devices/e100-2.6.28-orig.c
changeset 1477 76a463df511b
equal deleted inserted replaced
1476:1da1c72fd495 1477:76a463df511b
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/100 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /*
       
    30  *	e100.c: Intel(R) PRO/100 ethernet driver
       
    31  *
       
    32  *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
       
    33  *	original e100 driver, but better described as a munging of
       
    34  *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
       
    35  *
       
    36  *	References:
       
    37  *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
       
    38  *		Open Source Software Developers Manual,
       
    39  *		http://sourceforge.net/projects/e1000
       
    40  *
       
    41  *
       
    42  *	                      Theory of Operation
       
    43  *
       
    44  *	I.   General
       
    45  *
       
    46  *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
       
    47  *	controller family, which includes the 82557, 82558, 82559, 82550,
       
    48  *	82551, and 82562 devices.  82558 and greater controllers
       
    49  *	integrate the Intel 82555 PHY.  The controllers are used in
       
    50  *	server and client network interface cards, as well as in
       
    51  *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
       
    52  *	configurations.  8255x supports a 32-bit linear addressing
       
    53  *	mode and operates at 33Mhz PCI clock rate.
       
    54  *
       
    55  *	II.  Driver Operation
       
    56  *
       
    57  *	Memory-mapped mode is used exclusively to access the device's
       
    58  *	shared-memory structure, the Control/Status Registers (CSR). All
       
    59  *	setup, configuration, and control of the device, including queuing
       
    60  *	of Tx, Rx, and configuration commands is through the CSR.
       
    61  *	cmd_lock serializes accesses to the CSR command register.  cb_lock
       
    62  *	protects the shared Command Block List (CBL).
       
    63  *
       
    64  *	8255x is highly MII-compliant and all access to the PHY go
       
    65  *	through the Management Data Interface (MDI).  Consequently, the
       
    66  *	driver leverages the mii.c library shared with other MII-compliant
       
    67  *	devices.
       
    68  *
       
    69  *	Big- and Little-Endian byte order as well as 32- and 64-bit
       
    70  *	archs are supported.  Weak-ordered memory and non-cache-coherent
       
    71  *	archs are supported.
       
    72  *
       
    73  *	III. Transmit
       
    74  *
       
    75  *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
       
    76  *	together in a fixed-size ring (CBL) thus forming the flexible mode
       
    77  *	memory structure.  A TCB marked with the suspend-bit indicates
       
    78  *	the end of the ring.  The last TCB processed suspends the
       
    79  *	controller, and the controller can be restarted by issue a CU
       
    80  *	resume command to continue from the suspend point, or a CU start
       
    81  *	command to start at a given position in the ring.
       
    82  *
       
    83  *	Non-Tx commands (config, multicast setup, etc) are linked
       
    84  *	into the CBL ring along with Tx commands.  The common structure
       
    85  *	used for both Tx and non-Tx commands is the Command Block (CB).
       
    86  *
       
    87  *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
       
    88  *	is the next CB to check for completion; cb_to_send is the first
       
    89  *	CB to start on in case of a previous failure to resume.  CB clean
       
    90  *	up happens in interrupt context in response to a CU interrupt.
       
    91  *	cbs_avail keeps track of number of free CB resources available.
       
    92  *
       
    93  * 	Hardware padding of short packets to minimum packet size is
       
    94  * 	enabled.  82557 pads with 7Eh, while the later controllers pad
       
    95  * 	with 00h.
       
    96  *
       
    97  *	IV.  Receive
       
    98  *
       
    99  *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
       
   100  *	Descriptors (RFD) + data buffer, thus forming the simplified mode
       
   101  *	memory structure.  Rx skbs are allocated to contain both the RFD
       
   102  *	and the data buffer, but the RFD is pulled off before the skb is
       
   103  *	indicated.  The data buffer is aligned such that encapsulated
       
   104  *	protocol headers are u32-aligned.  Since the RFD is part of the
       
   105  *	mapped shared memory, and completion status is contained within
       
   106  *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
       
   107  *	view from software and hardware.
       
   108  *
       
   109  *	In order to keep updates to the RFD link field from colliding with
       
   110  *	hardware writes to mark packets complete, we use the feature that
       
   111  *	hardware will not write to a size 0 descriptor and mark the previous
       
   112  *	packet as end-of-list (EL).   After updating the link, we remove EL
       
   113  *	and only then restore the size such that hardware may use the
       
   114  *	previous-to-end RFD.
       
   115  *
       
   116  *	Under typical operation, the  receive unit (RU) is start once,
       
   117  *	and the controller happily fills RFDs as frames arrive.  If
       
   118  *	replacement RFDs cannot be allocated, or the RU goes non-active,
       
   119  *	the RU must be restarted.  Frame arrival generates an interrupt,
       
   120  *	and Rx indication and re-allocation happen in the same context,
       
   121  *	therefore no locking is required.  A software-generated interrupt
       
   122  *	is generated from the watchdog to recover from a failed allocation
       
   123  *	scenario where all Rx resources have been indicated and none re-
       
   124  *	placed.
       
   125  *
       
   126  *	V.   Miscellaneous
       
   127  *
       
   128  * 	VLAN offloading of tagging, stripping and filtering is not
       
   129  * 	supported, but driver will accommodate the extra 4-byte VLAN tag
       
   130  * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
       
   131  * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
       
   132  * 	not supported (hardware limitation).
       
   133  *
       
   134  * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
       
   135  *
       
   136  * 	Thanks to JC (jchapman@katalix.com) for helping with
       
   137  * 	testing/troubleshooting the development driver.
       
   138  *
       
   139  * 	TODO:
       
   140  * 	o several entry points race with dev->close
       
   141  * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
       
   142  *
       
   143  *	FIXES:
       
   144  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
       
   145  *	- Stratus87247: protect MDI control register manipulations
       
   146  */
       
   147 
       
   148 #include <linux/module.h>
       
   149 #include <linux/moduleparam.h>
       
   150 #include <linux/kernel.h>
       
   151 #include <linux/types.h>
       
   152 #include <linux/slab.h>
       
   153 #include <linux/delay.h>
       
   154 #include <linux/init.h>
       
   155 #include <linux/pci.h>
       
   156 #include <linux/dma-mapping.h>
       
   157 #include <linux/netdevice.h>
       
   158 #include <linux/etherdevice.h>
       
   159 #include <linux/mii.h>
       
   160 #include <linux/if_vlan.h>
       
   161 #include <linux/skbuff.h>
       
   162 #include <linux/ethtool.h>
       
   163 #include <linux/string.h>
       
   164 #include <asm/unaligned.h>
       
   165 
       
   166 
       
   167 #define DRV_NAME		"e100"
       
   168 #define DRV_EXT			"-NAPI"
       
   169 #define DRV_VERSION		"3.5.23-k6"DRV_EXT
       
   170 #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
       
   171 #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
       
   172 #define PFX			DRV_NAME ": "
       
   173 
       
   174 #define E100_WATCHDOG_PERIOD	(2 * HZ)
       
   175 #define E100_NAPI_WEIGHT	16
       
   176 
       
   177 MODULE_DESCRIPTION(DRV_DESCRIPTION);
       
   178 MODULE_AUTHOR(DRV_COPYRIGHT);
       
   179 MODULE_LICENSE("GPL");
       
   180 MODULE_VERSION(DRV_VERSION);
       
   181 
       
   182 static int debug = 3;
       
   183 static int eeprom_bad_csum_allow = 0;
       
   184 static int use_io = 0;
       
   185 module_param(debug, int, 0);
       
   186 module_param(eeprom_bad_csum_allow, int, 0);
       
   187 module_param(use_io, int, 0);
       
   188 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   189 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
       
   190 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
       
   191 #define DPRINTK(nlevel, klevel, fmt, args...) \
       
   192 	(void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
       
   193 	printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
       
   194 		__func__ , ## args))
       
   195 
       
   196 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
       
   197 	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
       
   198 	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
       
   199 static struct pci_device_id e100_id_table[] = {
       
   200 	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
       
   201 	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
       
   202 	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
       
   203 	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
       
   204 	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
       
   205 	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
       
   206 	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
       
   207 	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
       
   208 	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
       
   209 	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
       
   210 	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
       
   211 	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
       
   212 	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
       
   213 	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
       
   214 	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
       
   215 	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
       
   216 	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
       
   217 	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
       
   218 	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
       
   219 	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
       
   220 	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
       
   221 	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
       
   222 	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
       
   223 	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
       
   224 	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
       
   225 	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
       
   226 	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
       
   227 	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
       
   228 	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
       
   229 	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
       
   230 	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
       
   231 	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
       
   232 	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
       
   233 	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
       
   234 	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
       
   235 	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
       
   236 	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
       
   237 	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
       
   238 	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
       
   239 	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
       
   240 	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
       
   241 	{ 0, }
       
   242 };
       
   243 MODULE_DEVICE_TABLE(pci, e100_id_table);
       
   244 
       
   245 enum mac {
       
   246 	mac_82557_D100_A  = 0,
       
   247 	mac_82557_D100_B  = 1,
       
   248 	mac_82557_D100_C  = 2,
       
   249 	mac_82558_D101_A4 = 4,
       
   250 	mac_82558_D101_B0 = 5,
       
   251 	mac_82559_D101M   = 8,
       
   252 	mac_82559_D101S   = 9,
       
   253 	mac_82550_D102    = 12,
       
   254 	mac_82550_D102_C  = 13,
       
   255 	mac_82551_E       = 14,
       
   256 	mac_82551_F       = 15,
       
   257 	mac_82551_10      = 16,
       
   258 	mac_unknown       = 0xFF,
       
   259 };
       
   260 
       
   261 enum phy {
       
   262 	phy_100a     = 0x000003E0,
       
   263 	phy_100c     = 0x035002A8,
       
   264 	phy_82555_tx = 0x015002A8,
       
   265 	phy_nsc_tx   = 0x5C002000,
       
   266 	phy_82562_et = 0x033002A8,
       
   267 	phy_82562_em = 0x032002A8,
       
   268 	phy_82562_ek = 0x031002A8,
       
   269 	phy_82562_eh = 0x017002A8,
       
   270 	phy_unknown  = 0xFFFFFFFF,
       
   271 };
       
   272 
       
   273 /* CSR (Control/Status Registers) */
       
   274 struct csr {
       
   275 	struct {
       
   276 		u8 status;
       
   277 		u8 stat_ack;
       
   278 		u8 cmd_lo;
       
   279 		u8 cmd_hi;
       
   280 		u32 gen_ptr;
       
   281 	} scb;
       
   282 	u32 port;
       
   283 	u16 flash_ctrl;
       
   284 	u8 eeprom_ctrl_lo;
       
   285 	u8 eeprom_ctrl_hi;
       
   286 	u32 mdi_ctrl;
       
   287 	u32 rx_dma_count;
       
   288 };
       
   289 
       
   290 enum scb_status {
       
   291 	rus_no_res       = 0x08,
       
   292 	rus_ready        = 0x10,
       
   293 	rus_mask         = 0x3C,
       
   294 };
       
   295 
       
   296 enum ru_state  {
       
   297 	RU_SUSPENDED = 0,
       
   298 	RU_RUNNING	 = 1,
       
   299 	RU_UNINITIALIZED = -1,
       
   300 };
       
   301 
       
   302 enum scb_stat_ack {
       
   303 	stat_ack_not_ours    = 0x00,
       
   304 	stat_ack_sw_gen      = 0x04,
       
   305 	stat_ack_rnr         = 0x10,
       
   306 	stat_ack_cu_idle     = 0x20,
       
   307 	stat_ack_frame_rx    = 0x40,
       
   308 	stat_ack_cu_cmd_done = 0x80,
       
   309 	stat_ack_not_present = 0xFF,
       
   310 	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
       
   311 	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
       
   312 };
       
   313 
       
   314 enum scb_cmd_hi {
       
   315 	irq_mask_none = 0x00,
       
   316 	irq_mask_all  = 0x01,
       
   317 	irq_sw_gen    = 0x02,
       
   318 };
       
   319 
       
   320 enum scb_cmd_lo {
       
   321 	cuc_nop        = 0x00,
       
   322 	ruc_start      = 0x01,
       
   323 	ruc_load_base  = 0x06,
       
   324 	cuc_start      = 0x10,
       
   325 	cuc_resume     = 0x20,
       
   326 	cuc_dump_addr  = 0x40,
       
   327 	cuc_dump_stats = 0x50,
       
   328 	cuc_load_base  = 0x60,
       
   329 	cuc_dump_reset = 0x70,
       
   330 };
       
   331 
       
   332 enum cuc_dump {
       
   333 	cuc_dump_complete       = 0x0000A005,
       
   334 	cuc_dump_reset_complete = 0x0000A007,
       
   335 };
       
   336 
       
   337 enum port {
       
   338 	software_reset  = 0x0000,
       
   339 	selftest        = 0x0001,
       
   340 	selective_reset = 0x0002,
       
   341 };
       
   342 
       
   343 enum eeprom_ctrl_lo {
       
   344 	eesk = 0x01,
       
   345 	eecs = 0x02,
       
   346 	eedi = 0x04,
       
   347 	eedo = 0x08,
       
   348 };
       
   349 
       
   350 enum mdi_ctrl {
       
   351 	mdi_write = 0x04000000,
       
   352 	mdi_read  = 0x08000000,
       
   353 	mdi_ready = 0x10000000,
       
   354 };
       
   355 
       
   356 enum eeprom_op {
       
   357 	op_write = 0x05,
       
   358 	op_read  = 0x06,
       
   359 	op_ewds  = 0x10,
       
   360 	op_ewen  = 0x13,
       
   361 };
       
   362 
       
   363 enum eeprom_offsets {
       
   364 	eeprom_cnfg_mdix  = 0x03,
       
   365 	eeprom_id         = 0x0A,
       
   366 	eeprom_config_asf = 0x0D,
       
   367 	eeprom_smbus_addr = 0x90,
       
   368 };
       
   369 
       
   370 enum eeprom_cnfg_mdix {
       
   371 	eeprom_mdix_enabled = 0x0080,
       
   372 };
       
   373 
       
   374 enum eeprom_id {
       
   375 	eeprom_id_wol = 0x0020,
       
   376 };
       
   377 
       
   378 enum eeprom_config_asf {
       
   379 	eeprom_asf = 0x8000,
       
   380 	eeprom_gcl = 0x4000,
       
   381 };
       
   382 
       
   383 enum cb_status {
       
   384 	cb_complete = 0x8000,
       
   385 	cb_ok       = 0x2000,
       
   386 };
       
