  *  @hw: pointer to the HW structure
       
   193  *
       
   194  *  A wrapper to acquire access rights to the correct PHY.
       
   195  **/
       
   196 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
       
   197 {
       
   198 	u16 mask;
       
   199 
       
   200 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
       
   201 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
       
   202 }
       
   203 
       
   204 /**
       
   205  *  e1000_release_phy_80003es2lan - Release rights to access PHY
       
   206  *  @hw: pointer to the HW structure
       
   207  *
       
   208  *  A wrapper to release access rights to the correct PHY.
       
   209  **/
       
   210 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
       
   211 {
       
   212 	u16 mask;
       
   213 
       
   214 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
       
   215 	e1000_release_swfw_sync_80003es2lan(hw, mask);
       
   216 }
       
   217 
       
   218 /**
       
   219  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
       
   220  *  @hw: pointer to the HW structure
       
   221  *
       
   222  *  Acquire the semaphore to access the Kumeran interface.
       
   223  *
       
   224  **/
       
   225 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
       
   226 {
       
   227 	u16 mask;
       
   228 
       
   229 	mask = E1000_SWFW_CSR_SM;
       
   230 
       
   231 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
       
   232 }
       
   233 
       
   234 /**
       
   235  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
       
   236  *  @hw: pointer to the HW structure
       
   237  *
       
   238  *  Release the semaphore used to access the Kumeran interface
       
   239  **/
       
   240 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
       
   241 {
       
   242 	u16 mask;
       
   243 
       
   244 	mask = E1000_SWFW_CSR_SM;
       
   245 
       
   246 	e1000_release_swfw_sync_80003es2lan(hw, mask);
       
   247 }
       
   248 
       
   249 /**
       
   250  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
       
   251  *  @hw: pointer to the HW structure
       
   252  *
       
   253  *  Acquire the semaphore to access the EEPROM.
       
   254  **/
       
   255 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
       
   256 {
       
   257 	s32 ret_val;
       
   258 
       
   259 	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
       
   260 	if (ret_val)
       
   261 		return ret_val;
       
   262 
       
   263 	ret_val = e1000e_acquire_nvm(hw);
       
   264 
       
   265 	if (ret_val)
       
   266 		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
       
   267 
       
   268 	return ret_val;
       
   269 }
       
   270 
       
   271 /**
       
   272  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
       
   273  *  @hw: pointer to the HW structure
       
   274  *
       
   275  *  Release the semaphore used to access the EEPROM.
       
   276  **/
       
   277 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
       
   278 {
       
   279 	e1000e_release_nvm(hw);
       
   280 	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
       
   281 }
       
   282 
       
   283 /**
       
   284  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
       
   285  *  @hw: pointer to the HW structure
       
   286  *  @mask: specifies which semaphore to acquire
       
   287  *
       
   288  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
       
   289  *  will also specify which port we're acquiring the lock for.
       
   290  **/
       
   291 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
       
   292 {
       
   293 	u32 swfw_sync;
       
   294 	u32 swmask = mask;
       
   295 	u32 fwmask = mask << 16;
       
   296 	s32 i = 0;
       
   297 	s32 timeout = 50;
       
   298 
       
   299 	while (i < timeout) {
       
   300 		if (e1000e_get_hw_semaphore(hw))
       
   301 			return -E1000_ERR_SWFW_SYNC;
       
   302 
       
   303 		swfw_sync = er32(SW_FW_SYNC);
       
   304 		if (!(swfw_sync & (fwmask | swmask)))
       
   305 			break;
       
   306 
       
   307 		/* Firmware currently using resource (fwmask)
       
   308 		 * or other software thread using resource (swmask)
       
   309 		 */
       
   310 		e1000e_put_hw_semaphore(hw);
       
   311 		mdelay(5);
       
   312 		i++;
       
   313 	}
       
   314 
       
   315 	if (i == timeout) {
       
   316 		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
       
   317 		return -E1000_ERR_SWFW_SYNC;
       
   318 	}
       
   319 
       
   320 	swfw_sync |= swmask;
       
   321 	ew32(SW_FW_SYNC, swfw_sync);
       
   322 
       
   323 	e1000e_put_hw_semaphore(hw);
       
   324 
       
   325 	return 0;
       
   326 }
       
   327 
       
   328 /**
       
   329  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
       
   330  *  @hw: pointer to the HW structure
       
   331  *  @mask: specifies which semaphore to acquire
       
   332  *
       
   333  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
       
   334  *  will also specify which port we're releasing the lock for.
       
   335  **/
       
   336 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
       
   337 {
       
   338 	u32 swfw_sync;
       
   339 
       
   340 	while (e1000e_get_hw_semaphore(hw) != 0)
       
   341 		; /* Empty */
       
   342 
       
   343 	swfw_sync = er32(SW_FW_SYNC);
       
   344 	swfw_sync &= ~mask;
       
   345 	ew32(SW_FW_SYNC, swfw_sync);
       
   346 
       
   347 	e1000e_put_hw_semaphore(hw);
       
   348 }
       
   349 
       
   350 /**
       
   351  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
       
   352  *  @hw: pointer to the HW structure
       
   353  *  @offset: offset of the register to read
       
   354  *  @data: pointer to the data returned from the operation
       
   355  *
       
   356  *  Read the GG82563 PHY register.
       
