devices/igb/igb_main-3.18-orig.c
branchstable-1.5
changeset 2685 740291442c05
equal deleted inserted replaced
2684:56587a22d05c 2685:740291442c05
       
     1 /* Intel(R) Gigabit Ethernet Linux driver
       
     2  * Copyright(c) 2007-2014 Intel Corporation.
       
     3  *
       
     4  * This program is free software; you can redistribute it and/or modify it
       
     5  * under the terms and conditions of the GNU General Public License,
       
     6  * version 2, as published by the Free Software Foundation.
       
     7  *
       
     8  * This program is distributed in the hope it will be useful, but WITHOUT
       
     9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    11  * more details.
       
    12  *
       
    13  * You should have received a copy of the GNU General Public License along with
       
    14  * this program; if not, see <http://www.gnu.org/licenses/>.
       
    15  *
       
    16  * The full GNU General Public License is included in this distribution in
       
    17  * the file called "COPYING".
       
    18  *
       
    19  * Contact Information:
       
    20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    22  */
       
    23 
       
    24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
       
    25 
       
    26 #include <linux/module.h>
       
    27 #include <linux/types.h>
       
    28 #include <linux/init.h>
       
    29 #include <linux/bitops.h>
       
    30 #include <linux/vmalloc.h>
       
    31 #include <linux/pagemap.h>
       
    32 #include <linux/netdevice.h>
       
    33 #include <linux/ipv6.h>
       
    34 #include <linux/slab.h>
       
    35 #include <net/checksum.h>
       
    36 #include <net/ip6_checksum.h>
       
    37 #include <linux/net_tstamp.h>
       
    38 #include <linux/mii.h>
       
    39 #include <linux/ethtool.h>
       
    40 #include <linux/if.h>
       
    41 #include <linux/if_vlan.h>
       
    42 #include <linux/pci.h>
       
    43 #include <linux/pci-aspm.h>
       
    44 #include <linux/delay.h>
       
    45 #include <linux/interrupt.h>
       
    46 #include <linux/ip.h>
       
    47 #include <linux/tcp.h>
       
    48 #include <linux/sctp.h>
       
    49 #include <linux/if_ether.h>
       
    50 #include <linux/aer.h>
       
    51 #include <linux/prefetch.h>
       
    52 #include <linux/pm_runtime.h>
       
    53 #ifdef CONFIG_IGB_DCA
       
    54 #include <linux/dca.h>
       
    55 #endif
       
    56 #include <linux/i2c.h>
       
    57 #include "igb.h"
       
    58 
       
    59 #define MAJ 5
       
    60 #define MIN 2
       
    61 #define BUILD 15
       
    62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
       
    63 __stringify(BUILD) "-k"
       
    64 char igb_driver_name[] = "igb";
       
    65 char igb_driver_version[] = DRV_VERSION;
       
    66 static const char igb_driver_string[] =
       
    67 				"Intel(R) Gigabit Ethernet Network Driver";
       
    68 static const char igb_copyright[] =
       
    69 				"Copyright (c) 2007-2014 Intel Corporation.";
       
    70 
       
    71 static const struct e1000_info *igb_info_tbl[] = {
       
    72 	[board_82575] = &e1000_82575_info,
       
    73 };
       
    74 
       
    75 static const struct pci_device_id igb_pci_tbl[] = {
       
    76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
       
    77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
       
    78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
       
    79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
       
    80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
       
    81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
       
    82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
       
    83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
       
    84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
       
    85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
       
    86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
       
    87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
       
    88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
       
    89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
       
    90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
       
    91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
       
    92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
       
    93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
       
    94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
       
    95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
       
    96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
       
    97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
       
    98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
       
    99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
       
   100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
       
   101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
       
   102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
       
   103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
       
   104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
       
   105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
       
   106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
       
   107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
       
   108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
       
   109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
       
   110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
       
   111 	/* required last entry */
       
   112 	{0, }
       
   113 };
       
   114 
       
   115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
       
   116 
       
   117 static int igb_setup_all_tx_resources(struct igb_adapter *);
       
   118 static int igb_setup_all_rx_resources(struct igb_adapter *);
       
   119 static void igb_free_all_tx_resources(struct igb_adapter *);
       
   120 static void igb_free_all_rx_resources(struct igb_adapter *);
       
   121 static void igb_setup_mrqc(struct igb_adapter *);
       
   122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
       
   123 static void igb_remove(struct pci_dev *pdev);
       
   124 static int igb_sw_init(struct igb_adapter *);
       
   125 static int igb_open(struct net_device *);
       
   126 static int igb_close(struct net_device *);
       
   127 static void igb_configure(struct igb_adapter *);
       
   128 static void igb_configure_tx(struct igb_adapter *);
       
   129 static void igb_configure_rx(struct igb_adapter *);
       
   130 static void igb_clean_all_tx_rings(struct igb_adapter *);
       
   131 static void igb_clean_all_rx_rings(struct igb_adapter *);
       
   132 static void igb_clean_tx_ring(struct igb_ring *);
       
   133 static void igb_clean_rx_ring(struct igb_ring *);
       
   134 static void igb_set_rx_mode(struct net_device *);
       
   135 static void igb_update_phy_info(unsigned long);
       
   136 static void igb_watchdog(unsigned long);
       
   137 static void igb_watchdog_task(struct work_struct *);
       
   138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
       
   139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
       
   140 					  struct rtnl_link_stats64 *stats);
       
   141 static int igb_change_mtu(struct net_device *, int);
       
   142 static int igb_set_mac(struct net_device *, void *);
       
   143 static void igb_set_uta(struct igb_adapter *adapter);
       
   144 static irqreturn_t igb_intr(int irq, void *);
       
   145 static irqreturn_t igb_intr_msi(int irq, void *);
       
   146 static irqreturn_t igb_msix_other(int irq, void *);
       
   147 static irqreturn_t igb_msix_ring(int irq, void *);
       
   148 #ifdef CONFIG_IGB_DCA
       
   149 static void igb_update_dca(struct igb_q_vector *);
       
   150 static void igb_setup_dca(struct igb_adapter *);
       
   151 #endif /* CONFIG_IGB_DCA */
       
   152 static int igb_poll(struct napi_struct *, int);
       
   153 static bool igb_clean_tx_irq(struct igb_q_vector *);
       
   154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
       
   155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
       
   156 static void igb_tx_timeout(struct net_device *);
       
   157 static void igb_reset_task(struct work_struct *);
       
   158 static void igb_vlan_mode(struct net_device *netdev,
       
   159 			  netdev_features_t features);
       
   160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
       
   161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
       
   162 static void igb_restore_vlan(struct igb_adapter *);
       
   163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
       
   164 static void igb_ping_all_vfs(struct igb_adapter *);
       
   165 static void igb_msg_task(struct igb_adapter *);
       
   166 static void igb_vmm_control(struct igb_adapter *);
       
   167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
       
   168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
       
   169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
       
   170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
       
   171 			       int vf, u16 vlan, u8 qos);
       
   172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
       
   173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
       
   174 				   bool setting);
       
   175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
       
   176 				 struct ifla_vf_info *ivi);
       
   177 static void igb_check_vf_rate_limit(struct igb_adapter *);
       
   178 
       
   179 #ifdef CONFIG_PCI_IOV
       
   180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
       
   181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
       
   182 #endif
       
   183 
       
   184 #ifdef CONFIG_PM
       
   185 #ifdef CONFIG_PM_SLEEP
       
   186 static int igb_suspend(struct device *);
       
   187 #endif
       
   188 static int igb_resume(struct device *);
       
   189 #ifdef CONFIG_PM_RUNTIME
       
   190 static int igb_runtime_suspend(struct device *dev);
       
   191 static int igb_runtime_resume(struct device *dev);
       
   192 static int igb_runtime_idle(struct device *dev);
       
   193 #endif
       
   194 static const struct dev_pm_ops igb_pm_ops = {
       
   195 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
       
   196 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
       
   197 			igb_runtime_idle)
       
   198 };
       
   199 #endif
       
   200 static void igb_shutdown(struct pci_dev *);
       
   201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
       
   202 #ifdef CONFIG_IGB_DCA
       
   203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
       
   204 static struct notifier_block dca_notifier = {
       
   205 	.notifier_call	= igb_notify_dca,
       
   206 	.next		= NULL,
       
   207 	.priority	= 0
       
   208 };
       
   209 #endif
       
   210 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   211 /* for netdump / net console */
       
   212 static void igb_netpoll(struct net_device *);
       
   213 #endif
       
   214 #ifdef CONFIG_PCI_IOV
       
   215 static unsigned int max_vfs;
       
   216 module_param(max_vfs, uint, 0);
       
   217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
       
   218 #endif /* CONFIG_PCI_IOV */
       
   219 
       
   220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
       
   221 		     pci_channel_state_t);
       
   222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
       
   223 static void igb_io_resume(struct pci_dev *);
       
   224 
       
   225 static const struct pci_error_handlers igb_err_handler = {
       
   226 	.error_detected = igb_io_error_detected,
       
   227 	.slot_reset = igb_io_slot_reset,
       
   228 	.resume = igb_io_resume,
       
   229 };
       
   230 
       
   231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
       
   232 
       
   233 static struct pci_driver igb_driver = {
       
   234 	.name     = igb_driver_name,
       
   235 	.id_table = igb_pci_tbl,
       
   236 	.probe    = igb_probe,
       
   237 	.remove   = igb_remove,
       
   238 #ifdef CONFIG_PM
       
   239 	.driver.pm = &igb_pm_ops,
       
   240 #endif
       
   241 	.shutdown = igb_shutdown,
       
   242 	.sriov_configure = igb_pci_sriov_configure,
       
   243 	.err_handler = &igb_err_handler
       
   244 };
       
   245 
       
   246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
       
   247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
       
   248 MODULE_LICENSE("GPL");
       
   249 MODULE_VERSION(DRV_VERSION);
       
   250 
       
   251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
       
   252 static int debug = -1;
       
   253 module_param(debug, int, 0);
       
   254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   255 
       
   256 struct igb_reg_info {
       
   257 	u32 ofs;
       
   258 	char *name;
       
   259 };
       
   260 
       
   261 static const struct igb_reg_info igb_reg_info_tbl[] = {
       
   262 
       
   263 	/* General Registers */
       
   264 	{E1000_CTRL, "CTRL"},
       
   265 	{E1000_STATUS, "STATUS"},
       
   266 	{E1000_CTRL_EXT, "CTRL_EXT"},
       
   267 
       
   268 	/* Interrupt Registers */
       
   269 	{E1000_ICR, "ICR"},
       
   270 
       
   271 	/* RX Registers */
       
   272 	{E1000_RCTL, "RCTL"},
       
   273 	{E1000_RDLEN(0), "RDLEN"},
       
   274 	{E1000_RDH(0), "RDH"},
       
   275 	{E1000_RDT(0), "RDT"},
       
   276 	{E1000_RXDCTL(0), "RXDCTL"},
       
   277 	{E1000_RDBAL(0), "RDBAL"},
       
   278 	{E1000_RDBAH(0), "RDBAH"},
       
   279 
       
   280 	/* TX Registers */
       
   281 	{E1000_TCTL, "TCTL"},
       
   282 	{E1000_TDBAL(0), "TDBAL"},
       
   283 	{E1000_TDBAH(0), "TDBAH"},
       
   284 	{E1000_TDLEN(0), "TDLEN"},
       
   285 	{E1000_TDH(0), "TDH"},
       
   286 	{E1000_TDT(0), "TDT"},
       
   287 	{E1000_TXDCTL(0), "TXDCTL"},
       
   288 	{E1000_TDFH, "TDFH"},
       
   289 	{E1000_TDFT, "TDFT"},
       
   290 	{E1000_TDFHS, "TDFHS"},
       
   291 	{E1000_TDFPC, "TDFPC"},
       
   292 
       
   293 	/* List Terminator */
       
   294 	{}
       
   295 };
       
   296 
       
   297 /* igb_regdump - register printout routine */
       
   298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
       
   299 {
       
   300 	int n = 0;
       
   301 	char rname[16];
       
   302 	u32 regs[8];
       
   303 
       
   304 	switch (reginfo->ofs) {
       
   305 	case E1000_RDLEN(0):
       
   306 		for (n = 0; n < 4; n++)
       
   307 			regs[n] = rd32(E1000_RDLEN(n));
       
   308 		break;
       
   309 	case E1000_RDH(0):
       
   310 		for (n = 0; n < 4; n++)
       
   311 			regs[n] = rd32(E1000_RDH(n));
       
   312 		break;
       
   313 	case E1000_RDT(0):
       
   314 		for (n = 0; n < 4; n++)
       
   315 			regs[n] = rd32(E1000_RDT(n));
       
   316 		break;
       
   317 	case E1000_RXDCTL(0):
       
   318 		for (n = 0; n < 4; n++)
       
   319 			regs[n] = rd32(E1000_RXDCTL(n));
       
   320 		break;
       
   321 	case E1000_RDBAL(0):
       
   322 		for (n = 0; n < 4; n++)
       
   323 			regs[n] = rd32(E1000_RDBAL(n));
       
   324 		break;
       
   325 	case E1000_RDBAH(0):
       
   326 		for (n = 0; n < 4; n++)
       
   327 			regs[n] = rd32(E1000_RDBAH(n));
       
   328 		break;
       
   329 	case E1000_TDBAL(0):
       
   330 		for (n = 0; n < 4; n++)
       
   331 			regs[n] = rd32(E1000_RDBAL(n));
       
   332 		break;
       
   333 	case E1000_TDBAH(0):
       
   334 		for (n = 0; n < 4; n++)
       
   335 			regs[n] = rd32(E1000_TDBAH(n));
       
   336 		break;
       
   337 	case E1000_TDLEN(0):
       
   338 		for (n = 0; n < 4; n++)
       
   339 			regs[n] = rd32(E1000_TDLEN(n));
       
   340 		break;
       
   341 	case E1000_TDH(0):
       
   342 		for (n = 0; n < 4; n++)
       
   343 			regs[n] = rd32(E1000_TDH(n));
       
   344 		break;
       
   345 	case E1000_TDT(0):
       
   346 		for (n = 0; n < 4; n++)
       
   347 			regs[n] = rd32(E1000_TDT(n));
       
   348 		break;
       
   349 	case E1000_TXDCTL(0):
       
   350 		for (n = 0; n < 4; n++)
       
   351 			regs[n] = rd32(E1000_TXDCTL(n));
       
   352 		break;
       
   353 	default:
       
   354 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
       
   355 		return;
       
   356 	}
       
   357 
       
   358 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
       
   359 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
       
   360 		regs[2], regs[3]);
       
   361 }
       
   362 
       
   363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
       
   364 static void igb_dump(struct igb_adapter *adapter)
       
   365 {
       
   366 	struct net_device *netdev = adapter->netdev;
       
   367 	struct e1000_hw *hw = &adapter->hw;
       
   368 	struct igb_reg_info *reginfo;
       
   369 	struct igb_ring *tx_ring;
       
   370 	union e1000_adv_tx_desc *tx_desc;
       
   371 	struct my_u0 { u64 a; u64 b; } *u0;
       
   372 	struct igb_ring *rx_ring;
       
   373 	union e1000_adv_rx_desc *rx_desc;
       
   374 	u32 staterr;
       
   375 	u16 i, n;
       
   376 
       
   377 	if (!netif_msg_hw(adapter))
       
   378 		return;
       
   379 
       
   380 	/* Print netdevice Info */
       
   381 	if (netdev) {
       
   382 		dev_info(&adapter->pdev->dev, "Net device Info\n");
       
   383 		pr_info("Device Name     state            trans_start      last_rx\n");
       
   384 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
       
   385 			netdev->state, netdev->trans_start, netdev->last_rx);
       
   386 	}
       
   387 
       
   388 	/* Print Registers */
       
   389 	dev_info(&adapter->pdev->dev, "Register Dump\n");
       
   390 	pr_info(" Register Name   Value\n");
       
   391 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
       
   392 	     reginfo->name; reginfo++) {
       
   393 		igb_regdump(hw, reginfo);
       
   394 	}
       
   395 
       
   396 	/* Print TX Ring Summary */
       
   397 	if (!netdev || !netif_running(netdev))
       
   398 		goto exit;
       
   399 
       
   400 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
       
   401 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
       
   402 	for (n = 0; n < adapter->num_tx_queues; n++) {
       
   403 		struct igb_tx_buffer *buffer_info;
       
   404 		tx_ring = adapter->tx_ring[n];
       
   405 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
       
   406 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
       
   407 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
       
   408 			(u64)dma_unmap_addr(buffer_info, dma),
       
   409 			dma_unmap_len(buffer_info, len),
       
   410 			buffer_info->next_to_watch,
       
   411 			(u64)buffer_info->time_stamp);
       
   412 	}
       
   413 
       
   414 	/* Print TX Rings */
       
   415 	if (!netif_msg_tx_done(adapter))
       
   416 		goto rx_ring_summary;
       
   417 
       
   418 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
       
   419 
       
   420 	/* Transmit Descriptor Formats
       
   421 	 *
       
   422 	 * Advanced Transmit Descriptor
       
   423 	 *   +--------------------------------------------------------------+
       
   424 	 * 0 |         Buffer Address [63:0]                                |
       
   425 	 *   +--------------------------------------------------------------+
       
   426 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
       
   427 	 *   +--------------------------------------------------------------+
       
   428 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
       
   429 	 */
       
   430 
       
   431 	for (n = 0; n < adapter->num_tx_queues; n++) {
       
   432 		tx_ring = adapter->tx_ring[n];
       
   433 		pr_info("------------------------------------\n");
       
   434 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
       
   435 		pr_info("------------------------------------\n");
       
   436 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
       
   437 
       
   438 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
       
   439 			const char *next_desc;
       
   440 			struct igb_tx_buffer *buffer_info;
       
   441 			tx_desc = IGB_TX_DESC(tx_ring, i);
       
   442 			buffer_info = &tx_ring->tx_buffer_info[i];
       
   443 			u0 = (struct my_u0 *)tx_desc;
       
   444 			if (i == tx_ring->next_to_use &&
       
   445 			    i == tx_ring->next_to_clean)
       
   446 				next_desc = " NTC/U";
       
   447 			else if (i == tx_ring->next_to_use)
       
   448 				next_desc = " NTU";
       
   449 			else if (i == tx_ring->next_to_clean)
       
   450 				next_desc = " NTC";
       
   451 			else
       
   452 				next_desc = "";
       
   453 
       
   454 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
       
   455 				i, le64_to_cpu(u0->a),
       
   456 				le64_to_cpu(u0->b),
       
   457 				(u64)dma_unmap_addr(buffer_info, dma),
       
   458 				dma_unmap_len(buffer_info, len),
       
   459 				buffer_info->next_to_watch,
       
   460 				(u64)buffer_info->time_stamp,
       
   461 				buffer_info->skb, next_desc);
       
   462 
       
   463 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
       
   464 				print_hex_dump(KERN_INFO, "",
       
   465 					DUMP_PREFIX_ADDRESS,
       
   466 					16, 1, buffer_info->skb->data,
       
   467 					dma_unmap_len(buffer_info, len),
       
   468 					true);
       
   469 		}
       
   470 	}
       
   471 
       
   472 	/* Print RX Rings Summary */
       
   473 rx_ring_summary:
       
   474 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
       
   475 	pr_info("Queue [NTU] [NTC]\n");
       
   476 	for (n = 0; n < adapter->num_rx_queues; n++) {
       
   477 		rx_ring = adapter->rx_ring[n];
       
   478 		pr_info(" %5d %5X %5X\n",
       
   479 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
       
   480 	}
       
   481 
       
   482 	/* Print RX Rings */
       
   483 	if (!netif_msg_rx_status(adapter))
       
   484 		goto exit;
       
   485 
       
   486 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
       
   487 
       
   488 	/* Advanced Receive Descriptor (Read) Format
       
   489 	 *    63                                           1        0
       
   490 	 *    +-----------------------------------------------------+
       
   491 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
       
   492 	 *    +----------------------------------------------+------+
       
   493 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
       
   494 	 *    +-----------------------------------------------------+
       
   495 	 *
       
   496 	 *
       
   497 	 * Advanced Receive Descriptor (Write-Back) Format
       
   498 	 *
       
   499 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
       
   500 	 *   +------------------------------------------------------+
       
   501 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
       
   502 	 *   | Checksum   Ident  |   |           |    | Type | Type |
       
   503 	 *   +------------------------------------------------------+
       
   504 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
       
   505 	 *   +------------------------------------------------------+
       
   506 	 *   63       48 47    32 31            20 19               0
       
   507 	 */
       
   508 
       
   509 	for (n = 0; n < adapter->num_rx_queues; n++) {
       
   510 		rx_ring = adapter->rx_ring[n];
       
   511 		pr_info("------------------------------------\n");
       
   512 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
       
   513 		pr_info("------------------------------------\n");
       
   514 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
       
   515 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
       
   516 
       
   517 		for (i = 0; i < rx_ring->count; i++) {
       
   518 			const char *next_desc;
       
   519 			struct igb_rx_buffer *buffer_info;
       
   520 			buffer_info = &rx_ring->rx_buffer_info[i];
       
   521 			rx_desc = IGB_RX_DESC(rx_ring, i);
       
   522 			u0 = (struct my_u0 *)rx_desc;
       
   523 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
       
   524 
       
   525 			if (i == rx_ring->next_to_use)
       
   526 				next_desc = " NTU";
       
   527 			else if (i == rx_ring->next_to_clean)
       
   528 				next_desc = " NTC";
       
   529 			else
       
   530 				next_desc = "";
       
   531 
       
   532 			if (staterr & E1000_RXD_STAT_DD) {
       
   533 				/* Descriptor Done */
       
   534 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
       
   535 					"RWB", i,
       
   536 					le64_to_cpu(u0->a),
       
   537 					le64_to_cpu(u0->b),
       
   538 					next_desc);
       
   539 			} else {
       
   540 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
       
   541 					"R  ", i,
       
   542 					le64_to_cpu(u0->a),
       
   543 					le64_to_cpu(u0->b),
       
   544 					(u64)buffer_info->dma,
       
   545 					next_desc);
       
   546 
       
   547 				if (netif_msg_pktdata(adapter) &&
       
   548 				    buffer_info->dma && buffer_info->page) {
       
   549 					print_hex_dump(KERN_INFO, "",
       
   550 					  DUMP_PREFIX_ADDRESS,
       
   551 					  16, 1,
       
   552 					  page_address(buffer_info->page) +
       
   553 						      buffer_info->page_offset,
       
   554 					  IGB_RX_BUFSZ, true);
       
   555 				}
       
   556 			}
       
   557 		}
       
   558 	}
       
   559 
       
   560 exit:
       
   561 	return;
       
   562 }
       
   563 
       
   564 /**
       
   565  *  igb_get_i2c_data - Reads the I2C SDA data bit
       
   566  *  @hw: pointer to hardware structure
       
   567  *  @i2cctl: Current value of I2CCTL register
       
   568  *
       
   569  *  Returns the I2C data bit value
       
   570  **/
       
   571 static int igb_get_i2c_data(void *data)
       
   572 {
       
   573 	struct igb_adapter *adapter = (struct igb_adapter *)data;
       
   574 	struct e1000_hw *hw = &adapter->hw;
       
   575 	s32 i2cctl = rd32(E1000_I2CPARAMS);
       
   576 
       
   577 	return !!(i2cctl & E1000_I2C_DATA_IN);
       
   578 }
       
   579 
       
   580 /**
       
   581  *  igb_set_i2c_data - Sets the I2C data bit
       
   582  *  @data: pointer to hardware structure
       
   583  *  @state: I2C data value (0 or 1) to set
       
   584  *
       
   585  *  Sets the I2C data bit
       
   586  **/
       
   587 static void igb_set_i2c_data(void *data, int state)
       
   588 {
       
   589 	struct igb_adapter *adapter = (struct igb_adapter *)data;
       
   590 	struct e1000_hw *hw = &adapter->hw;
       
   591 	s32 i2cctl = rd32(E1000_I2CPARAMS);
       
   592 
       
   593 	if (state)
       
   594 		i2cctl |= E1000_I2C_DATA_OUT;
       
   595 	else
       
   596 		i2cctl &= ~E1000_I2C_DATA_OUT;
       
   597 
       
   598 	i2cctl &= ~E1000_I2C_DATA_OE_N;
       
   599 	i2cctl |= E1000_I2C_CLK_OE_N;
       
   600 	wr32(E1000_I2CPARAMS, i2cctl);
       
   601 	wrfl();
       
   602 
       
   603 }
       
   604 
       
   605 /**
       
   606  *  igb_set_i2c_clk - Sets the I2C SCL clock
       
   607  *  @data: pointer to hardware structure
       
   608  *  @state: state to set clock
       
   609  *
       
   610  *  Sets the I2C clock line to state
       
   611  **/
       
   612 static void igb_set_i2c_clk(void *data, int state)
       
   613 {
       
   614 	struct igb_adapter *adapter = (struct igb_adapter *)data;
       
   615 	struct e1000_hw *hw = &adapter->hw;
       
   616 	s32 i2cctl = rd32(E1000_I2CPARAMS);
       
   617 
       
   618 	if (state) {
       
   619 		i2cctl |= E1000_I2C_CLK_OUT;
       
   620 		i2cctl &= ~E1000_I2C_CLK_OE_N;
       
   621 	} else {
       
   622 		i2cctl &= ~E1000_I2C_CLK_OUT;
       
   623 		i2cctl &= ~E1000_I2C_CLK_OE_N;
       
   624 	}
       
   625 	wr32(E1000_I2CPARAMS, i2cctl);
       
   626 	wrfl();
       
   627 }
       
   628 
       
   629 /**
       
   630  *  igb_get_i2c_clk - Gets the I2C SCL clock state
       
   631  *  @data: pointer to hardware structure
       
   632  *
       
   633  *  Gets the I2C clock state
       
   634  **/
       
   635 static int igb_get_i2c_clk(void *data)
       
   636 {
       
   637 	struct igb_adapter *adapter = (struct igb_adapter *)data;
       
   638 	struct e1000_hw *hw = &adapter->hw;
       
   639 	s32 i2cctl = rd32(E1000_I2CPARAMS);
       
   640 
       
   641 	return !!(i2cctl & E1000_I2C_CLK_IN);
       
   642 }
       
   643 
       
   644 static const struct i2c_algo_bit_data igb_i2c_algo = {
       
   645 	.setsda		= igb_set_i2c_data,
       
   646 	.setscl		= igb_set_i2c_clk,
       
   647 	.getsda		= igb_get_i2c_data,
       
   648 	.getscl		= igb_get_i2c_clk,
       
   649 	.udelay		= 5,
       
   650 	.timeout	= 20,
       
   651 };
       
   652 
       
   653 /**
       
   654  *  igb_get_hw_dev - return device
       
   655  *  @hw: pointer to hardware structure
       
   656  *
       
   657  *  used by hardware layer to print debugging information
       
   658  **/
       
   659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
       
   660 {
       
   661 	struct igb_adapter *adapter = hw->back;
       
   662 	return adapter->netdev;
       
   663 }
       
   664 
       
   665 /**
       
   666  *  igb_init_module - Driver Registration Routine
       
   667  *
       
   668  *  igb_init_module is the first routine called when the driver is
       
   669  *  loaded. All it does is register with the PCI subsystem.
       