   387 
       
   388 enum cb_command {
       
   389 	cb_nop    = 0x0000,
       
   390 	cb_iaaddr = 0x0001,
       
   391 	cb_config = 0x0002,
       
   392 	cb_multi  = 0x0003,
       
   393 	cb_tx     = 0x0004,
       
   394 	cb_ucode  = 0x0005,
       
   395 	cb_dump   = 0x0006,
       
   396 	cb_tx_sf  = 0x0008,
       
   397 	cb_cid    = 0x1f00,
       
   398 	cb_i      = 0x2000,
       
   399 	cb_s      = 0x4000,
       
   400 	cb_el     = 0x8000,
       
   401 };
       
   402 
       
   403 struct rfd {
       
   404 	__le16 status;
       
   405 	__le16 command;
       
   406 	__le32 link;
       
   407 	__le32 rbd;
       
   408 	__le16 actual_size;
       
   409 	__le16 size;
       
   410 };
       
   411 
       
   412 struct rx {
       
   413 	struct rx *next, *prev;
       
   414 	struct sk_buff *skb;
       
   415 	dma_addr_t dma_addr;
       
   416 };
       
   417 
       
   418 #if defined(__BIG_ENDIAN_BITFIELD)
       
   419 #define X(a,b)	b,a
       
   420 #else
       
   421 #define X(a,b)	a,b
       
   422 #endif
       
   423 struct config {
       
   424 /*0*/	u8 X(byte_count:6, pad0:2);
       
   425 /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
       
   426 /*2*/	u8 adaptive_ifs;
       
   427 /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
       
   428 	   term_write_cache_line:1), pad3:4);
       
   429 /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
       
   430 /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
       
   431 /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
       
   432 	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
       
   433 	   rx_discard_overruns:1), rx_save_bad_frames:1);
       
   434 /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
       
   435 	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
       
   436 	   tx_dynamic_tbd:1);
       
   437 /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
       
   438 /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
       
   439 	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
       
   440 /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
       
   441 	   loopback:2);
       
   442 /*11*/	u8 X(linear_priority:3, pad11:5);
       
   443 /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
       
   444 /*13*/	u8 ip_addr_lo;
       
   445 /*14*/	u8 ip_addr_hi;
       
   446 /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
       
   447 	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
       
   448 	   pad15_2:1), crs_or_cdt:1);
       
   449 /*16*/	u8 fc_delay_lo;
       
   450 /*17*/	u8 fc_delay_hi;
       
   451 /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
       
   452 	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
       
   453 /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
       
   454 	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
       
   455 	   full_duplex_force:1), full_duplex_pin:1);
       
   456 /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
       
   457 /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
       
   458 /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
       
   459 	u8 pad_d102[9];
       
   460 };
       
   461 
       
   462 #define E100_MAX_MULTICAST_ADDRS	64
       
   463 struct multi {
       
   464 	__le16 count;
       
   465 	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
       
   466 };
       
   467 
       
   468 /* Important: keep total struct u32-aligned */
       
   469 #define UCODE_SIZE			134
       
   470 struct cb {
       
   471 	__le16 status;
       
   472 	__le16 command;
       
   473 	__le32 link;
       
   474 	union {
       
   475 		u8 iaaddr[ETH_ALEN];
       
   476 		__le32 ucode[UCODE_SIZE];
       
   477 		struct config config;
       
   478 		struct multi multi;
       
   479 		struct {
       
   480 			u32 tbd_array;
       
   481 			u16 tcb_byte_count;
       
   482 			u8 threshold;
       
   483 			u8 tbd_count;
       
   484 			struct {
       
   485 				__le32 buf_addr;
       
   486 				__le16 size;
       
   487 				u16 eol;
       
   488 			} tbd;
       
   489 		} tcb;
       
   490 		__le32 dump_buffer_addr;
       
   491 	} u;
       
   492 	struct cb *next, *prev;
       
   493 	dma_addr_t dma_addr;
       
   494 	struct sk_buff *skb;
       
   495 };
       
   496 
       
   497 enum loopback {
       
   498 	lb_none = 0, lb_mac = 1, lb_phy = 3,
       
   499 };
       
   500 
       
   501 struct stats {
       
   502 	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
       
   503 		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
       
   504 		tx_multiple_collisions, tx_total_collisions;
       
   505 	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
       
   506 		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
       
   507 		rx_short_frame_errors;
       
   508 	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
       
   509 	__le16 xmt_tco_frames, rcv_tco_frames;
       
   510 	__le32 complete;
       
   511 };
       
   512 
       
   513 struct mem {
       
   514 	struct {
       
   515 		u32 signature;
       
   516 		u32 result;
       
   517 	} selftest;
       
   518 	struct stats stats;
       
   519 	u8 dump_buf[596];
       
   520 };
       
   521 
       
   522 struct param_range {
       
   523 	u32 min;
       
   524 	u32 max;
       
   525 	u32 count;
       
   526 };
       
   527 
       
   528 struct params {
       
   529 	struct param_range rfds;
       
   530 	struct param_range cbs;
       
   531 };
       
   532 
       
   533 struct nic {
       
   534 	/* Begin: frequently used values: keep adjacent for cache effect */
       
   535 	u32 msg_enable				____cacheline_aligned;
       
   536 	struct net_device *netdev;
       
   537 	struct pci_dev *pdev;
       
   538 
       
   539 	struct rx *rxs				____cacheline_aligned;
       
   540 	struct rx *rx_to_use;
       
   541 	struct rx *rx_to_clean;
       
   542 	struct rfd blank_rfd;
       
   543 	enum ru_state ru_running;
       
   544 
       
   545 	spinlock_t cb_lock			____cacheline_aligned;
       
   546 	spinlock_t cmd_lock;
       
   547 	struct csr __iomem *csr;
       
   548 	enum scb_cmd_lo cuc_cmd;
       
   549 	unsigned int cbs_avail;
       
   550 	struct napi_struct napi;
       
   551 	struct cb *cbs;
       
   552 	struct cb *cb_to_use;
       
   553 	struct cb *cb_to_send;
       
   554 	struct cb *cb_to_clean;
       
   555 	__le16 tx_command;
       
   556 	/* End: frequently used values: keep adjacent for cache effect */
       
   557 
       
   558 	enum {
       
   559 		ich                = (1 << 0),
       
   560 		promiscuous        = (1 << 1),
       
   561 		multicast_all      = (1 << 2),
       
   562 		wol_magic          = (1 << 3),
       
   563 		ich_10h_workaround = (1 << 4),
       
   564 	} flags					____cacheline_aligned;
       
   565 
       
   566 	enum mac mac;
       
   567 	enum phy phy;
       
   568 	struct params params;
       
   569 	struct timer_list watchdog;
       
   570 	struct timer_list blink_timer;
       
   571 	struct mii_if_info mii;
       
   572 	struct work_struct tx_timeout_task;
       
   573 	enum loopback loopback;
       
   574 
       
   575 	struct mem *mem;
       
   576 	dma_addr_t dma_addr;
       
   577 
       
   578 	dma_addr_t cbs_dma_addr;
       
   579 	u8 adaptive_ifs;
       
   580 	u8 tx_threshold;
       
   581 	u32 tx_frames;
       
   582 	u32 tx_collisions;
       
   583 	u32 tx_deferred;
       
   584 	u32 tx_single_collisions;
       
   585 	u32 tx_multiple_collisions;
       
   586 	u32 tx_fc_pause;
       
   587 	u32 tx_tco_frames;
       
   588 
       
   589 	u32 rx_fc_pause;
       
   590 	u32 rx_fc_unsupported;
       
   591 	u32 rx_tco_frames;
       
   592 	u32 rx_over_length_errors;
       
   593 
       
   594 	u16 leds;
       
   595 	u16 eeprom_wc;
       
   596 	__le16 eeprom[256];
       
   597 	spinlock_t mdio_lock;
       
   598 };
       
   599 
       
   600 static inline void e100_write_flush(struct nic *nic)
       
   601 {
       
   602 	/* Flush previous PCI writes through intermediate bridges
       
   603 	 * by doing a benign read */
       
   604 	(void)ioread8(&nic->csr->scb.status);
       
   605 }
       
   606 
       
   607 static void e100_enable_irq(struct nic *nic)
       
   608 {
       
   609 	unsigned long flags;
       
   610 
       
   611 	spin_lock_irqsave(&nic->cmd_lock, flags);
       
   612 	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
       
   613 	e100_write_flush(nic);
       
   614 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
       
   615 }
       
   616 
       
   617 static void e100_disable_irq(struct nic *nic)
       
   618 {
       
   619 	unsigned long flags;
       
   620 
       
   621 	spin_lock_irqsave(&nic->cmd_lock, flags);
       
   622 	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
       
   623 	e100_write_flush(nic);
       
   624 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
       
   625 }
       
   626 
       
   627 static void e100_hw_reset(struct nic *nic)
       
   628 {
       
   629 	/* Put CU and RU into idle with a selective reset to get
       
   630 	 * device off of PCI bus */
       
   631 	iowrite32(selective_reset, &nic->csr->port);
       
   632 	e100_write_flush(nic); udelay(20);
       
   633 
       
   634 	/* Now fully reset device */
       
   635 	iowrite32(software_reset, &nic->csr->port);
       
   636 	e100_write_flush(nic); udelay(20);
       
   637 
       
   638 	/* Mask off our interrupt line - it's unmasked after reset */
       
   639 	e100_disable_irq(nic);
       
   640 }
       
   641 
       
   642 static int e100_self_test(struct nic *nic)
       
   643 {
       
   644 	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
       
   645 
       
   646 	/* Passing the self-test is a pretty good indication
       
   647 	 * that the device can DMA to/from host memory */
       
   648 
       
   649 	nic->mem->selftest.signature = 0;
       
   650 	nic->mem->selftest.result = 0xFFFFFFFF;
       
   651 
       
   652 	iowrite32(selftest | dma_addr, &nic->csr->port);
       
   653 	e100_write_flush(nic);
       
   654 	/* Wait 10 msec for self-test to complete */
       
   655 	msleep(10);
       
   656 
       
   657 	/* Interrupts are enabled after self-test */
       
   658 	e100_disable_irq(nic);
       
   659 
       
   660 	/* Check results of self-test */
       
   661 	if(nic->mem->selftest.result != 0) {
       
   662 		DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
       
   663 			nic->mem->selftest.result);
       
   664 		return -ETIMEDOUT;
       
   665 	}
       
   666 	if(nic->mem->selftest.signature == 0) {
       
   667 		DPRINTK(HW, ERR, "Self-test failed: timed out\n");
       
   668 		return -ETIMEDOUT;
       
   669 	}
       
   670 
       
   671 	return 0;
       
   672 }
       
   673 
       
   674 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
       
   675 {
       
   676 	u32 cmd_addr_data[3];
       
   677 	u8 ctrl;
       
   678 	int i, j;
       
   679 
       
   680 	/* Three cmds: write/erase enable, write data, write/erase disable */
       
   681 	cmd_addr_data[0] = op_ewen << (addr_len - 2);
       
   682 	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
       
   683 		le16_to_cpu(data);
       
   684 	cmd_addr_data[2] = op_ewds << (addr_len - 2);
       
   685 
       
   686 	/* Bit-bang cmds to write word to eeprom */
       
   687 	for(j = 0; j < 3; j++) {
       
   688 
       
   689 		/* Chip select */
       
   690 		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
       
   691 		e100_write_flush(nic); udelay(4);
       
   692 
       
   693 		for(i = 31; i >= 0; i--) {
       
   694 			ctrl = (cmd_addr_data[j] & (1 << i)) ?
       
   695 				eecs | eedi : eecs;
       
   696 			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
       
   697 			e100_write_flush(nic); udelay(4);
       
   698 
       
   699 			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
       
   700 			e100_write_flush(nic); udelay(4);
       
   701 		}
       
   702 		/* Wait 10 msec for cmd to complete */
       
   703 		msleep(10);
       
   704 
       
   705 		/* Chip deselect */
       
   706 		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
       
   707 		e100_write_flush(nic); udelay(4);
       
   708 	}
       
   709 };
       
   710 
       
   711 /* General technique stolen from the eepro100 driver - very clever */
       
   712 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
       
   713 {
       
   714 	u32 cmd_addr_data;
       
   715 	u16 data = 0;
       
   716 	u8 ctrl;
       
   717 	int i;
       
   718 
       
   719 	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
       
   720 
       
   721 	/* Chip select */
       
   722 	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
       
   723 	e100_write_flush(nic); udelay(4);
       
   724 
       
   725 	/* Bit-bang to read word from eeprom */
       
   726 	for(i = 31; i >= 0; i--) {
       
   727 		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
       
   728 		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
       
   729 		e100_write_flush(nic); udelay(4);
       
   730 
       
   731 		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
       
   732 		e100_write_flush(nic); udelay(4);
       
   733 
       
   734 		/* Eeprom drives a dummy zero to EEDO after receiving
       
   735 		 * complete address.  Use this to adjust addr_len. */
       
   736 		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
       
   737 		if(!(ctrl & eedo) && i > 16) {
       
   738 			*addr_len -= (i - 16);
       
   739 			i = 17;
       
   740 		}
       
   741 
       
   742 		data = (data << 1) | (ctrl & eedo ? 1 : 0);
       
   743 	}
       
   744 
       
   745 	/* Chip deselect */
       
   746 	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
       
   747 	e100_write_flush(nic); udelay(4);
       
   748 
       
   749 	return cpu_to_le16(data);
       
   750 };
       
   751 
       
   752 /* Load entire EEPROM image into driver cache and validate checksum */
       
   753 static int e100_eeprom_load(struct nic *nic)
       
   754 {
       
   755 	u16 addr, addr_len = 8, checksum = 0;
       
   756 
       
   757 	/* Try reading with an 8-bit addr len to discover actual addr len */
       
   758 	e100_eeprom_read(nic, &addr_len, 0);
       
   759 	nic->eeprom_wc = 1 << addr_len;
       
   760 
       
   761 	for(addr = 0; addr < nic->eeprom_wc; addr++) {
       
   762 		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
       
   763 		if(addr < nic->eeprom_wc - 1)
       
   764 			checksum += le16_to_cpu(nic->eeprom[addr]);
       
   765 	}
       
   766 
       
   767 	/* The checksum, stored in the last word, is calculated such that
       
   768 	 * the sum of words should be 0xBABA */
       
   769 	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
       
   770 		DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
       
   771 		if (!eeprom_bad_csum_allow)
       
   772 			return -EAGAIN;
       
   773 	}
       
   774 
       
   775 	return 0;
       
   776 }
       
   777 
       
   778 /* Save (portion of) driver EEPROM cache to device and update checksum */
       
   779 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
       
   780 {
       
   781 	u16 addr, addr_len = 8, checksum = 0;
       