   357  **/
       
   358 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
       
   359 						  u32 offset, u16 *data)
       
   360 {
       
   361 	s32 ret_val;
       
   362 	u32 page_select;
       
   363 	u16 temp;
       
   364 
       
   365 	ret_val = e1000_acquire_phy_80003es2lan(hw);
       
   366 	if (ret_val)
       
   367 		return ret_val;
       
   368 
       
   369 	/* Select Configuration Page */
       
   370 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
       
   371 		page_select = GG82563_PHY_PAGE_SELECT;
       
   372 	} else {
       
   373 		/* Use Alternative Page Select register to access
       
   374 		 * registers 30 and 31
       
   375 		 */
       
   376 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
       
   377 	}
       
   378 
       
   379 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
       
   380 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
       
   381 	if (ret_val) {
       
   382 		e1000_release_phy_80003es2lan(hw);
       
   383 		return ret_val;
       
   384 	}
       
   385 
       
   386 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
       
   387 		/* The "ready" bit in the MDIC register may be incorrectly set
       
   388 		 * before the device has completed the "Page Select" MDI
       
   389 		 * transaction.  So we wait 200us after each MDI command...
       
   390 		 */
       
   391 		usleep_range(200, 400);
       
   392 
       
   393 		/* ...and verify the command was successful. */
       
   394 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
       
   395 
       
   396 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
       
   397 			e1000_release_phy_80003es2lan(hw);
       
   398 			return -E1000_ERR_PHY;
       
   399 		}
       
   400 
       
   401 		usleep_range(200, 400);
       
   402 
       
   403 		ret_val = e1000e_read_phy_reg_mdic(hw,
       
   404 						   MAX_PHY_REG_ADDRESS & offset,
       
   405 						   data);
       
   406 
       
   407 		usleep_range(200, 400);
       
   408 	} else {
       
   409 		ret_val = e1000e_read_phy_reg_mdic(hw,
       
   410 						   MAX_PHY_REG_ADDRESS & offset,
       
   411 						   data);
       
   412 	}
       
   413 
       
   414 	e1000_release_phy_80003es2lan(hw);
       
   415 
       
   416 	return ret_val;
       
   417 }
       
   418 
       
   419 /**
       
   420  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
       
   421  *  @hw: pointer to the HW structure
       
   422  *  @offset: offset of the register to read
       
   423  *  @data: value to write to the register
       
   424  *
       
   425  *  Write to the GG82563 PHY register.
       
   426  **/
       
   427 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
       
   428 						   u32 offset, u16 data)
       
   429 {
       
   430 	s32 ret_val;
       
   431 	u32 page_select;
       
   432 	u16 temp;
       
   433 
       
   434 	ret_val = e1000_acquire_phy_80003es2lan(hw);
       
   435 	if (ret_val)
       
   436 		return ret_val;
       
   437 
       
   438 	/* Select Configuration Page */
       
   439 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
       
   440 		page_select = GG82563_PHY_PAGE_SELECT;
       
   441 	} else {
       
   442 		/* Use Alternative Page Select register to access
       
   443 		 * registers 30 and 31
       
   444 		 */
       
   445 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
       
   446 	}
       
   447 
       
   448 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
       
   449 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
       
   450 	if (ret_val) {
       
   451 		e1000_release_phy_80003es2lan(hw);
       
   452 		return ret_val;
       
   453 	}
       
   454 
       
   455 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
       
   456 		/* The "ready" bit in the MDIC register may be incorrectly set
       
   457 		 * before the device has completed the "Page Select" MDI
       
   458 		 * transaction.  So we wait 200us after each MDI command...
       
   459 		 */
       
   460 		usleep_range(200, 400);
       
   461 
       
   462 		/* ...and verify the command was successful. */
       
   463 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
       
   464 
       
   465 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
       
   466 			e1000_release_phy_80003es2lan(hw);
       
   467 			return -E1000_ERR_PHY;
       
   468 		}
       
   469 
       
   470 		usleep_range(200, 400);
       
   471 
       
   472 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   473 						    MAX_PHY_REG_ADDRESS &
       
   474 						    offset, data);
       
   475 
       
   476 		usleep_range(200, 400);
       
   477 	} else {
       
   478 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   479 						    MAX_PHY_REG_ADDRESS &
       
   480 						    offset, data);
       
   481 	}
       
   482 
       
   483 	e1000_release_phy_80003es2lan(hw);
       
   484 
       
   485 	return ret_val;
       
   486 }
       
   487 
       
   488 /**
       
   489  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
       
   490  *  @hw: pointer to the HW structure
       
   491  *  @offset: offset of the register to read
       
   492  *  @words: number of words to write
       
   493  *  @data: buffer of data to write to the NVM
       
   494  *
       
   495  *  Write "words" of data to the ESB2 NVM.
       
   496  **/
       
   497 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
       
   498 				       u16 words, u16 *data)
       
   499 {
       
   500 	return e1000e_write_nvm_spi(hw, offset, words, data);
       
   501 }
       
   502 
       
   503 /**
       
   504  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
       
   505  *  @hw: pointer to the HW structure
       
   506  *
       
   507  *  Wait a specific amount of time for manageability processes to complete.
       
   508  *  This is a function pointer entry point called by the phy module.
       
