devices/igb/igb_ptp-3.18-ethercat.c
branchstable-1.5
changeset 2685 740291442c05
equal deleted inserted replaced
2684:56587a22d05c 2685:740291442c05
       
     1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
       
     2  *
       
     3  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
       
     4  *
       
     5  * This program is free software; you can redistribute it and/or modify
       
     6  * it under the terms of the GNU General Public License as published by
       
     7  * the Free Software Foundation; either version 2 of the License, or
       
     8  * (at your option) any later version.
       
     9  *
       
    10  * This program is distributed in the hope that it will be useful,
       
    11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
       
    12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
       
    13  * GNU General Public License for more details.
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License along with
       
    16  * this program; if not, see <http://www.gnu.org/licenses/>.
       
    17  */
       
    18 #include <linux/module.h>
       
    19 #include <linux/device.h>
       
    20 #include <linux/pci.h>
       
    21 #include <linux/ptp_classify.h>
       
    22 
       
    23 #include "igb-3.18-ethercat.h"
       
    24 
       
    25 #define INCVALUE_MASK		0x7fffffff
       
    26 #define ISGN			0x80000000
       
    27 
       
    28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
       
    29  * and this update value cannot be reprogrammed.
       
    30  *
       
    31  * Neither the 82576 nor the 82580 offer registers wide enough to hold
       
    32  * nanoseconds time values for very long. For the 82580, SYSTIM always
       
    33  * counts nanoseconds, but the upper 24 bits are not availible. The
       
    34  * frequency is adjusted by changing the 32 bit fractional nanoseconds
       
    35  * register, TIMINCA.
       
    36  *
       
    37  * For the 82576, the SYSTIM register time unit is affect by the
       
    38  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
       
    39  * field are needed to provide the nominal 16 nanosecond period,
       
    40  * leaving 19 bits for fractional nanoseconds.
       
    41  *
       
    42  * We scale the NIC clock cycle by a large factor so that relatively
       
    43  * small clock corrections can be added or subtracted at each clock
       
    44  * tick. The drawbacks of a large factor are a) that the clock
       
    45  * register overflows more quickly (not such a big deal) and b) that
       
    46  * the increment per tick has to fit into 24 bits.  As a result we
       
    47  * need to use a shift of 19 so we can fit a value of 16 into the
       
    48  * TIMINCA register.
       
    49  *
       
    50  *
       
    51  *             SYSTIMH            SYSTIML
       
    52  *        +--------------+   +---+---+------+
       
    53  *  82576 |      32      |   | 8 | 5 |  19  |
       
    54  *        +--------------+   +---+---+------+
       
    55  *         \________ 45 bits _______/  fract
       
    56  *
       
    57  *        +----------+---+   +--------------+
       
    58  *  82580 |    24    | 8 |   |      32      |
       
    59  *        +----------+---+   +--------------+
       
    60  *          reserved  \______ 40 bits _____/
       
    61  *
       
    62  *
       
    63  * The 45 bit 82576 SYSTIM overflows every
       
    64  *   2^45 * 10^-9 / 3600 = 9.77 hours.
       
    65  *
       
    66  * The 40 bit 82580 SYSTIM overflows every
       
    67  *   2^40 * 10^-9 /  60  = 18.3 minutes.
       
    68  */
       
    69 
       
    70 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
       
    71 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
       
    72 #define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
       
    73 #define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
       
    74 #define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
       
    75 #define IGB_NBITS_82580			40
       
    76 
       
    77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
       
    78 
       
    79 /* SYSTIM read access for the 82576 */
       
    80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
       
    81 {
       
    82 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
       
    83 	struct e1000_hw *hw = &igb->hw;
       
    84 	u64 val;
       
    85 	u32 lo, hi;
       
    86 
       
    87 	lo = rd32(E1000_SYSTIML);
       
    88 	hi = rd32(E1000_SYSTIMH);
       
    89 
       
    90 	val = ((u64) hi) << 32;
       
    91 	val |= lo;
       
    92 
       
    93 	return val;
       
    94 }
       
    95 
       
    96 /* SYSTIM read access for the 82580 */
       
    97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
       
    98 {
       
    99 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
       
   100 	struct e1000_hw *hw = &igb->hw;
       
   101 	u32 lo, hi;
       
   102 	u64 val;
       
   103 
       
   104 	/* The timestamp latches on lowest register read. For the 82580
       
   105 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
       
   106 	 * need to provide nanosecond resolution, so we just ignore it.
       