   782 
       
   783 	/* Try reading with an 8-bit addr len to discover actual addr len */
       
   784 	e100_eeprom_read(nic, &addr_len, 0);
       
   785 	nic->eeprom_wc = 1 << addr_len;
       
   786 
       
   787 	if(start + count >= nic->eeprom_wc)
       
   788 		return -EINVAL;
       
   789 
       
   790 	for(addr = start; addr < start + count; addr++)
       
   791 		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
       
   792 
       
   793 	/* The checksum, stored in the last word, is calculated such that
       
   794 	 * the sum of words should be 0xBABA */
       
   795 	for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
       
   796 		checksum += le16_to_cpu(nic->eeprom[addr]);
       
   797 	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
       
   798 	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
       
   799 		nic->eeprom[nic->eeprom_wc - 1]);
       
   800 
       
   801 	return 0;
       
   802 }
       
   803 
       
   804 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
       
   805 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
       
   806 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
       
   807 {
       
   808 	unsigned long flags;
       
   809 	unsigned int i;
       
   810 	int err = 0;
       
   811 
       
   812 	spin_lock_irqsave(&nic->cmd_lock, flags);
       
   813 
       
   814 	/* Previous command is accepted when SCB clears */
       
   815 	for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
       
   816 		if(likely(!ioread8(&nic->csr->scb.cmd_lo)))
       
   817 			break;
       
   818 		cpu_relax();
       
   819 		if(unlikely(i > E100_WAIT_SCB_FAST))
       
   820 			udelay(5);
       
   821 	}
       
   822 	if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
       
   823 		err = -EAGAIN;
       
   824 		goto err_unlock;
       
   825 	}
       
   826 
       
   827 	if(unlikely(cmd != cuc_resume))
       
   828 		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
       
   829 	iowrite8(cmd, &nic->csr->scb.cmd_lo);
       
   830 
       
   831 err_unlock:
       
   832 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
       
   833 
       
   834 	return err;
       
   835 }
       
   836 
       
   837 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
       
   838 	void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
       
   839 {
       
   840 	struct cb *cb;
       
   841 	unsigned long flags;
       
   842 	int err = 0;
       
   843 
       
   844 	spin_lock_irqsave(&nic->cb_lock, flags);
       
   845 
       
   846 	if(unlikely(!nic->cbs_avail)) {
       
   847 		err = -ENOMEM;
       
   848 		goto err_unlock;
       
   849 	}
       
   850 
       
   851 	cb = nic->cb_to_use;
       
   852 	nic->cb_to_use = cb->next;
       
   853 	nic->cbs_avail--;
       
   854 	cb->skb = skb;
       
   855 
       
   856 	if(unlikely(!nic->cbs_avail))
       
   857 		err = -ENOSPC;
       
   858 
       
   859 	cb_prepare(nic, cb, skb);
       
   860 
       
   861 	/* Order is important otherwise we'll be in a race with h/w:
       
   862 	 * set S-bit in current first, then clear S-bit in previous. */
       
   863 	cb->command |= cpu_to_le16(cb_s);
       
   864 	wmb();
       
   865 	cb->prev->command &= cpu_to_le16(~cb_s);
       
   866 
       
   867 	while(nic->cb_to_send != nic->cb_to_use) {
       
   868 		if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
       
   869 			nic->cb_to_send->dma_addr))) {
       
   870 			/* Ok, here's where things get sticky.  It's
       
   871 			 * possible that we can't schedule the command
       
   872 			 * because the controller is too busy, so
       
   873 			 * let's just queue the command and try again
       
   874 			 * when another command is scheduled. */
       
   875 			if(err == -ENOSPC) {
       
   876 				//request a reset
       
   877 				schedule_work(&nic->tx_timeout_task);
       
   878 			}
       
   879 			break;
       
   880 		} else {
       
   881 			nic->cuc_cmd = cuc_resume;
       
   882 			nic->cb_to_send = nic->cb_to_send->next;
       
   883 		}
       
   884 	}
       
   885 
       
   886 err_unlock:
       
   887 	spin_unlock_irqrestore(&nic->cb_lock, flags);
       
   888 
       
   889 	return err;
       
   890 }
       
   891 
       
   892 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
       
   893 {
       
   894 	u32 data_out = 0;
       
   895 	unsigned int i;
       
   896 	unsigned long flags;
       
   897 
       
   898 
       
   899 	/*
       
   900 	 * Stratus87247: we shouldn't be writing the MDI control
       
   901 	 * register until the Ready bit shows True.  Also, since
       
   902 	 * manipulation of the MDI control registers is a multi-step
       
   903 	 * procedure it should be done under lock.
       
   904 	 */
       
   905 	spin_lock_irqsave(&nic->mdio_lock, flags);
       
   906 	for (i = 100; i; --i) {
       
   907 		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
       
   908 			break;
       
   909 		udelay(20);
       
   910 	}
       
   911 	if (unlikely(!i)) {
       
   912 		printk("e100.mdio_ctrl(%s) won't go Ready\n",
       
   913 			nic->netdev->name );
       
   914 		spin_unlock_irqrestore(&nic->mdio_lock, flags);
       
   915 		return 0;		/* No way to indicate timeout error */
       
   916 	}
       
   917 	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
       
   918 
       
   919 	for (i = 0; i < 100; i++) {
       
   920 		udelay(20);
       
   921 		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
       
   922 			break;
       
   923 	}
       
   924 	spin_unlock_irqrestore(&nic->mdio_lock, flags);
       
   925 	DPRINTK(HW, DEBUG,
       
   926 		"%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
       
   927 		dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
       
   928 	return (u16)data_out;
       
   929 }
       
   930 
       
   931 static int mdio_read(struct net_device *netdev, int addr, int reg)
       
   932 {
       
   933 	return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
       
   934 }
       
   935 
       
   936 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
       
   937 {
       
   938 	mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
       
   939 }
       
   940 
       
   941 static void e100_get_defaults(struct nic *nic)
       
   942 {
       
   943 	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
       
   944 	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
       
   945 
       
   946 	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
       
   947 	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
       
   948 	if(nic->mac == mac_unknown)
       
   949 		nic->mac = mac_82557_D100_A;
       
   950 
       
   951 	nic->params.rfds = rfds;
       
   952 	nic->params.cbs = cbs;
       
   953 
       
   954 	/* Quadwords to DMA into FIFO before starting frame transmit */
       
   955 	nic->tx_threshold = 0xE0;
       
   956 
       
   957 	/* no interrupt for every tx completion, delay = 256us if not 557 */
       
   958 	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
       
   959 		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
       
   960 
       
   961 	/* Template for a freshly allocated RFD */
       
   962 	nic->blank_rfd.command = 0;
       
   963 	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
       
   964 	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
       
   965 
       
   966 	/* MII setup */
       
   967 	nic->mii.phy_id_mask = 0x1F;
       
   968 	nic->mii.reg_num_mask = 0x1F;
       
   969 	nic->mii.dev = nic->netdev;
       
   970 	nic->mii.mdio_read = mdio_read;
       
   971 	nic->mii.mdio_write = mdio_write;
       
   972 }
       
   973 
       
   974 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
       
   975 {
       
   976 	struct config *config = &cb->u.config;
       
   977 	u8 *c = (u8 *)config;
       
   978 
       
   979 	cb->command = cpu_to_le16(cb_config);
       
   980 
       
   981 	memset(config, 0, sizeof(struct config));
       
   982 
       
   983 	config->byte_count = 0x16;		/* bytes in this struct */
       
   984 	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
       
   985 	config->direct_rx_dma = 0x1;		/* reserved */
       
   986 	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
       
   987 	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
       
   988 	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
       
   989 	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
       
   990 	config->mii_mode = 0x1;			/* 1=MII mode, 0=503 mode */
       
   991 	config->pad10 = 0x6;
       
   992 	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
       
   993 	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
       
   994 	config->ifs = 0x6;			/* x16 = inter frame spacing */
       
   995 	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
       
   996 	config->pad15_1 = 0x1;
       
   997 	config->pad15_2 = 0x1;
       
   998 	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
       
   999 	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
       
  1000 	config->tx_padding = 0x1;		/* 1=pad short frames */
       
  1001 	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
       
  1002 	config->pad18 = 0x1;
       
  1003 	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
       
  1004 	config->pad20_1 = 0x1F;
       
  1005 	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
       
  1006 	config->pad21_1 = 0x5;
       
  1007 
       
  1008 	config->adaptive_ifs = nic->adaptive_ifs;
       
  1009 	config->loopback = nic->loopback;
       
  1010 
       
  1011 	if(nic->mii.force_media && nic->mii.full_duplex)
       
  1012 		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
       
  1013 
       
  1014 	if(nic->flags & promiscuous || nic->loopback) {
       
  1015 		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
       
  1016 		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
       
  1017 		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
       
  1018 	}
       
  1019 
       
  1020 	if(nic->flags & multicast_all)
       
  1021 		config->multicast_all = 0x1;		/* 1=accept, 0=no */
       
  1022 
       
  1023 	/* disable WoL when up */
       
  1024 	if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
       
  1025 		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
       
  1026 
       
  1027 	if(nic->mac >= mac_82558_D101_A4) {
       
  1028 		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
       
  1029 		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
       
  1030 		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
       
  1031 		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
       
  1032 		if (nic->mac >= mac_82559_D101M) {
       
  1033 			config->tno_intr = 0x1;		/* TCO stats enable */
       
  1034 			/* Enable TCO in extended config */
       
  1035 			if (nic->mac >= mac_82551_10) {
       
  1036 				config->byte_count = 0x20; /* extended bytes */
       
  1037 				config->rx_d102_mode = 0x1; /* GMRC for TCO */
       
  1038 			}
       
  1039 		} else {
       
  1040 			config->standard_stat_counter = 0x0;
       
  1041 		}
       
  1042 	}
       
  1043 
       
  1044 	DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
       
  1045 		c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
       
  1046 	DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
       
  1047 		c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
       
  1048 	DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
       
  1049 		c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
       
  1050 }
       
  1051 
       
  1052 /********************************************************/
       
  1053 /*  Micro code for 8086:1229 Rev 8                      */
       
  1054 /********************************************************/
       
  1055 
       
  1056 /*  Parameter values for the D101M B-step  */
       
  1057 #define D101M_CPUSAVER_TIMER_DWORD		78
       
  1058 #define D101M_CPUSAVER_BUNDLE_DWORD		65
       
  1059 #define D101M_CPUSAVER_MIN_SIZE_DWORD		126
       
  1060 
       
  1061 #define D101M_B_RCVBUNDLE_UCODE \
       
  1062 {\
       
  1063 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
       
  1064 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
       
  1065 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
       
  1066 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
       
  1067 0x00380438, 0x00000000, 0x00140000, 0x00380555, \
       
  1068 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \
       
  1069 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
       
  1070 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
       
  1071 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
       
  1072 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
       
  1073 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1074 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
       
  1075 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
       
  1076 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
       
  1077 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
       
  1078 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \
       
  1079 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
       
  1080 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1081 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1082 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
       
  1083 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \
       
  1084 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
       
  1085 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
       
  1086 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
       
  1087 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
       
  1088 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
       
  1089 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
       
  1090 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \
       
  1091 0x00380559, 0x00000000, 0x00000000, 0x00000000, \
       
  1092 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1093 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \
       
  1094 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
       
  1095 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \
       
  1096 }
       
  1097 
       
  1098 /********************************************************/
       
  1099 /*  Micro code for 8086:1229 Rev 9                      */
       
  1100 /********************************************************/
       
  1101 
       
  1102 /*  Parameter values for the D101S  */
       
  1103 #define D101S_CPUSAVER_TIMER_DWORD		78
       
  1104 #define D101S_CPUSAVER_BUNDLE_DWORD		67
       
  1105 #define D101S_CPUSAVER_MIN_SIZE_DWORD		128
       
  1106 
       
  1107 #define D101S_RCVBUNDLE_UCODE \
       
  1108 {\
       
  1109 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
       
  1110 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
       
  1111 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
       
  1112 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
       
  1113 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
       
  1114 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \
       
  1115 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
       
  1116 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
       
  1117 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
       
  1118 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
       
  1119 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1120 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
       
  1121 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \
       
  1122 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
       
  1123 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
       
  1124 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
       
  1125 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
       
  1126 0x00101313, 0x00380700, 0x00000000, 0x00000000, \
       
  1127 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1128 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
       
  1129 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
       
  1130 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
       
  1131 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
       
  1132 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
       
  1133 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
       
  1134 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
       
  1135 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
       
  1136 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
       
  1137 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
       
  1138 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1139 0x00000000, 0x00000000, 0x00000000, 0x00130831, \
       
  1140 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
       
  1141 0x00041000, 0x00010004, 0x00380700  \
       
  1142 }
       
  1143 
       
  1144 /********************************************************/
       
  1145 /*  Micro code for the 8086:1229 Rev F/10               */
       
  1146 /********************************************************/
       
  1147 
       
  1148 /*  Parameter values for the D102 E-step  */
       
  1149 #define D102_E_CPUSAVER_TIMER_DWORD		42
       
  1150 #define D102_E_CPUSAVER_BUNDLE_DWORD		54
       
  1151 #define D102_E_CPUSAVER_MIN_SIZE_DWORD		46
       
  1152 
       
  1153 #define     D102_E_RCVBUNDLE_UCODE \
       
  1154 {\
       
  1155 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
       
  1156 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
       
  1157 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
       
  1158 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
       
  1159 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1160 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
       
  1161 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1162 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1163 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1164 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
       
  1165 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
       
  1166 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
       
  1167 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
       
  1168 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
       
  1169 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1170 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1171 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1172 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
       
  1173 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
       
  1174 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1175 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1176 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1177 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1178 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1179 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1180 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1181 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1182 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1183 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1184 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1185 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1186 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1187 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
       
  1188 }
       
  1189 
       
  1190 static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
       
  1191 {
       
  1192 /* *INDENT-OFF* */
       
  1193 	static struct {
       
  1194 		u32 ucode[UCODE_SIZE + 1];
       
  1195 		u8 mac;
       
  1196 		u8 timer_dword;
       
  1197 		u8 bundle_dword;
       
  1198 		u8 min_size_dword;
       
  1199 	} ucode_opts[] = {
       
  1200 		{ D101M_B_RCVBUNDLE_UCODE,
       
  1201 		  mac_82559_D101M,
       
  1202 		  D101M_CPUSAVER_TIMER_DWORD,
       
  1203 		  D101M_CPUSAVER_BUNDLE_DWORD,
       
  1204 		  D101M_CPUSAVER_MIN_SIZE_DWORD },
       
  1205 		{ D101S_RCVBUNDLE_UCODE,
       
  1206 		  mac_82559_D101S,
       
  1207 		  D101S_CPUSAVER_TIMER_DWORD,
       
  1208 		  D101S_CPUSAVER_BUNDLE_DWORD,
       
  1209 		  D101S_CPUSAVER_MIN_SIZE_DWORD },
       
  1210 		{ D102_E_RCVBUNDLE_UCODE,
       
  1211 		  mac_82551_F,
       
  1212 		  D102_E_CPUSAVER_TIMER_DWORD,
       
  1213 		  D102_E_CPUSAVER_BUNDLE_DWORD,
       
  1214 		  D102_E_CPUSAVER_MIN_SIZE_DWORD },
       
  1215 		{ D102_E_RCVBUNDLE_UCODE,
       
  1216 		  mac_82551_10,
       
  1217 		  D102_E_CPUSAVER_TIMER_DWORD,
       
  1218 		  D102_E_CPUSAVER_BUNDLE_DWORD,
       
  1219 		  D102_E_CPUSAVER_MIN_SIZE_DWORD },
       
  1220 		{ {0}, 0, 0, 0, 0}
       
  1221 	}, *opts;
       
  1222 /* *INDENT-ON* */
       
  1223 
       
  1224 /*************************************************************************
       
  1225 *  CPUSaver parameters
       
  1226 *
       
  1227 *  All CPUSaver parameters are 16-bit literals that are part of a
       
  1228 *  "move immediate value" instruction.  By changing the value of
       
  1229 *  the literal in the instruction before the code is loaded, the
       
  1230 *  driver can change the algorithm.
       
