devices/e1000e/phy-2.6.34-ethercat.c
branchredundancy
changeset 2133 74dbd0b7d6aa
equal deleted inserted replaced
2129:78efdac9ee87 2133:74dbd0b7d6aa
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2009 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include <linux/delay.h>
       
    30 
       
    31 #include "e1000-2.6.34-ethercat.h"
       
    32 
       
    33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
       
    34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
       
    35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
       
    36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
       
    37 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
       
    38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
       
    39 					  u16 *data, bool read);
       
    40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
       
    41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
       
    42                                           u16 *data, bool read);
       
    43 
       
    44 /* Cable length tables */
       
    45 static const u16 e1000_m88_cable_length_table[] =
       
    46 	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
       
    47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
       
    48 		ARRAY_SIZE(e1000_m88_cable_length_table)
       
    49 
       
    50 static const u16 e1000_igp_2_cable_length_table[] =
       
    51 	{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
       
    52 	  6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
       
    53 	  26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
       
    54 	  44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
       
    55 	  66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
       
    56 	  87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
       
    57 	  100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
       
    58 	  124};
       
    59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
       
    60 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
       
    61 
       
    62 #define BM_PHY_REG_PAGE(offset) \
       
    63 	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
       
    64 #define BM_PHY_REG_NUM(offset) \
       
    65 	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
       
    66 	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
       
    67 		~MAX_PHY_REG_ADDRESS)))
       
    68 
       
    69 #define HV_INTC_FC_PAGE_START             768
       
    70 #define I82578_ADDR_REG                   29
       
    71 #define I82577_ADDR_REG                   16
       
    72 #define I82577_CFG_REG                    22
       
    73 #define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
       
    74 #define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
       
    75 #define I82577_CTRL_REG                   23
       
    76 
       
    77 /* 82577 specific PHY registers */
       
    78 #define I82577_PHY_CTRL_2            18
       
    79 #define I82577_PHY_STATUS_2          26
       
    80 #define I82577_PHY_DIAG_STATUS       31
       
    81 
       
    82 /* I82577 PHY Status 2 */
       
    83 #define I82577_PHY_STATUS2_REV_POLARITY   0x0400
       
    84 #define I82577_PHY_STATUS2_MDIX           0x0800
       
    85 #define I82577_PHY_STATUS2_SPEED_MASK     0x0300
       
    86 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
       
    87 
       
    88 /* I82577 PHY Control 2 */
       
    89 #define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
       
    90 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
       
    91 
       
    92 /* I82577 PHY Diagnostics Status */
       
    93 #define I82577_DSTATUS_CABLE_LENGTH       0x03FC
       
    94 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
       
    95 
       
    96 /* BM PHY Copper Specific Control 1 */
       
    97 #define BM_CS_CTRL1                       16
       
    98 
       
    99 #define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
       
   100 #define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
       
   101 #define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
       
   102 
       
   103 /**
       
   104  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
       
   105  *  @hw: pointer to the HW structure
       
   106  *
       
   107  *  Read the PHY management control register and check whether a PHY reset
       
   108  *  is blocked.  If a reset is not blocked return 0, otherwise
       
   109  *  return E1000_BLK_PHY_RESET (12).
       
   110  **/
       
   111 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
       
   112 {
       
   113 	u32 manc;
       
   114 
       
   115 	manc = er32(MANC);
       
   116 
       
   117 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
       
   118 	       E1000_BLK_PHY_RESET : 0;
       
   119 }
       
   120 
       
   121 /**
       
   122  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
       
   123  *  @hw: pointer to the HW structure
       
   124  *
       
   125  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
       
   126  *  revision in the hardware structure.
       
   127  **/
       
   128 s32 e1000e_get_phy_id(struct e1000_hw *hw)
       
   129 {
       
   130 	struct e1000_phy_info *phy = &hw->phy;
       
   131 	s32 ret_val = 0;
       
   132 	u16 phy_id;
       
   133 	u16 retry_count = 0;
       
   134 
       
   135 	if (!(phy->ops.read_reg))
       
   136 		goto out;
       
   137 
       
   138 	while (retry_count < 2) {
       
   139 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
       
   140 		if (ret_val)
       
   141 			goto out;
       
   142 
       
   143 		phy->id = (u32)(phy_id << 16);
       
   144 		udelay(20);
       
   145 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
       
   146 		if (ret_val)
       
   147 			goto out;
       
   148 
       
   149 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
       
   150 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
       
   151 
       
   152 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
       
   153 			goto out;
       
   154 
       
   155 		retry_count++;
       
   156 	}
       
   157 out:
       
   158 	return ret_val;
       
   159 }
       
   160 
       
   161 /**
       
   162  *  e1000e_phy_reset_dsp - Reset PHY DSP
       
   163  *  @hw: pointer to the HW structure
       
   164  *
       
   165  *  Reset the digital signal processor.
       
   166  **/
       
   167 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
       
   168 {
       
   169 	s32 ret_val;
       
   170 
       
   171 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
       
   172 	if (ret_val)
       
   173 		return ret_val;
       
   174 
       
   175 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
       
   176 }
       
   177 
       
   178 /**
       
   179  *  e1000e_read_phy_reg_mdic - Read MDI control register
       
   180  *  @hw: pointer to the HW structure
       
   181  *  @offset: register offset to be read
       
   182  *  @data: pointer to the read data
       
   183  *
       
   184  *  Reads the MDI control register in the PHY at offset and stores the
       
   185  *  information read to data.
       
   186  **/
       
   187 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
       
   188 {
       
   189 	struct e1000_phy_info *phy = &hw->phy;
       
   190 	u32 i, mdic = 0;
       
   191 
       
   192 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   193 		e_dbg("PHY Address %d is out of range\n", offset);
       
   194 		return -E1000_ERR_PARAM;
       
   195 	}
       
   196 
       
   197 	/*
       
   198 	 * Set up Op-code, Phy Address, and register offset in the MDI
       
   199 	 * Control register.  The MAC will take care of interfacing with the
       
   200 	 * PHY to retrieve the desired data.
       
   201 	 */
       
   202 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
       
   203 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   204 		(E1000_MDIC_OP_READ));
       
   205 
       
   206 	ew32(MDIC, mdic);
       
   207 
       
   208 	/*
       
   209 	 * Poll the ready bit to see if the MDI read completed
       
   210 	 * Increasing the time out as testing showed failures with
       
   211 	 * the lower time out
       
   212 	 */
       
   213 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   214 		udelay(50);
       
   215 		mdic = er32(MDIC);
       
   216 		if (mdic & E1000_MDIC_READY)
       
   217 			break;
       
   218 	}
       
   219 	if (!(mdic & E1000_MDIC_READY)) {
       
   220 		e_dbg("MDI Read did not complete\n");
       
   221 		return -E1000_ERR_PHY;
       
   222 	}
       
   223 	if (mdic & E1000_MDIC_ERROR) {
       
   224 		e_dbg("MDI Error\n");
       
   225 		return -E1000_ERR_PHY;
       
   226 	}
       
   227 	*data = (u16) mdic;
       
   228 
       
   229 	return 0;
       
   230 }
       
   231 
       
   232 /**
       
   233  *  e1000e_write_phy_reg_mdic - Write MDI control register
       
   234  *  @hw: pointer to the HW structure
       
   235  *  @offset: register offset to write to
       
   236  *  @data: data to write to register at offset
       
   237  *
       
   238  *  Writes data to MDI control register in the PHY at offset.
       
   239  **/
       
   240 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
       
   241 {
       
   242 	struct e1000_phy_info *phy = &hw->phy;
       
   243 	u32 i, mdic = 0;
       
   244 
       
   245 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   246 		e_dbg("PHY Address %d is out of range\n", offset);
       
   247 		return -E1000_ERR_PARAM;
       
   248 	}
       
   249 
       
   250 	/*
       
   251 	 * Set up Op-code, Phy Address, and register offset in the MDI
       
   252 	 * Control register.  The MAC will take care of interfacing with the
       
   253 	 * PHY to retrieve the desired data.
       
   254 	 */
       
   255 	mdic = (((u32)data) |
       
   256 		(offset << E1000_MDIC_REG_SHIFT) |
       
   257 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   258 		(E1000_MDIC_OP_WRITE));
       
   259 
       
   260 	ew32(MDIC, mdic);
       
   261 
       
   262 	/*
       
   263 	 * Poll the ready bit to see if the MDI read completed
       
   264 	 * Increasing the time out as testing showed failures with
       
   265 	 * the lower time out
       
   266 	 */
       
   267 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   268 		udelay(50);
       
   269 		mdic = er32(MDIC);
       
   270 		if (mdic & E1000_MDIC_READY)
       
   271 			break;
       
   272 	}
       
   273 	if (!(mdic & E1000_MDIC_READY)) {
       
   274 		e_dbg("MDI Write did not complete\n");
       
   275 		return -E1000_ERR_PHY;
       
   276 	}
       
   277 	if (mdic & E1000_MDIC_ERROR) {
       
   278 		e_dbg("MDI Error\n");
       
   279 		return -E1000_ERR_PHY;
       
   280 	}
       
   281 
       
   282 	return 0;
       
   283 }
       
   284 
       
   285 /**
       
   286  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
       
   287  *  @hw: pointer to the HW structure
       
   288  *  @offset: register offset to be read
       
   289  *  @data: pointer to the read data
       
   290  *
       
   291  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
   292  *  and storing the retrieved information in data.  Release any acquired
       
   293  *  semaphores before exiting.
       
   294  **/
       
   295 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
       
   296 {
       
   297 	s32 ret_val;
       
   298 
       
   299 	ret_val = hw->phy.ops.acquire(hw);
       
   300 	if (ret_val)
       
   301 		return ret_val;
       
   302 
       
   303 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   304 					   data);
       
   305 
       
   306 	hw->phy.ops.release(hw);
       
   307 
       
   308 	return ret_val;
       
   309 }
       
   310 
       
   311 /**
       
   312  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
       
   313  *  @hw: pointer to the HW structure
       
   314  *  @offset: register offset to write to
       
   315  *  @data: data to write at register offset
       
   316  *
       
   317  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
   318  *  at the offset.  Release any acquired semaphores before exiting.
       
   319  **/
       
   320 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
       
   321 {
       
   322 	s32 ret_val;
       
   323 
       
   324 	ret_val = hw->phy.ops.acquire(hw);
       
   325 	if (ret_val)
       
   326 		return ret_val;
       
   327 
       
   328 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   329 					    data);
       
   330 
       
   331 	hw->phy.ops.release(hw);
       
   332 
       
   333 	return ret_val;
       
   334 }
       
   335 
       
   336 /**
       
   337  *  __e1000e_read_phy_reg_igp - Read igp PHY register
       
   338  *  @hw: pointer to the HW structure
       
   339  *  @offset: register offset to be read
       
   340  *  @data: pointer to the read data
       
   341  *  @locked: semaphore has already been acquired or not
       
   342  *
       
   343  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
   344  *  and stores the retrieved information in data.  Release any acquired
       
   345  *  semaphores before exiting.
       
   346  **/
       
   347 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
       
   348                                     bool locked)
       
   349 {
       
   350 	s32 ret_val = 0;
       
   351 
       
   352 	if (!locked) {
       
   353 		if (!(hw->phy.ops.acquire))
       
   354 			goto out;
       
   355 
       
   356 		ret_val = hw->phy.ops.acquire(hw);
       
   357 		if (ret_val)
       
   358 			goto out;
       
   359 	}
       
   360 
       
   361 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
   362 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   363 						    IGP01E1000_PHY_PAGE_SELECT,
       
   364 						    (u16)offset);
       
   365 		if (ret_val)
       
   366 			goto release;
       
   367 	}
       
   368 
       
   369 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   370 	                                  data);
       
   371 
       
   372 release:
       
   373 	if (!locked)
       
   374 		hw->phy.ops.release(hw);
       
   375 out:
       
   376 	return ret_val;
       
   377 }
       
   378 
       
   379 /**
       
   380  *  e1000e_read_phy_reg_igp - Read igp PHY register
       
   381  *  @hw: pointer to the HW structure
       
   382  *  @offset: register offset to be read
       
   383  *  @data: pointer to the read data
       
   384  *
       
   385  *  Acquires semaphore then reads the PHY register at offset and stores the
       
   386  *  retrieved information in data.
       
   387  *  Release the acquired semaphore before exiting.
       
   388  **/
       
   389 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
       
   390 {
       
   391 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
       
   392 }
       
   393 
       
   394 /**
       
   395  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
       
   396  *  @hw: pointer to the HW structure
       
   397  *  @offset: register offset to be read
       
   398  *  @data: pointer to the read data
       
   399  *
       
   400  *  Reads the PHY register at offset and stores the retrieved information
       
   401  *  in data.  Assumes semaphore already acquired.
       
   402  **/
       
   403 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
   404 {
       
   405 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
       
   406 }
       
   407 
       
   408 /**
       
   409  *  e1000e_write_phy_reg_igp - Write igp PHY register
       
   410  *  @hw: pointer to the HW structure
       
   411  *  @offset: register offset to write to
       
   412  *  @data: data to write at register offset
       
   413  *  @locked: semaphore has already been acquired or not
       
   414  *
       
   415  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
   416  *  at the offset.  Release any acquired semaphores before exiting.
       
   417  **/
       
   418 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
       
   419                                      bool locked)
       
   420 {
       
   421 	s32 ret_val = 0;
       
   422 
       
   423 	if (!locked) {
       
   424 		if (!(hw->phy.ops.acquire))
       
   425 			goto out;
       
   426 
       
   427 		ret_val = hw->phy.ops.acquire(hw);
       
   428 		if (ret_val)
       
   429 			goto out;
       
   430 	}
       
   431 
       
   432 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
   433 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   434 						    IGP01E1000_PHY_PAGE_SELECT,
       
   435 						    (u16)offset);
       
   436 		if (ret_val)
       
   437 			goto release;
       
   438 	}
       
   439 
       
   440 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   441 					    data);
       
   442 
       
   443 release:
       
   444 	if (!locked)
       
   445 		hw->phy.ops.release(hw);
       
   446 
       
   447 out:
       
   448 	return ret_val;
       
   449 }
       
   450 
       
   451 /**
       
   452  *  e1000e_write_phy_reg_igp - Write igp PHY register
       
   453  *  @hw: pointer to the HW structure
       
   454  *  @offset: register offset to write to
       
   455  *  @data: data to write at register offset
       
   456  *
       
   457  *  Acquires semaphore then writes the data to PHY register
       
   458  *  at the offset.  Release any acquired semaphores before exiting.
       