   670  **/
       
   671 static int __init igb_init_module(void)
       
   672 {
       
   673 	int ret;
       
   674 
       
   675 	pr_info("%s - version %s\n",
       
   676 	       igb_driver_string, igb_driver_version);
       
   677 	pr_info("%s\n", igb_copyright);
       
   678 
       
   679 #ifdef CONFIG_IGB_DCA
       
   680 	dca_register_notify(&dca_notifier);
       
   681 #endif
       
   682 	ret = pci_register_driver(&igb_driver);
       
   683 	return ret;
       
   684 }
       
   685 
       
   686 module_init(igb_init_module);
       
   687 
       
   688 /**
       
   689  *  igb_exit_module - Driver Exit Cleanup Routine
       
   690  *
       
   691  *  igb_exit_module is called just before the driver is removed
       
   692  *  from memory.
       
   693  **/
       
   694 static void __exit igb_exit_module(void)
       
   695 {
       
   696 #ifdef CONFIG_IGB_DCA
       
   697 	dca_unregister_notify(&dca_notifier);
       
   698 #endif
       
   699 	pci_unregister_driver(&igb_driver);
       
   700 }
       
   701 
       
   702 module_exit(igb_exit_module);
       
   703 
       
   704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
       
   705 /**
       
   706  *  igb_cache_ring_register - Descriptor ring to register mapping
       
   707  *  @adapter: board private structure to initialize
       
   708  *
       
   709  *  Once we know the feature-set enabled for the device, we'll cache
       
   710  *  the register offset the descriptor ring is assigned to.
       
   711  **/
       
   712 static void igb_cache_ring_register(struct igb_adapter *adapter)
       
   713 {
       
   714 	int i = 0, j = 0;
       
   715 	u32 rbase_offset = adapter->vfs_allocated_count;
       
   716 
       
   717 	switch (adapter->hw.mac.type) {
       
   718 	case e1000_82576:
       
   719 		/* The queues are allocated for virtualization such that VF 0
       
   720 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
       
   721 		 * In order to avoid collision we start at the first free queue
       
   722 		 * and continue consuming queues in the same sequence
       
   723 		 */
       
   724 		if (adapter->vfs_allocated_count) {
       
   725 			for (; i < adapter->rss_queues; i++)
       
   726 				adapter->rx_ring[i]->reg_idx = rbase_offset +
       
   727 							       Q_IDX_82576(i);
       
   728 		}
       
   729 		/* Fall through */
       
   730 	case e1000_82575:
       
   731 	case e1000_82580:
       
   732 	case e1000_i350:
       
   733 	case e1000_i354:
       
   734 	case e1000_i210:
       
   735 	case e1000_i211:
       
   736 		/* Fall through */
       
   737 	default:
       
   738 		for (; i < adapter->num_rx_queues; i++)
       
   739 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
       
   740 		for (; j < adapter->num_tx_queues; j++)
       
   741 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
       
   742 		break;
       
   743 	}
       
   744 }
       
   745 
       
   746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
       
   747 {
       
   748 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
       
   749 	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
       
   750 	u32 value = 0;
       
   751 
       
   752 	if (E1000_REMOVED(hw_addr))
       
   753 		return ~value;
       
   754 
       
   755 	value = readl(&hw_addr[reg]);
       
   756 
       
   757 	/* reads should not return all F's */
       
   758 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
       
   759 		struct net_device *netdev = igb->netdev;
       
   760 		hw->hw_addr = NULL;
       
   761 		netif_device_detach(netdev);
       
   762 		netdev_err(netdev, "PCIe link lost, device now detached\n");
       
   763 	}
       
   764 
       
   765 	return value;
       
   766 }
       
   767 
       
   768 /**
       
   769  *  igb_write_ivar - configure ivar for given MSI-X vector
       
   770  *  @hw: pointer to the HW structure
       
   771  *  @msix_vector: vector number we are allocating to a given ring
       
   772  *  @index: row index of IVAR register to write within IVAR table
       
   773  *  @offset: column offset of in IVAR, should be multiple of 8
       
   774  *
       
   775  *  This function is intended to handle the writing of the IVAR register
       
   776  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
       
   777  *  each containing an cause allocation for an Rx and Tx ring, and a
       
   778  *  variable number of rows depending on the number of queues supported.
       
   779  **/
       
   780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
       
   781 			   int index, int offset)
       
   782 {
       
   783 	u32 ivar = array_rd32(E1000_IVAR0, index);
       
   784 
       
   785 	/* clear any bits that are currently set */
       
   786 	ivar &= ~((u32)0xFF << offset);
       
   787 
       
   788 	/* write vector and valid bit */
       
   789 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
       
   790 
       
   791 	array_wr32(E1000_IVAR0, index, ivar);
       
   792 }
       
   793 
       
   794 #define IGB_N0_QUEUE -1
       
   795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
       
   796 {
       
   797 	struct igb_adapter *adapter = q_vector->adapter;
       
   798 	struct e1000_hw *hw = &adapter->hw;
       
   799 	int rx_queue = IGB_N0_QUEUE;
       
   800 	int tx_queue = IGB_N0_QUEUE;
       
   801 	u32 msixbm = 0;
       
   802 
       
   803 	if (q_vector->rx.ring)
       
   804 		rx_queue = q_vector->rx.ring->reg_idx;
       
   805 	if (q_vector->tx.ring)
       
   806 		tx_queue = q_vector->tx.ring->reg_idx;
       
   807 
       
   808 	switch (hw->mac.type) {
       
   809 	case e1000_82575:
       
   810 		/* The 82575 assigns vectors using a bitmask, which matches the
       
   811 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
       
   812 		 * or more queues to a vector, we write the appropriate bits
       
   813 		 * into the MSIXBM register for that vector.
       
   814 		 */
       
   815 		if (rx_queue > IGB_N0_QUEUE)
       
   816 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
       
   817 		if (tx_queue > IGB_N0_QUEUE)
       
   818 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
       
   819 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
       
   820 			msixbm |= E1000_EIMS_OTHER;
       
   821 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
       
   822 		q_vector->eims_value = msixbm;
       
   823 		break;
       
   824 	case e1000_82576:
       
   825 		/* 82576 uses a table that essentially consists of 2 columns
       
   826 		 * with 8 rows.  The ordering is column-major so we use the
       
   827 		 * lower 3 bits as the row index, and the 4th bit as the
       
   828 		 * column offset.
       
   829 		 */
       
   830 		if (rx_queue > IGB_N0_QUEUE)
       
   831 			igb_write_ivar(hw, msix_vector,
       
   832 				       rx_queue & 0x7,
       
   833 				       (rx_queue & 0x8) << 1);
       
   834 		if (tx_queue > IGB_N0_QUEUE)
       
   835 			igb_write_ivar(hw, msix_vector,
       
   836 				       tx_queue & 0x7,
       
   837 				       ((tx_queue & 0x8) << 1) + 8);
       
   838 		q_vector->eims_value = 1 << msix_vector;
       
   839 		break;
       
   840 	case e1000_82580:
       
   841 	case e1000_i350:
       
   842 	case e1000_i354:
       
   843 	case e1000_i210:
       
   844 	case e1000_i211:
       
   845 		/* On 82580 and newer adapters the scheme is similar to 82576
       
   846 		 * however instead of ordering column-major we have things
       
   847 		 * ordered row-major.  So we traverse the table by using
       
   848 		 * bit 0 as the column offset, and the remaining bits as the
       
   849 		 * row index.
       
   850 		 */
       
   851 		if (rx_queue > IGB_N0_QUEUE)
       
   852 			igb_write_ivar(hw, msix_vector,
       
   853 				       rx_queue >> 1,
       
   854 				       (rx_queue & 0x1) << 4);
       
   855 		if (tx_queue > IGB_N0_QUEUE)
       
   856 			igb_write_ivar(hw, msix_vector,
       
   857 				       tx_queue >> 1,
       
   858 				       ((tx_queue & 0x1) << 4) + 8);
       
   859 		q_vector->eims_value = 1 << msix_vector;
       
   860 		break;
       
   861 	default:
       
   862 		BUG();
       
   863 		break;
       
   864 	}
       
   865 
       
   866 	/* add q_vector eims value to global eims_enable_mask */
       
   867 	adapter->eims_enable_mask |= q_vector->eims_value;
       
   868 
       
   869 	/* configure q_vector to set itr on first interrupt */
       
   870 	q_vector->set_itr = 1;
       
   871 }
       
   872 
       
   873 /**
       
   874  *  igb_configure_msix - Configure MSI-X hardware
       
   875  *  @adapter: board private structure to initialize
       
   876  *
       
   877  *  igb_configure_msix sets up the hardware to properly
       
   878  *  generate MSI-X interrupts.
       
   879  **/
       
   880 static void igb_configure_msix(struct igb_adapter *adapter)
       
   881 {
       
   882 	u32 tmp;
       
   883 	int i, vector = 0;
       
   884 	struct e1000_hw *hw = &adapter->hw;
       
   885 
       
   886 	adapter->eims_enable_mask = 0;
       
   887 
       
   888 	/* set vector for other causes, i.e. link changes */
       
   889 	switch (hw->mac.type) {
       
   890 	case e1000_82575:
       
   891 		tmp = rd32(E1000_CTRL_EXT);
       
   892 		/* enable MSI-X PBA support*/
       
   893 		tmp |= E1000_CTRL_EXT_PBA_CLR;
       
   894 
       
   895 		/* Auto-Mask interrupts upon ICR read. */
       
   896 		tmp |= E1000_CTRL_EXT_EIAME;
       
   897 		tmp |= E1000_CTRL_EXT_IRCA;
       
   898 
       
   899 		wr32(E1000_CTRL_EXT, tmp);
       
   900 
       
   901 		/* enable msix_other interrupt */
       
   902 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
       
   903 		adapter->eims_other = E1000_EIMS_OTHER;
       
   904 
       
   905 		break;
       
   906 
       
   907 	case e1000_82576:
       
   908 	case e1000_82580:
       
   909 	case e1000_i350:
       
   910 	case e1000_i354:
       
   911 	case e1000_i210:
       
   912 	case e1000_i211:
       
   913 		/* Turn on MSI-X capability first, or our settings
       
   914 		 * won't stick.  And it will take days to debug.
       
   915 		 */
       
   916 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
       
   917 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
       
   918 		     E1000_GPIE_NSICR);
       
   919 
       
   920 		/* enable msix_other interrupt */
       
   921 		adapter->eims_other = 1 << vector;
       
   922 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
       
   923 
       
   924 		wr32(E1000_IVAR_MISC, tmp);
       
   925 		break;
       
   926 	default:
       
   927 		/* do nothing, since nothing else supports MSI-X */
       
   928 		break;
       
   929 	} /* switch (hw->mac.type) */
       
   930 
       
   931 	adapter->eims_enable_mask |= adapter->eims_other;
       
   932 
       
   933 	for (i = 0; i < adapter->num_q_vectors; i++)
       
   934 		igb_assign_vector(adapter->q_vector[i], vector++);
       
   935 
       
   936 	wrfl();
       
   937 }
       
   938 
       
   939 /**
       
   940  *  igb_request_msix - Initialize MSI-X interrupts
       
   941  *  @adapter: board private structure to initialize
       
   942  *
       
   943  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
       
   944  *  kernel.
       
   945  **/
       
   946 static int igb_request_msix(struct igb_adapter *adapter)
       
   947 {
       
   948 	struct net_device *netdev = adapter->netdev;
       
   949 	struct e1000_hw *hw = &adapter->hw;
       
   950 	int i, err = 0, vector = 0, free_vector = 0;
       
   951 
       
   952 	err = request_irq(adapter->msix_entries[vector].vector,
       
   953 			  igb_msix_other, 0, netdev->name, adapter);
       
   954 	if (err)
       
   955 		goto err_out;
       
   956 
       
   957 	for (i = 0; i < adapter->num_q_vectors; i++) {
       
   958 		struct igb_q_vector *q_vector = adapter->q_vector[i];
       
   959 
       
   960 		vector++;
       
   961 
       
   962 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
       
   963 
       
   964 		if (q_vector->rx.ring && q_vector->tx.ring)
       
   965 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
       
   966 				q_vector->rx.ring->queue_index);
       
   967 		else if (q_vector->tx.ring)
       
   968 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
       
   969 				q_vector->tx.ring->queue_index);
       
   970 		else if (q_vector->rx.ring)
       
   971 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
       
   972 				q_vector->rx.ring->queue_index);
       
   973 		else
       
   974 			sprintf(q_vector->name, "%s-unused", netdev->name);
       
   975 
       
   976 		err = request_irq(adapter->msix_entries[vector].vector,
       
   977 				  igb_msix_ring, 0, q_vector->name,
       
   978 				  q_vector);
       
   979 		if (err)
       
   980 			goto err_free;
       
   981 	}
       
   982 
       
   983 	igb_configure_msix(adapter);
       
   984 	return 0;
       
   985 
       
   986 err_free:
       
   987 	/* free already assigned IRQs */
       
   988 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
       
   989 
       
   990 	vector--;
       
   991 	for (i = 0; i < vector; i++) {
       
   992 		free_irq(adapter->msix_entries[free_vector++].vector,
       
   993 			 adapter->q_vector[i]);
       
   994 	}
       
   995 err_out:
       
   996 	return err;
       
   997 }
       
   998 
       
   999 /**
       
  1000  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
       
  1001  *  @adapter: board private structure to initialize
       
  1002  *  @v_idx: Index of vector to be freed
       
  1003  *
       
  1004  *  This function frees the memory allocated to the q_vector.
       
  1005  **/
       
  1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
       
  1007 {
       
  1008 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
       
  1009 
       
  1010 	adapter->q_vector[v_idx] = NULL;
       
  1011 
       
  1012 	/* igb_get_stats64() might access the rings on this vector,
       
  1013 	 * we must wait a grace period before freeing it.
       
  1014 	 */
       
  1015 	if (q_vector)
       
  1016 		kfree_rcu(q_vector, rcu);
       
  1017 }
       
  1018 
       
  1019 /**
       
  1020  *  igb_reset_q_vector - Reset config for interrupt vector
       
  1021  *  @adapter: board private structure to initialize
       
  1022  *  @v_idx: Index of vector to be reset
       
  1023  *
       
  1024  *  If NAPI is enabled it will delete any references to the
       
  1025  *  NAPI struct. This is preparation for igb_free_q_vector.
       
  1026  **/
       
  1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
       
  1028 {
       
  1029 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
       
  1030 
       
  1031 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
       
  1032 	 * allocated. So, q_vector is NULL so we should stop here.
       
  1033 	 */
       
  1034 	if (!q_vector)
       
  1035 		return;
       
  1036 
       
  1037 	if (q_vector->tx.ring)
       
  1038 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
       
  1039 
       
  1040 	if (q_vector->rx.ring)
       
  1041 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
       
  1042 
       
  1043 	netif_napi_del(&q_vector->napi);
       
  1044 
       
  1045 }
       
  1046 
       
  1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
       
  1048 {
       
  1049 	int v_idx = adapter->num_q_vectors;
       
  1050 
       
  1051 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
       
  1052 		pci_disable_msix(adapter->pdev);
       
  1053 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
       
  1054 		pci_disable_msi(adapter->pdev);
       
  1055 
       
  1056 	while (v_idx--)
       
  1057 		igb_reset_q_vector(adapter, v_idx);
       
  1058 }
       
  1059 
       
  1060 /**
       
  1061  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
       
  1062  *  @adapter: board private structure to initialize
       
  1063  *
       
  1064  *  This function frees the memory allocated to the q_vectors.  In addition if
       
  1065  *  NAPI is enabled it will delete any references to the NAPI struct prior
       
  1066  *  to freeing the q_vector.
       
  1067  **/
       
  1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
       
  1069 {
       
  1070 	int v_idx = adapter->num_q_vectors;
       
  1071 
       
  1072 	adapter->num_tx_queues = 0;
       
  1073 	adapter->num_rx_queues = 0;
       
  1074 	adapter->num_q_vectors = 0;
       
  1075 
       
  1076 	while (v_idx--) {
       
  1077 		igb_reset_q_vector(adapter, v_idx);
       
  1078 		igb_free_q_vector(adapter, v_idx);
       
  1079 	}
       
  1080 }
       
  1081 
       
  1082 /**
       
  1083  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
       
  1084  *  @adapter: board private structure to initialize
       
  1085  *
       
  1086  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
       
  1087  *  MSI-X interrupts allocated.
       
  1088  */
       
  1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
       
  1090 {
       
  1091 	igb_free_q_vectors(adapter);
       
  1092 	igb_reset_interrupt_capability(adapter);
       
  1093 }
       
  1094 
       
  1095 /**
       
  1096  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
       
  1097  *  @adapter: board private structure to initialize
       
  1098  *  @msix: boolean value of MSIX capability
       
  1099  *
       
  1100  *  Attempt to configure interrupts using the best available
       
  1101  *  capabilities of the hardware and kernel.
       
  1102  **/
       
  1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
       
  1104 {
       
  1105 	int err;
       
  1106 	int numvecs, i;
       
  1107 
       
  1108 	if (!msix)
       
  1109 		goto msi_only;
       
  1110 	adapter->flags |= IGB_FLAG_HAS_MSIX;
       
  1111 
       
  1112 	/* Number of supported queues. */
       
  1113 	adapter->num_rx_queues = adapter->rss_queues;
       
  1114 	if (adapter->vfs_allocated_count)
       
  1115 		adapter->num_tx_queues = 1;
       
  1116 	else
       
  1117 		adapter->num_tx_queues = adapter->rss_queues;
       
  1118 
       
  1119 	/* start with one vector for every Rx queue */
       
  1120 	numvecs = adapter->num_rx_queues;
       
  1121 
       
  1122 	/* if Tx handler is separate add 1 for every Tx queue */
       
  1123 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
       
  1124 		numvecs += adapter->num_tx_queues;
       
  1125 
       
  1126 	/* store the number of vectors reserved for queues */
       
  1127 	adapter->num_q_vectors = numvecs;
       
  1128 
       
  1129 	/* add 1 vector for link status interrupts */
       
  1130 	numvecs++;
       
  1131 	for (i = 0; i < numvecs; i++)
       
  1132 		adapter->msix_entries[i].entry = i;
       
  1133 
       
  1134 	err = pci_enable_msix_range(adapter->pdev,
       
  1135 				    adapter->msix_entries,
       
  1136 				    numvecs,
       
  1137 				    numvecs);
       
  1138 	if (err > 0)
       
  1139 		return;
       
  1140 
       
  1141 	igb_reset_interrupt_capability(adapter);
       
  1142 
       
  1143 	/* If we can't do MSI-X, try MSI */
       
  1144 msi_only:
       
  1145 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
       
  1146 #ifdef CONFIG_PCI_IOV
       
  1147 	/* disable SR-IOV for non MSI-X configurations */
       
  1148 	if (adapter->vf_data) {
       
  1149 		struct e1000_hw *hw = &adapter->hw;
       
  1150 		/* disable iov and allow time for transactions to clear */
       
  1151 		pci_disable_sriov(adapter->pdev);
       
  1152 		msleep(500);
       
  1153 
       
  1154 		kfree(adapter->vf_data);
       
  1155 		adapter->vf_data = NULL;
       
  1156 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
       
  1157 		wrfl();
       
  1158 		msleep(100);
       
  1159 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
       
  1160 	}
       
  1161 #endif
       
  1162 	adapter->vfs_allocated_count = 0;
       
  1163 	adapter->rss_queues = 1;
       
  1164 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
       
  1165 	adapter->num_rx_queues = 1;
       
  1166 	adapter->num_tx_queues = 1;
       
  1167 	adapter->num_q_vectors = 1;
       
  1168 	if (!pci_enable_msi(adapter->pdev))
       
  1169 		adapter->flags |= IGB_FLAG_HAS_MSI;
       
  1170 }
       
  1171 
       
  1172 static void igb_add_ring(struct igb_ring *ring,
       
  1173 			 struct igb_ring_container *head)
       
  1174 {
       
  1175 	head->ring = ring;
       
  1176 	head->count++;
       
  1177 }
       
  1178 
       
  1179 /**
       
  1180  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
       
  1181  *  @adapter: board private structure to initialize
       
  1182  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
       
  1183  *  @v_idx: index of vector in adapter struct
       
  1184  *  @txr_count: total number of Tx rings to allocate
       
  1185  *  @txr_idx: index of first Tx ring to allocate
       
  1186  *  @rxr_count: total number of Rx rings to allocate
       
  1187  *  @rxr_idx: index of first Rx ring to allocate
       
  1188  *
       
  1189  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
       
  1190  **/
       
  1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
       
  1192 			      int v_count, int v_idx,
       
  1193 			      int txr_count, int txr_idx,
       
  1194 			      int rxr_count, int rxr_idx)
       
  1195 {
       
  1196 	struct igb_q_vector *q_vector;
       
  1197 	struct igb_ring *ring;
       
  1198 	int ring_count, size;
       
  1199 
       
  1200 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
       
  1201 	if (txr_count > 1 || rxr_count > 1)
       
  1202 		return -ENOMEM;
       
  1203 
       
  1204 	ring_count = txr_count + rxr_count;
       
  1205 	size = sizeof(struct igb_q_vector) +
       
  1206 	       (sizeof(struct igb_ring) * ring_count);
       
  1207 
       
  1208 	/* allocate q_vector and rings */
       
  1209 	q_vector = adapter->q_vector[v_idx];
       
  1210 	if (!q_vector)
       
  1211 		q_vector = kzalloc(size, GFP_KERNEL);
       
  1212 	if (!q_vector)
       
  1213 		return -ENOMEM;
       
  1214 
       
  1215 	/* initialize NAPI */
       
  1216 	netif_napi_add(adapter->netdev, &q_vector->napi,
       
  1217 		       igb_poll, 64);
       
  1218 
       
  1219 	/* tie q_vector and adapter together */
       
  1220 	adapter->q_vector[v_idx] = q_vector;
       
  1221 	q_vector->adapter = adapter;
       
  1222 
       
  1223 	/* initialize work limits */
       
  1224 	q_vector->tx.work_limit = adapter->tx_work_limit;
       
  1225 
       
  1226 	/* initialize ITR configuration */
       
  1227 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
       
  1228 	q_vector->itr_val = IGB_START_ITR;
       
  1229 
       
  1230 	/* initialize pointer to rings */
       
  1231 	ring = q_vector->ring;
       
  1232 
       
  1233 	/* intialize ITR */
       
  1234 	if (rxr_count) {
       
  1235 		/* rx or rx/tx vector */
       
  1236 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
       
  1237 			q_vector->itr_val = adapter->rx_itr_setting;
       
  1238 	} else {
       
  1239 		/* tx only vector */
       
  1240 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
       
  1241 			q_vector->itr_val = adapter->tx_itr_setting;
       
  1242 	}
       
  1243 
       
  1244 	if (txr_count) {
       
  1245 		/* assign generic ring traits */
       
  1246 		ring->dev = &adapter->pdev->dev;
       
  1247 		ring->netdev = adapter->netdev;
       
  1248 
       
  1249 		/* configure backlink on ring */
       
  1250 		ring->q_vector = q_vector;
       
  1251 
       
  1252 		/* update q_vector Tx values */
       
  1253 		igb_add_ring(ring, &q_vector->tx);
       
  1254 
       
  1255 		/* For 82575, context index must be unique per ring. */
       
  1256 		if (adapter->hw.mac.type == e1000_82575)
       
  1257 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
       
  1258 
       
  1259 		/* apply Tx specific ring traits */
       
  1260 		ring->count = adapter->tx_ring_count;
       
  1261 		ring->queue_index = txr_idx;
       
  1262 
       
  1263 		u64_stats_init(&ring->tx_syncp);
       
  1264 		u64_stats_init(&ring->tx_syncp2);
       
  1265 
       
  1266 		/* assign ring to adapter */
       
  1267 		adapter->tx_ring[txr_idx] = ring;
       
  1268 
       
  1269 		/* push pointer to next ring */
       
  1270 		ring++;
       
  1271 	}
       
  1272 
       
  1273 	if (rxr_count) {
       
  1274 		/* assign generic ring traits */
       
  1275 		ring->dev = &adapter->pdev->dev;
       
  1276 		ring->netdev = adapter->netdev;
       
  1277 
       
  1278 		/* configure backlink on ring */
       
  1279 		ring->q_vector = q_vector;
       
  1280 
       
  1281 		/* update q_vector Rx values */
       
  1282 		igb_add_ring(ring, &q_vector->rx);
       
  1283 
       
  1284 		/* set flag indicating ring supports SCTP checksum offload */
       
  1285 		if (adapter->hw.mac.type >= e1000_82576)
       
  1286 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
       
  1287 
       
  1288 		/* On i350, i354, i210, and i211, loopback VLAN packets
       
  1289 		 * have the tag byte-swapped.
       
  1290 		 */
       
  1291 		if (adapter->hw.mac.type >= e1000_i350)
       
  1292 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
       
  1293 
       
  1294 		/* apply Rx specific ring traits */
       
  1295 		ring->count = adapter->rx_ring_count;
       
  1296 		ring->queue_index = rxr_idx;
       
  1297 
       
  1298 		u64_stats_init(&ring->rx_syncp);
       
  1299 
       
  1300 		/* assign ring to adapter */
       
  1301 		adapter->rx_ring[rxr_idx] = ring;
       
  1302 	}
       
  1303 
       
  1304 	return 0;
       
  1305 }
       
  1306 
       
  1307 
       
  1308 /**
       
  1309  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
       
  1310  *  @adapter: board private structure to initialize
       
  1311  *
       
  1312  *  We allocate one q_vector per queue interrupt.  If allocation fails we
       
  1313  *  return -ENOMEM.
       