   509  **/
       
   510 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
       
   511 {
       
   512 	s32 timeout = PHY_CFG_TIMEOUT;
       
   513 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
       
   514 
       
   515 	if (hw->bus.func == 1)
       
   516 		mask = E1000_NVM_CFG_DONE_PORT_1;
       
   517 
       
   518 	while (timeout) {
       
   519 		if (er32(EEMNGCTL) & mask)
       
   520 			break;
       
   521 		usleep_range(1000, 2000);
       
   522 		timeout--;
       
   523 	}
       
   524 	if (!timeout) {
       
   525 		e_dbg("MNG configuration cycle has not completed.\n");
       
   526 		return -E1000_ERR_RESET;
       
   527 	}
       
   528 
       
   529 	return 0;
       
   530 }
       
   531 
       
   532 /**
       
   533  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
       
   534  *  @hw: pointer to the HW structure
       
   535  *
       
   536  *  Force the speed and duplex settings onto the PHY.  This is a
       
   537  *  function pointer entry point called by the phy module.
       
   538  **/
       
   539 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
       
   540 {
       
   541 	s32 ret_val;
       
   542 	u16 phy_data;
       
   543 	bool link;
       
   544 
       
   545 	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
       
   546 	 * forced whenever speed and duplex are forced.
       
   547 	 */
       
   548 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   549 	if (ret_val)
       
   550 		return ret_val;
       
   551 
       
   552 	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
       
   553 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
       
   554 	if (ret_val)
       
   555 		return ret_val;
       
   556 
       
   557 	e_dbg("GG82563 PSCR: %X\n", phy_data);
       
   558 
       
   559 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
       
   560 	if (ret_val)
       
   561 		return ret_val;
       
   562 
       
   563 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
   564 
       
   565 	/* Reset the phy to commit changes. */
       
   566 	phy_data |= BMCR_RESET;
       
   567 
       
   568 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
       
   569 	if (ret_val)
       
   570 		return ret_val;
       
   571 
       
   572 	udelay(1);
       
   573 
       
   574 	if (hw->phy.autoneg_wait_to_complete) {
       
   575 		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
       
   576 
       
   577 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
   578 						      100000, &link);
       
   579 		if (ret_val)
       
   580 			return ret_val;
       
   581 
       
   582 		if (!link) {
       
   583 			/* We didn't get link.
       
   584 			 * Reset the DSP and cross our fingers.
       
   585 			 */
       
   586 			ret_val = e1000e_phy_reset_dsp(hw);
       
   587 			if (ret_val)
       
   588 				return ret_val;
       
   589 		}
       
   590 
       
   591 		/* Try once more */
       
   592 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
   593 						      100000, &link);
       
   594 		if (ret_val)
       
   595 			return ret_val;
       
   596 	}
       
   597 
       
   598 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
       
   599 	if (ret_val)
       
   600 		return ret_val;
       
   601 
       
   602 	/* Resetting the phy means we need to verify the TX_CLK corresponds
       
   603 	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
       
   604 	 */
       
   605 	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
       
   606 	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
       
   607 		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
       
   608 	else
       
   609 		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
       
   610 
       
   611 	/* In addition, we must re-enable CRS on Tx for both half and full
       
   612 	 * duplex.
       
   613 	 */
       
   614 	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
       
   615 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
       
   616 
       
   617 	return ret_val;
       
   618 }
       
   619 
       
   620 /**
       
   621  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
       
   622  *  @hw: pointer to the HW structure
       
   623  *
       
   624  *  Find the approximate cable length as measured by the GG82563 PHY.
       
   625  *  This is a function pointer entry point called by the phy module.
       
   626  **/
       
   627 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
       
   628 {
       
   629 	struct e1000_phy_info *phy = &hw->phy;
       
   630 	s32 ret_val;
       
   631 	u16 phy_data, index;
       
   632 
       
   633 	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
       
   634 	if (ret_val)
       
   635 		return ret_val;
       
   636 
       
   637 	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
       
   638 
       
   639 	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
       
   640 		return -E1000_ERR_PHY;
       
   641 
       
   642 	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
       
   643 	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
       
   644 
       
   645 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
   646 
       
   647 	return 0;
       
   648 }
       
   649 
       
   650 /**
       
   651  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
       
   652  *  @hw: pointer to the HW structure
       
   653  *  @speed: pointer to speed buffer
       
   654  *  @duplex: pointer to duplex buffer
       
   655  *
       
   656  *  Retrieve the current speed and duplex configuration.
       
   657  **/
       
   658 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
       
   659 					      u16 *duplex)
       
   660 {
       
   661 	s32 ret_val;
       
   662 
       
   663 	if (hw->phy.media_type == e1000_media_type_copper) {
       
   664 		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
       
   665 		hw->phy.ops.cfg_on_link_up(hw);
       
   666 	} else {
       
   667 		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
       
   668 								   speed,
       
   669 								   duplex);
       
   670 	}
       
   671 
       
   672 	return ret_val;
       
   673 }
       
   674 
       
   675 /**
       
   676  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
       
   677  *  @hw: pointer to the HW structure
       
   678  *
       
   679  *  Perform a global reset to the ESB2 controller.
       
   680  **/
       
   681 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
       
   682 {
       
   683 	u32 ctrl;
       
   684 	s32 ret_val;
       
   685 	u16 kum_reg_data;
       
   686 
       
   687 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
       
   688 	 * on the last TLP read/write transaction when MAC is reset.
       