   459  **/
       
   460 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
       
   461 {
       
   462 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
       
   463 }
       
   464 
       
   465 /**
       
   466  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
       
   467  *  @hw: pointer to the HW structure
       
   468  *  @offset: register offset to write to
       
   469  *  @data: data to write at register offset
       
   470  *
       
   471  *  Writes the data to PHY register at the offset.
       
   472  *  Assumes semaphore already acquired.
       
   473  **/
       
   474 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
   475 {
       
   476 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
       
   477 }
       
   478 
       
   479 /**
       
   480  *  __e1000_read_kmrn_reg - Read kumeran register
       
   481  *  @hw: pointer to the HW structure
       
   482  *  @offset: register offset to be read
       
   483  *  @data: pointer to the read data
       
   484  *  @locked: semaphore has already been acquired or not
       
   485  *
       
   486  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
       
   487  *  using the kumeran interface.  The information retrieved is stored in data.
       
   488  *  Release any acquired semaphores before exiting.
       
   489  **/
       
   490 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
       
   491                                  bool locked)
       
   492 {
       
   493 	u32 kmrnctrlsta;
       
   494 	s32 ret_val = 0;
       
   495 
       
   496 	if (!locked) {
       
   497 		if (!(hw->phy.ops.acquire))
       
   498 			goto out;
       
   499 
       
   500 		ret_val = hw->phy.ops.acquire(hw);
       
   501 		if (ret_val)
       
   502 			goto out;
       
   503 	}
       
   504 
       
   505 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
   506 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
       
   507 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
   508 
       
   509 	udelay(2);
       
   510 
       
   511 	kmrnctrlsta = er32(KMRNCTRLSTA);
       
   512 	*data = (u16)kmrnctrlsta;
       
   513 
       
   514 	if (!locked)
       
   515 		hw->phy.ops.release(hw);
       
   516 
       
   517 out:
       
   518 	return ret_val;
       
   519 }
       
   520 
       
   521 /**
       
   522  *  e1000e_read_kmrn_reg -  Read kumeran register
       
   523  *  @hw: pointer to the HW structure
       
   524  *  @offset: register offset to be read
       
   525  *  @data: pointer to the read data
       
   526  *
       
   527  *  Acquires semaphore then reads the PHY register at offset using the
       
   528  *  kumeran interface.  The information retrieved is stored in data.
       
   529  *  Release the acquired semaphore before exiting.
       
   530  **/
       
   531 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
       
   532 {
       
   533 	return __e1000_read_kmrn_reg(hw, offset, data, false);
       
   534 }
       
   535 
       
   536 /**
       
   537  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
       
   538  *  @hw: pointer to the HW structure
       
   539  *  @offset: register offset to be read
       
   540  *  @data: pointer to the read data
       
   541  *
       
   542  *  Reads the PHY register at offset using the kumeran interface.  The
       
   543  *  information retrieved is stored in data.
       
   544  *  Assumes semaphore already acquired.
       
   545  **/
       
   546 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
   547 {
       
   548 	return __e1000_read_kmrn_reg(hw, offset, data, true);
       
   549 }
       
   550 
       
   551 /**
       
   552  *  __e1000_write_kmrn_reg - Write kumeran register
       
   553  *  @hw: pointer to the HW structure
       
   554  *  @offset: register offset to write to
       
   555  *  @data: data to write at register offset
       
   556  *  @locked: semaphore has already been acquired or not
       
   557  *
       
   558  *  Acquires semaphore, if necessary.  Then write the data to PHY register
       
   559  *  at the offset using the kumeran interface.  Release any acquired semaphores
       
   560  *  before exiting.
       
   561  **/
       
   562 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
       
   563                                   bool locked)
       
   564 {
       
   565 	u32 kmrnctrlsta;
       
   566 	s32 ret_val = 0;
       
   567 
       
   568 	if (!locked) {
       
   569 		if (!(hw->phy.ops.acquire))
       
   570 			goto out;
       
   571 
       
   572 		ret_val = hw->phy.ops.acquire(hw);
       
   573 		if (ret_val)
       
   574 			goto out;
       
   575 	}
       
   576 
       
   577 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
   578 		       E1000_KMRNCTRLSTA_OFFSET) | data;
       
   579 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
   580 
       
   581 	udelay(2);
       
   582 
       
   583 	if (!locked)
       
   584 		hw->phy.ops.release(hw);
       
   585 
       
   586 out:
       
   587 	return ret_val;
       
   588 }
       
   589 
       
   590 /**
       
   591  *  e1000e_write_kmrn_reg -  Write kumeran register
       
   592  *  @hw: pointer to the HW structure
       
   593  *  @offset: register offset to write to
       
   594  *  @data: data to write at register offset
       
   595  *
       
   596  *  Acquires semaphore then writes the data to the PHY register at the offset
       
   597  *  using the kumeran interface.  Release the acquired semaphore before exiting.
       
   598  **/
       
   599 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
       
   600 {
       
   601 	return __e1000_write_kmrn_reg(hw, offset, data, false);
       
   602 }
       
   603 
       
   604 /**
       
   605  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
       
   606  *  @hw: pointer to the HW structure
       
   607  *  @offset: register offset to write to
       
   608  *  @data: data to write at register offset
       
   609  *
       
   610  *  Write the data to PHY register at the offset using the kumeran interface.
       
   611  *  Assumes semaphore already acquired.
       
   612  **/
       
   613 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
   614 {
       
   615 	return __e1000_write_kmrn_reg(hw, offset, data, true);
       
   616 }
       
   617 
       
   618 /**
       
   619  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
       
   620  *  @hw: pointer to the HW structure
       
   621  *
       
   622  *  Sets up Carrier-sense on Transmit and downshift values.
       
   623  **/
       
   624 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
       
   625 {
       
   626 	struct e1000_phy_info *phy = &hw->phy;
       
   627 	s32 ret_val;
       
   628 	u16 phy_data;
       
   629 
       
   630 	/* Enable CRS on TX. This must be set for half-duplex operation. */
       
   631 	ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data);
       
   632 	if (ret_val)
       
   633 		goto out;
       
   634 
       
   635 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
       
   636 
       
   637 	/* Enable downshift */
       
   638 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
       
   639 
       
   640 	ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data);
       
   641 
       
   642 out:
       
   643 	return ret_val;
       
   644 }
       
   645 
       
   646 /**
       
   647  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
       
   648  *  @hw: pointer to the HW structure
       
   649  *
       
   650  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
       
   651  *  and downshift values are set also.
       
   652  **/
       
   653 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
       
   654 {
       
   655 	struct e1000_phy_info *phy = &hw->phy;
       
   656 	s32 ret_val;
       
   657 	u16 phy_data;
       
   658 
       
   659 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
       
   660 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   661 	if (ret_val)
       
   662 		return ret_val;
       
   663 
       
   664 	/* For BM PHY this bit is downshift enable */
       
   665 	if (phy->type != e1000_phy_bm)
       
   666 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
   667 
       
   668 	/*
       
   669 	 * Options:
       
   670 	 *   MDI/MDI-X = 0 (default)
       
   671 	 *   0 - Auto for all speeds
       
   672 	 *   1 - MDI mode
       
   673 	 *   2 - MDI-X mode
       
   674 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
   675 	 */
       
   676 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
   677 
       
   678 	switch (phy->mdix) {
       
   679 	case 1:
       
   680 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
       
   681 		break;
       
   682 	case 2:
       
   683 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
       
   684 		break;
       
   685 	case 3:
       
   686 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
       
   687 		break;
       
   688 	case 0:
       
   689 	default:
       
   690 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
       
   691 		break;
       
   692 	}
       
   693 
       
   694 	/*
       
   695 	 * Options:
       
   696 	 *   disable_polarity_correction = 0 (default)
       
   697 	 *       Automatic Correction for Reversed Cable Polarity
       
   698 	 *   0 - Disabled
       
   699 	 *   1 - Enabled
       
   700 	 */
       
   701 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
       
   702 	if (phy->disable_polarity_correction == 1)
       
   703 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
       
   704 
       
   705 	/* Enable downshift on BM (disabled by default) */
       
   706 	if (phy->type == e1000_phy_bm)
       
   707 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
       
   708 
       
   709 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
   710 	if (ret_val)
       
   711 		return ret_val;
       
   712 
       
   713 	if ((phy->type == e1000_phy_m88) &&
       
   714 	    (phy->revision < E1000_REVISION_4) &&
       
   715 	    (phy->id != BME1000_E_PHY_ID_R2)) {
       
   716 		/*
       
   717 		 * Force TX_CLK in the Extended PHY Specific Control Register
       
   718 		 * to 25MHz clock.
       
   719 		 */
       
   720 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
   721 		if (ret_val)
       
   722 			return ret_val;
       
   723 
       
   724 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
   725 
       
   726 		if ((phy->revision == 2) &&
       
   727 		    (phy->id == M88E1111_I_PHY_ID)) {
       
   728 			/* 82573L PHY - set the downshift counter to 5x. */
       
   729 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
       
   730 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
       
   731 		} else {
       
   732 			/* Configure Master and Slave downshift values */
       
   733 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
       
   734 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
       
   735 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
       
   736 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
       
   737 		}
       
   738 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
   739 		if (ret_val)
       
   740 			return ret_val;
       
   741 	}
       
   742 
       
   743 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
       
   744 		/* Set PHY page 0, register 29 to 0x0003 */
       
   745 		ret_val = e1e_wphy(hw, 29, 0x0003);
       
   746 		if (ret_val)
       
   747 			return ret_val;
       
   748 
       
   749 		/* Set PHY page 0, register 30 to 0x0000 */
       
   750 		ret_val = e1e_wphy(hw, 30, 0x0000);
       
   751 		if (ret_val)
       
   752 			return ret_val;
       
   753 	}
       
   754 
       
   755 	/* Commit the changes. */
       
   756 	ret_val = e1000e_commit_phy(hw);
       
   757 	if (ret_val) {
       
   758 		e_dbg("Error committing the PHY changes\n");
       
   759 		return ret_val;
       
   760 	}
       
   761 
       
   762 	if (phy->type == e1000_phy_82578) {
       
   763 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
       
   764 		                            &phy_data);
       
   765 		if (ret_val)
       
   766 			return ret_val;
       
   767 
       
   768 		/* 82578 PHY - set the downshift count to 1x. */
       
   769 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
       
   770 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
       
   771 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
       
   772 		                             phy_data);
       
   773 		if (ret_val)
       
   774 			return ret_val;
       
   775 	}
       
   776 
       
   777 	return 0;
       
   778 }
       
   779 
       
   780 /**
       
   781  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
       
   782  *  @hw: pointer to the HW structure
       
   783  *
       
   784  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
       
   785  *  igp PHY's.
       
   786  **/
       
   787 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
       
   788 {
       
   789 	struct e1000_phy_info *phy = &hw->phy;
       
   790 	s32 ret_val;
       
   791 	u16 data;
       
   792 
       
   793 	ret_val = e1000_phy_hw_reset(hw);
       
   794 	if (ret_val) {
       
   795 		e_dbg("Error resetting the PHY.\n");
       
   796 		return ret_val;
       
   797 	}
       
   798 
       
   799 	/*
       
   800 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
       
   801 	 * timeout issues when LFS is enabled.
       
   802 	 */
       
   803 	msleep(100);
       
   804 
       
   805 	/* disable lplu d0 during driver init */
       
   806 	ret_val = e1000_set_d0_lplu_state(hw, false);
       
   807 	if (ret_val) {
       
   808 		e_dbg("Error Disabling LPLU D0\n");
       
   809 		return ret_val;
       
   810 	}
       
   811 	/* Configure mdi-mdix settings */
       
   812 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
       
   813 	if (ret_val)
       
   814 		return ret_val;
       
   815 
       
   816 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
   817 
       
   818 	switch (phy->mdix) {
       
   819 	case 1:
       
   820 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   821 		break;
       
   822 	case 2:
       
   823 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   824 		break;
       
   825 	case 0:
       
   826 	default:
       
   827 		data |= IGP01E1000_PSCR_AUTO_MDIX;
       
   828 		break;
       
   829 	}
       
   830 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
       
   831 	if (ret_val)
       
   832 		return ret_val;
       
   833 
       
   834 	/* set auto-master slave resolution settings */
       
   835 	if (hw->mac.autoneg) {
       
   836 		/*
       
   837 		 * when autonegotiation advertisement is only 1000Mbps then we
       
   838 		 * should disable SmartSpeed and enable Auto MasterSlave
       
   839 		 * resolution as hardware default.
       
   840 		 */
       
   841 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
       
   842 			/* Disable SmartSpeed */
       
   843 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   844 					   &data);
       
   845 			if (ret_val)
       
   846 				return ret_val;
       
   847 
       
   848 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   849 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   850 					   data);
       
   851 			if (ret_val)
       
   852 				return ret_val;
       
   853 
       
   854 			/* Set auto Master/Slave resolution process */
       
   855 			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
       
   856 			if (ret_val)
       
   857 				return ret_val;
       
   858 
       
   859 			data &= ~CR_1000T_MS_ENABLE;
       
   860 			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
       
   861 			if (ret_val)
       
   862 				return ret_val;
       
   863 		}
       
   864 
       
   865 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
       
   866 		if (ret_val)
       
   867 			return ret_val;
       
   868 
       
   869 		/* load defaults for future use */
       
   870 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
       
   871 			((data & CR_1000T_MS_VALUE) ?
       
   872 			e1000_ms_force_master :
       
   873 			e1000_ms_force_slave) :
       
   874 			e1000_ms_auto;
       
   875 
       
   876 		switch (phy->ms_type) {
       
   877 		case e1000_ms_force_master:
       
   878 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
       
   879 			break;
       
   880 		case e1000_ms_force_slave:
       
   881 			data |= CR_1000T_MS_ENABLE;
       
   882 			data &= ~(CR_1000T_MS_VALUE);
       
   883 			break;
       
   884 		case e1000_ms_auto:
       
   885 			data &= ~CR_1000T_MS_ENABLE;
       
   886 		default:
       
   887 			break;
       
   888 		}
       
   889 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
       
   890 	}
       
   891 
       
   892 	return ret_val;
       
   893 }
       
   894 
       
   895 /**
       
   896  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
       
   897  *  @hw: pointer to the HW structure
       
   898  *
       
   899  *  Reads the MII auto-neg advertisement register and/or the 1000T control
       
   900  *  register and if the PHY is already setup for auto-negotiation, then
       
   901  *  return successful.  Otherwise, setup advertisement and flow control to
       
   902  *  the appropriate values for the wanted auto-negotiation.
       