  1314  **/
       
  1315 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
       
  1316 {
       
  1317 	int q_vectors = adapter->num_q_vectors;
       
  1318 	int rxr_remaining = adapter->num_rx_queues;
       
  1319 	int txr_remaining = adapter->num_tx_queues;
       
  1320 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
       
  1321 	int err;
       
  1322 
       
  1323 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
       
  1324 		for (; rxr_remaining; v_idx++) {
       
  1325 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
       
  1326 						 0, 0, 1, rxr_idx);
       
  1327 
       
  1328 			if (err)
       
  1329 				goto err_out;
       
  1330 
       
  1331 			/* update counts and index */
       
  1332 			rxr_remaining--;
       
  1333 			rxr_idx++;
       
  1334 		}
       
  1335 	}
       
  1336 
       
  1337 	for (; v_idx < q_vectors; v_idx++) {
       
  1338 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
       
  1339 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
       
  1340 
       
  1341 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
       
  1342 					 tqpv, txr_idx, rqpv, rxr_idx);
       
  1343 
       
  1344 		if (err)
       
  1345 			goto err_out;
       
  1346 
       
  1347 		/* update counts and index */
       
  1348 		rxr_remaining -= rqpv;
       
  1349 		txr_remaining -= tqpv;
       
  1350 		rxr_idx++;
       
  1351 		txr_idx++;
       
  1352 	}
       
  1353 
       
  1354 	return 0;
       
  1355 
       
  1356 err_out:
       
  1357 	adapter->num_tx_queues = 0;
       
  1358 	adapter->num_rx_queues = 0;
       
  1359 	adapter->num_q_vectors = 0;
       
  1360 
       
  1361 	while (v_idx--)
       
  1362 		igb_free_q_vector(adapter, v_idx);
       
  1363 
       
  1364 	return -ENOMEM;
       
  1365 }
       
  1366 
       
  1367 /**
       
  1368  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
       
  1369  *  @adapter: board private structure to initialize
       
  1370  *  @msix: boolean value of MSIX capability
       
  1371  *
       
  1372  *  This function initializes the interrupts and allocates all of the queues.
       
  1373  **/
       
  1374 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
       
  1375 {
       
  1376 	struct pci_dev *pdev = adapter->pdev;
       
  1377 	int err;
       
  1378 
       
  1379 	igb_set_interrupt_capability(adapter, msix);
       
  1380 
       
  1381 	err = igb_alloc_q_vectors(adapter);
       
  1382 	if (err) {
       
  1383 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
       
  1384 		goto err_alloc_q_vectors;
       
  1385 	}
       
  1386 
       
  1387 	igb_cache_ring_register(adapter);
       
  1388 
       
  1389 	return 0;
       
  1390 
       
  1391 err_alloc_q_vectors:
       
  1392 	igb_reset_interrupt_capability(adapter);
       
  1393 	return err;
       
  1394 }
       
  1395 
       
  1396 /**
       
  1397  *  igb_request_irq - initialize interrupts
       
  1398  *  @adapter: board private structure to initialize
       
  1399  *
       
  1400  *  Attempts to configure interrupts using the best available
       
  1401  *  capabilities of the hardware and kernel.
       
  1402  **/
       
  1403 static int igb_request_irq(struct igb_adapter *adapter)
       
  1404 {
       
  1405 	struct net_device *netdev = adapter->netdev;
       
  1406 	struct pci_dev *pdev = adapter->pdev;
       
  1407 	int err = 0;
       
  1408 
       
  1409 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
       
  1410 		err = igb_request_msix(adapter);
       
  1411 		if (!err)
       
  1412 			goto request_done;
       
  1413 		/* fall back to MSI */
       
  1414 		igb_free_all_tx_resources(adapter);
       
  1415 		igb_free_all_rx_resources(adapter);
       
  1416 
       
  1417 		igb_clear_interrupt_scheme(adapter);
       
  1418 		err = igb_init_interrupt_scheme(adapter, false);
       
  1419 		if (err)
       
  1420 			goto request_done;
       
  1421 
       
  1422 		igb_setup_all_tx_resources(adapter);
       
  1423 		igb_setup_all_rx_resources(adapter);
       
  1424 		igb_configure(adapter);
       
  1425 	}
       
  1426 
       
  1427 	igb_assign_vector(adapter->q_vector[0], 0);
       
  1428 
       
  1429 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
       
  1430 		err = request_irq(pdev->irq, igb_intr_msi, 0,
       
  1431 				  netdev->name, adapter);
       
  1432 		if (!err)
       
  1433 			goto request_done;
       
  1434 
       
  1435 		/* fall back to legacy interrupts */
       
  1436 		igb_reset_interrupt_capability(adapter);
       
  1437 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
       
  1438 	}
       
  1439 
       
  1440 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
       
  1441 			  netdev->name, adapter);
       
  1442 
       
  1443 	if (err)
       
  1444 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
       
  1445 			err);
       
  1446 
       
  1447 request_done:
       
  1448 	return err;
       
  1449 }
       
  1450 
       
  1451 static void igb_free_irq(struct igb_adapter *adapter)
       
  1452 {
       
  1453 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
       
  1454 		int vector = 0, i;
       
  1455 
       
  1456 		free_irq(adapter->msix_entries[vector++].vector, adapter);
       
  1457 
       
  1458 		for (i = 0; i < adapter->num_q_vectors; i++)
       
  1459 			free_irq(adapter->msix_entries[vector++].vector,
       
  1460 				 adapter->q_vector[i]);
       
  1461 	} else {
       
  1462 		free_irq(adapter->pdev->irq, adapter);
       
  1463 	}
       
  1464 }
       
  1465 
       
  1466 /**
       
  1467  *  igb_irq_disable - Mask off interrupt generation on the NIC
       
  1468  *  @adapter: board private structure
       
  1469  **/
       
  1470 static void igb_irq_disable(struct igb_adapter *adapter)
       
  1471 {
       
  1472 	struct e1000_hw *hw = &adapter->hw;
       
  1473 
       
  1474 	/* we need to be careful when disabling interrupts.  The VFs are also
       
  1475 	 * mapped into these registers and so clearing the bits can cause
       
  1476 	 * issues on the VF drivers so we only need to clear what we set
       
  1477 	 */
       
  1478 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
       
  1479 		u32 regval = rd32(E1000_EIAM);
       
  1480 
       
  1481 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
       
  1482 		wr32(E1000_EIMC, adapter->eims_enable_mask);
       
  1483 		regval = rd32(E1000_EIAC);
       
  1484 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
       
  1485 	}
       
  1486 
       
  1487 	wr32(E1000_IAM, 0);
       
  1488 	wr32(E1000_IMC, ~0);
       
  1489 	wrfl();
       
  1490 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
       
  1491 		int i;
       
  1492 
       
  1493 		for (i = 0; i < adapter->num_q_vectors; i++)
       
  1494 			synchronize_irq(adapter->msix_entries[i].vector);
       
  1495 	} else {
       
  1496 		synchronize_irq(adapter->pdev->irq);
       
  1497 	}
       
  1498 }
       
  1499 
       
  1500 /**
       
  1501  *  igb_irq_enable - Enable default interrupt generation settings
       
  1502  *  @adapter: board private structure
       
  1503  **/
       
  1504 static void igb_irq_enable(struct igb_adapter *adapter)
       
  1505 {
       
  1506 	struct e1000_hw *hw = &adapter->hw;
       
  1507 
       
  1508 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
       
  1509 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
       
  1510 		u32 regval = rd32(E1000_EIAC);
       
  1511 
       
  1512 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
       
  1513 		regval = rd32(E1000_EIAM);
       
  1514 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
       
  1515 		wr32(E1000_EIMS, adapter->eims_enable_mask);
       
  1516 		if (adapter->vfs_allocated_count) {
       
  1517 			wr32(E1000_MBVFIMR, 0xFF);
       
  1518 			ims |= E1000_IMS_VMMB;
       
  1519 		}
       
  1520 		wr32(E1000_IMS, ims);
       
  1521 	} else {
       
  1522 		wr32(E1000_IMS, IMS_ENABLE_MASK |
       
  1523 				E1000_IMS_DRSTA);
       
  1524 		wr32(E1000_IAM, IMS_ENABLE_MASK |
       
  1525 				E1000_IMS_DRSTA);
       
  1526 	}
       
  1527 }
       
  1528 
       
  1529 static void igb_update_mng_vlan(struct igb_adapter *adapter)
       
  1530 {
       
  1531 	struct e1000_hw *hw = &adapter->hw;
       
  1532 	u16 vid = adapter->hw.mng_cookie.vlan_id;
       
  1533 	u16 old_vid = adapter->mng_vlan_id;
       
  1534 
       
  1535 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
       
  1536 		/* add VID to filter table */
       
  1537 		igb_vfta_set(hw, vid, true);
       
  1538 		adapter->mng_vlan_id = vid;
       
  1539 	} else {
       
  1540 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
       
  1541 	}
       
  1542 
       
  1543 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
       
  1544 	    (vid != old_vid) &&
       
  1545 	    !test_bit(old_vid, adapter->active_vlans)) {
       
  1546 		/* remove VID from filter table */
       
  1547 		igb_vfta_set(hw, old_vid, false);
       
  1548 	}
       
  1549 }
       
  1550 
       
  1551 /**
       
  1552  *  igb_release_hw_control - release control of the h/w to f/w
       
  1553  *  @adapter: address of board private structure
       
  1554  *
       
  1555  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
       
  1556  *  For ASF and Pass Through versions of f/w this means that the
       
  1557  *  driver is no longer loaded.
       
  1558  **/
       
  1559 static void igb_release_hw_control(struct igb_adapter *adapter)
       
  1560 {
       
  1561 	struct e1000_hw *hw = &adapter->hw;
       
  1562 	u32 ctrl_ext;
       
  1563 
       
  1564 	/* Let firmware take over control of h/w */
       
  1565 	ctrl_ext = rd32(E1000_CTRL_EXT);
       
  1566 	wr32(E1000_CTRL_EXT,
       
  1567 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
       
  1568 }
       
  1569 
       
  1570 /**
       
  1571  *  igb_get_hw_control - get control of the h/w from f/w
       
  1572  *  @adapter: address of board private structure
       
  1573  *
       
  1574  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
       
  1575  *  For ASF and Pass Through versions of f/w this means that
       
  1576  *  the driver is loaded.
       
  1577  **/
       
  1578 static void igb_get_hw_control(struct igb_adapter *adapter)
       
  1579 {
       
  1580 	struct e1000_hw *hw = &adapter->hw;
       
  1581 	u32 ctrl_ext;
       
  1582 
       
  1583 	/* Let firmware know the driver has taken over */
       
  1584 	ctrl_ext = rd32(E1000_CTRL_EXT);
       
  1585 	wr32(E1000_CTRL_EXT,
       
  1586 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
       
  1587 }
       
  1588 
       
  1589 /**
       
  1590  *  igb_configure - configure the hardware for RX and TX
       
  1591  *  @adapter: private board structure
       
  1592  **/
       
  1593 static void igb_configure(struct igb_adapter *adapter)
       
  1594 {
       
  1595 	struct net_device *netdev = adapter->netdev;
       
  1596 	int i;
       
  1597 
       
  1598 	igb_get_hw_control(adapter);
       
  1599 	igb_set_rx_mode(netdev);
       
  1600 
       
  1601 	igb_restore_vlan(adapter);
       
  1602 
       
  1603 	igb_setup_tctl(adapter);
       
  1604 	igb_setup_mrqc(adapter);
       
  1605 	igb_setup_rctl(adapter);
       
  1606 
       
  1607 	igb_configure_tx(adapter);
       
  1608 	igb_configure_rx(adapter);
       
  1609 
       
  1610 	igb_rx_fifo_flush_82575(&adapter->hw);
       
  1611 
       
  1612 	/* call igb_desc_unused which always leaves
       
  1613 	 * at least 1 descriptor unused to make sure
       
  1614 	 * next_to_use != next_to_clean
       
  1615 	 */
       
  1616 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1617 		struct igb_ring *ring = adapter->rx_ring[i];
       
  1618 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
       
  1619 	}
       
  1620 }
       
  1621 
       
  1622 /**
       
  1623  *  igb_power_up_link - Power up the phy/serdes link
       
  1624  *  @adapter: address of board private structure
       
  1625  **/
       
  1626 void igb_power_up_link(struct igb_adapter *adapter)
       
  1627 {
       
  1628 	igb_reset_phy(&adapter->hw);
       
  1629 
       
  1630 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
       
  1631 		igb_power_up_phy_copper(&adapter->hw);
       
  1632 	else
       
  1633 		igb_power_up_serdes_link_82575(&adapter->hw);
       
  1634 
       
  1635 	igb_setup_link(&adapter->hw);
       
  1636 }
       
  1637 
       
  1638 /**
       
  1639  *  igb_power_down_link - Power down the phy/serdes link
       
  1640  *  @adapter: address of board private structure
       
  1641  */
       
  1642 static void igb_power_down_link(struct igb_adapter *adapter)
       
  1643 {
       
  1644 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
       
  1645 		igb_power_down_phy_copper_82575(&adapter->hw);
       
  1646 	else
       
  1647 		igb_shutdown_serdes_link_82575(&adapter->hw);
       
  1648 }
       
  1649 
       
  1650 /**
       
  1651  * Detect and switch function for Media Auto Sense
       
  1652  * @adapter: address of the board private structure
       
  1653  **/
       
  1654 static void igb_check_swap_media(struct igb_adapter *adapter)
       
  1655 {
       
  1656 	struct e1000_hw *hw = &adapter->hw;
       
  1657 	u32 ctrl_ext, connsw;
       
  1658 	bool swap_now = false;
       
  1659 
       
  1660 	ctrl_ext = rd32(E1000_CTRL_EXT);
       
  1661 	connsw = rd32(E1000_CONNSW);
       
  1662 
       
  1663 	/* need to live swap if current media is copper and we have fiber/serdes
       
  1664 	 * to go to.
       
  1665 	 */
       
  1666 
       
  1667 	if ((hw->phy.media_type == e1000_media_type_copper) &&
       
  1668 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
       
  1669 		swap_now = true;
       
  1670 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
       
  1671 		/* copper signal takes time to appear */
       
  1672 		if (adapter->copper_tries < 4) {
       
  1673 			adapter->copper_tries++;
       
  1674 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
       
  1675 			wr32(E1000_CONNSW, connsw);
       
  1676 			return;
       
  1677 		} else {
       
  1678 			adapter->copper_tries = 0;
       
  1679 			if ((connsw & E1000_CONNSW_PHYSD) &&
       
  1680 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
       
  1681 				swap_now = true;
       
  1682 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
       
  1683 				wr32(E1000_CONNSW, connsw);
       
  1684 			}
       
  1685 		}
       
  1686 	}
       
  1687 
       
  1688 	if (!swap_now)
       
  1689 		return;
       
  1690 
       
  1691 	switch (hw->phy.media_type) {
       
  1692 	case e1000_media_type_copper:
       
  1693 		netdev_info(adapter->netdev,
       
  1694 			"MAS: changing media to fiber/serdes\n");
       
  1695 		ctrl_ext |=
       
  1696 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
       
  1697 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
       
  1698 		adapter->copper_tries = 0;
       
  1699 		break;
       
  1700 	case e1000_media_type_internal_serdes:
       
  1701 	case e1000_media_type_fiber:
       
  1702 		netdev_info(adapter->netdev,
       
  1703 			"MAS: changing media to copper\n");
       
  1704 		ctrl_ext &=
       
  1705 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
       
  1706 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
       
  1707 		break;
       
  1708 	default:
       
  1709 		/* shouldn't get here during regular operation */
       
  1710 		netdev_err(adapter->netdev,
       
  1711 			"AMS: Invalid media type found, returning\n");
       
  1712 		break;
       
  1713 	}
       
  1714 	wr32(E1000_CTRL_EXT, ctrl_ext);
       
  1715 }
       
  1716 
       
  1717 /**
       
  1718  *  igb_up - Open the interface and prepare it to handle traffic
       
  1719  *  @adapter: board private structure
       
  1720  **/
       
  1721 int igb_up(struct igb_adapter *adapter)
       
  1722 {
       
  1723 	struct e1000_hw *hw = &adapter->hw;
       
  1724 	int i;
       
  1725 
       
  1726 	/* hardware has been reset, we need to reload some things */
       
  1727 	igb_configure(adapter);
       
  1728 
       
  1729 	clear_bit(__IGB_DOWN, &adapter->state);
       
  1730 
       
  1731 	for (i = 0; i < adapter->num_q_vectors; i++)
       
  1732 		napi_enable(&(adapter->q_vector[i]->napi));
       
  1733 
       
  1734 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
       
  1735 		igb_configure_msix(adapter);
       
  1736 	else
       
  1737 		igb_assign_vector(adapter->q_vector[0], 0);
       
  1738 
       
  1739 	/* Clear any pending interrupts. */
       
  1740 	rd32(E1000_ICR);
       
  1741 	igb_irq_enable(adapter);
       
  1742 
       
  1743 	/* notify VFs that reset has been completed */
       
  1744 	if (adapter->vfs_allocated_count) {
       
  1745 		u32 reg_data = rd32(E1000_CTRL_EXT);
       
  1746 
       
  1747 		reg_data |= E1000_CTRL_EXT_PFRSTD;
       
  1748 		wr32(E1000_CTRL_EXT, reg_data);
       
  1749 	}
       
  1750 
       
  1751 	netif_tx_start_all_queues(adapter->netdev);
       
  1752 
       
  1753 	/* start the watchdog. */
       
  1754 	hw->mac.get_link_status = 1;
       
  1755 	schedule_work(&adapter->watchdog_task);
       
  1756 
       
  1757 	if ((adapter->flags & IGB_FLAG_EEE) &&
       
  1758 	    (!hw->dev_spec._82575.eee_disable))
       
  1759 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
       
  1760 
       
  1761 	return 0;
       
  1762 }
       
  1763 
       
  1764 void igb_down(struct igb_adapter *adapter)
       
  1765 {
       
  1766 	struct net_device *netdev = adapter->netdev;
       
  1767 	struct e1000_hw *hw = &adapter->hw;
       
  1768 	u32 tctl, rctl;
       
  1769 	int i;
       
  1770 
       
  1771 	/* signal that we're down so the interrupt handler does not
       
  1772 	 * reschedule our watchdog timer
       
  1773 	 */
       
  1774 	set_bit(__IGB_DOWN, &adapter->state);
       
  1775 
       
  1776 	/* disable receives in the hardware */
       
  1777 	rctl = rd32(E1000_RCTL);
       
  1778 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
       
  1779 	/* flush and sleep below */
       
  1780 
       
  1781 	netif_tx_stop_all_queues(netdev);
       
  1782 
       
  1783 	/* disable transmits in the hardware */
       
  1784 	tctl = rd32(E1000_TCTL);
       
  1785 	tctl &= ~E1000_TCTL_EN;
       
  1786 	wr32(E1000_TCTL, tctl);
       
  1787 	/* flush both disables and wait for them to finish */
       
  1788 	wrfl();
       
  1789 	usleep_range(10000, 11000);
       
  1790 
       
  1791 	igb_irq_disable(adapter);
       
  1792 
       
  1793 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
       
  1794 
       
  1795 	for (i = 0; i < adapter->num_q_vectors; i++) {
       
  1796 		if (adapter->q_vector[i]) {
       
  1797 			napi_synchronize(&adapter->q_vector[i]->napi);
       
  1798 			napi_disable(&adapter->q_vector[i]->napi);
       
  1799 		}
       
  1800 	}
       
  1801 
       
  1802 
       
  1803 	del_timer_sync(&adapter->watchdog_timer);
       
  1804 	del_timer_sync(&adapter->phy_info_timer);
       
  1805 
       
  1806 	netif_carrier_off(netdev);
       
  1807 
       
  1808 	/* record the stats before reset*/
       
  1809 	spin_lock(&adapter->stats64_lock);
       
  1810 	igb_update_stats(adapter, &adapter->stats64);
       
  1811 	spin_unlock(&adapter->stats64_lock);
       
  1812 
       
  1813 	adapter->link_speed = 0;
       
  1814 	adapter->link_duplex = 0;
       
  1815 
       
  1816 	if (!pci_channel_offline(adapter->pdev))
       
  1817 		igb_reset(adapter);
       
  1818 	igb_clean_all_tx_rings(adapter);
       
  1819 	igb_clean_all_rx_rings(adapter);
       
  1820 #ifdef CONFIG_IGB_DCA
       
  1821 
       
  1822 	/* since we reset the hardware DCA settings were cleared */
       
  1823 	igb_setup_dca(adapter);
       
  1824 #endif
       
  1825 }
       
  1826 
       
  1827 void igb_reinit_locked(struct igb_adapter *adapter)
       
  1828 {
       
  1829 	WARN_ON(in_interrupt());
       
  1830 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
       
  1831 		usleep_range(1000, 2000);
       
  1832 	igb_down(adapter);
       
  1833 	igb_up(adapter);
       
  1834 	clear_bit(__IGB_RESETTING, &adapter->state);
       
  1835 }
       
  1836 
       
  1837 /** igb_enable_mas - Media Autosense re-enable after swap
       
  1838  *
       
  1839  * @adapter: adapter struct
       
  1840  **/
       
  1841 static s32 igb_enable_mas(struct igb_adapter *adapter)
       
  1842 {
       
  1843 	struct e1000_hw *hw = &adapter->hw;
       
  1844 	u32 connsw;
       
  1845 	s32 ret_val = 0;
       
  1846 
       
  1847 	connsw = rd32(E1000_CONNSW);
       
  1848 	if (!(hw->phy.media_type == e1000_media_type_copper))
       
  1849 		return ret_val;
       
  1850 
       
  1851 	/* configure for SerDes media detect */
       
  1852 	if (!(connsw & E1000_CONNSW_SERDESD)) {
       
  1853 		connsw |= E1000_CONNSW_ENRGSRC;
       
  1854 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
       
  1855 		wr32(E1000_CONNSW, connsw);
       
  1856 		wrfl();
       
  1857 	} else if (connsw & E1000_CONNSW_SERDESD) {
       
  1858 		/* already SerDes, no need to enable anything */
       
  1859 		return ret_val;
       
  1860 	} else {
       
  1861 		netdev_info(adapter->netdev,
       
  1862 			"MAS: Unable to configure feature, disabling..\n");
       
  1863 		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
       
  1864 	}
       
  1865 	return ret_val;
       
  1866 }
       
  1867 
       
  1868 void igb_reset(struct igb_adapter *adapter)
       
  1869 {
       
  1870 	struct pci_dev *pdev = adapter->pdev;
       
  1871 	struct e1000_hw *hw = &adapter->hw;
       
  1872 	struct e1000_mac_info *mac = &hw->mac;
       
  1873 	struct e1000_fc_info *fc = &hw->fc;
       
  1874 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
       
  1875 
       
  1876 	/* Repartition Pba for greater than 9k mtu
       
  1877 	 * To take effect CTRL.RST is required.
       
  1878 	 */
       
  1879 	switch (mac->type) {
       
  1880 	case e1000_i350:
       
  1881 	case e1000_i354:
       
  1882 	case e1000_82580:
       
  1883 		pba = rd32(E1000_RXPBS);
       
  1884 		pba = igb_rxpbs_adjust_82580(pba);
       
  1885 		break;
       
  1886 	case e1000_82576:
       
  1887 		pba = rd32(E1000_RXPBS);
       
  1888 		pba &= E1000_RXPBS_SIZE_MASK_82576;
       
  1889 		break;
       
  1890 	case e1000_82575:
       
  1891 	case e1000_i210:
       
  1892 	case e1000_i211:
       
  1893 	default:
       
  1894 		pba = E1000_PBA_34K;
       
  1895 		break;
       
  1896 	}
       
  1897 
       
  1898 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
       
  1899 	    (mac->type < e1000_82576)) {
       
  1900 		/* adjust PBA for jumbo frames */
       
  1901 		wr32(E1000_PBA, pba);
       
  1902 
       
  1903 		/* To maintain wire speed transmits, the Tx FIFO should be
       
  1904 		 * large enough to accommodate two full transmit packets,
       
  1905 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
       
  1906 		 * the Rx FIFO should be large enough to accommodate at least
       
  1907 		 * one full receive packet and is similarly rounded up and
       
  1908 		 * expressed in KB.
       
  1909 		 */
       
  1910 		pba = rd32(E1000_PBA);
       
  1911 		/* upper 16 bits has Tx packet buffer allocation size in KB */
       
  1912 		tx_space = pba >> 16;
       
  1913 		/* lower 16 bits has Rx packet buffer allocation size in KB */
       
  1914 		pba &= 0xffff;
       
  1915 		/* the Tx fifo also stores 16 bytes of information about the Tx
       
  1916 		 * but don't include ethernet FCS because hardware appends it
       
  1917 		 */
       
  1918 		min_tx_space = (adapter->max_frame_size +
       
  1919 				sizeof(union e1000_adv_tx_desc) -
       
  1920 				ETH_FCS_LEN) * 2;
       
  1921 		min_tx_space = ALIGN(min_tx_space, 1024);
       
  1922 		min_tx_space >>= 10;
       
  1923 		/* software strips receive CRC, so leave room for it */
       
  1924 		min_rx_space = adapter->max_frame_size;
       
  1925 		min_rx_space = ALIGN(min_rx_space, 1024);
       
  1926 		min_rx_space >>= 10;
       
  1927 
       
  1928 		/* If current Tx allocation is less than the min Tx FIFO size,
       
  1929 		 * and the min Tx FIFO size is less than the current Rx FIFO
       
  1930 		 * allocation, take space away from current Rx allocation
       
  1931 		 */
       
  1932 		if (tx_space < min_tx_space &&
       
  1933 		    ((min_tx_space - tx_space) < pba)) {
       
  1934 			pba = pba - (min_tx_space - tx_space);
       
  1935 
       
  1936 			/* if short on Rx space, Rx wins and must trump Tx
       
  1937 			 * adjustment
       
  1938 			 */
       
  1939 			if (pba < min_rx_space)
       
  1940 				pba = min_rx_space;
       
  1941 		}
       
  1942 		wr32(E1000_PBA, pba);
       
  1943 	}
       
  1944 
       
  1945 	/* flow control settings */
       
  1946 	/* The high water mark must be low enough to fit one full frame
       
  1947 	 * (or the size used for early receive) above it in the Rx FIFO.
       
