devices/e1000e/82571-2.6.34-ethercat.c
branchredundancy
changeset 2133 74dbd0b7d6aa
equal deleted inserted replaced
2129:78efdac9ee87 2133:74dbd0b7d6aa
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2009 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /*
       
    30  * 82571EB Gigabit Ethernet Controller
       
    31  * 82571EB Gigabit Ethernet Controller (Copper)
       
    32  * 82571EB Gigabit Ethernet Controller (Fiber)
       
    33  * 82571EB Dual Port Gigabit Mezzanine Adapter
       
    34  * 82571EB Quad Port Gigabit Mezzanine Adapter
       
    35  * 82571PT Gigabit PT Quad Port Server ExpressModule
       
    36  * 82572EI Gigabit Ethernet Controller (Copper)
       
    37  * 82572EI Gigabit Ethernet Controller (Fiber)
       
    38  * 82572EI Gigabit Ethernet Controller
       
    39  * 82573V Gigabit Ethernet Controller (Copper)
       
    40  * 82573E Gigabit Ethernet Controller (Copper)
       
    41  * 82573L Gigabit Ethernet Controller
       
    42  * 82574L Gigabit Network Connection
       
    43  * 82583V Gigabit Network Connection
       
    44  */
       
    45 
       
    46 #include "e1000-2.6.34-ethercat.h"
       
    47 
       
    48 #define ID_LED_RESERVED_F746 0xF746
       
    49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
       
    50 			      (ID_LED_OFF1_ON2  <<  8) | \
       
    51 			      (ID_LED_DEF1_DEF2 <<  4) | \
       
    52 			      (ID_LED_DEF1_DEF2))
       
    53 
       
    54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
       
    55 
       
    56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
       
    57 
       
    58 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
       
    59 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
       
    60 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
       
    61 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
       
    62 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
       
    63 				      u16 words, u16 *data);
       
    64 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
       
    65 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
       
    66 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
       
    67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
       
    68 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
       
    69 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
       
    70 static s32 e1000_led_on_82574(struct e1000_hw *hw);
       
    71 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
       
    72 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
       
    73 
       
    74 /**
       
    75  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
       
    76  *  @hw: pointer to the HW structure
       
    77  **/
       
    78 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
       
    79 {
       
    80 	struct e1000_phy_info *phy = &hw->phy;
       
    81 	s32 ret_val;
       
    82 
       
    83 	if (hw->phy.media_type != e1000_media_type_copper) {
       
    84 		phy->type = e1000_phy_none;
       
    85 		return 0;
       
    86 	}
       
    87 
       
    88 	phy->addr			 = 1;
       
    89 	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
    90 	phy->reset_delay_us		 = 100;
       
    91 
       
    92 	phy->ops.power_up		 = e1000_power_up_phy_copper;
       
    93 	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;
       
    94 
       
    95 	switch (hw->mac.type) {
       
    96 	case e1000_82571:
       
    97 	case e1000_82572:
       
    98 		phy->type		 = e1000_phy_igp_2;
       
    99 		break;
       
   100 	case e1000_82573:
       
   101 		phy->type		 = e1000_phy_m88;
       
   102 		break;
       
   103 	case e1000_82574:
       
   104 	case e1000_82583:
       
   105 		phy->type		 = e1000_phy_bm;
       
   106 		break;
       
   107 	default:
       
   108 		return -E1000_ERR_PHY;
       
   109 		break;
       
   110 	}
       
   111 
       
   112 	/* This can only be done after all function pointers are setup. */
       
   113 	ret_val = e1000_get_phy_id_82571(hw);
       
   114 
       
   115 	/* Verify phy id */
       
   116 	switch (hw->mac.type) {
       
   117 	case e1000_82571:
       
   118 	case e1000_82572:
       
   119 		if (phy->id != IGP01E1000_I_PHY_ID)
       
   120 			return -E1000_ERR_PHY;
       
   121 		break;
       
   122 	case e1000_82573:
       
   123 		if (phy->id != M88E1111_I_PHY_ID)
       
   124 			return -E1000_ERR_PHY;
       
   125 		break;
       
   126 	case e1000_82574:
       
   127 	case e1000_82583:
       
   128 		if (phy->id != BME1000_E_PHY_ID_R2)
       
   129 			return -E1000_ERR_PHY;
       
   130 		break;
       
   131 	default:
       
   132 		return -E1000_ERR_PHY;
       
   133 		break;
       
   134 	}
       
   135 
       
   136 	return 0;
       
   137 }
       
   138 
       
   139 /**
       
   140  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
       
   141  *  @hw: pointer to the HW structure
       
   142  **/
       
   143 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
       
   144 {
       
   145 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   146 	u32 eecd = er32(EECD);
       
   147 	u16 size;
       
   148 
       
   149 	nvm->opcode_bits = 8;
       
   150 	nvm->delay_usec = 1;
       
   151 	switch (nvm->override) {
       
   152 	case e1000_nvm_override_spi_large:
       
   153 		nvm->page_size = 32;
       
   154 		nvm->address_bits = 16;
       
   155 		break;
       
   156 	case e1000_nvm_override_spi_small:
       
   157 		nvm->page_size = 8;
       
   158 		nvm->address_bits = 8;
       
   159 		break;
       
   160 	default:
       
   161 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
       
   162 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
       
   163 		break;
       
   164 	}
       
   165 
       
   166 	switch (hw->mac.type) {
       
   167 	case e1000_82573:
       
   168 	case e1000_82574:
       
   169 	case e1000_82583:
       
   170 		if (((eecd >> 15) & 0x3) == 0x3) {
       
   171 			nvm->type = e1000_nvm_flash_hw;
       
   172 			nvm->word_size = 2048;
       
   173 			/*
       
   174 			 * Autonomous Flash update bit must be cleared due
       
   175 			 * to Flash update issue.
       
   176 			 */
       
   177 			eecd &= ~E1000_EECD_AUPDEN;
       
   178 			ew32(EECD, eecd);
       
   179 			break;
       
   180 		}
       
   181 		/* Fall Through */
       
   182 	default:
       
   183 		nvm->type = e1000_nvm_eeprom_spi;
       
   184 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
       
   185 				  E1000_EECD_SIZE_EX_SHIFT);
       
   186 		/*
       
   187 		 * Added to a constant, "size" becomes the left-shift value
       
   188 		 * for setting word_size.
       
   189 		 */
       
   190 		size += NVM_WORD_SIZE_BASE_SHIFT;
       
   191 
       
   192 		/* EEPROM access above 16k is unsupported */
       
   193 		if (size > 14)
       
   194 			size = 14;
       
   195 		nvm->word_size	= 1 << size;
       
   196 		break;
       
   197 	}
       
   198 
       
   199 	return 0;
       
   200 }
       
   201 
       
   202 /**
       
   203  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
       
   204  *  @hw: pointer to the HW structure
       
   205  **/
       
   206 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
       
   207 {
       
   208 	struct e1000_hw *hw = &adapter->hw;
       
   209 	struct e1000_mac_info *mac = &hw->mac;
       
   210 	struct e1000_mac_operations *func = &mac->ops;
       
   211 	u32 swsm = 0;
       
   212 	u32 swsm2 = 0;
       
   213 	bool force_clear_smbi = false;
       
   214 
       
   215 	/* Set media type */
       
   216 	switch (adapter->pdev->device) {
       
   217 	case E1000_DEV_ID_82571EB_FIBER:
       
   218 	case E1000_DEV_ID_82572EI_FIBER:
       
   219 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
   220 		hw->phy.media_type = e1000_media_type_fiber;
       
   221 		break;
       
   222 	case E1000_DEV_ID_82571EB_SERDES:
       
   223 	case E1000_DEV_ID_82572EI_SERDES:
       
   224 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
       
   225 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
       
   226 		hw->phy.media_type = e1000_media_type_internal_serdes;
       
   227 		break;
       
   228 	default:
       
   229 		hw->phy.media_type = e1000_media_type_copper;
       
   230 		break;
       
   231 	}
       
   232 
       
   233 	/* Set mta register count */
       
   234 	mac->mta_reg_count = 128;
       
   235 	/* Set rar entry count */
       
   236 	mac->rar_entry_count = E1000_RAR_ENTRIES;
       
   237 	/* Set if manageability features are enabled. */
       
   238 	mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
       
   239 	                ? true : false;
       
   240 	/* Adaptive IFS supported */
       
   241 	mac->adaptive_ifs = true;
       
   242 
       
   243 	/* check for link */
       
   244 	switch (hw->phy.media_type) {
       
   245 	case e1000_media_type_copper:
       
   246 		func->setup_physical_interface = e1000_setup_copper_link_82571;
       
   247 		func->check_for_link = e1000e_check_for_copper_link;
       
   248 		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
       
   249 		break;
       
   250 	case e1000_media_type_fiber:
       
   251 		func->setup_physical_interface =
       
   252 			e1000_setup_fiber_serdes_link_82571;
       
   253 		func->check_for_link = e1000e_check_for_fiber_link;
       
   254 		func->get_link_up_info =
       
   255 			e1000e_get_speed_and_duplex_fiber_serdes;
       
