devices/e1000e/lib-2.6.34-orig.c
branchredundancy
changeset 2133 74dbd0b7d6aa
equal deleted inserted replaced
2129:78efdac9ee87 2133:74dbd0b7d6aa
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2009 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000.h"
       
    30 
       
    31 enum e1000_mng_mode {
       
    32 	e1000_mng_mode_none = 0,
       
    33 	e1000_mng_mode_asf,
       
    34 	e1000_mng_mode_pt,
       
    35 	e1000_mng_mode_ipmi,
       
    36 	e1000_mng_mode_host_if_only
       
    37 };
       
    38 
       
    39 #define E1000_FACTPS_MNGCG		0x20000000
       
    40 
       
    41 /* Intel(R) Active Management Technology signature */
       
    42 #define E1000_IAMT_SIGNATURE		0x544D4149
       
    43 
       
    44 /**
       
    45  *  e1000e_get_bus_info_pcie - Get PCIe bus information
       
    46  *  @hw: pointer to the HW structure
       
    47  *
       
    48  *  Determines and stores the system bus information for a particular
       
    49  *  network interface.  The following bus information is determined and stored:
       
    50  *  bus speed, bus width, type (PCIe), and PCIe function.
       
    51  **/
       
    52 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
       
    53 {
       
    54 	struct e1000_mac_info *mac = &hw->mac;
       
    55 	struct e1000_bus_info *bus = &hw->bus;
       
    56 	struct e1000_adapter *adapter = hw->adapter;
       
    57 	u16 pcie_link_status, cap_offset;
       
    58 
       
    59 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
       
    60 	if (!cap_offset) {
       
    61 		bus->width = e1000_bus_width_unknown;
       
    62 	} else {
       
    63 		pci_read_config_word(adapter->pdev,
       
    64 				     cap_offset + PCIE_LINK_STATUS,
       
    65 				     &pcie_link_status);
       
    66 		bus->width = (enum e1000_bus_width)((pcie_link_status &
       
    67 						     PCIE_LINK_WIDTH_MASK) >>
       
    68 						    PCIE_LINK_WIDTH_SHIFT);
       
    69 	}
       
    70 
       
    71 	mac->ops.set_lan_id(hw);
       
    72 
       
    73 	return 0;
       
    74 }
       
    75 
       
    76 /**
       
    77  *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
       
    78  *
       
    79  *  @hw: pointer to the HW structure
       
    80  *
       
    81  *  Determines the LAN function id by reading memory-mapped registers
       
    82  *  and swaps the port value if requested.
       
    83  **/
       
    84 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
       
    85 {
       
    86 	struct e1000_bus_info *bus = &hw->bus;
       
    87 	u32 reg;
       
    88 
       
    89 	/*
       
    90 	 * The status register reports the correct function number
       
    91 	 * for the device regardless of function swap state.
       
    92 	 */
       
    93 	reg = er32(STATUS);
       
    94 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
       
    95 }
       
    96 
       
    97 /**
       
    98  *  e1000_set_lan_id_single_port - Set LAN id for a single port device
       
    99  *  @hw: pointer to the HW structure
       
   100  *
       
   101  *  Sets the LAN function id to zero for a single port device.
       
   102  **/
       
   103 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
       
   104 {
       
   105 	struct e1000_bus_info *bus = &hw->bus;
       
   106 
       
   107 	bus->func = 0;
       
   108 }
       
   109 
       
   110 /**
       
   111  *  e1000_clear_vfta_generic - Clear VLAN filter table
       
   112  *  @hw: pointer to the HW structure
       
   113  *
       
   114  *  Clears the register array which contains the VLAN filter table by
       
   115  *  setting all the values to 0.
       
   116  **/
       
   117 void e1000_clear_vfta_generic(struct e1000_hw *hw)
       
   118 {
       
   119 	u32 offset;
       
   120 
       
   121 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
   122 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
       
   123 		e1e_flush();
       
   124 	}
       
   125 }
       
   126 
       
   127 /**
       
   128  *  e1000_write_vfta_generic - Write value to VLAN filter table
       
   129  *  @hw: pointer to the HW structure
       
   130  *  @offset: register offset in VLAN filter table
       
   131  *  @value: register value written to VLAN filter table
       
   132  *
       
   133  *  Writes value at the given offset in the register array which stores
       
   134  *  the VLAN filter table.
       
   135  **/
       
   136 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
       
   137 {
       
   138 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
       
   139 	e1e_flush();
       
   140 }
       
   141 
       
   142 /**
       
   143  *  e1000e_init_rx_addrs - Initialize receive address's
       
   144  *  @hw: pointer to the HW structure
       
   145  *  @rar_count: receive address registers
       
   146  *
       
   147  *  Setups the receive address registers by setting the base receive address
       
   148  *  register to the devices MAC address and clearing all the other receive
       
   149  *  address registers to 0.
       
   150  **/
       
   151 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
       
   152 {
       
   153 	u32 i;
       
   154 	u8 mac_addr[ETH_ALEN] = {0};
       
   155 
       
   156 	/* Setup the receive address */
       
   157 	e_dbg("Programming MAC Address into RAR[0]\n");
       
   158 
       
   159 	e1000e_rar_set(hw, hw->mac.addr, 0);
       
   160 
       
   161 	/* Zero out the other (rar_entry_count - 1) receive addresses */
       
   162 	e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
       
   163 	for (i = 1; i < rar_count; i++)
       
   164 		e1000e_rar_set(hw, mac_addr, i);
       
   165 }
       
   166 
       
   167 /**
       
   168  *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
       
   169  *  @hw: pointer to the HW structure
       
   170  *
       
   171  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
       
   172  *  can be setup by pre-boot software and must be treated like a permanent
       
   173  *  address and must override the actual permanent MAC address. If an
       
   174  *  alternate MAC address is found it is programmed into RAR0, replacing
       
   175  *  the permanent address that was installed into RAR0 by the Si on reset.
       
   176  *  This function will return SUCCESS unless it encounters an error while
       
   177  *  reading the EEPROM.
       
   178  **/
       
   179 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
       
   180 {
       
   181 	u32 i;
       
   182 	s32 ret_val = 0;
       
   183 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
       
   184 	u8 alt_mac_addr[ETH_ALEN];
       
   185 
       
   186 	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
       
   187 	                         &nvm_alt_mac_addr_offset);
       
   188 	if (ret_val) {
       
   189 		e_dbg("NVM Read Error\n");
       
   190 		goto out;
       
   191 	}
       
   192 
       
   193 	if (nvm_alt_mac_addr_offset == 0xFFFF) {
       
   194 		/* There is no Alternate MAC Address */
       
   195 		goto out;
       
   196 	}
       
   197 
       
   198 	if (hw->bus.func == E1000_FUNC_1)
       
   199 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
       
   200 	for (i = 0; i < ETH_ALEN; i += 2) {
       
   201 		offset = nvm_alt_mac_addr_offset + (i >> 1);
       
   202 		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
       
   203 		if (ret_val) {
       
   204 			e_dbg("NVM Read Error\n");
       
   205 			goto out;
       
   206 		}
       
   207 
       
   208 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
       
   209 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
       
   210 	}
       
   211 
       
   212 	/* if multicast bit is set, the alternate address will not be used */
       
   213 	if (alt_mac_addr[0] & 0x01) {
       
   214 		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
       
   215 		goto out;
       
   216 	}
       
   217 
       
   218 	/*
       
   219 	 * We have a valid alternate MAC address, and we want to treat it the
       
   220 	 * same as the normal permanent MAC address stored by the HW into the
       
   221 	 * RAR. Do this by mapping this address into RAR0.
       
   222 	 */
       
   223 	e1000e_rar_set(hw, alt_mac_addr, 0);
       
   224 
       
   225 out:
       
   226 	return ret_val;
       
   227 }
       
   228 
       
   229 /**
       
   230  *  e1000e_rar_set - Set receive address register
       
   231  *  @hw: pointer to the HW structure
       
   232  *  @addr: pointer to the receive address
       
   233  *  @index: receive address array register
       
   234  *
       
   235  *  Sets the receive address array register at index to the address passed
       
   236  *  in by addr.
       
   237  **/
       
   238 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
       
   239 {
       
   240 	u32 rar_low, rar_high;
       
   241 
       
   242 	/*
       
   243 	 * HW expects these in little endian so we reverse the byte order
       
   244 	 * from network order (big endian) to little endian
       
   245 	 */
       
   246 	rar_low = ((u32) addr[0] |
       
   247 		   ((u32) addr[1] << 8) |
       
   248 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
       
   249 
       
   250 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
       
   251 
       
   252 	/* If MAC address zero, no need to set the AV bit */
       
   253 	if (rar_low || rar_high)
       
   254 		rar_high |= E1000_RAH_AV;
       
   255 
       
   256 	/*
       
   257 	 * Some bridges will combine consecutive 32-bit writes into
       
   258 	 * a single burst write, which will malfunction on some parts.
       
   259 	 * The flushes avoid this.
       
   260 	 */
       
   261 	ew32(RAL(index), rar_low);
       
   262 	e1e_flush();
       
   263 	ew32(RAH(index), rar_high);
       
   264 	e1e_flush();
       
   265 }
       
   266 
       
   267 /**
       
   268  *  e1000_hash_mc_addr - Generate a multicast hash value
       
   269  *  @hw: pointer to the HW structure
       
   270  *  @mc_addr: pointer to a multicast address
       
   271  *
       
   272  *  Generates a multicast address hash value which is used to determine
       
   273  *  the multicast filter table array address and new table value.  See
       
   274  *  e1000_mta_set_generic()
       
   275  **/
       
   276 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
       
   277 {
       
   278 	u32 hash_value, hash_mask;
       
   279 	u8 bit_shift = 0;
       
   280 
       
   281 	/* Register count multiplied by bits per register */
       
   282 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
       
   283 
       
   284 	/*
       
   285 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
       
   286 	 * where 0xFF would still fall within the hash mask.
       
   287 	 */
       
   288 	while (hash_mask >> bit_shift != 0xFF)
       
   289 		bit_shift++;
       
   290 
       
   291 	/*
       
   292 	 * The portion of the address that is used for the hash table
       
   293 	 * is determined by the mc_filter_type setting.
       
   294 	 * The algorithm is such that there is a total of 8 bits of shifting.
       
   295 	 * The bit_shift for a mc_filter_type of 0 represents the number of
       
   296 	 * left-shifts where the MSB of mc_addr[5] would still fall within
       
   297 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
       
   298 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
       
   299 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
       
   300 	 * cases are a variation of this algorithm...essentially raising the
       
   301 	 * number of bits to shift mc_addr[5] left, while still keeping the
       
   302 	 * 8-bit shifting total.
       
   303 	 *
       
   304 	 * For example, given the following Destination MAC Address and an
       
   305 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
       
   306 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
       
   307 	 * values resulting from each mc_filter_type...
       
   308 	 * [0] [1] [2] [3] [4] [5]
       
   309 	 * 01  AA  00  12  34  56
       
   310 	 * LSB		 MSB
       
   311 	 *
       
   312 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
       
   313 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
       
   314 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
       
   315 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
       
   316 	 */
       
   317 	switch (hw->mac.mc_filter_type) {
       
   318 	default:
       
   319 	case 0:
       
   320 		break;
       
   321 	case 1:
       
   322 		bit_shift += 1;
       
   323 		break;
       
   324 	case 2:
       
   325 		bit_shift += 2;
       
   326 		break;
       
   327 	case 3:
       
   328 		bit_shift += 4;
       
   329 		break;
       
   330 	}
       
   331 
       
   332 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
       
   333 				  (((u16) mc_addr[5]) << bit_shift)));
       
   334 
       
   335 	return hash_value;
       
   336 }
       
   337 
       
   338 /**
       
   339  *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
       
   340  *  @hw: pointer to the HW structure
       
   341  *  @mc_addr_list: array of multicast addresses to program
       
   342  *  @mc_addr_count: number of multicast addresses to program
       
   343  *
       
   344  *  Updates entire Multicast Table Array.
       
   345  *  The caller must have a packed mc_addr_list of multicast addresses.
       