  1948 	 * Set it to the lower of:
       
  1949 	 * - 90% of the Rx FIFO size, or
       
  1950 	 * - the full Rx FIFO size minus one full frame
       
  1951 	 */
       
  1952 	hwm = min(((pba << 10) * 9 / 10),
       
  1953 			((pba << 10) - 2 * adapter->max_frame_size));
       
  1954 
       
  1955 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
       
  1956 	fc->low_water = fc->high_water - 16;
       
  1957 	fc->pause_time = 0xFFFF;
       
  1958 	fc->send_xon = 1;
       
  1959 	fc->current_mode = fc->requested_mode;
       
  1960 
       
  1961 	/* disable receive for all VFs and wait one second */
       
  1962 	if (adapter->vfs_allocated_count) {
       
  1963 		int i;
       
  1964 
       
  1965 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
       
  1966 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
       
  1967 
       
  1968 		/* ping all the active vfs to let them know we are going down */
       
  1969 		igb_ping_all_vfs(adapter);
       
  1970 
       
  1971 		/* disable transmits and receives */
       
  1972 		wr32(E1000_VFRE, 0);
       
  1973 		wr32(E1000_VFTE, 0);
       
  1974 	}
       
  1975 
       
  1976 	/* Allow time for pending master requests to run */
       
  1977 	hw->mac.ops.reset_hw(hw);
       
  1978 	wr32(E1000_WUC, 0);
       
  1979 
       
  1980 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
       
  1981 		/* need to resetup here after media swap */
       
  1982 		adapter->ei.get_invariants(hw);
       
  1983 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
       
  1984 	}
       
  1985 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
       
  1986 		if (igb_enable_mas(adapter))
       
  1987 			dev_err(&pdev->dev,
       
  1988 				"Error enabling Media Auto Sense\n");
       
  1989 	}
       
  1990 	if (hw->mac.ops.init_hw(hw))
       
  1991 		dev_err(&pdev->dev, "Hardware Error\n");
       
  1992 
       
  1993 	/* Flow control settings reset on hardware reset, so guarantee flow
       
  1994 	 * control is off when forcing speed.
       
  1995 	 */
       
  1996 	if (!hw->mac.autoneg)
       
  1997 		igb_force_mac_fc(hw);
       
  1998 
       
  1999 	igb_init_dmac(adapter, pba);
       
  2000 #ifdef CONFIG_IGB_HWMON
       
  2001 	/* Re-initialize the thermal sensor on i350 devices. */
       
  2002 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
       
  2003 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
       
  2004 			/* If present, re-initialize the external thermal sensor
       
  2005 			 * interface.
       
  2006 			 */
       
  2007 			if (adapter->ets)
       
  2008 				mac->ops.init_thermal_sensor_thresh(hw);
       
  2009 		}
       
  2010 	}
       
  2011 #endif
       
  2012 	/* Re-establish EEE setting */
       
  2013 	if (hw->phy.media_type == e1000_media_type_copper) {
       
  2014 		switch (mac->type) {
       
  2015 		case e1000_i350:
       
  2016 		case e1000_i210:
       
  2017 		case e1000_i211:
       
  2018 			igb_set_eee_i350(hw, true, true);
       
  2019 			break;
       
  2020 		case e1000_i354:
       
  2021 			igb_set_eee_i354(hw, true, true);
       
  2022 			break;
       
  2023 		default:
       
  2024 			break;
       
  2025 		}
       
  2026 	}
       
  2027 	if (!netif_running(adapter->netdev))
       
  2028 		igb_power_down_link(adapter);
       
  2029 
       
  2030 	igb_update_mng_vlan(adapter);
       
  2031 
       
  2032 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
  2033 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
       
  2034 
       
  2035 	/* Re-enable PTP, where applicable. */
       
  2036 	igb_ptp_reset(adapter);
       
  2037 
       
  2038 	igb_get_phy_info(hw);
       
  2039 }
       
  2040 
       
  2041 static netdev_features_t igb_fix_features(struct net_device *netdev,
       
  2042 	netdev_features_t features)
       
  2043 {
       
  2044 	/* Since there is no support for separate Rx/Tx vlan accel
       
  2045 	 * enable/disable make sure Tx flag is always in same state as Rx.
       
  2046 	 */
       
  2047 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
       
  2048 		features |= NETIF_F_HW_VLAN_CTAG_TX;
       
  2049 	else
       
  2050 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
       
  2051 
       
  2052 	return features;
       
  2053 }
       
  2054 
       
  2055 static int igb_set_features(struct net_device *netdev,
       
  2056 	netdev_features_t features)
       
  2057 {
       
  2058 	netdev_features_t changed = netdev->features ^ features;
       
  2059 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2060 
       
  2061 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
       
  2062 		igb_vlan_mode(netdev, features);
       
  2063 
       
  2064 	if (!(changed & NETIF_F_RXALL))
       
  2065 		return 0;
       
  2066 
       
  2067 	netdev->features = features;
       
  2068 
       
  2069 	if (netif_running(netdev))
       
  2070 		igb_reinit_locked(adapter);
       
  2071 	else
       
  2072 		igb_reset(adapter);
       
  2073 
       
  2074 	return 0;
       
  2075 }
       
  2076 
       
  2077 static const struct net_device_ops igb_netdev_ops = {
       
  2078 	.ndo_open		= igb_open,
       
  2079 	.ndo_stop		= igb_close,
       
  2080 	.ndo_start_xmit		= igb_xmit_frame,
       
  2081 	.ndo_get_stats64	= igb_get_stats64,
       
  2082 	.ndo_set_rx_mode	= igb_set_rx_mode,
       
  2083 	.ndo_set_mac_address	= igb_set_mac,
       
  2084 	.ndo_change_mtu		= igb_change_mtu,
       
  2085 	.ndo_do_ioctl		= igb_ioctl,
       
  2086 	.ndo_tx_timeout		= igb_tx_timeout,
       
  2087 	.ndo_validate_addr	= eth_validate_addr,
       
  2088 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
       
  2089 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
       
  2090 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
       
  2091 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
       
  2092 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
       
  2093 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
       
  2094 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
       
  2095 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  2096 	.ndo_poll_controller	= igb_netpoll,
       
  2097 #endif
       
  2098 	.ndo_fix_features	= igb_fix_features,
       
  2099 	.ndo_set_features	= igb_set_features,
       
  2100 };
       
  2101 
       
  2102 /**
       
  2103  * igb_set_fw_version - Configure version string for ethtool
       
  2104  * @adapter: adapter struct
       
  2105  **/
       
  2106 void igb_set_fw_version(struct igb_adapter *adapter)
       
  2107 {
       
  2108 	struct e1000_hw *hw = &adapter->hw;
       
  2109 	struct e1000_fw_version fw;
       
  2110 
       
  2111 	igb_get_fw_version(hw, &fw);
       
  2112 
       
  2113 	switch (hw->mac.type) {
       
  2114 	case e1000_i210:
       
  2115 	case e1000_i211:
       
  2116 		if (!(igb_get_flash_presence_i210(hw))) {
       
  2117 			snprintf(adapter->fw_version,
       
  2118 				 sizeof(adapter->fw_version),
       
  2119 				 "%2d.%2d-%d",
       
  2120 				 fw.invm_major, fw.invm_minor,
       
  2121 				 fw.invm_img_type);
       
  2122 			break;
       
  2123 		}
       
  2124 		/* fall through */
       
  2125 	default:
       
  2126 		/* if option is rom valid, display its version too */
       
  2127 		if (fw.or_valid) {
       
  2128 			snprintf(adapter->fw_version,
       
  2129 				 sizeof(adapter->fw_version),
       
  2130 				 "%d.%d, 0x%08x, %d.%d.%d",
       
  2131 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
       
  2132 				 fw.or_major, fw.or_build, fw.or_patch);
       
  2133 		/* no option rom */
       
  2134 		} else if (fw.etrack_id != 0X0000) {
       
  2135 			snprintf(adapter->fw_version,
       
  2136 			    sizeof(adapter->fw_version),
       
  2137 			    "%d.%d, 0x%08x",
       
  2138 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
       
  2139 		} else {
       
  2140 		snprintf(adapter->fw_version,
       
  2141 		    sizeof(adapter->fw_version),
       
  2142 		    "%d.%d.%d",
       
  2143 		    fw.eep_major, fw.eep_minor, fw.eep_build);
       
  2144 		}
       
  2145 		break;
       
  2146 	}
       
  2147 }
       
  2148 
       
  2149 /**
       
  2150  * igb_init_mas - init Media Autosense feature if enabled in the NVM
       
  2151  *
       
  2152  * @adapter: adapter struct
       
  2153  **/
       
  2154 static void igb_init_mas(struct igb_adapter *adapter)
       
  2155 {
       
  2156 	struct e1000_hw *hw = &adapter->hw;
       
  2157 	u16 eeprom_data;
       
  2158 
       
  2159 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
       
  2160 	switch (hw->bus.func) {
       
  2161 	case E1000_FUNC_0:
       
  2162 		if (eeprom_data & IGB_MAS_ENABLE_0) {
       
  2163 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
       
  2164 			netdev_info(adapter->netdev,
       
  2165 				"MAS: Enabling Media Autosense for port %d\n",
       
  2166 				hw->bus.func);
       
  2167 		}
       
  2168 		break;
       
  2169 	case E1000_FUNC_1:
       
  2170 		if (eeprom_data & IGB_MAS_ENABLE_1) {
       
  2171 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
       
  2172 			netdev_info(adapter->netdev,
       
  2173 				"MAS: Enabling Media Autosense for port %d\n",
       
  2174 				hw->bus.func);
       
  2175 		}
       
  2176 		break;
       
  2177 	case E1000_FUNC_2:
       
  2178 		if (eeprom_data & IGB_MAS_ENABLE_2) {
       
  2179 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
       
  2180 			netdev_info(adapter->netdev,
       
  2181 				"MAS: Enabling Media Autosense for port %d\n",
       
  2182 				hw->bus.func);
       
  2183 		}
       
  2184 		break;
       
  2185 	case E1000_FUNC_3:
       
  2186 		if (eeprom_data & IGB_MAS_ENABLE_3) {
       
  2187 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
       
  2188 			netdev_info(adapter->netdev,
       
  2189 				"MAS: Enabling Media Autosense for port %d\n",
       
  2190 				hw->bus.func);
       
  2191 		}
       
  2192 		break;
       
  2193 	default:
       
  2194 		/* Shouldn't get here */
       
  2195 		netdev_err(adapter->netdev,
       
  2196 			"MAS: Invalid port configuration, returning\n");
       
  2197 		break;
       
  2198 	}
       
  2199 }
       
  2200 
       
  2201 /**
       
  2202  *  igb_init_i2c - Init I2C interface
       
  2203  *  @adapter: pointer to adapter structure
       
  2204  **/
       
  2205 static s32 igb_init_i2c(struct igb_adapter *adapter)
       
  2206 {
       
  2207 	s32 status = 0;
       
  2208 
       
  2209 	/* I2C interface supported on i350 devices */
       
  2210 	if (adapter->hw.mac.type != e1000_i350)
       
  2211 		return 0;
       
  2212 
       
  2213 	/* Initialize the i2c bus which is controlled by the registers.
       
  2214 	 * This bus will use the i2c_algo_bit structue that implements
       
  2215 	 * the protocol through toggling of the 4 bits in the register.
       
  2216 	 */
       
  2217 	adapter->i2c_adap.owner = THIS_MODULE;
       
  2218 	adapter->i2c_algo = igb_i2c_algo;
       
  2219 	adapter->i2c_algo.data = adapter;
       
  2220 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
       
  2221 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
       
  2222 	strlcpy(adapter->i2c_adap.name, "igb BB",
       
  2223 		sizeof(adapter->i2c_adap.name));
       
  2224 	status = i2c_bit_add_bus(&adapter->i2c_adap);
       
  2225 	return status;
       
  2226 }
       
  2227 
       
  2228 /**
       
  2229  *  igb_probe - Device Initialization Routine
       
  2230  *  @pdev: PCI device information struct
       
  2231  *  @ent: entry in igb_pci_tbl
       
  2232  *
       
  2233  *  Returns 0 on success, negative on failure
       
  2234  *
       
  2235  *  igb_probe initializes an adapter identified by a pci_dev structure.
       
  2236  *  The OS initialization, configuring of the adapter private structure,
       
  2237  *  and a hardware reset occur.
       
  2238  **/
       
  2239 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
       
  2240 {
       
  2241 	struct net_device *netdev;
       
  2242 	struct igb_adapter *adapter;
       
  2243 	struct e1000_hw *hw;
       
  2244 	u16 eeprom_data = 0;
       
  2245 	s32 ret_val;
       
  2246 	static int global_quad_port_a; /* global quad port a indication */
       
  2247 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
       
  2248 	int err, pci_using_dac;
       
  2249 	u8 part_str[E1000_PBANUM_LENGTH];
       
  2250 
       
  2251 	/* Catch broken hardware that put the wrong VF device ID in
       
  2252 	 * the PCIe SR-IOV capability.
       
  2253 	 */
       
  2254 	if (pdev->is_virtfn) {
       
  2255 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
       
  2256 			pci_name(pdev), pdev->vendor, pdev->device);
       
  2257 		return -EINVAL;
       
  2258 	}
       
  2259 
       
  2260 	err = pci_enable_device_mem(pdev);
       
  2261 	if (err)
       
  2262 		return err;
       
  2263 
       
  2264 	pci_using_dac = 0;
       
  2265 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
       
  2266 	if (!err) {
       
  2267 		pci_using_dac = 1;
       
  2268 	} else {
       
  2269 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
       
  2270 		if (err) {
       
  2271 			dev_err(&pdev->dev,
       
  2272 				"No usable DMA configuration, aborting\n");
       
  2273 			goto err_dma;
       
  2274 		}
       
  2275 	}
       
  2276 
       
  2277 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
       
  2278 					   IORESOURCE_MEM),
       
  2279 					   igb_driver_name);
       
  2280 	if (err)
       
  2281 		goto err_pci_reg;
       
  2282 
       
  2283 	pci_enable_pcie_error_reporting(pdev);
       
  2284 
       
  2285 	pci_set_master(pdev);
       
  2286 	pci_save_state(pdev);
       
  2287 
       
  2288 	err = -ENOMEM;
       
  2289 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
       
  2290 				   IGB_MAX_TX_QUEUES);
       
  2291 	if (!netdev)
       
  2292 		goto err_alloc_etherdev;
       
  2293 
       
  2294 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
  2295 
       
  2296 	pci_set_drvdata(pdev, netdev);
       
  2297 	adapter = netdev_priv(netdev);
       
  2298 	adapter->netdev = netdev;
       
  2299 	adapter->pdev = pdev;
       
  2300 	hw = &adapter->hw;
       
  2301 	hw->back = adapter;
       
  2302 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
       
  2303 
       
  2304 	err = -EIO;
       
  2305 	hw->hw_addr = pci_iomap(pdev, 0, 0);
       
  2306 	if (!hw->hw_addr)
       
  2307 		goto err_ioremap;
       
  2308 
       
  2309 	netdev->netdev_ops = &igb_netdev_ops;
       
  2310 	igb_set_ethtool_ops(netdev);
       
  2311 	netdev->watchdog_timeo = 5 * HZ;
       
  2312 
       
  2313 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
  2314 
       
  2315 	netdev->mem_start = pci_resource_start(pdev, 0);
       
  2316 	netdev->mem_end = pci_resource_end(pdev, 0);
       
  2317 
       
  2318 	/* PCI config space info */
       
  2319 	hw->vendor_id = pdev->vendor;
       
  2320 	hw->device_id = pdev->device;
       
  2321 	hw->revision_id = pdev->revision;
       
  2322 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
       
  2323 	hw->subsystem_device_id = pdev->subsystem_device;
       
  2324 
       
  2325 	/* Copy the default MAC, PHY and NVM function pointers */
       
  2326 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
       
  2327 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
       
  2328 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
       
  2329 	/* Initialize skew-specific constants */
       
  2330 	err = ei->get_invariants(hw);
       
  2331 	if (err)
       
  2332 		goto err_sw_init;
       
  2333 
       
  2334 	/* setup the private structure */
       
  2335 	err = igb_sw_init(adapter);
       
  2336 	if (err)
       
  2337 		goto err_sw_init;
       
  2338 
       
  2339 	igb_get_bus_info_pcie(hw);
       
  2340 
       
  2341 	hw->phy.autoneg_wait_to_complete = false;
       
  2342 
       
  2343 	/* Copper options */
       
  2344 	if (hw->phy.media_type == e1000_media_type_copper) {
       
  2345 		hw->phy.mdix = AUTO_ALL_MODES;
       
  2346 		hw->phy.disable_polarity_correction = false;
       
  2347 		hw->phy.ms_type = e1000_ms_hw_default;
       
  2348 	}
       
  2349 
       
  2350 	if (igb_check_reset_block(hw))
       
  2351 		dev_info(&pdev->dev,
       
  2352 			"PHY reset is blocked due to SOL/IDER session.\n");
       
  2353 
       
  2354 	/* features is initialized to 0 in allocation, it might have bits
       
  2355 	 * set by igb_sw_init so we should use an or instead of an
       
  2356 	 * assignment.
       
  2357 	 */
       
  2358 	netdev->features |= NETIF_F_SG |
       
  2359 			    NETIF_F_IP_CSUM |
       
  2360 			    NETIF_F_IPV6_CSUM |
       
  2361 			    NETIF_F_TSO |
       
  2362 			    NETIF_F_TSO6 |
       
  2363 			    NETIF_F_RXHASH |
       
  2364 			    NETIF_F_RXCSUM |
       
  2365 			    NETIF_F_HW_VLAN_CTAG_RX |
       
  2366 			    NETIF_F_HW_VLAN_CTAG_TX;
       
  2367 
       
  2368 	/* copy netdev features into list of user selectable features */
       
  2369 	netdev->hw_features |= netdev->features;
       
  2370 	netdev->hw_features |= NETIF_F_RXALL;
       
  2371 
       
  2372 	/* set this bit last since it cannot be part of hw_features */
       
  2373 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
       
  2374 
       
  2375 	netdev->vlan_features |= NETIF_F_TSO |
       
  2376 				 NETIF_F_TSO6 |
       
  2377 				 NETIF_F_IP_CSUM |
       
  2378 				 NETIF_F_IPV6_CSUM |
       
  2379 				 NETIF_F_SG;
       
  2380 
       
  2381 	netdev->priv_flags |= IFF_SUPP_NOFCS;
       
  2382 
       
  2383 	if (pci_using_dac) {
       
  2384 		netdev->features |= NETIF_F_HIGHDMA;
       
  2385 		netdev->vlan_features |= NETIF_F_HIGHDMA;
       
  2386 	}
       
  2387 
       
  2388 	if (hw->mac.type >= e1000_82576) {
       
  2389 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
       
  2390 		netdev->features |= NETIF_F_SCTP_CSUM;
       
  2391 	}
       
  2392 
       
  2393 	netdev->priv_flags |= IFF_UNICAST_FLT;
       
  2394 
       
  2395 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
       
  2396 
       
  2397 	/* before reading the NVM, reset the controller to put the device in a
       
  2398 	 * known good starting state
       
  2399 	 */
       
  2400 	hw->mac.ops.reset_hw(hw);
       
  2401 
       
  2402 	/* make sure the NVM is good , i211/i210 parts can have special NVM
       
  2403 	 * that doesn't contain a checksum
       
  2404 	 */
       
  2405 	switch (hw->mac.type) {
       
  2406 	case e1000_i210:
       
  2407 	case e1000_i211:
       
  2408 		if (igb_get_flash_presence_i210(hw)) {
       
  2409 			if (hw->nvm.ops.validate(hw) < 0) {
       
  2410 				dev_err(&pdev->dev,
       
  2411 					"The NVM Checksum Is Not Valid\n");
       
  2412 				err = -EIO;
       
  2413 				goto err_eeprom;
       
  2414 			}
       
  2415 		}
       
  2416 		break;
       
  2417 	default:
       
  2418 		if (hw->nvm.ops.validate(hw) < 0) {
       
  2419 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
       
  2420 			err = -EIO;
       
  2421 			goto err_eeprom;
       
  2422 		}
       
  2423 		break;
       
  2424 	}
       
  2425 
       
  2426 	/* copy the MAC address out of the NVM */
       
  2427 	if (hw->mac.ops.read_mac_addr(hw))
       
  2428 		dev_err(&pdev->dev, "NVM Read Error\n");
       
  2429 
       
  2430 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
       
  2431 
       
  2432 	if (!is_valid_ether_addr(netdev->dev_addr)) {
       
  2433 		dev_err(&pdev->dev, "Invalid MAC Address\n");
       
  2434 		err = -EIO;
       
  2435 		goto err_eeprom;
       
  2436 	}
       
  2437 
       
  2438 	/* get firmware version for ethtool -i */
       
  2439 	igb_set_fw_version(adapter);
       
  2440 
       
  2441 	/* configure RXPBSIZE and TXPBSIZE */
       
  2442 	if (hw->mac.type == e1000_i210) {
       
  2443 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
       
  2444 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
       
  2445 	}
       
  2446 
       
  2447 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
       
  2448 		    (unsigned long) adapter);
       
  2449 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
       
  2450 		    (unsigned long) adapter);
       
  2451 
       
  2452 	INIT_WORK(&adapter->reset_task, igb_reset_task);
       
  2453 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
       
  2454 
       
  2455 	/* Initialize link properties that are user-changeable */
       
  2456 	adapter->fc_autoneg = true;
       
  2457 	hw->mac.autoneg = true;
       
  2458 	hw->phy.autoneg_advertised = 0x2f;
       
  2459 
       
  2460 	hw->fc.requested_mode = e1000_fc_default;
       
  2461 	hw->fc.current_mode = e1000_fc_default;
       
  2462 
       
  2463 	igb_validate_mdi_setting(hw);
       
  2464 
       
  2465 	/* By default, support wake on port A */
       
  2466 	if (hw->bus.func == 0)
       
  2467 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
       
  2468 
       
  2469 	/* Check the NVM for wake support on non-port A ports */
       
  2470 	if (hw->mac.type >= e1000_82580)
       
  2471 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
       
  2472 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
       
  2473 				 &eeprom_data);
       
  2474 	else if (hw->bus.func == 1)
       
  2475 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
  2476 
       
  2477 	if (eeprom_data & IGB_EEPROM_APME)
       
  2478 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
       
  2479 
       
  2480 	/* now that we have the eeprom settings, apply the special cases where
       
  2481 	 * the eeprom may be wrong or the board simply won't support wake on
       
  2482 	 * lan on a particular port
       
  2483 	 */
       
  2484 	switch (pdev->device) {
       
  2485 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
       
  2486 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
       
  2487 		break;
       
  2488 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
       
  2489 	case E1000_DEV_ID_82576_FIBER:
       
  2490 	case E1000_DEV_ID_82576_SERDES:
       
  2491 		/* Wake events only supported on port A for dual fiber
       
  2492 		 * regardless of eeprom setting
       
  2493 		 */
       
  2494 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
       
  2495 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
       
  2496 		break;
       
  2497 	case E1000_DEV_ID_82576_QUAD_COPPER:
       
  2498 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
       
  2499 		/* if quad port adapter, disable WoL on all but port A */
       
  2500 		if (global_quad_port_a != 0)
       
  2501 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
       
  2502 		else
       
  2503 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
       
  2504 		/* Reset for multiple quad port adapters */
       
  2505 		if (++global_quad_port_a == 4)
       
  2506 			global_quad_port_a = 0;
       
  2507 		break;
       
  2508 	default:
       
  2509 		/* If the device can't wake, don't set software support */
       
  2510 		if (!device_can_wakeup(&adapter->pdev->dev))
       
  2511 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
       
  2512 	}
       
  2513 
       
  2514 	/* initialize the wol settings based on the eeprom settings */
       
  2515 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
       
  2516 		adapter->wol |= E1000_WUFC_MAG;
       
  2517 
       
  2518 	/* Some vendors want WoL disabled by default, but still supported */
       
  2519 	if ((hw->mac.type == e1000_i350) &&
       
  2520 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
       
  2521 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
       
  2522 		adapter->wol = 0;
       
  2523 	}
       
  2524 
       
  2525 	device_set_wakeup_enable(&adapter->pdev->dev,
       
  2526 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
       
  2527 
       
  2528 	/* reset the hardware with the new settings */
       
  2529 	igb_reset(adapter);
       
  2530 
       
  2531 	/* Init the I2C interface */
       
  2532 	err = igb_init_i2c(adapter);
       
  2533 	if (err) {
       
  2534 		dev_err(&pdev->dev, "failed to init i2c interface\n");
       
  2535 		goto err_eeprom;
       
  2536 	}
       
  2537 
       
  2538 	/* let the f/w know that the h/w is now under the control of the
       
  2539 	 * driver.
       
  2540 	 */
       
  2541 	igb_get_hw_control(adapter);
       
  2542 
       
  2543 	strcpy(netdev->name, "eth%d");
       
  2544 	err = register_netdev(netdev);
       
  2545 	if (err)
       
  2546 		goto err_register;
       
  2547 
       
  2548 	/* carrier off reporting is important to ethtool even BEFORE open */
       
  2549 	netif_carrier_off(netdev);
       
  2550 
       
  2551 #ifdef CONFIG_IGB_DCA
       
  2552 	if (dca_add_requester(&pdev->dev) == 0) {
       
  2553 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
       
  2554 		dev_info(&pdev->dev, "DCA enabled\n");
       
  2555 		igb_setup_dca(adapter);
       
  2556 	}
       
  2557 
       
  2558 #endif
       
  2559 #ifdef CONFIG_IGB_HWMON
       
  2560 	/* Initialize the thermal sensor on i350 devices. */
       
  2561 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
       
  2562 		u16 ets_word;
       
  2563 
       
  2564 		/* Read the NVM to determine if this i350 device supports an
       
  2565 		 * external thermal sensor.
       