   256 		break;
       
   257 	case e1000_media_type_internal_serdes:
       
   258 		func->setup_physical_interface =
       
   259 			e1000_setup_fiber_serdes_link_82571;
       
   260 		func->check_for_link = e1000_check_for_serdes_link_82571;
       
   261 		func->get_link_up_info =
       
   262 			e1000e_get_speed_and_duplex_fiber_serdes;
       
   263 		break;
       
   264 	default:
       
   265 		return -E1000_ERR_CONFIG;
       
   266 		break;
       
   267 	}
       
   268 
       
   269 	switch (hw->mac.type) {
       
   270 	case e1000_82573:
       
   271 		func->set_lan_id = e1000_set_lan_id_single_port;
       
   272 		func->check_mng_mode = e1000e_check_mng_mode_generic;
       
   273 		func->led_on = e1000e_led_on_generic;
       
   274 		break;
       
   275 	case e1000_82574:
       
   276 	case e1000_82583:
       
   277 		func->set_lan_id = e1000_set_lan_id_single_port;
       
   278 		func->check_mng_mode = e1000_check_mng_mode_82574;
       
   279 		func->led_on = e1000_led_on_82574;
       
   280 		break;
       
   281 	default:
       
   282 		func->check_mng_mode = e1000e_check_mng_mode_generic;
       
   283 		func->led_on = e1000e_led_on_generic;
       
   284 		break;
       
   285 	}
       
   286 
       
   287 	/*
       
   288 	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
       
   289 	 * first NVM or PHY acess. This should be done for single-port
       
   290 	 * devices, and for one port only on dual-port devices so that
       
   291 	 * for those devices we can still use the SMBI lock to synchronize
       
   292 	 * inter-port accesses to the PHY & NVM.
       
   293 	 */
       
   294 	switch (hw->mac.type) {
       
   295 	case e1000_82571:
       
   296 	case e1000_82572:
       
   297 		swsm2 = er32(SWSM2);
       
   298 
       
   299 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
       
   300 			/* Only do this for the first interface on this card */
       
   301 			ew32(SWSM2,
       
   302 			    swsm2 | E1000_SWSM2_LOCK);
       
   303 			force_clear_smbi = true;
       
   304 		} else
       
   305 			force_clear_smbi = false;
       
   306 		break;
       
   307 	default:
       
   308 		force_clear_smbi = true;
       
   309 		break;
       
   310 	}
       
   311 
       
   312 	if (force_clear_smbi) {
       
   313 		/* Make sure SWSM.SMBI is clear */
       
   314 		swsm = er32(SWSM);
       
   315 		if (swsm & E1000_SWSM_SMBI) {
       
   316 			/* This bit should not be set on a first interface, and
       
   317 			 * indicates that the bootagent or EFI code has
       
   318 			 * improperly left this bit enabled
       
   319 			 */
       
   320 			e_dbg("Please update your 82571 Bootagent\n");
       
   321 		}
       
   322 		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
       
   323 	}
       
   324 
       
   325 	/*
       
   326 	 * Initialze device specific counter of SMBI acquisition
       
   327 	 * timeouts.
       
   328 	 */
       
   329 	 hw->dev_spec.e82571.smb_counter = 0;
       
   330 
       
   331 	return 0;
       
   332 }
       
   333 
       
   334 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
       
   335 {
       
   336 	struct e1000_hw *hw = &adapter->hw;
       
   337 	static int global_quad_port_a; /* global port a indication */
       
   338 	struct pci_dev *pdev = adapter->pdev;
       
   339 	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
       
   340 	s32 rc;
       
   341 
       
   342 	rc = e1000_init_mac_params_82571(adapter);
       
   343 	if (rc)
       
   344 		return rc;
       
   345 
       
   346 	rc = e1000_init_nvm_params_82571(hw);
       
   347 	if (rc)
       
   348 		return rc;
       
   349 
       
   350 	rc = e1000_init_phy_params_82571(hw);
       
   351 	if (rc)
       
   352 		return rc;
       
   353 
       
   354 	/* tag quad port adapters first, it's used below */
       
   355 	switch (pdev->device) {
       
   356 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
       
   357 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
   358 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
       
   359 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
       
   360 		adapter->flags |= FLAG_IS_QUAD_PORT;
       
   361 		/* mark the first port */
       
   362 		if (global_quad_port_a == 0)
       
   363 			adapter->flags |= FLAG_IS_QUAD_PORT_A;
       
   364 		/* Reset for multiple quad port adapters */
       
   365 		global_quad_port_a++;
       
   366 		if (global_quad_port_a == 4)
       
   367 			global_quad_port_a = 0;
       
   368 		break;
       
   369 	default:
       
   370 		break;
       
   371 	}
       
   372 
       
   373 	switch (adapter->hw.mac.type) {
       
   374 	case e1000_82571:
       
   375 		/* these dual ports don't have WoL on port B at all */
       
   376 		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
       
   377 		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
       
   378 		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
       
   379 		    (is_port_b))
       
   380 			adapter->flags &= ~FLAG_HAS_WOL;
       
   381 		/* quad ports only support WoL on port A */
       
   382 		if (adapter->flags & FLAG_IS_QUAD_PORT &&
       
   383 		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
       
   384 			adapter->flags &= ~FLAG_HAS_WOL;
       
   385 		/* Does not support WoL on any port */
       
   386 		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
       
   387 			adapter->flags &= ~FLAG_HAS_WOL;
       
   388 		break;
       
   389 	case e1000_82573:
       
   390 	case e1000_82574:
       
   391 	case e1000_82583:
       
   392 		/* Disable ASPM L0s due to hardware errata */
       
   393 		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
       
   394 
       
   395 		if (pdev->device == E1000_DEV_ID_82573L) {
       
   396 			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
       
   397 			adapter->max_hw_frame_size = DEFAULT_JUMBO;
       
   398 		}
       
   399 		break;
       
   400 	default:
       
   401 		break;
       
   402 	}
       
   403 
       
   404 	return 0;
       
   405 }
       
   406 
       
   407 /**
       
   408  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
       
   409  *  @hw: pointer to the HW structure
       
   410  *
       
   411  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
       
   412  *  revision in the hardware structure.
       
   413  **/
       
   414 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
       
   415 {
       
   416 	struct e1000_phy_info *phy = &hw->phy;
       
   417 	s32 ret_val;
       
   418 	u16 phy_id = 0;
       
   419 
       
   420 	switch (hw->mac.type) {
       
   421 	case e1000_82571:
       
   422 	case e1000_82572:
       
   423 		/*
       
   424 		 * The 82571 firmware may still be configuring the PHY.
       
   425 		 * In this case, we cannot access the PHY until the
       
   426 		 * configuration is done.  So we explicitly set the
       
   427 		 * PHY ID.
       
   428 		 */
       
   429 		phy->id = IGP01E1000_I_PHY_ID;
       
   430 		break;
       
   431 	case e1000_82573:
       
   432 		return e1000e_get_phy_id(hw);
       
   433 		break;
       
   434 	case e1000_82574:
       
   435 	case e1000_82583:
       
   436 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
       
   437 		if (ret_val)
       
   438 			return ret_val;
       
   439 
       
   440 		phy->id = (u32)(phy_id << 16);
       
   441 		udelay(20);
       
   442 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
       
   443 		if (ret_val)
       
   444 			return ret_val;
       
   445 
       
   446 		phy->id |= (u32)(phy_id);
       
   447 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
       
   448 		break;
       
   449 	default:
       
   450 		return -E1000_ERR_PHY;
       
   451 		break;
       
   452 	}
       
   453 
       
   454 	return 0;
       
   455 }
       
   456 
       
   457 /**
       
   458  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
       
   459  *  @hw: pointer to the HW structure
       
   460  *
       
   461  *  Acquire the HW semaphore to access the PHY or NVM
       
   462  **/
       
   463 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
       
   464 {
       
   465 	u32 swsm;
       
   466 	s32 sw_timeout = hw->nvm.word_size + 1;
       
   467 	s32 fw_timeout = hw->nvm.word_size + 1;
       
   468 	s32 i = 0;
       
   469 
       
   470 	/*
       
   471 	 * If we have timedout 3 times on trying to acquire
       
   472 	 * the inter-port SMBI semaphore, there is old code
       
   473 	 * operating on the other port, and it is not
       
   474 	 * releasing SMBI. Modify the number of times that
       
   475 	 * we try for the semaphore to interwork with this
       
   476 	 * older code.
       