   107 	 */
       
   108 	rd32(E1000_SYSTIMR);
       
   109 	lo = rd32(E1000_SYSTIML);
       
   110 	hi = rd32(E1000_SYSTIMH);
       
   111 
       
   112 	val = ((u64) hi) << 32;
       
   113 	val |= lo;
       
   114 
       
   115 	return val;
       
   116 }
       
   117 
       
   118 /* SYSTIM read access for I210/I211 */
       
   119 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
       
   120 {
       
   121 	struct e1000_hw *hw = &adapter->hw;
       
   122 	u32 sec, nsec;
       
   123 
       
   124 	/* The timestamp latches on lowest register read. For I210/I211, the
       
   125 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
       
   126 	 * resolution, we can ignore it.
       
   127 	 */
       
   128 	rd32(E1000_SYSTIMR);
       
   129 	nsec = rd32(E1000_SYSTIML);
       
   130 	sec = rd32(E1000_SYSTIMH);
       
   131 
       
   132 	ts->tv_sec = sec;
       
   133 	ts->tv_nsec = nsec;
       
   134 }
       
   135 
       
   136 static void igb_ptp_write_i210(struct igb_adapter *adapter,
       
   137 			       const struct timespec *ts)
       
   138 {
       
   139 	struct e1000_hw *hw = &adapter->hw;
       
   140 
       
   141 	/* Writing the SYSTIMR register is not necessary as it only provides
       
   142 	 * sub-nanosecond resolution.
       
   143 	 */
       
   144 	wr32(E1000_SYSTIML, ts->tv_nsec);
       
   145 	wr32(E1000_SYSTIMH, ts->tv_sec);
       
   146 }
       
   147 
       
   148 /**
       
   149  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
       
   150  * @adapter: board private structure
       
   151  * @hwtstamps: timestamp structure to update
       
   152  * @systim: unsigned 64bit system time value.
       
   153  *
       
   154  * We need to convert the system time value stored in the RX/TXSTMP registers
       
   155  * into a hwtstamp which can be used by the upper level timestamping functions.
       
   156  *
       
   157  * The 'tmreg_lock' spinlock is used to protect the consistency of the
       
   158  * system time value. This is needed because reading the 64 bit time
       
   159  * value involves reading two (or three) 32 bit registers. The first
       
   160  * read latches the value. Ditto for writing.
       
   161  *
       
   162  * In addition, here have extended the system time with an overflow
       
   163  * counter in software.
       
   164  **/
       
   165 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
       
   166 				       struct skb_shared_hwtstamps *hwtstamps,
       
   167 				       u64 systim)
       
   168 {
       
   169 	unsigned long flags;
       
   170 	u64 ns;
       
   171 
       
   172 	switch (adapter->hw.mac.type) {
       
   173 	case e1000_82576:
       
   174 	case e1000_82580:
       
   175 	case e1000_i354:
       
   176 	case e1000_i350:
       
   177 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
       
   178 
       
   179 		ns = timecounter_cyc2time(&adapter->tc, systim);
       
   180 
       
   181 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
       
   182 
       
   183 		memset(hwtstamps, 0, sizeof(*hwtstamps));
       
   184 		hwtstamps->hwtstamp = ns_to_ktime(ns);
       
   185 		break;
       
   186 	case e1000_i210:
       
   187 	case e1000_i211:
       
   188 		memset(hwtstamps, 0, sizeof(*hwtstamps));
       
   189 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
       
   190 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
       
   191 						systim & 0xFFFFFFFF);
       
   192 		break;
       
   193 	default:
       
   194 		break;
       
   195 	}
       
   196 }
       
   197 
       
   198 /* PTP clock operations */
       
   199 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
       
   200 {
       
   201 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
       
   202 					       ptp_caps);
       
   203 	struct e1000_hw *hw = &igb->hw;
       
   204 	int neg_adj = 0;
       
   205 	u64 rate;
       
   206 	u32 incvalue;
       
   207 
       
   208 	if (ppb < 0) {
       
   209 		neg_adj = 1;
       
   210 		ppb = -ppb;
       
   211 	}
       
   212 	rate = ppb;
       
   213 	rate <<= 14;
       
   214 	rate = div_u64(rate, 1953125);
       
   215 
       
   216 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
       
   217 
       
   218 	if (neg_adj)
       
   219 		incvalue -= rate;
       
   220 	else
       
   221 		incvalue += rate;
       
   222 
       
   223 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
       
   224 
       
   225 	return 0;
       
