devices/e100-3.16-orig.c
branchstable-1.5
changeset 2588 792892ab4806
equal deleted inserted replaced
2587:afd76ee3aa87 2588:792892ab4806
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/100 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /*
       
    30  *	e100.c: Intel(R) PRO/100 ethernet driver
       
    31  *
       
    32  *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
       
    33  *	original e100 driver, but better described as a munging of
       
    34  *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
       
    35  *
       
    36  *	References:
       
    37  *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
       
    38  *		Open Source Software Developers Manual,
       
    39  *		http://sourceforge.net/projects/e1000
       
    40  *
       
    41  *
       
    42  *	                      Theory of Operation
       
    43  *
       
    44  *	I.   General
       
    45  *
       
    46  *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
       
    47  *	controller family, which includes the 82557, 82558, 82559, 82550,
       
    48  *	82551, and 82562 devices.  82558 and greater controllers
       
    49  *	integrate the Intel 82555 PHY.  The controllers are used in
       
    50  *	server and client network interface cards, as well as in
       
    51  *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
       
    52  *	configurations.  8255x supports a 32-bit linear addressing
       
    53  *	mode and operates at 33Mhz PCI clock rate.
       
    54  *
       
    55  *	II.  Driver Operation
       
    56  *
       
    57  *	Memory-mapped mode is used exclusively to access the device's
       
    58  *	shared-memory structure, the Control/Status Registers (CSR). All
       
    59  *	setup, configuration, and control of the device, including queuing
       
    60  *	of Tx, Rx, and configuration commands is through the CSR.
       
    61  *	cmd_lock serializes accesses to the CSR command register.  cb_lock
       
    62  *	protects the shared Command Block List (CBL).
       
    63  *
       
    64  *	8255x is highly MII-compliant and all access to the PHY go
       
    65  *	through the Management Data Interface (MDI).  Consequently, the
       
    66  *	driver leverages the mii.c library shared with other MII-compliant
       
    67  *	devices.
       
    68  *
       
    69  *	Big- and Little-Endian byte order as well as 32- and 64-bit
       
    70  *	archs are supported.  Weak-ordered memory and non-cache-coherent
       
    71  *	archs are supported.
       
    72  *
       
    73  *	III. Transmit
       
    74  *
       
    75  *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
       
    76  *	together in a fixed-size ring (CBL) thus forming the flexible mode
       
    77  *	memory structure.  A TCB marked with the suspend-bit indicates
       
    78  *	the end of the ring.  The last TCB processed suspends the
       
    79  *	controller, and the controller can be restarted by issue a CU
       
    80  *	resume command to continue from the suspend point, or a CU start
       
    81  *	command to start at a given position in the ring.
       
    82  *
       
    83  *	Non-Tx commands (config, multicast setup, etc) are linked
       
    84  *	into the CBL ring along with Tx commands.  The common structure
       
    85  *	used for both Tx and non-Tx commands is the Command Block (CB).
       
    86  *
       
    87  *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
       
    88  *	is the next CB to check for completion; cb_to_send is the first
       
    89  *	CB to start on in case of a previous failure to resume.  CB clean
       
    90  *	up happens in interrupt context in response to a CU interrupt.
       
    91  *	cbs_avail keeps track of number of free CB resources available.
       
    92  *
       
    93  * 	Hardware padding of short packets to minimum packet size is
       
    94  * 	enabled.  82557 pads with 7Eh, while the later controllers pad
       
    95  * 	with 00h.
       
    96  *
       
    97  *	IV.  Receive
       
    98  *
       
    99  *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
       
   100  *	Descriptors (RFD) + data buffer, thus forming the simplified mode
       
   101  *	memory structure.  Rx skbs are allocated to contain both the RFD
       
   102  *	and the data buffer, but the RFD is pulled off before the skb is
       
   103  *	indicated.  The data buffer is aligned such that encapsulated
       
   104  *	protocol headers are u32-aligned.  Since the RFD is part of the
       
   105  *	mapped shared memory, and completion status is contained within
       
   106  *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
       
   107  *	view from software and hardware.
       
   108  *
       
   109  *	In order to keep updates to the RFD link field from colliding with
       
   110  *	hardware writes to mark packets complete, we use the feature that
       
   111  *	hardware will not write to a size 0 descriptor and mark the previous
       
   112  *	packet as end-of-list (EL).   After updating the link, we remove EL
       
   113  *	and only then restore the size such that hardware may use the
       
   114  *	previous-to-end RFD.
       
   115  *
       
   116  *	Under typical operation, the  receive unit (RU) is start once,
       
   117  *	and the controller happily fills RFDs as frames arrive.  If
       
   118  *	replacement RFDs cannot be allocated, or the RU goes non-active,
       
   119  *	the RU must be restarted.  Frame arrival generates an interrupt,
       
   120  *	and Rx indication and re-allocation happen in the same context,
       
   121  *	therefore no locking is required.  A software-generated interrupt
       
   122  *	is generated from the watchdog to recover from a failed allocation
       
   123  *	scenario where all Rx resources have been indicated and none re-
       
   124  *	placed.
       
   125  *
       
   126  *	V.   Miscellaneous
       
   127  *
       
   128  * 	VLAN offloading of tagging, stripping and filtering is not
       
   129  * 	supported, but driver will accommodate the extra 4-byte VLAN tag
       
   130  * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
       
   131  * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
       
   132  * 	not supported (hardware limitation).
       
   133  *
       
   134  * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
       
   135  *
       
   136  * 	Thanks to JC (jchapman@katalix.com) for helping with
       
   137  * 	testing/troubleshooting the development driver.
       
   138  *
       
   139  * 	TODO:
       
   140  * 	o several entry points race with dev->close
       
   141  * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
       
   142  *
       
   143  *	FIXES:
       
   144  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
       
   145  *	- Stratus87247: protect MDI control register manipulations
       
   146  * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
       
   147  *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
       
   148  */
       
   149 
       
   150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
       
   151 
       
   152 #include <linux/hardirq.h>
       
   153 #include <linux/interrupt.h>
       
   154 #include <linux/module.h>
       
   155 #include <linux/moduleparam.h>
       
   156 #include <linux/kernel.h>
       
   157 #include <linux/types.h>
       
   158 #include <linux/sched.h>
       
   159 #include <linux/slab.h>
       
   160 #include <linux/delay.h>
       
   161 #include <linux/init.h>
       
   162 #include <linux/pci.h>
       
   163 #include <linux/dma-mapping.h>
       
   164 #include <linux/dmapool.h>
       
   165 #include <linux/netdevice.h>
       
   166 #include <linux/etherdevice.h>
       
   167 #include <linux/mii.h>
       
   168 #include <linux/if_vlan.h>
       
   169 #include <linux/skbuff.h>
       
   170 #include <linux/ethtool.h>
       
   171 #include <linux/string.h>
       
   172 #include <linux/firmware.h>
       
   173 #include <linux/rtnetlink.h>
       
   174 #include <asm/unaligned.h>
       
   175 
       
   176 
       
   177 #define DRV_NAME		"e100"
       
   178 #define DRV_EXT			"-NAPI"
       
   179 #define DRV_VERSION		"3.5.24-k2"DRV_EXT
       
   180 #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
       
   181 #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
       
   182 
       
   183 #define E100_WATCHDOG_PERIOD	(2 * HZ)
       
   184 #define E100_NAPI_WEIGHT	16
       
   185 
       
   186 #define FIRMWARE_D101M		"e100/d101m_ucode.bin"
       
   187 #define FIRMWARE_D101S		"e100/d101s_ucode.bin"
       
   188 #define FIRMWARE_D102E		"e100/d102e_ucode.bin"
       
   189 
       
   190 MODULE_DESCRIPTION(DRV_DESCRIPTION);
       
   191 MODULE_AUTHOR(DRV_COPYRIGHT);
       
   192 MODULE_LICENSE("GPL");
       
   193 MODULE_VERSION(DRV_VERSION);
       
   194 MODULE_FIRMWARE(FIRMWARE_D101M);
       
   195 MODULE_FIRMWARE(FIRMWARE_D101S);
       
   196 MODULE_FIRMWARE(FIRMWARE_D102E);
       
   197 
       
   198 static int debug = 3;
       
   199 static int eeprom_bad_csum_allow = 0;
       
   200 static int use_io = 0;
       
   201 module_param(debug, int, 0);
       
   202 module_param(eeprom_bad_csum_allow, int, 0);
       
   203 module_param(use_io, int, 0);
       
   204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   205 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
       
   206 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
       
   207 
       
   208 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
       
   209 	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
       
   210 	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
       
   211 static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
       
   212 	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
       
   213 	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
       
   214 	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
       
   215 	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
       
   216 	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
       
   217 	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
       
   218 	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
       
   219 	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
       
   220 	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
       
   221 	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
       
   222 	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
       
   223 	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
       
   224 	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
       
   225 	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
       
   226 	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
       
   227 	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
       
   228 	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
       
   229 	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
       
   230 	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
       
   231 	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
       
   232 	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
       
   233 	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
       
   234 	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
       
   235 	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
       
   236 	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
       
   237 	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
       
   238 	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
       
   239 	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
       
   240 	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
       
   241 	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
       
   242 	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
       
   243 	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
       
   244 	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
       
   245 	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
       
   246 	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
       
   247 	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
       
   248 	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
       
   249 	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
       
   250 	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
       
   251 	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
       
   252 	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
       
   253 	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
       
   254 	{ 0, }
       
   255 };
       
   256 MODULE_DEVICE_TABLE(pci, e100_id_table);
       
   257 
       
   258 enum mac {
       
   259 	mac_82557_D100_A  = 0,
       
   260 	mac_82557_D100_B  = 1,
       
   261 	mac_82557_D100_C  = 2,
       
   262 	mac_82558_D101_A4 = 4,
       
   263 	mac_82558_D101_B0 = 5,
       
   264 	mac_82559_D101M   = 8,
       
   265 	mac_82559_D101S   = 9,
       
   266 	mac_82550_D102    = 12,
       
   267 	mac_82550_D102_C  = 13,
       
   268 	mac_82551_E       = 14,
       
   269 	mac_82551_F       = 15,
       
   270 	mac_82551_10      = 16,
       
   271 	mac_unknown       = 0xFF,
       
   272 };
       
   273 
       
   274 enum phy {
       
   275 	phy_100a     = 0x000003E0,
       
   276 	phy_100c     = 0x035002A8,
       
   277 	phy_82555_tx = 0x015002A8,
       
   278 	phy_nsc_tx   = 0x5C002000,
       
   279 	phy_82562_et = 0x033002A8,
       
   280 	phy_82562_em = 0x032002A8,
       
   281 	phy_82562_ek = 0x031002A8,
       
   282 	phy_82562_eh = 0x017002A8,
       
   283 	phy_82552_v  = 0xd061004d,
       
   284 	phy_unknown  = 0xFFFFFFFF,
       
   285 };
       
   286 
       
   287 /* CSR (Control/Status Registers) */
       
   288 struct csr {
       
   289 	struct {
       
   290 		u8 status;
       
   291 		u8 stat_ack;
       
   292 		u8 cmd_lo;
       
   293 		u8 cmd_hi;
       
   294 		u32 gen_ptr;
       
   295 	} scb;
       
   296 	u32 port;
       
   297 	u16 flash_ctrl;
       
   298 	u8 eeprom_ctrl_lo;
       
   299 	u8 eeprom_ctrl_hi;
       
   300 	u32 mdi_ctrl;
       
   301 	u32 rx_dma_count;
       
   302 };
       
   303 
       
   304 enum scb_status {
       
   305 	rus_no_res       = 0x08,
       
   306 	rus_ready        = 0x10,
       
   307 	rus_mask         = 0x3C,
       
   308 };
       
   309 
       
   310 enum ru_state  {
       
   311 	RU_SUSPENDED = 0,
       
   312 	RU_RUNNING	 = 1,
       
   313 	RU_UNINITIALIZED = -1,
       
   314 };
       
   315 
       
   316 enum scb_stat_ack {
       
   317 	stat_ack_not_ours    = 0x00,
       
   318 	stat_ack_sw_gen      = 0x04,
       
   319 	stat_ack_rnr         = 0x10,
       
   320 	stat_ack_cu_idle     = 0x20,
       
   321 	stat_ack_frame_rx    = 0x40,
       
   322 	stat_ack_cu_cmd_done = 0x80,
       
   323 	stat_ack_not_present = 0xFF,
       
   324 	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
       
   325 	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
       
   326 };
       
   327 
       
   328 enum scb_cmd_hi {
       
   329 	irq_mask_none = 0x00,
       
   330 	irq_mask_all  = 0x01,
       
   331 	irq_sw_gen    = 0x02,
       
   332 };
       
   333 
       
   334 enum scb_cmd_lo {
       
   335 	cuc_nop        = 0x00,
       
   336 	ruc_start      = 0x01,
       
   337 	ruc_load_base  = 0x06,
       
   338 	cuc_start      = 0x10,
       
   339 	cuc_resume     = 0x20,
       
   340 	cuc_dump_addr  = 0x40,
       
   341 	cuc_dump_stats = 0x50,
       
   342 	cuc_load_base  = 0x60,
       
   343 	cuc_dump_reset = 0x70,
       
   344 };
       
   345 
       
   346 enum cuc_dump {
       
   347 	cuc_dump_complete       = 0x0000A005,
       
   348 	cuc_dump_reset_complete = 0x0000A007,
       
   349 };
       
   350 
       
   351 enum port {
       
   352 	software_reset  = 0x0000,
       
   353 	selftest        = 0x0001,
       
   354 	selective_reset = 0x0002,
       
   355 };
       
   356 
       
   357 enum eeprom_ctrl_lo {
       
   358 	eesk = 0x01,
       
   359 	eecs = 0x02,
       
   360 	eedi = 0x04,
       
   361 	eedo = 0x08,
       
   362 };
       
   363 
       
   364 enum mdi_ctrl {
       
   365 	mdi_write = 0x04000000,
       
   366 	mdi_read  = 0x08000000,
       
   367 	mdi_ready = 0x10000000,
       
   368 };
       
   369 
       
   370 enum eeprom_op {
       
   371 	op_write = 0x05,
       
   372 	op_read  = 0x06,
       
   373 	op_ewds  = 0x10,
       
   374 	op_ewen  = 0x13,
       
   375 };
       
   376 
       
   377 enum eeprom_offsets {
       
   378 	eeprom_cnfg_mdix  = 0x03,
       
   379 	eeprom_phy_iface  = 0x06,
       
   380 	eeprom_id         = 0x0A,
       
   381 	eeprom_config_asf = 0x0D,
       
   382 	eeprom_smbus_addr = 0x90,
       
   383 };
       
   384 
       
   385 enum eeprom_cnfg_mdix {
       
   386 	eeprom_mdix_enabled = 0x0080,
       
   387 };
       
   388 
       
   389 enum eeprom_phy_iface {
       
   390 	NoSuchPhy = 0,
       
   391 	I82553AB,
       
   392 	I82553C,
       
   393 	I82503,
       
   394 	DP83840,
       
   395 	S80C240,
       
   396 	S80C24,
       
   397 	I82555,
       
   398 	DP83840A = 10,
       
   399 };
       
   400 
       
   401 enum eeprom_id {
       
   402 	eeprom_id_wol = 0x0020,
       
   403 };
       
   404 
       
   405 enum eeprom_config_asf {
       
   406 	eeprom_asf = 0x8000,
       
   407 	eeprom_gcl = 0x4000,
       
   408 };
       
   409 
       
   410 enum cb_status {
       
   411 	cb_complete = 0x8000,
       
   412 	cb_ok       = 0x2000,
       
   413 };
       