  1231 *
       
  1232 *  INTDELAY - This loads the dead-man timer with its initial value.
       
  1233 *    When this timer expires the interrupt is asserted, and the
       
  1234 *    timer is reset each time a new packet is received.  (see
       
  1235 *    BUNDLEMAX below to set the limit on number of chained packets)
       
  1236 *    The current default is 0x600 or 1536.  Experiments show that
       
  1237 *    the value should probably stay within the 0x200 - 0x1000.
       
  1238 *
       
  1239 *  BUNDLEMAX -
       
  1240 *    This sets the maximum number of frames that will be bundled.  In
       
  1241 *    some situations, such as the TCP windowing algorithm, it may be
       
  1242 *    better to limit the growth of the bundle size than let it go as
       
  1243 *    high as it can, because that could cause too much added latency.
       
  1244 *    The default is six, because this is the number of packets in the
       
  1245 *    default TCP window size.  A value of 1 would make CPUSaver indicate
       
  1246 *    an interrupt for every frame received.  If you do not want to put
       
  1247 *    a limit on the bundle size, set this value to xFFFF.
       
  1248 *
       
  1249 *  BUNDLESMALL -
       
  1250 *    This contains a bit-mask describing the minimum size frame that
       
  1251 *    will be bundled.  The default masks the lower 7 bits, which means
       
  1252 *    that any frame less than 128 bytes in length will not be bundled,
       
  1253 *    but will instead immediately generate an interrupt.  This does
       
  1254 *    not affect the current bundle in any way.  Any frame that is 128
       
  1255 *    bytes or large will be bundled normally.  This feature is meant
       
  1256 *    to provide immediate indication of ACK frames in a TCP environment.
       
  1257 *    Customers were seeing poor performance when a machine with CPUSaver
       
  1258 *    enabled was sending but not receiving.  The delay introduced when
       
  1259 *    the ACKs were received was enough to reduce total throughput, because
       
  1260 *    the sender would sit idle until the ACK was finally seen.
       
  1261 *
       
  1262 *    The current default is 0xFF80, which masks out the lower 7 bits.
       
  1263 *    This means that any frame which is x7F (127) bytes or smaller
       
  1264 *    will cause an immediate interrupt.  Because this value must be a
       
  1265 *    bit mask, there are only a few valid values that can be used.  To
       
  1266 *    turn this feature off, the driver can write the value xFFFF to the
       
  1267 *    lower word of this instruction (in the same way that the other
       
  1268 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
       
  1269 *    cause an interrupt to be generated for every frame, because all
       
  1270 *    standard Ethernet frames are <= 2047 bytes in length.
       
  1271 *************************************************************************/
       
  1272 
       
  1273 /* if you wish to disable the ucode functionality, while maintaining the
       
  1274  * workarounds it provides, set the following defines to:
       
  1275  * BUNDLESMALL 0
       
  1276  * BUNDLEMAX 1
       
  1277  * INTDELAY 1
       
  1278  */
       
  1279 #define BUNDLESMALL 1
       
  1280 #define BUNDLEMAX (u16)6
       
  1281 #define INTDELAY (u16)1536 /* 0x600 */
       
  1282 
       
  1283 	/* do not load u-code for ICH devices */
       
  1284 	if (nic->flags & ich)
       
  1285 		goto noloaducode;
       
  1286 
       
  1287 	/* Search for ucode match against h/w revision */
       
  1288 	for (opts = ucode_opts; opts->mac; opts++) {
       
  1289 		int i;
       
  1290 		u32 *ucode = opts->ucode;
       
  1291 		if (nic->mac != opts->mac)
       
  1292 			continue;
       
  1293 
       
  1294 		/* Insert user-tunable settings */
       
  1295 		ucode[opts->timer_dword] &= 0xFFFF0000;
       
  1296 		ucode[opts->timer_dword] |= INTDELAY;
       
  1297 		ucode[opts->bundle_dword] &= 0xFFFF0000;
       
  1298 		ucode[opts->bundle_dword] |= BUNDLEMAX;
       
  1299 		ucode[opts->min_size_dword] &= 0xFFFF0000;
       
  1300 		ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80;
       
  1301 
       
  1302 		for (i = 0; i < UCODE_SIZE; i++)
       
  1303 			cb->u.ucode[i] = cpu_to_le32(ucode[i]);
       
  1304 		cb->command = cpu_to_le16(cb_ucode | cb_el);
       
  1305 		return;
       
  1306 	}
       
  1307 
       
  1308 noloaducode:
       
  1309 	cb->command = cpu_to_le16(cb_nop | cb_el);
       
  1310 }
       
  1311 
       
  1312 static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb,
       
  1313 	void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
       
  1314 {
       
  1315 	int err = 0, counter = 50;
       
  1316 	struct cb *cb = nic->cb_to_clean;
       
  1317 
       
  1318 	if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode)))
       
  1319 		DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
       
  1320 
       
  1321 	/* must restart cuc */
       
  1322 	nic->cuc_cmd = cuc_start;
       
  1323 
       
  1324 	/* wait for completion */
       
  1325 	e100_write_flush(nic);
       
  1326 	udelay(10);
       
  1327 
       
  1328 	/* wait for possibly (ouch) 500ms */
       
  1329 	while (!(cb->status & cpu_to_le16(cb_complete))) {
       
  1330 		msleep(10);
       
  1331 		if (!--counter) break;
       
  1332 	}
       
  1333 
       
  1334 	/* ack any interrupts, something could have been set */
       
  1335 	iowrite8(~0, &nic->csr->scb.stat_ack);
       
  1336 
       
  1337 	/* if the command failed, or is not OK, notify and return */
       
  1338 	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
       
  1339 		DPRINTK(PROBE,ERR, "ucode load failed\n");
       
  1340 		err = -EPERM;
       
  1341 	}
       
  1342 
       
  1343 	return err;
       
  1344 }
       
  1345 
       
  1346 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
       
  1347 	struct sk_buff *skb)
       
  1348 {
       
  1349 	cb->command = cpu_to_le16(cb_iaaddr);
       
  1350 	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
       
  1351 }
       
  1352 
       
  1353 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
       
  1354 {
       
  1355 	cb->command = cpu_to_le16(cb_dump);
       
  1356 	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
       
  1357 		offsetof(struct mem, dump_buf));
       
  1358 }
       
  1359 
       
  1360 #define NCONFIG_AUTO_SWITCH	0x0080
       
  1361 #define MII_NSC_CONG		MII_RESV1
       
  1362 #define NSC_CONG_ENABLE		0x0100
       
  1363 #define NSC_CONG_TXREADY	0x0400
       
  1364 #define ADVERTISE_FC_SUPPORTED	0x0400
       
  1365 static int e100_phy_init(struct nic *nic)
       
  1366 {
       
  1367 	struct net_device *netdev = nic->netdev;
       
  1368 	u32 addr;
       
  1369 	u16 bmcr, stat, id_lo, id_hi, cong;
       
  1370 
       
  1371 	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
       
  1372 	for(addr = 0; addr < 32; addr++) {
       
  1373 		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
       
  1374 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
       
  1375 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
       
  1376 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
       
  1377 		if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
       
  1378 			break;
       
  1379 	}
       
  1380 	DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
       
  1381 	if(addr == 32)
       
  1382 		return -EAGAIN;
       
  1383 
       
  1384 	/* Selected the phy and isolate the rest */
       
  1385 	for(addr = 0; addr < 32; addr++) {
       
  1386 		if(addr != nic->mii.phy_id) {
       
  1387 			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
       
  1388 		} else {
       
  1389 			bmcr = mdio_read(netdev, addr, MII_BMCR);
       
  1390 			mdio_write(netdev, addr, MII_BMCR,
       
  1391 				bmcr & ~BMCR_ISOLATE);
       
  1392 		}
       
  1393 	}
       
  1394 
       
  1395 	/* Get phy ID */
       
  1396 	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
       
  1397 	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
       
  1398 	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
       
  1399 	DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
       
  1400 
       
  1401 	/* Handle National tx phys */
       
  1402 #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
       
  1403 	if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
       
  1404 		/* Disable congestion control */
       
  1405 		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
       
  1406 		cong |= NSC_CONG_TXREADY;
       
  1407 		cong &= ~NSC_CONG_ENABLE;
       
  1408 		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
       
  1409 	}
       
  1410 
       
  1411 	if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
       
  1412 	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
       
  1413 		!(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
       
  1414 		/* enable/disable MDI/MDI-X auto-switching. */
       
  1415 		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
       
  1416 				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
       
  1417 	}
       
  1418 
       
  1419 	return 0;
       
  1420 }
       
  1421 
       
  1422 static int e100_hw_init(struct nic *nic)
       
  1423 {
       
  1424 	int err;
       
  1425 
       
  1426 	e100_hw_reset(nic);
       
  1427 
       
  1428 	DPRINTK(HW, ERR, "e100_hw_init\n");
       
  1429 	if(!in_interrupt() && (err = e100_self_test(nic)))
       
  1430 		return err;
       
  1431 
       
  1432 	if((err = e100_phy_init(nic)))
       
  1433 		return err;
       
  1434 	if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
       
  1435 		return err;
       
  1436 	if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
       
  1437 		return err;
       
  1438 	if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode)))
       
  1439 		return err;
       
  1440 	if((err = e100_exec_cb(nic, NULL, e100_configure)))
       
  1441 		return err;
       
  1442 	if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
       
  1443 		return err;
       
  1444 	if((err = e100_exec_cmd(nic, cuc_dump_addr,
       
  1445 		nic->dma_addr + offsetof(struct mem, stats))))
       
  1446 		return err;
       
  1447 	if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
       
  1448 		return err;
       
  1449 
       
  1450 	e100_disable_irq(nic);
       
  1451 
       
  1452 	return 0;
       
  1453 }
       
  1454 
       
  1455 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
       
  1456 {
       
  1457 	struct net_device *netdev = nic->netdev;
       
  1458 	struct dev_mc_list *list = netdev->mc_list;
       
  1459 	u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
       
  1460 
       
  1461 	cb->command = cpu_to_le16(cb_multi);
       
  1462 	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
       
  1463 	for(i = 0; list && i < count; i++, list = list->next)
       
  1464 		memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
       
  1465 			ETH_ALEN);
       
  1466 }
       
  1467 
       
  1468 static void e100_set_multicast_list(struct net_device *netdev)
       
  1469 {
       
  1470 	struct nic *nic = netdev_priv(netdev);
       
  1471 
       
  1472 	DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
       
  1473 		netdev->mc_count, netdev->flags);
       
  1474 
       
  1475 	if(netdev->flags & IFF_PROMISC)
       
  1476 		nic->flags |= promiscuous;
       
  1477 	else
       
  1478 		nic->flags &= ~promiscuous;
       
  1479 
       
  1480 	if(netdev->flags & IFF_ALLMULTI ||
       
  1481 		netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
       
  1482 		nic->flags |= multicast_all;
       
  1483 	else
       
  1484 		nic->flags &= ~multicast_all;
       
  1485 
       
  1486 	e100_exec_cb(nic, NULL, e100_configure);
       
  1487 	e100_exec_cb(nic, NULL, e100_multi);
       
  1488 }
       
  1489 
       
  1490 static void e100_update_stats(struct nic *nic)
       
  1491 {
       
  1492 	struct net_device *dev = nic->netdev;
       
  1493 	struct net_device_stats *ns = &dev->stats;
       
  1494 	struct stats *s = &nic->mem->stats;
       
  1495 	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
       
  1496 		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
       
  1497 		&s->complete;
       
  1498 
       
  1499 	/* Device's stats reporting may take several microseconds to
       
  1500 	 * complete, so we're always waiting for results of the
       
  1501 	 * previous command. */
       
  1502 
       
  1503 	if(*complete == cpu_to_le32(cuc_dump_reset_complete)) {
       
  1504 		*complete = 0;
       
  1505 		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
       
  1506 		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
       
  1507 		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
       
  1508 		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
       
  1509 		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
       
  1510 		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
       
  1511 		ns->collisions += nic->tx_collisions;
       
  1512 		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
       
  1513 			le32_to_cpu(s->tx_lost_crs);
       
  1514 		ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
       
  1515 			nic->rx_over_length_errors;
       
  1516 		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
       
  1517 		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
       
  1518 		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
       
  1519 		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
       
  1520 		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
       
  1521 		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
       
  1522 			le32_to_cpu(s->rx_alignment_errors) +
       
  1523 			le32_to_cpu(s->rx_short_frame_errors) +
       
  1524 			le32_to_cpu(s->rx_cdt_errors);
       
  1525 		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
       
  1526 		nic->tx_single_collisions +=
       
  1527 			le32_to_cpu(s->tx_single_collisions);
       
  1528 		nic->tx_multiple_collisions +=
       
  1529 			le32_to_cpu(s->tx_multiple_collisions);
       
  1530 		if(nic->mac >= mac_82558_D101_A4) {
       
  1531 			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
       
  1532 			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
       
  1533 			nic->rx_fc_unsupported +=
       
  1534 				le32_to_cpu(s->fc_rcv_unsupported);
       
  1535 			if(nic->mac >= mac_82559_D101M) {
       
  1536 				nic->tx_tco_frames +=
       
  1537 					le16_to_cpu(s->xmt_tco_frames);
       