  2566 		 */
       
  2567 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
       
  2568 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
       
  2569 			adapter->ets = true;
       
  2570 		else
       
  2571 			adapter->ets = false;
       
  2572 		if (igb_sysfs_init(adapter))
       
  2573 			dev_err(&pdev->dev,
       
  2574 				"failed to allocate sysfs resources\n");
       
  2575 	} else {
       
  2576 		adapter->ets = false;
       
  2577 	}
       
  2578 #endif
       
  2579 	/* Check if Media Autosense is enabled */
       
  2580 	adapter->ei = *ei;
       
  2581 	if (hw->dev_spec._82575.mas_capable)
       
  2582 		igb_init_mas(adapter);
       
  2583 
       
  2584 	/* do hw tstamp init after resetting */
       
  2585 	igb_ptp_init(adapter);
       
  2586 
       
  2587 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
       
  2588 	/* print bus type/speed/width info, not applicable to i354 */
       
  2589 	if (hw->mac.type != e1000_i354) {
       
  2590 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
       
  2591 			 netdev->name,
       
  2592 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
       
  2593 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
       
  2594 			   "unknown"),
       
  2595 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
       
  2596 			  "Width x4" :
       
  2597 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
       
  2598 			  "Width x2" :
       
  2599 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
       
  2600 			  "Width x1" : "unknown"), netdev->dev_addr);
       
  2601 	}
       
  2602 
       
  2603 	if ((hw->mac.type >= e1000_i210 ||
       
  2604 	     igb_get_flash_presence_i210(hw))) {
       
  2605 		ret_val = igb_read_part_string(hw, part_str,
       
  2606 					       E1000_PBANUM_LENGTH);
       
  2607 	} else {
       
  2608 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
       
  2609 	}
       
  2610 
       
  2611 	if (ret_val)
       
  2612 		strcpy(part_str, "Unknown");
       
  2613 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
       
  2614 	dev_info(&pdev->dev,
       
  2615 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
       
  2616 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
       
  2617 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
       
  2618 		adapter->num_rx_queues, adapter->num_tx_queues);
       
  2619 	if (hw->phy.media_type == e1000_media_type_copper) {
       
  2620 		switch (hw->mac.type) {
       
  2621 		case e1000_i350:
       
  2622 		case e1000_i210:
       
  2623 		case e1000_i211:
       
  2624 			/* Enable EEE for internal copper PHY devices */
       
  2625 			err = igb_set_eee_i350(hw, true, true);
       
  2626 			if ((!err) &&
       
  2627 			    (!hw->dev_spec._82575.eee_disable)) {
       
  2628 				adapter->eee_advert =
       
  2629 					MDIO_EEE_100TX | MDIO_EEE_1000T;
       
  2630 				adapter->flags |= IGB_FLAG_EEE;
       
  2631 			}
       
  2632 			break;
       
  2633 		case e1000_i354:
       
  2634 			if ((rd32(E1000_CTRL_EXT) &
       
  2635 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
       
  2636 				err = igb_set_eee_i354(hw, true, true);
       
  2637 				if ((!err) &&
       
  2638 					(!hw->dev_spec._82575.eee_disable)) {
       
  2639 					adapter->eee_advert =
       
  2640 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
       
  2641 					adapter->flags |= IGB_FLAG_EEE;
       
  2642 				}
       
  2643 			}
       
  2644 			break;
       
  2645 		default:
       
  2646 			break;
       
  2647 		}
       
  2648 	}
       
  2649 	pm_runtime_put_noidle(&pdev->dev);
       
  2650 	return 0;
       
  2651 
       
  2652 err_register:
       
  2653 	igb_release_hw_control(adapter);
       
  2654 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
       
  2655 err_eeprom:
       
  2656 	if (!igb_check_reset_block(hw))
       
  2657 		igb_reset_phy(hw);
       
  2658 
       
  2659 	if (hw->flash_address)
       
  2660 		iounmap(hw->flash_address);
       
  2661 err_sw_init:
       
  2662 	igb_clear_interrupt_scheme(adapter);
       
  2663 	pci_iounmap(pdev, hw->hw_addr);
       
  2664 err_ioremap:
       
  2665 	free_netdev(netdev);
       
  2666 err_alloc_etherdev:
       
  2667 	pci_release_selected_regions(pdev,
       
  2668 				     pci_select_bars(pdev, IORESOURCE_MEM));
       
  2669 err_pci_reg:
       
  2670 err_dma:
       
  2671 	pci_disable_device(pdev);
       
  2672 	return err;
       
  2673 }
       
  2674 
       
  2675 #ifdef CONFIG_PCI_IOV
       
  2676 static int igb_disable_sriov(struct pci_dev *pdev)
       
  2677 {
       
  2678 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  2679 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2680 	struct e1000_hw *hw = &adapter->hw;
       
  2681 
       
  2682 	/* reclaim resources allocated to VFs */
       
  2683 	if (adapter->vf_data) {
       
  2684 		/* disable iov and allow time for transactions to clear */
       
  2685 		if (pci_vfs_assigned(pdev)) {
       
  2686 			dev_warn(&pdev->dev,
       
  2687 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
       
  2688 			return -EPERM;
       
  2689 		} else {
       
  2690 			pci_disable_sriov(pdev);
       
  2691 			msleep(500);
       
  2692 		}
       
  2693 
       
  2694 		kfree(adapter->vf_data);
       
  2695 		adapter->vf_data = NULL;
       
  2696 		adapter->vfs_allocated_count = 0;
       
  2697 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
       
  2698 		wrfl();
       
  2699 		msleep(100);
       
  2700 		dev_info(&pdev->dev, "IOV Disabled\n");
       
  2701 
       
  2702 		/* Re-enable DMA Coalescing flag since IOV is turned off */
       
  2703 		adapter->flags |= IGB_FLAG_DMAC;
       
  2704 	}
       
  2705 
       
  2706 	return 0;
       
  2707 }
       
  2708 
       
  2709 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
       
  2710 {
       
  2711 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  2712 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2713 	int old_vfs = pci_num_vf(pdev);
       
  2714 	int err = 0;
       
  2715 	int i;
       
  2716 
       
  2717 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
       
  2718 		err = -EPERM;
       
  2719 		goto out;
       
  2720 	}
       
  2721 	if (!num_vfs)
       
  2722 		goto out;
       
  2723 
       
  2724 	if (old_vfs) {
       
  2725 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
       
  2726 			 old_vfs, max_vfs);
       
  2727 		adapter->vfs_allocated_count = old_vfs;
       
  2728 	} else
       
  2729 		adapter->vfs_allocated_count = num_vfs;
       
  2730 
       
  2731 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
       
  2732 				sizeof(struct vf_data_storage), GFP_KERNEL);
       
  2733 
       
  2734 	/* if allocation failed then we do not support SR-IOV */
       
  2735 	if (!adapter->vf_data) {
       
  2736 		adapter->vfs_allocated_count = 0;
       
  2737 		dev_err(&pdev->dev,
       
  2738 			"Unable to allocate memory for VF Data Storage\n");
       
  2739 		err = -ENOMEM;
       
  2740 		goto out;
       
  2741 	}
       
  2742 
       
  2743 	/* only call pci_enable_sriov() if no VFs are allocated already */
       
  2744 	if (!old_vfs) {
       
  2745 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
       
  2746 		if (err)
       
  2747 			goto err_out;
       
  2748 	}
       
  2749 	dev_info(&pdev->dev, "%d VFs allocated\n",
       
  2750 		 adapter->vfs_allocated_count);
       
  2751 	for (i = 0; i < adapter->vfs_allocated_count; i++)
       
  2752 		igb_vf_configure(adapter, i);
       
  2753 
       
  2754 	/* DMA Coalescing is not supported in IOV mode. */
       
  2755 	adapter->flags &= ~IGB_FLAG_DMAC;
       
  2756 	goto out;
       
  2757 
       
  2758 err_out:
       
  2759 	kfree(adapter->vf_data);
       
  2760 	adapter->vf_data = NULL;
       
  2761 	adapter->vfs_allocated_count = 0;
       
  2762 out:
       
  2763 	return err;
       
  2764 }
       
  2765 
       
  2766 #endif
       
  2767 /**
       
  2768  *  igb_remove_i2c - Cleanup  I2C interface
       
  2769  *  @adapter: pointer to adapter structure
       
  2770  **/
       
  2771 static void igb_remove_i2c(struct igb_adapter *adapter)
       
  2772 {
       
  2773 	/* free the adapter bus structure */
       
  2774 	i2c_del_adapter(&adapter->i2c_adap);
       
  2775 }
       
  2776 
       
  2777 /**
       
  2778  *  igb_remove - Device Removal Routine
       
  2779  *  @pdev: PCI device information struct
       
  2780  *
       
  2781  *  igb_remove is called by the PCI subsystem to alert the driver
       
  2782  *  that it should release a PCI device.  The could be caused by a
       
  2783  *  Hot-Plug event, or because the driver is going to be removed from
       
  2784  *  memory.
       
  2785  **/
       
  2786 static void igb_remove(struct pci_dev *pdev)
       
  2787 {
       
  2788 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  2789 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2790 	struct e1000_hw *hw = &adapter->hw;
       
  2791 
       
  2792 	pm_runtime_get_noresume(&pdev->dev);
       
  2793 #ifdef CONFIG_IGB_HWMON
       
  2794 	igb_sysfs_exit(adapter);
       
  2795 #endif
       
  2796 	igb_remove_i2c(adapter);
       
  2797 	igb_ptp_stop(adapter);
       
  2798 	/* The watchdog timer may be rescheduled, so explicitly
       
  2799 	 * disable watchdog from being rescheduled.
       
  2800 	 */
       
  2801 	set_bit(__IGB_DOWN, &adapter->state);
       
  2802 	del_timer_sync(&adapter->watchdog_timer);
       
  2803 	del_timer_sync(&adapter->phy_info_timer);
       
  2804 
       
  2805 	cancel_work_sync(&adapter->reset_task);
       
  2806 	cancel_work_sync(&adapter->watchdog_task);
       
  2807 
       
  2808 #ifdef CONFIG_IGB_DCA
       
  2809 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
       
  2810 		dev_info(&pdev->dev, "DCA disabled\n");
       
  2811 		dca_remove_requester(&pdev->dev);
       
  2812 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
       
  2813 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
       
  2814 	}
       
  2815 #endif
       
  2816 
       
  2817 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  2818 	 * would have already happened in close and is redundant.
       
  2819 	 */
       
  2820 	igb_release_hw_control(adapter);
       
  2821 
       
  2822 	unregister_netdev(netdev);
       
  2823 
       
  2824 	igb_clear_interrupt_scheme(adapter);
       
  2825 
       
  2826 #ifdef CONFIG_PCI_IOV
       
  2827 	igb_disable_sriov(pdev);
       
  2828 #endif
       
  2829 
       
  2830 	pci_iounmap(pdev, hw->hw_addr);
       
  2831 	if (hw->flash_address)
       
  2832 		iounmap(hw->flash_address);
       
  2833 	pci_release_selected_regions(pdev,
       
  2834 				     pci_select_bars(pdev, IORESOURCE_MEM));
       
  2835 
       
  2836 	kfree(adapter->shadow_vfta);
       
  2837 	free_netdev(netdev);
       
  2838 
       
  2839 	pci_disable_pcie_error_reporting(pdev);
       
  2840 
       
  2841 	pci_disable_device(pdev);
       
  2842 }
       
  2843 
       
  2844 /**
       
  2845  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
       
  2846  *  @adapter: board private structure to initialize
       
  2847  *
       
  2848  *  This function initializes the vf specific data storage and then attempts to
       
  2849  *  allocate the VFs.  The reason for ordering it this way is because it is much
       
  2850  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
       
  2851  *  the memory for the VFs.
       
  2852  **/
       
  2853 static void igb_probe_vfs(struct igb_adapter *adapter)
       
  2854 {
       
  2855 #ifdef CONFIG_PCI_IOV
       
  2856 	struct pci_dev *pdev = adapter->pdev;
       
  2857 	struct e1000_hw *hw = &adapter->hw;
       
  2858 
       
  2859 	/* Virtualization features not supported on i210 family. */
       
  2860 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
       
  2861 		return;
       
  2862 
       
  2863 	pci_sriov_set_totalvfs(pdev, 7);
       
  2864 	igb_pci_enable_sriov(pdev, max_vfs);
       
  2865 
       
  2866 #endif /* CONFIG_PCI_IOV */
       
  2867 }
       
  2868 
       
  2869 static void igb_init_queue_configuration(struct igb_adapter *adapter)
       
  2870 {
       
  2871 	struct e1000_hw *hw = &adapter->hw;
       
  2872 	u32 max_rss_queues;
       
  2873 
       
  2874 	/* Determine the maximum number of RSS queues supported. */
       
  2875 	switch (hw->mac.type) {
       
  2876 	case e1000_i211:
       
  2877 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
       
  2878 		break;
       
  2879 	case e1000_82575:
       
  2880 	case e1000_i210:
       
  2881 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
       
  2882 		break;
       
  2883 	case e1000_i350:
       
  2884 		/* I350 cannot do RSS and SR-IOV at the same time */
       
  2885 		if (!!adapter->vfs_allocated_count) {
       
  2886 			max_rss_queues = 1;
       
  2887 			break;
       
  2888 		}
       
  2889 		/* fall through */
       
  2890 	case e1000_82576:
       
  2891 		if (!!adapter->vfs_allocated_count) {
       
  2892 			max_rss_queues = 2;
       
  2893 			break;
       
  2894 		}
       
  2895 		/* fall through */
       
  2896 	case e1000_82580:
       
  2897 	case e1000_i354:
       
  2898 	default:
       
  2899 		max_rss_queues = IGB_MAX_RX_QUEUES;
       
  2900 		break;
       
  2901 	}
       
  2902 
       
  2903 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
       
  2904 
       
  2905 	/* Determine if we need to pair queues. */
       
  2906 	switch (hw->mac.type) {
       
  2907 	case e1000_82575:
       
  2908 	case e1000_i211:
       
  2909 		/* Device supports enough interrupts without queue pairing. */
       
  2910 		break;
       
  2911 	case e1000_82576:
       
  2912 		/* If VFs are going to be allocated with RSS queues then we
       
  2913 		 * should pair the queues in order to conserve interrupts due
       
  2914 		 * to limited supply.
       
  2915 		 */
       
  2916 		if ((adapter->rss_queues > 1) &&
       
  2917 		    (adapter->vfs_allocated_count > 6))
       
  2918 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
       
  2919 		/* fall through */
       
  2920 	case e1000_82580:
       
  2921 	case e1000_i350:
       
  2922 	case e1000_i354:
       
  2923 	case e1000_i210:
       
  2924 	default:
       
  2925 		/* If rss_queues > half of max_rss_queues, pair the queues in
       
  2926 		 * order to conserve interrupts due to limited supply.
       
  2927 		 */
       
  2928 		if (adapter->rss_queues > (max_rss_queues / 2))
       
  2929 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
       
  2930 		break;
       
  2931 	}
       
  2932 }
       
  2933 
       
  2934 /**
       
  2935  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
       
  2936  *  @adapter: board private structure to initialize
       
  2937  *
       
  2938  *  igb_sw_init initializes the Adapter private data structure.
       
  2939  *  Fields are initialized based on PCI device information and
       
  2940  *  OS network device settings (MTU size).
       
  2941  **/
       
  2942 static int igb_sw_init(struct igb_adapter *adapter)
       
  2943 {
       
  2944 	struct e1000_hw *hw = &adapter->hw;
       
  2945 	struct net_device *netdev = adapter->netdev;
       
  2946 	struct pci_dev *pdev = adapter->pdev;
       
  2947 
       
  2948 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
       
  2949 
       
  2950 	/* set default ring sizes */
       
  2951 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
       
  2952 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
       
  2953 
       
  2954 	/* set default ITR values */
       
  2955 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
       
  2956 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
       
  2957 
       
  2958 	/* set default work limits */
       
  2959 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
       
  2960 
       
  2961 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
       
  2962 				  VLAN_HLEN;
       
  2963 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
       
  2964 
       
  2965 	spin_lock_init(&adapter->stats64_lock);
       
  2966 #ifdef CONFIG_PCI_IOV
       
  2967 	switch (hw->mac.type) {
       
  2968 	case e1000_82576:
       
  2969 	case e1000_i350:
       
  2970 		if (max_vfs > 7) {
       
  2971 			dev_warn(&pdev->dev,
       
  2972 				 "Maximum of 7 VFs per PF, using max\n");
       
  2973 			max_vfs = adapter->vfs_allocated_count = 7;
       
  2974 		} else
       
  2975 			adapter->vfs_allocated_count = max_vfs;
       
  2976 		if (adapter->vfs_allocated_count)
       
  2977 			dev_warn(&pdev->dev,
       
  2978 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
       
  2979 		break;
       
  2980 	default:
       
  2981 		break;
       
  2982 	}
       
  2983 #endif /* CONFIG_PCI_IOV */
       
  2984 
       
  2985 	igb_init_queue_configuration(adapter);
       
  2986 
       
  2987 	/* Setup and initialize a copy of the hw vlan table array */
       
  2988 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
       
  2989 				       GFP_ATOMIC);
       
  2990 
       
  2991 	/* This call may decrease the number of queues */
       
  2992 	if (igb_init_interrupt_scheme(adapter, true)) {
       
  2993 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
       
  2994 		return -ENOMEM;
       
  2995 	}
       
  2996 
       
  2997 	igb_probe_vfs(adapter);
       
  2998 
       
  2999 	/* Explicitly disable IRQ since the NIC can be in any state. */
       
  3000 	igb_irq_disable(adapter);
       
  3001 
       
  3002 	if (hw->mac.type >= e1000_i350)
       
  3003 		adapter->flags &= ~IGB_FLAG_DMAC;
       
  3004 
       
  3005 	set_bit(__IGB_DOWN, &adapter->state);
       
  3006 	return 0;
       
  3007 }
       
  3008 
       
  3009 /**
       
  3010  *  igb_open - Called when a network interface is made active
       
  3011  *  @netdev: network interface device structure
       
  3012  *
       
  3013  *  Returns 0 on success, negative value on failure
       
  3014  *
       
  3015  *  The open entry point is called when a network interface is made
       
  3016  *  active by the system (IFF_UP).  At this point all resources needed
       
  3017  *  for transmit and receive operations are allocated, the interrupt
       
  3018  *  handler is registered with the OS, the watchdog timer is started,
       
  3019  *  and the stack is notified that the interface is ready.
       
  3020  **/
       
  3021 static int __igb_open(struct net_device *netdev, bool resuming)
       
  3022 {
       
  3023 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  3024 	struct e1000_hw *hw = &adapter->hw;
       
  3025 	struct pci_dev *pdev = adapter->pdev;
       
  3026 	int err;
       
  3027 	int i;
       
  3028 
       
  3029 	/* disallow open during test */
       
  3030 	if (test_bit(__IGB_TESTING, &adapter->state)) {
       
  3031 		WARN_ON(resuming);
       
  3032 		return -EBUSY;
       
  3033 	}
       
  3034 
       
  3035 	if (!resuming)
       
  3036 		pm_runtime_get_sync(&pdev->dev);
       
  3037 
       
  3038 	netif_carrier_off(netdev);
       
  3039 
       
  3040 	/* allocate transmit descriptors */
       
  3041 	err = igb_setup_all_tx_resources(adapter);
       
  3042 	if (err)
       
  3043 		goto err_setup_tx;
       
  3044 
       
  3045 	/* allocate receive descriptors */
       
  3046 	err = igb_setup_all_rx_resources(adapter);
       
  3047 	if (err)
       
  3048 		goto err_setup_rx;
       
  3049 
       
  3050 	igb_power_up_link(adapter);
       
  3051 
       
  3052 	/* before we allocate an interrupt, we must be ready to handle it.
       
  3053 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
       
  3054 	 * as soon as we call pci_request_irq, so we have to setup our
       
  3055 	 * clean_rx handler before we do so.
       
  3056 	 */
       
  3057 	igb_configure(adapter);
       
  3058 
       
  3059 	err = igb_request_irq(adapter);
       
  3060 	if (err)
       
  3061 		goto err_req_irq;
       
  3062 
       
  3063 	/* Notify the stack of the actual queue counts. */
       
  3064 	err = netif_set_real_num_tx_queues(adapter->netdev,
       
  3065 					   adapter->num_tx_queues);
       
  3066 	if (err)
       
  3067 		goto err_set_queues;
       
  3068 
       
  3069 	err = netif_set_real_num_rx_queues(adapter->netdev,
       
  3070 					   adapter->num_rx_queues);
       
  3071 	if (err)
       
  3072 		goto err_set_queues;
       
  3073 
       
  3074 	/* From here on the code is the same as igb_up() */
       
  3075 	clear_bit(__IGB_DOWN, &adapter->state);
       
  3076 
       
  3077 	for (i = 0; i < adapter->num_q_vectors; i++)
       
  3078 		napi_enable(&(adapter->q_vector[i]->napi));
       
  3079 
       
  3080 	/* Clear any pending interrupts. */
       
  3081 	rd32(E1000_ICR);
       
  3082 
       
  3083 	igb_irq_enable(adapter);
       
  3084 
       
  3085 	/* notify VFs that reset has been completed */
       
  3086 	if (adapter->vfs_allocated_count) {
       
  3087 		u32 reg_data = rd32(E1000_CTRL_EXT);
       
  3088 
       
  3089 		reg_data |= E1000_CTRL_EXT_PFRSTD;
       
  3090 		wr32(E1000_CTRL_EXT, reg_data);
       
  3091 	}
       
  3092 
       
  3093 	netif_tx_start_all_queues(netdev);
       
  3094 
       
  3095 	if (!resuming)
       
  3096 		pm_runtime_put(&pdev->dev);
       
  3097 
       
  3098 	/* start the watchdog. */
       
  3099 	hw->mac.get_link_status = 1;
       
  3100 	schedule_work(&adapter->watchdog_task);
       
  3101 
       
  3102 	return 0;
       
  3103 
       
  3104 err_set_queues:
       
  3105 	igb_free_irq(adapter);
       
  3106 err_req_irq:
       
  3107 	igb_release_hw_control(adapter);
       
  3108 	igb_power_down_link(adapter);
       
  3109 	igb_free_all_rx_resources(adapter);
       
  3110 err_setup_rx:
       
  3111 	igb_free_all_tx_resources(adapter);
       
  3112 err_setup_tx:
       
  3113 	igb_reset(adapter);
       
  3114 	if (!resuming)
       
  3115 		pm_runtime_put(&pdev->dev);
       
  3116 
       
  3117 	return err;
       
  3118 }
       
  3119 
       
  3120 static int igb_open(struct net_device *netdev)
       
  3121 {
       
  3122 	return __igb_open(netdev, false);
       
  3123 }
       
  3124 
       
  3125 /**
       
  3126  *  igb_close - Disables a network interface
       
  3127  *  @netdev: network interface device structure
       
  3128  *
       
  3129  *  Returns 0, this is not allowed to fail
       
  3130  *
       
  3131  *  The close entry point is called when an interface is de-activated
       
  3132  *  by the OS.  The hardware is still under the driver's control, but
       
  3133  *  needs to be disabled.  A global MAC reset is issued to stop the
       
  3134  *  hardware, and all transmit and receive resources are freed.
       
  3135  **/
       
  3136 static int __igb_close(struct net_device *netdev, bool suspending)
       
  3137 {
       
  3138 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  3139 	struct pci_dev *pdev = adapter->pdev;
       
  3140 
       
  3141 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
       
  3142 
       
  3143 	if (!suspending)
       
  3144 		pm_runtime_get_sync(&pdev->dev);
       
  3145 
       
  3146 	igb_down(adapter);
       
  3147 	igb_free_irq(adapter);
       
  3148 
       
  3149 	igb_free_all_tx_resources(adapter);
       
  3150 	igb_free_all_rx_resources(adapter);
       
  3151 
       
  3152 	if (!suspending)
       
  3153 		pm_runtime_put_sync(&pdev->dev);
       
  3154 	return 0;
       
  3155 }
       
  3156 
       
  3157 static int igb_close(struct net_device *netdev)
       
  3158 {
       
  3159 	return __igb_close(netdev, false);
       
  3160 }
       
  3161 
       
  3162 /**
       
  3163  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
       
  3164  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
       
  3165  *
       
  3166  *  Return 0 on success, negative on failure
       
  3167  **/
       
  3168 int igb_setup_tx_resources(struct igb_ring *tx_ring)
       
  3169 {
       
  3170 	struct device *dev = tx_ring->dev;
       
  3171 	int size;
       
  3172 
       
  3173 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
       
  3174 
       
  3175 	tx_ring->tx_buffer_info = vzalloc(size);
       
  3176 	if (!tx_ring->tx_buffer_info)
       
  3177 		goto err;
       
  3178 
       
  3179 	/* round up to nearest 4K */
       
  3180 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
       
  3181 	tx_ring->size = ALIGN(tx_ring->size, 4096);
       
  3182 
       
  3183 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
       
  3184 					   &tx_ring->dma, GFP_KERNEL);
       
  3185 	if (!tx_ring->desc)
       
  3186 		goto err;
       
  3187 
       
  3188 	tx_ring->next_to_use = 0;
       
  3189 	tx_ring->next_to_clean = 0;
       
  3190 
       
  3191 	return 0;
       
  3192 
       
  3193 err:
       
  3194 	vfree(tx_ring->tx_buffer_info);
       
  3195 	tx_ring->tx_buffer_info = NULL;
       
  3196 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
       
  3197 	return -ENOMEM;
       
  3198 }
       
  3199 
       
  3200 /**
       
  3201  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
       
  3202  *				 (Descriptors) for all queues
       
  3203  *  @adapter: board private structure
       
  3204  *
       
  3205  *  Return 0 on success, negative on failure
       
  3206  **/
       
  3207 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
       
  3208 {
       
  3209 	struct pci_dev *pdev = adapter->pdev;
       
  3210 	int i, err = 0;
       
  3211 
       
  3212 	for (i = 0; i < adapter->num_tx_queues; i++) {
       
  3213 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
       
  3214 		if (err) {
       
  3215 			dev_err(&pdev->dev,
       
  3216 				"Allocation for Tx Queue %u failed\n", i);
       
  3217 			for (i--; i >= 0; i--)
       
  3218 				igb_free_tx_resources(adapter->tx_ring[i]);
       
  3219 			break;
       
  3220 		}
       
  3221 	}
       
  3222 
       
  3223 	return err;
       
  3224 }
       
  3225 
       
  3226 /**
       
  3227  *  igb_setup_tctl - configure the transmit control registers
       
  3228  *  @adapter: Board private structure
       
  3229  **/
       
  3230 void igb_setup_tctl(struct igb_adapter *adapter)
       
  3231 {
       
  3232 	struct e1000_hw *hw = &adapter->hw;
       
  3233 	u32 tctl;
       
  3234 
       
  3235 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
       
  3236 	wr32(E1000_TXDCTL(0), 0);
       
  3237 
       
  3238 	/* Program the Transmit Control Register */
       
  3239 	tctl = rd32(E1000_TCTL);
       
  3240 	tctl &= ~E1000_TCTL_CT;
       
  3241 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  3242 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  3243 
       
  3244 	igb_config_collision_dist(hw);
       
  3245 
       
  3246 	/* Enable transmits */
       
  3247 	tctl |= E1000_TCTL_EN;
       
  3248 
       
  3249 	wr32(E1000_TCTL, tctl);
       
  3250 }
       
  3251 
       
  3252 /**
       
  3253  *  igb_configure_tx_ring - Configure transmit ring after Reset
       
  3254  *  @adapter: board private structure
       
  3255  *  @ring: tx ring to configure
       
  3256  *
       
  3257  *  Configure a transmit ring after a reset.
       