   903  **/
       
   904 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
       
   905 {
       
   906 	struct e1000_phy_info *phy = &hw->phy;
       
   907 	s32 ret_val;
       
   908 	u16 mii_autoneg_adv_reg;
       
   909 	u16 mii_1000t_ctrl_reg = 0;
       
   910 
       
   911 	phy->autoneg_advertised &= phy->autoneg_mask;
       
   912 
       
   913 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
       
   914 	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
       
   915 	if (ret_val)
       
   916 		return ret_val;
       
   917 
       
   918 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
       
   919 		/* Read the MII 1000Base-T Control Register (Address 9). */
       
   920 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
       
   921 		if (ret_val)
       
   922 			return ret_val;
       
   923 	}
       
   924 
       
   925 	/*
       
   926 	 * Need to parse both autoneg_advertised and fc and set up
       
   927 	 * the appropriate PHY registers.  First we will parse for
       
   928 	 * autoneg_advertised software override.  Since we can advertise
       
   929 	 * a plethora of combinations, we need to check each bit
       
   930 	 * individually.
       
   931 	 */
       
   932 
       
   933 	/*
       
   934 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
       
   935 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
       
   936 	 * the  1000Base-T Control Register (Address 9).
       
   937 	 */
       
   938 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
       
   939 				 NWAY_AR_100TX_HD_CAPS |
       
   940 				 NWAY_AR_10T_FD_CAPS   |
       
   941 				 NWAY_AR_10T_HD_CAPS);
       
   942 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
       
   943 
       
   944 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
       
   945 
       
   946 	/* Do we want to advertise 10 Mb Half Duplex? */
       
   947 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
       
   948 		e_dbg("Advertise 10mb Half duplex\n");
       
   949 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
       
   950 	}
       
   951 
       
   952 	/* Do we want to advertise 10 Mb Full Duplex? */
       
   953 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
       
   954 		e_dbg("Advertise 10mb Full duplex\n");
       
   955 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
       
   956 	}
       
   957 
       
   958 	/* Do we want to advertise 100 Mb Half Duplex? */
       
   959 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
       
   960 		e_dbg("Advertise 100mb Half duplex\n");
       
   961 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
       
   962 	}
       
   963 
       
   964 	/* Do we want to advertise 100 Mb Full Duplex? */
       
   965 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
       
   966 		e_dbg("Advertise 100mb Full duplex\n");
       
   967 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
       
   968 	}
       
   969 
       
   970 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
       
   971 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
       
   972 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
       
   973 
       
   974 	/* Do we want to advertise 1000 Mb Full Duplex? */
       
   975 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
       
   976 		e_dbg("Advertise 1000mb Full duplex\n");
       
   977 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
       
   978 	}
       
   979 
       
   980 	/*
       
   981 	 * Check for a software override of the flow control settings, and
       
   982 	 * setup the PHY advertisement registers accordingly.  If
       
   983 	 * auto-negotiation is enabled, then software will have to set the
       
   984 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
       
   985 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
       
   986 	 * negotiation.
       
   987 	 *
       
   988 	 * The possible values of the "fc" parameter are:
       
   989 	 *      0:  Flow control is completely disabled
       
   990 	 *      1:  Rx flow control is enabled (we can receive pause frames
       
   991 	 *	  but not send pause frames).
       
   992 	 *      2:  Tx flow control is enabled (we can send pause frames
       
   993 	 *	  but we do not support receiving pause frames).
       
   994 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
       
   995 	 *  other:  No software override.  The flow control configuration
       
   996 	 *	  in the EEPROM is used.
       
   997 	 */
       
   998 	switch (hw->fc.current_mode) {
       
   999 	case e1000_fc_none:
       
  1000 		/*
       
  1001 		 * Flow control (Rx & Tx) is completely disabled by a
       
  1002 		 * software over-ride.
       
  1003 		 */
       
  1004 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1005 		break;
       
  1006 	case e1000_fc_rx_pause:
       
  1007 		/*
       
  1008 		 * Rx Flow control is enabled, and Tx Flow control is
       
  1009 		 * disabled, by a software over-ride.
       
  1010 		 *
       
  1011 		 * Since there really isn't a way to advertise that we are
       
  1012 		 * capable of Rx Pause ONLY, we will advertise that we
       
  1013 		 * support both symmetric and asymmetric Rx PAUSE.  Later
       
  1014 		 * (in e1000e_config_fc_after_link_up) we will disable the
       
  1015 		 * hw's ability to send PAUSE frames.
       
  1016 		 */
       
  1017 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1018 		break;
       
  1019 	case e1000_fc_tx_pause:
       
  1020 		/*
       
  1021 		 * Tx Flow control is enabled, and Rx Flow control is
       
  1022 		 * disabled, by a software over-ride.
       
  1023 		 */
       
  1024 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
       
  1025 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
       
  1026 		break;
       
  1027 	case e1000_fc_full:
       
  1028 		/*
       
  1029 		 * Flow control (both Rx and Tx) is enabled by a software
       
  1030 		 * over-ride.
       
  1031 		 */
       
  1032 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1033 		break;
       
  1034 	default:
       
  1035 		e_dbg("Flow control param set incorrectly\n");
       
  1036 		ret_val = -E1000_ERR_CONFIG;
       
  1037 		return ret_val;
       
  1038 	}
       
  1039 
       
  1040 	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
       
  1041 	if (ret_val)
       
  1042 		return ret_val;
       
  1043 
       
  1044 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
       
  1045 
       
  1046 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
       
  1047 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
       
  1048 	}
       
  1049 
       
  1050 	return ret_val;
       
  1051 }
       
  1052 
       
  1053 /**
       
  1054  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
       
  1055  *  @hw: pointer to the HW structure
       
  1056  *
       
  1057  *  Performs initial bounds checking on autoneg advertisement parameter, then
       
  1058  *  configure to advertise the full capability.  Setup the PHY to autoneg
       
  1059  *  and restart the negotiation process between the link partner.  If
       
  1060  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
       
  1061  **/
       
  1062 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
       
  1063 {
       
  1064 	struct e1000_phy_info *phy = &hw->phy;
       
  1065 	s32 ret_val;
       
  1066 	u16 phy_ctrl;
       
  1067 
       
  1068 	/*
       
  1069 	 * Perform some bounds checking on the autoneg advertisement
       
  1070 	 * parameter.
       
  1071 	 */
       
  1072 	phy->autoneg_advertised &= phy->autoneg_mask;
       
  1073 
       
  1074 	/*
       
  1075 	 * If autoneg_advertised is zero, we assume it was not defaulted
       
  1076 	 * by the calling code so we set to advertise full capability.
       
  1077 	 */
       
  1078 	if (phy->autoneg_advertised == 0)
       
  1079 		phy->autoneg_advertised = phy->autoneg_mask;
       
  1080 
       
  1081 	e_dbg("Reconfiguring auto-neg advertisement params\n");
       
  1082 	ret_val = e1000_phy_setup_autoneg(hw);
       
  1083 	if (ret_val) {
       
  1084 		e_dbg("Error Setting up Auto-Negotiation\n");
       
  1085 		return ret_val;
       
  1086 	}
       
  1087 	e_dbg("Restarting Auto-Neg\n");
       
  1088 
       
  1089 	/*
       
  1090 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
       
  1091 	 * the Auto Neg Restart bit in the PHY control register.
       
  1092 	 */
       
  1093 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
       
  1094 	if (ret_val)
       
  1095 		return ret_val;
       
  1096 
       
  1097 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
       
  1098 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
       
  1099 	if (ret_val)
       
  1100 		return ret_val;
       
  1101 
       
  1102 	/*
       
  1103 	 * Does the user want to wait for Auto-Neg to complete here, or
       
  1104 	 * check at a later time (for example, callback routine).
       
  1105 	 */
       
  1106 	if (phy->autoneg_wait_to_complete) {
       
  1107 		ret_val = e1000_wait_autoneg(hw);
       
  1108 		if (ret_val) {
       
  1109 			e_dbg("Error while waiting for "
       
  1110 				 "autoneg to complete\n");
       
  1111 			return ret_val;
       
  1112 		}
       
  1113 	}
       
  1114 
       
  1115 	hw->mac.get_link_status = 1;
       
  1116 
       
  1117 	return ret_val;
       
  1118 }
       
  1119 
       
  1120 /**
       
  1121  *  e1000e_setup_copper_link - Configure copper link settings
       
  1122  *  @hw: pointer to the HW structure
       
  1123  *
       
  1124  *  Calls the appropriate function to configure the link for auto-neg or forced
       
  1125  *  speed and duplex.  Then we check for link, once link is established calls
       
  1126  *  to configure collision distance and flow control are called.  If link is
       
  1127  *  not established, we return -E1000_ERR_PHY (-2).
       
  1128  **/
       
  1129 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
       
  1130 {
       
  1131 	s32 ret_val;
       
  1132 	bool link;
       
  1133 
       
  1134 	if (hw->mac.autoneg) {
       
  1135 		/*
       
  1136 		 * Setup autoneg and flow control advertisement and perform
       
  1137 		 * autonegotiation.
       
  1138 		 */
       
  1139 		ret_val = e1000_copper_link_autoneg(hw);
       
  1140 		if (ret_val)
       
  1141 			return ret_val;
       
  1142 	} else {
       
  1143 		/*
       
  1144 		 * PHY will be set to 10H, 10F, 100H or 100F
       
  1145 		 * depending on user settings.
       
  1146 		 */
       
  1147 		e_dbg("Forcing Speed and Duplex\n");
       
  1148 		ret_val = e1000_phy_force_speed_duplex(hw);
       
  1149 		if (ret_val) {
       
  1150 			e_dbg("Error Forcing Speed and Duplex\n");
       
  1151 			return ret_val;
       
  1152 		}
       
  1153 	}
       
  1154 
       
  1155 	/*
       
  1156 	 * Check link status. Wait up to 100 microseconds for link to become
       
  1157 	 * valid.
       
  1158 	 */
       
  1159 	ret_val = e1000e_phy_has_link_generic(hw,
       
  1160 					     COPPER_LINK_UP_LIMIT,
       
  1161 					     10,
       
  1162 					     &link);
       
  1163 	if (ret_val)
       
  1164 		return ret_val;
       
  1165 
       
  1166 	if (link) {
       
  1167 		e_dbg("Valid link established!!!\n");
       
  1168 		e1000e_config_collision_dist(hw);
       
  1169 		ret_val = e1000e_config_fc_after_link_up(hw);
       
  1170 	} else {
       
  1171 		e_dbg("Unable to establish link!!!\n");
       
  1172 	}
       
  1173 
       
  1174 	return ret_val;
       
  1175 }
       
  1176 
       
  1177 /**
       
  1178  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
       
  1179  *  @hw: pointer to the HW structure
       
  1180  *
       
  1181  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1182  *  auto-crossover to force MDI manually.  Waits for link and returns
       
  1183  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
       
  1184  **/
       
  1185 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
       
  1186 {
       
  1187 	struct e1000_phy_info *phy = &hw->phy;
       
  1188 	s32 ret_val;
       
  1189 	u16 phy_data;
       
  1190 	bool link;
       
  1191 
       
  1192 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
       
  1193 	if (ret_val)
       
  1194 		return ret_val;
       
  1195 
       
  1196 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1197 
       
  1198 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
       
  1199 	if (ret_val)
       
  1200 		return ret_val;
       
  1201 
       
  1202 	/*
       
  1203 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
       
  1204 	 * forced whenever speed and duplex are forced.
       
  1205 	 */
       
  1206 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
       
  1207 	if (ret_val)
       
  1208 		return ret_val;
       
  1209 
       
  1210 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
  1211 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  1212 
       
  1213 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
       
  1214 	if (ret_val)
       
  1215 		return ret_val;
       
  1216 
       
  1217 	e_dbg("IGP PSCR: %X\n", phy_data);
       
  1218 
       
  1219 	udelay(1);
       
  1220 
       
  1221 	if (phy->autoneg_wait_to_complete) {
       
  1222 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
       
  1223 
       
  1224 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1225 						     PHY_FORCE_LIMIT,
       
  1226 						     100000,
       
  1227 						     &link);
       
  1228 		if (ret_val)
       
  1229 			return ret_val;
       
  1230 
       
  1231 		if (!link)
       
  1232 			e_dbg("Link taking longer than expected.\n");
       
  1233 
       
  1234 		/* Try once more */
       
  1235 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1236 						     PHY_FORCE_LIMIT,
       
  1237 						     100000,
       
  1238 						     &link);
       
  1239 		if (ret_val)
       
  1240 			return ret_val;
       
  1241 	}
       
  1242 
       
  1243 	return ret_val;
       
  1244 }
       
  1245 
       
  1246 /**
       
  1247  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
       
  1248  *  @hw: pointer to the HW structure
       
  1249  *
       
  1250  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1251  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
       
  1252  *  changes.  If time expires while waiting for link up, we reset the DSP.
       
  1253  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
       
  1254  *  successful completion, else return corresponding error code.
       
  1255  **/
       
  1256 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
       
  1257 {
       
  1258 	struct e1000_phy_info *phy = &hw->phy;
       
  1259 	s32 ret_val;
       
  1260 	u16 phy_data;
       
  1261 	bool link;
       
  1262 
       
  1263 	/*
       
  1264 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
       
  1265 	 * forced whenever speed and duplex are forced.
       
  1266 	 */
       
  1267 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1268 	if (ret_val)
       
  1269 		return ret_val;
       
  1270 
       
  1271 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1272 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1273 	if (ret_val)
       
  1274 		return ret_val;
       
  1275 
       
  1276 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
       
  1277 
       
  1278 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
       
  1279 	if (ret_val)
       
  1280 		return ret_val;
       
  1281 
       
  1282 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1283 
       
  1284 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
       
  1285 	if (ret_val)
       
  1286 		return ret_val;
       
  1287 
       
  1288 	/* Reset the phy to commit changes. */
       
  1289 	ret_val = e1000e_commit_phy(hw);
       
  1290 	if (ret_val)
       
  1291 		return ret_val;
       
  1292 
       
  1293 	if (phy->autoneg_wait_to_complete) {
       
  1294 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
       
  1295 
       
  1296 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1297 						     100000, &link);
       
  1298 		if (ret_val)
       
  1299 			return ret_val;
       
  1300 
       
  1301 		if (!link) {
       
  1302 			if (hw->phy.type != e1000_phy_m88) {
       
  1303 				e_dbg("Link taking longer than expected.\n");
       
  1304 			} else {
       
  1305 				/*
       
  1306 				 * We didn't get link.
       
  1307 				 * Reset the DSP and cross our fingers.
       