   689 	 */
       
   690 	ret_val = e1000e_disable_pcie_master(hw);
       
   691 	if (ret_val)
       
   692 		e_dbg("PCI-E Master disable polling has failed.\n");
       
   693 
       
   694 	e_dbg("Masking off all interrupts\n");
       
   695 	ew32(IMC, 0xffffffff);
       
   696 
       
   697 	ew32(RCTL, 0);
       
   698 	ew32(TCTL, E1000_TCTL_PSP);
       
   699 	e1e_flush();
       
   700 
       
   701 	usleep_range(10000, 20000);
       
   702 
       
   703 	ctrl = er32(CTRL);
       
   704 
       
   705 	ret_val = e1000_acquire_phy_80003es2lan(hw);
       
   706 	if (ret_val)
       
   707 		return ret_val;
       
   708 
       
   709 	e_dbg("Issuing a global reset to MAC\n");
       
   710 	ew32(CTRL, ctrl | E1000_CTRL_RST);
       
   711 	e1000_release_phy_80003es2lan(hw);
       
   712 
       
   713 	/* Disable IBIST slave mode (far-end loopback) */
       
   714 	ret_val =
       
   715 	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
   716 					    &kum_reg_data);
       
   717 	if (ret_val)
       
   718 		return ret_val;
       
   719 	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
       
   720 	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
   721 					 kum_reg_data);
       
   722 
       
   723 	ret_val = e1000e_get_auto_rd_done(hw);
       
   724 	if (ret_val)
       
   725 		/* We don't want to continue accessing MAC registers. */
       
   726 		return ret_val;
       
   727 
       
   728 	/* Clear any pending interrupt events. */
       
   729 	ew32(IMC, 0xffffffff);
       
   730 	er32(ICR);
       
   731 
       
   732 	return e1000_check_alt_mac_addr_generic(hw);
       
   733 }
       
   734 
       
   735 /**
       
   736  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
       
   737  *  @hw: pointer to the HW structure
       
   738  *
       
   739  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
       
   740  **/
       
   741 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
       
   742 {
       
   743 	struct e1000_mac_info *mac = &hw->mac;
       
   744 	u32 reg_data;
       
   745 	s32 ret_val;
       
   746 	u16 kum_reg_data;
       
   747 	u16 i;
       
   748 
       
   749 	e1000_initialize_hw_bits_80003es2lan(hw);
       
   750 
       
   751 	/* Initialize identification LED */
       
   752 	ret_val = mac->ops.id_led_init(hw);
       
   753 	/* An error is not fatal and we should not stop init due to this */
       
   754 	if (ret_val)
       
   755 		e_dbg("Error initializing identification LED\n");
       
   756 
       
   757 	/* Disabling VLAN filtering */
       
   758 	e_dbg("Initializing the IEEE VLAN\n");
       
   759 	mac->ops.clear_vfta(hw);
       
   760 
       
   761 	/* Setup the receive address. */
       
   762 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
       
   763 
       
   764 	/* Zero out the Multicast HASH table */
       
   765 	e_dbg("Zeroing the MTA\n");
       
   766 	for (i = 0; i < mac->mta_reg_count; i++)
       
   767 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
       
   768 
       
   769 	/* Setup link and flow control */
       
   770 	ret_val = mac->ops.setup_link(hw);
       
   771 	if (ret_val)
       
   772 		return ret_val;
       
   773 
       
   774 	/* Disable IBIST slave mode (far-end loopback) */
       
   775 	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
   776 					&kum_reg_data);
       
   777 	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
       
   778 	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
   779 					 kum_reg_data);
       
   780 
       
   781 	/* Set the transmit descriptor write-back policy */
       
   782 	reg_data = er32(TXDCTL(0));
       
   783 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
       
   784 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
       
   785 	ew32(TXDCTL(0), reg_data);
       
   786 
       
   787 	/* ...for both queues. */
       
   788 	reg_data = er32(TXDCTL(1));
       
   789 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
       
   790 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
       
   791 	ew32(TXDCTL(1), reg_data);
       
   792 
       
   793 	/* Enable retransmit on late collisions */
       
   794 	reg_data = er32(TCTL);
       
   795 	reg_data |= E1000_TCTL_RTLC;
       
   796 	ew32(TCTL, reg_data);
       
   797 
       
   798 	/* Configure Gigabit Carry Extend Padding */
       
   799 	reg_data = er32(TCTL_EXT);
       
   800 	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
       
   801 	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
       
   802 	ew32(TCTL_EXT, reg_data);
       
   803 
       
   804 	/* Configure Transmit Inter-Packet Gap */
       
   805 	reg_data = er32(TIPG);
       
   806 	reg_data &= ~E1000_TIPG_IPGT_MASK;
       
   807 	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
       
   808 	ew32(TIPG, reg_data);
       
   809 
       
   810 	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
       
   811 	reg_data &= ~0x00100000;
       
   812 	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
       
   813 
       
   814 	/* default to true to enable the MDIC W/A */
       
   815 	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
       
   816 
       
   817 	ret_val =
       
   818 	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
       
   819 					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
       
   820 	if (!ret_val) {
       
   821 		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
       
   822 		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
       
   823 			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
       
   824 	}
       
   825 
       
   826 	/* Clear all of the statistics registers (clear on read).  It is
       
   827 	 * important that we do this after we have tried to establish link
       
   828 	 * because the symbol error count will increment wildly if there
       
   829 	 * is no link.
       
   830 	 */
       
   831 	e1000_clear_hw_cntrs_80003es2lan(hw);
       
   832 
       
   833 	return ret_val;
       
   834 }
       
   835 
       
   836 /**
       
   837  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
       
   838  *  @hw: pointer to the HW structure
       
   839  *
       
   840  *  Initializes required hardware-dependent bits needed for normal operation.
       