  3258  **/
       
  3259 void igb_configure_tx_ring(struct igb_adapter *adapter,
       
  3260 			   struct igb_ring *ring)
       
  3261 {
       
  3262 	struct e1000_hw *hw = &adapter->hw;
       
  3263 	u32 txdctl = 0;
       
  3264 	u64 tdba = ring->dma;
       
  3265 	int reg_idx = ring->reg_idx;
       
  3266 
       
  3267 	/* disable the queue */
       
  3268 	wr32(E1000_TXDCTL(reg_idx), 0);
       
  3269 	wrfl();
       
  3270 	mdelay(10);
       
  3271 
       
  3272 	wr32(E1000_TDLEN(reg_idx),
       
  3273 	     ring->count * sizeof(union e1000_adv_tx_desc));
       
  3274 	wr32(E1000_TDBAL(reg_idx),
       
  3275 	     tdba & 0x00000000ffffffffULL);
       
  3276 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
       
  3277 
       
  3278 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
       
  3279 	wr32(E1000_TDH(reg_idx), 0);
       
  3280 	writel(0, ring->tail);
       
  3281 
       
  3282 	txdctl |= IGB_TX_PTHRESH;
       
  3283 	txdctl |= IGB_TX_HTHRESH << 8;
       
  3284 	txdctl |= IGB_TX_WTHRESH << 16;
       
  3285 
       
  3286 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
       
  3287 	wr32(E1000_TXDCTL(reg_idx), txdctl);
       
  3288 }
       
  3289 
       
  3290 /**
       
  3291  *  igb_configure_tx - Configure transmit Unit after Reset
       
  3292  *  @adapter: board private structure
       
  3293  *
       
  3294  *  Configure the Tx unit of the MAC after a reset.
       
  3295  **/
       
  3296 static void igb_configure_tx(struct igb_adapter *adapter)
       
  3297 {
       
  3298 	int i;
       
  3299 
       
  3300 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  3301 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
       
  3302 }
       
  3303 
       
  3304 /**
       
  3305  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
       
  3306  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
       
  3307  *
       
  3308  *  Returns 0 on success, negative on failure
       
  3309  **/
       
  3310 int igb_setup_rx_resources(struct igb_ring *rx_ring)
       
  3311 {
       
  3312 	struct device *dev = rx_ring->dev;
       
  3313 	int size;
       
  3314 
       
  3315 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
       
  3316 
       
  3317 	rx_ring->rx_buffer_info = vzalloc(size);
       
  3318 	if (!rx_ring->rx_buffer_info)
       
  3319 		goto err;
       
  3320 
       
  3321 	/* Round up to nearest 4K */
       
  3322 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
       
  3323 	rx_ring->size = ALIGN(rx_ring->size, 4096);
       
  3324 
       
  3325 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
       
  3326 					   &rx_ring->dma, GFP_KERNEL);
       
  3327 	if (!rx_ring->desc)
       
  3328 		goto err;
       
  3329 
       
  3330 	rx_ring->next_to_alloc = 0;
       
  3331 	rx_ring->next_to_clean = 0;
       
  3332 	rx_ring->next_to_use = 0;
       
  3333 
       
  3334 	return 0;
       
  3335 
       
  3336 err:
       
  3337 	vfree(rx_ring->rx_buffer_info);
       
  3338 	rx_ring->rx_buffer_info = NULL;
       
  3339 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
       
  3340 	return -ENOMEM;
       
  3341 }
       
  3342 
       
  3343 /**
       
  3344  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
       
  3345  *				 (Descriptors) for all queues
       
  3346  *  @adapter: board private structure
       
  3347  *
       
  3348  *  Return 0 on success, negative on failure
       
  3349  **/
       
  3350 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
       
  3351 {
       
  3352 	struct pci_dev *pdev = adapter->pdev;
       
  3353 	int i, err = 0;
       
  3354 
       
  3355 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  3356 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
       
  3357 		if (err) {
       
  3358 			dev_err(&pdev->dev,
       
  3359 				"Allocation for Rx Queue %u failed\n", i);
       
  3360 			for (i--; i >= 0; i--)
       
  3361 				igb_free_rx_resources(adapter->rx_ring[i]);
       
  3362 			break;
       
  3363 		}
       
  3364 	}
       
  3365 
       
  3366 	return err;
       
  3367 }
       
  3368 
       
  3369 /**
       
  3370  *  igb_setup_mrqc - configure the multiple receive queue control registers
       
  3371  *  @adapter: Board private structure
       
  3372  **/
       
  3373 static void igb_setup_mrqc(struct igb_adapter *adapter)
       
  3374 {
       
  3375 	struct e1000_hw *hw = &adapter->hw;
       
  3376 	u32 mrqc, rxcsum;
       
  3377 	u32 j, num_rx_queues;
       
  3378 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
       
  3379 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
       
  3380 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
       
  3381 					0xFA01ACBE };
       
  3382 
       
  3383 	/* Fill out hash function seeds */
       
  3384 	for (j = 0; j < 10; j++)
       
  3385 		wr32(E1000_RSSRK(j), rsskey[j]);
       
  3386 
       
  3387 	num_rx_queues = adapter->rss_queues;
       
  3388 
       
  3389 	switch (hw->mac.type) {
       
  3390 	case e1000_82576:
       
  3391 		/* 82576 supports 2 RSS queues for SR-IOV */
       
  3392 		if (adapter->vfs_allocated_count)
       
  3393 			num_rx_queues = 2;
       
  3394 		break;
       
  3395 	default:
       
  3396 		break;
       
  3397 	}
       
  3398 
       
  3399 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
       
  3400 		for (j = 0; j < IGB_RETA_SIZE; j++)
       
  3401 			adapter->rss_indir_tbl[j] =
       
  3402 			(j * num_rx_queues) / IGB_RETA_SIZE;
       
  3403 		adapter->rss_indir_tbl_init = num_rx_queues;
       
  3404 	}
       
  3405 	igb_write_rss_indir_tbl(adapter);
       
  3406 
       
  3407 	/* Disable raw packet checksumming so that RSS hash is placed in
       
  3408 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
       
  3409 	 * offloads as they are enabled by default
       
  3410 	 */
       
  3411 	rxcsum = rd32(E1000_RXCSUM);
       
  3412 	rxcsum |= E1000_RXCSUM_PCSD;
       
  3413 
       
  3414 	if (adapter->hw.mac.type >= e1000_82576)
       
  3415 		/* Enable Receive Checksum Offload for SCTP */
       
  3416 		rxcsum |= E1000_RXCSUM_CRCOFL;
       
  3417 
       
  3418 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
       
  3419 	wr32(E1000_RXCSUM, rxcsum);
       
  3420 
       
  3421 	/* Generate RSS hash based on packet types, TCP/UDP
       
  3422 	 * port numbers and/or IPv4/v6 src and dst addresses
       
  3423 	 */
       
  3424 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
       
  3425 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
       
  3426 	       E1000_MRQC_RSS_FIELD_IPV6 |
       
  3427 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
       
  3428 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
       
  3429 
       
  3430 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
       
  3431 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
       
  3432 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
       
  3433 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
       
  3434 
       
  3435 	/* If VMDq is enabled then we set the appropriate mode for that, else
       
  3436 	 * we default to RSS so that an RSS hash is calculated per packet even
       
  3437 	 * if we are only using one queue
       
  3438 	 */
       
  3439 	if (adapter->vfs_allocated_count) {
       
  3440 		if (hw->mac.type > e1000_82575) {
       
  3441 			/* Set the default pool for the PF's first queue */
       
  3442 			u32 vtctl = rd32(E1000_VT_CTL);
       
  3443 
       
  3444 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
       
  3445 				   E1000_VT_CTL_DISABLE_DEF_POOL);
       
  3446 			vtctl |= adapter->vfs_allocated_count <<
       
  3447 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
       
  3448 			wr32(E1000_VT_CTL, vtctl);
       
  3449 		}
       
  3450 		if (adapter->rss_queues > 1)
       
  3451 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
       
  3452 		else
       
  3453 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
       
  3454 	} else {
       
  3455 		if (hw->mac.type != e1000_i211)
       
  3456 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
       
  3457 	}
       
  3458 	igb_vmm_control(adapter);
       
  3459 
       
  3460 	wr32(E1000_MRQC, mrqc);
       
  3461 }
       
  3462 
       
  3463 /**
       
  3464  *  igb_setup_rctl - configure the receive control registers
       
  3465  *  @adapter: Board private structure
       
  3466  **/
       
  3467 void igb_setup_rctl(struct igb_adapter *adapter)
       
  3468 {
       
  3469 	struct e1000_hw *hw = &adapter->hw;
       
  3470 	u32 rctl;
       
  3471 
       
  3472 	rctl = rd32(E1000_RCTL);
       
  3473 
       
  3474 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  3475 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
       
  3476 
       
  3477 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
       
  3478 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  3479 
       
  3480 	/* enable stripping of CRC. It's unlikely this will break BMC
       
  3481 	 * redirection as it did with e1000. Newer features require
       
  3482 	 * that the HW strips the CRC.
       
  3483 	 */
       
  3484 	rctl |= E1000_RCTL_SECRC;
       
  3485 
       
  3486 	/* disable store bad packets and clear size bits. */
       
  3487 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
       
  3488 
       
  3489 	/* enable LPE to prevent packets larger than max_frame_size */
       
  3490 	rctl |= E1000_RCTL_LPE;
       
  3491 
       
  3492 	/* disable queue 0 to prevent tail write w/o re-config */
       
  3493 	wr32(E1000_RXDCTL(0), 0);
       
  3494 
       
  3495 	/* Attention!!!  For SR-IOV PF driver operations you must enable
       
  3496 	 * queue drop for all VF and PF queues to prevent head of line blocking
       
  3497 	 * if an un-trusted VF does not provide descriptors to hardware.
       
  3498 	 */
       
  3499 	if (adapter->vfs_allocated_count) {
       
  3500 		/* set all queue drop enable bits */
       
  3501 		wr32(E1000_QDE, ALL_QUEUES);
       
  3502 	}
       
  3503 
       
  3504 	/* This is useful for sniffing bad packets. */
       
  3505 	if (adapter->netdev->features & NETIF_F_RXALL) {
       
  3506 		/* UPE and MPE will be handled by normal PROMISC logic
       
  3507 		 * in e1000e_set_rx_mode
       
  3508 		 */
       
  3509 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
       
  3510 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
       
  3511 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
       
  3512 
       
  3513 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
       
  3514 			  E1000_RCTL_DPF | /* Allow filtered pause */
       
  3515 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
       
  3516 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
       
  3517 		 * and that breaks VLANs.
       
  3518 		 */
       
  3519 	}
       
  3520 
       
  3521 	wr32(E1000_RCTL, rctl);
       
  3522 }
       
  3523 
       
  3524 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
       
  3525 				   int vfn)
       
  3526 {
       
  3527 	struct e1000_hw *hw = &adapter->hw;
       
  3528 	u32 vmolr;
       
  3529 
       
  3530 	/* if it isn't the PF check to see if VFs are enabled and
       
  3531 	 * increase the size to support vlan tags
       
  3532 	 */
       
  3533 	if (vfn < adapter->vfs_allocated_count &&
       
  3534 	    adapter->vf_data[vfn].vlans_enabled)
       
  3535 		size += VLAN_TAG_SIZE;
       
  3536 
       
  3537 	vmolr = rd32(E1000_VMOLR(vfn));
       
  3538 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
       
  3539 	vmolr |= size | E1000_VMOLR_LPE;
       
  3540 	wr32(E1000_VMOLR(vfn), vmolr);
       
  3541 
       
  3542 	return 0;
       
  3543 }
       
  3544 
       
  3545 /**
       
  3546  *  igb_rlpml_set - set maximum receive packet size
       
  3547  *  @adapter: board private structure
       
  3548  *
       
  3549  *  Configure maximum receivable packet size.
       
  3550  **/
       
  3551 static void igb_rlpml_set(struct igb_adapter *adapter)
       
  3552 {
       
  3553 	u32 max_frame_size = adapter->max_frame_size;
       
  3554 	struct e1000_hw *hw = &adapter->hw;
       
  3555 	u16 pf_id = adapter->vfs_allocated_count;
       
  3556 
       
  3557 	if (pf_id) {
       
  3558 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
       
  3559 		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
       
  3560 		 * to our max jumbo frame size, in case we need to enable
       
  3561 		 * jumbo frames on one of the rings later.
       
  3562 		 * This will not pass over-length frames into the default
       
  3563 		 * queue because it's gated by the VMOLR.RLPML.
       
  3564 		 */
       
  3565 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
       
  3566 	}
       
  3567 
       
  3568 	wr32(E1000_RLPML, max_frame_size);
       
  3569 }
       
  3570 
       
  3571 static inline void igb_set_vmolr(struct igb_adapter *adapter,
       
  3572 				 int vfn, bool aupe)
       
  3573 {
       
  3574 	struct e1000_hw *hw = &adapter->hw;
       
  3575 	u32 vmolr;
       
  3576 
       
  3577 	/* This register exists only on 82576 and newer so if we are older then
       
  3578 	 * we should exit and do nothing
       
  3579 	 */
       
  3580 	if (hw->mac.type < e1000_82576)
       
  3581 		return;
       
  3582 
       
  3583 	vmolr = rd32(E1000_VMOLR(vfn));
       
  3584 	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
       
  3585 	if (hw->mac.type == e1000_i350) {
       
  3586 		u32 dvmolr;
       
  3587 
       
  3588 		dvmolr = rd32(E1000_DVMOLR(vfn));
       
  3589 		dvmolr |= E1000_DVMOLR_STRVLAN;
       
  3590 		wr32(E1000_DVMOLR(vfn), dvmolr);
       
  3591 	}
       
  3592 	if (aupe)
       
  3593 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
       
  3594 	else
       
  3595 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
       
  3596 
       
  3597 	/* clear all bits that might not be set */
       
  3598 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
       
  3599 
       
  3600 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
       
  3601 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
       
  3602 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
       
  3603 	 * multicast packets
       
  3604 	 */
       
  3605 	if (vfn <= adapter->vfs_allocated_count)
       
  3606 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
       
  3607 
       
  3608 	wr32(E1000_VMOLR(vfn), vmolr);
       
  3609 }
       
  3610 
       
  3611 /**
       
  3612  *  igb_configure_rx_ring - Configure a receive ring after Reset
       
  3613  *  @adapter: board private structure
       
  3614  *  @ring: receive ring to be configured
       
  3615  *
       
  3616  *  Configure the Rx unit of the MAC after a reset.
       
  3617  **/
       
  3618 void igb_configure_rx_ring(struct igb_adapter *adapter,
       
  3619 			   struct igb_ring *ring)
       
  3620 {
       
  3621 	struct e1000_hw *hw = &adapter->hw;
       
  3622 	u64 rdba = ring->dma;
       
  3623 	int reg_idx = ring->reg_idx;
       
  3624 	u32 srrctl = 0, rxdctl = 0;
       
  3625 
       
  3626 	/* disable the queue */
       
  3627 	wr32(E1000_RXDCTL(reg_idx), 0);
       
  3628 
       
  3629 	/* Set DMA base address registers */
       
  3630 	wr32(E1000_RDBAL(reg_idx),
       
  3631 	     rdba & 0x00000000ffffffffULL);
       
  3632 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
       
  3633 	wr32(E1000_RDLEN(reg_idx),
       
  3634 	     ring->count * sizeof(union e1000_adv_rx_desc));
       
  3635 
       
  3636 	/* initialize head and tail */
       
  3637 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
       
  3638 	wr32(E1000_RDH(reg_idx), 0);
       
  3639 	writel(0, ring->tail);
       
  3640 
       
  3641 	/* set descriptor configuration */
       
  3642 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
       
  3643 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
       
  3644 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
       
  3645 	if (hw->mac.type >= e1000_82580)
       
  3646 		srrctl |= E1000_SRRCTL_TIMESTAMP;
       
  3647 	/* Only set Drop Enable if we are supporting multiple queues */
       
  3648 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
       
  3649 		srrctl |= E1000_SRRCTL_DROP_EN;
       
  3650 
       
  3651 	wr32(E1000_SRRCTL(reg_idx), srrctl);
       
  3652 
       
  3653 	/* set filtering for VMDQ pools */
       
  3654 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
       
  3655 
       
  3656 	rxdctl |= IGB_RX_PTHRESH;
       
  3657 	rxdctl |= IGB_RX_HTHRESH << 8;
       
  3658 	rxdctl |= IGB_RX_WTHRESH << 16;
       
  3659 
       
  3660 	/* enable receive descriptor fetching */
       
  3661 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
       
  3662 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
       
  3663 }
       
  3664 
       
  3665 /**
       
  3666  *  igb_configure_rx - Configure receive Unit after Reset
       
  3667  *  @adapter: board private structure
       
  3668  *
       
  3669  *  Configure the Rx unit of the MAC after a reset.
       
  3670  **/
       
  3671 static void igb_configure_rx(struct igb_adapter *adapter)
       
  3672 {
       
  3673 	int i;
       
  3674 
       
  3675 	/* set UTA to appropriate mode */
       
  3676 	igb_set_uta(adapter);
       
  3677 
       
  3678 	/* set the correct pool for the PF default MAC address in entry 0 */
       
  3679 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
       
  3680 			 adapter->vfs_allocated_count);
       
  3681 
       
  3682 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
       
  3683 	 * the Base and Length of the Rx Descriptor Ring
       
  3684 	 */
       
  3685 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  3686 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
       
  3687 }
       
  3688 
       
  3689 /**
       
  3690  *  igb_free_tx_resources - Free Tx Resources per Queue
       
  3691  *  @tx_ring: Tx descriptor ring for a specific queue
       
  3692  *
       
  3693  *  Free all transmit software resources
       
  3694  **/
       
  3695 void igb_free_tx_resources(struct igb_ring *tx_ring)
       
  3696 {
       
  3697 	igb_clean_tx_ring(tx_ring);
       
  3698 
       
  3699 	vfree(tx_ring->tx_buffer_info);
       
  3700 	tx_ring->tx_buffer_info = NULL;
       
  3701 
       
  3702 	/* if not set, then don't free */
       
  3703 	if (!tx_ring->desc)
       
  3704 		return;
       
  3705 
       
  3706 	dma_free_coherent(tx_ring->dev, tx_ring->size,
       
  3707 			  tx_ring->desc, tx_ring->dma);
       
  3708 
       
  3709 	tx_ring->desc = NULL;
       
  3710 }
       
  3711 
       
  3712 /**
       
  3713  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
       
  3714  *  @adapter: board private structure
       
  3715  *
       
  3716  *  Free all transmit software resources
       
  3717  **/
       
  3718 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
       
  3719 {
       
  3720 	int i;
       
  3721 
       
  3722 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  3723 		if (adapter->tx_ring[i])
       
  3724 			igb_free_tx_resources(adapter->tx_ring[i]);
       
  3725 }
       
  3726 
       
  3727 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
       
  3728 				    struct igb_tx_buffer *tx_buffer)
       
  3729 {
       
  3730 	if (tx_buffer->skb) {
       
  3731 		dev_kfree_skb_any(tx_buffer->skb);
       
  3732 		if (dma_unmap_len(tx_buffer, len))
       
  3733 			dma_unmap_single(ring->dev,
       
  3734 					 dma_unmap_addr(tx_buffer, dma),
       
  3735 					 dma_unmap_len(tx_buffer, len),
       
  3736 					 DMA_TO_DEVICE);
       
  3737 	} else if (dma_unmap_len(tx_buffer, len)) {
       
  3738 		dma_unmap_page(ring->dev,
       
  3739 			       dma_unmap_addr(tx_buffer, dma),
       
  3740 			       dma_unmap_len(tx_buffer, len),
       
  3741 			       DMA_TO_DEVICE);
       
  3742 	}
       
  3743 	tx_buffer->next_to_watch = NULL;
       
  3744 	tx_buffer->skb = NULL;
       
  3745 	dma_unmap_len_set(tx_buffer, len, 0);
       
  3746 	/* buffer_info must be completely set up in the transmit path */
       
  3747 }
       
  3748 
       
  3749 /**
       
  3750  *  igb_clean_tx_ring - Free Tx Buffers
       
  3751  *  @tx_ring: ring to be cleaned
       
  3752  **/
       
  3753 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
       
  3754 {
       
  3755 	struct igb_tx_buffer *buffer_info;
       
  3756 	unsigned long size;
       
  3757 	u16 i;
       
  3758 
       
  3759 	if (!tx_ring->tx_buffer_info)
       
  3760 		return;
       
  3761 	/* Free all the Tx ring sk_buffs */
       
  3762 
       
  3763 	for (i = 0; i < tx_ring->count; i++) {
       
  3764 		buffer_info = &tx_ring->tx_buffer_info[i];
       
  3765 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
       
  3766 	}
       
  3767 
       
  3768 	netdev_tx_reset_queue(txring_txq(tx_ring));
       
  3769 
       
  3770 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
       
  3771 	memset(tx_ring->tx_buffer_info, 0, size);
       
  3772 
       
  3773 	/* Zero out the descriptor ring */
       
  3774 	memset(tx_ring->desc, 0, tx_ring->size);
       
  3775 
       
  3776 	tx_ring->next_to_use = 0;
       
  3777 	tx_ring->next_to_clean = 0;
       
  3778 }
       
  3779 
       
  3780 /**
       
  3781  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
       
  3782  *  @adapter: board private structure
       
  3783  **/
       
  3784 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
       
  3785 {
       
  3786 	int i;
       
  3787 
       
  3788 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  3789 		if (adapter->tx_ring[i])
       
  3790 			igb_clean_tx_ring(adapter->tx_ring[i]);
       
  3791 }
       
  3792 
       
  3793 /**
       
  3794  *  igb_free_rx_resources - Free Rx Resources
       
  3795  *  @rx_ring: ring to clean the resources from
       
  3796  *
       
  3797  *  Free all receive software resources
       
  3798  **/
       
  3799 void igb_free_rx_resources(struct igb_ring *rx_ring)
       
  3800 {
       
  3801 	igb_clean_rx_ring(rx_ring);
       
  3802 
       
  3803 	vfree(rx_ring->rx_buffer_info);
       
  3804 	rx_ring->rx_buffer_info = NULL;
       
  3805 
       
  3806 	/* if not set, then don't free */
       
  3807 	if (!rx_ring->desc)
       
  3808 		return;
       
  3809 
       
  3810 	dma_free_coherent(rx_ring->dev, rx_ring->size,
       
  3811 			  rx_ring->desc, rx_ring->dma);
       
  3812 
       
  3813 	rx_ring->desc = NULL;
       
  3814 }
       
  3815 
       
  3816 /**
       
  3817  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
       
  3818  *  @adapter: board private structure
       
  3819  *
       
  3820  *  Free all receive software resources
       
  3821  **/
       
  3822 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
       
  3823 {
       
  3824 	int i;
       
  3825 
       
  3826 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  3827 		if (adapter->rx_ring[i])
       
  3828 			igb_free_rx_resources(adapter->rx_ring[i]);
       
  3829 }
       
  3830 
       
  3831 /**
       
  3832  *  igb_clean_rx_ring - Free Rx Buffers per Queue
       
  3833  *  @rx_ring: ring to free buffers from
       
  3834  **/
       
  3835 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
       
  3836 {
       
  3837 	unsigned long size;
       
  3838 	u16 i;
       
  3839 
       
  3840 	if (rx_ring->skb)
       
  3841 		dev_kfree_skb(rx_ring->skb);
       
  3842 	rx_ring->skb = NULL;
       
  3843 
       
  3844 	if (!rx_ring->rx_buffer_info)
       
  3845 		return;
       
  3846 
       
  3847 	/* Free all the Rx ring sk_buffs */
       
  3848 	for (i = 0; i < rx_ring->count; i++) {
       
  3849 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
       
  3850 
       
  3851 		if (!buffer_info->page)
       
  3852 			continue;
       
  3853 
       
  3854 		dma_unmap_page(rx_ring->dev,
       
  3855 			       buffer_info->dma,
       
  3856 			       PAGE_SIZE,
       
  3857 			       DMA_FROM_DEVICE);
       
  3858 		__free_page(buffer_info->page);
       
  3859 
       
  3860 		buffer_info->page = NULL;
       
  3861 	}
       
  3862 
       
  3863 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
       
  3864 	memset(rx_ring->rx_buffer_info, 0, size);
       
  3865 
       
  3866 	/* Zero out the descriptor ring */
       
  3867 	memset(rx_ring->desc, 0, rx_ring->size);
       
  3868 
       
  3869 	rx_ring->next_to_alloc = 0;
       
  3870 	rx_ring->next_to_clean = 0;
       
  3871 	rx_ring->next_to_use = 0;
       
  3872 }
       
  3873 
       
  3874 /**
       
  3875  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
       
  3876  *  @adapter: board private structure
       
  3877  **/
       
  3878 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
       
  3879 {
       
  3880 	int i;
       
  3881 
       
  3882 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  3883 		if (adapter->rx_ring[i])
       
  3884 			igb_clean_rx_ring(adapter->rx_ring[i]);
       
  3885 }
       
  3886 
       
  3887 /**
       
  3888  *  igb_set_mac - Change the Ethernet Address of the NIC
       
  3889  *  @netdev: network interface device structure
       
  3890  *  @p: pointer to an address structure
       
  3891  *
       
  3892  *  Returns 0 on success, negative on failure
       
  3893  **/
       
  3894 static int igb_set_mac(struct net_device *netdev, void *p)
       
  3895 {
       
  3896 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  3897 	struct e1000_hw *hw = &adapter->hw;
       
  3898 	struct sockaddr *addr = p;
       
  3899 
       
  3900 	if (!is_valid_ether_addr(addr->sa_data))
       
  3901 		return -EADDRNOTAVAIL;
       
  3902 
       
  3903 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  3904 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
       
  3905 
       
  3906 	/* set the correct pool for the new PF MAC address in entry 0 */
       
  3907 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
       
  3908 			 adapter->vfs_allocated_count);
       
  3909 
       
  3910 	return 0;
       
  3911 }
       
  3912 
       
  3913 /**
       
  3914  *  igb_write_mc_addr_list - write multicast addresses to MTA
       
  3915  *  @netdev: network interface device structure
       
  3916  *
       
  3917  *  Writes multicast address list to the MTA hash table.
       