   414 
       
   415 /**
       
   416  * cb_command - Command Block flags
       
   417  * @cb_tx_nc:  0: controler does CRC (normal),  1: CRC from skb memory
       
   418  */
       
   419 enum cb_command {
       
   420 	cb_nop    = 0x0000,
       
   421 	cb_iaaddr = 0x0001,
       
   422 	cb_config = 0x0002,
       
   423 	cb_multi  = 0x0003,
       
   424 	cb_tx     = 0x0004,
       
   425 	cb_ucode  = 0x0005,
       
   426 	cb_dump   = 0x0006,
       
   427 	cb_tx_sf  = 0x0008,
       
   428 	cb_tx_nc  = 0x0010,
       
   429 	cb_cid    = 0x1f00,
       
   430 	cb_i      = 0x2000,
       
   431 	cb_s      = 0x4000,
       
   432 	cb_el     = 0x8000,
       
   433 };
       
   434 
       
   435 struct rfd {
       
   436 	__le16 status;
       
   437 	__le16 command;
       
   438 	__le32 link;
       
   439 	__le32 rbd;
       
   440 	__le16 actual_size;
       
   441 	__le16 size;
       
   442 };
       
   443 
       
   444 struct rx {
       
   445 	struct rx *next, *prev;
       
   446 	struct sk_buff *skb;
       
   447 	dma_addr_t dma_addr;
       
   448 };
       
   449 
       
   450 #if defined(__BIG_ENDIAN_BITFIELD)
       
   451 #define X(a,b)	b,a
       
   452 #else
       
   453 #define X(a,b)	a,b
       
   454 #endif
       
   455 struct config {
       
   456 /*0*/	u8 X(byte_count:6, pad0:2);
       
   457 /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
       
   458 /*2*/	u8 adaptive_ifs;
       
   459 /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
       
   460 	   term_write_cache_line:1), pad3:4);
       
   461 /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
       
   462 /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
       
   463 /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
       
   464 	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
       
   465 	   rx_save_overruns : 1), rx_save_bad_frames : 1);
       
   466 /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
       
   467 	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
       
   468 	   tx_dynamic_tbd:1);
       
   469 /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
       
   470 /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
       
   471 	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
       
   472 /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
       
   473 	   loopback:2);
       
   474 /*11*/	u8 X(linear_priority:3, pad11:5);
       
   475 /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
       
   476 /*13*/	u8 ip_addr_lo;
       
   477 /*14*/	u8 ip_addr_hi;
       
   478 /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
       
   479 	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
       
   480 	   pad15_2:1), crs_or_cdt:1);
       
   481 /*16*/	u8 fc_delay_lo;
       
   482 /*17*/	u8 fc_delay_hi;
       
   483 /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
       
   484 	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
       
   485 /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
       
   486 	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
       
   487 	   full_duplex_force:1), full_duplex_pin:1);
       
   488 /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
       
   489 /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
       
   490 /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
       
   491 	u8 pad_d102[9];
       
   492 };
       
   493 
       
   494 #define E100_MAX_MULTICAST_ADDRS	64
       
   495 struct multi {
       
   496 	__le16 count;
       
   497 	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
       
   498 };
       
   499 
       
   500 /* Important: keep total struct u32-aligned */
       
   501 #define UCODE_SIZE			134
       
   502 struct cb {
       
   503 	__le16 status;
       
   504 	__le16 command;
       
   505 	__le32 link;
       
   506 	union {
       
   507 		u8 iaaddr[ETH_ALEN];
       
   508 		__le32 ucode[UCODE_SIZE];
       
   509 		struct config config;
       
   510 		struct multi multi;
       
   511 		struct {
       
   512 			u32 tbd_array;
       
   513 			u16 tcb_byte_count;
       
   514 			u8 threshold;
       
   515 			u8 tbd_count;
       
   516 			struct {
       
   517 				__le32 buf_addr;
       
   518 				__le16 size;
       
   519 				u16 eol;
       
   520 			} tbd;
       
   521 		} tcb;
       
   522 		__le32 dump_buffer_addr;
       
   523 	} u;
       
   524 	struct cb *next, *prev;
       
   525 	dma_addr_t dma_addr;
       
   526 	struct sk_buff *skb;
       
   527 };
       
   528 
       
   529 enum loopback {
       
   530 	lb_none = 0, lb_mac = 1, lb_phy = 3,
       
   531 };
       
   532 
       
   533 struct stats {
       
   534 	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
       
   535 		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
       
   536 		tx_multiple_collisions, tx_total_collisions;
       
   537 	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
       
   538 		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
       
   539 		rx_short_frame_errors;
       
   540 	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
       
   541 	__le16 xmt_tco_frames, rcv_tco_frames;
       
   542 	__le32 complete;
       
   543 };
       
   544 
       
   545 struct mem {
       
   546 	struct {
       
   547 		u32 signature;
       
   548 		u32 result;
       
   549 	} selftest;
       
   550 	struct stats stats;
       
   551 	u8 dump_buf[596];
       
   552 };
       
   553 
       
   554 struct param_range {
       
   555 	u32 min;
       
   556 	u32 max;
       
   557 	u32 count;
       
   558 };
       
   559 
       
   560 struct params {
       
   561 	struct param_range rfds;
       
   562 	struct param_range cbs;
       
   563 };
       
   564 
       
   565 struct nic {
       
   566 	/* Begin: frequently used values: keep adjacent for cache effect */
       
   567 	u32 msg_enable				____cacheline_aligned;
       
   568 	struct net_device *netdev;
       
   569 	struct pci_dev *pdev;
       
   570 	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
       
   571 
       
   572 	struct rx *rxs				____cacheline_aligned;
       
   573 	struct rx *rx_to_use;
       
   574 	struct rx *rx_to_clean;
       
   575 	struct rfd blank_rfd;
       
   576 	enum ru_state ru_running;
       
   577 
       
   578 	spinlock_t cb_lock			____cacheline_aligned;
       
   579 	spinlock_t cmd_lock;
       
   580 	struct csr __iomem *csr;
       
   581 	enum scb_cmd_lo cuc_cmd;
       
   582 	unsigned int cbs_avail;
       
   583 	struct napi_struct napi;
       
   584 	struct cb *cbs;
       
   585 	struct cb *cb_to_use;
       
   586 	struct cb *cb_to_send;
       
   587 	struct cb *cb_to_clean;
       
   588 	__le16 tx_command;
       
   589 	/* End: frequently used values: keep adjacent for cache effect */
       
   590 
       
   591 	enum {
       
   592 		ich                = (1 << 0),
       
   593 		promiscuous        = (1 << 1),
       
   594 		multicast_all      = (1 << 2),
       
   595 		wol_magic          = (1 << 3),
       
   596 		ich_10h_workaround = (1 << 4),
       
   597 	} flags					____cacheline_aligned;
       
   598 
       
   599 	enum mac mac;
       
   600 	enum phy phy;
       
   601 	struct params params;
       
   602 	struct timer_list watchdog;
       
   603 	struct mii_if_info mii;
       
   604 	struct work_struct tx_timeout_task;
       
   605 	enum loopback loopback;
       
   606 
       
   607 	struct mem *mem;
       
   608 	dma_addr_t dma_addr;
       
   609 
       
   610 	struct pci_pool *cbs_pool;
       
   611 	dma_addr_t cbs_dma_addr;
       
   612 	u8 adaptive_ifs;
       
   613 	u8 tx_threshold;
       
   614 	u32 tx_frames;
       
   615 	u32 tx_collisions;
       
   616 	u32 tx_deferred;
       
   617 	u32 tx_single_collisions;
       
   618 	u32 tx_multiple_collisions;
       
   619 	u32 tx_fc_pause;
       
   620 	u32 tx_tco_frames;
       
   621 
       
   622 	u32 rx_fc_pause;
       
   623 	u32 rx_fc_unsupported;
       
   624 	u32 rx_tco_frames;
       
   625 	u32 rx_short_frame_errors;
       
   626 	u32 rx_over_length_errors;
       
   627 
       
   628 	u16 eeprom_wc;
       
   629 	__le16 eeprom[256];
       
   630 	spinlock_t mdio_lock;
       
   631 	const struct firmware *fw;
       
   632 };
       
   633 
       
   634 static inline void e100_write_flush(struct nic *nic)
       
   635 {
       
   636 	/* Flush previous PCI writes through intermediate bridges
       
   637 	 * by doing a benign read */
       
   638 	(void)ioread8(&nic->csr->scb.status);
       
   639 }
       
   640 
       
   641 static void e100_enable_irq(struct nic *nic)
       
   642 {
       
   643 	unsigned long flags;
       
   644 
       
   645 	spin_lock_irqsave(&nic->cmd_lock, flags);
       
   646 	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
       
   647 	e100_write_flush(nic);
       
   648 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
       
   649 }
       
   650 
       
   651 static void e100_disable_irq(struct nic *nic)
       
   652 {
       
   653 	unsigned long flags;
       
   654 
       
   655 	spin_lock_irqsave(&nic->cmd_lock, flags);
       
   656 	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
       
   657 	e100_write_flush(nic);
       
   658 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
       
   659 }
       
   660 
       
   661 static void e100_hw_reset(struct nic *nic)
       
   662 {
       
   663 	/* Put CU and RU into idle with a selective reset to get
       
   664 	 * device off of PCI bus */
       
   665 	iowrite32(selective_reset, &nic->csr->port);
       
   666 	e100_write_flush(nic); udelay(20);
       
   667 
       
   668 	/* Now fully reset device */
       
   669 	iowrite32(software_reset, &nic->csr->port);
       
   670 	e100_write_flush(nic); udelay(20);
       
   671 
       
   672 	/* Mask off our interrupt line - it's unmasked after reset */
       
   673 	e100_disable_irq(nic);
       
   674 }
       
   675 
       
   676 static int e100_self_test(struct nic *nic)
       
   677 {
       
   678 	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
       
   679 
       
   680 	/* Passing the self-test is a pretty good indication
       
   681 	 * that the device can DMA to/from host memory */
       
   682 
       
   683 	nic->mem->selftest.signature = 0;
       
   684 	nic->mem->selftest.result = 0xFFFFFFFF;
       
   685 
       
   686 	iowrite32(selftest | dma_addr, &nic->csr->port);
       
   687 	e100_write_flush(nic);
       
   688 	/* Wait 10 msec for self-test to complete */
       
   689 	msleep(10);
       
   690 
       
   691 	/* Interrupts are enabled after self-test */
       
   692 	e100_disable_irq(nic);
       
   693 
       
   694 	/* Check results of self-test */
       
   695 	if (nic->mem->selftest.result != 0) {
       
   696 		netif_err(nic, hw, nic->netdev,
       
   697 			  "Self-test failed: result=0x%08X\n",
       
   698 			  nic->mem->selftest.result);
       
   699 		return -ETIMEDOUT;
       
   700 	}
       
   701 	if (nic->mem->selftest.signature == 0) {
       
   702 		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
       
   703 		return -ETIMEDOUT;
       
   704 	}
       
   705 
       
   706 	return 0;
       
   707 }
       
   708 
       
   709 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
       
   710 {
       
   711 	u32 cmd_addr_data[3];
       
   712 	u8 ctrl;
       
   713 	int i, j;
       
   714 
       
   715 	/* Three cmds: write/erase enable, write data, write/erase disable */
       
   716 	cmd_addr_data[0] = op_ewen << (addr_len - 2);
       
   717 	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
       
   718 		le16_to_cpu(data);
       
   719 	cmd_addr_data[2] = op_ewds << (addr_len - 2);
       
   720 
       
   721 	/* Bit-bang cmds to write word to eeprom */
       
   722 	for (j = 0; j < 3; j++) {
       
   723 
       
   724 		/* Chip select */
       
   725 		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
       
   726 		e100_write_flush(nic); udelay(4);
       
   727 
       
   728 		for (i = 31; i >= 0; i--) {
       
   729 			ctrl = (cmd_addr_data[j] & (1 << i)) ?
       
   730 				eecs | eedi : eecs;
       
   731 			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
       
   732 			e100_write_flush(nic); udelay(4);
       
   733 
       
   734 			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
       
   735 			e100_write_flush(nic); udelay(4);
       
   736 		}
       
   737 		/* Wait 10 msec for cmd to complete */
       
   738 		msleep(10);
       
   739 
       
   740 		/* Chip deselect */
       
   741 		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
       
   742 		e100_write_flush(nic); udelay(4);
       
   743 	}
       
   744 };
       
   745 
       
   746 /* General technique stolen from the eepro100 driver - very clever */
       
   747 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
       
   748 {
       
   749 	u32 cmd_addr_data;
       
   750 	u16 data = 0;
       
   751 	u8 ctrl;
       
   752 	int i;
       
   753 
       
   754 	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
       
   755 
       
   756 	/* Chip select */
       
   757 	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
       
   758 	e100_write_flush(nic); udelay(4);
       
   759 
       
   760 	/* Bit-bang to read word from eeprom */
       
   761 	for (i = 31; i >= 0; i--) {
       
   762 		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
       
   763 		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
       
   764 		e100_write_flush(nic); udelay(4);
       
   765 
       
   766 		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
       
   767 		e100_write_flush(nic); udelay(4);
       
   768 
       
   769 		/* Eeprom drives a dummy zero to EEDO after receiving
       
   770 		 * complete address.  Use this to adjust addr_len. */
       
   771 		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
       
   772 		if (!(ctrl & eedo) && i > 16) {
       
   773 			*addr_len -= (i - 16);
       
   774 			i = 17;
       
   775 		}
       
   776 
       
   777 		data = (data << 1) | (ctrl & eedo ? 1 : 0);
       
   778 	}
       
   779 
       
   780 	/* Chip deselect */
       
   781 	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
       
   782 	e100_write_flush(nic); udelay(4);
       
   783 
       
   784 	return cpu_to_le16(data);
       
   785 };
       
   786 
       
   787 /* Load entire EEPROM image into driver cache and validate checksum */
       
   788 static int e100_eeprom_load(struct nic *nic)
       
   789 {
       
   790 	u16 addr, addr_len = 8, checksum = 0;
       
   791 
       
   792 	/* Try reading with an 8-bit addr len to discover actual addr len */
       
   793 	e100_eeprom_read(nic, &addr_len, 0);
       
   794 	nic->eeprom_wc = 1 << addr_len;
       
   795 
       
   796 	for (addr = 0; addr < nic->eeprom_wc; addr++) {
       
   797 		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
       
   798 		if (addr < nic->eeprom_wc - 1)
       
   799 			checksum += le16_to_cpu(nic->eeprom[addr]);
       
   800 	}
       
   801 
       
   802 	/* The checksum, stored in the last word, is calculated such that
       
   803 	 * the sum of words should be 0xBABA */
       
   804 	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
       
   805 		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
       
   806 		if (!eeprom_bad_csum_allow)
       
   807 			return -EAGAIN;
       
   808 	}
       
   809 
       
   810 	return 0;
       
   811 }
       
   812 
       
   813 /* Save (portion of) driver EEPROM cache to device and update checksum */
       
   814 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
       
   815 {
       
   816 	u16 addr, addr_len = 8, checksum = 0;
       
   817 
       
   818 	/* Try reading with an 8-bit addr len to discover actual addr len */
       
   819 	e100_eeprom_read(nic, &addr_len, 0);
       
   820 	nic->eeprom_wc = 1 << addr_len;
       
   821 
       
   822 	if (start + count >= nic->eeprom_wc)
       
   823 		return -EINVAL;
       
   824 
       
   825 	for (addr = start; addr < start + count; addr++)
       
   826 		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
       
   827 
       
   828 	/* The checksum, stored in the last word, is calculated such that
       
   829 	 * the sum of words should be 0xBABA */
       
   830 	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
       
   831 		checksum += le16_to_cpu(nic->eeprom[addr]);
       
   832 	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
       
   833 	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
       
   834 		nic->eeprom[nic->eeprom_wc - 1]);
       
   835 
       
   836 	return 0;
       
   837 }
       
   838 
       
   839 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
       
   840 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
       
   841 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
       
   842 {
       
   843 	unsigned long flags;
       
   844 	unsigned int i;
       
   845 	int err = 0;
       
   846 
       
   847 	spin_lock_irqsave(&nic->cmd_lock, flags);
       
   848 
       
   849 	/* Previous command is accepted when SCB clears */
       
   850 	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
       
   851 		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
       
   852 			break;
       
   853 		cpu_relax();
       
   854 		if (unlikely(i > E100_WAIT_SCB_FAST))
       