   841  **/
       
   842 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
       
   843 {
       
   844 	u32 reg;
       
   845 
       
   846 	/* Transmit Descriptor Control 0 */
       
   847 	reg = er32(TXDCTL(0));
       
   848 	reg |= (1 << 22);
       
   849 	ew32(TXDCTL(0), reg);
       
   850 
       
   851 	/* Transmit Descriptor Control 1 */
       
   852 	reg = er32(TXDCTL(1));
       
   853 	reg |= (1 << 22);
       
   854 	ew32(TXDCTL(1), reg);
       
   855 
       
   856 	/* Transmit Arbitration Control 0 */
       
   857 	reg = er32(TARC(0));
       
   858 	reg &= ~(0xF << 27);	/* 30:27 */
       
   859 	if (hw->phy.media_type != e1000_media_type_copper)
       
   860 		reg &= ~(1 << 20);
       
   861 	ew32(TARC(0), reg);
       
   862 
       
   863 	/* Transmit Arbitration Control 1 */
       
   864 	reg = er32(TARC(1));
       
   865 	if (er32(TCTL) & E1000_TCTL_MULR)
       
   866 		reg &= ~(1 << 28);
       
   867 	else
       
   868 		reg |= (1 << 28);
       
   869 	ew32(TARC(1), reg);
       
   870 
       
   871 	/* Disable IPv6 extension header parsing because some malformed
       
   872 	 * IPv6 headers can hang the Rx.
       
   873 	 */
       
   874 	reg = er32(RFCTL);
       
   875 	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
       
   876 	ew32(RFCTL, reg);
       
   877 }
       
   878 
       
   879 /**
       
   880  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
       
   881  *  @hw: pointer to the HW structure
       
   882  *
       
   883  *  Setup some GG82563 PHY registers for obtaining link
       
   884  **/
       
   885 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
       
   886 {
       
   887 	struct e1000_phy_info *phy = &hw->phy;
       
   888 	s32 ret_val;
       
   889 	u32 reg;
       
   890 	u16 data;
       
   891 
       
   892 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
       
   893 	if (ret_val)
       
   894 		return ret_val;
       
   895 
       
   896 	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
       
   897 	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
       
   898 	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
       
   899 
       
   900 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
       
   901 	if (ret_val)
       
   902 		return ret_val;
       
   903 
       
   904 	/* Options:
       
   905 	 *   MDI/MDI-X = 0 (default)
       
   906 	 *   0 - Auto for all speeds
       
   907 	 *   1 - MDI mode
       
   908 	 *   2 - MDI-X mode
       
   909 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
   910 	 */
       
   911 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
       
   912 	if (ret_val)
       
   913 		return ret_val;
       
   914 
       
   915 	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
       
   916 
       
   917 	switch (phy->mdix) {
       
   918 	case 1:
       
   919 		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
       
   920 		break;
       
   921 	case 2:
       
   922 		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
       
   923 		break;
       
   924 	case 0:
       
   925 	default:
       
   926 		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
       
   927 		break;
       
   928 	}
       
   929 
       
   930 	/* Options:
       
   931 	 *   disable_polarity_correction = 0 (default)
       
   932 	 *       Automatic Correction for Reversed Cable Polarity
       
   933 	 *   0 - Disabled
       
   934 	 *   1 - Enabled
       
   935 	 */
       
   936 	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
       
   937 	if (phy->disable_polarity_correction)
       
   938 		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
       
   939 
       
   940 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
       
   941 	if (ret_val)
       
   942 		return ret_val;
       
   943 
       
   944 	/* SW Reset the PHY so all changes take effect */
       
   945 	ret_val = hw->phy.ops.commit(hw);
       
   946 	if (ret_val) {
       
   947 		e_dbg("Error Resetting the PHY\n");
       
   948 		return ret_val;
       
   949 	}
       
   950 
       
   951 	/* Bypass Rx and Tx FIFO's */
       
   952 	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
       
   953 	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
       
   954 		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
       
   955 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
       
   956 	if (ret_val)
       
   957 		return ret_val;
       
   958 
       
   959 	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
       
   960 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
       
   961 	if (ret_val)
       
   962 		return ret_val;
       
   963 	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
       
   964 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
       
   965 	if (ret_val)
       
   966 		return ret_val;
       
   967 
       
   968 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
       
   969 	if (ret_val)
       
   970 		return ret_val;
       
   971 
       
   972 	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
       
   973 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
       
   974 	if (ret_val)
       
   975 		return ret_val;
       
   976 
       
   977 	reg = er32(CTRL_EXT);
       
   978 	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
       
   979 	ew32(CTRL_EXT, reg);
       
   980 
       
   981 	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
       
   982 	if (ret_val)
       
   983 		return ret_val;
       
   984 
       
   985 	/* Do not init these registers when the HW is in IAMT mode, since the
       
   986 	 * firmware will have already initialized them.  We only initialize
       
   987 	 * them if the HW is not in IAMT mode.
       
   988 	 */
       
   989 	if (!hw->mac.ops.check_mng_mode(hw)) {
       
   990 		/* Enable Electrical Idle on the PHY */
       
   991 		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
       
   992 		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
       
   993 		if (ret_val)
       
   994 			return ret_val;
       
   995 
       
   996 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
       
   997 		if (ret_val)
       
   998 			return ret_val;
       
   999 
       
  1000 		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
       
  1001 		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
       
  1002 		if (ret_val)
       
  1003 			return ret_val;
       
  1004 	}
       
  1005 
       
  1006 	/* Workaround: Disable padding in Kumeran interface in the MAC
       
  1007 	 * and in the PHY to avoid CRC errors.
       