   477 	 */
       
   478 	if (hw->dev_spec.e82571.smb_counter > 2)
       
   479 		sw_timeout = 1;
       
   480 
       
   481 	/* Get the SW semaphore */
       
   482 	while (i < sw_timeout) {
       
   483 		swsm = er32(SWSM);
       
   484 		if (!(swsm & E1000_SWSM_SMBI))
       
   485 			break;
       
   486 
       
   487 		udelay(50);
       
   488 		i++;
       
   489 	}
       
   490 
       
   491 	if (i == sw_timeout) {
       
   492 		e_dbg("Driver can't access device - SMBI bit is set.\n");
       
   493 		hw->dev_spec.e82571.smb_counter++;
       
   494 	}
       
   495 	/* Get the FW semaphore. */
       
   496 	for (i = 0; i < fw_timeout; i++) {
       
   497 		swsm = er32(SWSM);
       
   498 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
       
   499 
       
   500 		/* Semaphore acquired if bit latched */
       
   501 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
       
   502 			break;
       
   503 
       
   504 		udelay(50);
       
   505 	}
       
   506 
       
   507 	if (i == fw_timeout) {
       
   508 		/* Release semaphores */
       
   509 		e1000_put_hw_semaphore_82571(hw);
       
   510 		e_dbg("Driver can't access the NVM\n");
       
   511 		return -E1000_ERR_NVM;
       
   512 	}
       
   513 
       
   514 	return 0;
       
   515 }
       
   516 
       
   517 /**
       
   518  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
       
   519  *  @hw: pointer to the HW structure
       
   520  *
       
   521  *  Release hardware semaphore used to access the PHY or NVM
       
   522  **/
       
   523 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
       
   524 {
       
   525 	u32 swsm;
       
   526 
       
   527 	swsm = er32(SWSM);
       
   528 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
   529 	ew32(SWSM, swsm);
       
   530 }
       
   531 
       
   532 /**
       
   533  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
       
   534  *  @hw: pointer to the HW structure
       
   535  *
       
   536  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
       
   537  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
       
   538  *  for EEPROM access grant bit.  If the access grant bit is not set, release
       
   539  *  hardware semaphore.
       
   540  **/
       
   541 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
       
   542 {
       
   543 	s32 ret_val;
       
   544 
       
   545 	ret_val = e1000_get_hw_semaphore_82571(hw);
       
   546 	if (ret_val)
       
   547 		return ret_val;
       
   548 
       
   549 	switch (hw->mac.type) {
       
   550 	case e1000_82573:
       
   551 	case e1000_82574:
       
   552 	case e1000_82583:
       
   553 		break;
       
   554 	default:
       
   555 		ret_val = e1000e_acquire_nvm(hw);
       
   556 		break;
       
   557 	}
       
   558 
       
   559 	if (ret_val)
       
   560 		e1000_put_hw_semaphore_82571(hw);
       
   561 
       
   562 	return ret_val;
       
   563 }
       
   564 
       
   565 /**
       
   566  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
       
   567  *  @hw: pointer to the HW structure
       
   568  *
       
   569  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
       
   570  **/
       
   571 static void e1000_release_nvm_82571(struct e1000_hw *hw)
       
   572 {
       
   573 	e1000e_release_nvm(hw);
       
   574 	e1000_put_hw_semaphore_82571(hw);
       
   575 }
       
   576 
       
   577 /**
       
   578  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
       
   579  *  @hw: pointer to the HW structure
       
   580  *  @offset: offset within the EEPROM to be written to
       
   581  *  @words: number of words to write
       
   582  *  @data: 16 bit word(s) to be written to the EEPROM
       
   583  *
       
   584  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
       
   585  *
       
   586  *  If e1000e_update_nvm_checksum is not called after this function, the
       
   587  *  EEPROM will most likely contain an invalid checksum.
       
   588  **/
       
   589 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
       
   590 				 u16 *data)
       
   591 {
       
   592 	s32 ret_val;
       
   593 
       
   594 	switch (hw->mac.type) {
       
   595 	case e1000_82573:
       
   596 	case e1000_82574:
       
   597 	case e1000_82583:
       
   598 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
       
   599 		break;
       
   600 	case e1000_82571:
       
   601 	case e1000_82572:
       
   602 		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
       
   603 		break;
       
   604 	default:
       
   605 		ret_val = -E1000_ERR_NVM;
       
   606 		break;
       
   607 	}
       
   608 
       
   609 	return ret_val;
       
   610 }
       
   611 
       
   612 /**
       
   613  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
       
   614  *  @hw: pointer to the HW structure
       
   615  *
       
   616  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
       
   617  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
       
   618  *  value to the EEPROM.
       
   619  **/
       
   620 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
       
   621 {
       
   622 	u32 eecd;
       
   623 	s32 ret_val;
       
   624 	u16 i;
       
   625 
       
   626 	ret_val = e1000e_update_nvm_checksum_generic(hw);
       
   627 	if (ret_val)
       
   628 		return ret_val;
       
   629 
       
   630 	/*
       
   631 	 * If our nvm is an EEPROM, then we're done
       
   632 	 * otherwise, commit the checksum to the flash NVM.
       
   633 	 */
       
   634 	if (hw->nvm.type != e1000_nvm_flash_hw)
       
   635 		return ret_val;
       
   636 
       
   637 	/* Check for pending operations. */
       
   638 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
       
   639 		msleep(1);
       
   640 		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
       
   641 			break;
       
   642 	}
       
   643 
       
   644 	if (i == E1000_FLASH_UPDATES)
       
   645 		return -E1000_ERR_NVM;
       
   646 
       
   647 	/* Reset the firmware if using STM opcode. */
       
   648 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
       
   649 		/*
       
   650 		 * The enabling of and the actual reset must be done
       
   651 		 * in two write cycles.
       
   652 		 */
       
   653 		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
       
   654 		e1e_flush();
       
   655 		ew32(HICR, E1000_HICR_FW_RESET);
       
   656 	}
       
   657 
       
   658 	/* Commit the write to flash */
       
   659 	eecd = er32(EECD) | E1000_EECD_FLUPD;
       
   660 	ew32(EECD, eecd);
       
   661 
       
   662 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
       
   663 		msleep(1);
       
   664 		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
       
   665 			break;
       
   666 	}
       
   667 
       
   668 	if (i == E1000_FLASH_UPDATES)
       
   669 		return -E1000_ERR_NVM;
       
   670 
       
   671 	return 0;
       
   672 }
       
   673 
       
   674 /**
       
   675  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
       
   676  *  @hw: pointer to the HW structure
       
   677  *
       
   678  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
       
   679  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
       
   680  **/
       
   681 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
       
   682 {
       
   683 	if (hw->nvm.type == e1000_nvm_flash_hw)
       
   684 		e1000_fix_nvm_checksum_82571(hw);
       
   685 
       
   686 	return e1000e_validate_nvm_checksum_generic(hw);
       
   687 }
       
   688 
       
   689 /**
       
   690  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
       
   691  *  @hw: pointer to the HW structure
       
   692  *  @offset: offset within the EEPROM to be written to
       
   693  *  @words: number of words to write
       
   694  *  @data: 16 bit word(s) to be written to the EEPROM
       
   695  *
       
   696  *  After checking for invalid values, poll the EEPROM to ensure the previous
       
   697  *  command has completed before trying to write the next word.  After write
       
   698  *  poll for completion.
       
   699  *
       
   700  *  If e1000e_update_nvm_checksum is not called after this function, the
       
   701  *  EEPROM will most likely contain an invalid checksum.
       
   702  **/
       
   703 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
       
   704 				      u16 words, u16 *data)
       
   705 {
       
   706 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   707 	u32 i, eewr = 0;
       
   708 	s32 ret_val = 0;
       
   709 
       
   710 	/*
       
   711 	 * A check for invalid values:  offset too large, too many words,
       
   712 	 * and not enough words.
       
   713 	 */
       
   714 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
   715 	    (words == 0)) {
       
   716 		e_dbg("nvm parameter(s) out of bounds\n");
       
   717 		return -E1000_ERR_NVM;
       
   718 	}
       
   719 
       
   720 	for (i = 0; i < words; i++) {
       
   721 		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
       
   722 		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
       
   723 		       E1000_NVM_RW_REG_START;
       
   724 
       
   725 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
       
   726 		if (ret_val)
       
   727 			break;
       
   728 
       
   729 		ew32(EEWR, eewr);
       
   730 
       
   731 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
       
   732 		if (ret_val)
       
   733 			break;
       
   734 	}
       
   735 
       
   736 	return ret_val;
       
   737 }
       
   738 
       
   739 /**
       
   740  *  e1000_get_cfg_done_82571 - Poll for configuration done
       
   741  *  @hw: pointer to the HW structure
       
   742  *
       
   743  *  Reads the management control register for the config done bit to be set.
       
   744  **/
       
   745 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
       
   746 {
       
   747 	s32 timeout = PHY_CFG_TIMEOUT;
       
   748 
       
   749 	while (timeout) {
       
   750 		if (er32(EEMNGCTL) &
       
   751 		    E1000_NVM_CFG_DONE_PORT_0)
       
   752 			break;
       
   753 		msleep(1);
       
   754 		timeout--;
       
   755 	}
       
   756 	if (!timeout) {
       
   757 		e_dbg("MNG configuration cycle has not completed.\n");
       
   758 		return -E1000_ERR_RESET;
       
   759 	}
       
   760 
       
   761 	return 0;
       
   762 }
       
   763 
       
   764 /**
       
   765  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
       
   766  *  @hw: pointer to the HW structure
       
   767  *  @active: true to enable LPLU, false to disable
       
   768  *
       
   769  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
       
   770  *  this function also disables smart speed and vice versa.  LPLU will not be
       
   771  *  activated unless the device autonegotiation advertisement meets standards
       
   772  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
       
   773  *  pointer entry point only called by PHY setup routines.
       