  3918  *  Returns: -ENOMEM on failure
       
  3919  *           0 on no addresses written
       
  3920  *           X on writing X addresses to MTA
       
  3921  **/
       
  3922 static int igb_write_mc_addr_list(struct net_device *netdev)
       
  3923 {
       
  3924 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  3925 	struct e1000_hw *hw = &adapter->hw;
       
  3926 	struct netdev_hw_addr *ha;
       
  3927 	u8  *mta_list;
       
  3928 	int i;
       
  3929 
       
  3930 	if (netdev_mc_empty(netdev)) {
       
  3931 		/* nothing to program, so clear mc list */
       
  3932 		igb_update_mc_addr_list(hw, NULL, 0);
       
  3933 		igb_restore_vf_multicasts(adapter);
       
  3934 		return 0;
       
  3935 	}
       
  3936 
       
  3937 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
       
  3938 	if (!mta_list)
       
  3939 		return -ENOMEM;
       
  3940 
       
  3941 	/* The shared function expects a packed array of only addresses. */
       
  3942 	i = 0;
       
  3943 	netdev_for_each_mc_addr(ha, netdev)
       
  3944 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
       
  3945 
       
  3946 	igb_update_mc_addr_list(hw, mta_list, i);
       
  3947 	kfree(mta_list);
       
  3948 
       
  3949 	return netdev_mc_count(netdev);
       
  3950 }
       
  3951 
       
  3952 /**
       
  3953  *  igb_write_uc_addr_list - write unicast addresses to RAR table
       
  3954  *  @netdev: network interface device structure
       
  3955  *
       
  3956  *  Writes unicast address list to the RAR table.
       
  3957  *  Returns: -ENOMEM on failure/insufficient address space
       
  3958  *           0 on no addresses written
       
  3959  *           X on writing X addresses to the RAR table
       
  3960  **/
       
  3961 static int igb_write_uc_addr_list(struct net_device *netdev)
       
  3962 {
       
  3963 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  3964 	struct e1000_hw *hw = &adapter->hw;
       
  3965 	unsigned int vfn = adapter->vfs_allocated_count;
       
  3966 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
       
  3967 	int count = 0;
       
  3968 
       
  3969 	/* return ENOMEM indicating insufficient memory for addresses */
       
  3970 	if (netdev_uc_count(netdev) > rar_entries)
       
  3971 		return -ENOMEM;
       
  3972 
       
  3973 	if (!netdev_uc_empty(netdev) && rar_entries) {
       
  3974 		struct netdev_hw_addr *ha;
       
  3975 
       
  3976 		netdev_for_each_uc_addr(ha, netdev) {
       
  3977 			if (!rar_entries)
       
  3978 				break;
       
  3979 			igb_rar_set_qsel(adapter, ha->addr,
       
  3980 					 rar_entries--,
       
  3981 					 vfn);
       
  3982 			count++;
       
  3983 		}
       
  3984 	}
       
  3985 	/* write the addresses in reverse order to avoid write combining */
       
  3986 	for (; rar_entries > 0 ; rar_entries--) {
       
  3987 		wr32(E1000_RAH(rar_entries), 0);
       
  3988 		wr32(E1000_RAL(rar_entries), 0);
       
  3989 	}
       
  3990 	wrfl();
       
  3991 
       
  3992 	return count;
       
  3993 }
       
  3994 
       
  3995 /**
       
  3996  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
       
  3997  *  @netdev: network interface device structure
       
  3998  *
       
  3999  *  The set_rx_mode entry point is called whenever the unicast or multicast
       
  4000  *  address lists or the network interface flags are updated.  This routine is
       
  4001  *  responsible for configuring the hardware for proper unicast, multicast,
       
  4002  *  promiscuous mode, and all-multi behavior.
       
  4003  **/
       
  4004 static void igb_set_rx_mode(struct net_device *netdev)
       
  4005 {
       
  4006 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  4007 	struct e1000_hw *hw = &adapter->hw;
       
  4008 	unsigned int vfn = adapter->vfs_allocated_count;
       
  4009 	u32 rctl, vmolr = 0;
       
  4010 	int count;
       
  4011 
       
  4012 	/* Check for Promiscuous and All Multicast modes */
       
  4013 	rctl = rd32(E1000_RCTL);
       
  4014 
       
  4015 	/* clear the effected bits */
       
  4016 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
       
  4017 
       
  4018 	if (netdev->flags & IFF_PROMISC) {
       
  4019 		/* retain VLAN HW filtering if in VT mode */
       
  4020 		if (adapter->vfs_allocated_count)
       
  4021 			rctl |= E1000_RCTL_VFE;
       
  4022 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  4023 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
       
  4024 	} else {
       
  4025 		if (netdev->flags & IFF_ALLMULTI) {
       
  4026 			rctl |= E1000_RCTL_MPE;
       
  4027 			vmolr |= E1000_VMOLR_MPME;
       
  4028 		} else {
       
  4029 			/* Write addresses to the MTA, if the attempt fails
       
  4030 			 * then we should just turn on promiscuous mode so
       
  4031 			 * that we can at least receive multicast traffic
       
  4032 			 */
       
  4033 			count = igb_write_mc_addr_list(netdev);
       
  4034 			if (count < 0) {
       
  4035 				rctl |= E1000_RCTL_MPE;
       
  4036 				vmolr |= E1000_VMOLR_MPME;
       
  4037 			} else if (count) {
       
  4038 				vmolr |= E1000_VMOLR_ROMPE;
       
  4039 			}
       
  4040 		}
       
  4041 		/* Write addresses to available RAR registers, if there is not
       
  4042 		 * sufficient space to store all the addresses then enable
       
  4043 		 * unicast promiscuous mode
       
  4044 		 */
       
  4045 		count = igb_write_uc_addr_list(netdev);
       
  4046 		if (count < 0) {
       
  4047 			rctl |= E1000_RCTL_UPE;
       
  4048 			vmolr |= E1000_VMOLR_ROPE;
       
  4049 		}
       
  4050 		rctl |= E1000_RCTL_VFE;
       
  4051 	}
       
  4052 	wr32(E1000_RCTL, rctl);
       
  4053 
       
  4054 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
       
  4055 	 * the VMOLR to enable the appropriate modes.  Without this workaround
       
  4056 	 * we will have issues with VLAN tag stripping not being done for frames
       
  4057 	 * that are only arriving because we are the default pool
       
  4058 	 */
       
  4059 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
       
  4060 		return;
       
  4061 
       
  4062 	vmolr |= rd32(E1000_VMOLR(vfn)) &
       
  4063 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
       
  4064 	wr32(E1000_VMOLR(vfn), vmolr);
       
  4065 	igb_restore_vf_multicasts(adapter);
       
  4066 }
       
  4067 
       
  4068 static void igb_check_wvbr(struct igb_adapter *adapter)
       
  4069 {
       
  4070 	struct e1000_hw *hw = &adapter->hw;
       
  4071 	u32 wvbr = 0;
       
  4072 
       
  4073 	switch (hw->mac.type) {
       
  4074 	case e1000_82576:
       
  4075 	case e1000_i350:
       
  4076 		wvbr = rd32(E1000_WVBR);
       
  4077 		if (!wvbr)
       
  4078 			return;
       
  4079 		break;
       
  4080 	default:
       
  4081 		break;
       
  4082 	}
       
  4083 
       
  4084 	adapter->wvbr |= wvbr;
       
  4085 }
       
  4086 
       
  4087 #define IGB_STAGGERED_QUEUE_OFFSET 8
       
  4088 
       
  4089 static void igb_spoof_check(struct igb_adapter *adapter)
       
  4090 {
       
  4091 	int j;
       
  4092 
       
  4093 	if (!adapter->wvbr)
       
  4094 		return;
       
  4095 
       
  4096 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
       
  4097 		if (adapter->wvbr & (1 << j) ||
       
  4098 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
       
  4099 			dev_warn(&adapter->pdev->dev,
       
  4100 				"Spoof event(s) detected on VF %d\n", j);
       
  4101 			adapter->wvbr &=
       
  4102 				~((1 << j) |
       
  4103 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
       
  4104 		}
       
  4105 	}
       
  4106 }
       
  4107 
       
  4108 /* Need to wait a few seconds after link up to get diagnostic information from
       
  4109  * the phy
       
  4110  */
       
  4111 static void igb_update_phy_info(unsigned long data)
       
  4112 {
       
  4113 	struct igb_adapter *adapter = (struct igb_adapter *) data;
       
  4114 	igb_get_phy_info(&adapter->hw);
       
  4115 }
       
  4116 
       
  4117 /**
       
  4118  *  igb_has_link - check shared code for link and determine up/down
       
  4119  *  @adapter: pointer to driver private info
       
  4120  **/
       
  4121 bool igb_has_link(struct igb_adapter *adapter)
       
  4122 {
       
  4123 	struct e1000_hw *hw = &adapter->hw;
       
  4124 	bool link_active = false;
       
  4125 
       
  4126 	/* get_link_status is set on LSC (link status) interrupt or
       
  4127 	 * rx sequence error interrupt.  get_link_status will stay
       
  4128 	 * false until the e1000_check_for_link establishes link
       
  4129 	 * for copper adapters ONLY
       
  4130 	 */
       
  4131 	switch (hw->phy.media_type) {
       
  4132 	case e1000_media_type_copper:
       
  4133 		if (!hw->mac.get_link_status)
       
  4134 			return true;
       
  4135 	case e1000_media_type_internal_serdes:
       
  4136 		hw->mac.ops.check_for_link(hw);
       
  4137 		link_active = !hw->mac.get_link_status;
       
  4138 		break;
       
  4139 	default:
       
  4140 	case e1000_media_type_unknown:
       
  4141 		break;
       
  4142 	}
       
  4143 
       
  4144 	if (((hw->mac.type == e1000_i210) ||
       
  4145 	     (hw->mac.type == e1000_i211)) &&
       
  4146 	     (hw->phy.id == I210_I_PHY_ID)) {
       
  4147 		if (!netif_carrier_ok(adapter->netdev)) {
       
  4148 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
       
  4149 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
       
  4150 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
       
  4151 			adapter->link_check_timeout = jiffies;
       
  4152 		}
       
  4153 	}
       
  4154 
       
  4155 	return link_active;
       
  4156 }
       
  4157 
       
  4158 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
       
  4159 {
       
  4160 	bool ret = false;
       
  4161 	u32 ctrl_ext, thstat;
       
  4162 
       
  4163 	/* check for thermal sensor event on i350 copper only */
       
  4164 	if (hw->mac.type == e1000_i350) {
       
  4165 		thstat = rd32(E1000_THSTAT);
       
  4166 		ctrl_ext = rd32(E1000_CTRL_EXT);
       
  4167 
       
  4168 		if ((hw->phy.media_type == e1000_media_type_copper) &&
       
  4169 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
       
  4170 			ret = !!(thstat & event);
       
  4171 	}
       
  4172 
       
  4173 	return ret;
       
  4174 }
       
  4175 
       
  4176 /**
       
  4177  *  igb_check_lvmmc - check for malformed packets received
       
  4178  *  and indicated in LVMMC register
       
  4179  *  @adapter: pointer to adapter
       
  4180  **/
       
  4181 static void igb_check_lvmmc(struct igb_adapter *adapter)
       
  4182 {
       
  4183 	struct e1000_hw *hw = &adapter->hw;
       
  4184 	u32 lvmmc;
       
  4185 
       
  4186 	lvmmc = rd32(E1000_LVMMC);
       
  4187 	if (lvmmc) {
       
  4188 		if (unlikely(net_ratelimit())) {
       
  4189 			netdev_warn(adapter->netdev,
       
  4190 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
       
  4191 				    lvmmc);
       
  4192 		}
       
  4193 	}
       
  4194 }
       
  4195 
       
  4196 /**
       
  4197  *  igb_watchdog - Timer Call-back
       
  4198  *  @data: pointer to adapter cast into an unsigned long
       
  4199  **/
       
  4200 static void igb_watchdog(unsigned long data)
       
  4201 {
       
  4202 	struct igb_adapter *adapter = (struct igb_adapter *)data;
       
  4203 	/* Do the rest outside of interrupt context */
       
  4204 	schedule_work(&adapter->watchdog_task);
       
  4205 }
       
  4206 
       
  4207 static void igb_watchdog_task(struct work_struct *work)
       
  4208 {
       
  4209 	struct igb_adapter *adapter = container_of(work,
       
  4210 						   struct igb_adapter,
       
  4211 						   watchdog_task);
       
  4212 	struct e1000_hw *hw = &adapter->hw;
       
  4213 	struct e1000_phy_info *phy = &hw->phy;
       
  4214 	struct net_device *netdev = adapter->netdev;
       
  4215 	u32 link;
       
  4216 	int i;
       
  4217 	u32 connsw;
       
  4218 
       
  4219 	link = igb_has_link(adapter);
       
  4220 
       
  4221 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
       
  4222 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
       
  4223 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
       
  4224 		else
       
  4225 			link = false;
       
  4226 	}
       
  4227 
       
  4228 	/* Force link down if we have fiber to swap to */
       
  4229 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
       
  4230 		if (hw->phy.media_type == e1000_media_type_copper) {
       
  4231 			connsw = rd32(E1000_CONNSW);
       
  4232 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
       
  4233 				link = 0;
       
  4234 		}
       
  4235 	}
       
  4236 	if (link) {
       
  4237 		/* Perform a reset if the media type changed. */
       
  4238 		if (hw->dev_spec._82575.media_changed) {
       
  4239 			hw->dev_spec._82575.media_changed = false;
       
  4240 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
       
  4241 			igb_reset(adapter);
       
  4242 		}
       
  4243 		/* Cancel scheduled suspend requests. */
       
  4244 		pm_runtime_resume(netdev->dev.parent);
       
  4245 
       
  4246 		if (!netif_carrier_ok(netdev)) {
       
  4247 			u32 ctrl;
       
  4248 
       
  4249 			hw->mac.ops.get_speed_and_duplex(hw,
       
  4250 							 &adapter->link_speed,
       
  4251 							 &adapter->link_duplex);
       
  4252 
       
  4253 			ctrl = rd32(E1000_CTRL);
       
  4254 			/* Links status message must follow this format */
       
  4255 			netdev_info(netdev,
       
  4256 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
       
  4257 			       netdev->name,
       
  4258 			       adapter->link_speed,
       
  4259 			       adapter->link_duplex == FULL_DUPLEX ?
       
  4260 			       "Full" : "Half",
       
  4261 			       (ctrl & E1000_CTRL_TFCE) &&
       
  4262 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
       
  4263 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
       
  4264 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
       
  4265 
       
  4266 			/* disable EEE if enabled */
       
  4267 			if ((adapter->flags & IGB_FLAG_EEE) &&
       
  4268 				(adapter->link_duplex == HALF_DUPLEX)) {
       
  4269 				dev_info(&adapter->pdev->dev,
       
  4270 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
       
  4271 				adapter->hw.dev_spec._82575.eee_disable = true;
       
  4272 				adapter->flags &= ~IGB_FLAG_EEE;
       
  4273 			}
       
  4274 
       
  4275 			/* check if SmartSpeed worked */
       
  4276 			igb_check_downshift(hw);
       
  4277 			if (phy->speed_downgraded)
       
  4278 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
       
  4279 
       
  4280 			/* check for thermal sensor event */
       
  4281 			if (igb_thermal_sensor_event(hw,
       
  4282 			    E1000_THSTAT_LINK_THROTTLE))
       
  4283 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
       
  4284 
       
  4285 			/* adjust timeout factor according to speed/duplex */
       
  4286 			adapter->tx_timeout_factor = 1;
       
  4287 			switch (adapter->link_speed) {
       
  4288 			case SPEED_10:
       
  4289 				adapter->tx_timeout_factor = 14;
       
  4290 				break;
       
  4291 			case SPEED_100:
       
  4292 				/* maybe add some timeout factor ? */
       
  4293 				break;
       
  4294 			}
       
  4295 
       
  4296 			netif_carrier_on(netdev);
       
  4297 
       
  4298 			igb_ping_all_vfs(adapter);
       
  4299 			igb_check_vf_rate_limit(adapter);
       
  4300 
       
  4301 			/* link state has changed, schedule phy info update */
       
  4302 			if (!test_bit(__IGB_DOWN, &adapter->state))
       
  4303 				mod_timer(&adapter->phy_info_timer,
       
  4304 					  round_jiffies(jiffies + 2 * HZ));
       
  4305 		}
       
  4306 	} else {
       
  4307 		if (netif_carrier_ok(netdev)) {
       
  4308 			adapter->link_speed = 0;
       
  4309 			adapter->link_duplex = 0;
       
  4310 
       
  4311 			/* check for thermal sensor event */
       
  4312 			if (igb_thermal_sensor_event(hw,
       
  4313 			    E1000_THSTAT_PWR_DOWN)) {
       
  4314 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
       
  4315 			}
       
  4316 
       
  4317 			/* Links status message must follow this format */
       
  4318 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
       
  4319 			       netdev->name);
       
  4320 			netif_carrier_off(netdev);
       
  4321 
       
  4322 			igb_ping_all_vfs(adapter);
       
  4323 
       
  4324 			/* link state has changed, schedule phy info update */
       
  4325 			if (!test_bit(__IGB_DOWN, &adapter->state))
       
  4326 				mod_timer(&adapter->phy_info_timer,
       
  4327 					  round_jiffies(jiffies + 2 * HZ));
       
  4328 
       
  4329 			/* link is down, time to check for alternate media */
       
  4330 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
       
  4331 				igb_check_swap_media(adapter);
       
  4332 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
       
  4333 					schedule_work(&adapter->reset_task);
       
  4334 					/* return immediately */
       
  4335 					return;
       
  4336 				}
       
  4337 			}
       
  4338 			pm_schedule_suspend(netdev->dev.parent,
       
  4339 					    MSEC_PER_SEC * 5);
       
  4340 
       
  4341 		/* also check for alternate media here */
       
  4342 		} else if (!netif_carrier_ok(netdev) &&
       
  4343 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
       
  4344 			igb_check_swap_media(adapter);
       
  4345 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
       
  4346 				schedule_work(&adapter->reset_task);
       
  4347 				/* return immediately */
       
  4348 				return;
       
  4349 			}
       
  4350 		}
       
  4351 	}
       
  4352 
       
  4353 	spin_lock(&adapter->stats64_lock);
       
  4354 	igb_update_stats(adapter, &adapter->stats64);
       
  4355 	spin_unlock(&adapter->stats64_lock);
       
  4356 
       
  4357 	for (i = 0; i < adapter->num_tx_queues; i++) {
       
  4358 		struct igb_ring *tx_ring = adapter->tx_ring[i];
       
  4359 		if (!netif_carrier_ok(netdev)) {
       
  4360 			/* We've lost link, so the controller stops DMA,
       
  4361 			 * but we've got queued Tx work that's never going
       
  4362 			 * to get done, so reset controller to flush Tx.
       
  4363 			 * (Do the reset outside of interrupt context).
       
  4364 			 */
       
  4365 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
       
  4366 				adapter->tx_timeout_count++;
       
  4367 				schedule_work(&adapter->reset_task);
       
  4368 				/* return immediately since reset is imminent */
       
  4369 				return;
       
  4370 			}
       
  4371 		}
       
  4372 
       
  4373 		/* Force detection of hung controller every watchdog period */
       
  4374 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
       
  4375 	}
       
  4376 
       
  4377 	/* Cause software interrupt to ensure Rx ring is cleaned */
       
  4378 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
       
  4379 		u32 eics = 0;
       
  4380 
       
  4381 		for (i = 0; i < adapter->num_q_vectors; i++)
       
  4382 			eics |= adapter->q_vector[i]->eims_value;
       
  4383 		wr32(E1000_EICS, eics);
       
  4384 	} else {
       
  4385 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
       
  4386 	}
       
  4387 
       
  4388 	igb_spoof_check(adapter);
       
  4389 	igb_ptp_rx_hang(adapter);
       
  4390 
       
  4391 	/* Check LVMMC register on i350/i354 only */
       
  4392 	if ((adapter->hw.mac.type == e1000_i350) ||
       
  4393 	    (adapter->hw.mac.type == e1000_i354))
       
  4394 		igb_check_lvmmc(adapter);
       
  4395 
       
  4396 	/* Reset the timer */
       
  4397 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
       
  4398 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
       
  4399 			mod_timer(&adapter->watchdog_timer,
       
  4400 				  round_jiffies(jiffies +  HZ));
       
  4401 		else
       
  4402 			mod_timer(&adapter->watchdog_timer,
       
  4403 				  round_jiffies(jiffies + 2 * HZ));
       
  4404 	}
       
  4405 }
       
  4406 
       
  4407 enum latency_range {
       
  4408 	lowest_latency = 0,
       
  4409 	low_latency = 1,
       
  4410 	bulk_latency = 2,
       
  4411 	latency_invalid = 255
       
  4412 };
       
  4413 
       
  4414 /**
       
  4415  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
       
  4416  *  @q_vector: pointer to q_vector
       
  4417  *
       
  4418  *  Stores a new ITR value based on strictly on packet size.  This
       
  4419  *  algorithm is less sophisticated than that used in igb_update_itr,
       
  4420  *  due to the difficulty of synchronizing statistics across multiple
       
  4421  *  receive rings.  The divisors and thresholds used by this function
       
  4422  *  were determined based on theoretical maximum wire speed and testing
       
  4423  *  data, in order to minimize response time while increasing bulk
       
  4424  *  throughput.
       
  4425  *  This functionality is controlled by ethtool's coalescing settings.
       
  4426  *  NOTE:  This function is called only when operating in a multiqueue
       
  4427  *         receive environment.
       
  4428  **/
       
  4429 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
       
  4430 {
       
  4431 	int new_val = q_vector->itr_val;
       
  4432 	int avg_wire_size = 0;
       
  4433 	struct igb_adapter *adapter = q_vector->adapter;
       
  4434 	unsigned int packets;
       
  4435 
       
  4436 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
       
  4437 	 * ints/sec - ITR timer value of 120 ticks.
       
  4438 	 */
       
  4439 	if (adapter->link_speed != SPEED_1000) {
       
  4440 		new_val = IGB_4K_ITR;
       
  4441 		goto set_itr_val;
       
  4442 	}
       
  4443 
       
  4444 	packets = q_vector->rx.total_packets;
       
  4445 	if (packets)
       
  4446 		avg_wire_size = q_vector->rx.total_bytes / packets;
       
  4447 
       
  4448 	packets = q_vector->tx.total_packets;
       
  4449 	if (packets)
       
  4450 		avg_wire_size = max_t(u32, avg_wire_size,
       
  4451 				      q_vector->tx.total_bytes / packets);
       
  4452 
       
  4453 	/* if avg_wire_size isn't set no work was done */
       
  4454 	if (!avg_wire_size)
       
  4455 		goto clear_counts;
       
  4456 
       
  4457 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
       
  4458 	avg_wire_size += 24;
       
  4459 
       
  4460 	/* Don't starve jumbo frames */
       
  4461 	avg_wire_size = min(avg_wire_size, 3000);
       
  4462 
       
  4463 	/* Give a little boost to mid-size frames */
       
  4464 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
       
  4465 		new_val = avg_wire_size / 3;
       
  4466 	else
       
  4467 		new_val = avg_wire_size / 2;
       
  4468 
       
  4469 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  4470 	if (new_val < IGB_20K_ITR &&
       
  4471 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
       
  4472 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
       
  4473 		new_val = IGB_20K_ITR;
       
  4474 
       
  4475 set_itr_val:
       
  4476 	if (new_val != q_vector->itr_val) {
       
  4477 		q_vector->itr_val = new_val;
       
  4478 		q_vector->set_itr = 1;
       
  4479 	}
       
  4480 clear_counts:
       
  4481 	q_vector->rx.total_bytes = 0;
       
  4482 	q_vector->rx.total_packets = 0;
       
  4483 	q_vector->tx.total_bytes = 0;
       
  4484 	q_vector->tx.total_packets = 0;
       
  4485 }
       
  4486 
       
  4487 /**
       
  4488  *  igb_update_itr - update the dynamic ITR value based on statistics
       
  4489  *  @q_vector: pointer to q_vector
       
  4490  *  @ring_container: ring info to update the itr for
       
  4491  *
       
  4492  *  Stores a new ITR value based on packets and byte
       
  4493  *  counts during the last interrupt.  The advantage of per interrupt
       
  4494  *  computation is faster updates and more accurate ITR for the current
       
  4495  *  traffic pattern.  Constants in this function were computed
       
  4496  *  based on theoretical maximum wire speed and thresholds were set based
       
  4497  *  on testing data as well as attempting to minimize response time
       
  4498  *  while increasing bulk throughput.
       
  4499  *  This functionality is controlled by ethtool's coalescing settings.
       
  4500  *  NOTE:  These calculations are only valid when operating in a single-
       
  4501  *         queue environment.
       