  1308 				 */
       
  1309 				ret_val = e1e_wphy(hw,
       
  1310 						M88E1000_PHY_PAGE_SELECT,
       
  1311 						0x001d);
       
  1312 				if (ret_val)
       
  1313 					return ret_val;
       
  1314 				ret_val = e1000e_phy_reset_dsp(hw);
       
  1315 				if (ret_val)
       
  1316 					return ret_val;
       
  1317 			}
       
  1318 		}
       
  1319 
       
  1320 		/* Try once more */
       
  1321 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1322 						     100000, &link);
       
  1323 		if (ret_val)
       
  1324 			return ret_val;
       
  1325 	}
       
  1326 
       
  1327 	if (hw->phy.type != e1000_phy_m88)
       
  1328 		return 0;
       
  1329 
       
  1330 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
  1331 	if (ret_val)
       
  1332 		return ret_val;
       
  1333 
       
  1334 	/*
       
  1335 	 * Resetting the phy means we need to re-force TX_CLK in the
       
  1336 	 * Extended PHY Specific Control Register to 25MHz clock from
       
  1337 	 * the reset value of 2.5MHz.
       
  1338 	 */
       
  1339 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
  1340 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
  1341 	if (ret_val)
       
  1342 		return ret_val;
       
  1343 
       
  1344 	/*
       
  1345 	 * In addition, we must re-enable CRS on Tx for both half and full
       
  1346 	 * duplex.
       
  1347 	 */
       
  1348 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1349 	if (ret_val)
       
  1350 		return ret_val;
       
  1351 
       
  1352 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1353 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1354 
       
  1355 	return ret_val;
       
  1356 }
       
  1357 
       
  1358 /**
       
  1359  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
       
  1360  *  @hw: pointer to the HW structure
       
  1361  *
       
  1362  *  Forces the speed and duplex settings of the PHY.
       
  1363  *  This is a function pointer entry point only called by
       
  1364  *  PHY setup routines.
       
  1365  **/
       
  1366 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
       
  1367 {
       
  1368 	struct e1000_phy_info *phy = &hw->phy;
       
  1369 	s32 ret_val;
       
  1370 	u16 data;
       
  1371 	bool link;
       
  1372 
       
  1373 	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
       
  1374 	if (ret_val)
       
  1375 		goto out;
       
  1376 
       
  1377 	e1000e_phy_force_speed_duplex_setup(hw, &data);
       
  1378 
       
  1379 	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
       
  1380 	if (ret_val)
       
  1381 		goto out;
       
  1382 
       
  1383 	/* Disable MDI-X support for 10/100 */
       
  1384 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
       
  1385 	if (ret_val)
       
  1386 		goto out;
       
  1387 
       
  1388 	data &= ~IFE_PMC_AUTO_MDIX;
       
  1389 	data &= ~IFE_PMC_FORCE_MDIX;
       
  1390 
       
  1391 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
       
  1392 	if (ret_val)
       
  1393 		goto out;
       
  1394 
       
  1395 	e_dbg("IFE PMC: %X\n", data);
       
  1396 
       
  1397 	udelay(1);
       
  1398 
       
  1399 	if (phy->autoneg_wait_to_complete) {
       
  1400 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
       
  1401 
       
  1402 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1403 		                                     PHY_FORCE_LIMIT,
       
  1404 		                                     100000,
       
  1405 		                                     &link);
       
  1406 		if (ret_val)
       
  1407 			goto out;
       
  1408 
       
  1409 		if (!link)
       
  1410 			e_dbg("Link taking longer than expected.\n");
       
  1411 
       
  1412 		/* Try once more */
       
  1413 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1414 		                                     PHY_FORCE_LIMIT,
       
  1415 		                                     100000,
       
  1416 		                                     &link);
       
  1417 		if (ret_val)
       
  1418 			goto out;
       
  1419 	}
       
  1420 
       
  1421 out:
       
  1422 	return ret_val;
       
  1423 }
       
  1424 
       
  1425 /**
       
  1426  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
       
  1427  *  @hw: pointer to the HW structure
       
  1428  *  @phy_ctrl: pointer to current value of PHY_CONTROL
       
  1429  *
       
  1430  *  Forces speed and duplex on the PHY by doing the following: disable flow
       
  1431  *  control, force speed/duplex on the MAC, disable auto speed detection,
       
  1432  *  disable auto-negotiation, configure duplex, configure speed, configure
       
  1433  *  the collision distance, write configuration to CTRL register.  The
       
  1434  *  caller must write to the PHY_CONTROL register for these settings to
       
  1435  *  take affect.
       
  1436  **/
       
  1437 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
       
  1438 {
       
  1439 	struct e1000_mac_info *mac = &hw->mac;
       
  1440 	u32 ctrl;
       
  1441 
       
  1442 	/* Turn off flow control when forcing speed/duplex */
       
  1443 	hw->fc.current_mode = e1000_fc_none;
       
  1444 
       
  1445 	/* Force speed/duplex on the mac */
       
  1446 	ctrl = er32(CTRL);
       
  1447 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1448 	ctrl &= ~E1000_CTRL_SPD_SEL;
       
  1449 
       
  1450 	/* Disable Auto Speed Detection */
       
  1451 	ctrl &= ~E1000_CTRL_ASDE;
       
  1452 
       
  1453 	/* Disable autoneg on the phy */
       
  1454 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
       
  1455 
       
  1456 	/* Forcing Full or Half Duplex? */
       
  1457 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
       
  1458 		ctrl &= ~E1000_CTRL_FD;
       
  1459 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
       
  1460 		e_dbg("Half Duplex\n");
       
  1461 	} else {
       
  1462 		ctrl |= E1000_CTRL_FD;
       
  1463 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
       
  1464 		e_dbg("Full Duplex\n");
       
  1465 	}
       
  1466 
       
  1467 	/* Forcing 10mb or 100mb? */
       
  1468 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
       
  1469 		ctrl |= E1000_CTRL_SPD_100;
       
  1470 		*phy_ctrl |= MII_CR_SPEED_100;
       
  1471 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
       
  1472 		e_dbg("Forcing 100mb\n");
       
  1473 	} else {
       
  1474 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1475 		*phy_ctrl |= MII_CR_SPEED_10;
       
  1476 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
       
  1477 		e_dbg("Forcing 10mb\n");
       
  1478 	}
       
  1479 
       
  1480 	e1000e_config_collision_dist(hw);
       
  1481 
       
  1482 	ew32(CTRL, ctrl);
       
  1483 }
       
  1484 
       
  1485 /**
       
  1486  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
       
  1487  *  @hw: pointer to the HW structure
       
  1488  *  @active: boolean used to enable/disable lplu
       
  1489  *
       
  1490  *  Success returns 0, Failure returns 1
       
  1491  *
       
  1492  *  The low power link up (lplu) state is set to the power management level D3
       
  1493  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
       
  1494  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
       
  1495  *  is used during Dx states where the power conservation is most important.
       
  1496  *  During driver activity, SmartSpeed should be enabled so performance is
       
  1497  *  maintained.
       
  1498  **/
       
  1499 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
       
  1500 {
       
  1501 	struct e1000_phy_info *phy = &hw->phy;
       
  1502 	s32 ret_val;
       
  1503 	u16 data;
       
  1504 
       
  1505 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
       
  1506 	if (ret_val)
       
  1507 		return ret_val;
       
  1508 
       
  1509 	if (!active) {
       
  1510 		data &= ~IGP02E1000_PM_D3_LPLU;
       
  1511 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
  1512 		if (ret_val)
       
  1513 			return ret_val;
       
  1514 		/*
       
  1515 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  1516 		 * during Dx states where the power conservation is most
       
  1517 		 * important.  During driver activity we should enable
       
  1518 		 * SmartSpeed, so performance is maintained.
       
  1519 		 */
       
  1520 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  1521 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1522 					   &data);
       
  1523 			if (ret_val)
       
  1524 				return ret_val;
       
  1525 
       
  1526 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  1527 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1528 					   data);
       
  1529 			if (ret_val)
       
  1530 				return ret_val;
       
  1531 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  1532 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1533 					   &data);
       
  1534 			if (ret_val)
       
  1535 				return ret_val;
       
  1536 
       
  1537 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1538 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1539 					   data);
       
  1540 			if (ret_val)
       
  1541 				return ret_val;
       
  1542 		}
       
  1543 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
  1544 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
  1545 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
       
  1546 		data |= IGP02E1000_PM_D3_LPLU;
       
  1547 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
  1548 		if (ret_val)
       
  1549 			return ret_val;
       
  1550 
       
  1551 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  1552 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  1553 		if (ret_val)
       
  1554 			return ret_val;
       
  1555 
       
  1556 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1557 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  1558 	}
       
  1559 
       
  1560 	return ret_val;
       
  1561 }
       
  1562 
       
  1563 /**
       
  1564  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
       
  1565  *  @hw: pointer to the HW structure
       
  1566  *
       
  1567  *  Success returns 0, Failure returns 1
       
  1568  *
       
  1569  *  A downshift is detected by querying the PHY link health.
       
  1570  **/
       
  1571 s32 e1000e_check_downshift(struct e1000_hw *hw)
       
  1572 {
       
  1573 	struct e1000_phy_info *phy = &hw->phy;
       
  1574 	s32 ret_val;
       
  1575 	u16 phy_data, offset, mask;
       
  1576 
       
  1577 	switch (phy->type) {
       
  1578 	case e1000_phy_m88:
       
  1579 	case e1000_phy_gg82563:
       
  1580 	case e1000_phy_bm:
       
  1581 	case e1000_phy_82578:
       
  1582 		offset	= M88E1000_PHY_SPEC_STATUS;
       
  1583 		mask	= M88E1000_PSSR_DOWNSHIFT;
       
  1584 		break;
       
  1585 	case e1000_phy_igp_2:
       
  1586 	case e1000_phy_igp_3:
       
  1587 		offset	= IGP01E1000_PHY_LINK_HEALTH;
       
  1588 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
       
  1589 		break;
       
  1590 	default:
       
  1591 		/* speed downshift not supported */
       
  1592 		phy->speed_downgraded = false;
       
  1593 		return 0;
       
  1594 	}
       
  1595 
       
  1596 	ret_val = e1e_rphy(hw, offset, &phy_data);
       
  1597 
       
  1598 	if (!ret_val)
       
  1599 		phy->speed_downgraded = (phy_data & mask);
       
  1600 
       
  1601 	return ret_val;
       
  1602 }
       
  1603 
       
  1604 /**
       
  1605  *  e1000_check_polarity_m88 - Checks the polarity.
       
  1606  *  @hw: pointer to the HW structure
       
  1607  *
       
  1608  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1609  *
       
  1610  *  Polarity is determined based on the PHY specific status register.
       
  1611  **/
       
  1612 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
       
  1613 {
       
  1614 	struct e1000_phy_info *phy = &hw->phy;
       
  1615 	s32 ret_val;
       
  1616 	u16 data;
       
  1617 
       
  1618 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
       
  1619 
       
  1620 	if (!ret_val)
       
  1621 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
       
  1622 				      ? e1000_rev_polarity_reversed
       
  1623 				      : e1000_rev_polarity_normal;
       
  1624 
       
  1625 	return ret_val;
       
  1626 }
       
  1627 
       
  1628 /**
       
  1629  *  e1000_check_polarity_igp - Checks the polarity.
       
  1630  *  @hw: pointer to the HW structure
       
  1631  *
       
  1632  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1633  *
       
  1634  *  Polarity is determined based on the PHY port status register, and the
       
  1635  *  current speed (since there is no polarity at 100Mbps).
       
  1636  **/
       
  1637 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
       
  1638 {
       
  1639 	struct e1000_phy_info *phy = &hw->phy;
       
  1640 	s32 ret_val;
       
  1641 	u16 data, offset, mask;
       
  1642 
       
  1643 	/*
       
  1644 	 * Polarity is determined based on the speed of
       
  1645 	 * our connection.
       
  1646 	 */
       
  1647 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  1648 	if (ret_val)
       
  1649 		return ret_val;
       
  1650 
       
  1651 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  1652 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  1653 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
       
  1654 		mask	= IGP01E1000_PHY_POLARITY_MASK;
       
  1655 	} else {
       
  1656 		/*
       
  1657 		 * This really only applies to 10Mbps since
       
  1658 		 * there is no polarity for 100Mbps (always 0).
       
  1659 		 */
       
  1660 		offset	= IGP01E1000_PHY_PORT_STATUS;
       
  1661 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
       
  1662 	}
       
  1663 
       
  1664 	ret_val = e1e_rphy(hw, offset, &data);
       
  1665 
       
  1666 	if (!ret_val)
       
  1667 		phy->cable_polarity = (data & mask)
       
  1668 				      ? e1000_rev_polarity_reversed
       
  1669 				      : e1000_rev_polarity_normal;
       
  1670 
       
  1671 	return ret_val;
       
  1672 }
       
  1673 
       
  1674 /**
       
  1675  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
       
  1676  *  @hw: pointer to the HW structure
       
  1677  *
       
  1678  *  Polarity is determined on the polarity reversal feature being enabled.
       
  1679  **/
       
  1680 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
       
  1681 {
       
  1682 	struct e1000_phy_info *phy = &hw->phy;
       
  1683 	s32 ret_val;
       
  1684 	u16 phy_data, offset, mask;
       
  1685 
       
  1686 	/*
       
  1687 	 * Polarity is determined based on the reversal feature being enabled.
       
  1688 	 */
       
  1689 	if (phy->polarity_correction) {
       
  1690 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
       
  1691 		mask = IFE_PESC_POLARITY_REVERSED;
       
  1692 	} else {
       
  1693 		offset = IFE_PHY_SPECIAL_CONTROL;
       
  1694 		mask = IFE_PSC_FORCE_POLARITY;
       
  1695 	}
       
  1696 
       
  1697 	ret_val = e1e_rphy(hw, offset, &phy_data);
       
  1698 
       
  1699 	if (!ret_val)
       
  1700 		phy->cable_polarity = (phy_data & mask)
       
  1701 		                       ? e1000_rev_polarity_reversed
       
  1702 		                       : e1000_rev_polarity_normal;
       
  1703 
       
  1704 	return ret_val;
       
  1705 }
       
  1706 
       
  1707 /**
       
  1708  *  e1000_wait_autoneg - Wait for auto-neg completion
       
  1709  *  @hw: pointer to the HW structure
       
  1710  *
       
  1711  *  Waits for auto-negotiation to complete or for the auto-negotiation time
       
  1712  *  limit to expire, which ever happens first.
       