   346  **/
       
   347 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
       
   348 					u8 *mc_addr_list, u32 mc_addr_count)
       
   349 {
       
   350 	u32 hash_value, hash_bit, hash_reg;
       
   351 	int i;
       
   352 
       
   353 	/* clear mta_shadow */
       
   354 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
       
   355 
       
   356 	/* update mta_shadow from mc_addr_list */
       
   357 	for (i = 0; (u32) i < mc_addr_count; i++) {
       
   358 		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
       
   359 
       
   360 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
       
   361 		hash_bit = hash_value & 0x1F;
       
   362 
       
   363 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
       
   364 		mc_addr_list += (ETH_ALEN);
       
   365 	}
       
   366 
       
   367 	/* replace the entire MTA table */
       
   368 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
       
   369 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
       
   370 	e1e_flush();
       
   371 }
       
   372 
       
   373 /**
       
   374  *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
       
   375  *  @hw: pointer to the HW structure
       
   376  *
       
   377  *  Clears the base hardware counters by reading the counter registers.
       
   378  **/
       
   379 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
       
   380 {
       
   381 	er32(CRCERRS);
       
   382 	er32(SYMERRS);
       
   383 	er32(MPC);
       
   384 	er32(SCC);
       
   385 	er32(ECOL);
       
   386 	er32(MCC);
       
   387 	er32(LATECOL);
       
   388 	er32(COLC);
       
   389 	er32(DC);
       
   390 	er32(SEC);
       
   391 	er32(RLEC);
       
   392 	er32(XONRXC);
       
   393 	er32(XONTXC);
       
   394 	er32(XOFFRXC);
       
   395 	er32(XOFFTXC);
       
   396 	er32(FCRUC);
       
   397 	er32(GPRC);
       
   398 	er32(BPRC);
       
   399 	er32(MPRC);
       
   400 	er32(GPTC);
       
   401 	er32(GORCL);
       
   402 	er32(GORCH);
       
   403 	er32(GOTCL);
       
   404 	er32(GOTCH);
       
   405 	er32(RNBC);
       
   406 	er32(RUC);
       
   407 	er32(RFC);
       
   408 	er32(ROC);
       
   409 	er32(RJC);
       
   410 	er32(TORL);
       
   411 	er32(TORH);
       
   412 	er32(TOTL);
       
   413 	er32(TOTH);
       
   414 	er32(TPR);
       
   415 	er32(TPT);
       
   416 	er32(MPTC);
       
   417 	er32(BPTC);
       
   418 }
       
   419 
       
   420 /**
       
   421  *  e1000e_check_for_copper_link - Check for link (Copper)
       
   422  *  @hw: pointer to the HW structure
       
   423  *
       
   424  *  Checks to see of the link status of the hardware has changed.  If a
       
   425  *  change in link status has been detected, then we read the PHY registers
       
   426  *  to get the current speed/duplex if link exists.
       
   427  **/
       
   428 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
       
   429 {
       
   430 	struct e1000_mac_info *mac = &hw->mac;
       
   431 	s32 ret_val;
       
   432 	bool link;
       
   433 
       
   434 	/*
       
   435 	 * We only want to go out to the PHY registers to see if Auto-Neg
       
   436 	 * has completed and/or if our link status has changed.  The
       
   437 	 * get_link_status flag is set upon receiving a Link Status
       
   438 	 * Change or Rx Sequence Error interrupt.
       
   439 	 */
       
   440 	if (!mac->get_link_status)
       
   441 		return 0;
       
   442 
       
   443 	/*
       
   444 	 * First we want to see if the MII Status Register reports
       
   445 	 * link.  If so, then we want to get the current speed/duplex
       
   446 	 * of the PHY.
       
   447 	 */
       
   448 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
   449 	if (ret_val)
       
   450 		return ret_val;
       
   451 
       
   452 	if (!link)
       
   453 		return ret_val; /* No link detected */
       
   454 
       
   455 	mac->get_link_status = false;
       
   456 
       
   457 	/*
       
   458 	 * Check if there was DownShift, must be checked
       
   459 	 * immediately after link-up
       
   460 	 */
       
   461 	e1000e_check_downshift(hw);
       
   462 
       
   463 	/*
       
   464 	 * If we are forcing speed/duplex, then we simply return since
       
   465 	 * we have already determined whether we have link or not.
       
   466 	 */
       
   467 	if (!mac->autoneg) {
       
   468 		ret_val = -E1000_ERR_CONFIG;
       
   469 		return ret_val;
       
   470 	}
       
   471 
       
   472 	/*
       
   473 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
       
   474 	 * of MAC speed/duplex configuration.  So we only need to
       
   475 	 * configure Collision Distance in the MAC.
       
   476 	 */
       
   477 	e1000e_config_collision_dist(hw);
       
   478 
       
   479 	/*
       
   480 	 * Configure Flow Control now that Auto-Neg has completed.
       
   481 	 * First, we need to restore the desired flow control
       
   482 	 * settings because we may have had to re-autoneg with a
       
   483 	 * different link partner.
       
   484 	 */
       
   485 	ret_val = e1000e_config_fc_after_link_up(hw);
       
   486 	if (ret_val) {
       
   487 		e_dbg("Error configuring flow control\n");
       
   488 	}
       
   489 
       
   490 	return ret_val;
       
   491 }
       
   492 
       
   493 /**
       
   494  *  e1000e_check_for_fiber_link - Check for link (Fiber)
       
   495  *  @hw: pointer to the HW structure
       
   496  *
       
   497  *  Checks for link up on the hardware.  If link is not up and we have
       
   498  *  a signal, then we need to force link up.
       
   499  **/
       
   500 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
       
   501 {
       
   502 	struct e1000_mac_info *mac = &hw->mac;
       
   503 	u32 rxcw;
       
   504 	u32 ctrl;
       
   505 	u32 status;
       
   506 	s32 ret_val;
       
   507 
       
   508 	ctrl = er32(CTRL);
       
   509 	status = er32(STATUS);
       
   510 	rxcw = er32(RXCW);
       
   511 
       
   512 	/*
       
   513 	 * If we don't have link (auto-negotiation failed or link partner
       
   514 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
       
   515 	 * and our link partner is not trying to auto-negotiate with us (we
       
   516 	 * are receiving idles or data), we need to force link up. We also
       
   517 	 * need to give auto-negotiation time to complete, in case the cable
       
   518 	 * was just plugged in. The autoneg_failed flag does this.
       
   519 	 */
       
   520 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   521 	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
       
   522 	    (!(rxcw & E1000_RXCW_C))) {
       
   523 		if (mac->autoneg_failed == 0) {
       
   524 			mac->autoneg_failed = 1;
       
   525 			return 0;
       
   526 		}
       
   527 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
       
   528 
       
   529 		/* Disable auto-negotiation in the TXCW register */
       
   530 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   531 
       
   532 		/* Force link-up and also force full-duplex. */
       
   533 		ctrl = er32(CTRL);
       
   534 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   535 		ew32(CTRL, ctrl);
       
   536 
       
   537 		/* Configure Flow Control after forcing link up. */
       
   538 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   539 		if (ret_val) {
       
   540 			e_dbg("Error configuring flow control\n");
       
   541 			return ret_val;
       
   542 		}
       
   543 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   544 		/*
       
   545 		 * If we are forcing link and we are receiving /C/ ordered
       
   546 		 * sets, re-enable auto-negotiation in the TXCW register
       
   547 		 * and disable forced link in the Device Control register
       
   548 		 * in an attempt to auto-negotiate with our link partner.
       
   549 		 */
       
   550 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
       
   551 		ew32(TXCW, mac->txcw);
       
   552 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   553 
       
   554 		mac->serdes_has_link = true;
       
   555 	}
       
   556 
       
   557 	return 0;
       
   558 }
       
   559 
       
   560 /**
       
   561  *  e1000e_check_for_serdes_link - Check for link (Serdes)
       
   562  *  @hw: pointer to the HW structure
       
   563  *
       
   564  *  Checks for link up on the hardware.  If link is not up and we have
       
   565  *  a signal, then we need to force link up.
       
   566  **/
       
   567 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
       
   568 {
       
   569 	struct e1000_mac_info *mac = &hw->mac;
       
   570 	u32 rxcw;
       
   571 	u32 ctrl;
       
   572 	u32 status;
       
   573 	s32 ret_val;
       
   574 
       
   575 	ctrl = er32(CTRL);
       
   576 	status = er32(STATUS);
       
   577 	rxcw = er32(RXCW);
       
   578 
       
   579 	/*
       
   580 	 * If we don't have link (auto-negotiation failed or link partner
       
   581 	 * cannot auto-negotiate), and our link partner is not trying to
       
   582 	 * auto-negotiate with us (we are receiving idles or data),
       
   583 	 * we need to force link up. We also need to give auto-negotiation
       
   584 	 * time to complete.
       
   585 	 */
       
   586 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   587 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
       
   588 		if (mac->autoneg_failed == 0) {
       
   589 			mac->autoneg_failed = 1;
       
   590 			return 0;
       
   591 		}
       
   592 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
       
   593 
       
   594 		/* Disable auto-negotiation in the TXCW register */
       
   595 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   596 
       
   597 		/* Force link-up and also force full-duplex. */
       
   598 		ctrl = er32(CTRL);
       
   599 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   600 		ew32(CTRL, ctrl);
       
   601 
       
   602 		/* Configure Flow Control after forcing link up. */
       
   603 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   604 		if (ret_val) {
       
   605 			e_dbg("Error configuring flow control\n");
       
   606 			return ret_val;
       
   607 		}
       
   608 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   609 		/*
       
   610 		 * If we are forcing link and we are receiving /C/ ordered
       
   611 		 * sets, re-enable auto-negotiation in the TXCW register
       
   612 		 * and disable forced link in the Device Control register
       
   613 		 * in an attempt to auto-negotiate with our link partner.
       
   614 		 */
       
   615 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
       
   616 		ew32(TXCW, mac->txcw);
       
   617 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   618 
       
   619 		mac->serdes_has_link = true;
       
   620 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
       
   621 		/*
       
   622 		 * If we force link for non-auto-negotiation switch, check
       
   623 		 * link status based on MAC synchronization for internal
       
   624 		 * serdes media type.
       
   625 		 */
       
   626 		/* SYNCH bit and IV bit are sticky. */
       
   627 		udelay(10);
       
   628 		rxcw = er32(RXCW);
       
   629 		if (rxcw & E1000_RXCW_SYNCH) {
       
   630 			if (!(rxcw & E1000_RXCW_IV)) {
       
   631 				mac->serdes_has_link = true;
       
   632 				e_dbg("SERDES: Link up - forced.\n");
       
   633 			}
       
   634 		} else {
       
   635 			mac->serdes_has_link = false;
       
   636 			e_dbg("SERDES: Link down - force failed.\n");
       
   637 		}
       
   638 	}
       
   639 
       
   640 	if (E1000_TXCW_ANE & er32(TXCW)) {
       
   641 		status = er32(STATUS);
       
   642 		if (status & E1000_STATUS_LU) {
       
   643 			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
       
   644 			udelay(10);
       
   645 			rxcw = er32(RXCW);
       
   646 			if (rxcw & E1000_RXCW_SYNCH) {
       
   647 				if (!(rxcw & E1000_RXCW_IV)) {
       
   648 					mac->serdes_has_link = true;
       
   649 					e_dbg("SERDES: Link up - autoneg "
       
   650 					   "completed successfully.\n");
       
   651 				} else {
       
   652 					mac->serdes_has_link = false;
       
   653 					e_dbg("SERDES: Link down - invalid"
       
   654 					   "codewords detected in autoneg.\n");
       
   655 				}
       
   656 			} else {
       
   657 				mac->serdes_has_link = false;
       
   658 				e_dbg("SERDES: Link down - no sync.\n");
       
   659 			}
       
   660 		} else {
       
   661 			mac->serdes_has_link = false;
       
   662 			e_dbg("SERDES: Link down - autoneg failed\n");
       
   663 		}
       
   664 	}
       
   665 
       
   666 	return 0;
       
   667 }
       
   668 
       
   669 /**
       
   670  *  e1000_set_default_fc_generic - Set flow control default values
       
   671  *  @hw: pointer to the HW structure
       
   672  *
       
   673  *  Read the EEPROM for the default values for flow control and store the
       
   674  *  values.
       