   774  **/
       
   775 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
       
   776 {
       
   777 	struct e1000_phy_info *phy = &hw->phy;
       
   778 	s32 ret_val;
       
   779 	u16 data;
       
   780 
       
   781 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
       
   782 	if (ret_val)
       
   783 		return ret_val;
       
   784 
       
   785 	if (active) {
       
   786 		data |= IGP02E1000_PM_D0_LPLU;
       
   787 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
   788 		if (ret_val)
       
   789 			return ret_val;
       
   790 
       
   791 		/* When LPLU is enabled, we should disable SmartSpeed */
       
   792 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
   793 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   794 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
   795 		if (ret_val)
       
   796 			return ret_val;
       
   797 	} else {
       
   798 		data &= ~IGP02E1000_PM_D0_LPLU;
       
   799 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
   800 		/*
       
   801 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
   802 		 * during Dx states where the power conservation is most
       
   803 		 * important.  During driver activity we should enable
       
   804 		 * SmartSpeed, so performance is maintained.
       
   805 		 */
       
   806 		if (phy->smart_speed == e1000_smart_speed_on) {
       
   807 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   808 					   &data);
       
   809 			if (ret_val)
       
   810 				return ret_val;
       
   811 
       
   812 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
   813 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   814 					   data);
       
   815 			if (ret_val)
       
   816 				return ret_val;
       
   817 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
   818 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   819 					   &data);
       
   820 			if (ret_val)
       
   821 				return ret_val;
       
   822 
       
   823 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   824 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   825 					   data);
       
   826 			if (ret_val)
       
   827 				return ret_val;
       
   828 		}
       
   829 	}
       
   830 
       
   831 	return 0;
       
   832 }
       
   833 
       
   834 /**
       
   835  *  e1000_reset_hw_82571 - Reset hardware
       
   836  *  @hw: pointer to the HW structure
       
   837  *
       
   838  *  This resets the hardware into a known state.
       
   839  **/
       
   840 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
       
   841 {
       
   842 	u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
       
   843 	s32 ret_val;
       
   844 	u16 i = 0;
       
   845 
       
   846 	/*
       
   847 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
       
   848 	 * on the last TLP read/write transaction when MAC is reset.
       
   849 	 */
       
   850 	ret_val = e1000e_disable_pcie_master(hw);
       
   851 	if (ret_val)
       
   852 		e_dbg("PCI-E Master disable polling has failed.\n");
       
   853 
       
   854 	e_dbg("Masking off all interrupts\n");
       
   855 	ew32(IMC, 0xffffffff);
       
   856 
       
   857 	ew32(RCTL, 0);
       
   858 	ew32(TCTL, E1000_TCTL_PSP);
       
   859 	e1e_flush();
       
   860 
       
   861 	msleep(10);
       
   862 
       
   863 	/*
       
   864 	 * Must acquire the MDIO ownership before MAC reset.
       
   865 	 * Ownership defaults to firmware after a reset.
       
   866 	 */
       
   867 	switch (hw->mac.type) {
       
   868 	case e1000_82573:
       
   869 	case e1000_82574:
       
   870 	case e1000_82583:
       
   871 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
   872 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   873 
       
   874 		do {
       
   875 			ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   876 			extcnf_ctrl = er32(EXTCNF_CTRL);
       
   877 
       
   878 			if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
       
   879 				break;
       
   880 
       
   881 			extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   882 
       
   883 			msleep(2);
       
   884 			i++;
       
   885 		} while (i < MDIO_OWNERSHIP_TIMEOUT);
       
   886 		break;
       
   887 	default:
       
   888 		break;
       
   889 	}
       
   890 
       
   891 	ctrl = er32(CTRL);
       
   892 
       
   893 	e_dbg("Issuing a global reset to MAC\n");
       
   894 	ew32(CTRL, ctrl | E1000_CTRL_RST);
       
   895 
       
   896 	if (hw->nvm.type == e1000_nvm_flash_hw) {
       
   897 		udelay(10);
       
   898 		ctrl_ext = er32(CTRL_EXT);
       
   899 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
   900 		ew32(CTRL_EXT, ctrl_ext);
       
   901 		e1e_flush();
       
   902 	}
       
   903 
       
   904 	ret_val = e1000e_get_auto_rd_done(hw);
       
   905 	if (ret_val)
       
   906 		/* We don't want to continue accessing MAC registers. */
       
   907 		return ret_val;
       
   908 
       
   909 	/*
       
   910 	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
       
   911 	 * Need to wait for Phy configuration completion before accessing
       
   912 	 * NVM and Phy.
       
   913 	 */
       
   914 
       
   915 	switch (hw->mac.type) {
       
   916 	case e1000_82573:
       
   917 	case e1000_82574:
       
   918 	case e1000_82583:
       
   919 		msleep(25);
       
   920 		break;
       
   921 	default:
       
   922 		break;
       
   923 	}
       
   924 
       
   925 	/* Clear any pending interrupt events. */
       
   926 	ew32(IMC, 0xffffffff);
       
   927 	icr = er32(ICR);
       
   928 
       
   929 	/* Install any alternate MAC address into RAR0 */
       
   930 	ret_val = e1000_check_alt_mac_addr_generic(hw);
       
   931 	if (ret_val)
       
   932 		return ret_val;
       
   933 
       
   934 	e1000e_set_laa_state_82571(hw, true);
       
   935 
       
   936 	/* Reinitialize the 82571 serdes link state machine */
       
   937 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
       
   938 		hw->mac.serdes_link_state = e1000_serdes_link_down;
       
   939 
       
   940 	return 0;
       
   941 }
       
   942 
       
   943 /**
       
   944  *  e1000_init_hw_82571 - Initialize hardware
       
   945  *  @hw: pointer to the HW structure
       
   946  *
       
   947  *  This inits the hardware readying it for operation.
       
   948  **/
       
   949 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
       
   950 {
       
   951 	struct e1000_mac_info *mac = &hw->mac;
       
   952 	u32 reg_data;
       
   953 	s32 ret_val;
       
   954 	u16 i, rar_count = mac->rar_entry_count;
       
   955 
       
   956 	e1000_initialize_hw_bits_82571(hw);
       
   957 
       
   958 	/* Initialize identification LED */
       
   959 	ret_val = e1000e_id_led_init(hw);
       
   960 	if (ret_val)
       
   961 		e_dbg("Error initializing identification LED\n");
       
   962 		/* This is not fatal and we should not stop init due to this */
       
   963 
       
   964 	/* Disabling VLAN filtering */
       
   965 	e_dbg("Initializing the IEEE VLAN\n");
       
   966 	mac->ops.clear_vfta(hw);
       
   967 
       
   968 	/* Setup the receive address. */
       
   969 	/*
       
   970 	 * If, however, a locally administered address was assigned to the
       
   971 	 * 82571, we must reserve a RAR for it to work around an issue where
       
   972 	 * resetting one port will reload the MAC on the other port.
       
   973 	 */
       
   974 	if (e1000e_get_laa_state_82571(hw))
       
   975 		rar_count--;
       
   976 	e1000e_init_rx_addrs(hw, rar_count);
       
   977 
       
   978 	/* Zero out the Multicast HASH table */
       
   979 	e_dbg("Zeroing the MTA\n");
       
   980 	for (i = 0; i < mac->mta_reg_count; i++)
       
   981 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
       
   982 
       
   983 	/* Setup link and flow control */
       
   984 	ret_val = e1000_setup_link_82571(hw);
       
   985 
       
   986 	/* Set the transmit descriptor write-back policy */
       
   987 	reg_data = er32(TXDCTL(0));
       
   988 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
       
   989 		   E1000_TXDCTL_FULL_TX_DESC_WB |
       
   990 		   E1000_TXDCTL_COUNT_DESC;
       
   991 	ew32(TXDCTL(0), reg_data);
       
   992 
       
   993 	/* ...for both queues. */
       
   994 	switch (mac->type) {
       
   995 	case e1000_82573:
       
   996 	case e1000_82574:
       
   997 	case e1000_82583:
       
   998 		e1000e_enable_tx_pkt_filtering(hw);
       
   999 		reg_data = er32(GCR);
       
  1000 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
       
  1001 		ew32(GCR, reg_data);
       
  1002 		break;
       
  1003 	default:
       
  1004 		reg_data = er32(TXDCTL(1));
       
  1005 		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
       
  1006 			   E1000_TXDCTL_FULL_TX_DESC_WB |
       
  1007 			   E1000_TXDCTL_COUNT_DESC;
       
  1008 		ew32(TXDCTL(1), reg_data);
       
  1009 		break;
       
  1010 	}
       
  1011 
       
  1012 	/*
       
  1013 	 * Clear all of the statistics registers (clear on read).  It is
       
  1014 	 * important that we do this after we have tried to establish link
       
  1015 	 * because the symbol error count will increment wildly if there
       
  1016 	 * is no link.
       