   226 }
       
   227 
       
   228 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
       
   229 {
       
   230 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
       
   231 					       ptp_caps);
       
   232 	struct e1000_hw *hw = &igb->hw;
       
   233 	int neg_adj = 0;
       
   234 	u64 rate;
       
   235 	u32 inca;
       
   236 
       
   237 	if (ppb < 0) {
       
   238 		neg_adj = 1;
       
   239 		ppb = -ppb;
       
   240 	}
       
   241 	rate = ppb;
       
   242 	rate <<= 26;
       
   243 	rate = div_u64(rate, 1953125);
       
   244 
       
   245 	inca = rate & INCVALUE_MASK;
       
   246 	if (neg_adj)
       
   247 		inca |= ISGN;
       
   248 
       
   249 	wr32(E1000_TIMINCA, inca);
       
   250 
       
   251 	return 0;
       
   252 }
       
   253 
       
   254 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
       
   255 {
       
   256 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
       
   257 					       ptp_caps);
       
   258 	unsigned long flags;
       
   259 	s64 now;
       
   260 
       
   261 	spin_lock_irqsave(&igb->tmreg_lock, flags);
       
   262 
       
   263 	now = timecounter_read(&igb->tc);
       
   264 	now += delta;
       
   265 	timecounter_init(&igb->tc, &igb->cc, now);
       
   266 
       
   267 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
       
   268 
       
   269 	return 0;
       
   270 }
       
   271 
       
   272 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
       
   273 {
       
   274 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
       
   275 					       ptp_caps);
       
   276 	unsigned long flags;
       
   277 	struct timespec now, then = ns_to_timespec(delta);
       
   278 
       
   279 	spin_lock_irqsave(&igb->tmreg_lock, flags);
       
   280 
       
   281 	igb_ptp_read_i210(igb, &now);
       
   282 	now = timespec_add(now, then);
       
   283 	igb_ptp_write_i210(igb, (const struct timespec *)&now);
       
   284 
       
   285 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
       
   286 
       
   287 	return 0;
       
   288 }
       
   289 
       
   290 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
       
   291 				 struct timespec *ts)
       
   292 {
       
   293 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
       
   294 					       ptp_caps);
       
   295 	unsigned long flags;
       
   296 	u64 ns;
       
   297 	u32 remainder;
       
   298 
       
   299 	spin_lock_irqsave(&igb->tmreg_lock, flags);
       
   300 
       
   301 	ns = timecounter_read(&igb->tc);
       
   302 
       
   303 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
       
   304 
       
   305 	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
       
   306 	ts->tv_nsec = remainder;
       
   307 
       
   308 	return 0;
       
   309 }
       
   310 
       
   311 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
       
   312 				struct timespec *ts)
       
   313 {
       
   314 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
       
   315 					       ptp_caps);
       
   316 	unsigned long flags;
       
   317 
       
   318 	spin_lock_irqsave(&igb->tmreg_lock, flags);
       
   319 
       
   320 	igb_ptp_read_i210(igb, ts);
       
   321 
       
   322 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
       
   323 
       
   324 	return 0;
       
   325 }
       
   326 
       
   327 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
       
   328 				 const struct timespec *ts)
       
   329 {
       
   330 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
       
   331 					       ptp_caps);
       
   332 	unsigned long flags;
       
   333 	u64 ns;
       
   334 
       
   335 	ns = ts->tv_sec * 1000000000ULL;
       
   336 	ns += ts->tv_nsec;
       
   337 
       
   338 	spin_lock_irqsave(&igb->tmreg_lock, flags);
       
   339 
       
   340 	timecounter_init(&igb->tc, &igb->cc, ns);
       
   341 
       
   342 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
       
   343 
       
   344 	return 0;
       
   345 }
       
   346 
       
   347 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
       
   348 				const struct timespec *ts)
       
   349 {
       
   350 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
       
   351 					       ptp_caps);
       
   352 	unsigned long flags;
       
   353 
       
   354 	spin_lock_irqsave(&igb->tmreg_lock, flags);
       
   355 
       
   356 	igb_ptp_write_i210(igb, ts);
       
   357 
       
   358 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
       
   359 
       
   360 	return 0;
       
   361 }
       
   362 
       
   363 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
       
   364 				  struct ptp_clock_request *rq, int on)
       
   365 {
       
   366 	return -EOPNOTSUPP;
       
   367 }
       
   368 
       
   369 /**
       
   370  * igb_ptp_tx_work
       
   371  * @work: pointer to work struct
       
   372  *
       
   373  * This work function polls the TSYNCTXCTL valid bit to determine when a
       
   374  * timestamp has been taken for the current stored skb.
       