   675  **/
       
   676 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
       
   677 {
       
   678 	s32 ret_val;
       
   679 	u16 nvm_data;
       
   680 
       
   681 	/*
       
   682 	 * Read and store word 0x0F of the EEPROM. This word contains bits
       
   683 	 * that determine the hardware's default PAUSE (flow control) mode,
       
   684 	 * a bit that determines whether the HW defaults to enabling or
       
   685 	 * disabling auto-negotiation, and the direction of the
       
   686 	 * SW defined pins. If there is no SW over-ride of the flow
       
   687 	 * control setting, then the variable hw->fc will
       
   688 	 * be initialized based on a value in the EEPROM.
       
   689 	 */
       
   690 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
       
   691 
       
   692 	if (ret_val) {
       
   693 		e_dbg("NVM Read Error\n");
       
   694 		return ret_val;
       
   695 	}
       
   696 
       
   697 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
       
   698 		hw->fc.requested_mode = e1000_fc_none;
       
   699 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
       
   700 		 NVM_WORD0F_ASM_DIR)
       
   701 		hw->fc.requested_mode = e1000_fc_tx_pause;
       
   702 	else
       
   703 		hw->fc.requested_mode = e1000_fc_full;
       
   704 
       
   705 	return 0;
       
   706 }
       
   707 
       
   708 /**
       
   709  *  e1000e_setup_link - Setup flow control and link settings
       
   710  *  @hw: pointer to the HW structure
       
   711  *
       
   712  *  Determines which flow control settings to use, then configures flow
       
   713  *  control.  Calls the appropriate media-specific link configuration
       
   714  *  function.  Assuming the adapter has a valid link partner, a valid link
       
   715  *  should be established.  Assumes the hardware has previously been reset
       
   716  *  and the transmitter and receiver are not enabled.
       
   717  **/
       
   718 s32 e1000e_setup_link(struct e1000_hw *hw)
       
   719 {
       
   720 	struct e1000_mac_info *mac = &hw->mac;
       
   721 	s32 ret_val;
       
   722 
       
   723 	/*
       
   724 	 * In the case of the phy reset being blocked, we already have a link.
       
   725 	 * We do not need to set it up again.
       
   726 	 */
       
   727 	if (e1000_check_reset_block(hw))
       
   728 		return 0;
       
   729 
       
   730 	/*
       
   731 	 * If requested flow control is set to default, set flow control
       
   732 	 * based on the EEPROM flow control settings.
       
   733 	 */
       
   734 	if (hw->fc.requested_mode == e1000_fc_default) {
       
   735 		ret_val = e1000_set_default_fc_generic(hw);
       
   736 		if (ret_val)
       
   737 			return ret_val;
       
   738 	}
       
   739 
       
   740 	/*
       
   741 	 * Save off the requested flow control mode for use later.  Depending
       
   742 	 * on the link partner's capabilities, we may or may not use this mode.
       
   743 	 */
       
   744 	hw->fc.current_mode = hw->fc.requested_mode;
       
   745 
       
   746 	e_dbg("After fix-ups FlowControl is now = %x\n",
       
   747 		hw->fc.current_mode);
       
   748 
       
   749 	/* Call the necessary media_type subroutine to configure the link. */
       
   750 	ret_val = mac->ops.setup_physical_interface(hw);
       
   751 	if (ret_val)
       
   752 		return ret_val;
       
   753 
       
   754 	/*
       
   755 	 * Initialize the flow control address, type, and PAUSE timer
       
   756 	 * registers to their default values.  This is done even if flow
       
   757 	 * control is disabled, because it does not hurt anything to
       
   758 	 * initialize these registers.
       
   759 	 */
       
   760 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
       
   761 	ew32(FCT, FLOW_CONTROL_TYPE);
       
   762 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
       
   763 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
       
   764 
       
   765 	ew32(FCTTV, hw->fc.pause_time);
       
   766 
       
   767 	return e1000e_set_fc_watermarks(hw);
       
   768 }
       
   769 
       
   770 /**
       
   771  *  e1000_commit_fc_settings_generic - Configure flow control
       
   772  *  @hw: pointer to the HW structure
       
   773  *
       
   774  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
       
   775  *  base on the flow control settings in e1000_mac_info.
       
   776  **/
       
   777 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
       
   778 {
       
   779 	struct e1000_mac_info *mac = &hw->mac;
       
   780 	u32 txcw;
       
   781 
       
   782 	/*
       
   783 	 * Check for a software override of the flow control settings, and
       
   784 	 * setup the device accordingly.  If auto-negotiation is enabled, then
       
   785 	 * software will have to set the "PAUSE" bits to the correct value in
       
   786 	 * the Transmit Config Word Register (TXCW) and re-start auto-
       
   787 	 * negotiation.  However, if auto-negotiation is disabled, then
       
   788 	 * software will have to manually configure the two flow control enable
       
   789 	 * bits in the CTRL register.
       
   790 	 *
       
   791 	 * The possible values of the "fc" parameter are:
       
   792 	 *      0:  Flow control is completely disabled
       
   793 	 *      1:  Rx flow control is enabled (we can receive pause frames,
       
   794 	 *	  but not send pause frames).
       
   795 	 *      2:  Tx flow control is enabled (we can send pause frames but we
       
   796 	 *	  do not support receiving pause frames).
       
   797 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
       
   798 	 */
       
   799 	switch (hw->fc.current_mode) {
       
   800 	case e1000_fc_none:
       
   801 		/* Flow control completely disabled by a software over-ride. */
       
   802 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
       
   803 		break;
       
   804 	case e1000_fc_rx_pause:
       
   805 		/*
       
   806 		 * Rx Flow control is enabled and Tx Flow control is disabled
       
   807 		 * by a software over-ride. Since there really isn't a way to
       
   808 		 * advertise that we are capable of Rx Pause ONLY, we will
       
   809 		 * advertise that we support both symmetric and asymmetric Rx
       
   810 		 * PAUSE.  Later, we will disable the adapter's ability to send
       
   811 		 * PAUSE frames.
       
   812 		 */
       
   813 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   814 		break;
       
   815 	case e1000_fc_tx_pause:
       
   816 		/*
       
   817 		 * Tx Flow control is enabled, and Rx Flow control is disabled,
       
   818 		 * by a software over-ride.
       
   819 		 */
       
   820 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
       
   821 		break;
       
   822 	case e1000_fc_full:
       
   823 		/*
       
   824 		 * Flow control (both Rx and Tx) is enabled by a software
       
   825 		 * over-ride.
       
   826 		 */
       
   827 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   828 		break;
       
   829 	default:
       
   830 		e_dbg("Flow control param set incorrectly\n");
       
   831 		return -E1000_ERR_CONFIG;
       
   832 		break;
       
   833 	}
       
   834 
       
   835 	ew32(TXCW, txcw);
       
   836 	mac->txcw = txcw;
       
   837 
       
   838 	return 0;
       
   839 }
       
   840 
       
   841 /**
       
   842  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
       
   843  *  @hw: pointer to the HW structure
       
   844  *
       
   845  *  Polls for link up by reading the status register, if link fails to come
       
   846  *  up with auto-negotiation, then the link is forced if a signal is detected.
       
   847  **/
       
   848 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
       
   849 {
       
   850 	struct e1000_mac_info *mac = &hw->mac;
       
   851 	u32 i, status;
       
   852 	s32 ret_val;
       
   853 
       
   854 	/*
       
   855 	 * If we have a signal (the cable is plugged in, or assumed true for
       
   856 	 * serdes media) then poll for a "Link-Up" indication in the Device
       
   857 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
       
   858 	 * seconds (Auto-negotiation should complete in less than 500
       
   859 	 * milliseconds even if the other end is doing it in SW).
       
   860 	 */
       
   861 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
       
   862 		msleep(10);
       
   863 		status = er32(STATUS);
       
   864 		if (status & E1000_STATUS_LU)
       
   865 			break;
       
   866 	}
       
   867 	if (i == FIBER_LINK_UP_LIMIT) {
       
   868 		e_dbg("Never got a valid link from auto-neg!!!\n");
       
   869 		mac->autoneg_failed = 1;
       
   870 		/*
       
   871 		 * AutoNeg failed to achieve a link, so we'll call
       
   872 		 * mac->check_for_link. This routine will force the
       
   873 		 * link up if we detect a signal. This will allow us to
       
   874 		 * communicate with non-autonegotiating link partners.
       
   875 		 */
       
   876 		ret_val = mac->ops.check_for_link(hw);
       
   877 		if (ret_val) {
       
   878 			e_dbg("Error while checking for link\n");
       
   879 			return ret_val;
       
   880 		}
       
   881 		mac->autoneg_failed = 0;
       
   882 	} else {
       
   883 		mac->autoneg_failed = 0;
       
   884 		e_dbg("Valid Link Found\n");
       
   885 	}
       
   886 
       
   887 	return 0;
       
   888 }
       
   889 
       
   890 /**
       
   891  *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
       
   892  *  @hw: pointer to the HW structure
       
   893  *
       
   894  *  Configures collision distance and flow control for fiber and serdes
       
   895  *  links.  Upon successful setup, poll for link.
       
   896  **/
       
   897 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
       
   898 {
       
   899 	u32 ctrl;
       
   900 	s32 ret_val;
       
   901 
       
   902 	ctrl = er32(CTRL);
       
   903 
       
   904 	/* Take the link out of reset */
       
   905 	ctrl &= ~E1000_CTRL_LRST;
       
   906 
       
   907 	e1000e_config_collision_dist(hw);
       
   908 
       
   909 	ret_val = e1000_commit_fc_settings_generic(hw);
       
   910 	if (ret_val)
       
   911 		return ret_val;
       
   912 
       
   913 	/*
       
   914 	 * Since auto-negotiation is enabled, take the link out of reset (the
       
   915 	 * link will be in reset, because we previously reset the chip). This
       
   916 	 * will restart auto-negotiation.  If auto-negotiation is successful
       
   917 	 * then the link-up status bit will be set and the flow control enable
       
   918 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
       
   919 	 */
       
   920 	e_dbg("Auto-negotiation enabled\n");
       
   921 
       
   922 	ew32(CTRL, ctrl);
       
   923 	e1e_flush();
       
   924 	msleep(1);
       
   925 
       
   926 	/*
       
   927 	 * For these adapters, the SW definable pin 1 is set when the optics
       
   928 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
       
   929 	 * indication.
       
   930 	 */
       
   931 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
       
   932 	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
       
   933 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
       
   934 	} else {
       
   935 		e_dbg("No signal detected\n");
       
   936 	}
       
   937 
       
   938 	return 0;
       
   939 }
       
   940 
       
   941 /**
       
   942  *  e1000e_config_collision_dist - Configure collision distance
       
   943  *  @hw: pointer to the HW structure
       
   944  *
       
   945  *  Configures the collision distance to the default value and is used
       
   946  *  during link setup. Currently no func pointer exists and all
       
   947  *  implementations are handled in the generic version of this function.
       
   948  **/
       
   949 void e1000e_config_collision_dist(struct e1000_hw *hw)
       
   950 {
       
   951 	u32 tctl;
       
   952 
       
   953 	tctl = er32(TCTL);
       
   954 
       
   955 	tctl &= ~E1000_TCTL_COLD;
       
   956 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
       
   957 
       
   958 	ew32(TCTL, tctl);
       
   959 	e1e_flush();
       
   960 }
       
   961 
       
   962 /**
       
   963  *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
       
   964  *  @hw: pointer to the HW structure
       
   965  *
       
   966  *  Sets the flow control high/low threshold (watermark) registers.  If
       
   967  *  flow control XON frame transmission is enabled, then set XON frame
       
   968  *  transmission as well.
       
   969  **/
       
   970 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
       
   971 {
       
   972 	u32 fcrtl = 0, fcrth = 0;
       
   973 
       
   974 	/*
       
   975 	 * Set the flow control receive threshold registers.  Normally,
       
   976 	 * these registers will be set to a default threshold that may be
       
   977 	 * adjusted later by the driver's runtime code.  However, if the
       
   978 	 * ability to transmit pause frames is not enabled, then these
       
   979 	 * registers will be set to 0.
       