  1008 	 */
       
  1009 	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
       
  1010 	if (ret_val)
       
  1011 		return ret_val;
       
  1012 
       
  1013 	data |= GG82563_ICR_DIS_PADDING;
       
  1014 	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
       
  1015 	if (ret_val)
       
  1016 		return ret_val;
       
  1017 
       
  1018 	return 0;
       
  1019 }
       
  1020 
       
  1021 /**
       
  1022  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
       
  1023  *  @hw: pointer to the HW structure
       
  1024  *
       
  1025  *  Essentially a wrapper for setting up all things "copper" related.
       
  1026  *  This is a function pointer entry point called by the mac module.
       
  1027  **/
       
  1028 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
       
  1029 {
       
  1030 	u32 ctrl;
       
  1031 	s32 ret_val;
       
  1032 	u16 reg_data;
       
  1033 
       
  1034 	ctrl = er32(CTRL);
       
  1035 	ctrl |= E1000_CTRL_SLU;
       
  1036 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1037 	ew32(CTRL, ctrl);
       
  1038 
       
  1039 	/* Set the mac to wait the maximum time between each
       
  1040 	 * iteration and increase the max iterations when
       
  1041 	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
       
  1042 	 */
       
  1043 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
       
  1044 						   0xFFFF);
       
  1045 	if (ret_val)
       
  1046 		return ret_val;
       
  1047 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
       
  1048 						  &reg_data);
       
  1049 	if (ret_val)
       
  1050 		return ret_val;
       
  1051 	reg_data |= 0x3F;
       
  1052 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
       
  1053 						   reg_data);
       
  1054 	if (ret_val)
       
  1055 		return ret_val;
       
  1056 	ret_val =
       
  1057 	    e1000_read_kmrn_reg_80003es2lan(hw,
       
  1058 					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
       
  1059 					    &reg_data);
       
  1060 	if (ret_val)
       
  1061 		return ret_val;
       
  1062 	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
       
  1063 	ret_val =
       
  1064 	    e1000_write_kmrn_reg_80003es2lan(hw,
       
  1065 					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
       
  1066 					     reg_data);
       
  1067 	if (ret_val)
       
  1068 		return ret_val;
       
  1069 
       
  1070 	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
       
  1071 	if (ret_val)
       
  1072 		return ret_val;
       
  1073 
       
  1074 	return e1000e_setup_copper_link(hw);
       
  1075 }
       
  1076 
       
  1077 /**
       
  1078  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
       
  1079  *  @hw: pointer to the HW structure
       
  1080  *  @duplex: current duplex setting
       
  1081  *
       
  1082  *  Configure the KMRN interface by applying last minute quirks for
       
  1083  *  10/100 operation.
       
  1084  **/
       
  1085 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
       
  1086 {
       
  1087 	s32 ret_val = 0;
       
  1088 	u16 speed;
       
  1089 	u16 duplex;
       
  1090 
       
  1091 	if (hw->phy.media_type == e1000_media_type_copper) {
       
  1092 		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
       
  1093 							     &duplex);
       
  1094 		if (ret_val)
       
  1095 			return ret_val;
       
  1096 
       
  1097 		if (speed == SPEED_1000)
       
  1098 			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
       
  1099 		else
       
  1100 			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
       
  1101 	}
       
  1102 
       
  1103 	return ret_val;
       
  1104 }
       
  1105 
       
  1106 /**
       
  1107  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
       
  1108  *  @hw: pointer to the HW structure
       
  1109  *  @duplex: current duplex setting
       
  1110  *
       
  1111  *  Configure the KMRN interface by applying last minute quirks for
       
  1112  *  10/100 operation.
       
  1113  **/
       
  1114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
       
  1115 {
       
  1116 	s32 ret_val;
       
  1117 	u32 tipg;
       
  1118 	u32 i = 0;
       
  1119 	u16 reg_data, reg_data2;
       
  1120 
       
  1121 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
       
  1122 	ret_val =
       
  1123 	    e1000_write_kmrn_reg_80003es2lan(hw,
       
  1124 					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
       
  1125 					     reg_data);
       
  1126 	if (ret_val)
       
  1127 		return ret_val;
       
  1128 
       
  1129 	/* Configure Transmit Inter-Packet Gap */
       
  1130 	tipg = er32(TIPG);
       
  1131 	tipg &= ~E1000_TIPG_IPGT_MASK;
       
  1132 	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
       
  1133 	ew32(TIPG, tipg);
       
  1134 
       
  1135 	do {
       
  1136 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
       
  1137 		if (ret_val)
       
  1138 			return ret_val;
       
  1139 
       
  1140 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
       
  1141 		if (ret_val)
       
  1142 			return ret_val;
       
  1143 		i++;
       
  1144 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
       
  1145 
       
  1146 	if (duplex == HALF_DUPLEX)
       
  1147 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
       
  1148 	else
       
  1149 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
       
  1150 
       
  1151 	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
       
  1152 }
       
  1153 
       
  1154 /**
       
  1155  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
       
  1156  *  @hw: pointer to the HW structure
       
  1157  *
       
  1158  *  Configure the KMRN interface by applying last minute quirks for
       
  1159  *  gigabit operation.
       