  1713  **/
       
  1714 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
       
  1715 {
       
  1716 	s32 ret_val = 0;
       
  1717 	u16 i, phy_status;
       
  1718 
       
  1719 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
       
  1720 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
       
  1721 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1722 		if (ret_val)
       
  1723 			break;
       
  1724 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1725 		if (ret_val)
       
  1726 			break;
       
  1727 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
       
  1728 			break;
       
  1729 		msleep(100);
       
  1730 	}
       
  1731 
       
  1732 	/*
       
  1733 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
       
  1734 	 * has completed.
       
  1735 	 */
       
  1736 	return ret_val;
       
  1737 }
       
  1738 
       
  1739 /**
       
  1740  *  e1000e_phy_has_link_generic - Polls PHY for link
       
  1741  *  @hw: pointer to the HW structure
       
  1742  *  @iterations: number of times to poll for link
       
  1743  *  @usec_interval: delay between polling attempts
       
  1744  *  @success: pointer to whether polling was successful or not
       
  1745  *
       
  1746  *  Polls the PHY status register for link, 'iterations' number of times.
       
  1747  **/
       
  1748 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
       
  1749 			       u32 usec_interval, bool *success)
       
  1750 {
       
  1751 	s32 ret_val = 0;
       
  1752 	u16 i, phy_status;
       
  1753 
       
  1754 	for (i = 0; i < iterations; i++) {
       
  1755 		/*
       
  1756 		 * Some PHYs require the PHY_STATUS register to be read
       
  1757 		 * twice due to the link bit being sticky.  No harm doing
       
  1758 		 * it across the board.
       
  1759 		 */
       
  1760 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1761 		if (ret_val)
       
  1762 			/*
       
  1763 			 * If the first read fails, another entity may have
       
  1764 			 * ownership of the resources, wait and try again to
       
  1765 			 * see if they have relinquished the resources yet.
       
  1766 			 */
       
  1767 			udelay(usec_interval);
       
  1768 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1769 		if (ret_val)
       
  1770 			break;
       
  1771 		if (phy_status & MII_SR_LINK_STATUS)
       
  1772 			break;
       
  1773 		if (usec_interval >= 1000)
       
  1774 			mdelay(usec_interval/1000);
       
  1775 		else
       
  1776 			udelay(usec_interval);
       
  1777 	}
       
  1778 
       
  1779 	*success = (i < iterations);
       
  1780 
       
  1781 	return ret_val;
       
  1782 }
       
  1783 
       
  1784 /**
       
  1785  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
       
  1786  *  @hw: pointer to the HW structure
       
  1787  *
       
  1788  *  Reads the PHY specific status register to retrieve the cable length
       
  1789  *  information.  The cable length is determined by averaging the minimum and
       
  1790  *  maximum values to get the "average" cable length.  The m88 PHY has four
       
  1791  *  possible cable length values, which are:
       
  1792  *	Register Value		Cable Length
       
  1793  *	0			< 50 meters
       
  1794  *	1			50 - 80 meters
       
  1795  *	2			80 - 110 meters
       
  1796  *	3			110 - 140 meters
       
  1797  *	4			> 140 meters
       
  1798  **/
       
  1799 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
       
  1800 {
       
  1801 	struct e1000_phy_info *phy = &hw->phy;
       
  1802 	s32 ret_val;
       
  1803 	u16 phy_data, index;
       
  1804 
       
  1805 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1806 	if (ret_val)
       
  1807 		goto out;
       
  1808 
       
  1809 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
       
  1810 	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
       
  1811 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
       
  1812 		ret_val = -E1000_ERR_PHY;
       
  1813 		goto out;
       
  1814 	}
       
  1815 
       
  1816 	phy->min_cable_length = e1000_m88_cable_length_table[index];
       
  1817 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
       
  1818 
       
  1819 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1820 
       
  1821 out:
       
  1822 	return ret_val;
       
  1823 }
       
  1824 
       
  1825 /**
       
  1826  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
       
  1827  *  @hw: pointer to the HW structure
       
  1828  *
       
  1829  *  The automatic gain control (agc) normalizes the amplitude of the
       
  1830  *  received signal, adjusting for the attenuation produced by the
       
  1831  *  cable.  By reading the AGC registers, which represent the
       
  1832  *  combination of coarse and fine gain value, the value can be put
       
  1833  *  into a lookup table to obtain the approximate cable length
       
  1834  *  for each channel.
       
  1835  **/
       
  1836 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
       
  1837 {
       
  1838 	struct e1000_phy_info *phy = &hw->phy;
       
  1839 	s32 ret_val;
       
  1840 	u16 phy_data, i, agc_value = 0;
       
  1841 	u16 cur_agc_index, max_agc_index = 0;
       
  1842 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
       
  1843 	u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
       
  1844 							 {IGP02E1000_PHY_AGC_A,
       
  1845 							  IGP02E1000_PHY_AGC_B,
       
  1846 							  IGP02E1000_PHY_AGC_C,
       
  1847 							  IGP02E1000_PHY_AGC_D};
       
  1848 
       
  1849 	/* Read the AGC registers for all channels */
       
  1850 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
       
  1851 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
       
  1852 		if (ret_val)
       
  1853 			return ret_val;
       
  1854 
       
  1855 		/*
       
  1856 		 * Getting bits 15:9, which represent the combination of
       
  1857 		 * coarse and fine gain values.  The result is a number
       
  1858 		 * that can be put into the lookup table to obtain the
       
  1859 		 * approximate cable length.
       
  1860 		 */
       
  1861 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
       
  1862 				IGP02E1000_AGC_LENGTH_MASK;
       
  1863 
       
  1864 		/* Array index bound check. */
       
  1865 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
       
  1866 		    (cur_agc_index == 0))
       
  1867 			return -E1000_ERR_PHY;
       
  1868 
       
  1869 		/* Remove min & max AGC values from calculation. */
       
  1870 		if (e1000_igp_2_cable_length_table[min_agc_index] >
       
  1871 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1872 			min_agc_index = cur_agc_index;
       
  1873 		if (e1000_igp_2_cable_length_table[max_agc_index] <
       
  1874 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1875 			max_agc_index = cur_agc_index;
       
  1876 
       
  1877 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
       
  1878 	}
       
  1879 
       
  1880 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
       
  1881 		      e1000_igp_2_cable_length_table[max_agc_index]);
       
  1882 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
       
  1883 
       
  1884 	/* Calculate cable length with the error range of +/- 10 meters. */
       
  1885 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
       
  1886 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
       
  1887 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
       
  1888 
       
  1889 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1890 
       
  1891 	return ret_val;
       
  1892 }
       
  1893 
       
  1894 /**
       
  1895  *  e1000e_get_phy_info_m88 - Retrieve PHY information
       
  1896  *  @hw: pointer to the HW structure
       
  1897  *
       
  1898  *  Valid for only copper links.  Read the PHY status register (sticky read)
       
  1899  *  to verify that link is up.  Read the PHY special control register to
       
  1900  *  determine the polarity and 10base-T extended distance.  Read the PHY
       
  1901  *  special status register to determine MDI/MDIx and current speed.  If
       
  1902  *  speed is 1000, then determine cable length, local and remote receiver.
       
  1903  **/
       
  1904 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
       
  1905 {
       
  1906 	struct e1000_phy_info *phy = &hw->phy;
       
  1907 	s32  ret_val;
       
  1908 	u16 phy_data;
       
  1909 	bool link;
       
  1910 
       
  1911 	if (phy->media_type != e1000_media_type_copper) {
       
  1912 		e_dbg("Phy info is only valid for copper media\n");
       
  1913 		return -E1000_ERR_CONFIG;
       
  1914 	}
       
  1915 
       
  1916 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  1917 	if (ret_val)
       
  1918 		return ret_val;
       
  1919 
       
  1920 	if (!link) {
       
  1921 		e_dbg("Phy info is only valid if link is up\n");
       
  1922 		return -E1000_ERR_CONFIG;
       
  1923 	}
       
  1924 
       
  1925 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1926 	if (ret_val)
       
  1927 		return ret_val;
       
  1928 
       
  1929 	phy->polarity_correction = (phy_data &
       
  1930 				    M88E1000_PSCR_POLARITY_REVERSAL);
       
  1931 
       
  1932 	ret_val = e1000_check_polarity_m88(hw);
       
  1933 	if (ret_val)
       
  1934 		return ret_val;
       
  1935 
       
  1936 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1937 	if (ret_val)
       
  1938 		return ret_val;
       
  1939 
       
  1940 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
       
  1941 
       
  1942 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
       
  1943 		ret_val = e1000_get_cable_length(hw);
       
  1944 		if (ret_val)
       
  1945 			return ret_val;
       
  1946 
       
  1947 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
       
  1948 		if (ret_val)
       
  1949 			return ret_val;
       
  1950 
       
  1951 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
       
  1952 				? e1000_1000t_rx_status_ok
       
  1953 				: e1000_1000t_rx_status_not_ok;
       
  1954 
       
  1955 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
       
  1956 				 ? e1000_1000t_rx_status_ok
       
  1957 				 : e1000_1000t_rx_status_not_ok;
       
  1958 	} else {
       
  1959 		/* Set values to "undefined" */
       
  1960 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  1961 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  1962 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  1963 	}
       
  1964 
       
  1965 	return ret_val;
       
  1966 }
       
  1967 
       
  1968 /**
       
  1969  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
       
  1970  *  @hw: pointer to the HW structure
       
  1971  *
       
  1972  *  Read PHY status to determine if link is up.  If link is up, then
       
  1973  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  1974  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  1975  *  determine on the cable length, local and remote receiver.
       
  1976  **/
       
  1977 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
       
  1978 {
       
  1979 	struct e1000_phy_info *phy = &hw->phy;
       
  1980 	s32 ret_val;
       
  1981 	u16 data;
       
  1982 	bool link;
       
  1983 
       
  1984 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  1985 	if (ret_val)
       
  1986 		return ret_val;
       
  1987 
       
  1988 	if (!link) {
       
  1989 		e_dbg("Phy info is only valid if link is up\n");
       
  1990 		return -E1000_ERR_CONFIG;
       
  1991 	}
       
  1992 
       
  1993 	phy->polarity_correction = true;
       
  1994 
       
  1995 	ret_val = e1000_check_polarity_igp(hw);
       
  1996 	if (ret_val)
       
  1997 		return ret_val;
       
  1998 
       
  1999 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  2000 	if (ret_val)
       
  2001 		return ret_val;
       
  2002 
       
  2003 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
       
  2004 
       
  2005 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  2006 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  2007 		ret_val = e1000_get_cable_length(hw);
       
  2008 		if (ret_val)
       
  2009 			return ret_val;
       
  2010 
       
  2011 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
       
  2012 		if (ret_val)
       
  2013 			return ret_val;
       
  2014 
       
  2015 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
       
  2016 				? e1000_1000t_rx_status_ok
       
  2017 				: e1000_1000t_rx_status_not_ok;
       
  2018 
       
  2019 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
       
  2020 				 ? e1000_1000t_rx_status_ok
       
  2021 				 : e1000_1000t_rx_status_not_ok;
       
  2022 	} else {
       
  2023 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2024 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2025 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2026 	}
       
  2027 
       
  2028 	return ret_val;
       
  2029 }
       
  2030 
       
  2031 /**
       
  2032  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
       
  2033  *  @hw: pointer to the HW structure
       
  2034  *
       
  2035  *  Populates "phy" structure with various feature states.
       
  2036  **/
       
  2037 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
       
  2038 {
       
  2039 	struct e1000_phy_info *phy = &hw->phy;
       
  2040 	s32 ret_val;
       
  2041 	u16 data;
       
  2042 	bool link;
       
  2043 
       
  2044 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  2045 	if (ret_val)
       
  2046 		goto out;
       
  2047 
       
  2048 	if (!link) {
       
  2049 		e_dbg("Phy info is only valid if link is up\n");
       
  2050 		ret_val = -E1000_ERR_CONFIG;
       
  2051 		goto out;
       
  2052 	}
       
  2053 
       
  2054 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
       
  2055 	if (ret_val)
       
  2056 		goto out;
       
  2057 	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
       
  2058 	                           ? false : true;
       
  2059 
       
  2060 	if (phy->polarity_correction) {
       
  2061 		ret_val = e1000_check_polarity_ife(hw);
       
  2062 		if (ret_val)
       
  2063 			goto out;
       
  2064 	} else {
       
  2065 		/* Polarity is forced */
       
  2066 		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
       
  2067 		                      ? e1000_rev_polarity_reversed
       
  2068 		                      : e1000_rev_polarity_normal;
       
  2069 	}
       
  2070 
       
  2071 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
       
  2072 	if (ret_val)
       
  2073 		goto out;
       
  2074 
       
  2075 	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
       
  2076 
       
  2077 	/* The following parameters are undefined for 10/100 operation. */
       
  2078 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2079 	phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2080 	phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2081 
       
  2082 out:
       
  2083 	return ret_val;
       
  2084 }
       
  2085 
       
  2086 /**
       
  2087  *  e1000e_phy_sw_reset - PHY software reset
       
  2088  *  @hw: pointer to the HW structure
       
  2089  *
       
  2090  *  Does a software reset of the PHY by reading the PHY control register and
       
  2091  *  setting/write the control register reset bit to the PHY.
       
  2092  **/
       
  2093 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
       
  2094 {
       
  2095 	s32 ret_val;
       
  2096 	u16 phy_ctrl;
       
  2097 
       
  2098 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
       
  2099 	if (ret_val)
       
  2100 		return ret_val;
       
  2101 
       
  2102 	phy_ctrl |= MII_CR_RESET;
       
  2103 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
       
  2104 	if (ret_val)
       
  2105 		return ret_val;
       
  2106 
       
  2107 	udelay(1);
       
  2108 
       
  2109 	return ret_val;
       
  2110 }
       
  2111 
       
  2112 /**
       
  2113  *  e1000e_phy_hw_reset_generic - PHY hardware reset
       
  2114  *  @hw: pointer to the HW structure
       
  2115  *
       
  2116  *  Verify the reset block is not blocking us from resetting.  Acquire
       
  2117  *  semaphore (if necessary) and read/set/write the device control reset
       
  2118  *  bit in the PHY.  Wait the appropriate delay time for the device to
       
  2119  *  reset and release the semaphore (if necessary).
       