   980 	 */
       
   981 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
       
   982 		/*
       
   983 		 * We need to set up the Receive Threshold high and low water
       
   984 		 * marks as well as (optionally) enabling the transmission of
       
   985 		 * XON frames.
       
   986 		 */
       
   987 		fcrtl = hw->fc.low_water;
       
   988 		fcrtl |= E1000_FCRTL_XONE;
       
   989 		fcrth = hw->fc.high_water;
       
   990 	}
       
   991 	ew32(FCRTL, fcrtl);
       
   992 	ew32(FCRTH, fcrth);
       
   993 
       
   994 	return 0;
       
   995 }
       
   996 
       
   997 /**
       
   998  *  e1000e_force_mac_fc - Force the MAC's flow control settings
       
   999  *  @hw: pointer to the HW structure
       
  1000  *
       
  1001  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
       
  1002  *  device control register to reflect the adapter settings.  TFCE and RFCE
       
  1003  *  need to be explicitly set by software when a copper PHY is used because
       
  1004  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
       
  1005  *  also configure these bits when link is forced on a fiber connection.
       
  1006  **/
       
  1007 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
       
  1008 {
       
  1009 	u32 ctrl;
       
  1010 
       
  1011 	ctrl = er32(CTRL);
       
  1012 
       
  1013 	/*
       
  1014 	 * Because we didn't get link via the internal auto-negotiation
       
  1015 	 * mechanism (we either forced link or we got link via PHY
       
  1016 	 * auto-neg), we have to manually enable/disable transmit an
       
  1017 	 * receive flow control.
       
  1018 	 *
       
  1019 	 * The "Case" statement below enables/disable flow control
       
  1020 	 * according to the "hw->fc.current_mode" parameter.
       
  1021 	 *
       
  1022 	 * The possible values of the "fc" parameter are:
       
  1023 	 *      0:  Flow control is completely disabled
       
  1024 	 *      1:  Rx flow control is enabled (we can receive pause
       
  1025 	 *	  frames but not send pause frames).
       
  1026 	 *      2:  Tx flow control is enabled (we can send pause frames
       
  1027 	 *	  frames but we do not receive pause frames).
       
  1028 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
       
  1029 	 *  other:  No other values should be possible at this point.
       
  1030 	 */
       
  1031 	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
       
  1032 
       
  1033 	switch (hw->fc.current_mode) {
       
  1034 	case e1000_fc_none:
       
  1035 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
       
  1036 		break;
       
  1037 	case e1000_fc_rx_pause:
       
  1038 		ctrl &= (~E1000_CTRL_TFCE);
       
  1039 		ctrl |= E1000_CTRL_RFCE;
       
  1040 		break;
       
  1041 	case e1000_fc_tx_pause:
       
  1042 		ctrl &= (~E1000_CTRL_RFCE);
       
  1043 		ctrl |= E1000_CTRL_TFCE;
       
  1044 		break;
       
  1045 	case e1000_fc_full:
       
  1046 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
       
  1047 		break;
       
  1048 	default:
       
  1049 		e_dbg("Flow control param set incorrectly\n");
       
  1050 		return -E1000_ERR_CONFIG;
       
  1051 	}
       
  1052 
       
  1053 	ew32(CTRL, ctrl);
       
  1054 
       
  1055 	return 0;
       
  1056 }
       
  1057 
       
  1058 /**
       
  1059  *  e1000e_config_fc_after_link_up - Configures flow control after link
       
  1060  *  @hw: pointer to the HW structure
       
  1061  *
       
  1062  *  Checks the status of auto-negotiation after link up to ensure that the
       
  1063  *  speed and duplex were not forced.  If the link needed to be forced, then
       
  1064  *  flow control needs to be forced also.  If auto-negotiation is enabled
       
  1065  *  and did not fail, then we configure flow control based on our link
       
  1066  *  partner.
       
  1067  **/
       
  1068 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
       
  1069 {
       
  1070 	struct e1000_mac_info *mac = &hw->mac;
       
  1071 	s32 ret_val = 0;
       
  1072 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
       
  1073 	u16 speed, duplex;
       
  1074 
       
  1075 	/*
       
  1076 	 * Check for the case where we have fiber media and auto-neg failed
       
  1077 	 * so we had to force link.  In this case, we need to force the
       
  1078 	 * configuration of the MAC to match the "fc" parameter.
       
  1079 	 */
       
  1080 	if (mac->autoneg_failed) {
       
  1081 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1082 		    hw->phy.media_type == e1000_media_type_internal_serdes)
       
  1083 			ret_val = e1000e_force_mac_fc(hw);
       
  1084 	} else {
       
  1085 		if (hw->phy.media_type == e1000_media_type_copper)
       
  1086 			ret_val = e1000e_force_mac_fc(hw);
       
  1087 	}
       
  1088 
       
  1089 	if (ret_val) {
       
  1090 		e_dbg("Error forcing flow control settings\n");
       
  1091 		return ret_val;
       
  1092 	}
       
  1093 
       
  1094 	/*
       
  1095 	 * Check for the case where we have copper media and auto-neg is
       
  1096 	 * enabled.  In this case, we need to check and see if Auto-Neg
       
  1097 	 * has completed, and if so, how the PHY and link partner has
       
  1098 	 * flow control configured.
       
  1099 	 */
       
  1100 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
       
  1101 		/*
       
  1102 		 * Read the MII Status Register and check to see if AutoNeg
       
  1103 		 * has completed.  We read this twice because this reg has
       
  1104 		 * some "sticky" (latched) bits.
       
  1105 		 */
       
  1106 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
       
  1107 		if (ret_val)
       
  1108 			return ret_val;
       
  1109 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
       
  1110 		if (ret_val)
       
  1111 			return ret_val;
       
  1112 
       
  1113 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
       
  1114 			e_dbg("Copper PHY and Auto Neg "
       
  1115 				 "has not completed.\n");
       
  1116 			return ret_val;
       
  1117 		}
       
  1118 
       
  1119 		/*
       
  1120 		 * The AutoNeg process has completed, so we now need to
       
  1121 		 * read both the Auto Negotiation Advertisement
       
  1122 		 * Register (Address 4) and the Auto_Negotiation Base
       
  1123 		 * Page Ability Register (Address 5) to determine how
       
  1124 		 * flow control was negotiated.
       
  1125 		 */
       
  1126 		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
       
  1127 		if (ret_val)
       
  1128 			return ret_val;
       
  1129 		ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
       
  1130 		if (ret_val)
       
  1131 			return ret_val;
       
  1132 
       
  1133 		/*
       
  1134 		 * Two bits in the Auto Negotiation Advertisement Register
       
  1135 		 * (Address 4) and two bits in the Auto Negotiation Base
       
  1136 		 * Page Ability Register (Address 5) determine flow control
       
  1137 		 * for both the PHY and the link partner.  The following
       
  1138 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
       
  1139 		 * 1999, describes these PAUSE resolution bits and how flow
       
  1140 		 * control is determined based upon these settings.
       
  1141 		 * NOTE:  DC = Don't Care
       
  1142 		 *
       
  1143 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1144 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
       
  1145 		 *-------|---------|-------|---------|--------------------
       
  1146 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
       
  1147 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
       
  1148 		 *   0   |    1    |   1   |    0    | e1000_fc_none
       
  1149 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1150 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
       
  1151 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
       
  1152 		 *   1   |    1    |   0   |    0    | e1000_fc_none
       
  1153 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1154 		 *
       
  1155 		 * Are both PAUSE bits set to 1?  If so, this implies
       
  1156 		 * Symmetric Flow Control is enabled at both ends.  The
       
  1157 		 * ASM_DIR bits are irrelevant per the spec.
       
  1158 		 *
       
  1159 		 * For Symmetric Flow Control:
       
  1160 		 *
       
  1161 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1162 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1163 		 *-------|---------|-------|---------|--------------------
       
  1164 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
       
  1165 		 *
       
  1166 		 */
       
  1167 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1168 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
       
  1169 			/*
       
  1170 			 * Now we need to check if the user selected Rx ONLY
       
  1171 			 * of pause frames.  In this case, we had to advertise
       
  1172 			 * FULL flow control because we could not advertise Rx
       
  1173 			 * ONLY. Hence, we must now check to see if we need to
       
  1174 			 * turn OFF  the TRANSMISSION of PAUSE frames.
       
  1175 			 */
       
  1176 			if (hw->fc.requested_mode == e1000_fc_full) {
       
  1177 				hw->fc.current_mode = e1000_fc_full;
       
  1178 				e_dbg("Flow Control = FULL.\r\n");
       
  1179 			} else {
       
  1180 				hw->fc.current_mode = e1000_fc_rx_pause;
       
  1181 				e_dbg("Flow Control = "
       
  1182 					 "RX PAUSE frames only.\r\n");
       
  1183 			}
       
  1184 		}
       
  1185 		/*
       
  1186 		 * For receiving PAUSE frames ONLY.
       
  1187 		 *
       
  1188 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1189 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1190 		 *-------|---------|-------|---------|--------------------
       
  1191 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1192 		 */
       
  1193 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1194 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  1195 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  1196 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  1197 			hw->fc.current_mode = e1000_fc_tx_pause;
       
  1198 			e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
       
  1199 		}
       
  1200 		/*
       
  1201 		 * For transmitting PAUSE frames ONLY.
       
  1202 		 *
       
  1203 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1204 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1205 		 *-------|---------|-------|---------|--------------------
       
  1206 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1207 		 */
       
  1208 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1209 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  1210 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  1211 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  1212 			hw->fc.current_mode = e1000_fc_rx_pause;
       
  1213 			e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
       
  1214 		} else {
       
  1215 			/*
       
  1216 			 * Per the IEEE spec, at this point flow control
       
  1217 			 * should be disabled.
       
  1218 			 */
       
  1219 			hw->fc.current_mode = e1000_fc_none;
       
  1220 			e_dbg("Flow Control = NONE.\r\n");
       
  1221 		}
       
  1222 
       
  1223 		/*
       
  1224 		 * Now we need to do one last check...  If we auto-
       
  1225 		 * negotiated to HALF DUPLEX, flow control should not be
       
  1226 		 * enabled per IEEE 802.3 spec.
       
  1227 		 */
       
  1228 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
       
  1229 		if (ret_val) {
       
  1230 			e_dbg("Error getting link speed and duplex\n");
       
  1231 			return ret_val;
       
  1232 		}
       
  1233 
       
  1234 		if (duplex == HALF_DUPLEX)
       
  1235 			hw->fc.current_mode = e1000_fc_none;
       
  1236 
       
  1237 		/*
       
  1238 		 * Now we call a subroutine to actually force the MAC
       
  1239 		 * controller to use the correct flow control settings.
       
  1240 		 */
       
  1241 		ret_val = e1000e_force_mac_fc(hw);
       
  1242 		if (ret_val) {
       
  1243 			e_dbg("Error forcing flow control settings\n");
       
  1244 			return ret_val;
       
  1245 		}
       
  1246 	}
       
  1247 
       
  1248 	return 0;
       
  1249 }
       
  1250 
       
  1251 /**
       
  1252  *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
       
  1253  *  @hw: pointer to the HW structure
       
  1254  *  @speed: stores the current speed
       
  1255  *  @duplex: stores the current duplex
       
  1256  *
       
  1257  *  Read the status register for the current speed/duplex and store the current
       
  1258  *  speed and duplex for copper connections.
       
  1259  **/
       
  1260 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
       
  1261 {
       
  1262 	u32 status;
       
  1263 
       
  1264 	status = er32(STATUS);
       
  1265 	if (status & E1000_STATUS_SPEED_1000) {
       
  1266 		*speed = SPEED_1000;
       
  1267 		e_dbg("1000 Mbs, ");
       
  1268 	} else if (status & E1000_STATUS_SPEED_100) {
       
  1269 		*speed = SPEED_100;
       
  1270 		e_dbg("100 Mbs, ");
       
  1271 	} else {
       
  1272 		*speed = SPEED_10;
       
  1273 		e_dbg("10 Mbs, ");
       
  1274 	}
       
  1275 
       
  1276 	if (status & E1000_STATUS_FD) {
       
  1277 		*duplex = FULL_DUPLEX;
       
  1278 		e_dbg("Full Duplex\n");
       
  1279 	} else {
       
  1280 		*duplex = HALF_DUPLEX;
       
  1281 		e_dbg("Half Duplex\n");
       
  1282 	}
       
  1283 
       
  1284 	return 0;
       
  1285 }
       
  1286 
       
  1287 /**
       
  1288  *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
       
  1289  *  @hw: pointer to the HW structure
       
  1290  *  @speed: stores the current speed
       
  1291  *  @duplex: stores the current duplex
       
  1292  *
       
  1293  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
       
  1294  *  for fiber/serdes links.
       