  1160  **/
       
  1161 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
       
  1162 {
       
  1163 	s32 ret_val;
       
  1164 	u16 reg_data, reg_data2;
       
  1165 	u32 tipg;
       
  1166 	u32 i = 0;
       
  1167 
       
  1168 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
       
  1169 	ret_val =
       
  1170 	    e1000_write_kmrn_reg_80003es2lan(hw,
       
  1171 					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
       
  1172 					     reg_data);
       
  1173 	if (ret_val)
       
  1174 		return ret_val;
       
  1175 
       
  1176 	/* Configure Transmit Inter-Packet Gap */
       
  1177 	tipg = er32(TIPG);
       
  1178 	tipg &= ~E1000_TIPG_IPGT_MASK;
       
  1179 	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
       
  1180 	ew32(TIPG, tipg);
       
  1181 
       
  1182 	do {
       
  1183 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
       
  1184 		if (ret_val)
       
  1185 			return ret_val;
       
  1186 
       
  1187 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
       
  1188 		if (ret_val)
       
  1189 			return ret_val;
       
  1190 		i++;
       
  1191 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
       
  1192 
       
  1193 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
       
  1194 
       
  1195 	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
       
  1196 }
       
  1197 
       
  1198 /**
       
  1199  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
       
  1200  *  @hw: pointer to the HW structure
       
  1201  *  @offset: register offset to be read
       
  1202  *  @data: pointer to the read data
       
  1203  *
       
  1204  *  Acquire semaphore, then read the PHY register at offset
       
  1205  *  using the kumeran interface.  The information retrieved is stored in data.
       
  1206  *  Release the semaphore before exiting.
       
  1207  **/
       
  1208 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
       
  1209 					   u16 *data)
       
  1210 {
       
  1211 	u32 kmrnctrlsta;
       
  1212 	s32 ret_val;
       
  1213 
       
  1214 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
       
  1215 	if (ret_val)
       
  1216 		return ret_val;
       
  1217 
       
  1218 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
  1219 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
       
  1220 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
  1221 	e1e_flush();
       
  1222 
       
  1223 	udelay(2);
       
  1224 
       
  1225 	kmrnctrlsta = er32(KMRNCTRLSTA);
       
  1226 	*data = (u16)kmrnctrlsta;
       
  1227 
       
  1228 	e1000_release_mac_csr_80003es2lan(hw);
       
  1229 
       
  1230 	return ret_val;
       
  1231 }
       
  1232 
       
  1233 /**
       
  1234  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
       
  1235  *  @hw: pointer to the HW structure
       
  1236  *  @offset: register offset to write to
       
  1237  *  @data: data to write at register offset
       
  1238  *
       
  1239  *  Acquire semaphore, then write the data to PHY register
       
  1240  *  at the offset using the kumeran interface.  Release semaphore
       
  1241  *  before exiting.
       
  1242  **/
       
  1243 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
       
  1244 					    u16 data)
       
  1245 {
       
  1246 	u32 kmrnctrlsta;
       
  1247 	s32 ret_val;
       
  1248 
       
  1249 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
       
  1250 	if (ret_val)
       
  1251 		return ret_val;
       
  1252 
       
  1253 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
  1254 		       E1000_KMRNCTRLSTA_OFFSET) | data;
       
  1255 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
  1256 	e1e_flush();
       
  1257 
       
  1258 	udelay(2);
       
  1259 
       
  1260 	e1000_release_mac_csr_80003es2lan(hw);
       
  1261 
       
  1262 	return ret_val;
       
  1263 }
       
  1264 
       
  1265 /**
       
  1266  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
       
  1267  *  @hw: pointer to the HW structure
       
  1268  **/
       
  1269 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
       
  1270 {
       
  1271 	s32 ret_val;
       
  1272 
       
  1273 	/* If there's an alternate MAC address place it in RAR0
       
  1274 	 * so that it will override the Si installed default perm
       
  1275 	 * address.
       
  1276 	 */
       
  1277 	ret_val = e1000_check_alt_mac_addr_generic(hw);
       
  1278 	if (ret_val)
       
  1279 		return ret_val;
       
  1280 
       
  1281 	return e1000_read_mac_addr_generic(hw);
       
  1282 }
       
  1283 
       
  1284 /**
       
  1285  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
       
  1286  * @hw: pointer to the HW structure
       
  1287  *
       
  1288  * In the case of a PHY power down to save power, or to turn off link during a
       
  1289  * driver unload, or wake on lan is not enabled, remove the link.
       
  1290  **/
       
  1291 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
       
  1292 {
       
  1293 	/* If the management interface is not enabled, then power down */
       
  1294 	if (!(hw->mac.ops.check_mng_mode(hw) ||
       
  1295 	      hw->phy.ops.check_reset_block(hw)))
       
  1296 		e1000_power_down_phy_copper(hw);
       
  1297 }
       
  1298 
       
  1299 /**
       
  1300  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
       
  1301  *  @hw: pointer to the HW structure
       
  1302  *
       
  1303  *  Clears the hardware counters by reading the counter registers.
       