  1538 				nic->rx_tco_frames +=
       
  1539 					le16_to_cpu(s->rcv_tco_frames);
       
  1540 			}
       
  1541 		}
       
  1542 	}
       
  1543 
       
  1544 
       
  1545 	if(e100_exec_cmd(nic, cuc_dump_reset, 0))
       
  1546 		DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
       
  1547 }
       
  1548 
       
  1549 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
       
  1550 {
       
  1551 	/* Adjust inter-frame-spacing (IFS) between two transmits if
       
  1552 	 * we're getting collisions on a half-duplex connection. */
       
  1553 
       
  1554 	if(duplex == DUPLEX_HALF) {
       
  1555 		u32 prev = nic->adaptive_ifs;
       
  1556 		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
       
  1557 
       
  1558 		if((nic->tx_frames / 32 < nic->tx_collisions) &&
       
  1559 		   (nic->tx_frames > min_frames)) {
       
  1560 			if(nic->adaptive_ifs < 60)
       
  1561 				nic->adaptive_ifs += 5;
       
  1562 		} else if (nic->tx_frames < min_frames) {
       
  1563 			if(nic->adaptive_ifs >= 5)
       
  1564 				nic->adaptive_ifs -= 5;
       
  1565 		}
       
  1566 		if(nic->adaptive_ifs != prev)
       
  1567 			e100_exec_cb(nic, NULL, e100_configure);
       
  1568 	}
       
  1569 }
       
  1570 
       
  1571 static void e100_watchdog(unsigned long data)
       
  1572 {
       
  1573 	struct nic *nic = (struct nic *)data;
       
  1574 	struct ethtool_cmd cmd;
       
  1575 
       
  1576 	DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
       
  1577 
       
  1578 	/* mii library handles link maintenance tasks */
       
  1579 
       
  1580 	mii_ethtool_gset(&nic->mii, &cmd);
       
  1581 
       
  1582 	if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
       
  1583 		DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
       
  1584 			cmd.speed == SPEED_100 ? "100" : "10",
       
  1585 			cmd.duplex == DUPLEX_FULL ? "full" : "half");
       
  1586 	} else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
       
  1587 		DPRINTK(LINK, INFO, "link down\n");
       
  1588 	}
       
  1589 
       
  1590 	mii_check_link(&nic->mii);
       
  1591 
       
  1592 	/* Software generated interrupt to recover from (rare) Rx
       
  1593 	 * allocation failure.
       
  1594 	 * Unfortunately have to use a spinlock to not re-enable interrupts
       
  1595 	 * accidentally, due to hardware that shares a register between the
       
  1596 	 * interrupt mask bit and the SW Interrupt generation bit */
       
  1597 	spin_lock_irq(&nic->cmd_lock);
       
  1598 	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
       
  1599 	e100_write_flush(nic);
       
  1600 	spin_unlock_irq(&nic->cmd_lock);
       
  1601 
       
  1602 	e100_update_stats(nic);
       
  1603 	e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
       
  1604 
       
  1605 	if(nic->mac <= mac_82557_D100_C)
       
  1606 		/* Issue a multicast command to workaround a 557 lock up */
       
  1607 		e100_set_multicast_list(nic->netdev);
       
  1608 
       
  1609 	if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
       
  1610 		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
       
  1611 		nic->flags |= ich_10h_workaround;
       
  1612 	else
       
  1613 		nic->flags &= ~ich_10h_workaround;
       
  1614 
       
  1615 	mod_timer(&nic->watchdog,
       
  1616 		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
       
  1617 }
       
  1618 
       
  1619 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
       
  1620 	struct sk_buff *skb)
       
  1621 {
       
  1622 	cb->command = nic->tx_command;
       
  1623 	/* interrupt every 16 packets regardless of delay */
       
  1624 	if((nic->cbs_avail & ~15) == nic->cbs_avail)
       
  1625 		cb->command |= cpu_to_le16(cb_i);
       
  1626 	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
       
  1627 	cb->u.tcb.tcb_byte_count = 0;
       
  1628 	cb->u.tcb.threshold = nic->tx_threshold;
       
  1629 	cb->u.tcb.tbd_count = 1;
       
  1630 	cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
       
  1631 		skb->data, skb->len, PCI_DMA_TODEVICE));
       
  1632 	/* check for mapping failure? */
       
  1633 	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
       
  1634 }
       
  1635 
       
  1636 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
       
  1637 {
       
  1638 	struct nic *nic = netdev_priv(netdev);
       
  1639 	int err;
       
  1640 
       
  1641 	if(nic->flags & ich_10h_workaround) {
       
  1642 		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
       
  1643 		   Issue a NOP command followed by a 1us delay before
       
  1644 		   issuing the Tx command. */
       
  1645 		if(e100_exec_cmd(nic, cuc_nop, 0))
       
  1646 			DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
       
  1647 		udelay(1);
       
  1648 	}
       
  1649 
       
  1650 	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
       
  1651 
       
  1652 	switch(err) {
       
  1653 	case -ENOSPC:
       
  1654 		/* We queued the skb, but now we're out of space. */
       
  1655 		DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
       
  1656 		netif_stop_queue(netdev);
       
  1657 		break;
       
  1658 	case -ENOMEM:
       
  1659 		/* This is a hard error - log it. */
       
  1660 		DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
       
  1661 		netif_stop_queue(netdev);
       
  1662 		return 1;
       
  1663 	}
       
  1664 
       
  1665 	netdev->trans_start = jiffies;
       
  1666 	return 0;
       
  1667 }
       
  1668 
       
  1669 static int e100_tx_clean(struct nic *nic)
       
  1670 {
       
  1671 	struct net_device *dev = nic->netdev;
       
  1672 	struct cb *cb;
       
  1673 	int tx_cleaned = 0;
       
  1674 
       
  1675 	spin_lock(&nic->cb_lock);
       
  1676 
       
  1677 	/* Clean CBs marked complete */
       
  1678 	for(cb = nic->cb_to_clean;
       
  1679 	    cb->status & cpu_to_le16(cb_complete);
       
  1680 	    cb = nic->cb_to_clean = cb->next) {
       
  1681 		DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
       
  1682 		        (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
       
  1683 		        cb->status);
       
  1684 
       
  1685 		if(likely(cb->skb != NULL)) {
       
  1686 			dev->stats.tx_packets++;
       
  1687 			dev->stats.tx_bytes += cb->skb->len;
       
  1688 
       
  1689 			pci_unmap_single(nic->pdev,
       
  1690 				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
       
  1691 				le16_to_cpu(cb->u.tcb.tbd.size),
       
  1692 				PCI_DMA_TODEVICE);
       
  1693 			dev_kfree_skb_any(cb->skb);
       
  1694 			cb->skb = NULL;
       
  1695 			tx_cleaned = 1;
       
  1696 		}
       
  1697 		cb->status = 0;
       
  1698 		nic->cbs_avail++;
       
  1699 	}
       
  1700 
       
  1701 	spin_unlock(&nic->cb_lock);
       
  1702 
       
  1703 	/* Recover from running out of Tx resources in xmit_frame */
       
  1704 	if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
       
  1705 		netif_wake_queue(nic->netdev);
       
  1706 
       
  1707 	return tx_cleaned;
       
  1708 }
       
  1709 
       
  1710 static void e100_clean_cbs(struct nic *nic)
       
  1711 {
       
  1712 	if(nic->cbs) {
       
  1713 		while(nic->cbs_avail != nic->params.cbs.count) {
       
  1714 			struct cb *cb = nic->cb_to_clean;
       
  1715 			if(cb->skb) {
       
  1716 				pci_unmap_single(nic->pdev,
       
  1717 					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
       
  1718 					le16_to_cpu(cb->u.tcb.tbd.size),
       
  1719 					PCI_DMA_TODEVICE);
       
  1720 				dev_kfree_skb(cb->skb);
       
  1721 			}
       
  1722 			nic->cb_to_clean = nic->cb_to_clean->next;
       
  1723 			nic->cbs_avail++;
       
  1724 		}
       
  1725 		pci_free_consistent(nic->pdev,
       
  1726 			sizeof(struct cb) * nic->params.cbs.count,
       
  1727 			nic->cbs, nic->cbs_dma_addr);
       
  1728 		nic->cbs = NULL;
       
  1729 		nic->cbs_avail = 0;
       
  1730 	}
       
  1731 	nic->cuc_cmd = cuc_start;
       
  1732 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
       
  1733 		nic->cbs;
       
  1734 }
       
  1735 
       
  1736 static int e100_alloc_cbs(struct nic *nic)
       
  1737 {
       
  1738 	struct cb *cb;
       
  1739 	unsigned int i, count = nic->params.cbs.count;
       
  1740 
       
  1741 	nic->cuc_cmd = cuc_start;
       
  1742 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
       
  1743 	nic->cbs_avail = 0;
       
  1744 
       
  1745 	nic->cbs = pci_alloc_consistent(nic->pdev,
       
  1746 		sizeof(struct cb) * count, &nic->cbs_dma_addr);
       
  1747 	if(!nic->cbs)
       
  1748 		return -ENOMEM;
       
  1749 
       
  1750 	for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
       
  1751 		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
       
  1752 		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
       
  1753 
       
  1754 		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
       
  1755 		cb->link = cpu_to_le32(nic->cbs_dma_addr +
       
  1756 			((i+1) % count) * sizeof(struct cb));
       
  1757 		cb->skb = NULL;
       
  1758 	}
       
  1759 
       
  1760 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
       
  1761 	nic->cbs_avail = count;
       
  1762 
       
  1763 	return 0;
       
  1764 }
       
  1765 
       
  1766 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
       
  1767 {
       
  1768 	if(!nic->rxs) return;
       
  1769 	if(RU_SUSPENDED != nic->ru_running) return;
       
  1770 
       
  1771 	/* handle init time starts */
       
  1772 	if(!rx) rx = nic->rxs;
       
  1773 
       
  1774 	/* (Re)start RU if suspended or idle and RFA is non-NULL */
       
  1775 	if(rx->skb) {
       
  1776 		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
       
  1777 		nic->ru_running = RU_RUNNING;
       
  1778 	}
       
  1779 }
       
  1780 
       
  1781 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
       
  1782 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
       
  1783 {
       
  1784 	if(!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
       
  1785 		return -ENOMEM;
       
  1786 
       
  1787 	/* Align, init, and map the RFD. */
       
  1788 	skb_reserve(rx->skb, NET_IP_ALIGN);
       
  1789 	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
       
  1790 	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
       
  1791 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
       
  1792 
       
  1793 	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
       
  1794 		dev_kfree_skb_any(rx->skb);
       
  1795 		rx->skb = NULL;
       
  1796 		rx->dma_addr = 0;
       
  1797 		return -ENOMEM;
       
  1798 	}
       
  1799 
       
  1800 	/* Link the RFD to end of RFA by linking previous RFD to
       
  1801 	 * this one.  We are safe to touch the previous RFD because
       
  1802 	 * it is protected by the before last buffer's el bit being set */
       
  1803 	if (rx->prev->skb) {
       
  1804 		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
       
  1805 		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
       
  1806 		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
       
  1807 			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
       
  1808 	}
       
  1809 
       
  1810 	return 0;
       
  1811 }
       
  1812 
       
  1813 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
       
  1814 	unsigned int *work_done, unsigned int work_to_do)
       
  1815 {
       
  1816 	struct net_device *dev = nic->netdev;
       
  1817 	struct sk_buff *skb = rx->skb;
       
  1818 	struct rfd *rfd = (struct rfd *)skb->data;
       
  1819 	u16 rfd_status, actual_size;
       
  1820 
       
  1821 	if(unlikely(work_done && *work_done >= work_to_do))
       
  1822 		return -EAGAIN;
       
  1823 
       
  1824 	/* Need to sync before taking a peek at cb_complete bit */
       
  1825 	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
       
  1826 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
       
  1827 	rfd_status = le16_to_cpu(rfd->status);
       
  1828 
       
  1829 	DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
       
  1830 
       
  1831 	/* If data isn't ready, nothing to indicate */
       
  1832 	if (unlikely(!(rfd_status & cb_complete))) {
       
  1833 		/* If the next buffer has the el bit, but we think the receiver
       
  1834 		 * is still running, check to see if it really stopped while
       
  1835 		 * we had interrupts off.
       
  1836 		 * This allows for a fast restart without re-enabling
       
  1837 		 * interrupts */
       
  1838 		if ((le16_to_cpu(rfd->command) & cb_el) &&
       
  1839 		    (RU_RUNNING == nic->ru_running))
       
  1840 
       
  1841 			if (ioread8(&nic->csr->scb.status) & rus_no_res)
       
  1842 				nic->ru_running = RU_SUSPENDED;
       
  1843 		return -ENODATA;
       
  1844 	}
       
  1845 
       
  1846 	/* Get actual data size */
       
  1847 	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
       
  1848 	if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
       
  1849 		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
       
  1850 
       
  1851 	/* Get data */
       
  1852 	pci_unmap_single(nic->pdev, rx->dma_addr,
       
  1853 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
       
  1854 
       
  1855 	/* If this buffer has the el bit, but we think the receiver
       
  1856 	 * is still running, check to see if it really stopped while
       
  1857 	 * we had interrupts off.
       
  1858 	 * This allows for a fast restart without re-enabling interrupts.
       
  1859 	 * This can happen when the RU sees the size change but also sees
       
  1860 	 * the el bit set. */
       
  1861 	if ((le16_to_cpu(rfd->command) & cb_el) &&
       
  1862 	    (RU_RUNNING == nic->ru_running)) {
       
  1863 
       
  1864 	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
       
  1865 		nic->ru_running = RU_SUSPENDED;
       
  1866 	}
       
  1867 
       
  1868 	/* Pull off the RFD and put the actual data (minus eth hdr) */
       
  1869 	skb_reserve(skb, sizeof(struct rfd));
       
  1870 	skb_put(skb, actual_size);
       
  1871 	skb->protocol = eth_type_trans(skb, nic->netdev);
       
  1872 
       
  1873 	if(unlikely(!(rfd_status & cb_ok))) {
       
  1874 		/* Don't indicate if hardware indicates errors */
       
  1875 		dev_kfree_skb_any(skb);
       
  1876 	} else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
       
  1877 		/* Don't indicate oversized frames */
       
  1878 		nic->rx_over_length_errors++;
       
  1879 		dev_kfree_skb_any(skb);
       
  1880 	} else {
       
  1881 		dev->stats.rx_packets++;
       
  1882 		dev->stats.rx_bytes += actual_size;
       
  1883 		nic->netdev->last_rx = jiffies;
       
  1884 		netif_receive_skb(skb);
       
  1885 		if(work_done)
       
  1886 			(*work_done)++;
       
  1887 	}
       
  1888 
       
  1889 	rx->skb = NULL;
       
  1890 
       
  1891 	return 0;
       
  1892 }
       
  1893 
       
  1894 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
       
  1895 	unsigned int work_to_do)
       
  1896 {
       
  1897 	struct rx *rx;
       
  1898 	int restart_required = 0, err = 0;
       
  1899 	struct rx *old_before_last_rx, *new_before_last_rx;
       
  1900 	struct rfd *old_before_last_rfd, *new_before_last_rfd;
       
  1901 
       
  1902 	/* Indicate newly arrived packets */
       
  1903 	for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
       
  1904 		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
       
  1905 		/* Hit quota or no more to clean */
       
  1906 		if (-EAGAIN == err || -ENODATA == err)
       
  1907 			break;
       
  1908 	}
       
  1909 
       
  1910 
       
  1911 	/* On EAGAIN, hit quota so have more work to do, restart once
       
  1912 	 * cleanup is complete.
       