  2120  **/
       
  2121 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
       
  2122 {
       
  2123 	struct e1000_phy_info *phy = &hw->phy;
       
  2124 	s32 ret_val;
       
  2125 	u32 ctrl;
       
  2126 
       
  2127 	ret_val = e1000_check_reset_block(hw);
       
  2128 	if (ret_val)
       
  2129 		return 0;
       
  2130 
       
  2131 	ret_val = phy->ops.acquire(hw);
       
  2132 	if (ret_val)
       
  2133 		return ret_val;
       
  2134 
       
  2135 	ctrl = er32(CTRL);
       
  2136 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
       
  2137 	e1e_flush();
       
  2138 
       
  2139 	udelay(phy->reset_delay_us);
       
  2140 
       
  2141 	ew32(CTRL, ctrl);
       
  2142 	e1e_flush();
       
  2143 
       
  2144 	udelay(150);
       
  2145 
       
  2146 	phy->ops.release(hw);
       
  2147 
       
  2148 	return e1000_get_phy_cfg_done(hw);
       
  2149 }
       
  2150 
       
  2151 /**
       
  2152  *  e1000e_get_cfg_done - Generic configuration done
       
  2153  *  @hw: pointer to the HW structure
       
  2154  *
       
  2155  *  Generic function to wait 10 milli-seconds for configuration to complete
       
  2156  *  and return success.
       
  2157  **/
       
  2158 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
       
  2159 {
       
  2160 	mdelay(10);
       
  2161 	return 0;
       
  2162 }
       
  2163 
       
  2164 /**
       
  2165  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
       
  2166  *  @hw: pointer to the HW structure
       
  2167  *
       
  2168  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
       
  2169  **/
       
  2170 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
       
  2171 {
       
  2172 	e_dbg("Running IGP 3 PHY init script\n");
       
  2173 
       
  2174 	/* PHY init IGP 3 */
       
  2175 	/* Enable rise/fall, 10-mode work in class-A */
       
  2176 	e1e_wphy(hw, 0x2F5B, 0x9018);
       
  2177 	/* Remove all caps from Replica path filter */
       
  2178 	e1e_wphy(hw, 0x2F52, 0x0000);
       
  2179 	/* Bias trimming for ADC, AFE and Driver (Default) */
       
  2180 	e1e_wphy(hw, 0x2FB1, 0x8B24);
       
  2181 	/* Increase Hybrid poly bias */
       
  2182 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
       
  2183 	/* Add 4% to Tx amplitude in Gig mode */
       
  2184 	e1e_wphy(hw, 0x2010, 0x10B0);
       
  2185 	/* Disable trimming (TTT) */
       
  2186 	e1e_wphy(hw, 0x2011, 0x0000);
       
  2187 	/* Poly DC correction to 94.6% + 2% for all channels */
       
  2188 	e1e_wphy(hw, 0x20DD, 0x249A);
       
  2189 	/* ABS DC correction to 95.9% */
       
  2190 	e1e_wphy(hw, 0x20DE, 0x00D3);
       
  2191 	/* BG temp curve trim */
       
  2192 	e1e_wphy(hw, 0x28B4, 0x04CE);
       
  2193 	/* Increasing ADC OPAMP stage 1 currents to max */
       
  2194 	e1e_wphy(hw, 0x2F70, 0x29E4);
       
  2195 	/* Force 1000 ( required for enabling PHY regs configuration) */
       
  2196 	e1e_wphy(hw, 0x0000, 0x0140);
       
  2197 	/* Set upd_freq to 6 */
       
  2198 	e1e_wphy(hw, 0x1F30, 0x1606);
       
  2199 	/* Disable NPDFE */
       
  2200 	e1e_wphy(hw, 0x1F31, 0xB814);
       
  2201 	/* Disable adaptive fixed FFE (Default) */
       
  2202 	e1e_wphy(hw, 0x1F35, 0x002A);
       
  2203 	/* Enable FFE hysteresis */
       
  2204 	e1e_wphy(hw, 0x1F3E, 0x0067);
       
  2205 	/* Fixed FFE for short cable lengths */
       
  2206 	e1e_wphy(hw, 0x1F54, 0x0065);
       
  2207 	/* Fixed FFE for medium cable lengths */
       
  2208 	e1e_wphy(hw, 0x1F55, 0x002A);
       
  2209 	/* Fixed FFE for long cable lengths */
       
  2210 	e1e_wphy(hw, 0x1F56, 0x002A);
       
  2211 	/* Enable Adaptive Clip Threshold */
       
  2212 	e1e_wphy(hw, 0x1F72, 0x3FB0);
       
  2213 	/* AHT reset limit to 1 */
       
  2214 	e1e_wphy(hw, 0x1F76, 0xC0FF);
       
  2215 	/* Set AHT master delay to 127 msec */
       
  2216 	e1e_wphy(hw, 0x1F77, 0x1DEC);
       
  2217 	/* Set scan bits for AHT */
       
  2218 	e1e_wphy(hw, 0x1F78, 0xF9EF);
       
  2219 	/* Set AHT Preset bits */
       
  2220 	e1e_wphy(hw, 0x1F79, 0x0210);
       
  2221 	/* Change integ_factor of channel A to 3 */
       
  2222 	e1e_wphy(hw, 0x1895, 0x0003);
       
  2223 	/* Change prop_factor of channels BCD to 8 */
       
  2224 	e1e_wphy(hw, 0x1796, 0x0008);
       
  2225 	/* Change cg_icount + enable integbp for channels BCD */
       
  2226 	e1e_wphy(hw, 0x1798, 0xD008);
       
  2227 	/*
       
  2228 	 * Change cg_icount + enable integbp + change prop_factor_master
       
  2229 	 * to 8 for channel A
       
  2230 	 */
       
  2231 	e1e_wphy(hw, 0x1898, 0xD918);
       
  2232 	/* Disable AHT in Slave mode on channel A */
       
  2233 	e1e_wphy(hw, 0x187A, 0x0800);
       
  2234 	/*
       
  2235 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
       
  2236 	 * Enable SPD+B2B
       
  2237 	 */
       
  2238 	e1e_wphy(hw, 0x0019, 0x008D);
       
  2239 	/* Enable restart AN on an1000_dis change */
       
  2240 	e1e_wphy(hw, 0x001B, 0x2080);
       
  2241 	/* Enable wh_fifo read clock in 10/100 modes */
       
  2242 	e1e_wphy(hw, 0x0014, 0x0045);
       
  2243 	/* Restart AN, Speed selection is 1000 */
       
  2244 	e1e_wphy(hw, 0x0000, 0x1340);
       
  2245 
       
  2246 	return 0;
       
  2247 }
       
  2248 
       
  2249 /* Internal function pointers */
       
  2250 
       
  2251 /**
       
  2252  *  e1000_get_phy_cfg_done - Generic PHY configuration done
       
  2253  *  @hw: pointer to the HW structure
       
  2254  *
       
  2255  *  Return success if silicon family did not implement a family specific
       
  2256  *  get_cfg_done function.
       
  2257  **/
       
  2258 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
       
  2259 {
       
  2260 	if (hw->phy.ops.get_cfg_done)
       
  2261 		return hw->phy.ops.get_cfg_done(hw);
       
  2262 
       
  2263 	return 0;
       
  2264 }
       
  2265 
       
  2266 /**
       
  2267  *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
       
  2268  *  @hw: pointer to the HW structure
       
  2269  *
       
  2270  *  When the silicon family has not implemented a forced speed/duplex
       
  2271  *  function for the PHY, simply return 0.
       
  2272  **/
       
  2273 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
       
  2274 {
       
  2275 	if (hw->phy.ops.force_speed_duplex)
       
  2276 		return hw->phy.ops.force_speed_duplex(hw);
       
  2277 
       
  2278 	return 0;
       
  2279 }
       
  2280 
       
  2281 /**
       
  2282  *  e1000e_get_phy_type_from_id - Get PHY type from id
       
  2283  *  @phy_id: phy_id read from the phy
       
  2284  *
       
  2285  *  Returns the phy type from the id.
       
  2286  **/
       
  2287 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
       
  2288 {
       
  2289 	enum e1000_phy_type phy_type = e1000_phy_unknown;
       
  2290 
       
  2291 	switch (phy_id) {
       
  2292 	case M88E1000_I_PHY_ID:
       
  2293 	case M88E1000_E_PHY_ID:
       
  2294 	case M88E1111_I_PHY_ID:
       
  2295 	case M88E1011_I_PHY_ID:
       
  2296 		phy_type = e1000_phy_m88;
       
  2297 		break;
       
  2298 	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
       
  2299 		phy_type = e1000_phy_igp_2;
       
  2300 		break;
       
  2301 	case GG82563_E_PHY_ID:
       
  2302 		phy_type = e1000_phy_gg82563;
       
  2303 		break;
       
  2304 	case IGP03E1000_E_PHY_ID:
       
  2305 		phy_type = e1000_phy_igp_3;
       
  2306 		break;
       
  2307 	case IFE_E_PHY_ID:
       
  2308 	case IFE_PLUS_E_PHY_ID:
       
  2309 	case IFE_C_E_PHY_ID:
       
  2310 		phy_type = e1000_phy_ife;
       
  2311 		break;
       
  2312 	case BME1000_E_PHY_ID:
       
  2313 	case BME1000_E_PHY_ID_R2:
       
  2314 		phy_type = e1000_phy_bm;
       
  2315 		break;
       
  2316 	case I82578_E_PHY_ID:
       
  2317 		phy_type = e1000_phy_82578;
       
  2318 		break;
       
  2319 	case I82577_E_PHY_ID:
       
  2320 		phy_type = e1000_phy_82577;
       
  2321 		break;
       
  2322 	default:
       
  2323 		phy_type = e1000_phy_unknown;
       
  2324 		break;
       
  2325 	}
       
  2326 	return phy_type;
       
  2327 }
       
  2328 
       
  2329 /**
       
  2330  *  e1000e_determine_phy_address - Determines PHY address.
       
  2331  *  @hw: pointer to the HW structure
       
  2332  *
       
  2333  *  This uses a trial and error method to loop through possible PHY
       
  2334  *  addresses. It tests each by reading the PHY ID registers and
       
  2335  *  checking for a match.
       
  2336  **/
       
  2337 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
       
  2338 {
       
  2339 	s32 ret_val = -E1000_ERR_PHY_TYPE;
       
  2340 	u32 phy_addr = 0;
       
  2341 	u32 i;
       
  2342 	enum e1000_phy_type phy_type = e1000_phy_unknown;
       
  2343 
       
  2344 	hw->phy.id = phy_type;
       
  2345 
       
  2346 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
       
  2347 		hw->phy.addr = phy_addr;
       
  2348 		i = 0;
       
  2349 
       
  2350 		do {
       
  2351 			e1000e_get_phy_id(hw);
       
  2352 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
       
  2353 
       
  2354 			/*
       
  2355 			 * If phy_type is valid, break - we found our
       
  2356 			 * PHY address
       
  2357 			 */
       
  2358 			if (phy_type  != e1000_phy_unknown) {
       
  2359 				ret_val = 0;
       
  2360 				goto out;
       
  2361 			}
       
  2362 			msleep(1);
       
  2363 			i++;
       
  2364 		} while (i < 10);
       
  2365 	}
       
  2366 
       
  2367 out:
       
  2368 	return ret_val;
       
  2369 }
       
  2370 
       
  2371 /**
       
  2372  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
       
  2373  *  @page: page to access
       
  2374  *
       
  2375  *  Returns the phy address for the page requested.
       
  2376  **/
       
  2377 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
       
  2378 {
       
  2379 	u32 phy_addr = 2;
       
  2380 
       
  2381 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
       
  2382 		phy_addr = 1;
       
  2383 
       
  2384 	return phy_addr;
       
  2385 }
       
  2386 
       
  2387 /**
       
  2388  *  e1000e_write_phy_reg_bm - Write BM PHY register
       
  2389  *  @hw: pointer to the HW structure
       
  2390  *  @offset: register offset to write to
       
  2391  *  @data: data to write at register offset
       
  2392  *
       
  2393  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2394  *  at the offset.  Release any acquired semaphores before exiting.
       
  2395  **/
       
  2396 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
       
  2397 {
       
  2398 	s32 ret_val;
       
  2399 	u32 page_select = 0;
       
  2400 	u32 page = offset >> IGP_PAGE_SHIFT;
       
  2401 	u32 page_shift = 0;
       
  2402 
       
  2403 	ret_val = hw->phy.ops.acquire(hw);
       
  2404 	if (ret_val)
       
  2405 		return ret_val;
       
  2406 
       
  2407 	/* Page 800 works differently than the rest so it has its own func */
       
  2408 	if (page == BM_WUC_PAGE) {
       
  2409 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2410 							 false);
       
  2411 		goto out;
       
  2412 	}
       
  2413 
       
  2414 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
       
  2415 
       
  2416 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2417 		/*
       
  2418 		 * Page select is register 31 for phy address 1 and 22 for
       
  2419 		 * phy address 2 and 3. Page select is shifted only for
       
  2420 		 * phy address 1.
       
  2421 		 */
       
  2422 		if (hw->phy.addr == 1) {
       
  2423 			page_shift = IGP_PAGE_SHIFT;
       
  2424 			page_select = IGP01E1000_PHY_PAGE_SELECT;
       
  2425 		} else {
       
  2426 			page_shift = 0;
       
  2427 			page_select = BM_PHY_PAGE_SELECT;
       
  2428 		}
       
  2429 
       
  2430 		/* Page is shifted left, PHY expects (page x 32) */
       
  2431 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
       
  2432 		                                    (page << page_shift));
       
  2433 		if (ret_val)
       
  2434 			goto out;
       
  2435 	}
       
  2436 
       
  2437 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2438 	                                    data);
       
  2439 
       
  2440 out:
       
  2441 	hw->phy.ops.release(hw);
       
  2442 	return ret_val;
       
  2443 }
       
  2444 
       
  2445 /**
       
  2446  *  e1000e_read_phy_reg_bm - Read BM PHY register
       
  2447  *  @hw: pointer to the HW structure
       
  2448  *  @offset: register offset to be read
       
  2449  *  @data: pointer to the read data
       
  2450  *
       
  2451  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2452  *  and storing the retrieved information in data.  Release any acquired
       
  2453  *  semaphores before exiting.
       
  2454  **/
       
  2455 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2456 {
       
  2457 	s32 ret_val;
       
  2458 	u32 page_select = 0;
       
  2459 	u32 page = offset >> IGP_PAGE_SHIFT;
       
  2460 	u32 page_shift = 0;
       
  2461 
       
  2462 	ret_val = hw->phy.ops.acquire(hw);
       
  2463 	if (ret_val)
       
  2464 		return ret_val;
       
  2465 
       
  2466 	/* Page 800 works differently than the rest so it has its own func */
       
  2467 	if (page == BM_WUC_PAGE) {
       
  2468 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2469 							 true);
       
  2470 		goto out;
       
  2471 	}
       
  2472 
       
  2473 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
       
  2474 
       
  2475 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2476 		/*
       
  2477 		 * Page select is register 31 for phy address 1 and 22 for
       
  2478 		 * phy address 2 and 3. Page select is shifted only for
       
  2479 		 * phy address 1.
       