   375  **/
       
   376 static void igb_ptp_tx_work(struct work_struct *work)
       
   377 {
       
   378 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
       
   379 						   ptp_tx_work);
       
   380 	struct e1000_hw *hw = &adapter->hw;
       
   381 	u32 tsynctxctl;
       
   382 
       
   383 	if (!adapter->ptp_tx_skb)
       
   384 		return;
       
   385 
       
   386 	if (time_is_before_jiffies(adapter->ptp_tx_start +
       
   387 				   IGB_PTP_TX_TIMEOUT)) {
       
   388 		dev_kfree_skb_any(adapter->ptp_tx_skb);
       
   389 		adapter->ptp_tx_skb = NULL;
       
   390 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
       
   391 		adapter->tx_hwtstamp_timeouts++;
       
   392 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
       
   393 		return;
       
   394 	}
       
   395 
       
   396 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
       
   397 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
       
   398 		igb_ptp_tx_hwtstamp(adapter);
       
   399 	else
       
   400 		/* reschedule to check later */
       
   401 		schedule_work(&adapter->ptp_tx_work);
       
   402 }
       
   403 
       
   404 static void igb_ptp_overflow_check(struct work_struct *work)
       
   405 {
       
   406 	struct igb_adapter *igb =
       
   407 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
       
   408 	struct timespec ts;
       
   409 
       
   410 	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
       
   411 
       
   412 	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
       
   413 
       
   414 	schedule_delayed_work(&igb->ptp_overflow_work,
       
   415 			      IGB_SYSTIM_OVERFLOW_PERIOD);
       
   416 }
       
   417 
       
   418 /**
       
   419  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
       
   420  * @adapter: private network adapter structure
       
   421  *
       
   422  * This watchdog task is scheduled to detect error case where hardware has
       
   423  * dropped an Rx packet that was timestamped when the ring is full. The
       
   424  * particular error is rare but leaves the device in a state unable to timestamp
       
   425  * any future packets.
       
   426  **/
       
   427 void igb_ptp_rx_hang(struct igb_adapter *adapter)
       
   428 {
       
   429 	struct e1000_hw *hw = &adapter->hw;
       
   430 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
       
   431 	unsigned long rx_event;
       
   432 
       
   433 	if (hw->mac.type != e1000_82576)
       
   434 		return;
       
   435 
       
   436 	/* If we don't have a valid timestamp in the registers, just update the
       
   437 	 * timeout counter and exit
       
   438 	 */
       
   439 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
       
   440 		adapter->last_rx_ptp_check = jiffies;
       
   441 		return;
       
   442 	}
       
   443 
       
   444 	/* Determine the most recent watchdog or rx_timestamp event */
       
   445 	rx_event = adapter->last_rx_ptp_check;
       
   446 	if (time_after(adapter->last_rx_timestamp, rx_event))
       
   447 		rx_event = adapter->last_rx_timestamp;
       
   448 
       
   449 	/* Only need to read the high RXSTMP register to clear the lock */
       
   450 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
       
   451 		rd32(E1000_RXSTMPH);
       
   452 		adapter->last_rx_ptp_check = jiffies;
       
   453 		adapter->rx_hwtstamp_cleared++;
       
   454 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
       
   455 	}
       
   456 }
       
   457 
       
   458 /**
       
   459  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
       
   460  * @adapter: Board private structure.
       
   461  *
       
   462  * If we were asked to do hardware stamping and such a time stamp is
       
   463  * available, then it must have been for this skb here because we only
       
   464  * allow only one such packet into the queue.
       
   465  **/
       
   466 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
       
   467 {
       
   468 	struct e1000_hw *hw = &adapter->hw;
       
   469 	struct skb_shared_hwtstamps shhwtstamps;
       
   470 	u64 regval;
       
   471 
       
   472 	regval = rd32(E1000_TXSTMPL);
       
   473 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
       
   474 
       
   475 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
       
   476 	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
       
   477 	dev_kfree_skb_any(adapter->ptp_tx_skb);
       
   478 	adapter->ptp_tx_skb = NULL;
       
   479 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
       
   480 }
       
   481 
       
   482 /**
       
   483  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
       
   484  * @q_vector: Pointer to interrupt specific structure
       
   485  * @va: Pointer to address containing Rx buffer
       
   486  * @skb: Buffer containing timestamp and packet
       
   487  *
       
   488  * This function is meant to retrieve a timestamp from the first buffer of an
       
   489  * incoming frame.  The value is stored in little endian format starting on
       
   490  * byte 8.
       