  1913 	 * Else, are we already rnr? then pay attention!!! this ensures that
       
  1914 	 * the state machine progression never allows a start with a
       
  1915 	 * partially cleaned list, avoiding a race between hardware
       
  1916 	 * and rx_to_clean when in NAPI mode */
       
  1917 	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
       
  1918 		restart_required = 1;
       
  1919 
       
  1920 	old_before_last_rx = nic->rx_to_use->prev->prev;
       
  1921 	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
       
  1922 
       
  1923 	/* Alloc new skbs to refill list */
       
  1924 	for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
       
  1925 		if(unlikely(e100_rx_alloc_skb(nic, rx)))
       
  1926 			break; /* Better luck next time (see watchdog) */
       
  1927 	}
       
  1928 
       
  1929 	new_before_last_rx = nic->rx_to_use->prev->prev;
       
  1930 	if (new_before_last_rx != old_before_last_rx) {
       
  1931 		/* Set the el-bit on the buffer that is before the last buffer.
       
  1932 		 * This lets us update the next pointer on the last buffer
       
  1933 		 * without worrying about hardware touching it.
       
  1934 		 * We set the size to 0 to prevent hardware from touching this
       
  1935 		 * buffer.
       
  1936 		 * When the hardware hits the before last buffer with el-bit
       
  1937 		 * and size of 0, it will RNR interrupt, the RUS will go into
       
  1938 		 * the No Resources state.  It will not complete nor write to
       
  1939 		 * this buffer. */
       
  1940 		new_before_last_rfd =
       
  1941 			(struct rfd *)new_before_last_rx->skb->data;
       
  1942 		new_before_last_rfd->size = 0;
       
  1943 		new_before_last_rfd->command |= cpu_to_le16(cb_el);
       
  1944 		pci_dma_sync_single_for_device(nic->pdev,
       
  1945 			new_before_last_rx->dma_addr, sizeof(struct rfd),
       
  1946 			PCI_DMA_BIDIRECTIONAL);
       
  1947 
       
  1948 		/* Now that we have a new stopping point, we can clear the old
       
  1949 		 * stopping point.  We must sync twice to get the proper
       
  1950 		 * ordering on the hardware side of things. */
       
  1951 		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
       
  1952 		pci_dma_sync_single_for_device(nic->pdev,
       
  1953 			old_before_last_rx->dma_addr, sizeof(struct rfd),
       
  1954 			PCI_DMA_BIDIRECTIONAL);
       
  1955 		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
       
  1956 		pci_dma_sync_single_for_device(nic->pdev,
       
  1957 			old_before_last_rx->dma_addr, sizeof(struct rfd),
       
  1958 			PCI_DMA_BIDIRECTIONAL);
       
  1959 	}
       
  1960 
       
  1961 	if(restart_required) {
       
  1962 		// ack the rnr?
       
  1963 		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
       
  1964 		e100_start_receiver(nic, nic->rx_to_clean);
       
  1965 		if(work_done)
       
  1966 			(*work_done)++;
       
  1967 	}
       
  1968 }
       
  1969 
       
  1970 static void e100_rx_clean_list(struct nic *nic)
       
  1971 {
       
  1972 	struct rx *rx;
       
  1973 	unsigned int i, count = nic->params.rfds.count;
       
  1974 
       
  1975 	nic->ru_running = RU_UNINITIALIZED;
       
  1976 
       
  1977 	if(nic->rxs) {
       
  1978 		for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
       
  1979 			if(rx->skb) {
       
  1980 				pci_unmap_single(nic->pdev, rx->dma_addr,
       
  1981 					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
       
  1982 				dev_kfree_skb(rx->skb);
       
  1983 			}
       
  1984 		}
       
  1985 		kfree(nic->rxs);
       
  1986 		nic->rxs = NULL;
       
  1987 	}
       
  1988 
       
  1989 	nic->rx_to_use = nic->rx_to_clean = NULL;
       
  1990 }
       
  1991 
       
  1992 static int e100_rx_alloc_list(struct nic *nic)
       
  1993 {
       
  1994 	struct rx *rx;
       
  1995 	unsigned int i, count = nic->params.rfds.count;
       
  1996 	struct rfd *before_last;
       
  1997 
       
  1998 	nic->rx_to_use = nic->rx_to_clean = NULL;
       
  1999 	nic->ru_running = RU_UNINITIALIZED;
       
  2000 
       
  2001 	if(!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
       
  2002 		return -ENOMEM;
       
  2003 
       
  2004 	for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
       
  2005 		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
       
  2006 		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
       
  2007 		if(e100_rx_alloc_skb(nic, rx)) {
       
  2008 			e100_rx_clean_list(nic);
       
  2009 			return -ENOMEM;
       
  2010 		}
       
  2011 	}
       
  2012 	/* Set the el-bit on the buffer that is before the last buffer.
       
  2013 	 * This lets us update the next pointer on the last buffer without
       
  2014 	 * worrying about hardware touching it.
       
  2015 	 * We set the size to 0 to prevent hardware from touching this buffer.
       
  2016 	 * When the hardware hits the before last buffer with el-bit and size
       
  2017 	 * of 0, it will RNR interrupt, the RU will go into the No Resources
       
  2018 	 * state.  It will not complete nor write to this buffer. */
       
  2019 	rx = nic->rxs->prev->prev;
       
  2020 	before_last = (struct rfd *)rx->skb->data;
       
  2021 	before_last->command |= cpu_to_le16(cb_el);
       
  2022 	before_last->size = 0;
       
  2023 	pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
       
  2024 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
       
  2025 
       
  2026 	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
       
  2027 	nic->ru_running = RU_SUSPENDED;
       
  2028 
       
  2029 	return 0;
       
  2030 }
       
  2031 
       
  2032 static irqreturn_t e100_intr(int irq, void *dev_id)
       
  2033 {
       
  2034 	struct net_device *netdev = dev_id;
       
  2035 	struct nic *nic = netdev_priv(netdev);
       
  2036 	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
       
  2037 
       
  2038 	DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
       
  2039 
       
  2040 	if(stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
       
  2041 	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
       
  2042 		return IRQ_NONE;
       
  2043 
       
  2044 	/* Ack interrupt(s) */
       
  2045 	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
       
  2046 
       
  2047 	/* We hit Receive No Resource (RNR); restart RU after cleaning */
       
  2048 	if(stat_ack & stat_ack_rnr)
       
  2049 		nic->ru_running = RU_SUSPENDED;
       
  2050 
       
  2051 	if(likely(netif_rx_schedule_prep(netdev, &nic->napi))) {
       
  2052 		e100_disable_irq(nic);
       
  2053 		__netif_rx_schedule(netdev, &nic->napi);
       
  2054 	}
       
  2055 
       
  2056 	return IRQ_HANDLED;
       
  2057 }
       
  2058 
       
  2059 static int e100_poll(struct napi_struct *napi, int budget)
       
  2060 {
       
  2061 	struct nic *nic = container_of(napi, struct nic, napi);
       
  2062 	struct net_device *netdev = nic->netdev;
       
  2063 	unsigned int work_done = 0;
       
  2064 
       
  2065 	e100_rx_clean(nic, &work_done, budget);
       
  2066 	e100_tx_clean(nic);
       
  2067 
       
  2068 	/* If budget not fully consumed, exit the polling mode */
       
  2069 	if (work_done < budget) {
       
  2070 		netif_rx_complete(netdev, napi);
       
  2071 		e100_enable_irq(nic);
       
  2072 	}
       
  2073 
       
  2074 	return work_done;
       
  2075 }
       
  2076 
       
  2077 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  2078 static void e100_netpoll(struct net_device *netdev)
       
  2079 {
       
  2080 	struct nic *nic = netdev_priv(netdev);
       
  2081 
       
  2082 	e100_disable_irq(nic);
       
  2083 	e100_intr(nic->pdev->irq, netdev);
       
  2084 	e100_tx_clean(nic);
       
  2085 	e100_enable_irq(nic);
       
  2086 }
       
  2087 #endif
       
  2088 
       
  2089 static int e100_set_mac_address(struct net_device *netdev, void *p)
       
  2090 {
       
  2091 	struct nic *nic = netdev_priv(netdev);
       
  2092 	struct sockaddr *addr = p;
       
  2093 
       
  2094 	if (!is_valid_ether_addr(addr->sa_data))
       
  2095 		return -EADDRNOTAVAIL;
       
  2096 
       
  2097 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  2098 	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
       
  2099 
       
  2100 	return 0;
       
  2101 }
       
  2102 
       
  2103 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
       
  2104 {
       
  2105 	if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
       
  2106 		return -EINVAL;
       
  2107 	netdev->mtu = new_mtu;
       
  2108 	return 0;
       
  2109 }
       
  2110 
       
  2111 static int e100_asf(struct nic *nic)
       
  2112 {
       
  2113 	/* ASF can be enabled from eeprom */
       
  2114 	return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
       
  2115 	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
       
  2116 	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
       
  2117 	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
       
  2118 }
       
  2119 
       
  2120 static int e100_up(struct nic *nic)
       
  2121 {
       
  2122 	int err;
       
  2123 
       
  2124 	if((err = e100_rx_alloc_list(nic)))
       
  2125 		return err;
       
  2126 	if((err = e100_alloc_cbs(nic)))
       
  2127 		goto err_rx_clean_list;
       
  2128 	if((err = e100_hw_init(nic)))
       
  2129 		goto err_clean_cbs;
       
  2130 	e100_set_multicast_list(nic->netdev);
       
  2131 	e100_start_receiver(nic, NULL);
       
  2132 	mod_timer(&nic->watchdog, jiffies);
       
  2133 	if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
       
  2134 		nic->netdev->name, nic->netdev)))
       
  2135 		goto err_no_irq;
       
  2136 	netif_wake_queue(nic->netdev);
       
  2137 	napi_enable(&nic->napi);
       
  2138 	/* enable ints _after_ enabling poll, preventing a race between
       
  2139 	 * disable ints+schedule */
       
  2140 	e100_enable_irq(nic);
       
  2141 	return 0;
       
  2142 
       
  2143 err_no_irq:
       
  2144 	del_timer_sync(&nic->watchdog);
       
  2145 err_clean_cbs:
       
  2146 	e100_clean_cbs(nic);
       
  2147 err_rx_clean_list:
       
  2148 	e100_rx_clean_list(nic);
       
  2149 	return err;
       
  2150 }
       
  2151 
       
  2152 static void e100_down(struct nic *nic)
       
  2153 {
       
  2154 	/* wait here for poll to complete */
       
  2155 	napi_disable(&nic->napi);
       
  2156 	netif_stop_queue(nic->netdev);
       
  2157 	e100_hw_reset(nic);
       
  2158 	free_irq(nic->pdev->irq, nic->netdev);
       
  2159 	del_timer_sync(&nic->watchdog);
       
  2160 	netif_carrier_off(nic->netdev);
       
  2161 	e100_clean_cbs(nic);
       
  2162 	e100_rx_clean_list(nic);
       
  2163 }
       
  2164 
       
  2165 static void e100_tx_timeout(struct net_device *netdev)
       
  2166 {
       
  2167 	struct nic *nic = netdev_priv(netdev);
       
  2168 
       
  2169 	/* Reset outside of interrupt context, to avoid request_irq
       
  2170 	 * in interrupt context */
       
  2171 	schedule_work(&nic->tx_timeout_task);
       
  2172 }
       
  2173 
       
  2174 static void e100_tx_timeout_task(struct work_struct *work)
       
  2175 {
       
  2176 	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
       
  2177 	struct net_device *netdev = nic->netdev;
       
  2178 
       
  2179 	DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
       
  2180 		ioread8(&nic->csr->scb.status));
       
  2181 	e100_down(netdev_priv(netdev));
       
  2182 	e100_up(netdev_priv(netdev));
       
  2183 }
       
  2184 
       
  2185 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
       
  2186 {
       
  2187 	int err;
       
  2188 	struct sk_buff *skb;
       
  2189 
       
  2190 	/* Use driver resources to perform internal MAC or PHY
       
  2191 	 * loopback test.  A single packet is prepared and transmitted
       
  2192 	 * in loopback mode, and the test passes if the received
       
  2193 	 * packet compares byte-for-byte to the transmitted packet. */
       
  2194 
       
  2195 	if((err = e100_rx_alloc_list(nic)))
       
  2196 		return err;
       
  2197 	if((err = e100_alloc_cbs(nic)))
       
  2198 		goto err_clean_rx;
       
  2199 
       
  2200 	/* ICH PHY loopback is broken so do MAC loopback instead */
       
  2201 	if(nic->flags & ich && loopback_mode == lb_phy)
       
  2202 		loopback_mode = lb_mac;
       
  2203 
       
  2204 	nic->loopback = loopback_mode;
       
  2205 	if((err = e100_hw_init(nic)))
       
  2206 		goto err_loopback_none;
       
  2207 
       
  2208 	if(loopback_mode == lb_phy)
       
  2209 		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
       
  2210 			BMCR_LOOPBACK);
       
  2211 
       
  2212 	e100_start_receiver(nic, NULL);
       
  2213 
       
  2214 	if(!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
       
  2215 		err = -ENOMEM;
       
  2216 		goto err_loopback_none;
       
  2217 	}
       
  2218 	skb_put(skb, ETH_DATA_LEN);
       
  2219 	memset(skb->data, 0xFF, ETH_DATA_LEN);
       
  2220 	e100_xmit_frame(skb, nic->netdev);
       
  2221 
       
  2222 	msleep(10);
       
  2223 
       
  2224 	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
       
  2225 			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
       
  2226 
       
  2227 	if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
       
  2228 	   skb->data, ETH_DATA_LEN))
       
  2229 		err = -EAGAIN;
       