  1017 	 */
       
  1018 	e1000_clear_hw_cntrs_82571(hw);
       
  1019 
       
  1020 	return ret_val;
       
  1021 }
       
  1022 
       
  1023 /**
       
  1024  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
       
  1025  *  @hw: pointer to the HW structure
       
  1026  *
       
  1027  *  Initializes required hardware-dependent bits needed for normal operation.
       
  1028  **/
       
  1029 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
       
  1030 {
       
  1031 	u32 reg;
       
  1032 
       
  1033 	/* Transmit Descriptor Control 0 */
       
  1034 	reg = er32(TXDCTL(0));
       
  1035 	reg |= (1 << 22);
       
  1036 	ew32(TXDCTL(0), reg);
       
  1037 
       
  1038 	/* Transmit Descriptor Control 1 */
       
  1039 	reg = er32(TXDCTL(1));
       
  1040 	reg |= (1 << 22);
       
  1041 	ew32(TXDCTL(1), reg);
       
  1042 
       
  1043 	/* Transmit Arbitration Control 0 */
       
  1044 	reg = er32(TARC(0));
       
  1045 	reg &= ~(0xF << 27); /* 30:27 */
       
  1046 	switch (hw->mac.type) {
       
  1047 	case e1000_82571:
       
  1048 	case e1000_82572:
       
  1049 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
       
  1050 		break;
       
  1051 	default:
       
  1052 		break;
       
  1053 	}
       
  1054 	ew32(TARC(0), reg);
       
  1055 
       
  1056 	/* Transmit Arbitration Control 1 */
       
  1057 	reg = er32(TARC(1));
       
  1058 	switch (hw->mac.type) {
       
  1059 	case e1000_82571:
       
  1060 	case e1000_82572:
       
  1061 		reg &= ~((1 << 29) | (1 << 30));
       
  1062 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
       
  1063 		if (er32(TCTL) & E1000_TCTL_MULR)
       
  1064 			reg &= ~(1 << 28);
       
  1065 		else
       
  1066 			reg |= (1 << 28);
       
  1067 		ew32(TARC(1), reg);
       
  1068 		break;
       
  1069 	default:
       
  1070 		break;
       
  1071 	}
       
  1072 
       
  1073 	/* Device Control */
       
  1074 	switch (hw->mac.type) {
       
  1075 	case e1000_82573:
       
  1076 	case e1000_82574:
       
  1077 	case e1000_82583:
       
  1078 		reg = er32(CTRL);
       
  1079 		reg &= ~(1 << 29);
       
  1080 		ew32(CTRL, reg);
       
  1081 		break;
       
  1082 	default:
       
  1083 		break;
       
  1084 	}
       
  1085 
       
  1086 	/* Extended Device Control */
       
  1087 	switch (hw->mac.type) {
       
  1088 	case e1000_82573:
       
  1089 	case e1000_82574:
       
  1090 	case e1000_82583:
       
  1091 		reg = er32(CTRL_EXT);
       
  1092 		reg &= ~(1 << 23);
       
  1093 		reg |= (1 << 22);
       
  1094 		ew32(CTRL_EXT, reg);
       
  1095 		break;
       
  1096 	default:
       
  1097 		break;
       
  1098 	}
       
  1099 
       
  1100 	if (hw->mac.type == e1000_82571) {
       
  1101 		reg = er32(PBA_ECC);
       
  1102 		reg |= E1000_PBA_ECC_CORR_EN;
       
  1103 		ew32(PBA_ECC, reg);
       
  1104 	}
       
  1105 	/*
       
  1106 	 * Workaround for hardware errata.
       
  1107 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
       
  1108 	 */
       
  1109 
       
  1110         if ((hw->mac.type == e1000_82571) ||
       
  1111            (hw->mac.type == e1000_82572)) {
       
  1112                 reg = er32(CTRL_EXT);
       
  1113                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
       
  1114                 ew32(CTRL_EXT, reg);
       
  1115         }
       
  1116 
       
  1117 
       
  1118 	/* PCI-Ex Control Registers */
       
  1119 	switch (hw->mac.type) {
       
  1120 	case e1000_82574:
       
  1121 	case e1000_82583:
       
  1122 		reg = er32(GCR);
       
  1123 		reg |= (1 << 22);
       
  1124 		ew32(GCR, reg);
       
  1125 
       
  1126 		/*
       
  1127 		 * Workaround for hardware errata.
       
  1128 		 * apply workaround for hardware errata documented in errata
       
  1129 		 * docs Fixes issue where some error prone or unreliable PCIe
       
  1130 		 * completions are occurring, particularly with ASPM enabled.
       
  1131 		 * Without fix, issue can cause tx timeouts.
       
  1132 		 */
       
  1133 		reg = er32(GCR2);
       
  1134 		reg |= 1;
       
  1135 		ew32(GCR2, reg);
       
  1136 		break;
       
  1137 	default:
       
  1138 		break;
       
  1139 	}
       
  1140 
       
  1141 	return;
       
  1142 }
       
  1143 
       
  1144 /**
       
  1145  *  e1000_clear_vfta_82571 - Clear VLAN filter table
       
  1146  *  @hw: pointer to the HW structure
       
  1147  *
       
  1148  *  Clears the register array which contains the VLAN filter table by
       
  1149  *  setting all the values to 0.
       
  1150  **/
       
  1151 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
       
  1152 {
       
  1153 	u32 offset;
       
  1154 	u32 vfta_value = 0;
       
  1155 	u32 vfta_offset = 0;
       
  1156 	u32 vfta_bit_in_reg = 0;
       
  1157 
       
  1158 	switch (hw->mac.type) {
       
  1159 	case e1000_82573:
       
  1160 	case e1000_82574:
       
  1161 	case e1000_82583:
       
  1162 		if (hw->mng_cookie.vlan_id != 0) {
       
  1163 			/*
       
  1164 			 * The VFTA is a 4096b bit-field, each identifying
       
  1165 			 * a single VLAN ID.  The following operations
       
  1166 			 * determine which 32b entry (i.e. offset) into the
       
  1167 			 * array we want to set the VLAN ID (i.e. bit) of
       
  1168 			 * the manageability unit.
       
  1169 			 */
       
  1170 			vfta_offset = (hw->mng_cookie.vlan_id >>
       
  1171 				       E1000_VFTA_ENTRY_SHIFT) &
       
  1172 				      E1000_VFTA_ENTRY_MASK;
       
  1173 			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
       
  1174 					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
       
  1175 		}
       
  1176 		break;
       
  1177 	default:
       
  1178 		break;
       
  1179 	}
       
  1180 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
  1181 		/*
       
  1182 		 * If the offset we want to clear is the same offset of the
       
  1183 		 * manageability VLAN ID, then clear all bits except that of
       
  1184 		 * the manageability unit.
       
  1185 		 */
       
  1186 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
       
  1187 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
       
  1188 		e1e_flush();
       
  1189 	}
       
  1190 }
       
  1191 
       
  1192 /**
       
  1193  *  e1000_check_mng_mode_82574 - Check manageability is enabled
       
  1194  *  @hw: pointer to the HW structure
       
  1195  *
       
  1196  *  Reads the NVM Initialization Control Word 2 and returns true
       
  1197  *  (>0) if any manageability is enabled, else false (0).
       
  1198  **/
       
  1199 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
       
  1200 {
       
  1201 	u16 data;
       
  1202 
       
  1203 	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
       
  1204 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
       
  1205 }
       
  1206 
       
  1207 /**
       
  1208  *  e1000_led_on_82574 - Turn LED on
       
  1209  *  @hw: pointer to the HW structure
       
  1210  *
       
  1211  *  Turn LED on.
       
  1212  **/
       
  1213 static s32 e1000_led_on_82574(struct e1000_hw *hw)
       
  1214 {
       
  1215 	u32 ctrl;
       
  1216 	u32 i;
       
  1217 
       
  1218 	ctrl = hw->mac.ledctl_mode2;
       
  1219 	if (!(E1000_STATUS_LU & er32(STATUS))) {
       
  1220 		/*
       
  1221 		 * If no link, then turn LED on by setting the invert bit
       
  1222 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
       
  1223 		 */
       
  1224 		for (i = 0; i < 4; i++)
       
  1225 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
       
  1226 			    E1000_LEDCTL_MODE_LED_ON)
       
  1227 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
       
  1228 	}
       
  1229 	ew32(LEDCTL, ctrl);
       
  1230 
       
  1231 	return 0;
       
  1232 }
       
  1233 
       
  1234 /**
       
  1235  *  e1000_setup_link_82571 - Setup flow control and link settings
       
  1236  *  @hw: pointer to the HW structure
       
  1237  *
       
  1238  *  Determines which flow control settings to use, then configures flow
       
  1239  *  control.  Calls the appropriate media-specific link configuration
       
  1240  *  function.  Assuming the adapter has a valid link partner, a valid link
       
  1241  *  should be established.  Assumes the hardware has previously been reset
       
  1242  *  and the transmitter and receiver are not enabled.
       