   855 			udelay(5);
       
   856 	}
       
   857 	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
       
   858 		err = -EAGAIN;
       
   859 		goto err_unlock;
       
   860 	}
       
   861 
       
   862 	if (unlikely(cmd != cuc_resume))
       
   863 		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
       
   864 	iowrite8(cmd, &nic->csr->scb.cmd_lo);
       
   865 
       
   866 err_unlock:
       
   867 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
       
   868 
       
   869 	return err;
       
   870 }
       
   871 
       
   872 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
       
   873 	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
       
   874 {
       
   875 	struct cb *cb;
       
   876 	unsigned long flags;
       
   877 	int err = 0;
       
   878 
       
   879 	spin_lock_irqsave(&nic->cb_lock, flags);
       
   880 
       
   881 	if (unlikely(!nic->cbs_avail)) {
       
   882 		err = -ENOMEM;
       
   883 		goto err_unlock;
       
   884 	}
       
   885 
       
   886 	cb = nic->cb_to_use;
       
   887 	nic->cb_to_use = cb->next;
       
   888 	nic->cbs_avail--;
       
   889 	cb->skb = skb;
       
   890 
       
   891 	err = cb_prepare(nic, cb, skb);
       
   892 	if (err)
       
   893 		goto err_unlock;
       
   894 
       
   895 	if (unlikely(!nic->cbs_avail))
       
   896 		err = -ENOSPC;
       
   897 
       
   898 
       
   899 	/* Order is important otherwise we'll be in a race with h/w:
       
   900 	 * set S-bit in current first, then clear S-bit in previous. */
       
   901 	cb->command |= cpu_to_le16(cb_s);
       
   902 	wmb();
       
   903 	cb->prev->command &= cpu_to_le16(~cb_s);
       
   904 
       
   905 	while (nic->cb_to_send != nic->cb_to_use) {
       
   906 		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
       
   907 			nic->cb_to_send->dma_addr))) {
       
   908 			/* Ok, here's where things get sticky.  It's
       
   909 			 * possible that we can't schedule the command
       
   910 			 * because the controller is too busy, so
       
   911 			 * let's just queue the command and try again
       
   912 			 * when another command is scheduled. */
       
   913 			if (err == -ENOSPC) {
       
   914 				//request a reset
       
   915 				schedule_work(&nic->tx_timeout_task);
       
   916 			}
       
   917 			break;
       
   918 		} else {
       
   919 			nic->cuc_cmd = cuc_resume;
       
   920 			nic->cb_to_send = nic->cb_to_send->next;
       
   921 		}
       
   922 	}
       
   923 
       
   924 err_unlock:
       
   925 	spin_unlock_irqrestore(&nic->cb_lock, flags);
       
   926 
       
   927 	return err;
       
   928 }
       
   929 
       
   930 static int mdio_read(struct net_device *netdev, int addr, int reg)
       
   931 {
       
   932 	struct nic *nic = netdev_priv(netdev);
       
   933 	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
       
   934 }
       
   935 
       
   936 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
       
   937 {
       
   938 	struct nic *nic = netdev_priv(netdev);
       
   939 
       
   940 	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
       
   941 }
       
   942 
       
   943 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
       
   944 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
       
   945 {
       
   946 	u32 data_out = 0;
       
   947 	unsigned int i;
       
   948 	unsigned long flags;
       
   949 
       
   950 
       
   951 	/*
       
   952 	 * Stratus87247: we shouldn't be writing the MDI control
       
   953 	 * register until the Ready bit shows True.  Also, since
       
   954 	 * manipulation of the MDI control registers is a multi-step
       
   955 	 * procedure it should be done under lock.
       
   956 	 */
       
   957 	spin_lock_irqsave(&nic->mdio_lock, flags);
       
   958 	for (i = 100; i; --i) {
       
   959 		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
       
   960 			break;
       
   961 		udelay(20);
       
   962 	}
       
   963 	if (unlikely(!i)) {
       
   964 		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
       
   965 		spin_unlock_irqrestore(&nic->mdio_lock, flags);
       
   966 		return 0;		/* No way to indicate timeout error */
       
   967 	}
       
   968 	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
       
   969 
       
   970 	for (i = 0; i < 100; i++) {
       
   971 		udelay(20);
       
   972 		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
       
   973 			break;
       
   974 	}
       
   975 	spin_unlock_irqrestore(&nic->mdio_lock, flags);
       
   976 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
       
   977 		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
       
   978 		     dir == mdi_read ? "READ" : "WRITE",
       
   979 		     addr, reg, data, data_out);
       
   980 	return (u16)data_out;
       
   981 }
       
   982 
       
   983 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
       
   984 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
       
   985 				 u32 addr,
       
   986 				 u32 dir,
       
   987 				 u32 reg,
       
   988 				 u16 data)
       
   989 {
       
   990 	if ((reg == MII_BMCR) && (dir == mdi_write)) {
       
   991 		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
       
   992 			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
       
   993 							MII_ADVERTISE);
       
   994 
       
   995 			/*
       
   996 			 * Workaround Si issue where sometimes the part will not
       
   997 			 * autoneg to 100Mbps even when advertised.
       
   998 			 */
       
   999 			if (advert & ADVERTISE_100FULL)
       
  1000 				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
       
  1001 			else if (advert & ADVERTISE_100HALF)
       
  1002 				data |= BMCR_SPEED100;
       
  1003 		}
       
  1004 	}
       
  1005 	return mdio_ctrl_hw(nic, addr, dir, reg, data);
       
  1006 }
       
  1007 
       
  1008 /* Fully software-emulated mdio_ctrl() function for cards without
       
  1009  * MII-compliant PHYs.
       
  1010  * For now, this is mainly geared towards 80c24 support; in case of further
       
  1011  * requirements for other types (i82503, ...?) either extend this mechanism
       
  1012  * or split it, whichever is cleaner.
       
  1013  */
       
  1014 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
       
  1015 				      u32 addr,
       
  1016 				      u32 dir,
       
  1017 				      u32 reg,
       
  1018 				      u16 data)
       
  1019 {
       
  1020 	/* might need to allocate a netdev_priv'ed register array eventually
       
  1021 	 * to be able to record state changes, but for now
       
  1022 	 * some fully hardcoded register handling ought to be ok I guess. */
       
  1023 
       
  1024 	if (dir == mdi_read) {
       
  1025 		switch (reg) {
       
  1026 		case MII_BMCR:
       
  1027 			/* Auto-negotiation, right? */
       
  1028 			return  BMCR_ANENABLE |
       
  1029 				BMCR_FULLDPLX;
       
  1030 		case MII_BMSR:
       
  1031 			return	BMSR_LSTATUS /* for mii_link_ok() */ |
       
  1032 				BMSR_ANEGCAPABLE |
       
  1033 				BMSR_10FULL;
       
  1034 		case MII_ADVERTISE:
       
  1035 			/* 80c24 is a "combo card" PHY, right? */
       
  1036 			return	ADVERTISE_10HALF |
       
  1037 				ADVERTISE_10FULL;
       
  1038 		default:
       
  1039 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
       
  1040 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
       
  1041 				     dir == mdi_read ? "READ" : "WRITE",
       
  1042 				     addr, reg, data);
       
  1043 			return 0xFFFF;
       
  1044 		}
       
  1045 	} else {
       
  1046 		switch (reg) {
       
  1047 		default:
       
  1048 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
       
  1049 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
       
  1050 				     dir == mdi_read ? "READ" : "WRITE",
       
  1051 				     addr, reg, data);
       
  1052 			return 0xFFFF;
       
  1053 		}
       
  1054 	}
       
  1055 }
       
  1056 static inline int e100_phy_supports_mii(struct nic *nic)
       
  1057 {
       
  1058 	/* for now, just check it by comparing whether we
       
  1059 	   are using MII software emulation.
       
  1060 	*/
       
  1061 	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
       
  1062 }
       
  1063 
       
  1064 static void e100_get_defaults(struct nic *nic)
       
  1065 {
       
  1066 	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
       
  1067 	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
       
  1068 
       
  1069 	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
       
  1070 	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
       
  1071 	if (nic->mac == mac_unknown)
       
  1072 		nic->mac = mac_82557_D100_A;
       
  1073 
       
  1074 	nic->params.rfds = rfds;
       
  1075 	nic->params.cbs = cbs;
       
  1076 
       
  1077 	/* Quadwords to DMA into FIFO before starting frame transmit */
       
  1078 	nic->tx_threshold = 0xE0;
       
  1079 
       
  1080 	/* no interrupt for every tx completion, delay = 256us if not 557 */
       
  1081 	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
       
  1082 		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
       
  1083 
       
  1084 	/* Template for a freshly allocated RFD */
       
  1085 	nic->blank_rfd.command = 0;
       
  1086 	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
       
  1087 	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
       
  1088 
       
  1089 	/* MII setup */
       
  1090 	nic->mii.phy_id_mask = 0x1F;
       
  1091 	nic->mii.reg_num_mask = 0x1F;
       
  1092 	nic->mii.dev = nic->netdev;
       
  1093 	nic->mii.mdio_read = mdio_read;
       
  1094 	nic->mii.mdio_write = mdio_write;
       
  1095 }
       
  1096 
       
  1097 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
       
  1098 {
       
  1099 	struct config *config = &cb->u.config;
       
  1100 	u8 *c = (u8 *)config;
       
  1101 	struct net_device *netdev = nic->netdev;
       
  1102 
       
  1103 	cb->command = cpu_to_le16(cb_config);
       
  1104 
       
  1105 	memset(config, 0, sizeof(struct config));
       
  1106 
       
  1107 	config->byte_count = 0x16;		/* bytes in this struct */
       
  1108 	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
       
  1109 	config->direct_rx_dma = 0x1;		/* reserved */
       
  1110 	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
       
  1111 	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
       
  1112 	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
       
  1113 	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
       
  1114 	if (e100_phy_supports_mii(nic))
       
  1115 		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
       
  1116 	config->pad10 = 0x6;
       
  1117 	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
       
  1118 	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
       
  1119 	config->ifs = 0x6;			/* x16 = inter frame spacing */
       
  1120 	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
       
  1121 	config->pad15_1 = 0x1;
       
  1122 	config->pad15_2 = 0x1;
       
  1123 	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
       
  1124 	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
       
  1125 	config->tx_padding = 0x1;		/* 1=pad short frames */
       
  1126 	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
       
  1127 	config->pad18 = 0x1;
       
  1128 	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
       
  1129 	config->pad20_1 = 0x1F;
       
  1130 	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
       
  1131 	config->pad21_1 = 0x5;
       
  1132 
       
  1133 	config->adaptive_ifs = nic->adaptive_ifs;
       
  1134 	config->loopback = nic->loopback;
       
  1135 
       
  1136 	if (nic->mii.force_media && nic->mii.full_duplex)
       
  1137 		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
       
  1138 
       
  1139 	if (nic->flags & promiscuous || nic->loopback) {
       
  1140 		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
       
  1141 		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
       
  1142 		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
       
  1143 	}
       
  1144 
       
  1145 	if (unlikely(netdev->features & NETIF_F_RXFCS))
       
  1146 		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
       
  1147 
       
  1148 	if (nic->flags & multicast_all)
       
  1149 		config->multicast_all = 0x1;		/* 1=accept, 0=no */
       
  1150 
       
  1151 	/* disable WoL when up */
       
  1152 	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
       
  1153 		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
       
  1154 
       
  1155 	if (nic->mac >= mac_82558_D101_A4) {
       
  1156 		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
       
  1157 		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
       
  1158 		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
       
  1159 		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
       
  1160 		if (nic->mac >= mac_82559_D101M) {
       
  1161 			config->tno_intr = 0x1;		/* TCO stats enable */
       
  1162 			/* Enable TCO in extended config */
       
  1163 			if (nic->mac >= mac_82551_10) {
       
  1164 				config->byte_count = 0x20; /* extended bytes */
       
  1165 				config->rx_d102_mode = 0x1; /* GMRC for TCO */
       
  1166 			}
       
  1167 		} else {
       
  1168 			config->standard_stat_counter = 0x0;
       
  1169 		}
       
  1170 	}
       
  1171 
       
  1172 	if (netdev->features & NETIF_F_RXALL) {
       
  1173 		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
       
  1174 		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
       
  1175 		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
       
  1176 	}
       
  1177 
       
  1178 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
       
  1179 		     c + 0);
       
  1180 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
       
  1181 		     c + 8);
       
  1182 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
       
  1183 		     c + 16);
       
  1184 	return 0;
       
  1185 }
       
  1186 
       
  1187 /*************************************************************************
       
  1188 *  CPUSaver parameters
       
  1189 *
       
  1190 *  All CPUSaver parameters are 16-bit literals that are part of a
       
  1191 *  "move immediate value" instruction.  By changing the value of
       
  1192 *  the literal in the instruction before the code is loaded, the
       
  1193 *  driver can change the algorithm.
       
  1194 *
       
  1195 *  INTDELAY - This loads the dead-man timer with its initial value.
       
  1196 *    When this timer expires the interrupt is asserted, and the
       
  1197 *    timer is reset each time a new packet is received.  (see
       
  1198 *    BUNDLEMAX below to set the limit on number of chained packets)
       
  1199 *    The current default is 0x600 or 1536.  Experiments show that
       
  1200 *    the value should probably stay within the 0x200 - 0x1000.
       
  1201 *
       
  1202 *  BUNDLEMAX -
       
  1203 *    This sets the maximum number of frames that will be bundled.  In
       
  1204 *    some situations, such as the TCP windowing algorithm, it may be
       
  1205 *    better to limit the growth of the bundle size than let it go as
       
  1206 *    high as it can, because that could cause too much added latency.
       
  1207 *    The default is six, because this is the number of packets in the
       
  1208 *    default TCP window size.  A value of 1 would make CPUSaver indicate
       
  1209 *    an interrupt for every frame received.  If you do not want to put
       
  1210 *    a limit on the bundle size, set this value to xFFFF.
       
  1211 *
       
  1212 *  BUNDLESMALL -
       
  1213 *    This contains a bit-mask describing the minimum size frame that
       
  1214 *    will be bundled.  The default masks the lower 7 bits, which means
       
  1215 *    that any frame less than 128 bytes in length will not be bundled,
       
  1216 *    but will instead immediately generate an interrupt.  This does
       
  1217 *    not affect the current bundle in any way.  Any frame that is 128
       
  1218 *    bytes or large will be bundled normally.  This feature is meant
       
  1219 *    to provide immediate indication of ACK frames in a TCP environment.
       
  1220 *    Customers were seeing poor performance when a machine with CPUSaver
       
  1221 *    enabled was sending but not receiving.  The delay introduced when
       
  1222 *    the ACKs were received was enough to reduce total throughput, because
       
  1223 *    the sender would sit idle until the ACK was finally seen.
       
  1224 *
       
  1225 *    The current default is 0xFF80, which masks out the lower 7 bits.
       
  1226 *    This means that any frame which is x7F (127) bytes or smaller
       
  1227 *    will cause an immediate interrupt.  Because this value must be a
       
  1228 *    bit mask, there are only a few valid values that can be used.  To
       
  1229 *    turn this feature off, the driver can write the value xFFFF to the
       
  1230 *    lower word of this instruction (in the same way that the other
       
  1231 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
       
  1232 *    cause an interrupt to be generated for every frame, because all
       
  1233 *    standard Ethernet frames are <= 2047 bytes in length.
       