  1295  **/
       
  1296 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
       
  1297 {
       
  1298 	*speed = SPEED_1000;
       
  1299 	*duplex = FULL_DUPLEX;
       
  1300 
       
  1301 	return 0;
       
  1302 }
       
  1303 
       
  1304 /**
       
  1305  *  e1000e_get_hw_semaphore - Acquire hardware semaphore
       
  1306  *  @hw: pointer to the HW structure
       
  1307  *
       
  1308  *  Acquire the HW semaphore to access the PHY or NVM
       
  1309  **/
       
  1310 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
       
  1311 {
       
  1312 	u32 swsm;
       
  1313 	s32 timeout = hw->nvm.word_size + 1;
       
  1314 	s32 i = 0;
       
  1315 
       
  1316 	/* Get the SW semaphore */
       
  1317 	while (i < timeout) {
       
  1318 		swsm = er32(SWSM);
       
  1319 		if (!(swsm & E1000_SWSM_SMBI))
       
  1320 			break;
       
  1321 
       
  1322 		udelay(50);
       
  1323 		i++;
       
  1324 	}
       
  1325 
       
  1326 	if (i == timeout) {
       
  1327 		e_dbg("Driver can't access device - SMBI bit is set.\n");
       
  1328 		return -E1000_ERR_NVM;
       
  1329 	}
       
  1330 
       
  1331 	/* Get the FW semaphore. */
       
  1332 	for (i = 0; i < timeout; i++) {
       
  1333 		swsm = er32(SWSM);
       
  1334 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
       
  1335 
       
  1336 		/* Semaphore acquired if bit latched */
       
  1337 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
       
  1338 			break;
       
  1339 
       
  1340 		udelay(50);
       
  1341 	}
       
  1342 
       
  1343 	if (i == timeout) {
       
  1344 		/* Release semaphores */
       
  1345 		e1000e_put_hw_semaphore(hw);
       
  1346 		e_dbg("Driver can't access the NVM\n");
       
  1347 		return -E1000_ERR_NVM;
       
  1348 	}
       
  1349 
       
  1350 	return 0;
       
  1351 }
       
  1352 
       
  1353 /**
       
  1354  *  e1000e_put_hw_semaphore - Release hardware semaphore
       
  1355  *  @hw: pointer to the HW structure
       
  1356  *
       
  1357  *  Release hardware semaphore used to access the PHY or NVM
       
  1358  **/
       
  1359 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
       
  1360 {
       
  1361 	u32 swsm;
       
  1362 
       
  1363 	swsm = er32(SWSM);
       
  1364 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
  1365 	ew32(SWSM, swsm);
       
  1366 }
       
  1367 
       
  1368 /**
       
  1369  *  e1000e_get_auto_rd_done - Check for auto read completion
       
  1370  *  @hw: pointer to the HW structure
       
  1371  *
       
  1372  *  Check EEPROM for Auto Read done bit.
       
  1373  **/
       
  1374 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
       
  1375 {
       
  1376 	s32 i = 0;
       
  1377 
       
  1378 	while (i < AUTO_READ_DONE_TIMEOUT) {
       
  1379 		if (er32(EECD) & E1000_EECD_AUTO_RD)
       
  1380 			break;
       
  1381 		msleep(1);
       
  1382 		i++;
       
  1383 	}
       
  1384 
       
  1385 	if (i == AUTO_READ_DONE_TIMEOUT) {
       
  1386 		e_dbg("Auto read by HW from NVM has not completed.\n");
       
  1387 		return -E1000_ERR_RESET;
       
  1388 	}
       
  1389 
       
  1390 	return 0;
       
  1391 }
       
  1392 
       
  1393 /**
       
  1394  *  e1000e_valid_led_default - Verify a valid default LED config
       
  1395  *  @hw: pointer to the HW structure
       
  1396  *  @data: pointer to the NVM (EEPROM)
       
  1397  *
       
  1398  *  Read the EEPROM for the current default LED configuration.  If the
       
  1399  *  LED configuration is not valid, set to a valid LED configuration.
       
  1400  **/
       
  1401 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
       
  1402 {
       
  1403 	s32 ret_val;
       
  1404 
       
  1405 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  1406 	if (ret_val) {
       
  1407 		e_dbg("NVM Read Error\n");
       
  1408 		return ret_val;
       
  1409 	}
       
  1410 
       
  1411 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
       
  1412 		*data = ID_LED_DEFAULT;
       
  1413 
       
  1414 	return 0;
       
  1415 }
       
  1416 
       
  1417 /**
       
  1418  *  e1000e_id_led_init -
       
  1419  *  @hw: pointer to the HW structure
       
  1420  *
       
  1421  **/
       
  1422 s32 e1000e_id_led_init(struct e1000_hw *hw)
       
  1423 {
       
  1424 	struct e1000_mac_info *mac = &hw->mac;
       
  1425 	s32 ret_val;
       
  1426 	const u32 ledctl_mask = 0x000000FF;
       
  1427 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
       
  1428 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
       
  1429 	u16 data, i, temp;
       
  1430 	const u16 led_mask = 0x0F;
       
  1431 
       
  1432 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
       
  1433 	if (ret_val)
       
  1434 		return ret_val;
       
  1435 
       
  1436 	mac->ledctl_default = er32(LEDCTL);
       
  1437 	mac->ledctl_mode1 = mac->ledctl_default;
       
  1438 	mac->ledctl_mode2 = mac->ledctl_default;
       
  1439 
       
  1440 	for (i = 0; i < 4; i++) {
       
  1441 		temp = (data >> (i << 2)) & led_mask;
       
  1442 		switch (temp) {
       
  1443 		case ID_LED_ON1_DEF2:
       
  1444 		case ID_LED_ON1_ON2:
       
  1445 		case ID_LED_ON1_OFF2:
       
  1446 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1447 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
       
  1448 			break;
       
  1449 		case ID_LED_OFF1_DEF2:
       
  1450 		case ID_LED_OFF1_ON2:
       
  1451 		case ID_LED_OFF1_OFF2:
       
  1452 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1453 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
       
  1454 			break;
       
  1455 		default:
       
  1456 			/* Do nothing */
       
  1457 			break;
       
  1458 		}
       
  1459 		switch (temp) {
       
  1460 		case ID_LED_DEF1_ON2:
       
  1461 		case ID_LED_ON1_ON2:
       
  1462 		case ID_LED_OFF1_ON2:
       
  1463 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1464 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
       
  1465 			break;
       
  1466 		case ID_LED_DEF1_OFF2:
       
  1467 		case ID_LED_ON1_OFF2:
       
  1468 		case ID_LED_OFF1_OFF2:
       
  1469 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1470 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
       
  1471 			break;
       
  1472 		default:
       
  1473 			/* Do nothing */
       
  1474 			break;
       
  1475 		}
       
  1476 	}
       
  1477 
       
  1478 	return 0;
       
  1479 }
       
  1480 
       
  1481 /**
       
  1482  *  e1000e_setup_led_generic - Configures SW controllable LED
       
  1483  *  @hw: pointer to the HW structure
       
  1484  *
       
  1485  *  This prepares the SW controllable LED for use and saves the current state
       
  1486  *  of the LED so it can be later restored.
       
  1487  **/
       
  1488 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
       
  1489 {
       
  1490 	u32 ledctl;
       
  1491 
       
  1492 	if (hw->mac.ops.setup_led != e1000e_setup_led_generic) {
       
  1493 		return -E1000_ERR_CONFIG;
       
  1494 	}
       
  1495 
       
  1496 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1497 		ledctl = er32(LEDCTL);
       
  1498 		hw->mac.ledctl_default = ledctl;
       
  1499 		/* Turn off LED0 */
       
  1500 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
       
  1501 		            E1000_LEDCTL_LED0_BLINK |
       
  1502 		            E1000_LEDCTL_LED0_MODE_MASK);
       
  1503 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
       
  1504 		           E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1505 		ew32(LEDCTL, ledctl);
       
  1506 	} else if (hw->phy.media_type == e1000_media_type_copper) {
       
  1507 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1508 	}
       
  1509 
       
  1510 	return 0;
       
  1511 }
       
  1512 
       
  1513 /**
       
  1514  *  e1000e_cleanup_led_generic - Set LED config to default operation
       
  1515  *  @hw: pointer to the HW structure
       
  1516  *
       
  1517  *  Remove the current LED configuration and set the LED configuration
       
  1518  *  to the default value, saved from the EEPROM.
       
  1519  **/
       
  1520 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
       
  1521 {
       
  1522 	ew32(LEDCTL, hw->mac.ledctl_default);
       
  1523 	return 0;
       
  1524 }
       
  1525 
       
  1526 /**
       
  1527  *  e1000e_blink_led - Blink LED
       
  1528  *  @hw: pointer to the HW structure
       
  1529  *
       
  1530  *  Blink the LEDs which are set to be on.
       
  1531  **/
       
  1532 s32 e1000e_blink_led(struct e1000_hw *hw)
       
  1533 {
       
  1534 	u32 ledctl_blink = 0;
       
  1535 	u32 i;
       
  1536 
       
  1537 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1538 		/* always blink LED0 for PCI-E fiber */
       
  1539 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
       
  1540 		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1541 	} else {
       
  1542 		/*
       
  1543 		 * set the blink bit for each LED that's "on" (0x0E)
       
  1544 		 * in ledctl_mode2
       
  1545 		 */
       
  1546 		ledctl_blink = hw->mac.ledctl_mode2;
       
  1547 		for (i = 0; i < 4; i++)
       
  1548 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
       
  1549 			    E1000_LEDCTL_MODE_LED_ON)
       
  1550 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
       
  1551 						 (i * 8));
       
  1552 	}
       
  1553 
       
  1554 	ew32(LEDCTL, ledctl_blink);
       
  1555 
       
  1556 	return 0;
       
  1557 }
       
  1558 
       
  1559 /**
       
  1560  *  e1000e_led_on_generic - Turn LED on
       
  1561  *  @hw: pointer to the HW structure
       
  1562  *
       
  1563  *  Turn LED on.
       
  1564  **/
       
  1565 s32 e1000e_led_on_generic(struct e1000_hw *hw)
       
  1566 {
       
  1567 	u32 ctrl;
       
  1568 
       
  1569 	switch (hw->phy.media_type) {
       
  1570 	case e1000_media_type_fiber:
       
  1571 		ctrl = er32(CTRL);
       
  1572 		ctrl &= ~E1000_CTRL_SWDPIN0;
       
  1573 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1574 		ew32(CTRL, ctrl);
       
  1575 		break;
       
  1576 	case e1000_media_type_copper:
       
  1577 		ew32(LEDCTL, hw->mac.ledctl_mode2);
       
  1578 		break;
       
  1579 	default:
       
  1580 		break;
       
  1581 	}
       
  1582 
       
  1583 	return 0;
       
  1584 }
       
  1585 
       
  1586 /**
       
  1587  *  e1000e_led_off_generic - Turn LED off
       
  1588  *  @hw: pointer to the HW structure
       
  1589  *
       
  1590  *  Turn LED off.
       