  1243  **/
       
  1244 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
       
  1245 {
       
  1246 	/*
       
  1247 	 * 82573 does not have a word in the NVM to determine
       
  1248 	 * the default flow control setting, so we explicitly
       
  1249 	 * set it to full.
       
  1250 	 */
       
  1251 	switch (hw->mac.type) {
       
  1252 	case e1000_82573:
       
  1253 	case e1000_82574:
       
  1254 	case e1000_82583:
       
  1255 		if (hw->fc.requested_mode == e1000_fc_default)
       
  1256 			hw->fc.requested_mode = e1000_fc_full;
       
  1257 		break;
       
  1258 	default:
       
  1259 		break;
       
  1260 	}
       
  1261 
       
  1262 	return e1000e_setup_link(hw);
       
  1263 }
       
  1264 
       
  1265 /**
       
  1266  *  e1000_setup_copper_link_82571 - Configure copper link settings
       
  1267  *  @hw: pointer to the HW structure
       
  1268  *
       
  1269  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
       
  1270  *  for link, once link is established calls to configure collision distance
       
  1271  *  and flow control are called.
       
  1272  **/
       
  1273 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
       
  1274 {
       
  1275 	u32 ctrl;
       
  1276 	s32 ret_val;
       
  1277 
       
  1278 	ctrl = er32(CTRL);
       
  1279 	ctrl |= E1000_CTRL_SLU;
       
  1280 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1281 	ew32(CTRL, ctrl);
       
  1282 
       
  1283 	switch (hw->phy.type) {
       
  1284 	case e1000_phy_m88:
       
  1285 	case e1000_phy_bm:
       
  1286 		ret_val = e1000e_copper_link_setup_m88(hw);
       
  1287 		break;
       
  1288 	case e1000_phy_igp_2:
       
  1289 		ret_val = e1000e_copper_link_setup_igp(hw);
       
  1290 		break;
       
  1291 	default:
       
  1292 		return -E1000_ERR_PHY;
       
  1293 		break;
       
  1294 	}
       
  1295 
       
  1296 	if (ret_val)
       
  1297 		return ret_val;
       
  1298 
       
  1299 	ret_val = e1000e_setup_copper_link(hw);
       
  1300 
       
  1301 	return ret_val;
       
  1302 }
       
  1303 
       
  1304 /**
       
  1305  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
       
  1306  *  @hw: pointer to the HW structure
       
  1307  *
       
  1308  *  Configures collision distance and flow control for fiber and serdes links.
       
  1309  *  Upon successful setup, poll for link.
       
  1310  **/
       
  1311 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
       
  1312 {
       
  1313 	switch (hw->mac.type) {
       
  1314 	case e1000_82571:
       
  1315 	case e1000_82572:
       
  1316 		/*
       
  1317 		 * If SerDes loopback mode is entered, there is no form
       
  1318 		 * of reset to take the adapter out of that mode.  So we
       
  1319 		 * have to explicitly take the adapter out of loopback
       
  1320 		 * mode.  This prevents drivers from twiddling their thumbs
       
  1321 		 * if another tool failed to take it out of loopback mode.
       
  1322 		 */
       
  1323 		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
       
  1324 		break;
       
  1325 	default:
       
  1326 		break;
       
  1327 	}
       
  1328 
       
  1329 	return e1000e_setup_fiber_serdes_link(hw);
       
  1330 }
       
  1331 
       
  1332 /**
       
  1333  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
       
  1334  *  @hw: pointer to the HW structure
       
  1335  *
       
  1336  *  Reports the link state as up or down.
       
  1337  *
       
  1338  *  If autonegotiation is supported by the link partner, the link state is
       
  1339  *  determined by the result of autonegotiation. This is the most likely case.
       
  1340  *  If autonegotiation is not supported by the link partner, and the link
       
  1341  *  has a valid signal, force the link up.
       
  1342  *
       
  1343  *  The link state is represented internally here by 4 states:
       
  1344  *
       
  1345  *  1) down
       
  1346  *  2) autoneg_progress
       
  1347  *  3) autoneg_complete (the link successfully autonegotiated)
       
  1348  *  4) forced_up (the link has been forced up, it did not autonegotiate)
       
  1349  *
       
  1350  **/
       
  1351 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
       
  1352 {
       
  1353 	struct e1000_mac_info *mac = &hw->mac;
       
  1354 	u32 rxcw;
       
  1355 	u32 ctrl;
       
  1356 	u32 status;
       
  1357 	s32 ret_val = 0;
       
  1358 
       
  1359 	ctrl = er32(CTRL);
       
  1360 	status = er32(STATUS);
       
  1361 	rxcw = er32(RXCW);
       
  1362 
       
  1363 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
       
  1364 
       
  1365 		/* Receiver is synchronized with no invalid bits.  */
       
  1366 		switch (mac->serdes_link_state) {
       
  1367 		case e1000_serdes_link_autoneg_complete:
       
  1368 			if (!(status & E1000_STATUS_LU)) {
       
  1369 				/*
       
  1370 				 * We have lost link, retry autoneg before
       
  1371 				 * reporting link failure
       
  1372 				 */
       
  1373 				mac->serdes_link_state =
       
  1374 				    e1000_serdes_link_autoneg_progress;
       
  1375 				mac->serdes_has_link = false;
       
  1376 				e_dbg("AN_UP     -> AN_PROG\n");
       
  1377 			}
       
  1378 		break;
       
  1379 
       
  1380 		case e1000_serdes_link_forced_up:
       
  1381 			/*
       
  1382 			 * If we are receiving /C/ ordered sets, re-enable
       
  1383 			 * auto-negotiation in the TXCW register and disable
       
  1384 			 * forced link in the Device Control register in an
       
  1385 			 * attempt to auto-negotiate with our link partner.
       
  1386 			 */
       
  1387 			if (rxcw & E1000_RXCW_C) {
       
  1388 				/* Enable autoneg, and unforce link up */
       
  1389 				ew32(TXCW, mac->txcw);
       
  1390 				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
  1391 				mac->serdes_link_state =
       
  1392 				    e1000_serdes_link_autoneg_progress;
       
  1393 				mac->serdes_has_link = false;
       
  1394 				e_dbg("FORCED_UP -> AN_PROG\n");
       
  1395 			}
       
  1396 			break;
       
  1397 
       
  1398 		case e1000_serdes_link_autoneg_progress:
       
  1399 			if (rxcw & E1000_RXCW_C) {
       
  1400 				/*
       
  1401 				 * We received /C/ ordered sets, meaning the
       
  1402 				 * link partner has autonegotiated, and we can
       
  1403 				 * trust the Link Up (LU) status bit.
       
  1404 				 */
       
  1405 				if (status & E1000_STATUS_LU) {
       
  1406 					mac->serdes_link_state =
       
  1407 					    e1000_serdes_link_autoneg_complete;
       
  1408 					e_dbg("AN_PROG   -> AN_UP\n");
       
  1409 					mac->serdes_has_link = true;
       
  1410 				} else {
       
  1411 					/* Autoneg completed, but failed. */
       
  1412 					mac->serdes_link_state =
       
  1413 					    e1000_serdes_link_down;
       
  1414 					e_dbg("AN_PROG   -> DOWN\n");
       
  1415 				}
       
  1416 			} else {
       
  1417 				/*
       
  1418 				 * The link partner did not autoneg.
       
  1419 				 * Force link up and full duplex, and change
       
  1420 				 * state to forced.
       
  1421 				 */
       
  1422 				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
  1423 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
  1424 				ew32(CTRL, ctrl);
       
  1425 
       
  1426 				/* Configure Flow Control after link up. */
       
  1427 				ret_val = e1000e_config_fc_after_link_up(hw);
       
  1428 				if (ret_val) {
       
  1429 					e_dbg("Error config flow control\n");
       
  1430 					break;
       
  1431 				}
       
  1432 				mac->serdes_link_state =
       
  1433 				    e1000_serdes_link_forced_up;
       
  1434 				mac->serdes_has_link = true;
       
  1435 				e_dbg("AN_PROG   -> FORCED_UP\n");
       
  1436 			}
       
  1437 			break;
       
  1438 
       
  1439 		case e1000_serdes_link_down:
       
  1440 		default:
       
  1441 			/*
       
  1442 			 * The link was down but the receiver has now gained
       
  1443 			 * valid sync, so lets see if we can bring the link
       
  1444 			 * up.
       
  1445 			 */
       
  1446 			ew32(TXCW, mac->txcw);
       
  1447 			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
  1448 			mac->serdes_link_state =
       
  1449 			    e1000_serdes_link_autoneg_progress;
       
  1450 			e_dbg("DOWN      -> AN_PROG\n");
       
  1451 			break;
       
  1452 		}
       
  1453 	} else {
       
  1454 		if (!(rxcw & E1000_RXCW_SYNCH)) {
       
  1455 			mac->serdes_has_link = false;
       
  1456 			mac->serdes_link_state = e1000_serdes_link_down;
       
  1457 			e_dbg("ANYSTATE  -> DOWN\n");
       
  1458 		} else {
       
  1459 			/*
       
  1460 			 * We have sync, and can tolerate one invalid (IV)
       
  1461 			 * codeword before declaring link down, so reread
       
  1462 			 * to look again.
       