  1234 *************************************************************************/
       
  1235 
       
  1236 /* if you wish to disable the ucode functionality, while maintaining the
       
  1237  * workarounds it provides, set the following defines to:
       
  1238  * BUNDLESMALL 0
       
  1239  * BUNDLEMAX 1
       
  1240  * INTDELAY 1
       
  1241  */
       
  1242 #define BUNDLESMALL 1
       
  1243 #define BUNDLEMAX (u16)6
       
  1244 #define INTDELAY (u16)1536 /* 0x600 */
       
  1245 
       
  1246 /* Initialize firmware */
       
  1247 static const struct firmware *e100_request_firmware(struct nic *nic)
       
  1248 {
       
  1249 	const char *fw_name;
       
  1250 	const struct firmware *fw = nic->fw;
       
  1251 	u8 timer, bundle, min_size;
       
  1252 	int err = 0;
       
  1253 	bool required = false;
       
  1254 
       
  1255 	/* do not load u-code for ICH devices */
       
  1256 	if (nic->flags & ich)
       
  1257 		return NULL;
       
  1258 
       
  1259 	/* Search for ucode match against h/w revision
       
  1260 	 *
       
  1261 	 * Based on comments in the source code for the FreeBSD fxp
       
  1262 	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
       
  1263 	 *
       
  1264 	 *    "fixes for bugs in the B-step hardware (specifically, bugs
       
  1265 	 *     with Inline Receive)."
       
  1266 	 *
       
  1267 	 * So we must fail if it cannot be loaded.
       
  1268 	 *
       
  1269 	 * The other microcode files are only required for the optional
       
  1270 	 * CPUSaver feature.  Nice to have, but no reason to fail.
       
  1271 	 */
       
  1272 	if (nic->mac == mac_82559_D101M) {
       
  1273 		fw_name = FIRMWARE_D101M;
       
  1274 	} else if (nic->mac == mac_82559_D101S) {
       
  1275 		fw_name = FIRMWARE_D101S;
       
  1276 	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
       
  1277 		fw_name = FIRMWARE_D102E;
       
  1278 		required = true;
       
  1279 	} else { /* No ucode on other devices */
       
  1280 		return NULL;
       
  1281 	}
       
  1282 
       
  1283 	/* If the firmware has not previously been loaded, request a pointer
       
  1284 	 * to it. If it was previously loaded, we are reinitializing the
       
  1285 	 * adapter, possibly in a resume from hibernate, in which case
       
  1286 	 * request_firmware() cannot be used.
       
  1287 	 */
       
  1288 	if (!fw)
       
  1289 		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
       
  1290 
       
  1291 	if (err) {
       
  1292 		if (required) {
       
  1293 			netif_err(nic, probe, nic->netdev,
       
  1294 				  "Failed to load firmware \"%s\": %d\n",
       
  1295 				  fw_name, err);
       
  1296 			return ERR_PTR(err);
       
  1297 		} else {
       
  1298 			netif_info(nic, probe, nic->netdev,
       
  1299 				   "CPUSaver disabled. Needs \"%s\": %d\n",
       
  1300 				   fw_name, err);
       
  1301 			return NULL;
       
  1302 		}
       
  1303 	}
       
  1304 
       
  1305 	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
       
  1306 	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
       
  1307 	if (fw->size != UCODE_SIZE * 4 + 3) {
       
  1308 		netif_err(nic, probe, nic->netdev,
       
  1309 			  "Firmware \"%s\" has wrong size %zu\n",
       
  1310 			  fw_name, fw->size);
       
  1311 		release_firmware(fw);
       
  1312 		return ERR_PTR(-EINVAL);
       
  1313 	}
       
  1314 
       
  1315 	/* Read timer, bundle and min_size from end of firmware blob */
       
  1316 	timer = fw->data[UCODE_SIZE * 4];
       
  1317 	bundle = fw->data[UCODE_SIZE * 4 + 1];
       
  1318 	min_size = fw->data[UCODE_SIZE * 4 + 2];
       
  1319 
       
  1320 	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
       
  1321 	    min_size >= UCODE_SIZE) {
       
  1322 		netif_err(nic, probe, nic->netdev,
       
  1323 			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
       
  1324 			  fw_name, timer, bundle, min_size);
       
  1325 		release_firmware(fw);
       
  1326 		return ERR_PTR(-EINVAL);
       
  1327 	}
       
  1328 
       
  1329 	/* OK, firmware is validated and ready to use. Save a pointer
       
  1330 	 * to it in the nic */
       
  1331 	nic->fw = fw;
       
  1332 	return fw;
       
  1333 }
       
  1334 
       
  1335 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
       
  1336 			     struct sk_buff *skb)
       
  1337 {
       
  1338 	const struct firmware *fw = (void *)skb;
       
  1339 	u8 timer, bundle, min_size;
       
  1340 
       
  1341 	/* It's not a real skb; we just abused the fact that e100_exec_cb
       
  1342 	   will pass it through to here... */
       
  1343 	cb->skb = NULL;
       
  1344 
       
  1345 	/* firmware is stored as little endian already */
       
  1346 	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
       
  1347 
       
  1348 	/* Read timer, bundle and min_size from end of firmware blob */
       
  1349 	timer = fw->data[UCODE_SIZE * 4];
       
  1350 	bundle = fw->data[UCODE_SIZE * 4 + 1];
       
  1351 	min_size = fw->data[UCODE_SIZE * 4 + 2];
       
  1352 
       
  1353 	/* Insert user-tunable settings in cb->u.ucode */
       
  1354 	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
       
  1355 	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
       
  1356 	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
       
  1357 	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
       
  1358 	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
       
  1359 	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
       
  1360 
       
  1361 	cb->command = cpu_to_le16(cb_ucode | cb_el);
       
  1362 	return 0;
       
  1363 }
       
  1364 
       
  1365 static inline int e100_load_ucode_wait(struct nic *nic)
       
  1366 {
       
  1367 	const struct firmware *fw;
       
  1368 	int err = 0, counter = 50;
       
  1369 	struct cb *cb = nic->cb_to_clean;
       
  1370 
       
  1371 	fw = e100_request_firmware(nic);
       
  1372 	/* If it's NULL, then no ucode is required */
       
  1373 	if (!fw || IS_ERR(fw))
       
  1374 		return PTR_ERR(fw);
       
  1375 
       
  1376 	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
       
  1377 		netif_err(nic, probe, nic->netdev,
       
  1378 			  "ucode cmd failed with error %d\n", err);
       
  1379 
       
  1380 	/* must restart cuc */
       
  1381 	nic->cuc_cmd = cuc_start;
       
  1382 
       
  1383 	/* wait for completion */
       
  1384 	e100_write_flush(nic);
       
  1385 	udelay(10);
       
  1386 
       
  1387 	/* wait for possibly (ouch) 500ms */
       
  1388 	while (!(cb->status & cpu_to_le16(cb_complete))) {
       
  1389 		msleep(10);
       
  1390 		if (!--counter) break;
       
  1391 	}
       
  1392 
       
  1393 	/* ack any interrupts, something could have been set */
       
  1394 	iowrite8(~0, &nic->csr->scb.stat_ack);
       
  1395 
       
  1396 	/* if the command failed, or is not OK, notify and return */
       
  1397 	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
       
  1398 		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
       
  1399 		err = -EPERM;
       
  1400 	}
       
  1401 
       
  1402 	return err;
       
  1403 }
       
  1404 
       
  1405 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
       
  1406 	struct sk_buff *skb)
       
  1407 {
       
  1408 	cb->command = cpu_to_le16(cb_iaaddr);
       
  1409 	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
       
  1410 	return 0;
       
  1411 }
       
  1412 
       
  1413 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
       
  1414 {
       
  1415 	cb->command = cpu_to_le16(cb_dump);
       
  1416 	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
       
  1417 		offsetof(struct mem, dump_buf));
       
  1418 	return 0;
       
  1419 }
       
  1420 
       
  1421 static int e100_phy_check_without_mii(struct nic *nic)
       
  1422 {
       
  1423 	u8 phy_type;
       
  1424 	int without_mii;
       
  1425 
       
  1426 	phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
       
  1427 
       
  1428 	switch (phy_type) {
       
  1429 	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
       
  1430 	case I82503: /* Non-MII PHY; UNTESTED! */
       
  1431 	case S80C24: /* Non-MII PHY; tested and working */
       
  1432 		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
       
  1433 		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
       
  1434 		 * doesn't have a programming interface of any sort.  The
       
  1435 		 * media is sensed automatically based on how the link partner
       
  1436 		 * is configured.  This is, in essence, manual configuration.
       
  1437 		 */
       
  1438 		netif_info(nic, probe, nic->netdev,
       
  1439 			   "found MII-less i82503 or 80c24 or other PHY\n");
       
  1440 
       
  1441 		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
       
  1442 		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
       
  1443 
       
  1444 		/* these might be needed for certain MII-less cards...
       
  1445 		 * nic->flags |= ich;
       
  1446 		 * nic->flags |= ich_10h_workaround; */
       
  1447 
       
  1448 		without_mii = 1;
       
  1449 		break;
       
  1450 	default:
       
  1451 		without_mii = 0;
       
  1452 		break;
       
  1453 	}
       
  1454 	return without_mii;
       
  1455 }
       
  1456 
       
  1457 #define NCONFIG_AUTO_SWITCH	0x0080
       
  1458 #define MII_NSC_CONG		MII_RESV1
       
  1459 #define NSC_CONG_ENABLE		0x0100
       
  1460 #define NSC_CONG_TXREADY	0x0400
       
  1461 #define ADVERTISE_FC_SUPPORTED	0x0400
       
  1462 static int e100_phy_init(struct nic *nic)
       
  1463 {
       
  1464 	struct net_device *netdev = nic->netdev;
       
  1465 	u32 addr;
       
  1466 	u16 bmcr, stat, id_lo, id_hi, cong;
       
  1467 
       
  1468 	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
       
  1469 	for (addr = 0; addr < 32; addr++) {
       
  1470 		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
       
  1471 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
       
  1472 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
       
  1473 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
       
  1474 		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
       
  1475 			break;
       
  1476 	}
       
  1477 	if (addr == 32) {
       
  1478 		/* uhoh, no PHY detected: check whether we seem to be some
       
  1479 		 * weird, rare variant which is *known* to not have any MII.
       
  1480 		 * But do this AFTER MII checking only, since this does
       
  1481 		 * lookup of EEPROM values which may easily be unreliable. */
       
  1482 		if (e100_phy_check_without_mii(nic))
       
  1483 			return 0; /* simply return and hope for the best */
       
  1484 		else {
       
  1485 			/* for unknown cases log a fatal error */
       
  1486 			netif_err(nic, hw, nic->netdev,
       
  1487 				  "Failed to locate any known PHY, aborting\n");
       
  1488 			return -EAGAIN;
       
  1489 		}
       
  1490 	} else
       
  1491 		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
       
  1492 			     "phy_addr = %d\n", nic->mii.phy_id);
       
  1493 
       
  1494 	/* Get phy ID */
       
  1495 	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
       
  1496 	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
       
  1497 	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
       
  1498 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
       
  1499 		     "phy ID = 0x%08X\n", nic->phy);
       
  1500 
       
  1501 	/* Select the phy and isolate the rest */
       
  1502 	for (addr = 0; addr < 32; addr++) {
       
  1503 		if (addr != nic->mii.phy_id) {
       
  1504 			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
       
  1505 		} else if (nic->phy != phy_82552_v) {
       
  1506 			bmcr = mdio_read(netdev, addr, MII_BMCR);
       
  1507 			mdio_write(netdev, addr, MII_BMCR,
       
  1508 				bmcr & ~BMCR_ISOLATE);
       
  1509 		}
       
  1510 	}
       
  1511 	/*
       
  1512 	 * Workaround for 82552:
       
  1513 	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
       
  1514 	 * other phy_id's) using bmcr value from addr discovery loop above.
       
  1515 	 */
       
  1516 	if (nic->phy == phy_82552_v)
       
  1517 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
       
  1518 			bmcr & ~BMCR_ISOLATE);
       
  1519 
       
  1520 	/* Handle National tx phys */
       
  1521 #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
       
  1522 	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
       
  1523 		/* Disable congestion control */
       
  1524 		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
       
  1525 		cong |= NSC_CONG_TXREADY;
       
  1526 		cong &= ~NSC_CONG_ENABLE;
       
  1527 		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
       
  1528 	}
       
  1529 
       
  1530 	if (nic->phy == phy_82552_v) {
       
  1531 		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
       
  1532 
       
  1533 		/* assign special tweaked mdio_ctrl() function */
       
  1534 		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
       
  1535 
       
  1536 		/* Workaround Si not advertising flow-control during autoneg */
       
  1537 		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
       
  1538 		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
       
  1539 
       
  1540 		/* Reset for the above changes to take effect */
       
  1541 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
       
  1542 		bmcr |= BMCR_RESET;
       
  1543 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
       
  1544 	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
       
  1545 	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
       
  1546 		!(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
       
  1547 		/* enable/disable MDI/MDI-X auto-switching. */
       
  1548 		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
       
  1549 				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
       
  1550 	}
       
  1551 
       
  1552 	return 0;
       
  1553 }
       
  1554 
       
  1555 static int e100_hw_init(struct nic *nic)
       
  1556 {
       
  1557 	int err = 0;
       
  1558 
       
  1559 	e100_hw_reset(nic);
       
  1560 
       
  1561 	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
       
  1562 	if (!in_interrupt() && (err = e100_self_test(nic)))
       
  1563 		return err;
       
  1564 
       
  1565 	if ((err = e100_phy_init(nic)))
       
  1566 		return err;
       
  1567 	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
       
  1568 		return err;
       
  1569 	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
       
  1570 		return err;
       
  1571 	if ((err = e100_load_ucode_wait(nic)))
       
  1572 		return err;
       
  1573 	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
       
  1574 		return err;
       
  1575 	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
       
  1576 		return err;
       
  1577 	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
       
  1578 		nic->dma_addr + offsetof(struct mem, stats))))
       
  1579 		return err;
       
  1580 	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
       
  1581 		return err;
       
  1582 
       
  1583 	e100_disable_irq(nic);
       
  1584 
       
  1585 	return 0;
       
  1586 }
       
  1587 
       
  1588 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
       
  1589 {
       
  1590 	struct net_device *netdev = nic->netdev;
       
  1591 	struct netdev_hw_addr *ha;
       
  1592 	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
       
  1593 
       
  1594 	cb->command = cpu_to_le16(cb_multi);
       
  1595 	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
       
  1596 	i = 0;
       
  1597 	netdev_for_each_mc_addr(ha, netdev) {
       
  1598 		if (i == count)
       
  1599 			break;
       
  1600 		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
       
  1601 			ETH_ALEN);
       
  1602 	}
       
  1603 	return 0;
       
  1604 }
       
  1605 
       
  1606 static void e100_set_multicast_list(struct net_device *netdev)
       
  1607 {
       
  1608 	struct nic *nic = netdev_priv(netdev);
       
  1609 
       
  1610 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
       
  1611 		     "mc_count=%d, flags=0x%04X\n",
       
  1612 		     netdev_mc_count(netdev), netdev->flags);
       
  1613 
       
  1614 	if (netdev->flags & IFF_PROMISC)
       
  1615 		nic->flags |= promiscuous;
       
  1616 	else
       
  1617 		nic->flags &= ~promiscuous;
       
  1618 
       
  1619 	if (netdev->flags & IFF_ALLMULTI ||
       
  1620 		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
       
  1621 		nic->flags |= multicast_all;
       
  1622 	else
       
  1623 		nic->flags &= ~multicast_all;
       
  1624 
       
  1625 	e100_exec_cb(nic, NULL, e100_configure);
       
  1626 	e100_exec_cb(nic, NULL, e100_multi);
       
  1627 }
       
  1628 
       
  1629 static void e100_update_stats(struct nic *nic)
       
  1630 {
       
  1631 	struct net_device *dev = nic->netdev;
       
  1632 	struct net_device_stats *ns = &dev->stats;
       
  1633 	struct stats *s = &nic->mem->stats;
       
  1634 	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
       
  1635 		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
       
  1636 		&s->complete;
       
  1637 
       
  1638 	/* Device's stats reporting may take several microseconds to
       
  1639 	 * complete, so we're always waiting for results of the
       
  1640 	 * previous command. */
       
  1641 
       
  1642 	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
       
  1643 		*complete = 0;
       
  1644 		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
       
  1645 		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
       
  1646 		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
       
  1647 		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
       
  1648 		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
       
  1649 		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
       
  1650 		ns->collisions += nic->tx_collisions;
       
  1651 		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
       
  1652 			le32_to_cpu(s->tx_lost_crs);
       