  1591  **/
       
  1592 s32 e1000e_led_off_generic(struct e1000_hw *hw)
       
  1593 {
       
  1594 	u32 ctrl;
       
  1595 
       
  1596 	switch (hw->phy.media_type) {
       
  1597 	case e1000_media_type_fiber:
       
  1598 		ctrl = er32(CTRL);
       
  1599 		ctrl |= E1000_CTRL_SWDPIN0;
       
  1600 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1601 		ew32(CTRL, ctrl);
       
  1602 		break;
       
  1603 	case e1000_media_type_copper:
       
  1604 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1605 		break;
       
  1606 	default:
       
  1607 		break;
       
  1608 	}
       
  1609 
       
  1610 	return 0;
       
  1611 }
       
  1612 
       
  1613 /**
       
  1614  *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
       
  1615  *  @hw: pointer to the HW structure
       
  1616  *  @no_snoop: bitmap of snoop events
       
  1617  *
       
  1618  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
       
  1619  **/
       
  1620 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
       
  1621 {
       
  1622 	u32 gcr;
       
  1623 
       
  1624 	if (no_snoop) {
       
  1625 		gcr = er32(GCR);
       
  1626 		gcr &= ~(PCIE_NO_SNOOP_ALL);
       
  1627 		gcr |= no_snoop;
       
  1628 		ew32(GCR, gcr);
       
  1629 	}
       
  1630 }
       
  1631 
       
  1632 /**
       
  1633  *  e1000e_disable_pcie_master - Disables PCI-express master access
       
  1634  *  @hw: pointer to the HW structure
       
  1635  *
       
  1636  *  Returns 0 if successful, else returns -10
       
  1637  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
       
  1638  *  the master requests to be disabled.
       
  1639  *
       
  1640  *  Disables PCI-Express master access and verifies there are no pending
       
  1641  *  requests.
       
  1642  **/
       
  1643 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
       
  1644 {
       
  1645 	u32 ctrl;
       
  1646 	s32 timeout = MASTER_DISABLE_TIMEOUT;
       
  1647 
       
  1648 	ctrl = er32(CTRL);
       
  1649 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
       
  1650 	ew32(CTRL, ctrl);
       
  1651 
       
  1652 	while (timeout) {
       
  1653 		if (!(er32(STATUS) &
       
  1654 		      E1000_STATUS_GIO_MASTER_ENABLE))
       
  1655 			break;
       
  1656 		udelay(100);
       
  1657 		timeout--;
       
  1658 	}
       
  1659 
       
  1660 	if (!timeout) {
       
  1661 		e_dbg("Master requests are pending.\n");
       
  1662 		return -E1000_ERR_MASTER_REQUESTS_PENDING;
       
  1663 	}
       
  1664 
       
  1665 	return 0;
       
  1666 }
       
  1667 
       
  1668 /**
       
  1669  *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
       
  1670  *  @hw: pointer to the HW structure
       
  1671  *
       
  1672  *  Reset the Adaptive Interframe Spacing throttle to default values.
       
  1673  **/
       
  1674 void e1000e_reset_adaptive(struct e1000_hw *hw)
       
  1675 {
       
  1676 	struct e1000_mac_info *mac = &hw->mac;
       
  1677 
       
  1678 	if (!mac->adaptive_ifs) {
       
  1679 		e_dbg("Not in Adaptive IFS mode!\n");
       
  1680 		goto out;
       
  1681 	}
       
  1682 
       
  1683 	mac->current_ifs_val = 0;
       
  1684 	mac->ifs_min_val = IFS_MIN;
       
  1685 	mac->ifs_max_val = IFS_MAX;
       
  1686 	mac->ifs_step_size = IFS_STEP;
       
  1687 	mac->ifs_ratio = IFS_RATIO;
       
  1688 
       
  1689 	mac->in_ifs_mode = false;
       
  1690 	ew32(AIT, 0);
       
  1691 out:
       
  1692 	return;
       
  1693 }
       
  1694 
       
  1695 /**
       
  1696  *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
       
  1697  *  @hw: pointer to the HW structure
       
  1698  *
       
  1699  *  Update the Adaptive Interframe Spacing Throttle value based on the
       
  1700  *  time between transmitted packets and time between collisions.
       
  1701  **/
       
  1702 void e1000e_update_adaptive(struct e1000_hw *hw)
       
  1703 {
       
  1704 	struct e1000_mac_info *mac = &hw->mac;
       
  1705 
       
  1706 	if (!mac->adaptive_ifs) {
       
  1707 		e_dbg("Not in Adaptive IFS mode!\n");
       
  1708 		goto out;
       
  1709 	}
       
  1710 
       
  1711 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
       
  1712 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
       
  1713 			mac->in_ifs_mode = true;
       
  1714 			if (mac->current_ifs_val < mac->ifs_max_val) {
       
  1715 				if (!mac->current_ifs_val)
       
  1716 					mac->current_ifs_val = mac->ifs_min_val;
       
  1717 				else
       
  1718 					mac->current_ifs_val +=
       
  1719 						mac->ifs_step_size;
       
  1720 				ew32(AIT, mac->current_ifs_val);
       
  1721 			}
       
  1722 		}
       
  1723 	} else {
       
  1724 		if (mac->in_ifs_mode &&
       
  1725 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
       
  1726 			mac->current_ifs_val = 0;
       
  1727 			mac->in_ifs_mode = false;
       
  1728 			ew32(AIT, 0);
       
  1729 		}
       
  1730 	}
       
  1731 out:
       
  1732 	return;
       
  1733 }
       
  1734 
       
  1735 /**
       
  1736  *  e1000_raise_eec_clk - Raise EEPROM clock
       
  1737  *  @hw: pointer to the HW structure
       
  1738  *  @eecd: pointer to the EEPROM
       
  1739  *
       
  1740  *  Enable/Raise the EEPROM clock bit.
       
  1741  **/
       
  1742 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
       
  1743 {
       
  1744 	*eecd = *eecd | E1000_EECD_SK;
       
  1745 	ew32(EECD, *eecd);
       
  1746 	e1e_flush();
       
  1747 	udelay(hw->nvm.delay_usec);
       
  1748 }
       
  1749 
       
  1750 /**
       
  1751  *  e1000_lower_eec_clk - Lower EEPROM clock
       
  1752  *  @hw: pointer to the HW structure
       
  1753  *  @eecd: pointer to the EEPROM
       
  1754  *
       
  1755  *  Clear/Lower the EEPROM clock bit.
       
  1756  **/
       
  1757 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
       
  1758 {
       
  1759 	*eecd = *eecd & ~E1000_EECD_SK;
       
  1760 	ew32(EECD, *eecd);
       
  1761 	e1e_flush();
       
  1762 	udelay(hw->nvm.delay_usec);
       
  1763 }
       
  1764 
       
  1765 /**
       
  1766  *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
       
  1767  *  @hw: pointer to the HW structure
       
  1768  *  @data: data to send to the EEPROM
       
  1769  *  @count: number of bits to shift out
       
  1770  *
       
  1771  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
       
  1772  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
       
  1773  *  In order to do this, "data" must be broken down into bits.
       
  1774  **/
       
  1775 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
       
  1776 {
       
  1777 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1778 	u32 eecd = er32(EECD);
       
  1779 	u32 mask;
       
  1780 
       
  1781 	mask = 0x01 << (count - 1);
       
  1782 	if (nvm->type == e1000_nvm_eeprom_spi)
       
  1783 		eecd |= E1000_EECD_DO;
       
  1784 
       
  1785 	do {
       
  1786 		eecd &= ~E1000_EECD_DI;
       
  1787 
       
  1788 		if (data & mask)
       
  1789 			eecd |= E1000_EECD_DI;
       
  1790 
       
  1791 		ew32(EECD, eecd);
       
  1792 		e1e_flush();
       
  1793 
       
  1794 		udelay(nvm->delay_usec);
       
  1795 
       
  1796 		e1000_raise_eec_clk(hw, &eecd);
       
  1797 		e1000_lower_eec_clk(hw, &eecd);
       
  1798 
       
  1799 		mask >>= 1;
       
  1800 	} while (mask);
       
  1801 
       
  1802 	eecd &= ~E1000_EECD_DI;
       
  1803 	ew32(EECD, eecd);
       
  1804 }
       
  1805 
       
  1806 /**
       
  1807  *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
       
  1808  *  @hw: pointer to the HW structure
       
  1809  *  @count: number of bits to shift in
       
  1810  *
       
  1811  *  In order to read a register from the EEPROM, we need to shift 'count' bits
       
  1812  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
       
  1813  *  the EEPROM (setting the SK bit), and then reading the value of the data out
       
  1814  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
       
  1815  *  always be clear.
       
  1816  **/
       
  1817 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
       
  1818 {
       
  1819 	u32 eecd;
       
  1820 	u32 i;
       
  1821 	u16 data;
       
  1822 
       
  1823 	eecd = er32(EECD);
       
  1824 
       
  1825 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
       
  1826 	data = 0;
       
  1827 
       
  1828 	for (i = 0; i < count; i++) {
       
  1829 		data <<= 1;
       
  1830 		e1000_raise_eec_clk(hw, &eecd);
       
  1831 
       
  1832 		eecd = er32(EECD);
       
  1833 
       
  1834 		eecd &= ~E1000_EECD_DI;
       
  1835 		if (eecd & E1000_EECD_DO)
       
  1836 			data |= 1;
       
  1837 
       
  1838 		e1000_lower_eec_clk(hw, &eecd);
       
  1839 	}
       
  1840 
       
  1841 	return data;
       
  1842 }
       
  1843 
       
  1844 /**
       
  1845  *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
       
  1846  *  @hw: pointer to the HW structure
       
  1847  *  @ee_reg: EEPROM flag for polling
       
  1848  *
       
  1849  *  Polls the EEPROM status bit for either read or write completion based
       
  1850  *  upon the value of 'ee_reg'.
       
  1851  **/
       
  1852 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
       
  1853 {
       
  1854 	u32 attempts = 100000;
       
  1855 	u32 i, reg = 0;
       
  1856 
       
  1857 	for (i = 0; i < attempts; i++) {
       
  1858 		if (ee_reg == E1000_NVM_POLL_READ)
       
  1859 			reg = er32(EERD);
       
  1860 		else
       
  1861 			reg = er32(EEWR);
       
  1862 
       
  1863 		if (reg & E1000_NVM_RW_REG_DONE)
       
  1864 			return 0;
       
  1865 
       
  1866 		udelay(5);
       
  1867 	}
       
  1868 
       
  1869 	return -E1000_ERR_NVM;
       
  1870 }
       
  1871 
       
  1872 /**
       
  1873  *  e1000e_acquire_nvm - Generic request for access to EEPROM
       
  1874  *  @hw: pointer to the HW structure
       
  1875  *
       
  1876  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
       
  1877  *  Return successful if access grant bit set, else clear the request for
       
  1878  *  EEPROM access and return -E1000_ERR_NVM (-1).
       
  1879  **/
       
  1880 s32 e1000e_acquire_nvm(struct e1000_hw *hw)
       
  1881 {
       
  1882 	u32 eecd = er32(EECD);
       
  1883 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
       
  1884 
       
  1885 	ew32(EECD, eecd | E1000_EECD_REQ);
       
  1886 	eecd = er32(EECD);
       
  1887 
       
  1888 	while (timeout) {
       
  1889 		if (eecd & E1000_EECD_GNT)
       
  1890 			break;
       
  1891 		udelay(5);
       
  1892 		eecd = er32(EECD);
       
  1893 		timeout--;
       
  1894 	}
       
  1895 
       
  1896 	if (!timeout) {
       
  1897 		eecd &= ~E1000_EECD_REQ;
       
  1898 		ew32(EECD, eecd);
       
  1899 		e_dbg("Could not acquire NVM grant\n");
       
  1900 		return -E1000_ERR_NVM;
       
  1901 	}
       
  1902 
       
  1903 	return 0;
       
  1904 }
       
  1905 
       
  1906 /**
       
  1907  *  e1000_standby_nvm - Return EEPROM to standby state
       
  1908  *  @hw: pointer to the HW structure
       
  1909  *
       
  1910  *  Return the EEPROM to a standby state.
       
  1911  **/
       
  1912 static void e1000_standby_nvm(struct e1000_hw *hw)
       
  1913 {
       
  1914 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1915 	u32 eecd = er32(EECD);
       
  1916 
       
  1917 	if (nvm->type == e1000_nvm_eeprom_spi) {
       
  1918 		/* Toggle CS to flush commands */
       
  1919 		eecd |= E1000_EECD_CS;
       
  1920 		ew32(EECD, eecd);
       
  1921 		e1e_flush();
       
  1922 		udelay(nvm->delay_usec);
       
  1923 		eecd &= ~E1000_EECD_CS;
       
  1924 		ew32(EECD, eecd);
       
  1925 		e1e_flush();
       
  1926 		udelay(nvm->delay_usec);
       
  1927 	}
       
  1928 }
       
  1929 
       
  1930 /**
       
  1931  *  e1000_stop_nvm - Terminate EEPROM command
       
  1932  *  @hw: pointer to the HW structure
       
  1933  *
       
  1934  *  Terminates the current command by inverting the EEPROM's chip select pin.
       