  2230 
       
  2231 err_loopback_none:
       
  2232 	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
       
  2233 	nic->loopback = lb_none;
       
  2234 	e100_clean_cbs(nic);
       
  2235 	e100_hw_reset(nic);
       
  2236 err_clean_rx:
       
  2237 	e100_rx_clean_list(nic);
       
  2238 	return err;
       
  2239 }
       
  2240 
       
  2241 #define MII_LED_CONTROL	0x1B
       
  2242 static void e100_blink_led(unsigned long data)
       
  2243 {
       
  2244 	struct nic *nic = (struct nic *)data;
       
  2245 	enum led_state {
       
  2246 		led_on     = 0x01,
       
  2247 		led_off    = 0x04,
       
  2248 		led_on_559 = 0x05,
       
  2249 		led_on_557 = 0x07,
       
  2250 	};
       
  2251 
       
  2252 	nic->leds = (nic->leds & led_on) ? led_off :
       
  2253 		(nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
       
  2254 	mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
       
  2255 	mod_timer(&nic->blink_timer, jiffies + HZ / 4);
       
  2256 }
       
  2257 
       
  2258 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
       
  2259 {
       
  2260 	struct nic *nic = netdev_priv(netdev);
       
  2261 	return mii_ethtool_gset(&nic->mii, cmd);
       
  2262 }
       
  2263 
       
  2264 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
       
  2265 {
       
  2266 	struct nic *nic = netdev_priv(netdev);
       
  2267 	int err;
       
  2268 
       
  2269 	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
       
  2270 	err = mii_ethtool_sset(&nic->mii, cmd);
       
  2271 	e100_exec_cb(nic, NULL, e100_configure);
       
  2272 
       
  2273 	return err;
       
  2274 }
       
  2275 
       
  2276 static void e100_get_drvinfo(struct net_device *netdev,
       
  2277 	struct ethtool_drvinfo *info)
       
  2278 {
       
  2279 	struct nic *nic = netdev_priv(netdev);
       
  2280 	strcpy(info->driver, DRV_NAME);
       
  2281 	strcpy(info->version, DRV_VERSION);
       
  2282 	strcpy(info->fw_version, "N/A");
       
  2283 	strcpy(info->bus_info, pci_name(nic->pdev));
       
  2284 }
       
  2285 
       
  2286 #define E100_PHY_REGS 0x1C
       
  2287 static int e100_get_regs_len(struct net_device *netdev)
       
  2288 {
       
  2289 	struct nic *nic = netdev_priv(netdev);
       
  2290 	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
       
  2291 }
       
  2292 
       
  2293 static void e100_get_regs(struct net_device *netdev,
       
  2294 	struct ethtool_regs *regs, void *p)
       
  2295 {
       
  2296 	struct nic *nic = netdev_priv(netdev);
       
  2297 	u32 *buff = p;
       
  2298 	int i;
       
  2299 
       
  2300 	regs->version = (1 << 24) | nic->pdev->revision;
       
  2301 	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
       
  2302 		ioread8(&nic->csr->scb.cmd_lo) << 16 |
       
  2303 		ioread16(&nic->csr->scb.status);
       
  2304 	for(i = E100_PHY_REGS; i >= 0; i--)
       
  2305 		buff[1 + E100_PHY_REGS - i] =
       
  2306 			mdio_read(netdev, nic->mii.phy_id, i);
       
  2307 	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
       
  2308 	e100_exec_cb(nic, NULL, e100_dump);
       
  2309 	msleep(10);
       
  2310 	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
       
  2311 		sizeof(nic->mem->dump_buf));
       
  2312 }
       
  2313 
       
  2314 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  2315 {
       
  2316 	struct nic *nic = netdev_priv(netdev);
       
  2317 	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
       
  2318 	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
       
  2319 }
       
  2320 
       
  2321 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  2322 {
       
  2323 	struct nic *nic = netdev_priv(netdev);
       
  2324 
       
  2325 	if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
       
  2326 		return -EOPNOTSUPP;
       
  2327 
       
  2328 	if(wol->wolopts)
       
  2329 		nic->flags |= wol_magic;
       
  2330 	else
       
  2331 		nic->flags &= ~wol_magic;
       
  2332 
       
  2333 	e100_exec_cb(nic, NULL, e100_configure);
       
  2334 
       
  2335 	return 0;
       
  2336 }
       
  2337 
       
  2338 static u32 e100_get_msglevel(struct net_device *netdev)
       
  2339 {
       
  2340 	struct nic *nic = netdev_priv(netdev);
       
  2341 	return nic->msg_enable;
       
  2342 }
       
  2343 
       
  2344 static void e100_set_msglevel(struct net_device *netdev, u32 value)
       
  2345 {
       
  2346 	struct nic *nic = netdev_priv(netdev);
       
  2347 	nic->msg_enable = value;
       
  2348 }
       
  2349 
       
  2350 static int e100_nway_reset(struct net_device *netdev)
       
  2351 {
       
  2352 	struct nic *nic = netdev_priv(netdev);
       
  2353 	return mii_nway_restart(&nic->mii);
       
  2354 }
       
  2355 
       
  2356 static u32 e100_get_link(struct net_device *netdev)
       
  2357 {
       
  2358 	struct nic *nic = netdev_priv(netdev);
       
  2359 	return mii_link_ok(&nic->mii);
       
  2360 }
       
  2361 
       
  2362 static int e100_get_eeprom_len(struct net_device *netdev)
       
  2363 {
       
  2364 	struct nic *nic = netdev_priv(netdev);
       
  2365 	return nic->eeprom_wc << 1;
       
  2366 }
       
  2367 
       
  2368 #define E100_EEPROM_MAGIC	0x1234
       
  2369 static int e100_get_eeprom(struct net_device *netdev,
       
  2370 	struct ethtool_eeprom *eeprom, u8 *bytes)
       
  2371 {
       
  2372 	struct nic *nic = netdev_priv(netdev);
       
  2373 
       
  2374 	eeprom->magic = E100_EEPROM_MAGIC;
       
  2375 	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
       
  2376 
       
  2377 	return 0;
       
  2378 }
       
  2379 
       
  2380 static int e100_set_eeprom(struct net_device *netdev,
       
  2381 	struct ethtool_eeprom *eeprom, u8 *bytes)
       
  2382 {
       
  2383 	struct nic *nic = netdev_priv(netdev);
       
  2384 
       
  2385 	if(eeprom->magic != E100_EEPROM_MAGIC)
       
  2386 		return -EINVAL;
       
  2387 
       
  2388 	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
       
  2389 
       
  2390 	return e100_eeprom_save(nic, eeprom->offset >> 1,
       
  2391 		(eeprom->len >> 1) + 1);
       
  2392 }
       
  2393 
       
  2394 static void e100_get_ringparam(struct net_device *netdev,
       
  2395 	struct ethtool_ringparam *ring)
       
  2396 {
       
  2397 	struct nic *nic = netdev_priv(netdev);
       
  2398 	struct param_range *rfds = &nic->params.rfds;
       
  2399 	struct param_range *cbs = &nic->params.cbs;
       
  2400 
       
  2401 	ring->rx_max_pending = rfds->max;
       
  2402 	ring->tx_max_pending = cbs->max;
       
  2403 	ring->rx_mini_max_pending = 0;
       
  2404 	ring->rx_jumbo_max_pending = 0;
       
  2405 	ring->rx_pending = rfds->count;
       
  2406 	ring->tx_pending = cbs->count;
       
  2407 	ring->rx_mini_pending = 0;
       
  2408 	ring->rx_jumbo_pending = 0;
       
  2409 }
       
  2410 
       
  2411 static int e100_set_ringparam(struct net_device *netdev,
       
  2412 	struct ethtool_ringparam *ring)
       
  2413 {
       
  2414 	struct nic *nic = netdev_priv(netdev);
       
  2415 	struct param_range *rfds = &nic->params.rfds;
       
  2416 	struct param_range *cbs = &nic->params.cbs;
       
  2417 
       
  2418 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
  2419 		return -EINVAL;
       
  2420 
       
  2421 	if(netif_running(netdev))
       
  2422 		e100_down(nic);
       
  2423 	rfds->count = max(ring->rx_pending, rfds->min);
       
  2424 	rfds->count = min(rfds->count, rfds->max);
       
  2425 	cbs->count = max(ring->tx_pending, cbs->min);
       
  2426 	cbs->count = min(cbs->count, cbs->max);
       
  2427 	DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
       
  2428 	        rfds->count, cbs->count);
       
  2429 	if(netif_running(netdev))
       
  2430 		e100_up(nic);
       
  2431 
       
  2432 	return 0;
       
  2433 }
       
  2434 
       
  2435 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
       
  2436 	"Link test     (on/offline)",
       
  2437 	"Eeprom test   (on/offline)",
       
  2438 	"Self test        (offline)",
       
  2439 	"Mac loopback     (offline)",
       
  2440 	"Phy loopback     (offline)",
       
  2441 };
       
  2442 #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
       
  2443 
       
  2444 static void e100_diag_test(struct net_device *netdev,
       
  2445 	struct ethtool_test *test, u64 *data)
       
  2446 {
       
  2447 	struct ethtool_cmd cmd;
       
  2448 	struct nic *nic = netdev_priv(netdev);
       
  2449 	int i, err;
       
  2450 
       
  2451 	memset(data, 0, E100_TEST_LEN * sizeof(u64));
       
  2452 	data[0] = !mii_link_ok(&nic->mii);
       
  2453 	data[1] = e100_eeprom_load(nic);
       
  2454 	if(test->flags & ETH_TEST_FL_OFFLINE) {
       
  2455 
       
  2456 		/* save speed, duplex & autoneg settings */
       
  2457 		err = mii_ethtool_gset(&nic->mii, &cmd);
       
  2458 
       
  2459 		if(netif_running(netdev))
       
  2460 			e100_down(nic);
       
  2461 		data[2] = e100_self_test(nic);
       
  2462 		data[3] = e100_loopback_test(nic, lb_mac);
       
  2463 		data[4] = e100_loopback_test(nic, lb_phy);
       
  2464 
       
  2465 		/* restore speed, duplex & autoneg settings */
       
  2466 		err = mii_ethtool_sset(&nic->mii, &cmd);
       
  2467 
       
  2468 		if(netif_running(netdev))
       
  2469 			e100_up(nic);
       
  2470 	}
       
  2471 	for(i = 0; i < E100_TEST_LEN; i++)
       
  2472 		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
       
  2473 
       
  2474 	msleep_interruptible(4 * 1000);
       
  2475 }
       
  2476 
       
  2477 static int e100_phys_id(struct net_device *netdev, u32 data)
       
  2478 {
       
  2479 	struct nic *nic = netdev_priv(netdev);
       
  2480 
       
  2481 	if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
       
  2482 		data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
       
  2483 	mod_timer(&nic->blink_timer, jiffies);
       
  2484 	msleep_interruptible(data * 1000);
       
  2485 	del_timer_sync(&nic->blink_timer);
       
  2486 	mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
       
  2487 
       
  2488 	return 0;
       
  2489 }
       
  2490 
       
  2491 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
       
  2492 	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
       
  2493 	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
       
  2494 	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
       
  2495 	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
       
  2496 	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
       
  2497 	"tx_heartbeat_errors", "tx_window_errors",
       
  2498 	/* device-specific stats */
       
  2499 	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
       
  2500 	"tx_flow_control_pause", "rx_flow_control_pause",
       
  2501 	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
       
  2502 };
       
  2503 #define E100_NET_STATS_LEN	21
       
  2504 #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
       
  2505 
       
  2506 static int e100_get_sset_count(struct net_device *netdev, int sset)
       
  2507 {
       
  2508 	switch (sset) {
       
  2509 	case ETH_SS_TEST:
       
  2510 		return E100_TEST_LEN;
       
  2511 	case ETH_SS_STATS:
       
  2512 		return E100_STATS_LEN;
       
  2513 	default:
       
  2514 		return -EOPNOTSUPP;
       
  2515 	}
       
  2516 }
       
  2517 
       
  2518 static void e100_get_ethtool_stats(struct net_device *netdev,
       
  2519 	struct ethtool_stats *stats, u64 *data)
       
  2520 {
       
  2521 	struct nic *nic = netdev_priv(netdev);
       
  2522 	int i;
       
  2523 
       
  2524 	for(i = 0; i < E100_NET_STATS_LEN; i++)
       
  2525 		data[i] = ((unsigned long *)&netdev->stats)[i];
       
  2526 
       
  2527 	data[i++] = nic->tx_deferred;
       
  2528 	data[i++] = nic->tx_single_collisions;
       
  2529 	data[i++] = nic->tx_multiple_collisions;
       
  2530 	data[i++] = nic->tx_fc_pause;
       
  2531 	data[i++] = nic->rx_fc_pause;
       
  2532 	data[i++] = nic->rx_fc_unsupported;
       
  2533 	data[i++] = nic->tx_tco_frames;
       
  2534 	data[i++] = nic->rx_tco_frames;
       
  2535 }
       
  2536 
       
  2537 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
       
  2538 {
       
  2539 	switch(stringset) {
       
  2540 	case ETH_SS_TEST:
       
  2541 		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
       
  2542 		break;
       
  2543 	case ETH_SS_STATS:
       
  2544 		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
       
  2545 		break;
       
  2546 	}
       
  2547 }
       
  2548 
       
  2549 static const struct ethtool_ops e100_ethtool_ops = {
       
  2550 	.get_settings		= e100_get_settings,
       
  2551 	.set_settings		= e100_set_settings,
       
  2552 	.get_drvinfo		= e100_get_drvinfo,
       
  2553 	.get_regs_len		= e100_get_regs_len,
       
  2554 	.get_regs		= e100_get_regs,
       
  2555 	.get_wol		= e100_get_wol,
       
  2556 	.set_wol		= e100_set_wol,
       
  2557 	.get_msglevel		= e100_get_msglevel,
       
  2558 	.set_msglevel		= e100_set_msglevel,
       
  2559 	.nway_reset		= e100_nway_reset,
       
  2560 	.get_link		= e100_get_link,
       
  2561 	.get_eeprom_len		= e100_get_eeprom_len,
       
  2562 	.get_eeprom		= e100_get_eeprom,
       
  2563 	.set_eeprom		= e100_set_eeprom,
       
  2564 	.get_ringparam		= e100_get_ringparam,
       
  2565 	.set_ringparam		= e100_set_ringparam,
       
  2566 	.self_test		= e100_diag_test,
       
  2567 	.get_strings		= e100_get_strings,
       
  2568 	.phys_id		= e100_phys_id,
       
  2569 	.get_ethtool_stats	= e100_get_ethtool_stats,
       
  2570 	.get_sset_count		= e100_get_sset_count,
       
  2571 };
       