  1653 		nic->rx_short_frame_errors +=
       
  1654 			le32_to_cpu(s->rx_short_frame_errors);
       
  1655 		ns->rx_length_errors = nic->rx_short_frame_errors +
       
  1656 			nic->rx_over_length_errors;
       
  1657 		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
       
  1658 		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
       
  1659 		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
       
  1660 		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
       
  1661 		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
       
  1662 		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
       
  1663 			le32_to_cpu(s->rx_alignment_errors) +
       
  1664 			le32_to_cpu(s->rx_short_frame_errors) +
       
  1665 			le32_to_cpu(s->rx_cdt_errors);
       
  1666 		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
       
  1667 		nic->tx_single_collisions +=
       
  1668 			le32_to_cpu(s->tx_single_collisions);
       
  1669 		nic->tx_multiple_collisions +=
       
  1670 			le32_to_cpu(s->tx_multiple_collisions);
       
  1671 		if (nic->mac >= mac_82558_D101_A4) {
       
  1672 			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
       
  1673 			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
       
  1674 			nic->rx_fc_unsupported +=
       
  1675 				le32_to_cpu(s->fc_rcv_unsupported);
       
  1676 			if (nic->mac >= mac_82559_D101M) {
       
  1677 				nic->tx_tco_frames +=
       
  1678 					le16_to_cpu(s->xmt_tco_frames);
       
  1679 				nic->rx_tco_frames +=
       
  1680 					le16_to_cpu(s->rcv_tco_frames);
       
  1681 			}
       
  1682 		}
       
  1683 	}
       
  1684 
       
  1685 
       
  1686 	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
       
  1687 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
       
  1688 			     "exec cuc_dump_reset failed\n");
       
  1689 }
       
  1690 
       
  1691 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
       
  1692 {
       
  1693 	/* Adjust inter-frame-spacing (IFS) between two transmits if
       
  1694 	 * we're getting collisions on a half-duplex connection. */
       
  1695 
       
  1696 	if (duplex == DUPLEX_HALF) {
       
  1697 		u32 prev = nic->adaptive_ifs;
       
  1698 		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
       
  1699 
       
  1700 		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
       
  1701 		   (nic->tx_frames > min_frames)) {
       
  1702 			if (nic->adaptive_ifs < 60)
       
  1703 				nic->adaptive_ifs += 5;
       
  1704 		} else if (nic->tx_frames < min_frames) {
       
  1705 			if (nic->adaptive_ifs >= 5)
       
  1706 				nic->adaptive_ifs -= 5;
       
  1707 		}
       
  1708 		if (nic->adaptive_ifs != prev)
       
  1709 			e100_exec_cb(nic, NULL, e100_configure);
       
  1710 	}
       
  1711 }
       
  1712 
       
  1713 static void e100_watchdog(unsigned long data)
       
  1714 {
       
  1715 	struct nic *nic = (struct nic *)data;
       
  1716 	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
       
  1717 	u32 speed;
       
  1718 
       
  1719 	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
       
  1720 		     "right now = %ld\n", jiffies);
       
  1721 
       
  1722 	/* mii library handles link maintenance tasks */
       
  1723 
       
  1724 	mii_ethtool_gset(&nic->mii, &cmd);
       
  1725 	speed = ethtool_cmd_speed(&cmd);
       
  1726 
       
  1727 	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
       
  1728 		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
       
  1729 			    speed == SPEED_100 ? 100 : 10,
       
  1730 			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
       
  1731 	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
       
  1732 		netdev_info(nic->netdev, "NIC Link is Down\n");
       
  1733 	}
       
  1734 
       
  1735 	mii_check_link(&nic->mii);
       
  1736 
       
  1737 	/* Software generated interrupt to recover from (rare) Rx
       
  1738 	 * allocation failure.
       
  1739 	 * Unfortunately have to use a spinlock to not re-enable interrupts
       
  1740 	 * accidentally, due to hardware that shares a register between the
       
  1741 	 * interrupt mask bit and the SW Interrupt generation bit */
       
  1742 	spin_lock_irq(&nic->cmd_lock);
       
  1743 	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
       
  1744 	e100_write_flush(nic);
       
  1745 	spin_unlock_irq(&nic->cmd_lock);
       
  1746 
       
  1747 	e100_update_stats(nic);
       
  1748 	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
       
  1749 
       
  1750 	if (nic->mac <= mac_82557_D100_C)
       
  1751 		/* Issue a multicast command to workaround a 557 lock up */
       
  1752 		e100_set_multicast_list(nic->netdev);
       
  1753 
       
  1754 	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
       
  1755 		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
       
  1756 		nic->flags |= ich_10h_workaround;
       
  1757 	else
       
  1758 		nic->flags &= ~ich_10h_workaround;
       
  1759 
       
  1760 	mod_timer(&nic->watchdog,
       
  1761 		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
       
  1762 }
       
  1763 
       
  1764 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
       
  1765 	struct sk_buff *skb)
       
  1766 {
       
  1767 	dma_addr_t dma_addr;
       
  1768 	cb->command = nic->tx_command;
       
  1769 
       
  1770 	dma_addr = pci_map_single(nic->pdev,
       
  1771 				  skb->data, skb->len, PCI_DMA_TODEVICE);
       
  1772 	/* If we can't map the skb, have the upper layer try later */
       
  1773 	if (pci_dma_mapping_error(nic->pdev, dma_addr))
       
  1774 		return -ENOMEM;
       
  1775 
       
  1776 	/*
       
  1777 	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
       
  1778 	 * testing, ie sending frames with bad CRC.
       
  1779 	 */
       
  1780 	if (unlikely(skb->no_fcs))
       
  1781 		cb->command |= cpu_to_le16(cb_tx_nc);
       
  1782 	else
       
  1783 		cb->command &= ~cpu_to_le16(cb_tx_nc);
       
  1784 
       
  1785 	/* interrupt every 16 packets regardless of delay */
       
  1786 	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
       
  1787 		cb->command |= cpu_to_le16(cb_i);
       
  1788 	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
       
  1789 	cb->u.tcb.tcb_byte_count = 0;
       
  1790 	cb->u.tcb.threshold = nic->tx_threshold;
       
  1791 	cb->u.tcb.tbd_count = 1;
       
  1792 	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
       
  1793 	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
       
  1794 	skb_tx_timestamp(skb);
       
  1795 	return 0;
       
  1796 }
       
  1797 
       
  1798 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
       
  1799 				   struct net_device *netdev)
       
  1800 {
       
  1801 	struct nic *nic = netdev_priv(netdev);
       
  1802 	int err;
       
  1803 
       
  1804 	if (nic->flags & ich_10h_workaround) {
       
  1805 		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
       
  1806 		   Issue a NOP command followed by a 1us delay before
       
  1807 		   issuing the Tx command. */
       
  1808 		if (e100_exec_cmd(nic, cuc_nop, 0))
       
  1809 			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
       
  1810 				     "exec cuc_nop failed\n");
       
  1811 		udelay(1);
       
  1812 	}
       
  1813 
       
  1814 	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
       
  1815 
       
  1816 	switch (err) {
       
  1817 	case -ENOSPC:
       
  1818 		/* We queued the skb, but now we're out of space. */
       
  1819 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
       
  1820 			     "No space for CB\n");
       
  1821 		netif_stop_queue(netdev);
       
  1822 		break;
       
  1823 	case -ENOMEM:
       
  1824 		/* This is a hard error - log it. */
       
  1825 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
       
  1826 			     "Out of Tx resources, returning skb\n");
       
  1827 		netif_stop_queue(netdev);
       
  1828 		return NETDEV_TX_BUSY;
       
  1829 	}
       
  1830 
       
  1831 	return NETDEV_TX_OK;
       
  1832 }
       
  1833 
       
  1834 static int e100_tx_clean(struct nic *nic)
       
  1835 {
       
  1836 	struct net_device *dev = nic->netdev;
       
  1837 	struct cb *cb;
       
  1838 	int tx_cleaned = 0;
       
  1839 
       
  1840 	spin_lock(&nic->cb_lock);
       
  1841 
       
  1842 	/* Clean CBs marked complete */
       
  1843 	for (cb = nic->cb_to_clean;
       
  1844 	    cb->status & cpu_to_le16(cb_complete);
       
  1845 	    cb = nic->cb_to_clean = cb->next) {
       
  1846 		rmb(); /* read skb after status */
       
  1847 		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
       
  1848 			     "cb[%d]->status = 0x%04X\n",
       
  1849 			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
       
  1850 			     cb->status);
       
  1851 
       
  1852 		if (likely(cb->skb != NULL)) {
       
  1853 			dev->stats.tx_packets++;
       
  1854 			dev->stats.tx_bytes += cb->skb->len;
       
  1855 
       
  1856 			pci_unmap_single(nic->pdev,
       
  1857 				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
       
  1858 				le16_to_cpu(cb->u.tcb.tbd.size),
       
  1859 				PCI_DMA_TODEVICE);
       
  1860 			dev_kfree_skb_any(cb->skb);
       
  1861 			cb->skb = NULL;
       
  1862 			tx_cleaned = 1;
       
  1863 		}
       
  1864 		cb->status = 0;
       
  1865 		nic->cbs_avail++;
       
  1866 	}
       
  1867 
       
  1868 	spin_unlock(&nic->cb_lock);
       
  1869 
       
  1870 	/* Recover from running out of Tx resources in xmit_frame */
       
  1871 	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
       
  1872 		netif_wake_queue(nic->netdev);
       
  1873 
       
  1874 	return tx_cleaned;
       
  1875 }
       
  1876 
       
  1877 static void e100_clean_cbs(struct nic *nic)
       
  1878 {
       
  1879 	if (nic->cbs) {
       
  1880 		while (nic->cbs_avail != nic->params.cbs.count) {
       
  1881 			struct cb *cb = nic->cb_to_clean;
       
  1882 			if (cb->skb) {
       
  1883 				pci_unmap_single(nic->pdev,
       
  1884 					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
       
  1885 					le16_to_cpu(cb->u.tcb.tbd.size),
       
  1886 					PCI_DMA_TODEVICE);
       
  1887 				dev_kfree_skb(cb->skb);
       
  1888 			}
       
  1889 			nic->cb_to_clean = nic->cb_to_clean->next;
       
  1890 			nic->cbs_avail++;
       
  1891 		}
       
  1892 		pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
       
  1893 		nic->cbs = NULL;
       
  1894 		nic->cbs_avail = 0;
       
  1895 	}
       
  1896 	nic->cuc_cmd = cuc_start;
       
  1897 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
       
  1898 		nic->cbs;
       
  1899 }
       
  1900 
       
  1901 static int e100_alloc_cbs(struct nic *nic)
       
  1902 {
       
  1903 	struct cb *cb;
       
  1904 	unsigned int i, count = nic->params.cbs.count;
       
  1905 
       
  1906 	nic->cuc_cmd = cuc_start;
       
  1907 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
       
  1908 	nic->cbs_avail = 0;
       
  1909 
       
  1910 	nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
       
  1911 				  &nic->cbs_dma_addr);
       
  1912 	if (!nic->cbs)
       
  1913 		return -ENOMEM;
       
  1914 	memset(nic->cbs, 0, count * sizeof(struct cb));
       
  1915 
       
  1916 	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
       
  1917 		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
       
  1918 		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
       
  1919 
       
  1920 		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
       
  1921 		cb->link = cpu_to_le32(nic->cbs_dma_addr +
       
  1922 			((i+1) % count) * sizeof(struct cb));
       
  1923 	}
       
  1924 
       
  1925 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
       
  1926 	nic->cbs_avail = count;
       
  1927 
       
  1928 	return 0;
       
  1929 }
       
  1930 
       
  1931 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
       
  1932 {
       
  1933 	if (!nic->rxs) return;
       
  1934 	if (RU_SUSPENDED != nic->ru_running) return;
       
  1935 
       
  1936 	/* handle init time starts */
       
  1937 	if (!rx) rx = nic->rxs;
       
  1938 
       
  1939 	/* (Re)start RU if suspended or idle and RFA is non-NULL */
       
  1940 	if (rx->skb) {
       
  1941 		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
       
  1942 		nic->ru_running = RU_RUNNING;
       
  1943 	}
       
  1944 }
       
  1945 
       
  1946 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
       
  1947 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
       
  1948 {
       
  1949 	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
       
  1950 		return -ENOMEM;
       
  1951 
       
  1952 	/* Init, and map the RFD. */
       
  1953 	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
       
  1954 	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
       
  1955 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
       
  1956 
       
  1957 	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
       
  1958 		dev_kfree_skb_any(rx->skb);
       
  1959 		rx->skb = NULL;
       
  1960 		rx->dma_addr = 0;
       
  1961 		return -ENOMEM;
       
  1962 	}
       
  1963 
       
  1964 	/* Link the RFD to end of RFA by linking previous RFD to
       
  1965 	 * this one.  We are safe to touch the previous RFD because
       
  1966 	 * it is protected by the before last buffer's el bit being set */
       
  1967 	if (rx->prev->skb) {
       
  1968 		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
       
  1969 		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
       
  1970 		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
       
  1971 			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
       
  1972 	}
       
  1973 
       
  1974 	return 0;
       
  1975 }
       
  1976 
       
  1977 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
       
  1978 	unsigned int *work_done, unsigned int work_to_do)
       
  1979 {
       
  1980 	struct net_device *dev = nic->netdev;
       
  1981 	struct sk_buff *skb = rx->skb;
       
  1982 	struct rfd *rfd = (struct rfd *)skb->data;
       
  1983 	u16 rfd_status, actual_size;
       
  1984 	u16 fcs_pad = 0;
       
  1985 
       
  1986 	if (unlikely(work_done && *work_done >= work_to_do))
       
  1987 		return -EAGAIN;
       
  1988 
       
  1989 	/* Need to sync before taking a peek at cb_complete bit */
       
  1990 	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
       
  1991 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
       
  1992 	rfd_status = le16_to_cpu(rfd->status);
       
  1993 
       
  1994 	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
       
  1995 		     "status=0x%04X\n", rfd_status);
       
  1996 	rmb(); /* read size after status bit */
       
  1997 
       
  1998 	/* If data isn't ready, nothing to indicate */
       
  1999 	if (unlikely(!(rfd_status & cb_complete))) {
       
  2000 		/* If the next buffer has the el bit, but we think the receiver
       
  2001 		 * is still running, check to see if it really stopped while
       
  2002 		 * we had interrupts off.
       
  2003 		 * This allows for a fast restart without re-enabling
       
  2004 		 * interrupts */
       
  2005 		if ((le16_to_cpu(rfd->command) & cb_el) &&
       
  2006 		    (RU_RUNNING == nic->ru_running))
       
  2007 
       
  2008 			if (ioread8(&nic->csr->scb.status) & rus_no_res)
       
  2009 				nic->ru_running = RU_SUSPENDED;
       
  2010 		pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
       
  2011 					       sizeof(struct rfd),
       
  2012 					       PCI_DMA_FROMDEVICE);
       
  2013 		return -ENODATA;
       
  2014 	}
       
  2015 
       
  2016 	/* Get actual data size */
       
  2017 	if (unlikely(dev->features & NETIF_F_RXFCS))
       
  2018 		fcs_pad = 4;
       
  2019 	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
       
  2020 	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
       
  2021 		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
       
  2022 
       
  2023 	/* Get data */
       
  2024 	pci_unmap_single(nic->pdev, rx->dma_addr,
       
  2025 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
       
  2026 
       
  2027 	/* If this buffer has the el bit, but we think the receiver
       
  2028 	 * is still running, check to see if it really stopped while
       
  2029 	 * we had interrupts off.
       
  2030 	 * This allows for a fast restart without re-enabling interrupts.
       