  1935  **/
       
  1936 static void e1000_stop_nvm(struct e1000_hw *hw)
       
  1937 {
       
  1938 	u32 eecd;
       
  1939 
       
  1940 	eecd = er32(EECD);
       
  1941 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
       
  1942 		/* Pull CS high */
       
  1943 		eecd |= E1000_EECD_CS;
       
  1944 		e1000_lower_eec_clk(hw, &eecd);
       
  1945 	}
       
  1946 }
       
  1947 
       
  1948 /**
       
  1949  *  e1000e_release_nvm - Release exclusive access to EEPROM
       
  1950  *  @hw: pointer to the HW structure
       
  1951  *
       
  1952  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
       
  1953  **/
       
  1954 void e1000e_release_nvm(struct e1000_hw *hw)
       
  1955 {
       
  1956 	u32 eecd;
       
  1957 
       
  1958 	e1000_stop_nvm(hw);
       
  1959 
       
  1960 	eecd = er32(EECD);
       
  1961 	eecd &= ~E1000_EECD_REQ;
       
  1962 	ew32(EECD, eecd);
       
  1963 }
       
  1964 
       
  1965 /**
       
  1966  *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
       
  1967  *  @hw: pointer to the HW structure
       
  1968  *
       
  1969  *  Setups the EEPROM for reading and writing.
       
  1970  **/
       
  1971 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
       
  1972 {
       
  1973 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1974 	u32 eecd = er32(EECD);
       
  1975 	u16 timeout = 0;
       
  1976 	u8 spi_stat_reg;
       
  1977 
       
  1978 	if (nvm->type == e1000_nvm_eeprom_spi) {
       
  1979 		/* Clear SK and CS */
       
  1980 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
       
  1981 		ew32(EECD, eecd);
       
  1982 		udelay(1);
       
  1983 		timeout = NVM_MAX_RETRY_SPI;
       
  1984 
       
  1985 		/*
       
  1986 		 * Read "Status Register" repeatedly until the LSB is cleared.
       
  1987 		 * The EEPROM will signal that the command has been completed
       
  1988 		 * by clearing bit 0 of the internal status register.  If it's
       
  1989 		 * not cleared within 'timeout', then error out.
       
  1990 		 */
       
  1991 		while (timeout) {
       
  1992 			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
       
  1993 						 hw->nvm.opcode_bits);
       
  1994 			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
       
  1995 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
       
  1996 				break;
       
  1997 
       
  1998 			udelay(5);
       
  1999 			e1000_standby_nvm(hw);
       
  2000 			timeout--;
       
  2001 		}
       
  2002 
       
  2003 		if (!timeout) {
       
  2004 			e_dbg("SPI NVM Status error\n");
       
  2005 			return -E1000_ERR_NVM;
       
  2006 		}
       
  2007 	}
       
  2008 
       
  2009 	return 0;
       
  2010 }
       
  2011 
       
  2012 /**
       
  2013  *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
       
  2014  *  @hw: pointer to the HW structure
       
  2015  *  @offset: offset of word in the EEPROM to read
       
  2016  *  @words: number of words to read
       
  2017  *  @data: word read from the EEPROM
       
  2018  *
       
  2019  *  Reads a 16 bit word from the EEPROM using the EERD register.
       
  2020  **/
       
  2021 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
       
  2022 {
       
  2023 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2024 	u32 i, eerd = 0;
       
  2025 	s32 ret_val = 0;
       
  2026 
       
  2027 	/*
       
  2028 	 * A check for invalid values:  offset too large, too many words,
       
  2029 	 * too many words for the offset, and not enough words.
       
  2030 	 */
       
  2031 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
  2032 	    (words == 0)) {
       
  2033 		e_dbg("nvm parameter(s) out of bounds\n");
       
  2034 		return -E1000_ERR_NVM;
       
  2035 	}
       
  2036 
       
  2037 	for (i = 0; i < words; i++) {
       
  2038 		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
       
  2039 		       E1000_NVM_RW_REG_START;
       
  2040 
       
  2041 		ew32(EERD, eerd);
       
  2042 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
       
  2043 		if (ret_val)
       
  2044 			break;
       
  2045 
       
  2046 		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
       
  2047 	}
       
  2048 
       
  2049 	return ret_val;
       
  2050 }
       
  2051 
       
  2052 /**
       
  2053  *  e1000e_write_nvm_spi - Write to EEPROM using SPI
       
  2054  *  @hw: pointer to the HW structure
       
  2055  *  @offset: offset within the EEPROM to be written to
       
  2056  *  @words: number of words to write
       
  2057  *  @data: 16 bit word(s) to be written to the EEPROM
       
  2058  *
       
  2059  *  Writes data to EEPROM at offset using SPI interface.
       
  2060  *
       
  2061  *  If e1000e_update_nvm_checksum is not called after this function , the
       
  2062  *  EEPROM will most likely contain an invalid checksum.
       
  2063  **/
       
  2064 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
       
  2065 {
       
  2066 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2067 	s32 ret_val;
       
  2068 	u16 widx = 0;
       
  2069 
       
  2070 	/*
       
  2071 	 * A check for invalid values:  offset too large, too many words,
       
  2072 	 * and not enough words.
       
  2073 	 */
       
  2074 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
  2075 	    (words == 0)) {
       
  2076 		e_dbg("nvm parameter(s) out of bounds\n");
       
  2077 		return -E1000_ERR_NVM;
       
  2078 	}
       
  2079 
       
  2080 	ret_val = nvm->ops.acquire(hw);
       
  2081 	if (ret_val)
       
  2082 		return ret_val;
       
  2083 
       
  2084 	msleep(10);
       
  2085 
       
  2086 	while (widx < words) {
       
  2087 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
       
  2088 
       
  2089 		ret_val = e1000_ready_nvm_eeprom(hw);
       
  2090 		if (ret_val) {
       
  2091 			nvm->ops.release(hw);
       
  2092 			return ret_val;
       
  2093 		}
       
  2094 
       
  2095 		e1000_standby_nvm(hw);
       
  2096 
       
  2097 		/* Send the WRITE ENABLE command (8 bit opcode) */
       
  2098 		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
       
  2099 					 nvm->opcode_bits);
       
  2100 
       
  2101 		e1000_standby_nvm(hw);
       
  2102 
       
  2103 		/*
       
  2104 		 * Some SPI eeproms use the 8th address bit embedded in the
       
  2105 		 * opcode
       
  2106 		 */
       
  2107 		if ((nvm->address_bits == 8) && (offset >= 128))
       
  2108 			write_opcode |= NVM_A8_OPCODE_SPI;
       
  2109 
       
  2110 		/* Send the Write command (8-bit opcode + addr) */
       
  2111 		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
       
  2112 		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
       
  2113 					 nvm->address_bits);
       
  2114 
       
  2115 		/* Loop to allow for up to whole page write of eeprom */
       
  2116 		while (widx < words) {
       
  2117 			u16 word_out = data[widx];
       
  2118 			word_out = (word_out >> 8) | (word_out << 8);
       
  2119 			e1000_shift_out_eec_bits(hw, word_out, 16);
       
  2120 			widx++;
       
  2121 
       
  2122 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
       
  2123 				e1000_standby_nvm(hw);
       
  2124 				break;
       
  2125 			}
       
  2126 		}
       
  2127 	}
       
  2128 
       
  2129 	msleep(10);
       
  2130 	nvm->ops.release(hw);
       
  2131 	return 0;
       
  2132 }
       
  2133 
       
  2134 /**
       
  2135  *  e1000_read_mac_addr_generic - Read device MAC address
       
  2136  *  @hw: pointer to the HW structure
       
  2137  *
       
  2138  *  Reads the device MAC address from the EEPROM and stores the value.
       
  2139  *  Since devices with two ports use the same EEPROM, we increment the
       
  2140  *  last bit in the MAC address for the second port.
       
  2141  **/
       
  2142 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
       
  2143 {
       
  2144 	u32 rar_high;
       
  2145 	u32 rar_low;
       
  2146 	u16 i;
       
  2147 
       
  2148 	rar_high = er32(RAH(0));
       
  2149 	rar_low = er32(RAL(0));
       
  2150 
       
  2151 	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
       
  2152 		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
       
  2153 
       
  2154 	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
       
  2155 		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
       
  2156 
       
  2157 	for (i = 0; i < ETH_ALEN; i++)
       
  2158 		hw->mac.addr[i] = hw->mac.perm_addr[i];
       
  2159 
       
  2160 	return 0;
       
  2161 }
       
  2162 
       
  2163 /**
       
  2164  *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
       
  2165  *  @hw: pointer to the HW structure
       
  2166  *
       
  2167  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
       
  2168  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
       
  2169  **/
       
  2170 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
       
  2171 {
       
  2172 	s32 ret_val;
       
  2173 	u16 checksum = 0;
       
  2174 	u16 i, nvm_data;
       
  2175 
       
  2176 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
       
  2177 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
       
  2178 		if (ret_val) {
       
  2179 			e_dbg("NVM Read Error\n");
       
  2180 			return ret_val;
       
  2181 		}
       
  2182 		checksum += nvm_data;
       
  2183 	}
       
  2184 
       
  2185 	if (checksum != (u16) NVM_SUM) {
       
  2186 		e_dbg("NVM Checksum Invalid\n");
       
  2187 		return -E1000_ERR_NVM;
       
  2188 	}
       
  2189 
       
  2190 	return 0;
       
  2191 }
       
  2192 
       
  2193 /**
       
  2194  *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
       
  2195  *  @hw: pointer to the HW structure
       
  2196  *
       
  2197  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
       
  2198  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
       
  2199  *  value to the EEPROM.
       
  2200  **/
       
  2201 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
       
  2202 {
       
  2203 	s32 ret_val;
       
  2204 	u16 checksum = 0;
       
  2205 	u16 i, nvm_data;
       
  2206 
       
  2207 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
       
  2208 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
       
  2209 		if (ret_val) {
       
  2210 			e_dbg("NVM Read Error while updating checksum.\n");
       
  2211 			return ret_val;
       
  2212 		}
       
  2213 		checksum += nvm_data;
       
  2214 	}
       
  2215 	checksum = (u16) NVM_SUM - checksum;
       
  2216 	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
       
  2217 	if (ret_val)
       
  2218 		e_dbg("NVM Write Error while updating checksum.\n");
       
  2219 
       
  2220 	return ret_val;
       
  2221 }
       
  2222 
       
  2223 /**
       
  2224  *  e1000e_reload_nvm - Reloads EEPROM
       
  2225  *  @hw: pointer to the HW structure
       
  2226  *
       
  2227  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
       
  2228  *  extended control register.
       
  2229  **/
       
  2230 void e1000e_reload_nvm(struct e1000_hw *hw)
       
  2231 {
       
  2232 	u32 ctrl_ext;
       
  2233 
       
  2234 	udelay(10);
       
  2235 	ctrl_ext = er32(CTRL_EXT);
       
  2236 	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
  2237 	ew32(CTRL_EXT, ctrl_ext);
       
  2238 	e1e_flush();
       
  2239 }
       
  2240 
       
  2241 /**
       
  2242  *  e1000_calculate_checksum - Calculate checksum for buffer
       
  2243  *  @buffer: pointer to EEPROM
       
  2244  *  @length: size of EEPROM to calculate a checksum for
       
  2245  *
       
  2246  *  Calculates the checksum for some buffer on a specified length.  The
       
  2247  *  checksum calculated is returned.
       
  2248  **/
       
  2249 static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
       
  2250 {
       
  2251 	u32 i;
       
  2252 	u8  sum = 0;
       
  2253 
       
  2254 	if (!buffer)
       
  2255 		return 0;
       
  2256 
       
  2257 	for (i = 0; i < length; i++)
       
  2258 		sum += buffer[i];
       
  2259 
       
  2260 	return (u8) (0 - sum);
       
  2261 }
       
  2262 
       
  2263 /**
       
  2264  *  e1000_mng_enable_host_if - Checks host interface is enabled
       
  2265  *  @hw: pointer to the HW structure
       
  2266  *
       
  2267  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
       
  2268  *
       
  2269  *  This function checks whether the HOST IF is enabled for command operation
       
  2270  *  and also checks whether the previous command is completed.  It busy waits
       
  2271  *  in case of previous command is not completed.
       