  2480 		 */
       
  2481 		if (hw->phy.addr == 1) {
       
  2482 			page_shift = IGP_PAGE_SHIFT;
       
  2483 			page_select = IGP01E1000_PHY_PAGE_SELECT;
       
  2484 		} else {
       
  2485 			page_shift = 0;
       
  2486 			page_select = BM_PHY_PAGE_SELECT;
       
  2487 		}
       
  2488 
       
  2489 		/* Page is shifted left, PHY expects (page x 32) */
       
  2490 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
       
  2491 		                                    (page << page_shift));
       
  2492 		if (ret_val)
       
  2493 			goto out;
       
  2494 	}
       
  2495 
       
  2496 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2497 	                                   data);
       
  2498 out:
       
  2499 	hw->phy.ops.release(hw);
       
  2500 	return ret_val;
       
  2501 }
       
  2502 
       
  2503 /**
       
  2504  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
       
  2505  *  @hw: pointer to the HW structure
       
  2506  *  @offset: register offset to be read
       
  2507  *  @data: pointer to the read data
       
  2508  *
       
  2509  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2510  *  and storing the retrieved information in data.  Release any acquired
       
  2511  *  semaphores before exiting.
       
  2512  **/
       
  2513 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2514 {
       
  2515 	s32 ret_val;
       
  2516 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
       
  2517 
       
  2518 	ret_val = hw->phy.ops.acquire(hw);
       
  2519 	if (ret_val)
       
  2520 		return ret_val;
       
  2521 
       
  2522 	/* Page 800 works differently than the rest so it has its own func */
       
  2523 	if (page == BM_WUC_PAGE) {
       
  2524 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2525 							 true);
       
  2526 		goto out;
       
  2527 	}
       
  2528 
       
  2529 	hw->phy.addr = 1;
       
  2530 
       
  2531 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2532 
       
  2533 		/* Page is shifted left, PHY expects (page x 32) */
       
  2534 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
       
  2535 						    page);
       
  2536 
       
  2537 		if (ret_val)
       
  2538 			goto out;
       
  2539 	}
       
  2540 
       
  2541 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2542 					   data);
       
  2543 out:
       
  2544 	hw->phy.ops.release(hw);
       
  2545 	return ret_val;
       
  2546 }
       
  2547 
       
  2548 /**
       
  2549  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
       
  2550  *  @hw: pointer to the HW structure
       
  2551  *  @offset: register offset to write to
       
  2552  *  @data: data to write at register offset
       
  2553  *
       
  2554  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2555  *  at the offset.  Release any acquired semaphores before exiting.
       
  2556  **/
       
  2557 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
       
  2558 {
       
  2559 	s32 ret_val;
       
  2560 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
       
  2561 
       
  2562 	ret_val = hw->phy.ops.acquire(hw);
       
  2563 	if (ret_val)
       
  2564 		return ret_val;
       
  2565 
       
  2566 	/* Page 800 works differently than the rest so it has its own func */
       
  2567 	if (page == BM_WUC_PAGE) {
       
  2568 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2569 							 false);
       
  2570 		goto out;
       
  2571 	}
       
  2572 
       
  2573 	hw->phy.addr = 1;
       
  2574 
       
  2575 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2576 		/* Page is shifted left, PHY expects (page x 32) */
       
  2577 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
       
  2578 						    page);
       
  2579 
       
  2580 		if (ret_val)
       
  2581 			goto out;
       
  2582 	}
       
  2583 
       
  2584 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2585 					    data);
       
  2586 
       
  2587 out:
       
  2588 	hw->phy.ops.release(hw);
       
  2589 	return ret_val;
       
  2590 }
       
  2591 
       
  2592 /**
       
  2593  *  e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
       
  2594  *  @hw: pointer to the HW structure
       
  2595  *  @offset: register offset to be read or written
       
  2596  *  @data: pointer to the data to read or write
       
  2597  *  @read: determines if operation is read or write
       
  2598  *
       
  2599  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2600  *  and storing the retrieved information in data.  Release any acquired
       
  2601  *  semaphores before exiting. Note that procedure to read the wakeup
       
  2602  *  registers are different. It works as such:
       
  2603  *  1) Set page 769, register 17, bit 2 = 1
       
  2604  *  2) Set page to 800 for host (801 if we were manageability)
       
  2605  *  3) Write the address using the address opcode (0x11)
       
  2606  *  4) Read or write the data using the data opcode (0x12)
       
  2607  *  5) Restore 769_17.2 to its original value
       
  2608  *
       
  2609  *  Assumes semaphore already acquired.
       
  2610  **/
       
  2611 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
       
  2612 					  u16 *data, bool read)
       
  2613 {
       
  2614 	s32 ret_val;
       
  2615 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2616 	u16 phy_reg = 0;
       
  2617 
       
  2618 	/* Gig must be disabled for MDIO accesses to page 800 */
       
  2619 	if ((hw->mac.type == e1000_pchlan) &&
       
  2620 	   (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
       
  2621 		e_dbg("Attempting to access page 800 while gig enabled.\n");
       
  2622 
       
  2623 	/* All operations in this function are phy address 1 */
       
  2624 	hw->phy.addr = 1;
       
  2625 
       
  2626 	/* Set page 769 */
       
  2627 	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  2628 	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
       
  2629 
       
  2630 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
       
  2631 	if (ret_val) {
       
  2632 		e_dbg("Could not read PHY page 769\n");
       
  2633 		goto out;
       
  2634 	}
       
  2635 
       
  2636 	/* First clear bit 4 to avoid a power state change */
       
  2637 	phy_reg &= ~(BM_WUC_HOST_WU_BIT);
       
  2638 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
       
  2639 	if (ret_val) {
       
  2640 		e_dbg("Could not clear PHY page 769 bit 4\n");
       
  2641 		goto out;
       
  2642 	}
       
  2643 
       
  2644 	/* Write bit 2 = 1, and clear bit 4 to 769_17 */
       
  2645 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
       
  2646 	                                    phy_reg | BM_WUC_ENABLE_BIT);
       
  2647 	if (ret_val) {
       
  2648 		e_dbg("Could not write PHY page 769 bit 2\n");
       
  2649 		goto out;
       
  2650 	}
       
  2651 
       
  2652 	/* Select page 800 */
       
  2653 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  2654 	                                    (BM_WUC_PAGE << IGP_PAGE_SHIFT));
       
  2655 
       
  2656 	/* Write the page 800 offset value using opcode 0x11 */
       
  2657 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
       
  2658 	if (ret_val) {
       
  2659 		e_dbg("Could not write address opcode to page 800\n");
       
  2660 		goto out;
       
  2661 	}
       
  2662 
       
  2663 	if (read) {
       
  2664 	        /* Read the page 800 value using opcode 0x12 */
       
  2665 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
       
  2666 		                                   data);
       
  2667 	} else {
       
  2668 	        /* Write the page 800 value using opcode 0x12 */
       
  2669 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
       
  2670 						    *data);
       
  2671 	}
       
  2672 
       
  2673 	if (ret_val) {
       
  2674 		e_dbg("Could not access data value from page 800\n");
       
  2675 		goto out;
       
  2676 	}
       
  2677 
       
  2678 	/*
       
  2679 	 * Restore 769_17.2 to its original value
       
  2680 	 * Set page 769
       
  2681 	 */
       
  2682 	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  2683 	                          (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
       
  2684 
       
  2685 	/* Clear 769_17.2 */
       
  2686 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
       
  2687 	if (ret_val) {
       
  2688 		e_dbg("Could not clear PHY page 769 bit 2\n");
       
  2689 		goto out;
       
  2690 	}
       
  2691 
       
  2692 out:
       
  2693 	return ret_val;
       
  2694 }
       
  2695 
       
  2696 /**
       
  2697  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
       
  2698  * @hw: pointer to the HW structure
       
  2699  *
       
  2700  * In the case of a PHY power down to save power, or to turn off link during a
       
  2701  * driver unload, or wake on lan is not enabled, restore the link to previous
       
  2702  * settings.
       
  2703  **/
       
  2704 void e1000_power_up_phy_copper(struct e1000_hw *hw)
       
  2705 {
       
  2706 	u16 mii_reg = 0;
       
  2707 
       
  2708 	/* The PHY will retain its settings across a power down/up cycle */
       
  2709 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
       
  2710 	mii_reg &= ~MII_CR_POWER_DOWN;
       
  2711 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
       
  2712 }
       
  2713 
       
  2714 /**
       
  2715  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
       
  2716  * @hw: pointer to the HW structure
       
  2717  *
       
  2718  * In the case of a PHY power down to save power, or to turn off link during a
       
  2719  * driver unload, or wake on lan is not enabled, restore the link to previous
       
  2720  * settings.
       
  2721  **/
       
  2722 void e1000_power_down_phy_copper(struct e1000_hw *hw)
       
  2723 {
       
  2724 	u16 mii_reg = 0;
       
  2725 
       
  2726 	/* The PHY will retain its settings across a power down/up cycle */
       
  2727 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
       
  2728 	mii_reg |= MII_CR_POWER_DOWN;
       
  2729 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
       
  2730 	msleep(1);
       
  2731 }
       
  2732 
       
  2733 /**
       
  2734  *  e1000e_commit_phy - Soft PHY reset
       
  2735  *  @hw: pointer to the HW structure
       
  2736  *
       
  2737  *  Performs a soft PHY reset on those that apply. This is a function pointer
       
  2738  *  entry point called by drivers.
       
  2739  **/
       
  2740 s32 e1000e_commit_phy(struct e1000_hw *hw)
       
  2741 {
       
  2742 	if (hw->phy.ops.commit)
       
  2743 		return hw->phy.ops.commit(hw);
       
  2744 
       
  2745 	return 0;
       
  2746 }
       
  2747 
       
  2748 /**
       
  2749  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
       
  2750  *  @hw: pointer to the HW structure
       
  2751  *  @active: boolean used to enable/disable lplu
       
  2752  *
       
  2753  *  Success returns 0, Failure returns 1
       
  2754  *
       
  2755  *  The low power link up (lplu) state is set to the power management level D0
       
  2756  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
       
  2757  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
       
  2758  *  is used during Dx states where the power conservation is most important.
       
  2759  *  During driver activity, SmartSpeed should be enabled so performance is
       
  2760  *  maintained.  This is a function pointer entry point called by drivers.
       
  2761  **/
       
  2762 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
       
  2763 {
       
  2764 	if (hw->phy.ops.set_d0_lplu_state)
       
  2765 		return hw->phy.ops.set_d0_lplu_state(hw, active);
       
  2766 
       
  2767 	return 0;
       
  2768 }
       
  2769 
       
  2770 /**
       
  2771  *  __e1000_read_phy_reg_hv -  Read HV PHY register
       
  2772  *  @hw: pointer to the HW structure
       
  2773  *  @offset: register offset to be read
       
  2774  *  @data: pointer to the read data
       
  2775  *  @locked: semaphore has already been acquired or not
       
  2776  *
       
  2777  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2778  *  and stores the retrieved information in data.  Release any acquired
       
  2779  *  semaphore before exiting.
       
  2780  **/
       
  2781 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
       
  2782                                    bool locked)
       
  2783 {
       
  2784 	s32 ret_val;
       
  2785 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2786 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2787 
       
  2788 	if (!locked) {
       
  2789 		ret_val = hw->phy.ops.acquire(hw);
       
  2790 		if (ret_val)
       
  2791 			return ret_val;
       
  2792 	}
       
  2793 
       
  2794 	/* Page 800 works differently than the rest so it has its own func */
       
  2795 	if (page == BM_WUC_PAGE) {
       
  2796 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
       
  2797 		                                         data, true);
       
  2798 		goto out;
       
  2799 	}
       
  2800 
       
  2801 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
       
  2802 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
       
  2803 		                                         data, true);
       
  2804 		goto out;
       
  2805 	}
       
  2806 
       
  2807 	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
       
  2808 
       
  2809 	if (page == HV_INTC_FC_PAGE_START)
       
  2810 		page = 0;
       
  2811 
       
  2812 	if (reg > MAX_PHY_MULTI_PAGE_REG) {
       
  2813 		u32 phy_addr = hw->phy.addr;
       
  2814 
       
  2815 		hw->phy.addr = 1;
       
  2816 
       
  2817 		/* Page is shifted left, PHY expects (page x 32) */
       
  2818 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
  2819 					     IGP01E1000_PHY_PAGE_SELECT,
       
  2820 					     (page << IGP_PAGE_SHIFT));
       
  2821 		hw->phy.addr = phy_addr;
       
  2822 
       
  2823 		if (ret_val)
       
  2824 			goto out;
       
  2825 	}
       
  2826 
       
  2827 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
       
  2828 	                                  data);
       
  2829 out:
       
  2830 	if (!locked)
       
  2831 		hw->phy.ops.release(hw);
       
  2832 
       
  2833 	return ret_val;
       
  2834 }
       
  2835 
       
  2836 /**
       
  2837  *  e1000_read_phy_reg_hv -  Read HV PHY register
       
  2838  *  @hw: pointer to the HW structure
       
  2839  *  @offset: register offset to be read
       
  2840  *  @data: pointer to the read data
       
  2841  *
       
  2842  *  Acquires semaphore then reads the PHY register at offset and stores
       
  2843  *  the retrieved information in data.  Release the acquired semaphore
       
  2844  *  before exiting.
       
  2845  **/
       
  2846 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2847 {
       
  2848 	return __e1000_read_phy_reg_hv(hw, offset, data, false);
       
  2849 }
       
  2850 
       
  2851 /**
       
  2852  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
       
  2853  *  @hw: pointer to the HW structure
       
  2854  *  @offset: register offset to be read
       
  2855  *  @data: pointer to the read data
       
  2856  *
       
  2857  *  Reads the PHY register at offset and stores the retrieved information
       
  2858  *  in data.  Assumes semaphore already acquired.
       
  2859  **/
       
  2860 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2861 {
       
  2862 	return __e1000_read_phy_reg_hv(hw, offset, data, true);
       
  2863 }
       
  2864 
       
  2865 /**
       
  2866  *  __e1000_write_phy_reg_hv - Write HV PHY register
       
  2867  *  @hw: pointer to the HW structure
       
  2868  *  @offset: register offset to write to
       
  2869  *  @data: data to write at register offset
       
  2870  *  @locked: semaphore has already been acquired or not
       
  2871  *
       
  2872  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2873  *  at the offset.  Release any acquired semaphores before exiting.
       