  2031 	 * This can happen when the RU sees the size change but also sees
       
  2032 	 * the el bit set. */
       
  2033 	if ((le16_to_cpu(rfd->command) & cb_el) &&
       
  2034 	    (RU_RUNNING == nic->ru_running)) {
       
  2035 
       
  2036 	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
       
  2037 		nic->ru_running = RU_SUSPENDED;
       
  2038 	}
       
  2039 
       
  2040 	/* Pull off the RFD and put the actual data (minus eth hdr) */
       
  2041 	skb_reserve(skb, sizeof(struct rfd));
       
  2042 	skb_put(skb, actual_size);
       
  2043 	skb->protocol = eth_type_trans(skb, nic->netdev);
       
  2044 
       
  2045 	/* If we are receiving all frames, then don't bother
       
  2046 	 * checking for errors.
       
  2047 	 */
       
  2048 	if (unlikely(dev->features & NETIF_F_RXALL)) {
       
  2049 		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
       
  2050 			/* Received oversized frame, but keep it. */
       
  2051 			nic->rx_over_length_errors++;
       
  2052 		goto process_skb;
       
  2053 	}
       
  2054 
       
  2055 	if (unlikely(!(rfd_status & cb_ok))) {
       
  2056 		/* Don't indicate if hardware indicates errors */
       
  2057 		dev_kfree_skb_any(skb);
       
  2058 	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
       
  2059 		/* Don't indicate oversized frames */
       
  2060 		nic->rx_over_length_errors++;
       
  2061 		dev_kfree_skb_any(skb);
       
  2062 	} else {
       
  2063 process_skb:
       
  2064 		dev->stats.rx_packets++;
       
  2065 		dev->stats.rx_bytes += (actual_size - fcs_pad);
       
  2066 		netif_receive_skb(skb);
       
  2067 		if (work_done)
       
  2068 			(*work_done)++;
       
  2069 	}
       
  2070 
       
  2071 	rx->skb = NULL;
       
  2072 
       
  2073 	return 0;
       
  2074 }
       
  2075 
       
  2076 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
       
  2077 	unsigned int work_to_do)
       
  2078 {
       
  2079 	struct rx *rx;
       
  2080 	int restart_required = 0, err = 0;
       
  2081 	struct rx *old_before_last_rx, *new_before_last_rx;
       
  2082 	struct rfd *old_before_last_rfd, *new_before_last_rfd;
       
  2083 
       
  2084 	/* Indicate newly arrived packets */
       
  2085 	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
       
  2086 		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
       
  2087 		/* Hit quota or no more to clean */
       
  2088 		if (-EAGAIN == err || -ENODATA == err)
       
  2089 			break;
       
  2090 	}
       
  2091 
       
  2092 
       
  2093 	/* On EAGAIN, hit quota so have more work to do, restart once
       
  2094 	 * cleanup is complete.
       
  2095 	 * Else, are we already rnr? then pay attention!!! this ensures that
       
  2096 	 * the state machine progression never allows a start with a
       
  2097 	 * partially cleaned list, avoiding a race between hardware
       
  2098 	 * and rx_to_clean when in NAPI mode */
       
  2099 	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
       
  2100 		restart_required = 1;
       
  2101 
       
  2102 	old_before_last_rx = nic->rx_to_use->prev->prev;
       
  2103 	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
       
  2104 
       
  2105 	/* Alloc new skbs to refill list */
       
  2106 	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
       
  2107 		if (unlikely(e100_rx_alloc_skb(nic, rx)))
       
  2108 			break; /* Better luck next time (see watchdog) */
       
  2109 	}
       
  2110 
       
  2111 	new_before_last_rx = nic->rx_to_use->prev->prev;
       
  2112 	if (new_before_last_rx != old_before_last_rx) {
       
  2113 		/* Set the el-bit on the buffer that is before the last buffer.
       
  2114 		 * This lets us update the next pointer on the last buffer
       
  2115 		 * without worrying about hardware touching it.
       
  2116 		 * We set the size to 0 to prevent hardware from touching this
       
  2117 		 * buffer.
       
  2118 		 * When the hardware hits the before last buffer with el-bit
       
  2119 		 * and size of 0, it will RNR interrupt, the RUS will go into
       
  2120 		 * the No Resources state.  It will not complete nor write to
       
  2121 		 * this buffer. */
       
  2122 		new_before_last_rfd =
       
  2123 			(struct rfd *)new_before_last_rx->skb->data;
       
  2124 		new_before_last_rfd->size = 0;
       
  2125 		new_before_last_rfd->command |= cpu_to_le16(cb_el);
       
  2126 		pci_dma_sync_single_for_device(nic->pdev,
       
  2127 			new_before_last_rx->dma_addr, sizeof(struct rfd),
       
  2128 			PCI_DMA_BIDIRECTIONAL);
       
  2129 
       
  2130 		/* Now that we have a new stopping point, we can clear the old
       
  2131 		 * stopping point.  We must sync twice to get the proper
       
  2132 		 * ordering on the hardware side of things. */
       
  2133 		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
       
  2134 		pci_dma_sync_single_for_device(nic->pdev,
       
  2135 			old_before_last_rx->dma_addr, sizeof(struct rfd),
       
  2136 			PCI_DMA_BIDIRECTIONAL);
       
  2137 		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
       
  2138 							+ ETH_FCS_LEN);
       
  2139 		pci_dma_sync_single_for_device(nic->pdev,
       
  2140 			old_before_last_rx->dma_addr, sizeof(struct rfd),
       
  2141 			PCI_DMA_BIDIRECTIONAL);
       
  2142 	}
       
  2143 
       
  2144 	if (restart_required) {
       
  2145 		// ack the rnr?
       
  2146 		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
       
  2147 		e100_start_receiver(nic, nic->rx_to_clean);
       
  2148 		if (work_done)
       
  2149 			(*work_done)++;
       
  2150 	}
       
  2151 }
       
  2152 
       
  2153 static void e100_rx_clean_list(struct nic *nic)
       
  2154 {
       
  2155 	struct rx *rx;
       
  2156 	unsigned int i, count = nic->params.rfds.count;
       
  2157 
       
  2158 	nic->ru_running = RU_UNINITIALIZED;
       
  2159 
       
  2160 	if (nic->rxs) {
       
  2161 		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
       
  2162 			if (rx->skb) {
       
  2163 				pci_unmap_single(nic->pdev, rx->dma_addr,
       
  2164 					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
       
  2165 				dev_kfree_skb(rx->skb);
       
  2166 			}
       
  2167 		}
       
  2168 		kfree(nic->rxs);
       
  2169 		nic->rxs = NULL;
       
  2170 	}
       
  2171 
       
  2172 	nic->rx_to_use = nic->rx_to_clean = NULL;
       
  2173 }
       
  2174 
       
  2175 static int e100_rx_alloc_list(struct nic *nic)
       
  2176 {
       
  2177 	struct rx *rx;
       
  2178 	unsigned int i, count = nic->params.rfds.count;
       
  2179 	struct rfd *before_last;
       
  2180 
       
  2181 	nic->rx_to_use = nic->rx_to_clean = NULL;
       
  2182 	nic->ru_running = RU_UNINITIALIZED;
       
  2183 
       
  2184 	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
       
  2185 		return -ENOMEM;
       
  2186 
       
  2187 	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
       
  2188 		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
       
  2189 		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
       
  2190 		if (e100_rx_alloc_skb(nic, rx)) {
       
  2191 			e100_rx_clean_list(nic);
       
  2192 			return -ENOMEM;
       
  2193 		}
       
  2194 	}
       
  2195 	/* Set the el-bit on the buffer that is before the last buffer.
       
  2196 	 * This lets us update the next pointer on the last buffer without
       
  2197 	 * worrying about hardware touching it.
       
  2198 	 * We set the size to 0 to prevent hardware from touching this buffer.
       
  2199 	 * When the hardware hits the before last buffer with el-bit and size
       
  2200 	 * of 0, it will RNR interrupt, the RU will go into the No Resources
       
  2201 	 * state.  It will not complete nor write to this buffer. */
       
  2202 	rx = nic->rxs->prev->prev;
       
  2203 	before_last = (struct rfd *)rx->skb->data;
       
  2204 	before_last->command |= cpu_to_le16(cb_el);
       
  2205 	before_last->size = 0;
       
  2206 	pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
       
  2207 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
       
  2208 
       
  2209 	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
       
  2210 	nic->ru_running = RU_SUSPENDED;
       
  2211 
       
  2212 	return 0;
       
  2213 }
       
  2214 
       
  2215 static irqreturn_t e100_intr(int irq, void *dev_id)
       
  2216 {
       
  2217 	struct net_device *netdev = dev_id;
       
  2218 	struct nic *nic = netdev_priv(netdev);
       
  2219 	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
       
  2220 
       
  2221 	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
       
  2222 		     "stat_ack = 0x%02X\n", stat_ack);
       
  2223 
       
  2224 	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
       
  2225 	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
       
  2226 		return IRQ_NONE;
       
  2227 
       
  2228 	/* Ack interrupt(s) */
       
  2229 	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
       
  2230 
       
  2231 	/* We hit Receive No Resource (RNR); restart RU after cleaning */
       
  2232 	if (stat_ack & stat_ack_rnr)
       
  2233 		nic->ru_running = RU_SUSPENDED;
       
  2234 
       
  2235 	if (likely(napi_schedule_prep(&nic->napi))) {
       
  2236 		e100_disable_irq(nic);
       
  2237 		__napi_schedule(&nic->napi);
       
  2238 	}
       
  2239 
       
  2240 	return IRQ_HANDLED;
       
  2241 }
       
  2242 
       
  2243 static int e100_poll(struct napi_struct *napi, int budget)
       
  2244 {
       
  2245 	struct nic *nic = container_of(napi, struct nic, napi);
       
  2246 	unsigned int work_done = 0;
       
  2247 
       
  2248 	e100_rx_clean(nic, &work_done, budget);
       
  2249 	e100_tx_clean(nic);
       
  2250 
       
  2251 	/* If budget not fully consumed, exit the polling mode */
       
  2252 	if (work_done < budget) {
       
  2253 		napi_complete(napi);
       
  2254 		e100_enable_irq(nic);
       
  2255 	}
       
  2256 
       
  2257 	return work_done;
       
  2258 }
       
  2259 
       
  2260 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  2261 static void e100_netpoll(struct net_device *netdev)
       
  2262 {
       
  2263 	struct nic *nic = netdev_priv(netdev);
       
  2264 
       
  2265 	e100_disable_irq(nic);
       
  2266 	e100_intr(nic->pdev->irq, netdev);
       
  2267 	e100_tx_clean(nic);
       
  2268 	e100_enable_irq(nic);
       
  2269 }
       
  2270 #endif
       
  2271 
       
  2272 static int e100_set_mac_address(struct net_device *netdev, void *p)
       
  2273 {
       
  2274 	struct nic *nic = netdev_priv(netdev);
       
  2275 	struct sockaddr *addr = p;
       
  2276 
       
  2277 	if (!is_valid_ether_addr(addr->sa_data))
       
  2278 		return -EADDRNOTAVAIL;
       
  2279 
       
  2280 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  2281 	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
       
  2282 
       
  2283 	return 0;
       
  2284 }
       
  2285 
       
  2286 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
       
  2287 {
       
  2288 	if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
       
  2289 		return -EINVAL;
       
  2290 	netdev->mtu = new_mtu;
       
  2291 	return 0;
       
  2292 }
       
  2293 
       
  2294 static int e100_asf(struct nic *nic)
       
  2295 {
       
  2296 	/* ASF can be enabled from eeprom */
       
  2297 	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
       
  2298 	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
       
  2299 	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
       
  2300 	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
       
  2301 }
       
  2302 
       
  2303 static int e100_up(struct nic *nic)
       
  2304 {
       
  2305 	int err;
       
  2306 
       
  2307 	if ((err = e100_rx_alloc_list(nic)))
       
  2308 		return err;
       
  2309 	if ((err = e100_alloc_cbs(nic)))
       
  2310 		goto err_rx_clean_list;
       
  2311 	if ((err = e100_hw_init(nic)))
       
  2312 		goto err_clean_cbs;
       
  2313 	e100_set_multicast_list(nic->netdev);
       
  2314 	e100_start_receiver(nic, NULL);
       
  2315 	mod_timer(&nic->watchdog, jiffies);
       
  2316 	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
       
  2317 		nic->netdev->name, nic->netdev)))
       
  2318 		goto err_no_irq;
       
  2319 	netif_wake_queue(nic->netdev);
       
  2320 	napi_enable(&nic->napi);
       
  2321 	/* enable ints _after_ enabling poll, preventing a race between
       
  2322 	 * disable ints+schedule */
       
  2323 	e100_enable_irq(nic);
       
  2324 	return 0;
       
  2325 
       
  2326 err_no_irq:
       
  2327 	del_timer_sync(&nic->watchdog);
       
  2328 err_clean_cbs:
       
  2329 	e100_clean_cbs(nic);
       
  2330 err_rx_clean_list:
       
  2331 	e100_rx_clean_list(nic);
       
  2332 	return err;
       
  2333 }
       
  2334 
       
  2335 static void e100_down(struct nic *nic)
       
  2336 {
       
  2337 	/* wait here for poll to complete */
       
  2338 	napi_disable(&nic->napi);
       
  2339 	netif_stop_queue(nic->netdev);
       
  2340 	e100_hw_reset(nic);
       
  2341 	free_irq(nic->pdev->irq, nic->netdev);
       
  2342 	del_timer_sync(&nic->watchdog);
       
  2343 	netif_carrier_off(nic->netdev);
       
  2344 	e100_clean_cbs(nic);
       
  2345 	e100_rx_clean_list(nic);
       
  2346 }
       
  2347 
       
  2348 static void e100_tx_timeout(struct net_device *netdev)
       
  2349 {
       
  2350 	struct nic *nic = netdev_priv(netdev);
       
  2351 
       
  2352 	/* Reset outside of interrupt context, to avoid request_irq
       
  2353 	 * in interrupt context */
       
  2354 	schedule_work(&nic->tx_timeout_task);
       
  2355 }
       
  2356 
       
  2357 static void e100_tx_timeout_task(struct work_struct *work)
       
  2358 {
       
  2359 	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
       
  2360 	struct net_device *netdev = nic->netdev;
       
  2361 
       
  2362 	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
       
  2363 		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
       
  2364 
       
  2365 	rtnl_lock();
       
  2366 	if (netif_running(netdev)) {
       
  2367 		e100_down(netdev_priv(netdev));
       
  2368 		e100_up(netdev_priv(netdev));
       
  2369 	}
       
  2370 	rtnl_unlock();
       
  2371 }
       
  2372 
       
  2373 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
       
  2374 {
       
  2375 	int err;
       
  2376 	struct sk_buff *skb;
       
  2377 
       
  2378 	/* Use driver resources to perform internal MAC or PHY
       
  2379 	 * loopback test.  A single packet is prepared and transmitted
       
  2380 	 * in loopback mode, and the test passes if the received
       
  2381 	 * packet compares byte-for-byte to the transmitted packet. */
       
  2382 
       
  2383 	if ((err = e100_rx_alloc_list(nic)))
       
  2384 		return err;
       
  2385 	if ((err = e100_alloc_cbs(nic)))
       
  2386 		goto err_clean_rx;
       
  2387 
       
  2388 	/* ICH PHY loopback is broken so do MAC loopback instead */
       
  2389 	if (nic->flags & ich && loopback_mode == lb_phy)
       
  2390 		loopback_mode = lb_mac;
       
  2391 
       
  2392 	nic->loopback = loopback_mode;
       
  2393 	if ((err = e100_hw_init(nic)))
       
  2394 		goto err_loopback_none;
       
  2395 
       
  2396 	if (loopback_mode == lb_phy)
       
  2397 		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
       
  2398 			BMCR_LOOPBACK);
       
  2399 
       
  2400 	e100_start_receiver(nic, NULL);
       
  2401 
       
  2402 	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
       
  2403 		err = -ENOMEM;
       
  2404 		goto err_loopback_none;
       
  2405 	}
       
  2406 	skb_put(skb, ETH_DATA_LEN);
       
  2407 	memset(skb->data, 0xFF, ETH_DATA_LEN);
       
  2408 	e100_xmit_frame(skb, nic->netdev);
       
  2409 
       
  2410 	msleep(10);
       
  2411 
       
  2412 	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
       
  2413 			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
       
  2414 
       
  2415 	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
       
  2416 	   skb->data, ETH_DATA_LEN))
       