  1463 			 */
       
  1464 			udelay(10);
       
  1465 			rxcw = er32(RXCW);
       
  1466 			if (rxcw & E1000_RXCW_IV) {
       
  1467 				mac->serdes_link_state = e1000_serdes_link_down;
       
  1468 				mac->serdes_has_link = false;
       
  1469 				e_dbg("ANYSTATE  -> DOWN\n");
       
  1470 			}
       
  1471 		}
       
  1472 	}
       
  1473 
       
  1474 	return ret_val;
       
  1475 }
       
  1476 
       
  1477 /**
       
  1478  *  e1000_valid_led_default_82571 - Verify a valid default LED config
       
  1479  *  @hw: pointer to the HW structure
       
  1480  *  @data: pointer to the NVM (EEPROM)
       
  1481  *
       
  1482  *  Read the EEPROM for the current default LED configuration.  If the
       
  1483  *  LED configuration is not valid, set to a valid LED configuration.
       
  1484  **/
       
  1485 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
       
  1486 {
       
  1487 	s32 ret_val;
       
  1488 
       
  1489 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  1490 	if (ret_val) {
       
  1491 		e_dbg("NVM Read Error\n");
       
  1492 		return ret_val;
       
  1493 	}
       
  1494 
       
  1495 	switch (hw->mac.type) {
       
  1496 	case e1000_82573:
       
  1497 	case e1000_82574:
       
  1498 	case e1000_82583:
       
  1499 		if (*data == ID_LED_RESERVED_F746)
       
  1500 			*data = ID_LED_DEFAULT_82573;
       
  1501 		break;
       
  1502 	default:
       
  1503 		if (*data == ID_LED_RESERVED_0000 ||
       
  1504 		    *data == ID_LED_RESERVED_FFFF)
       
  1505 			*data = ID_LED_DEFAULT;
       
  1506 		break;
       
  1507 	}
       
  1508 
       
  1509 	return 0;
       
  1510 }
       
  1511 
       
  1512 /**
       
  1513  *  e1000e_get_laa_state_82571 - Get locally administered address state
       
  1514  *  @hw: pointer to the HW structure
       
  1515  *
       
  1516  *  Retrieve and return the current locally administered address state.
       
  1517  **/
       
  1518 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
       
  1519 {
       
  1520 	if (hw->mac.type != e1000_82571)
       
  1521 		return false;
       
  1522 
       
  1523 	return hw->dev_spec.e82571.laa_is_present;
       
  1524 }
       
  1525 
       
  1526 /**
       
  1527  *  e1000e_set_laa_state_82571 - Set locally administered address state
       
  1528  *  @hw: pointer to the HW structure
       
  1529  *  @state: enable/disable locally administered address
       
  1530  *
       
  1531  *  Enable/Disable the current locally administered address state.
       
  1532  **/
       
  1533 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
       
  1534 {
       
  1535 	if (hw->mac.type != e1000_82571)
       
  1536 		return;
       
  1537 
       
  1538 	hw->dev_spec.e82571.laa_is_present = state;
       
  1539 
       
  1540 	/* If workaround is activated... */
       
  1541 	if (state)
       
  1542 		/*
       
  1543 		 * Hold a copy of the LAA in RAR[14] This is done so that
       
  1544 		 * between the time RAR[0] gets clobbered and the time it
       
  1545 		 * gets fixed, the actual LAA is in one of the RARs and no
       
  1546 		 * incoming packets directed to this port are dropped.
       
  1547 		 * Eventually the LAA will be in RAR[0] and RAR[14].
       
  1548 		 */
       
  1549 		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
       
  1550 }
       
  1551 
       
  1552 /**
       
  1553  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
       
  1554  *  @hw: pointer to the HW structure
       
  1555  *
       
  1556  *  Verifies that the EEPROM has completed the update.  After updating the
       
  1557  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
       
  1558  *  the checksum fix is not implemented, we need to set the bit and update
       
  1559  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
       
  1560  *  we need to return bad checksum.
       
  1561  **/
       
  1562 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
       
  1563 {
       
  1564 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1565 	s32 ret_val;
       
  1566 	u16 data;
       
  1567 
       
  1568 	if (nvm->type != e1000_nvm_flash_hw)
       
  1569 		return 0;
       
  1570 
       
  1571 	/*
       
  1572 	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
       
  1573 	 * 10h-12h.  Checksum may need to be fixed.
       
  1574 	 */
       
  1575 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
       
  1576 	if (ret_val)
       
  1577 		return ret_val;
       
  1578 
       
  1579 	if (!(data & 0x10)) {
       
  1580 		/*
       
  1581 		 * Read 0x23 and check bit 15.  This bit is a 1
       
  1582 		 * when the checksum has already been fixed.  If
       
  1583 		 * the checksum is still wrong and this bit is a
       
  1584 		 * 1, we need to return bad checksum.  Otherwise,
       
  1585 		 * we need to set this bit to a 1 and update the
       
  1586 		 * checksum.
       
  1587 		 */
       
  1588 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
       
  1589 		if (ret_val)
       
  1590 			return ret_val;
       
  1591 
       
  1592 		if (!(data & 0x8000)) {
       
  1593 			data |= 0x8000;
       
  1594 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
       
  1595 			if (ret_val)
       
  1596 				return ret_val;
       
  1597 			ret_val = e1000e_update_nvm_checksum(hw);
       
  1598 		}
       
  1599 	}
       
  1600 
       
  1601 	return 0;
       
  1602 }
       
  1603 
       
  1604 /**
       
  1605  *  e1000_read_mac_addr_82571 - Read device MAC address
       
  1606  *  @hw: pointer to the HW structure
       
  1607  **/
       
  1608 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
       
  1609 {
       
  1610 	s32 ret_val = 0;
       
  1611 
       
  1612 	/*
       
  1613 	 * If there's an alternate MAC address place it in RAR0
       
  1614 	 * so that it will override the Si installed default perm
       
  1615 	 * address.
       
  1616 	 */
       
  1617 	ret_val = e1000_check_alt_mac_addr_generic(hw);
       
  1618 	if (ret_val)
       
  1619 		goto out;
       
  1620 
       
  1621 	ret_val = e1000_read_mac_addr_generic(hw);
       
  1622 
       
  1623 out:
       
  1624 	return ret_val;
       
  1625 }
       
  1626 
       
  1627 /**
       
  1628  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
       
  1629  * @hw: pointer to the HW structure
       
  1630  *
       
  1631  * In the case of a PHY power down to save power, or to turn off link during a
       
  1632  * driver unload, or wake on lan is not enabled, remove the link.
       
  1633  **/
       
  1634 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
       
  1635 {
       
  1636 	struct e1000_phy_info *phy = &hw->phy;
       
  1637 	struct e1000_mac_info *mac = &hw->mac;
       
  1638 
       
  1639 	if (!(phy->ops.check_reset_block))
       
  1640 		return;
       
  1641 
       
  1642 	/* If the management interface is not enabled, then power down */
       
  1643 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
       
  1644 		e1000_power_down_phy_copper(hw);
       
  1645 
       
  1646 	return;
       
  1647 }
       
  1648 
       
  1649 /**
       
  1650  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
       
  1651  *  @hw: pointer to the HW structure
       
  1652  *
       
  1653  *  Clears the hardware counters by reading the counter registers.
       
  1654  **/
       
  1655 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
       
  1656 {
       
  1657 	e1000e_clear_hw_cntrs_base(hw);
       
  1658 
       
  1659 	er32(PRC64);
       
  1660 	er32(PRC127);
       
  1661 	er32(PRC255);
       
  1662 	er32(PRC511);
       
  1663 	er32(PRC1023);
       
  1664 	er32(PRC1522);
       
  1665 	er32(PTC64);
       
  1666 	er32(PTC127);
       
  1667 	er32(PTC255);
       
  1668 	er32(PTC511);
       
  1669 	er32(PTC1023);
       
  1670 	er32(PTC1522);
       
  1671 
       
  1672 	er32(ALGNERRC);
       
  1673 	er32(RXERRC);
       
  1674 	er32(TNCRS);
       
  1675 	er32(CEXTERR);
       
  1676 	er32(TSCTC);
       
  1677 	er32(TSCTFC);
       
  1678 
       
  1679 	er32(MGTPRC);
       
  1680 	er32(MGTPDC);
       
  1681 	er32(MGTPTC);
       
  1682 
       
  1683 	er32(IAC);
       
  1684 	er32(ICRXOC);
       
  1685 
       
  1686 	er32(ICRXPTC);
       
  1687 	er32(ICRXATC);
       
  1688 	er32(ICTXPTC);
       
  1689 	er32(ICTXATC);
       
  1690 	er32(ICTXQEC);
       
  1691 	er32(ICTXQMTC);
       
  1692 	er32(ICRXDMTC);
       