   491  **/
       
   492 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
       
   493 			 unsigned char *va,
       
   494 			 struct sk_buff *skb)
       
   495 {
       
   496 	__le64 *regval = (__le64 *)va;
       
   497 
       
   498 	/* The timestamp is recorded in little endian format.
       
   499 	 * DWORD: 0        1        2        3
       
   500 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
       
   501 	 */
       
   502 	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
       
   503 				   le64_to_cpu(regval[1]));
       
   504 }
       
   505 
       
   506 /**
       
   507  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
       
   508  * @q_vector: Pointer to interrupt specific structure
       
   509  * @skb: Buffer containing timestamp and packet
       
   510  *
       
   511  * This function is meant to retrieve a timestamp from the internal registers
       
   512  * of the adapter and store it in the skb.
       
   513  **/
       
   514 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
       
   515 			 struct sk_buff *skb)
       
   516 {
       
   517 	struct igb_adapter *adapter = q_vector->adapter;
       
   518 	struct e1000_hw *hw = &adapter->hw;
       
   519 	u64 regval;
       
   520 
       
   521 	/* If this bit is set, then the RX registers contain the time stamp. No
       
   522 	 * other packet will be time stamped until we read these registers, so
       
   523 	 * read the registers to make them available again. Because only one
       
   524 	 * packet can be time stamped at a time, we know that the register
       
   525 	 * values must belong to this one here and therefore we don't need to
       
   526 	 * compare any of the additional attributes stored for it.
       
   527 	 *
       
   528 	 * If nothing went wrong, then it should have a shared tx_flags that we
       
   529 	 * can turn into a skb_shared_hwtstamps.
       
   530 	 */
       
   531 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
       
   532 		return;
       
   533 
       
   534 	regval = rd32(E1000_RXSTMPL);
       
   535 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
       
   536 
       
   537 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
       
   538 
       
   539 	/* Update the last_rx_timestamp timer in order to enable watchdog check
       
   540 	 * for error case of latched timestamp on a dropped packet.
       
   541 	 */
       
   542 	adapter->last_rx_timestamp = jiffies;
       
   543 }
       
   544 
       
   545 /**
       
   546  * igb_ptp_get_ts_config - get hardware time stamping config
       
   547  * @netdev:
       
   548  * @ifreq:
       
   549  *
       
   550  * Get the hwtstamp_config settings to return to the user. Rather than attempt
       
   551  * to deconstruct the settings from the registers, just return a shadow copy
       
   552  * of the last known settings.
       
   553  **/
       
   554 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
       
   555 {
       
   556 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   557 	struct hwtstamp_config *config = &adapter->tstamp_config;
       
   558 
       
   559 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
       
   560 		-EFAULT : 0;
       
   561 }
       
   562 
       
   563 /**
       
   564  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
       
   565  * @adapter: networking device structure
       
   566  * @config: hwtstamp configuration
       
   567  *
       
   568  * Outgoing time stamping can be enabled and disabled. Play nice and
       
   569  * disable it when requested, although it shouldn't case any overhead
       
   570  * when no packet needs it. At most one packet in the queue may be
       
   571  * marked for time stamping, otherwise it would be impossible to tell
       
   572  * for sure to which packet the hardware time stamp belongs.
       
   573  *
       
   574  * Incoming time stamping has to be configured via the hardware
       
   575  * filters. Not all combinations are supported, in particular event
       
   576  * type has to be specified. Matching the kind of event packet is
       
   577  * not supported, with the exception of "all V2 events regardless of
       
   578  * level 2 or 4".
       