  2417 		err = -EAGAIN;
       
  2418 
       
  2419 err_loopback_none:
       
  2420 	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
       
  2421 	nic->loopback = lb_none;
       
  2422 	e100_clean_cbs(nic);
       
  2423 	e100_hw_reset(nic);
       
  2424 err_clean_rx:
       
  2425 	e100_rx_clean_list(nic);
       
  2426 	return err;
       
  2427 }
       
  2428 
       
  2429 #define MII_LED_CONTROL	0x1B
       
  2430 #define E100_82552_LED_OVERRIDE 0x19
       
  2431 #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
       
  2432 #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
       
  2433 
       
  2434 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
       
  2435 {
       
  2436 	struct nic *nic = netdev_priv(netdev);
       
  2437 	return mii_ethtool_gset(&nic->mii, cmd);
       
  2438 }
       
  2439 
       
  2440 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
       
  2441 {
       
  2442 	struct nic *nic = netdev_priv(netdev);
       
  2443 	int err;
       
  2444 
       
  2445 	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
       
  2446 	err = mii_ethtool_sset(&nic->mii, cmd);
       
  2447 	e100_exec_cb(nic, NULL, e100_configure);
       
  2448 
       
  2449 	return err;
       
  2450 }
       
  2451 
       
  2452 static void e100_get_drvinfo(struct net_device *netdev,
       
  2453 	struct ethtool_drvinfo *info)
       
  2454 {
       
  2455 	struct nic *nic = netdev_priv(netdev);
       
  2456 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
       
  2457 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
       
  2458 	strlcpy(info->bus_info, pci_name(nic->pdev),
       
  2459 		sizeof(info->bus_info));
       
  2460 }
       
  2461 
       
  2462 #define E100_PHY_REGS 0x1C
       
  2463 static int e100_get_regs_len(struct net_device *netdev)
       
  2464 {
       
  2465 	struct nic *nic = netdev_priv(netdev);
       
  2466 	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
       
  2467 }
       
  2468 
       
  2469 static void e100_get_regs(struct net_device *netdev,
       
  2470 	struct ethtool_regs *regs, void *p)
       
  2471 {
       
  2472 	struct nic *nic = netdev_priv(netdev);
       
  2473 	u32 *buff = p;
       
  2474 	int i;
       
  2475 
       
  2476 	regs->version = (1 << 24) | nic->pdev->revision;
       
  2477 	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
       
  2478 		ioread8(&nic->csr->scb.cmd_lo) << 16 |
       
  2479 		ioread16(&nic->csr->scb.status);
       
  2480 	for (i = E100_PHY_REGS; i >= 0; i--)
       
  2481 		buff[1 + E100_PHY_REGS - i] =
       
  2482 			mdio_read(netdev, nic->mii.phy_id, i);
       
  2483 	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
       
  2484 	e100_exec_cb(nic, NULL, e100_dump);
       
  2485 	msleep(10);
       
  2486 	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
       
  2487 		sizeof(nic->mem->dump_buf));
       
  2488 }
       
  2489 
       
  2490 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  2491 {
       
  2492 	struct nic *nic = netdev_priv(netdev);
       
  2493 	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
       
  2494 	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
       
  2495 }
       
  2496 
       
  2497 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  2498 {
       
  2499 	struct nic *nic = netdev_priv(netdev);
       
  2500 
       
  2501 	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
       
  2502 	    !device_can_wakeup(&nic->pdev->dev))
       
  2503 		return -EOPNOTSUPP;
       
  2504 
       
  2505 	if (wol->wolopts)
       
  2506 		nic->flags |= wol_magic;
       
  2507 	else
       
  2508 		nic->flags &= ~wol_magic;
       
  2509 
       
  2510 	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
       
  2511 
       
  2512 	e100_exec_cb(nic, NULL, e100_configure);
       
  2513 
       
  2514 	return 0;
       
  2515 }
       
  2516 
       
  2517 static u32 e100_get_msglevel(struct net_device *netdev)
       
  2518 {
       
  2519 	struct nic *nic = netdev_priv(netdev);
       
  2520 	return nic->msg_enable;
       
  2521 }
       
  2522 
       
  2523 static void e100_set_msglevel(struct net_device *netdev, u32 value)
       
  2524 {
       
  2525 	struct nic *nic = netdev_priv(netdev);
       
  2526 	nic->msg_enable = value;
       
  2527 }
       
  2528 
       
  2529 static int e100_nway_reset(struct net_device *netdev)
       
  2530 {
       
  2531 	struct nic *nic = netdev_priv(netdev);
       
  2532 	return mii_nway_restart(&nic->mii);
       
  2533 }
       
  2534 
       
  2535 static u32 e100_get_link(struct net_device *netdev)
       
  2536 {
       
  2537 	struct nic *nic = netdev_priv(netdev);
       
  2538 	return mii_link_ok(&nic->mii);
       
  2539 }
       
  2540 
       
  2541 static int e100_get_eeprom_len(struct net_device *netdev)
       
  2542 {
       
  2543 	struct nic *nic = netdev_priv(netdev);
       
  2544 	return nic->eeprom_wc << 1;
       
  2545 }
       
  2546 
       
  2547 #define E100_EEPROM_MAGIC	0x1234
       
  2548 static int e100_get_eeprom(struct net_device *netdev,
       
  2549 	struct ethtool_eeprom *eeprom, u8 *bytes)
       
  2550 {
       
  2551 	struct nic *nic = netdev_priv(netdev);
       
  2552 
       
  2553 	eeprom->magic = E100_EEPROM_MAGIC;
       
  2554 	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
       
  2555 
       
  2556 	return 0;
       
  2557 }
       
  2558 
       
  2559 static int e100_set_eeprom(struct net_device *netdev,
       
  2560 	struct ethtool_eeprom *eeprom, u8 *bytes)
       
  2561 {
       
  2562 	struct nic *nic = netdev_priv(netdev);
       
  2563 
       
  2564 	if (eeprom->magic != E100_EEPROM_MAGIC)
       
  2565 		return -EINVAL;
       
  2566 
       
  2567 	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
       
  2568 
       
  2569 	return e100_eeprom_save(nic, eeprom->offset >> 1,
       
  2570 		(eeprom->len >> 1) + 1);
       
  2571 }
       
  2572 
       
  2573 static void e100_get_ringparam(struct net_device *netdev,
       
  2574 	struct ethtool_ringparam *ring)
       
  2575 {
       
  2576 	struct nic *nic = netdev_priv(netdev);
       
  2577 	struct param_range *rfds = &nic->params.rfds;
       
  2578 	struct param_range *cbs = &nic->params.cbs;
       
  2579 
       
  2580 	ring->rx_max_pending = rfds->max;
       
  2581 	ring->tx_max_pending = cbs->max;
       
  2582 	ring->rx_pending = rfds->count;
       
  2583 	ring->tx_pending = cbs->count;
       
  2584 }
       
  2585 
       
  2586 static int e100_set_ringparam(struct net_device *netdev,
       
  2587 	struct ethtool_ringparam *ring)
       
  2588 {
       
  2589 	struct nic *nic = netdev_priv(netdev);
       
  2590 	struct param_range *rfds = &nic->params.rfds;
       
  2591 	struct param_range *cbs = &nic->params.cbs;
       
  2592 
       
  2593 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
  2594 		return -EINVAL;
       
  2595 
       
  2596 	if (netif_running(netdev))
       
  2597 		e100_down(nic);
       
  2598 	rfds->count = max(ring->rx_pending, rfds->min);
       
  2599 	rfds->count = min(rfds->count, rfds->max);
       
  2600 	cbs->count = max(ring->tx_pending, cbs->min);
       
  2601 	cbs->count = min(cbs->count, cbs->max);
       
  2602 	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
       
  2603 		   rfds->count, cbs->count);
       
  2604 	if (netif_running(netdev))
       
  2605 		e100_up(nic);
       
  2606 
       
  2607 	return 0;
       
  2608 }
       
  2609 
       
  2610 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
       
  2611 	"Link test     (on/offline)",
       
  2612 	"Eeprom test   (on/offline)",
       
  2613 	"Self test        (offline)",
       
  2614 	"Mac loopback     (offline)",
       
  2615 	"Phy loopback     (offline)",
       
  2616 };
       
  2617 #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
       
  2618 
       
  2619 static void e100_diag_test(struct net_device *netdev,
       
  2620 	struct ethtool_test *test, u64 *data)
       
  2621 {
       
  2622 	struct ethtool_cmd cmd;
       
  2623 	struct nic *nic = netdev_priv(netdev);
       
  2624 	int i, err;
       
  2625 
       
  2626 	memset(data, 0, E100_TEST_LEN * sizeof(u64));
       
  2627 	data[0] = !mii_link_ok(&nic->mii);
       
  2628 	data[1] = e100_eeprom_load(nic);
       
  2629 	if (test->flags & ETH_TEST_FL_OFFLINE) {
       
  2630 
       
  2631 		/* save speed, duplex & autoneg settings */
       
  2632 		err = mii_ethtool_gset(&nic->mii, &cmd);
       
  2633 
       
  2634 		if (netif_running(netdev))
       
  2635 			e100_down(nic);
       
  2636 		data[2] = e100_self_test(nic);
       
  2637 		data[3] = e100_loopback_test(nic, lb_mac);
       
  2638 		data[4] = e100_loopback_test(nic, lb_phy);
       
  2639 
       
  2640 		/* restore speed, duplex & autoneg settings */
       
  2641 		err = mii_ethtool_sset(&nic->mii, &cmd);
       
  2642 
       
  2643 		if (netif_running(netdev))
       
  2644 			e100_up(nic);
       
  2645 	}
       
  2646 	for (i = 0; i < E100_TEST_LEN; i++)
       
  2647 		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
       
  2648 
       
  2649 	msleep_interruptible(4 * 1000);
       
  2650 }
       
  2651 
       
  2652 static int e100_set_phys_id(struct net_device *netdev,
       
  2653 			    enum ethtool_phys_id_state state)
       
  2654 {
       
  2655 	struct nic *nic = netdev_priv(netdev);
       
  2656 	enum led_state {
       
  2657 		led_on     = 0x01,
       
  2658 		led_off    = 0x04,
       
  2659 		led_on_559 = 0x05,
       
  2660 		led_on_557 = 0x07,
       
  2661 	};
       
  2662 	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
       
  2663 		MII_LED_CONTROL;
       
  2664 	u16 leds = 0;
       
  2665 
       
  2666 	switch (state) {
       
  2667 	case ETHTOOL_ID_ACTIVE:
       
  2668 		return 2;
       
  2669 
       
  2670 	case ETHTOOL_ID_ON:
       
  2671 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
       
  2672 		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
       
  2673 		break;
       
  2674 
       
  2675 	case ETHTOOL_ID_OFF:
       
  2676 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
       
  2677 		break;
       
  2678 
       
  2679 	case ETHTOOL_ID_INACTIVE:
       
  2680 		break;
       
  2681 	}
       
  2682 
       
  2683 	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
       
  2684 	return 0;
       
  2685 }
       
  2686 
       
  2687 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
       
  2688 	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
       
  2689 	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
       
  2690 	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
       
  2691 	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
       
  2692 	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
       
  2693 	"tx_heartbeat_errors", "tx_window_errors",
       
  2694 	/* device-specific stats */
       
  2695 	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
       
  2696 	"tx_flow_control_pause", "rx_flow_control_pause",
       
  2697 	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
       
  2698 	"rx_short_frame_errors", "rx_over_length_errors",
       
  2699 };
       
  2700 #define E100_NET_STATS_LEN	21
       
  2701 #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
       
  2702 
       
  2703 static int e100_get_sset_count(struct net_device *netdev, int sset)
       
  2704 {
       
  2705 	switch (sset) {
       
  2706 	case ETH_SS_TEST:
       
  2707 		return E100_TEST_LEN;
       
  2708 	case ETH_SS_STATS:
       
  2709 		return E100_STATS_LEN;
       
  2710 	default:
       
  2711 		return -EOPNOTSUPP;
       
  2712 	}
       
  2713 }
       
  2714 
       
  2715 static void e100_get_ethtool_stats(struct net_device *netdev,
       
  2716 	struct ethtool_stats *stats, u64 *data)
       
  2717 {
       
  2718 	struct nic *nic = netdev_priv(netdev);
       
  2719 	int i;
       
  2720 
       
  2721 	for (i = 0; i < E100_NET_STATS_LEN; i++)
       
  2722 		data[i] = ((unsigned long *)&netdev->stats)[i];
       
  2723 
       
  2724 	data[i++] = nic->tx_deferred;
       
  2725 	data[i++] = nic->tx_single_collisions;
       
  2726 	data[i++] = nic->tx_multiple_collisions;
       
  2727 	data[i++] = nic->tx_fc_pause;
       
  2728 	data[i++] = nic->rx_fc_pause;
       
  2729 	data[i++] = nic->rx_fc_unsupported;
       
  2730 	data[i++] = nic->tx_tco_frames;
       
  2731 	data[i++] = nic->rx_tco_frames;
       
  2732 	data[i++] = nic->rx_short_frame_errors;
       
  2733 	data[i++] = nic->rx_over_length_errors;
       
  2734 }
       
  2735 
       
  2736 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
       
  2737 {
       
  2738 	switch (stringset) {
       
  2739 	case ETH_SS_TEST:
       
  2740 		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
       
  2741 		break;
       
  2742 	case ETH_SS_STATS:
       
  2743 		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
       
  2744 		break;
       
  2745 	}
       
  2746 }
       
  2747 
       
  2748 static const struct ethtool_ops e100_ethtool_ops = {
       
  2749 	.get_settings		= e100_get_settings,
       
  2750 	.set_settings		= e100_set_settings,
       
  2751 	.get_drvinfo		= e100_get_drvinfo,
       
  2752 	.get_regs_len		= e100_get_regs_len,
       
  2753 	.get_regs		= e100_get_regs,
       
  2754 	.get_wol		= e100_get_wol,
       
  2755 	.set_wol		= e100_set_wol,
       
  2756 	.get_msglevel		= e100_get_msglevel,
       
  2757 	.set_msglevel		= e100_set_msglevel,
       
  2758 	.nway_reset		= e100_nway_reset,
       
  2759 	.get_link		= e100_get_link,
       
  2760 	.get_eeprom_len		= e100_get_eeprom_len,
       
  2761 	.get_eeprom		= e100_get_eeprom,
       
  2762 	.set_eeprom		= e100_set_eeprom,
       
  2763 	.get_ringparam		= e100_get_ringparam,
       
  2764 	.set_ringparam		= e100_set_ringparam,
       
  2765 	.self_test		= e100_diag_test,
       
  2766 	.get_strings		= e100_get_strings,
       
  2767 	.set_phys_id		= e100_set_phys_id,
       
  2768 	.get_ethtool_stats	= e100_get_ethtool_stats,
       
  2769 	.get_sset_count		= e100_get_sset_count,
       
  2770 	.get_ts_info		= ethtool_op_get_ts_info,
       
  2771 };
       
  2772 
       
  2773 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  2774 {
       
  2775 	struct nic *nic = netdev_priv(netdev);
       
  2776 
       
  2777 	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
       
  2778 }
       
  2779 
       
  2780 static int e100_alloc(struct nic *nic)
       
  2781 {
       
  2782 	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
       
  2783 		&nic->dma_addr);
       
  2784 	return nic->mem ? 0 : -ENOMEM;
       
  2785 }
       
  2786 
       
  2787 static void e100_free(struct nic *nic)
       
  2788 {
       
  2789 	if (nic->mem) {
       
  2790 		pci_free_consistent(nic->pdev, sizeof(struct mem),
       
  2791 			nic->mem, nic->dma_addr);
       
  2792 		nic->mem = NULL;
       
  2793 	}
       
  2794 }
       
  2795 
       
  2796 static int e100_open(struct net_device *netdev)
       
  2797 {
       
  2798 	struct nic *nic = netdev_priv(netdev);
       
  2799 	int err = 0;
       