  1693 }
       
  1694 
       
  1695 static struct e1000_mac_operations e82571_mac_ops = {
       
  1696 	/* .check_mng_mode: mac type dependent */
       
  1697 	/* .check_for_link: media type dependent */
       
  1698 	.id_led_init		= e1000e_id_led_init,
       
  1699 	.cleanup_led		= e1000e_cleanup_led_generic,
       
  1700 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
       
  1701 	.get_bus_info		= e1000e_get_bus_info_pcie,
       
  1702 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
       
  1703 	/* .get_link_up_info: media type dependent */
       
  1704 	/* .led_on: mac type dependent */
       
  1705 	.led_off		= e1000e_led_off_generic,
       
  1706 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
       
  1707 	.write_vfta		= e1000_write_vfta_generic,
       
  1708 	.clear_vfta		= e1000_clear_vfta_82571,
       
  1709 	.reset_hw		= e1000_reset_hw_82571,
       
  1710 	.init_hw		= e1000_init_hw_82571,
       
  1711 	.setup_link		= e1000_setup_link_82571,
       
  1712 	/* .setup_physical_interface: media type dependent */
       
  1713 	.setup_led		= e1000e_setup_led_generic,
       
  1714 	.read_mac_addr		= e1000_read_mac_addr_82571,
       
  1715 };
       
  1716 
       
  1717 static struct e1000_phy_operations e82_phy_ops_igp = {
       
  1718 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1719 	.check_polarity		= e1000_check_polarity_igp,
       
  1720 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1721 	.commit			= NULL,
       
  1722 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
       
  1723 	.get_cfg_done		= e1000_get_cfg_done_82571,
       
  1724 	.get_cable_length	= e1000e_get_cable_length_igp_2,
       
  1725 	.get_info		= e1000e_get_phy_info_igp,
       
  1726 	.read_reg		= e1000e_read_phy_reg_igp,
       
  1727 	.release		= e1000_put_hw_semaphore_82571,
       
  1728 	.reset			= e1000e_phy_hw_reset_generic,
       
  1729 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  1730 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1731 	.write_reg		= e1000e_write_phy_reg_igp,
       
  1732 	.cfg_on_link_up      	= NULL,
       
  1733 };
       
  1734 
       
  1735 static struct e1000_phy_operations e82_phy_ops_m88 = {
       
  1736 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1737 	.check_polarity		= e1000_check_polarity_m88,
       
  1738 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1739 	.commit			= e1000e_phy_sw_reset,
       
  1740 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
       
  1741 	.get_cfg_done		= e1000e_get_cfg_done,
       
  1742 	.get_cable_length	= e1000e_get_cable_length_m88,
       
  1743 	.get_info		= e1000e_get_phy_info_m88,
       
  1744 	.read_reg		= e1000e_read_phy_reg_m88,
       
  1745 	.release		= e1000_put_hw_semaphore_82571,
       
  1746 	.reset			= e1000e_phy_hw_reset_generic,
       
  1747 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  1748 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1749 	.write_reg		= e1000e_write_phy_reg_m88,
       
  1750 	.cfg_on_link_up      	= NULL,
       
  1751 };
       
  1752 
       
  1753 static struct e1000_phy_operations e82_phy_ops_bm = {
       
  1754 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1755 	.check_polarity		= e1000_check_polarity_m88,
       
  1756 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1757 	.commit			= e1000e_phy_sw_reset,
       
  1758 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
       
  1759 	.get_cfg_done		= e1000e_get_cfg_done,
       
  1760 	.get_cable_length	= e1000e_get_cable_length_m88,
       
  1761 	.get_info		= e1000e_get_phy_info_m88,
       
  1762 	.read_reg		= e1000e_read_phy_reg_bm2,
       
  1763 	.release		= e1000_put_hw_semaphore_82571,
       
  1764 	.reset			= e1000e_phy_hw_reset_generic,
       
  1765 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  1766 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1767 	.write_reg		= e1000e_write_phy_reg_bm2,
       
  1768 	.cfg_on_link_up      	= NULL,
       
  1769 };
       
  1770 
       
  1771 static struct e1000_nvm_operations e82571_nvm_ops = {
       
  1772 	.acquire		= e1000_acquire_nvm_82571,
       
  1773 	.read			= e1000e_read_nvm_eerd,
       
  1774 	.release		= e1000_release_nvm_82571,
       
  1775 	.update			= e1000_update_nvm_checksum_82571,
       
  1776 	.valid_led_default	= e1000_valid_led_default_82571,
       
  1777 	.validate		= e1000_validate_nvm_checksum_82571,
       
  1778 	.write			= e1000_write_nvm_82571,
       
  1779 };
       
  1780 
       
  1781 struct e1000_info e1000_82571_info = {
       
  1782 	.mac			= e1000_82571,
       
  1783 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1784 				  | FLAG_HAS_JUMBO_FRAMES
       
  1785 				  | FLAG_HAS_WOL
       
  1786 				  | FLAG_APME_IN_CTRL3
       
  1787 				  | FLAG_RX_CSUM_ENABLED
       
  1788 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  1789 				  | FLAG_HAS_SMART_POWER_DOWN
       
  1790 				  | FLAG_RESET_OVERWRITES_LAA /* errata */
       
  1791 				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
       
  1792 				  | FLAG_APME_CHECK_PORT_B,
       
  1793 	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
       
  1794 	.pba			= 38,
       
  1795 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  1796 	.get_variants		= e1000_get_variants_82571,
       
  1797 	.mac_ops		= &e82571_mac_ops,
       
  1798 	.phy_ops		= &e82_phy_ops_igp,
       
  1799 	.nvm_ops		= &e82571_nvm_ops,
       
  1800 };
       
  1801 
       
  1802 struct e1000_info e1000_82572_info = {
       
  1803 	.mac			= e1000_82572,
       
  1804 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1805 				  | FLAG_HAS_JUMBO_FRAMES
       
  1806 				  | FLAG_HAS_WOL
       
  1807 				  | FLAG_APME_IN_CTRL3
       
  1808 				  | FLAG_RX_CSUM_ENABLED
       
  1809 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  1810 				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
       
  1811 	.flags2			= FLAG2_DISABLE_ASPM_L1, /* errata 13 */
       
  1812 	.pba			= 38,
       
  1813 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  1814 	.get_variants		= e1000_get_variants_82571,
       
  1815 	.mac_ops		= &e82571_mac_ops,
       
  1816 	.phy_ops		= &e82_phy_ops_igp,
       
  1817 	.nvm_ops		= &e82571_nvm_ops,
       
  1818 };
       
  1819 
       
  1820 struct e1000_info e1000_82573_info = {
       
  1821 	.mac			= e1000_82573,
       
  1822 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1823 				  | FLAG_HAS_WOL
       
  1824 				  | FLAG_APME_IN_CTRL3
       
  1825 				  | FLAG_RX_CSUM_ENABLED
       
  1826 				  | FLAG_HAS_SMART_POWER_DOWN
       
  1827 				  | FLAG_HAS_AMT
       
  1828 				  | FLAG_HAS_SWSM_ON_LOAD,
       
  1829 	.pba			= 20,
       
  1830 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
       
  1831 	.get_variants		= e1000_get_variants_82571,
       
  1832 	.mac_ops		= &e82571_mac_ops,
       
  1833 	.phy_ops		= &e82_phy_ops_m88,
       
  1834 	.nvm_ops		= &e82571_nvm_ops,
       
  1835 };
       
  1836 
       
  1837 struct e1000_info e1000_82574_info = {
       
  1838 	.mac			= e1000_82574,
       
  1839 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1840 				  | FLAG_HAS_MSIX
       
  1841 				  | FLAG_HAS_JUMBO_FRAMES
       
  1842 				  | FLAG_HAS_WOL
       
  1843 				  | FLAG_APME_IN_CTRL3
       
  1844 				  | FLAG_RX_CSUM_ENABLED
       
  1845 				  | FLAG_HAS_SMART_POWER_DOWN
       
  1846 				  | FLAG_HAS_AMT
       
  1847 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
       
  1848 	.pba			= 20,
       
  1849 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  1850 	.get_variants		= e1000_get_variants_82571,
       
  1851 	.mac_ops		= &e82571_mac_ops,
       
  1852 	.phy_ops		= &e82_phy_ops_bm,
       
  1853 	.nvm_ops		= &e82571_nvm_ops,
       
  1854 };
       
  1855 
       
  1856 struct e1000_info e1000_82583_info = {
       
  1857 	.mac			= e1000_82583,
       
  1858 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1859 				  | FLAG_HAS_WOL
       
  1860 				  | FLAG_APME_IN_CTRL3
       
  1861 				  | FLAG_RX_CSUM_ENABLED
       
  1862 				  | FLAG_HAS_SMART_POWER_DOWN
       
  1863 				  | FLAG_HAS_AMT
       
  1864 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
       
  1865 	.pba			= 20,
       
  1866 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
       
  1867 	.get_variants		= e1000_get_variants_82571,
       
  1868 	.mac_ops		= &e82571_mac_ops,
       
  1869 	.phy_ops		= &e82_phy_ops_bm,
       
  1870 	.nvm_ops		= &e82571_nvm_ops,
       
  1871 };
       
  1872