  1304  **/
       
  1305 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
       
  1306 {
       
  1307 	e1000e_clear_hw_cntrs_base(hw);
       
  1308 
       
  1309 	er32(PRC64);
       
  1310 	er32(PRC127);
       
  1311 	er32(PRC255);
       
  1312 	er32(PRC511);
       
  1313 	er32(PRC1023);
       
  1314 	er32(PRC1522);
       
  1315 	er32(PTC64);
       
  1316 	er32(PTC127);
       
  1317 	er32(PTC255);
       
  1318 	er32(PTC511);
       
  1319 	er32(PTC1023);
       
  1320 	er32(PTC1522);
       
  1321 
       
  1322 	er32(ALGNERRC);
       
  1323 	er32(RXERRC);
       
  1324 	er32(TNCRS);
       
  1325 	er32(CEXTERR);
       
  1326 	er32(TSCTC);
       
  1327 	er32(TSCTFC);
       
  1328 
       
  1329 	er32(MGTPRC);
       
  1330 	er32(MGTPDC);
       
  1331 	er32(MGTPTC);
       
  1332 
       
  1333 	er32(IAC);
       
  1334 	er32(ICRXOC);
       
  1335 
       
  1336 	er32(ICRXPTC);
       
  1337 	er32(ICRXATC);
       
  1338 	er32(ICTXPTC);
       
  1339 	er32(ICTXATC);
       
  1340 	er32(ICTXQEC);
       
  1341 	er32(ICTXQMTC);
       
  1342 	er32(ICRXDMTC);
       
  1343 }
       
  1344 
       
  1345 static const struct e1000_mac_operations es2_mac_ops = {
       
  1346 	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
       
  1347 	.id_led_init		= e1000e_id_led_init_generic,
       
  1348 	.blink_led		= e1000e_blink_led_generic,
       
  1349 	.check_mng_mode		= e1000e_check_mng_mode_generic,
       
  1350 	/* check_for_link dependent on media type */
       
  1351 	.cleanup_led		= e1000e_cleanup_led_generic,
       
  1352 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
       
  1353 	.get_bus_info		= e1000e_get_bus_info_pcie,
       
  1354 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
       
  1355 	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
       
  1356 	.led_on			= e1000e_led_on_generic,
       
  1357 	.led_off		= e1000e_led_off_generic,
       
  1358 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
       
  1359 	.write_vfta		= e1000_write_vfta_generic,
       
  1360 	.clear_vfta		= e1000_clear_vfta_generic,
       
  1361 	.reset_hw		= e1000_reset_hw_80003es2lan,
       
  1362 	.init_hw		= e1000_init_hw_80003es2lan,
       
  1363 	.setup_link		= e1000e_setup_link_generic,
       
  1364 	/* setup_physical_interface dependent on media type */
       
  1365 	.setup_led		= e1000e_setup_led_generic,
       
  1366 	.config_collision_dist	= e1000e_config_collision_dist_generic,
       
  1367 	.rar_set		= e1000e_rar_set_generic,
       
  1368 	.rar_get_count		= e1000e_rar_get_count_generic,
       
  1369 };
       
  1370 
       
  1371 static const struct e1000_phy_operations es2_phy_ops = {
       
  1372 	.acquire		= e1000_acquire_phy_80003es2lan,
       
  1373 	.check_polarity		= e1000_check_polarity_m88,
       
  1374 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1375 	.commit			= e1000e_phy_sw_reset,
       
  1376 	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
       
  1377 	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
       
  1378 	.get_cable_length	= e1000_get_cable_length_80003es2lan,
       
  1379 	.get_info		= e1000e_get_phy_info_m88,
       
  1380 	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
       
  1381 	.release		= e1000_release_phy_80003es2lan,
       
  1382 	.reset			= e1000e_phy_hw_reset_generic,
       
  1383 	.set_d0_lplu_state	= NULL,
       
  1384 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1385 	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
       
  1386 	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
       
  1387 };
       
  1388 
       
  1389 static const struct e1000_nvm_operations es2_nvm_ops = {
       
  1390 	.acquire		= e1000_acquire_nvm_80003es2lan,
       
  1391 	.read			= e1000e_read_nvm_eerd,
       
  1392 	.release		= e1000_release_nvm_80003es2lan,
       
  1393 	.reload			= e1000e_reload_nvm_generic,
       
  1394 	.update			= e1000e_update_nvm_checksum_generic,
       
  1395 	.valid_led_default	= e1000e_valid_led_default,
       
  1396 	.validate		= e1000e_validate_nvm_checksum_generic,
       
  1397 	.write			= e1000_write_nvm_80003es2lan,
       
  1398 };
       
  1399 
       
  1400 const struct e1000_info e1000_es2_info = {
       
  1401 	.mac			= e1000_80003es2lan,
       
  1402 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1403 				  | FLAG_HAS_JUMBO_FRAMES
       
  1404 				  | FLAG_HAS_WOL
       
  1405 				  | FLAG_APME_IN_CTRL3
       
  1406 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  1407 				  | FLAG_RX_NEEDS_RESTART /* errata */
       
  1408 				  | FLAG_TARC_SET_BIT_ZERO /* errata */
       
  1409 				  | FLAG_APME_CHECK_PORT_B
       
  1410 				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
       
  1411 	.flags2			= FLAG2_DMA_BURST,
       
  1412 	.pba			= 38,
       
  1413 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  1414 	.get_variants		= e1000_get_variants_80003es2lan,
       
  1415 	.mac_ops		= &es2_mac_ops,
       
  1416 	.phy_ops		= &es2_phy_ops,
       
  1417 	.nvm_ops		= &es2_nvm_ops,
       
  1418 };