  2800 
       
  2801 	netif_carrier_off(netdev);
       
  2802 	if ((err = e100_up(nic)))
       
  2803 		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
       
  2804 	return err;
       
  2805 }
       
  2806 
       
  2807 static int e100_close(struct net_device *netdev)
       
  2808 {
       
  2809 	e100_down(netdev_priv(netdev));
       
  2810 	return 0;
       
  2811 }
       
  2812 
       
  2813 static int e100_set_features(struct net_device *netdev,
       
  2814 			     netdev_features_t features)
       
  2815 {
       
  2816 	struct nic *nic = netdev_priv(netdev);
       
  2817 	netdev_features_t changed = features ^ netdev->features;
       
  2818 
       
  2819 	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
       
  2820 		return 0;
       
  2821 
       
  2822 	netdev->features = features;
       
  2823 	e100_exec_cb(nic, NULL, e100_configure);
       
  2824 	return 0;
       
  2825 }
       
  2826 
       
  2827 static const struct net_device_ops e100_netdev_ops = {
       
  2828 	.ndo_open		= e100_open,
       
  2829 	.ndo_stop		= e100_close,
       
  2830 	.ndo_start_xmit		= e100_xmit_frame,
       
  2831 	.ndo_validate_addr	= eth_validate_addr,
       
  2832 	.ndo_set_rx_mode	= e100_set_multicast_list,
       
  2833 	.ndo_set_mac_address	= e100_set_mac_address,
       
  2834 	.ndo_change_mtu		= e100_change_mtu,
       
  2835 	.ndo_do_ioctl		= e100_do_ioctl,
       
  2836 	.ndo_tx_timeout		= e100_tx_timeout,
       
  2837 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  2838 	.ndo_poll_controller	= e100_netpoll,
       
  2839 #endif
       
  2840 	.ndo_set_features	= e100_set_features,
       
  2841 };
       
  2842 
       
  2843 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
       
  2844 {
       
  2845 	struct net_device *netdev;
       
  2846 	struct nic *nic;
       
  2847 	int err;
       
  2848 
       
  2849 	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
       
  2850 		return -ENOMEM;
       
  2851 
       
  2852 	netdev->hw_features |= NETIF_F_RXFCS;
       
  2853 	netdev->priv_flags |= IFF_SUPP_NOFCS;
       
  2854 	netdev->hw_features |= NETIF_F_RXALL;
       
  2855 
       
  2856 	netdev->netdev_ops = &e100_netdev_ops;
       
  2857 	netdev->ethtool_ops = &e100_ethtool_ops;
       
  2858 	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
       
  2859 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
  2860 
       
  2861 	nic = netdev_priv(netdev);
       
  2862 	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
       
  2863 	nic->netdev = netdev;
       
  2864 	nic->pdev = pdev;
       
  2865 	nic->msg_enable = (1 << debug) - 1;
       
  2866 	nic->mdio_ctrl = mdio_ctrl_hw;
       
  2867 	pci_set_drvdata(pdev, netdev);
       
  2868 
       
  2869 	if ((err = pci_enable_device(pdev))) {
       
  2870 		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
       
  2871 		goto err_out_free_dev;
       
  2872 	}
       
  2873 
       
  2874 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
       
  2875 		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
       
  2876 		err = -ENODEV;
       
  2877 		goto err_out_disable_pdev;
       
  2878 	}
       
  2879 
       
  2880 	if ((err = pci_request_regions(pdev, DRV_NAME))) {
       
  2881 		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
       
  2882 		goto err_out_disable_pdev;
       
  2883 	}
       
  2884 
       
  2885 	if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
       
  2886 		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
       
  2887 		goto err_out_free_res;
       
  2888 	}
       
  2889 
       
  2890 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
  2891 
       
  2892 	if (use_io)
       
  2893 		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
       
  2894 
       
  2895 	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
       
  2896 	if (!nic->csr) {
       
  2897 		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
       
  2898 		err = -ENOMEM;
       
  2899 		goto err_out_free_res;
       
  2900 	}
       
  2901 
       
  2902 	if (ent->driver_data)
       
  2903 		nic->flags |= ich;
       
  2904 	else
       
  2905 		nic->flags &= ~ich;
       
  2906 
       
  2907 	e100_get_defaults(nic);
       
  2908 
       
  2909 	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
       
  2910 	if (nic->mac < mac_82558_D101_A4)
       
  2911 		netdev->features |= NETIF_F_VLAN_CHALLENGED;
       
  2912 
       
  2913 	/* locks must be initialized before calling hw_reset */
       
  2914 	spin_lock_init(&nic->cb_lock);
       
  2915 	spin_lock_init(&nic->cmd_lock);
       
  2916 	spin_lock_init(&nic->mdio_lock);
       
  2917 
       
  2918 	/* Reset the device before pci_set_master() in case device is in some
       
  2919 	 * funky state and has an interrupt pending - hint: we don't have the
       
  2920 	 * interrupt handler registered yet. */
       
  2921 	e100_hw_reset(nic);
       
  2922 
       
  2923 	pci_set_master(pdev);
       
  2924 
       
  2925 	init_timer(&nic->watchdog);
       
  2926 	nic->watchdog.function = e100_watchdog;
       
  2927 	nic->watchdog.data = (unsigned long)nic;
       
  2928 
       
  2929 	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
       
  2930 
       
  2931 	if ((err = e100_alloc(nic))) {
       
  2932 		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
       
  2933 		goto err_out_iounmap;
       
  2934 	}
       
  2935 
       
  2936 	if ((err = e100_eeprom_load(nic)))
       
  2937 		goto err_out_free;
       
  2938 
       
  2939 	e100_phy_init(nic);
       
  2940 
       
  2941 	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
       
  2942 	if (!is_valid_ether_addr(netdev->dev_addr)) {
       
  2943 		if (!eeprom_bad_csum_allow) {
       
  2944 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
       
  2945 			err = -EAGAIN;
       
  2946 			goto err_out_free;
       
  2947 		} else {
       
  2948 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
       
  2949 		}
       
  2950 	}
       
  2951 
       
  2952 	/* Wol magic packet can be enabled from eeprom */
       
  2953 	if ((nic->mac >= mac_82558_D101_A4) &&
       
  2954 	   (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
       
  2955 		nic->flags |= wol_magic;
       
  2956 		device_set_wakeup_enable(&pdev->dev, true);
       
  2957 	}
       
  2958 
       
  2959 	/* ack any pending wake events, disable PME */
       
  2960 	pci_pme_active(pdev, false);
       
  2961 
       
  2962 	strcpy(netdev->name, "eth%d");
       
  2963 	if ((err = register_netdev(netdev))) {
       
  2964 		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
       
  2965 		goto err_out_free;
       
  2966 	}
       
  2967 	nic->cbs_pool = pci_pool_create(netdev->name,
       
  2968 			   nic->pdev,
       
  2969 			   nic->params.cbs.max * sizeof(struct cb),
       
  2970 			   sizeof(u32),
       
  2971 			   0);
       
  2972 	netif_info(nic, probe, nic->netdev,
       
  2973 		   "addr 0x%llx, irq %d, MAC addr %pM\n",
       
  2974 		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
       
  2975 		   pdev->irq, netdev->dev_addr);
       
  2976 
       
  2977 	return 0;
       
  2978 
       
  2979 err_out_free:
       
  2980 	e100_free(nic);
       
  2981 err_out_iounmap:
       
  2982 	pci_iounmap(pdev, nic->csr);
       
  2983 err_out_free_res:
       
  2984 	pci_release_regions(pdev);
       
  2985 err_out_disable_pdev:
       
  2986 	pci_disable_device(pdev);
       
  2987 err_out_free_dev:
       
  2988 	free_netdev(netdev);
       
  2989 	return err;
       
  2990 }
       
  2991 
       
  2992 static void e100_remove(struct pci_dev *pdev)
       
  2993 {
       
  2994 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  2995 
       
  2996 	if (netdev) {
       
  2997 		struct nic *nic = netdev_priv(netdev);
       
  2998 		unregister_netdev(netdev);
       
  2999 		e100_free(nic);
       
  3000 		pci_iounmap(pdev, nic->csr);
       
  3001 		pci_pool_destroy(nic->cbs_pool);
       
  3002 		free_netdev(netdev);
       
  3003 		pci_release_regions(pdev);
       
  3004 		pci_disable_device(pdev);
       
  3005 	}
       
  3006 }
       
  3007 
       
  3008 #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
       
  3009 #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
       
  3010 #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
       
  3011 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
       
  3012 {
       
  3013 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  3014 	struct nic *nic = netdev_priv(netdev);
       
  3015 
       
  3016 	if (netif_running(netdev))
       
  3017 		e100_down(nic);
       
  3018 	netif_device_detach(netdev);
       
  3019 
       
  3020 	pci_save_state(pdev);
       
  3021 
       
  3022 	if ((nic->flags & wol_magic) | e100_asf(nic)) {
       
  3023 		/* enable reverse auto-negotiation */
       
  3024 		if (nic->phy == phy_82552_v) {
       
  3025 			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
       
  3026 			                           E100_82552_SMARTSPEED);
       
  3027 
       
  3028 			mdio_write(netdev, nic->mii.phy_id,
       
  3029 			           E100_82552_SMARTSPEED, smartspeed |
       
  3030 			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
       
  3031 		}
       
  3032 		*enable_wake = true;
       
  3033 	} else {
       
  3034 		*enable_wake = false;
       
  3035 	}
       
  3036 
       
  3037 	pci_clear_master(pdev);
       
  3038 }
       
  3039 
       
  3040 static int __e100_power_off(struct pci_dev *pdev, bool wake)
       
  3041 {
       
  3042 	if (wake)
       
  3043 		return pci_prepare_to_sleep(pdev);
       
  3044 
       
  3045 	pci_wake_from_d3(pdev, false);
       
  3046 	pci_set_power_state(pdev, PCI_D3hot);
       
  3047 
       
  3048 	return 0;
       
  3049 }
       
  3050 
       
  3051 #ifdef CONFIG_PM
       
  3052 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
       
  3053 {
       
  3054 	bool wake;
       
  3055 	__e100_shutdown(pdev, &wake);
       
  3056 	return __e100_power_off(pdev, wake);
       
  3057 }
       
  3058 
       
  3059 static int e100_resume(struct pci_dev *pdev)
       
  3060 {
       
  3061 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  3062 	struct nic *nic = netdev_priv(netdev);
       
  3063 
       
  3064 	pci_set_power_state(pdev, PCI_D0);
       
  3065 	pci_restore_state(pdev);
       
  3066 	/* ack any pending wake events, disable PME */
       
  3067 	pci_enable_wake(pdev, PCI_D0, 0);
       
  3068 
       
  3069 	/* disable reverse auto-negotiation */
       
  3070 	if (nic->phy == phy_82552_v) {
       
  3071 		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
       
  3072 		                           E100_82552_SMARTSPEED);
       
  3073 
       
  3074 		mdio_write(netdev, nic->mii.phy_id,
       
  3075 		           E100_82552_SMARTSPEED,
       
  3076 		           smartspeed & ~(E100_82552_REV_ANEG));
       
  3077 	}
       
  3078 
       
  3079 	netif_device_attach(netdev);
       
  3080 	if (netif_running(netdev))
       
  3081 		e100_up(nic);
       
  3082 
       
  3083 	return 0;
       
  3084 }
       
  3085 #endif /* CONFIG_PM */
       
  3086 
       
  3087 static void e100_shutdown(struct pci_dev *pdev)
       
  3088 {
       
  3089 	bool wake;
       
  3090 	__e100_shutdown(pdev, &wake);
       
  3091 	if (system_state == SYSTEM_POWER_OFF)
       
  3092 		__e100_power_off(pdev, wake);
       
  3093 }
       
  3094 
       
  3095 /* ------------------ PCI Error Recovery infrastructure  -------------- */
       
  3096 /**
       
  3097  * e100_io_error_detected - called when PCI error is detected.
       
  3098  * @pdev: Pointer to PCI device
       
  3099  * @state: The current pci connection state
       
  3100  */
       
  3101 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
       
  3102 {
       
  3103 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  3104 	struct nic *nic = netdev_priv(netdev);
       
  3105 
       
  3106 	netif_device_detach(netdev);
       
  3107 
       
  3108 	if (state == pci_channel_io_perm_failure)
       
  3109 		return PCI_ERS_RESULT_DISCONNECT;
       
  3110 
       
  3111 	if (netif_running(netdev))
       
  3112 		e100_down(nic);
       
  3113 	pci_disable_device(pdev);
       
  3114 
       
  3115 	/* Request a slot reset. */
       
  3116 	return PCI_ERS_RESULT_NEED_RESET;
       
  3117 }
       
  3118 
       
  3119 /**
       
  3120  * e100_io_slot_reset - called after the pci bus has been reset.
       
  3121  * @pdev: Pointer to PCI device
       
  3122  *
       
  3123  * Restart the card from scratch.
       
  3124  */
       
  3125 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
       
  3126 {
       
  3127 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  3128 	struct nic *nic = netdev_priv(netdev);
       
  3129 
       
  3130 	if (pci_enable_device(pdev)) {
       
  3131 		pr_err("Cannot re-enable PCI device after reset\n");
       
  3132 		return PCI_ERS_RESULT_DISCONNECT;
       
  3133 	}
       
  3134 	pci_set_master(pdev);
       
  3135 
       
  3136 	/* Only one device per card can do a reset */
       
  3137 	if (0 != PCI_FUNC(pdev->devfn))
       
  3138 		return PCI_ERS_RESULT_RECOVERED;
       
  3139 	e100_hw_reset(nic);
       
  3140 	e100_phy_init(nic);
       
  3141 
       
  3142 	return PCI_ERS_RESULT_RECOVERED;
       
  3143 }
       
  3144 
       
  3145 /**
       
  3146  * e100_io_resume - resume normal operations
       
  3147  * @pdev: Pointer to PCI device
       
  3148  *
       
  3149  * Resume normal operations after an error recovery
       
  3150  * sequence has been completed.
       
  3151  */
       
  3152 static void e100_io_resume(struct pci_dev *pdev)
       
  3153 {
       
  3154 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  3155 	struct nic *nic = netdev_priv(netdev);
       
  3156 
       
  3157 	/* ack any pending wake events, disable PME */
       
  3158 	pci_enable_wake(pdev, PCI_D0, 0);
       
  3159 
       
  3160 	netif_device_attach(netdev);
       
  3161 	if (netif_running(netdev)) {
       
  3162 		e100_open(netdev);
       
  3163 		mod_timer(&nic->watchdog, jiffies);
       
  3164 	}
       
  3165 }
       
  3166 
       
  3167 static const struct pci_error_handlers e100_err_handler = {
       
  3168 	.error_detected = e100_io_error_detected,
       
  3169 	.slot_reset = e100_io_slot_reset,
       
  3170 	.resume = e100_io_resume,
       
  3171 };
       
  3172 
       
  3173 static struct pci_driver e100_driver = {
       
  3174 	.name =         DRV_NAME,
       
  3175 	.id_table =     e100_id_table,
       
  3176 	.probe =        e100_probe,
       
  3177 	.remove =       e100_remove,
       
  3178 #ifdef CONFIG_PM
       
  3179 	/* Power Management hooks */
       
  3180 	.suspend =      e100_suspend,
       
  3181 	.resume =       e100_resume,
       
  3182 #endif
       
  3183 	.shutdown =     e100_shutdown,
       
  3184 	.err_handler = &e100_err_handler,
       
  3185 };
       
  3186 
       
  3187 static int __init e100_init_module(void)
       
  3188 {
       
  3189 	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
       
  3190 		pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
       
  3191 		pr_info("%s\n", DRV_COPYRIGHT);
       
  3192 	}
       
  3193 	return pci_register_driver(&e100_driver);
       
  3194 }
       
  3195 
       
  3196 static void __exit e100_cleanup_module(void)
       
  3197 {
       
  3198 	pci_unregister_driver(&e100_driver);
       
  3199 }
       
  3200 
       
  3201 module_init(e100_init_module);
       
  3202 module_exit(e100_cleanup_module);