  2272  **/
       
  2273 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
       
  2274 {
       
  2275 	u32 hicr;
       
  2276 	u8 i;
       
  2277 
       
  2278 	/* Check that the host interface is enabled. */
       
  2279 	hicr = er32(HICR);
       
  2280 	if ((hicr & E1000_HICR_EN) == 0) {
       
  2281 		e_dbg("E1000_HOST_EN bit disabled.\n");
       
  2282 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
       
  2283 	}
       
  2284 	/* check the previous command is completed */
       
  2285 	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
       
  2286 		hicr = er32(HICR);
       
  2287 		if (!(hicr & E1000_HICR_C))
       
  2288 			break;
       
  2289 		mdelay(1);
       
  2290 	}
       
  2291 
       
  2292 	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
       
  2293 		e_dbg("Previous command timeout failed .\n");
       
  2294 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
       
  2295 	}
       
  2296 
       
  2297 	return 0;
       
  2298 }
       
  2299 
       
  2300 /**
       
  2301  *  e1000e_check_mng_mode_generic - check management mode
       
  2302  *  @hw: pointer to the HW structure
       
  2303  *
       
  2304  *  Reads the firmware semaphore register and returns true (>0) if
       
  2305  *  manageability is enabled, else false (0).
       
  2306  **/
       
  2307 bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
       
  2308 {
       
  2309 	u32 fwsm = er32(FWSM);
       
  2310 
       
  2311 	return (fwsm & E1000_FWSM_MODE_MASK) ==
       
  2312 		(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
       
  2313 }
       
  2314 
       
  2315 /**
       
  2316  *  e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
       
  2317  *  @hw: pointer to the HW structure
       
  2318  *
       
  2319  *  Enables packet filtering on transmit packets if manageability is enabled
       
  2320  *  and host interface is enabled.
       
  2321  **/
       
  2322 bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
       
  2323 {
       
  2324 	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
       
  2325 	u32 *buffer = (u32 *)&hw->mng_cookie;
       
  2326 	u32 offset;
       
  2327 	s32 ret_val, hdr_csum, csum;
       
  2328 	u8 i, len;
       
  2329 
       
  2330 	hw->mac.tx_pkt_filtering = true;
       
  2331 
       
  2332 	/* No manageability, no filtering */
       
  2333 	if (!e1000e_check_mng_mode(hw)) {
       
  2334 		hw->mac.tx_pkt_filtering = false;
       
  2335 		goto out;
       
  2336 	}
       
  2337 
       
  2338 	/*
       
  2339 	 * If we can't read from the host interface for whatever
       
  2340 	 * reason, disable filtering.
       
  2341 	 */
       
  2342 	ret_val = e1000_mng_enable_host_if(hw);
       
  2343 	if (ret_val) {
       
  2344 		hw->mac.tx_pkt_filtering = false;
       
  2345 		goto out;
       
  2346 	}
       
  2347 
       
  2348 	/* Read in the header.  Length and offset are in dwords. */
       
  2349 	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
       
  2350 	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
       
  2351 	for (i = 0; i < len; i++)
       
  2352 		*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
       
  2353 	hdr_csum = hdr->checksum;
       
  2354 	hdr->checksum = 0;
       
  2355 	csum = e1000_calculate_checksum((u8 *)hdr,
       
  2356 					E1000_MNG_DHCP_COOKIE_LENGTH);
       
  2357 	/*
       
  2358 	 * If either the checksums or signature don't match, then
       
  2359 	 * the cookie area isn't considered valid, in which case we
       
  2360 	 * take the safe route of assuming Tx filtering is enabled.
       
  2361 	 */
       
  2362 	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
       
  2363 		hw->mac.tx_pkt_filtering = true;
       
  2364 		goto out;
       
  2365 	}
       
  2366 
       
  2367 	/* Cookie area is valid, make the final check for filtering. */
       
  2368 	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
       
  2369 		hw->mac.tx_pkt_filtering = false;
       
  2370 		goto out;
       
  2371 	}
       
  2372 
       
  2373 out:
       
  2374 	return hw->mac.tx_pkt_filtering;
       
  2375 }
       
  2376 
       
  2377 /**
       
  2378  *  e1000_mng_write_cmd_header - Writes manageability command header
       
  2379  *  @hw: pointer to the HW structure
       
  2380  *  @hdr: pointer to the host interface command header
       
  2381  *
       
  2382  *  Writes the command header after does the checksum calculation.
       
  2383  **/
       
  2384 static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
       
  2385 				  struct e1000_host_mng_command_header *hdr)
       
  2386 {
       
  2387 	u16 i, length = sizeof(struct e1000_host_mng_command_header);
       
  2388 
       
  2389 	/* Write the whole command header structure with new checksum. */
       
  2390 
       
  2391 	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
       
  2392 
       
  2393 	length >>= 2;
       
  2394 	/* Write the relevant command block into the ram area. */
       
  2395 	for (i = 0; i < length; i++) {
       
  2396 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
       
  2397 					    *((u32 *) hdr + i));
       
  2398 		e1e_flush();
       
  2399 	}
       
  2400 
       
  2401 	return 0;
       
  2402 }
       
  2403 
       
  2404 /**
       
  2405  *  e1000_mng_host_if_write - Write to the manageability host interface
       
  2406  *  @hw: pointer to the HW structure
       
  2407  *  @buffer: pointer to the host interface buffer
       
  2408  *  @length: size of the buffer
       
  2409  *  @offset: location in the buffer to write to
       
  2410  *  @sum: sum of the data (not checksum)
       
  2411  *
       
  2412  *  This function writes the buffer content at the offset given on the host if.
       
  2413  *  It also does alignment considerations to do the writes in most efficient
       
  2414  *  way.  Also fills up the sum of the buffer in *buffer parameter.
       
  2415  **/
       
  2416 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
       
  2417 				   u16 length, u16 offset, u8 *sum)
       
  2418 {
       
  2419 	u8 *tmp;
       
  2420 	u8 *bufptr = buffer;
       
  2421 	u32 data = 0;
       
  2422 	u16 remaining, i, j, prev_bytes;
       
  2423 
       
  2424 	/* sum = only sum of the data and it is not checksum */
       
  2425 
       
  2426 	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
       
  2427 		return -E1000_ERR_PARAM;
       
  2428 
       
  2429 	tmp = (u8 *)&data;
       
  2430 	prev_bytes = offset & 0x3;
       
  2431 	offset >>= 2;
       
  2432 
       
  2433 	if (prev_bytes) {
       
  2434 		data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
       
  2435 		for (j = prev_bytes; j < sizeof(u32); j++) {
       
  2436 			*(tmp + j) = *bufptr++;
       
  2437 			*sum += *(tmp + j);
       
  2438 		}
       
  2439 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
       
  2440 		length -= j - prev_bytes;
       
  2441 		offset++;
       
  2442 	}
       
  2443 
       
  2444 	remaining = length & 0x3;
       
  2445 	length -= remaining;
       
  2446 
       
  2447 	/* Calculate length in DWORDs */
       
  2448 	length >>= 2;
       
  2449 
       
  2450 	/*
       
  2451 	 * The device driver writes the relevant command block into the
       
  2452 	 * ram area.
       
  2453 	 */
       
  2454 	for (i = 0; i < length; i++) {
       
  2455 		for (j = 0; j < sizeof(u32); j++) {
       
  2456 			*(tmp + j) = *bufptr++;
       
  2457 			*sum += *(tmp + j);
       
  2458 		}
       
  2459 
       
  2460 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
       
  2461 	}
       
  2462 	if (remaining) {
       
  2463 		for (j = 0; j < sizeof(u32); j++) {
       
  2464 			if (j < remaining)
       
  2465 				*(tmp + j) = *bufptr++;
       
  2466 			else
       
  2467 				*(tmp + j) = 0;
       
  2468 
       
  2469 			*sum += *(tmp + j);
       
  2470 		}
       
  2471 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
       
  2472 	}
       
  2473 
       
  2474 	return 0;
       
  2475 }
       
  2476 
       
  2477 /**
       
  2478  *  e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
       
  2479  *  @hw: pointer to the HW structure
       
  2480  *  @buffer: pointer to the host interface
       
  2481  *  @length: size of the buffer
       
  2482  *
       
  2483  *  Writes the DHCP information to the host interface.
       
  2484  **/
       
  2485 s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
       
  2486 {
       
  2487 	struct e1000_host_mng_command_header hdr;
       
  2488 	s32 ret_val;
       
  2489 	u32 hicr;
       
  2490 
       
  2491 	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
       
  2492 	hdr.command_length = length;
       
  2493 	hdr.reserved1 = 0;
       
  2494 	hdr.reserved2 = 0;
       
  2495 	hdr.checksum = 0;
       
  2496 
       
  2497 	/* Enable the host interface */
       
  2498 	ret_val = e1000_mng_enable_host_if(hw);
       
  2499 	if (ret_val)
       
  2500 		return ret_val;
       
  2501 
       
  2502 	/* Populate the host interface with the contents of "buffer". */
       
  2503 	ret_val = e1000_mng_host_if_write(hw, buffer, length,
       
  2504 					  sizeof(hdr), &(hdr.checksum));
       
  2505 	if (ret_val)
       
  2506 		return ret_val;
       
  2507 
       
  2508 	/* Write the manageability command header */
       
  2509 	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
       
  2510 	if (ret_val)
       
  2511 		return ret_val;
       
  2512 
       
  2513 	/* Tell the ARC a new command is pending. */
       
  2514 	hicr = er32(HICR);
       
  2515 	ew32(HICR, hicr | E1000_HICR_C);
       
  2516 
       
  2517 	return 0;
       
  2518 }
       
  2519 
       
  2520 /**
       
  2521  *  e1000e_enable_mng_pass_thru - Enable processing of ARP's
       
  2522  *  @hw: pointer to the HW structure
       
  2523  *
       
  2524  *  Verifies the hardware needs to allow ARPs to be processed by the host.
       
  2525  **/
       
  2526 bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
       
  2527 {
       
  2528 	u32 manc;
       
  2529 	u32 fwsm, factps;
       
  2530 	bool ret_val = false;
       
  2531 
       
  2532 	manc = er32(MANC);
       
  2533 
       
  2534 	if (!(manc & E1000_MANC_RCV_TCO_EN) ||
       
  2535 	    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
       
  2536 		return ret_val;
       
  2537 
       
  2538 	if (hw->mac.arc_subsystem_valid) {
       
  2539 		fwsm = er32(FWSM);
       
  2540 		factps = er32(FACTPS);
       
  2541 
       
  2542 		if (!(factps & E1000_FACTPS_MNGCG) &&
       
  2543 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
       
  2544 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
       
  2545 			ret_val = true;
       
  2546 			return ret_val;
       
  2547 		}
       
  2548 	} else {
       
  2549 		if ((manc & E1000_MANC_SMBUS_EN) &&
       
  2550 		    !(manc & E1000_MANC_ASF_EN)) {
       
  2551 			ret_val = true;
       
  2552 			return ret_val;
       
  2553 		}
       
  2554 	}
       
  2555 
       
  2556 	return ret_val;
       
  2557 }
       
  2558 
       
  2559 s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
       
  2560 {
       
  2561 	s32 ret_val;
       
  2562 	u16 nvm_data;
       
  2563 
       
  2564 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
       
  2565 	if (ret_val) {
       
  2566 		e_dbg("NVM Read Error\n");
       
  2567 		return ret_val;
       
  2568 	}
       
  2569 	*pba_num = (u32)(nvm_data << 16);
       
  2570 
       
  2571 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
       
  2572 	if (ret_val) {
       
  2573 		e_dbg("NVM Read Error\n");
       
  2574 		return ret_val;
       
  2575 	}
       
  2576 	*pba_num |= nvm_data;
       
  2577 
       
  2578 	return 0;
       
  2579 }