  2572 
       
  2573 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  2574 {
       
  2575 	struct nic *nic = netdev_priv(netdev);
       
  2576 
       
  2577 	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
       
  2578 }
       
  2579 
       
  2580 static int e100_alloc(struct nic *nic)
       
  2581 {
       
  2582 	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
       
  2583 		&nic->dma_addr);
       
  2584 	return nic->mem ? 0 : -ENOMEM;
       
  2585 }
       
  2586 
       
  2587 static void e100_free(struct nic *nic)
       
  2588 {
       
  2589 	if(nic->mem) {
       
  2590 		pci_free_consistent(nic->pdev, sizeof(struct mem),
       
  2591 			nic->mem, nic->dma_addr);
       
  2592 		nic->mem = NULL;
       
  2593 	}
       
  2594 }
       
  2595 
       
  2596 static int e100_open(struct net_device *netdev)
       
  2597 {
       
  2598 	struct nic *nic = netdev_priv(netdev);
       
  2599 	int err = 0;
       
  2600 
       
  2601 	netif_carrier_off(netdev);
       
  2602 	if((err = e100_up(nic)))
       
  2603 		DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
       
  2604 	return err;
       
  2605 }
       
  2606 
       
  2607 static int e100_close(struct net_device *netdev)
       
  2608 {
       
  2609 	e100_down(netdev_priv(netdev));
       
  2610 	return 0;
       
  2611 }
       
  2612 
       
  2613 static int __devinit e100_probe(struct pci_dev *pdev,
       
  2614 	const struct pci_device_id *ent)
       
  2615 {
       
  2616 	struct net_device *netdev;
       
  2617 	struct nic *nic;
       
  2618 	int err;
       
  2619 	DECLARE_MAC_BUF(mac);
       
  2620 
       
  2621 	if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
       
  2622 		if(((1 << debug) - 1) & NETIF_MSG_PROBE)
       
  2623 			printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
       
  2624 		return -ENOMEM;
       
  2625 	}
       
  2626 
       
  2627 	netdev->open = e100_open;
       
  2628 	netdev->stop = e100_close;
       
  2629 	netdev->hard_start_xmit = e100_xmit_frame;
       
  2630 	netdev->set_multicast_list = e100_set_multicast_list;
       
  2631 	netdev->set_mac_address = e100_set_mac_address;
       
  2632 	netdev->change_mtu = e100_change_mtu;
       
  2633 	netdev->do_ioctl = e100_do_ioctl;
       
  2634 	SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
       
  2635 	netdev->tx_timeout = e100_tx_timeout;
       
  2636 	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
       
  2637 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  2638 	netdev->poll_controller = e100_netpoll;
       
  2639 #endif
       
  2640 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
  2641 
       
  2642 	nic = netdev_priv(netdev);
       
  2643 	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
       
  2644 	nic->netdev = netdev;
       
  2645 	nic->pdev = pdev;
       
  2646 	nic->msg_enable = (1 << debug) - 1;
       
  2647 	pci_set_drvdata(pdev, netdev);
       
  2648 
       
  2649 	if((err = pci_enable_device(pdev))) {
       
  2650 		DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
       
  2651 		goto err_out_free_dev;
       
  2652 	}
       
  2653 
       
  2654 	if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
       
  2655 		DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
       
  2656 			"base address, aborting.\n");
       
  2657 		err = -ENODEV;
       
  2658 		goto err_out_disable_pdev;
       
  2659 	}
       
  2660 
       
  2661 	if((err = pci_request_regions(pdev, DRV_NAME))) {
       
  2662 		DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
       
  2663 		goto err_out_disable_pdev;
       
  2664 	}
       
  2665 
       
  2666 	if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
       
  2667 		DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
       
  2668 		goto err_out_free_res;
       
  2669 	}
       
  2670 
       
  2671 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
  2672 
       
  2673 	if (use_io)
       
  2674 		DPRINTK(PROBE, INFO, "using i/o access mode\n");
       
  2675 
       
  2676 	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
       
  2677 	if(!nic->csr) {
       
  2678 		DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
       
  2679 		err = -ENOMEM;
       
  2680 		goto err_out_free_res;
       
  2681 	}
       
  2682 
       
  2683 	if(ent->driver_data)
       
  2684 		nic->flags |= ich;
       
  2685 	else
       
  2686 		nic->flags &= ~ich;
       
  2687 
       
  2688 	e100_get_defaults(nic);
       
  2689 
       
  2690 	/* locks must be initialized before calling hw_reset */
       
  2691 	spin_lock_init(&nic->cb_lock);
       
  2692 	spin_lock_init(&nic->cmd_lock);
       
  2693 	spin_lock_init(&nic->mdio_lock);
       
  2694 
       
  2695 	/* Reset the device before pci_set_master() in case device is in some
       
  2696 	 * funky state and has an interrupt pending - hint: we don't have the
       
  2697 	 * interrupt handler registered yet. */
       
  2698 	e100_hw_reset(nic);
       
  2699 
       
  2700 	pci_set_master(pdev);
       
  2701 
       
  2702 	init_timer(&nic->watchdog);
       
  2703 	nic->watchdog.function = e100_watchdog;
       
  2704 	nic->watchdog.data = (unsigned long)nic;
       
  2705 	init_timer(&nic->blink_timer);
       
  2706 	nic->blink_timer.function = e100_blink_led;
       
  2707 	nic->blink_timer.data = (unsigned long)nic;
       
  2708 
       
  2709 	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
       
  2710 
       
  2711 	if((err = e100_alloc(nic))) {
       
  2712 		DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
       
  2713 		goto err_out_iounmap;
       
  2714 	}
       
  2715 
       
  2716 	if((err = e100_eeprom_load(nic)))
       
  2717 		goto err_out_free;
       
  2718 
       
  2719 	e100_phy_init(nic);
       
  2720 
       
  2721 	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
       
  2722 	memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
       
  2723 	if (!is_valid_ether_addr(netdev->perm_addr)) {
       
  2724 		if (!eeprom_bad_csum_allow) {
       
  2725 			DPRINTK(PROBE, ERR, "Invalid MAC address from "
       
  2726 			        "EEPROM, aborting.\n");
       
  2727 			err = -EAGAIN;
       
  2728 			goto err_out_free;
       
  2729 		} else {
       
  2730 			DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
       
  2731 			        "you MUST configure one.\n");
       
  2732 		}
       
  2733 	}
       
  2734 
       
  2735 	/* Wol magic packet can be enabled from eeprom */
       
  2736 	if((nic->mac >= mac_82558_D101_A4) &&
       
  2737 	   (nic->eeprom[eeprom_id] & eeprom_id_wol))
       
  2738 		nic->flags |= wol_magic;
       
  2739 
       
  2740 	/* ack any pending wake events, disable PME */
       
  2741 	pci_pme_active(pdev, false);
       
  2742 
       
  2743 	strcpy(netdev->name, "eth%d");
       
  2744 	if((err = register_netdev(netdev))) {
       
  2745 		DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
       
  2746 		goto err_out_free;
       
  2747 	}
       
  2748 
       
  2749 	DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %s\n",
       
  2750 		(unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
       
  2751 		pdev->irq, print_mac(mac, netdev->dev_addr));
       
  2752 
       
  2753 	return 0;
       
  2754 
       
  2755 err_out_free:
       
  2756 	e100_free(nic);
       
  2757 err_out_iounmap:
       
  2758 	pci_iounmap(pdev, nic->csr);
       
  2759 err_out_free_res:
       
  2760 	pci_release_regions(pdev);
       
  2761 err_out_disable_pdev:
       
  2762 	pci_disable_device(pdev);
       
  2763 err_out_free_dev:
       
  2764 	pci_set_drvdata(pdev, NULL);
       
  2765 	free_netdev(netdev);
       
  2766 	return err;
       
  2767 }
       
  2768 
       
  2769 static void __devexit e100_remove(struct pci_dev *pdev)
       
  2770 {
       
  2771 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  2772 
       
  2773 	if(netdev) {
       
  2774 		struct nic *nic = netdev_priv(netdev);
       
  2775 		unregister_netdev(netdev);
       
  2776 		e100_free(nic);
       
  2777 		pci_iounmap(pdev, nic->csr);
       
  2778 		free_netdev(netdev);
       
  2779 		pci_release_regions(pdev);
       
  2780 		pci_disable_device(pdev);
       
  2781 		pci_set_drvdata(pdev, NULL);
       
  2782 	}
       
  2783 }
       
  2784 
       
  2785 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
       
  2786 {
       
  2787 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  2788 	struct nic *nic = netdev_priv(netdev);
       
  2789 
       
  2790 	if (netif_running(netdev))
       
  2791 		e100_down(nic);
       
  2792 	netif_device_detach(netdev);
       
  2793 
       
  2794 	pci_save_state(pdev);
       
  2795 
       
  2796 	if ((nic->flags & wol_magic) | e100_asf(nic)) {
       
  2797 		pci_enable_wake(pdev, PCI_D3hot, 1);
       
  2798 		pci_enable_wake(pdev, PCI_D3cold, 1);
       
  2799 	} else {
       
  2800 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  2801 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  2802 	}
       
  2803 
       
  2804 	pci_disable_device(pdev);
       
  2805 	pci_set_power_state(pdev, PCI_D3hot);
       
  2806 
       
  2807 	return 0;
       
  2808 }
       
  2809 
       
  2810 #ifdef CONFIG_PM
       
  2811 static int e100_resume(struct pci_dev *pdev)
       
  2812 {
       
  2813 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  2814 	struct nic *nic = netdev_priv(netdev);
       
  2815 
       
  2816 	pci_set_power_state(pdev, PCI_D0);
       
  2817 	pci_restore_state(pdev);
       
  2818 	/* ack any pending wake events, disable PME */
       
  2819 	pci_enable_wake(pdev, 0, 0);
       
  2820 
       
  2821 	netif_device_attach(netdev);
       
  2822 	if (netif_running(netdev))
       
  2823 		e100_up(nic);
       
  2824 
       
  2825 	return 0;
       
  2826 }
       
  2827 #endif /* CONFIG_PM */
       
  2828 
       
  2829 static void e100_shutdown(struct pci_dev *pdev)
       
  2830 {
       
  2831 	e100_suspend(pdev, PMSG_SUSPEND);
       
  2832 }
       
  2833 
       
  2834 /* ------------------ PCI Error Recovery infrastructure  -------------- */
       
  2835 /**
       
  2836  * e100_io_error_detected - called when PCI error is detected.
       
  2837  * @pdev: Pointer to PCI device
       
  2838  * @state: The current pci connection state
       
  2839  */
       
  2840 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
       
  2841 {
       
  2842 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  2843 	struct nic *nic = netdev_priv(netdev);
       
  2844 
       
  2845 	/* Similar to calling e100_down(), but avoids adapter I/O. */
       
  2846 	netdev->stop(netdev);
       
  2847 
       
  2848 	/* Detach; put netif into a state similar to hotplug unplug. */
       
  2849 	napi_enable(&nic->napi);
       
  2850 	netif_device_detach(netdev);
       
  2851 	pci_disable_device(pdev);
       
  2852 
       
  2853 	/* Request a slot reset. */
       
  2854 	return PCI_ERS_RESULT_NEED_RESET;
       
  2855 }
       
  2856 
       
  2857 /**
       
  2858  * e100_io_slot_reset - called after the pci bus has been reset.
       
  2859  * @pdev: Pointer to PCI device
       
  2860  *
       
  2861  * Restart the card from scratch.
       
  2862  */
       
  2863 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
       
  2864 {
       
  2865 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  2866 	struct nic *nic = netdev_priv(netdev);
       
  2867 
       
  2868 	if (pci_enable_device(pdev)) {
       
  2869 		printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
       
  2870 		return PCI_ERS_RESULT_DISCONNECT;
       
  2871 	}
       
  2872 	pci_set_master(pdev);
       
  2873 
       
  2874 	/* Only one device per card can do a reset */
       
  2875 	if (0 != PCI_FUNC(pdev->devfn))
       
  2876 		return PCI_ERS_RESULT_RECOVERED;
       
  2877 	e100_hw_reset(nic);
       
  2878 	e100_phy_init(nic);
       
  2879 
       
  2880 	return PCI_ERS_RESULT_RECOVERED;
       
  2881 }
       
  2882 
       
  2883 /**
       
  2884  * e100_io_resume - resume normal operations
       
  2885  * @pdev: Pointer to PCI device
       
  2886  *
       
  2887  * Resume normal operations after an error recovery
       
  2888  * sequence has been completed.
       
  2889  */
       
  2890 static void e100_io_resume(struct pci_dev *pdev)
       
  2891 {
       
  2892 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  2893 	struct nic *nic = netdev_priv(netdev);
       
  2894 
       
  2895 	/* ack any pending wake events, disable PME */
       
  2896 	pci_enable_wake(pdev, 0, 0);
       
  2897 
       
  2898 	netif_device_attach(netdev);
       
  2899 	if (netif_running(netdev)) {
       
  2900 		e100_open(netdev);
       
  2901 		mod_timer(&nic->watchdog, jiffies);
       
  2902 	}
       
  2903 }
       
  2904 
       
  2905 static struct pci_error_handlers e100_err_handler = {
       
  2906 	.error_detected = e100_io_error_detected,
       
  2907 	.slot_reset = e100_io_slot_reset,
       
  2908 	.resume = e100_io_resume,
       
  2909 };
       
  2910 
       
  2911 static struct pci_driver e100_driver = {
       
  2912 	.name =         DRV_NAME,
       
  2913 	.id_table =     e100_id_table,
       
  2914 	.probe =        e100_probe,
       
  2915 	.remove =       __devexit_p(e100_remove),
       
  2916 #ifdef CONFIG_PM
       
  2917 	/* Power Management hooks */
       
  2918 	.suspend =      e100_suspend,
       
  2919 	.resume =       e100_resume,
       
  2920 #endif
       
  2921 	.shutdown =     e100_shutdown,
       
  2922 	.err_handler = &e100_err_handler,
       
  2923 };
       
  2924 
       
  2925 static int __init e100_init_module(void)
       
  2926 {
       
  2927 	if(((1 << debug) - 1) & NETIF_MSG_DRV) {
       
  2928 		printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
       
  2929 		printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
       
  2930 	}
       
  2931 	return pci_register_driver(&e100_driver);
       
  2932 }
       
  2933 
       
  2934 static void __exit e100_cleanup_module(void)
       
  2935 {
       
  2936 	pci_unregister_driver(&e100_driver);
       
  2937 }
       
  2938 
       
  2939 module_init(e100_init_module);
       
  2940 module_exit(e100_cleanup_module);