   579  */
       
   580 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
       
   581 				      struct hwtstamp_config *config)
       
   582 {
       
   583 	struct e1000_hw *hw = &adapter->hw;
       
   584 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
       
   585 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
       
   586 	u32 tsync_rx_cfg = 0;
       
   587 	bool is_l4 = false;
       
   588 	bool is_l2 = false;
       
   589 	u32 regval;
       
   590 
       
   591 	/* reserved for future extensions */
       
   592 	if (config->flags)
       
   593 		return -EINVAL;
       
   594 
       
   595 	switch (config->tx_type) {
       
   596 	case HWTSTAMP_TX_OFF:
       
   597 		tsync_tx_ctl = 0;
       
   598 	case HWTSTAMP_TX_ON:
       
   599 		break;
       
   600 	default:
       
   601 		return -ERANGE;
       
   602 	}
       
   603 
       
   604 	switch (config->rx_filter) {
       
   605 	case HWTSTAMP_FILTER_NONE:
       
   606 		tsync_rx_ctl = 0;
       
   607 		break;
       
   608 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
       
   609 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
       
   610 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
       
   611 		is_l4 = true;
       
   612 		break;
       
   613 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
       
   614 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
       
   615 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
       
   616 		is_l4 = true;
       
   617 		break;
       
   618 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
       
   619 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
       
   620 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
       
   621 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
       
   622 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
       
   623 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
       
   624 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
       
   625 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
       
   626 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
       
   627 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
       
   628 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
       
   629 		is_l2 = true;
       
   630 		is_l4 = true;
       
   631 		break;
       
   632 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
       
   633 	case HWTSTAMP_FILTER_ALL:
       
   634 		/* 82576 cannot timestamp all packets, which it needs to do to
       
   635 		 * support both V1 Sync and Delay_Req messages
       
   636 		 */
       
   637 		if (hw->mac.type != e1000_82576) {
       
   638 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
       
   639 			config->rx_filter = HWTSTAMP_FILTER_ALL;
       
   640 			break;
       
   641 		}
       
   642 		/* fall through */
       
   643 	default:
       
   644 		config->rx_filter = HWTSTAMP_FILTER_NONE;
       
   645 		return -ERANGE;
       
   646 	}
       
   647 
       
   648 	if (hw->mac.type == e1000_82575) {
       
   649 		if (tsync_rx_ctl | tsync_tx_ctl)
       
   650 			return -EINVAL;
       
   651 		return 0;
       
   652 	}
       
   653 
       
   654 	/* Per-packet timestamping only works if all packets are
       
   655 	 * timestamped, so enable timestamping in all packets as
       
   656 	 * long as one Rx filter was configured.
       
   657 	 */
       
   658 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
       
   659 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
       
   660 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
       
   661 		config->rx_filter = HWTSTAMP_FILTER_ALL;
       
   662 		is_l2 = true;
       
   663 		is_l4 = true;
       
   664 
       
   665 		if ((hw->mac.type == e1000_i210) ||
       
   666 		    (hw->mac.type == e1000_i211)) {
       
   667 			regval = rd32(E1000_RXPBS);
       
   668 			regval |= E1000_RXPBS_CFG_TS_EN;
       
   669 			wr32(E1000_RXPBS, regval);
       
   670 		}
       
   671 	}
       
   672 
       
   673 	/* enable/disable TX */
       
   674 	regval = rd32(E1000_TSYNCTXCTL);
       
   675 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
       
   676 	regval |= tsync_tx_ctl;
       
   677 	wr32(E1000_TSYNCTXCTL, regval);
       
   678 
       
   679 	/* enable/disable RX */
       
   680 	regval = rd32(E1000_TSYNCRXCTL);
       
   681 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
       
   682 	regval |= tsync_rx_ctl;
       
   683 	wr32(E1000_TSYNCRXCTL, regval);
       
   684 
       
   685 	/* define which PTP packets are time stamped */
       
   686 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
       
   687 
       
   688 	/* define ethertype filter for timestamped packets */
       
   689 	if (is_l2)
       
   690 		wr32(E1000_ETQF(3),
       
   691 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
       
   692 		      E1000_ETQF_1588 | /* enable timestamping */
       
   693 		      ETH_P_1588));     /* 1588 eth protocol type */
       
   694 	else
       
   695 		wr32(E1000_ETQF(3), 0);
       
   696 
       
   697 	/* L4 Queue Filter[3]: filter by destination port and protocol */
       
   698 	if (is_l4) {
       
   699 		u32 ftqf = (IPPROTO_UDP /* UDP */
       
   700 			| E1000_FTQF_VF_BP /* VF not compared */
       
   701 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
       
   702 			| E1000_FTQF_MASK); /* mask all inputs */
       
   703 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
       
   704 
       
   705 		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
       
   706 		wr32(E1000_IMIREXT(3),
       
   707 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
       
   708 		if (hw->mac.type == e1000_82576) {
       
   709 			/* enable source port check */
       
   710 			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
       
   711 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
       
   712 		}
       
   713 		wr32(E1000_FTQF(3), ftqf);
       