  2874  **/
       
  2875 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
       
  2876                                     bool locked)
       
  2877 {
       
  2878 	s32 ret_val;
       
  2879 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2880 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2881 
       
  2882 	if (!locked) {
       
  2883 		ret_val = hw->phy.ops.acquire(hw);
       
  2884 		if (ret_val)
       
  2885 			return ret_val;
       
  2886 	}
       
  2887 
       
  2888 	/* Page 800 works differently than the rest so it has its own func */
       
  2889 	if (page == BM_WUC_PAGE) {
       
  2890 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset,
       
  2891 		                                         &data, false);
       
  2892 		goto out;
       
  2893 	}
       
  2894 
       
  2895 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
       
  2896 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
       
  2897 		                                         &data, false);
       
  2898 		goto out;
       
  2899 	}
       
  2900 
       
  2901 	hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
       
  2902 
       
  2903 	if (page == HV_INTC_FC_PAGE_START)
       
  2904 		page = 0;
       
  2905 
       
  2906 	/*
       
  2907 	 * Workaround MDIO accesses being disabled after entering IEEE Power
       
  2908 	 * Down (whenever bit 11 of the PHY Control register is set)
       
  2909 	 */
       
  2910 	if ((hw->phy.type == e1000_phy_82578) &&
       
  2911 	    (hw->phy.revision >= 1) &&
       
  2912 	    (hw->phy.addr == 2) &&
       
  2913 	    ((MAX_PHY_REG_ADDRESS & reg) == 0) &&
       
  2914 	    (data & (1 << 11))) {
       
  2915 		u16 data2 = 0x7EFF;
       
  2916 		ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3,
       
  2917 		                                         &data2, false);
       
  2918 		if (ret_val)
       
  2919 			goto out;
       
  2920 	}
       
  2921 
       
  2922 	if (reg > MAX_PHY_MULTI_PAGE_REG) {
       
  2923 		u32 phy_addr = hw->phy.addr;
       
  2924 
       
  2925 		hw->phy.addr = 1;
       
  2926 
       
  2927 		/* Page is shifted left, PHY expects (page x 32) */
       
  2928 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
  2929 					     IGP01E1000_PHY_PAGE_SELECT,
       
  2930 					     (page << IGP_PAGE_SHIFT));
       
  2931 		hw->phy.addr = phy_addr;
       
  2932 
       
  2933 		if (ret_val)
       
  2934 			goto out;
       
  2935 	}
       
  2936 
       
  2937 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
       
  2938 	                                  data);
       
  2939 
       
  2940 out:
       
  2941 	if (!locked)
       
  2942 		hw->phy.ops.release(hw);
       
  2943 
       
  2944 	return ret_val;
       
  2945 }
       
  2946 
       
  2947 /**
       
  2948  *  e1000_write_phy_reg_hv - Write HV PHY register
       
  2949  *  @hw: pointer to the HW structure
       
  2950  *  @offset: register offset to write to
       
  2951  *  @data: data to write at register offset
       
  2952  *
       
  2953  *  Acquires semaphore then writes the data to PHY register at the offset.
       
  2954  *  Release the acquired semaphores before exiting.
       
  2955  **/
       
  2956 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
       
  2957 {
       
  2958 	return __e1000_write_phy_reg_hv(hw, offset, data, false);
       
  2959 }
       
  2960 
       
  2961 /**
       
  2962  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
       
  2963  *  @hw: pointer to the HW structure
       
  2964  *  @offset: register offset to write to
       
  2965  *  @data: data to write at register offset
       
  2966  *
       
  2967  *  Writes the data to PHY register at the offset.  Assumes semaphore
       
  2968  *  already acquired.
       
  2969  **/
       
  2970 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
  2971 {
       
  2972 	return __e1000_write_phy_reg_hv(hw, offset, data, true);
       
  2973 }
       
  2974 
       
  2975 /**
       
  2976  *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
       
  2977  *  @page: page to be accessed
       
  2978  **/
       
  2979 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
       
  2980 {
       
  2981 	u32 phy_addr = 2;
       
  2982 
       
  2983 	if (page >= HV_INTC_FC_PAGE_START)
       
  2984 		phy_addr = 1;
       
  2985 
       
  2986 	return phy_addr;
       
  2987 }
       
  2988 
       
  2989 /**
       
  2990  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
       
  2991  *  @hw: pointer to the HW structure
       
  2992  *  @offset: register offset to be read or written
       
  2993  *  @data: pointer to the data to be read or written
       
  2994  *  @read: determines if operation is read or written
       
  2995  *
       
  2996  *  Reads the PHY register at offset and stores the retreived information
       
  2997  *  in data.  Assumes semaphore already acquired.  Note that the procedure
       
  2998  *  to read these regs uses the address port and data port to read/write.
       
  2999  **/
       
  3000 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
       
  3001                                           u16 *data, bool read)
       
  3002 {
       
  3003 	s32 ret_val;
       
  3004 	u32 addr_reg = 0;
       
  3005 	u32 data_reg = 0;
       
  3006 
       
  3007 	/* This takes care of the difference with desktop vs mobile phy */
       
  3008 	addr_reg = (hw->phy.type == e1000_phy_82578) ?
       
  3009 	           I82578_ADDR_REG : I82577_ADDR_REG;
       
  3010 	data_reg = addr_reg + 1;
       
  3011 
       
  3012 	/* All operations in this function are phy address 2 */
       
  3013 	hw->phy.addr = 2;
       
  3014 
       
  3015 	/* masking with 0x3F to remove the page from offset */
       
  3016 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
       
  3017 	if (ret_val) {
       
  3018 		e_dbg("Could not write PHY the HV address register\n");
       
  3019 		goto out;
       
  3020 	}
       
  3021 
       
  3022 	/* Read or write the data value next */
       
  3023 	if (read)
       
  3024 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
       
  3025 	else
       
  3026 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
       
  3027 
       
  3028 	if (ret_val) {
       
  3029 		e_dbg("Could not read data value from HV data register\n");
       
  3030 		goto out;
       
  3031 	}
       
  3032 
       
  3033 out:
       
  3034 	return ret_val;
       
  3035 }
       
  3036 
       
  3037 /**
       
  3038  *  e1000_link_stall_workaround_hv - Si workaround
       
  3039  *  @hw: pointer to the HW structure
       
  3040  *
       
  3041  *  This function works around a Si bug where the link partner can get
       
  3042  *  a link up indication before the PHY does.  If small packets are sent
       
  3043  *  by the link partner they can be placed in the packet buffer without
       
  3044  *  being properly accounted for by the PHY and will stall preventing
       
  3045  *  further packets from being received.  The workaround is to clear the
       
  3046  *  packet buffer after the PHY detects link up.
       
  3047  **/
       
  3048 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
       
  3049 {
       
  3050 	s32 ret_val = 0;
       
  3051 	u16 data;
       
  3052 
       
  3053 	if (hw->phy.type != e1000_phy_82578)
       
  3054 		goto out;
       
  3055 
       
  3056 	/* Do not apply workaround if in PHY loopback bit 14 set */
       
  3057 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
       
  3058 	if (data & PHY_CONTROL_LB)
       
  3059 		goto out;
       
  3060 
       
  3061 	/* check if link is up and at 1Gbps */
       
  3062 	ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
       
  3063 	if (ret_val)
       
  3064 		goto out;
       
  3065 
       
  3066 	data &= BM_CS_STATUS_LINK_UP |
       
  3067 	        BM_CS_STATUS_RESOLVED |
       
  3068 	        BM_CS_STATUS_SPEED_MASK;
       
  3069 
       
  3070 	if (data != (BM_CS_STATUS_LINK_UP |
       
  3071 	             BM_CS_STATUS_RESOLVED |
       
  3072 	             BM_CS_STATUS_SPEED_1000))
       
  3073 		goto out;
       
  3074 
       
  3075 	mdelay(200);
       
  3076 
       
  3077 	/* flush the packets in the fifo buffer */
       
  3078 	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
       
  3079 	                                HV_MUX_DATA_CTRL_GEN_TO_MAC |
       
  3080 	                                HV_MUX_DATA_CTRL_FORCE_SPEED);
       
  3081 	if (ret_val)
       
  3082 		goto out;
       
  3083 
       
  3084 	ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
       
  3085 	                                HV_MUX_DATA_CTRL_GEN_TO_MAC);
       
  3086 
       
  3087 out:
       
  3088 	return ret_val;
       
  3089 }
       
  3090 
       
  3091 /**
       
  3092  *  e1000_check_polarity_82577 - Checks the polarity.
       
  3093  *  @hw: pointer to the HW structure
       
  3094  *
       
  3095  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  3096  *
       
  3097  *  Polarity is determined based on the PHY specific status register.
       
  3098  **/
       
  3099 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
       
  3100 {
       
  3101 	struct e1000_phy_info *phy = &hw->phy;
       
  3102 	s32 ret_val;
       
  3103 	u16 data;
       
  3104 
       
  3105 	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
       
  3106 
       
  3107 	if (!ret_val)
       
  3108 		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
       
  3109 		                      ? e1000_rev_polarity_reversed
       
  3110 		                      : e1000_rev_polarity_normal;
       
  3111 
       
  3112 	return ret_val;
       
  3113 }
       
  3114 
       
  3115 /**
       
  3116  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
       
  3117  *  @hw: pointer to the HW structure
       
  3118  *
       
  3119  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  3120  *  auto-crossover to force MDI manually.  Waits for link and returns
       
  3121  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
       
  3122  **/
       
  3123 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
       
  3124 {
       
  3125 	struct e1000_phy_info *phy = &hw->phy;
       
  3126 	s32 ret_val;
       
  3127 	u16 phy_data;
       
  3128 	bool link;
       
  3129 
       
  3130 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
       
  3131 	if (ret_val)
       
  3132 		goto out;
       
  3133 
       
  3134 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  3135 
       
  3136 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
       
  3137 	if (ret_val)
       
  3138 		goto out;
       
  3139 
       
  3140 	/*
       
  3141 	 * Clear Auto-Crossover to force MDI manually.  82577 requires MDI
       
  3142 	 * forced whenever speed and duplex are forced.
       
  3143 	 */
       
  3144 	ret_val = phy->ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
       
  3145 	if (ret_val)
       
  3146 		goto out;
       
  3147 
       
  3148 	phy_data &= ~I82577_PHY_CTRL2_AUTO_MDIX;
       
  3149 	phy_data &= ~I82577_PHY_CTRL2_FORCE_MDI_MDIX;
       
  3150 
       
  3151 	ret_val = phy->ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
       
  3152 	if (ret_val)
       
  3153 		goto out;
       
  3154 
       
  3155 	e_dbg("I82577_PHY_CTRL_2: %X\n", phy_data);
       
  3156 
       
  3157 	udelay(1);
       
  3158 
       
  3159 	if (phy->autoneg_wait_to_complete) {
       
  3160 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
       
  3161 
       
  3162 		ret_val = e1000e_phy_has_link_generic(hw,
       
  3163 		                                     PHY_FORCE_LIMIT,
       
  3164 		                                     100000,
       
  3165 		                                     &link);
       
  3166 		if (ret_val)
       
  3167 			goto out;
       
  3168 
       
  3169 		if (!link)
       
  3170 			e_dbg("Link taking longer than expected.\n");
       
  3171 
       
  3172 		/* Try once more */
       
  3173 		ret_val = e1000e_phy_has_link_generic(hw,
       
  3174 		                                     PHY_FORCE_LIMIT,
       
  3175 		                                     100000,
       
  3176 		                                     &link);
       
  3177 		if (ret_val)
       
  3178 			goto out;
       
  3179 	}
       
  3180 
       
  3181 out:
       
  3182 	return ret_val;
       
  3183 }
       
  3184 
       
  3185 /**
       
  3186  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
       
  3187  *  @hw: pointer to the HW structure
       
  3188  *
       
  3189  *  Read PHY status to determine if link is up.  If link is up, then
       
  3190  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  3191  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  3192  *  determine on the cable length, local and remote receiver.
       
  3193  **/
       
  3194 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
       
  3195 {
       
  3196 	struct e1000_phy_info *phy = &hw->phy;
       
  3197 	s32 ret_val;
       
  3198 	u16 data;
       
  3199 	bool link;
       
  3200 
       
  3201 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  3202 	if (ret_val)
       
  3203 		goto out;
       
  3204 
       
  3205 	if (!link) {
       
  3206 		e_dbg("Phy info is only valid if link is up\n");
       
  3207 		ret_val = -E1000_ERR_CONFIG;
       
  3208 		goto out;
       
  3209 	}
       
  3210 
       
  3211 	phy->polarity_correction = true;
       
  3212 
       
  3213 	ret_val = e1000_check_polarity_82577(hw);
       
  3214 	if (ret_val)
       
  3215 		goto out;
       
  3216 
       
  3217 	ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
       
  3218 	if (ret_val)
       
  3219 		goto out;
       
  3220 
       
  3221 	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
       
  3222 
       
  3223 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
       
  3224 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
       
  3225 		ret_val = hw->phy.ops.get_cable_length(hw);
       
  3226 		if (ret_val)
       
  3227 			goto out;
       
  3228 
       
  3229 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
       
  3230 		if (ret_val)
       
  3231 			goto out;
       
  3232 
       
  3233 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
       
  3234 		                ? e1000_1000t_rx_status_ok
       
  3235 		                : e1000_1000t_rx_status_not_ok;
       
  3236 
       
  3237 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
       
  3238 		                 ? e1000_1000t_rx_status_ok
       
  3239 		                 : e1000_1000t_rx_status_not_ok;
       
  3240 	} else {
       
  3241 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  3242 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  3243 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  3244 	}
       
  3245 
       
  3246 out:
       
  3247 	return ret_val;
       
  3248 }
       
  3249 
       
  3250 /**
       
  3251  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
       
  3252  *  @hw: pointer to the HW structure
       
  3253  *
       
  3254  * Reads the diagnostic status register and verifies result is valid before
       
  3255  * placing it in the phy_cable_length field.
       
  3256  **/
       
  3257 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
       
  3258 {
       
  3259 	struct e1000_phy_info *phy = &hw->phy;
       
  3260 	s32 ret_val;
       
  3261 	u16 phy_data, length;
       
  3262 
       
  3263 	ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
       
  3264 	if (ret_val)
       
  3265 		goto out;
       
  3266 
       
  3267 	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
       
  3268 	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
       
  3269 
       
  3270 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
       
  3271 		ret_val = -E1000_ERR_PHY;
       
  3272 
       
  3273 	phy->cable_length = length;
       
  3274 
       
  3275 out:
       
  3276 	return ret_val;
       
  3277 }