   714 	} else {
       
   715 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
       
   716 	}
       
   717 	wrfl();
       
   718 
       
   719 	/* clear TX/RX time stamp registers, just to be sure */
       
   720 	regval = rd32(E1000_TXSTMPL);
       
   721 	regval = rd32(E1000_TXSTMPH);
       
   722 	regval = rd32(E1000_RXSTMPL);
       
   723 	regval = rd32(E1000_RXSTMPH);
       
   724 
       
   725 	return 0;
       
   726 }
       
   727 
       
   728 /**
       
   729  * igb_ptp_set_ts_config - set hardware time stamping config
       
   730  * @netdev:
       
   731  * @ifreq:
       
   732  *
       
   733  **/
       
   734 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
       
   735 {
       
   736 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   737 	struct hwtstamp_config config;
       
   738 	int err;
       
   739 
       
   740 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
       
   741 		return -EFAULT;
       
   742 
       
   743 	err = igb_ptp_set_timestamp_mode(adapter, &config);
       
   744 	if (err)
       
   745 		return err;
       
   746 
       
   747 	/* save these settings for future reference */
       
   748 	memcpy(&adapter->tstamp_config, &config,
       
   749 	       sizeof(adapter->tstamp_config));
       
   750 
       
   751 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
       
   752 		-EFAULT : 0;
       
   753 }
       
   754 
       
   755 void igb_ptp_init(struct igb_adapter *adapter)
       
   756 {
       
   757 	struct e1000_hw *hw = &adapter->hw;
       
   758 	struct net_device *netdev = adapter->netdev;
       
   759 
       
   760 	switch (hw->mac.type) {
       
   761 	case e1000_82576:
       
   762 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
       
   763 		adapter->ptp_caps.owner = THIS_MODULE;
       
   764 		adapter->ptp_caps.max_adj = 999999881;
       
   765 		adapter->ptp_caps.n_ext_ts = 0;
       
   766 		adapter->ptp_caps.pps = 0;
       
   767 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
       
   768 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
       
   769 		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
       
   770 		adapter->ptp_caps.settime = igb_ptp_settime_82576;
       
   771 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
       
   772 		adapter->cc.read = igb_ptp_read_82576;
       
   773 		adapter->cc.mask = CLOCKSOURCE_MASK(64);
       
   774 		adapter->cc.mult = 1;
       
   775 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
       
   776 		/* Dial the nominal frequency. */
       
   777 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
       
   778 		break;
       
   779 	case e1000_82580:
       
   780 	case e1000_i354:
       
   781 	case e1000_i350:
       
   782 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
       
   783 		adapter->ptp_caps.owner = THIS_MODULE;
       
   784 		adapter->ptp_caps.max_adj = 62499999;
       
   785 		adapter->ptp_caps.n_ext_ts = 0;
       
   786 		adapter->ptp_caps.pps = 0;
       
   787 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
       
   788 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
       
   789 		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
       
   790 		adapter->ptp_caps.settime = igb_ptp_settime_82576;
       
   791 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
       
   792 		adapter->cc.read = igb_ptp_read_82580;
       
   793 		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
       
   794 		adapter->cc.mult = 1;
       
   795 		adapter->cc.shift = 0;
       
   796 		/* Enable the timer functions by clearing bit 31. */
       
   797 		wr32(E1000_TSAUXC, 0x0);
       
   798 		break;
       
   799 	case e1000_i210:
       
   800 	case e1000_i211:
       
   801 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
       
   802 		adapter->ptp_caps.owner = THIS_MODULE;
       
   803 		adapter->ptp_caps.max_adj = 62499999;
       
   804 		adapter->ptp_caps.n_ext_ts = 0;
       
   805 		adapter->ptp_caps.pps = 0;
       
   806 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
       
   807 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
       
   808 		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
       
   809 		adapter->ptp_caps.settime = igb_ptp_settime_i210;
       
   810 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
       
   811 		/* Enable the timer functions by clearing bit 31. */
       
   812 		wr32(E1000_TSAUXC, 0x0);
       
   813 		break;
       
   814 	default:
       
   815 		adapter->ptp_clock = NULL;
       
   816 		return;
       
   817 	}
       
   818 
       
   819 	wrfl();
       
   820 
       
   821 	spin_lock_init(&adapter->tmreg_lock);
       
   822 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
       
   823 
       
   824 	/* Initialize the clock and overflow work for devices that need it. */
       
   825 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
       
   826 		struct timespec ts = ktime_to_timespec(ktime_get_real());
       
   827 
       
   828 		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
       
   829 	} else {
       
   830 		timecounter_init(&adapter->tc, &adapter->cc,
       
   831 				 ktime_to_ns(ktime_get_real()));
       
   832 
       
   833 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
       
   834 				  igb_ptp_overflow_check);
       
   835 
       
   836 		schedule_delayed_work(&adapter->ptp_overflow_work,
       
   837 				      IGB_SYSTIM_OVERFLOW_PERIOD);
       
   838 	}
       
   839 
       
   840 	/* Initialize the time sync interrupts for devices that support it. */
       
   841 	if (hw->mac.type >= e1000_82580) {
       
   842 		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
       
   843 		wr32(E1000_IMS, E1000_IMS_TS);
       
   844 	}
       
   845 
       
   846 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
       
   847 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
       
   848 
       
   849 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
       
   850 						&adapter->pdev->dev);
       
   851 	if (IS_ERR(adapter->ptp_clock)) {
       
   852 		adapter->ptp_clock = NULL;
       
   853 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
       
   854 	} else {
       
   855 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
       
   856 			 adapter->netdev->name);
       
   857 		adapter->flags |= IGB_FLAG_PTP;
       
   858 	}
       
   859 }
       
   860 
       
   861 /**
       
   862  * igb_ptp_stop - Disable PTP device and stop the overflow check.
       
   863  * @adapter: Board private structure.
       
   864  *
       
   865  * This function stops the PTP support and cancels the delayed work.
       
   866  **/
       
   867 void igb_ptp_stop(struct igb_adapter *adapter)
       
   868 {
       
   869 	switch (adapter->hw.mac.type) {
       
   870 	case e1000_82576:
       
   871 	case e1000_82580:
       
   872 	case e1000_i354:
       
   873 	case e1000_i350:
       
   874 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
       
   875 		break;
       
   876 	case e1000_i210:
       
   877 	case e1000_i211:
       
   878 		/* No delayed work to cancel. */
       
   879 		break;
       
   880 	default:
       
   881 		return;
       
   882 	}
       
   883 
       
   884 	cancel_work_sync(&adapter->ptp_tx_work);
       
   885 	if (adapter->ptp_tx_skb) {
       
   886 		dev_kfree_skb_any(adapter->ptp_tx_skb);
       
   887 		adapter->ptp_tx_skb = NULL;
       
   888 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
       
   889 	}
       
   890 
       
   891 	if (adapter->ptp_clock) {
       
   892 		ptp_clock_unregister(adapter->ptp_clock);
       
   893 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
       
   894 			 adapter->netdev->name);
       
   895 		adapter->flags &= ~IGB_FLAG_PTP;
       
   896 	}
       
   897 }
       
   898 
       
   899 /**
       
   900  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
       
   901  * @adapter: Board private structure.
       
   902  *
       
   903  * This function handles the reset work required to re-enable the PTP device.
       
   904  **/
       
   905 void igb_ptp_reset(struct igb_adapter *adapter)
       
   906 {
       
   907 	struct e1000_hw *hw = &adapter->hw;
       
   908 
       
   909 	if (!(adapter->flags & IGB_FLAG_PTP))
       
   910 		return;
       
   911 
       
   912 	/* reset the tstamp_config */
       
   913 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
       
   914 
       
   915 	switch (adapter->hw.mac.type) {
       
   916 	case e1000_82576:
       
   917 		/* Dial the nominal frequency. */
       
   918 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
       
   919 		break;
       
   920 	case e1000_82580:
       
   921 	case e1000_i354:
       
   922 	case e1000_i350:
       
   923 	case e1000_i210:
       
   924 	case e1000_i211:
       
   925 		/* Enable the timer functions and interrupts. */
       
   926 		wr32(E1000_TSAUXC, 0x0);
       
   927 		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
       
   928 		wr32(E1000_IMS, E1000_IMS_TS);
       
   929 		break;
       
   930 	default:
       
   931 		/* No work to do. */
       
   932 		return;
       
   933 	}
       
   934 
       
   935 	/* Re-initialize the timer. */
       
   936 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
       
   937 		struct timespec ts = ktime_to_timespec(ktime_get_real());
       
   938 
       
   939 		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
       
   940 	} else {
       
   941 		timecounter_init(&adapter->tc, &adapter->cc,
       
   942 				 ktime_to_ns(ktime_get_real()));
       
   943 	}
       
   944 }