  4502  **/
       
  4503 static void igb_update_itr(struct igb_q_vector *q_vector,
       
  4504 			   struct igb_ring_container *ring_container)
       
  4505 {
       
  4506 	unsigned int packets = ring_container->total_packets;
       
  4507 	unsigned int bytes = ring_container->total_bytes;
       
  4508 	u8 itrval = ring_container->itr;
       
  4509 
       
  4510 	/* no packets, exit with status unchanged */
       
  4511 	if (packets == 0)
       
  4512 		return;
       
  4513 
       
  4514 	switch (itrval) {
       
  4515 	case lowest_latency:
       
  4516 		/* handle TSO and jumbo frames */
       
  4517 		if (bytes/packets > 8000)
       
  4518 			itrval = bulk_latency;
       
  4519 		else if ((packets < 5) && (bytes > 512))
       
  4520 			itrval = low_latency;
       
  4521 		break;
       
  4522 	case low_latency:  /* 50 usec aka 20000 ints/s */
       
  4523 		if (bytes > 10000) {
       
  4524 			/* this if handles the TSO accounting */
       
  4525 			if (bytes/packets > 8000)
       
  4526 				itrval = bulk_latency;
       
  4527 			else if ((packets < 10) || ((bytes/packets) > 1200))
       
  4528 				itrval = bulk_latency;
       
  4529 			else if ((packets > 35))
       
  4530 				itrval = lowest_latency;
       
  4531 		} else if (bytes/packets > 2000) {
       
  4532 			itrval = bulk_latency;
       
  4533 		} else if (packets <= 2 && bytes < 512) {
       
  4534 			itrval = lowest_latency;
       
  4535 		}
       
  4536 		break;
       
  4537 	case bulk_latency: /* 250 usec aka 4000 ints/s */
       
  4538 		if (bytes > 25000) {
       
  4539 			if (packets > 35)
       
  4540 				itrval = low_latency;
       
  4541 		} else if (bytes < 1500) {
       
  4542 			itrval = low_latency;
       
  4543 		}
       
  4544 		break;
       
  4545 	}
       
  4546 
       
  4547 	/* clear work counters since we have the values we need */
       
  4548 	ring_container->total_bytes = 0;
       
  4549 	ring_container->total_packets = 0;
       
  4550 
       
  4551 	/* write updated itr to ring container */
       
  4552 	ring_container->itr = itrval;
       
  4553 }
       
  4554 
       
  4555 static void igb_set_itr(struct igb_q_vector *q_vector)
       
  4556 {
       
  4557 	struct igb_adapter *adapter = q_vector->adapter;
       
  4558 	u32 new_itr = q_vector->itr_val;
       
  4559 	u8 current_itr = 0;
       
  4560 
       
  4561 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
       
  4562 	if (adapter->link_speed != SPEED_1000) {
       
  4563 		current_itr = 0;
       
  4564 		new_itr = IGB_4K_ITR;
       
  4565 		goto set_itr_now;
       
  4566 	}
       
  4567 
       
  4568 	igb_update_itr(q_vector, &q_vector->tx);
       
  4569 	igb_update_itr(q_vector, &q_vector->rx);
       
  4570 
       
  4571 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
       
  4572 
       
  4573 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  4574 	if (current_itr == lowest_latency &&
       
  4575 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
       
  4576 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
       
  4577 		current_itr = low_latency;
       
  4578 
       
  4579 	switch (current_itr) {
       
  4580 	/* counts and packets in update_itr are dependent on these numbers */
       
  4581 	case lowest_latency:
       
  4582 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
       
  4583 		break;
       
  4584 	case low_latency:
       
  4585 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
       
  4586 		break;
       
  4587 	case bulk_latency:
       
  4588 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
       
  4589 		break;
       
  4590 	default:
       
  4591 		break;
       
  4592 	}
       
  4593 
       
  4594 set_itr_now:
       
  4595 	if (new_itr != q_vector->itr_val) {
       
  4596 		/* this attempts to bias the interrupt rate towards Bulk
       
  4597 		 * by adding intermediate steps when interrupt rate is
       
  4598 		 * increasing
       
  4599 		 */
       
  4600 		new_itr = new_itr > q_vector->itr_val ?
       
  4601 			  max((new_itr * q_vector->itr_val) /
       
  4602 			  (new_itr + (q_vector->itr_val >> 2)),
       
  4603 			  new_itr) : new_itr;
       
  4604 		/* Don't write the value here; it resets the adapter's
       
  4605 		 * internal timer, and causes us to delay far longer than
       
  4606 		 * we should between interrupts.  Instead, we write the ITR
       
  4607 		 * value at the beginning of the next interrupt so the timing
       
  4608 		 * ends up being correct.
       
  4609 		 */
       
  4610 		q_vector->itr_val = new_itr;
       
  4611 		q_vector->set_itr = 1;
       
  4612 	}
       
  4613 }
       
  4614 
       
  4615 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
       
  4616 			    u32 type_tucmd, u32 mss_l4len_idx)
       
  4617 {
       
  4618 	struct e1000_adv_tx_context_desc *context_desc;
       
  4619 	u16 i = tx_ring->next_to_use;
       
  4620 
       
  4621 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
       
  4622 
       
  4623 	i++;
       
  4624 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
       
  4625 
       
  4626 	/* set bits to identify this as an advanced context descriptor */
       
  4627 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
       
  4628 
       
  4629 	/* For 82575, context index must be unique per ring. */
       
  4630 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
       
  4631 		mss_l4len_idx |= tx_ring->reg_idx << 4;
       
  4632 
       
  4633 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
       
  4634 	context_desc->seqnum_seed	= 0;
       
  4635 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
       
  4636 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
       
  4637 }
       
  4638 
       
  4639 static int igb_tso(struct igb_ring *tx_ring,
       
  4640 		   struct igb_tx_buffer *first,
       
  4641 		   u8 *hdr_len)
       
  4642 {
       
  4643 	struct sk_buff *skb = first->skb;
       
  4644 	u32 vlan_macip_lens, type_tucmd;
       
  4645 	u32 mss_l4len_idx, l4len;
       
  4646 	int err;
       
  4647 
       
  4648 	if (skb->ip_summed != CHECKSUM_PARTIAL)
       
  4649 		return 0;
       
  4650 
       
  4651 	if (!skb_is_gso(skb))
       
  4652 		return 0;
       
  4653 
       
  4654 	err = skb_cow_head(skb, 0);
       
  4655 	if (err < 0)
       
  4656 		return err;
       
  4657 
       
  4658 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
       
  4659 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
       
  4660 
       
  4661 	if (first->protocol == htons(ETH_P_IP)) {
       
  4662 		struct iphdr *iph = ip_hdr(skb);
       
  4663 		iph->tot_len = 0;
       
  4664 		iph->check = 0;
       
  4665 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
       
  4666 							 iph->daddr, 0,
       
  4667 							 IPPROTO_TCP,
       
  4668 							 0);
       
  4669 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
       
  4670 		first->tx_flags |= IGB_TX_FLAGS_TSO |
       
  4671 				   IGB_TX_FLAGS_CSUM |
       
  4672 				   IGB_TX_FLAGS_IPV4;
       
  4673 	} else if (skb_is_gso_v6(skb)) {
       
  4674 		ipv6_hdr(skb)->payload_len = 0;
       
  4675 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
       
  4676 						       &ipv6_hdr(skb)->daddr,
       
  4677 						       0, IPPROTO_TCP, 0);
       
  4678 		first->tx_flags |= IGB_TX_FLAGS_TSO |
       
  4679 				   IGB_TX_FLAGS_CSUM;
       
  4680 	}
       
  4681 
       
  4682 	/* compute header lengths */
       
  4683 	l4len = tcp_hdrlen(skb);
       
  4684 	*hdr_len = skb_transport_offset(skb) + l4len;
       
  4685 
       
  4686 	/* update gso size and bytecount with header size */
       
  4687 	first->gso_segs = skb_shinfo(skb)->gso_segs;
       
  4688 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
       
  4689 
       
  4690 	/* MSS L4LEN IDX */
       
  4691 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
       
  4692 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
       
  4693 
       
  4694 	/* VLAN MACLEN IPLEN */
       
  4695 	vlan_macip_lens = skb_network_header_len(skb);
       
  4696 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
       
  4697 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
       
  4698 
       
  4699 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
       
  4700 
       
  4701 	return 1;
       
  4702 }
       
  4703 
       
  4704 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
       
  4705 {
       
  4706 	struct sk_buff *skb = first->skb;
       
  4707 	u32 vlan_macip_lens = 0;
       
  4708 	u32 mss_l4len_idx = 0;
       
  4709 	u32 type_tucmd = 0;
       
  4710 
       
  4711 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
       
  4712 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
       
  4713 			return;
       
  4714 	} else {
       
  4715 		u8 l4_hdr = 0;
       
  4716 
       
  4717 		switch (first->protocol) {
       
  4718 		case htons(ETH_P_IP):
       
  4719 			vlan_macip_lens |= skb_network_header_len(skb);
       
  4720 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
       
  4721 			l4_hdr = ip_hdr(skb)->protocol;
       
  4722 			break;
       
  4723 		case htons(ETH_P_IPV6):
       
  4724 			vlan_macip_lens |= skb_network_header_len(skb);
       
  4725 			l4_hdr = ipv6_hdr(skb)->nexthdr;
       
  4726 			break;
       
  4727 		default:
       
  4728 			if (unlikely(net_ratelimit())) {
       
  4729 				dev_warn(tx_ring->dev,
       
  4730 					 "partial checksum but proto=%x!\n",
       
  4731 					 first->protocol);
       
  4732 			}
       
  4733 			break;
       
  4734 		}
       
  4735 
       
  4736 		switch (l4_hdr) {
       
  4737 		case IPPROTO_TCP:
       
  4738 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
       
  4739 			mss_l4len_idx = tcp_hdrlen(skb) <<
       
  4740 					E1000_ADVTXD_L4LEN_SHIFT;
       
  4741 			break;
       
  4742 		case IPPROTO_SCTP:
       
  4743 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
       
  4744 			mss_l4len_idx = sizeof(struct sctphdr) <<
       
  4745 					E1000_ADVTXD_L4LEN_SHIFT;
       
  4746 			break;
       
  4747 		case IPPROTO_UDP:
       
  4748 			mss_l4len_idx = sizeof(struct udphdr) <<
       
  4749 					E1000_ADVTXD_L4LEN_SHIFT;
       
  4750 			break;
       
  4751 		default:
       
  4752 			if (unlikely(net_ratelimit())) {
       
  4753 				dev_warn(tx_ring->dev,
       
  4754 					 "partial checksum but l4 proto=%x!\n",
       
  4755 					 l4_hdr);
       
  4756 			}
       
  4757 			break;
       
  4758 		}
       
  4759 
       
  4760 		/* update TX checksum flag */
       
  4761 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
       
  4762 	}
       
  4763 
       
  4764 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
       
  4765 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
       
  4766 
       
  4767 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
       
  4768 }
       
  4769 
       
  4770 #define IGB_SET_FLAG(_input, _flag, _result) \
       
  4771 	((_flag <= _result) ? \
       
  4772 	 ((u32)(_input & _flag) * (_result / _flag)) : \
       
  4773 	 ((u32)(_input & _flag) / (_flag / _result)))
       
  4774 
       
  4775 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
       
  4776 {
       
  4777 	/* set type for advanced descriptor with frame checksum insertion */
       
  4778 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
       
  4779 		       E1000_ADVTXD_DCMD_DEXT |
       
  4780 		       E1000_ADVTXD_DCMD_IFCS;
       
  4781 
       
  4782 	/* set HW vlan bit if vlan is present */
       
  4783 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
       
  4784 				 (E1000_ADVTXD_DCMD_VLE));
       
  4785 
       
  4786 	/* set segmentation bits for TSO */
       
  4787 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
       
  4788 				 (E1000_ADVTXD_DCMD_TSE));
       
  4789 
       
  4790 	/* set timestamp bit if present */
       
  4791 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
       
  4792 				 (E1000_ADVTXD_MAC_TSTAMP));
       
  4793 
       
  4794 	/* insert frame checksum */
       
  4795 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
       
  4796 
       
  4797 	return cmd_type;
       
  4798 }
       
  4799 
       
  4800 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
       
  4801 				 union e1000_adv_tx_desc *tx_desc,
       
  4802 				 u32 tx_flags, unsigned int paylen)
       
  4803 {
       
  4804 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
       
  4805 
       
  4806 	/* 82575 requires a unique index per ring */
       
  4807 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
       
  4808 		olinfo_status |= tx_ring->reg_idx << 4;
       
  4809 
       
  4810 	/* insert L4 checksum */
       
  4811 	olinfo_status |= IGB_SET_FLAG(tx_flags,
       
  4812 				      IGB_TX_FLAGS_CSUM,
       
  4813 				      (E1000_TXD_POPTS_TXSM << 8));
       
  4814 
       
  4815 	/* insert IPv4 checksum */
       
  4816 	olinfo_status |= IGB_SET_FLAG(tx_flags,
       
  4817 				      IGB_TX_FLAGS_IPV4,
       
  4818 				      (E1000_TXD_POPTS_IXSM << 8));
       
  4819 
       
  4820 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
       
  4821 }
       
  4822 
       
  4823 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
       
  4824 {
       
  4825 	struct net_device *netdev = tx_ring->netdev;
       
  4826 
       
  4827 	netif_stop_subqueue(netdev, tx_ring->queue_index);
       
  4828 
       
  4829 	/* Herbert's original patch had:
       
  4830 	 *  smp_mb__after_netif_stop_queue();
       
  4831 	 * but since that doesn't exist yet, just open code it.
       
  4832 	 */
       
  4833 	smp_mb();
       
  4834 
       
  4835 	/* We need to check again in a case another CPU has just
       
  4836 	 * made room available.
       
  4837 	 */
       
  4838 	if (igb_desc_unused(tx_ring) < size)
       
  4839 		return -EBUSY;
       
  4840 
       
  4841 	/* A reprieve! */
       
  4842 	netif_wake_subqueue(netdev, tx_ring->queue_index);
       
  4843 
       
  4844 	u64_stats_update_begin(&tx_ring->tx_syncp2);
       
  4845 	tx_ring->tx_stats.restart_queue2++;
       
  4846 	u64_stats_update_end(&tx_ring->tx_syncp2);
       
  4847 
       
  4848 	return 0;
       
  4849 }
       
  4850 
       
  4851 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
       
  4852 {
       
  4853 	if (igb_desc_unused(tx_ring) >= size)
       
  4854 		return 0;
       
  4855 	return __igb_maybe_stop_tx(tx_ring, size);
       
  4856 }
       
  4857 
       
  4858 static void igb_tx_map(struct igb_ring *tx_ring,
       
  4859 		       struct igb_tx_buffer *first,
       
  4860 		       const u8 hdr_len)
       
  4861 {
       
  4862 	struct sk_buff *skb = first->skb;
       
  4863 	struct igb_tx_buffer *tx_buffer;
       
  4864 	union e1000_adv_tx_desc *tx_desc;
       
  4865 	struct skb_frag_struct *frag;
       
  4866 	dma_addr_t dma;
       
  4867 	unsigned int data_len, size;
       
  4868 	u32 tx_flags = first->tx_flags;
       
  4869 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
       
  4870 	u16 i = tx_ring->next_to_use;
       
  4871 
       
  4872 	tx_desc = IGB_TX_DESC(tx_ring, i);
       
  4873 
       
  4874 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
       
  4875 
       
  4876 	size = skb_headlen(skb);
       
  4877 	data_len = skb->data_len;
       
  4878 
       
  4879 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
       
  4880 
       
  4881 	tx_buffer = first;
       
  4882 
       
  4883 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
       
  4884 		if (dma_mapping_error(tx_ring->dev, dma))
       
  4885 			goto dma_error;
       
  4886 
       
  4887 		/* record length, and DMA address */
       
  4888 		dma_unmap_len_set(tx_buffer, len, size);
       
  4889 		dma_unmap_addr_set(tx_buffer, dma, dma);
       
  4890 
       
  4891 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
       
  4892 
       
  4893 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
       
  4894 			tx_desc->read.cmd_type_len =
       
  4895 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
       
  4896 
       
  4897 			i++;
       
  4898 			tx_desc++;
       
  4899 			if (i == tx_ring->count) {
       
  4900 				tx_desc = IGB_TX_DESC(tx_ring, 0);
       
  4901 				i = 0;
       
  4902 			}
       
  4903 			tx_desc->read.olinfo_status = 0;
       
  4904 
       
  4905 			dma += IGB_MAX_DATA_PER_TXD;
       
  4906 			size -= IGB_MAX_DATA_PER_TXD;
       
  4907 
       
  4908 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
       
  4909 		}
       
  4910 
       
  4911 		if (likely(!data_len))
       
  4912 			break;
       
  4913 
       
  4914 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
       
  4915 
       
  4916 		i++;
       
  4917 		tx_desc++;
       
  4918 		if (i == tx_ring->count) {
       
  4919 			tx_desc = IGB_TX_DESC(tx_ring, 0);
       
  4920 			i = 0;
       
  4921 		}
       
  4922 		tx_desc->read.olinfo_status = 0;
       
  4923 
       
  4924 		size = skb_frag_size(frag);
       
  4925 		data_len -= size;
       
  4926 
       
  4927 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
       
  4928 				       size, DMA_TO_DEVICE);
       
  4929 
       
  4930 		tx_buffer = &tx_ring->tx_buffer_info[i];
       
  4931 	}
       
  4932 
       
  4933 	/* write last descriptor with RS and EOP bits */
       
  4934 	cmd_type |= size | IGB_TXD_DCMD;
       
  4935 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
       
  4936 
       
  4937 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
       
  4938 
       
  4939 	/* set the timestamp */
       
  4940 	first->time_stamp = jiffies;
       
  4941 
       
  4942 	/* Force memory writes to complete before letting h/w know there
       
  4943 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
       
  4944 	 * memory model archs, such as IA-64).
       
  4945 	 *
       
  4946 	 * We also need this memory barrier to make certain all of the
       
  4947 	 * status bits have been updated before next_to_watch is written.
       
  4948 	 */
       
  4949 	wmb();
       
  4950 
       
  4951 	/* set next_to_watch value indicating a packet is present */
       
  4952 	first->next_to_watch = tx_desc;
       
  4953 
       
  4954 	i++;
       
  4955 	if (i == tx_ring->count)
       
  4956 		i = 0;
       
  4957 
       
  4958 	tx_ring->next_to_use = i;
       
  4959 
       
  4960 	/* Make sure there is space in the ring for the next send. */
       
  4961 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
       
  4962 
       
  4963 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
       
  4964 		writel(i, tx_ring->tail);
       
  4965 
       
  4966 		/* we need this if more than one processor can write to our tail
       
  4967 		 * at a time, it synchronizes IO on IA64/Altix systems
       
  4968 		 */
       
  4969 		mmiowb();
       
  4970 	}
       
  4971 	return;
       
  4972 
       
  4973 dma_error:
       
  4974 	dev_err(tx_ring->dev, "TX DMA map failed\n");
       
  4975 
       
  4976 	/* clear dma mappings for failed tx_buffer_info map */
       
  4977 	for (;;) {
       
  4978 		tx_buffer = &tx_ring->tx_buffer_info[i];
       
  4979 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
       
  4980 		if (tx_buffer == first)
       
  4981 			break;
       
  4982 		if (i == 0)
       
  4983 			i = tx_ring->count;
       
  4984 		i--;
       
  4985 	}
       
  4986 
       
  4987 	tx_ring->next_to_use = i;
       
  4988 }
       
  4989 
       
  4990 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
       
  4991 				struct igb_ring *tx_ring)
       
  4992 {
       
  4993 	struct igb_tx_buffer *first;
       
  4994 	int tso;
       
  4995 	u32 tx_flags = 0;
       
  4996 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
       
  4997 	__be16 protocol = vlan_get_protocol(skb);
       
  4998 	u8 hdr_len = 0;
       
  4999 
       
  5000 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
       
  5001 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
       
  5002 	 *       + 2 desc gap to keep tail from touching head,
       
  5003 	 *       + 1 desc for context descriptor,
       
  5004 	 * otherwise try next time
       
  5005 	 */
       
  5006 	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
       
  5007 		unsigned short f;
       
  5008 
       
  5009 		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
       
  5010 			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
       
  5011 	} else {
       
  5012 		count += skb_shinfo(skb)->nr_frags;
       
  5013 	}
       
  5014 
       
  5015 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
       
  5016 		/* this is a hard error */
       
  5017 		return NETDEV_TX_BUSY;
       
  5018 	}
       
  5019 
       
  5020 	/* record the location of the first descriptor for this packet */
       
  5021 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
       
  5022 	first->skb = skb;
       
  5023 	first->bytecount = skb->len;
       
  5024 	first->gso_segs = 1;
       
  5025 
       
  5026 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
       
  5027 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
       
  5028 
       
  5029 		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
       
  5030 					   &adapter->state)) {
       
  5031 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
       
  5032 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
       
  5033 
       
  5034 			adapter->ptp_tx_skb = skb_get(skb);
       
  5035 			adapter->ptp_tx_start = jiffies;
       
  5036 			if (adapter->hw.mac.type == e1000_82576)
       
  5037 				schedule_work(&adapter->ptp_tx_work);
       
  5038 		}
       
  5039 	}
       
  5040 
       
  5041 	skb_tx_timestamp(skb);
       
  5042 
       
  5043 	if (vlan_tx_tag_present(skb)) {
       
  5044 		tx_flags |= IGB_TX_FLAGS_VLAN;
       
  5045 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
       
  5046 	}
       
  5047 
       
  5048 	/* record initial flags and protocol */
       
  5049 	first->tx_flags = tx_flags;
       
  5050 	first->protocol = protocol;
       
  5051 
       
  5052 	tso = igb_tso(tx_ring, first, &hdr_len);
       
  5053 	if (tso < 0)
       
  5054 		goto out_drop;
       
  5055 	else if (!tso)
       
  5056 		igb_tx_csum(tx_ring, first);
       
  5057 
       
  5058 	igb_tx_map(tx_ring, first, hdr_len);
       
  5059 
       
  5060 	return NETDEV_TX_OK;
       
  5061 
       
  5062 out_drop:
       
  5063 	igb_unmap_and_free_tx_resource(tx_ring, first);
       
  5064 
       
  5065 	return NETDEV_TX_OK;
       
  5066 }
       
  5067 
       
  5068 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
       
  5069 						    struct sk_buff *skb)
       
  5070 {
       
  5071 	unsigned int r_idx = skb->queue_mapping;
       
  5072 
       
  5073 	if (r_idx >= adapter->num_tx_queues)
       
  5074 		r_idx = r_idx % adapter->num_tx_queues;
       
  5075 
       
  5076 	return adapter->tx_ring[r_idx];
       
  5077 }
       
  5078 
       
  5079 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
       
  5080 				  struct net_device *netdev)
       
  5081 {
       
  5082 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  5083 
       
  5084 	if (test_bit(__IGB_DOWN, &adapter->state)) {
       
  5085 		dev_kfree_skb_any(skb);
       
  5086 		return NETDEV_TX_OK;
       
  5087 	}
       
  5088 
       
  5089 	if (skb->len <= 0) {
       
  5090 		dev_kfree_skb_any(skb);
       
  5091 		return NETDEV_TX_OK;
       
  5092 	}
       
  5093 
       
  5094 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
       
  5095 	 * in order to meet this minimum size requirement.
       
  5096 	 */
       
  5097 	if (unlikely(skb->len < 17)) {
       
  5098 		if (skb_pad(skb, 17 - skb->len))
       
  5099 			return NETDEV_TX_OK;
       
  5100 		skb->len = 17;
       
  5101 		skb_set_tail_pointer(skb, 17);
       
  5102 	}
       
  5103 
       
  5104 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
       
  5105 }
       
  5106 
       
  5107 /**
       
  5108  *  igb_tx_timeout - Respond to a Tx Hang
       
  5109  *  @netdev: network interface device structure
       
  5110  **/
       
  5111 static void igb_tx_timeout(struct net_device *netdev)
       
  5112 {
       
  5113 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  5114 	struct e1000_hw *hw = &adapter->hw;
       
  5115 
       
  5116 	/* Do the reset outside of interrupt context */
       
  5117 	adapter->tx_timeout_count++;
       
  5118 
       
  5119 	if (hw->mac.type >= e1000_82580)
       
  5120 		hw->dev_spec._82575.global_device_reset = true;
       
  5121 
       
  5122 	schedule_work(&adapter->reset_task);
       
  5123 	wr32(E1000_EICS,
       
  5124 	     (adapter->eims_enable_mask & ~adapter->eims_other));
       
  5125 }
       
  5126 
       
  5127 static void igb_reset_task(struct work_struct *work)
       
  5128 {
       
  5129 	struct igb_adapter *adapter;
       
  5130 	adapter = container_of(work, struct igb_adapter, reset_task);
       
  5131 
       
  5132 	igb_dump(adapter);
       
  5133 	netdev_err(adapter->netdev, "Reset adapter\n");
       
  5134 	igb_reinit_locked(adapter);
       
  5135 }
       
  5136 
       
  5137 /**
       
  5138  *  igb_get_stats64 - Get System Network Statistics
       
  5139  *  @netdev: network interface device structure
       
  5140  *  @stats: rtnl_link_stats64 pointer
       
  5141  **/
       
  5142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
       
  5143 						struct rtnl_link_stats64 *stats)
       
  5144 {
       
  5145 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  5146 
       
  5147 	spin_lock(&adapter->stats64_lock);
       
  5148 	igb_update_stats(adapter, &adapter->stats64);
       
  5149 	memcpy(stats, &adapter->stats64, sizeof(*stats));
       
  5150 	spin_unlock(&adapter->stats64_lock);
       
  5151 
       
  5152 	return stats;
       
  5153 }
       
  5154 
       
  5155 /**
       
  5156  *  igb_change_mtu - Change the Maximum Transfer Unit
       
  5157  *  @netdev: network interface device structure
       
  5158  *  @new_mtu: new value for maximum frame size
       
  5159  *
       
  5160  *  Returns 0 on success, negative on failure
       
  5161  **/
       
  5162 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
       
  5163 {
       
  5164 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  5165 	struct pci_dev *pdev = adapter->pdev;
       
  5166 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
       
  5167 
       
  5168 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
       
  5169 		dev_err(&pdev->dev, "Invalid MTU setting\n");
       
  5170 		return -EINVAL;
       
  5171 	}
       
  5172 
       
  5173 #define MAX_STD_JUMBO_FRAME_SIZE 9238
       
  5174 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
       
  5175 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
       
  5176 		return -EINVAL;
       
  5177 	}
       
  5178 
       
  5179 	/* adjust max frame to be at least the size of a standard frame */
       
  5180 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
       
  5181 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
       
  5182 
       
  5183 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
       
  5184 		usleep_range(1000, 2000);
       
  5185 
       
  5186 	/* igb_down has a dependency on max_frame_size */
       
  5187 	adapter->max_frame_size = max_frame;
       
  5188 
       
  5189 	if (netif_running(netdev))
       
  5190 		igb_down(adapter);
       
  5191 
       
  5192 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
       
  5193 		 netdev->mtu, new_mtu);
       
  5194 	netdev->mtu = new_mtu;
       
  5195 
       
  5196 	if (netif_running(netdev))
       
  5197 		igb_up(adapter);
       
  5198 	else
       
  5199 		igb_reset(adapter);
       
  5200 
       
  5201 	clear_bit(__IGB_RESETTING, &adapter->state);
       
  5202 
       
  5203 	return 0;
       
  5204 }
       
  5205 
       
  5206 /**
       
  5207  *  igb_update_stats - Update the board statistics counters
       
  5208  *  @adapter: board private structure
       
  5209  **/
       
  5210 void igb_update_stats(struct igb_adapter *adapter,
       
  5211 		      struct rtnl_link_stats64 *net_stats)
       
  5212 {
       
  5213 	struct e1000_hw *hw = &adapter->hw;
       
  5214 	struct pci_dev *pdev = adapter->pdev;
       
  5215 	u32 reg, mpc;
       
  5216 	int i;
       
  5217 	u64 bytes, packets;
       
  5218 	unsigned int start;
       
  5219 	u64 _bytes, _packets;
       
  5220 
       
  5221 	/* Prevent stats update while adapter is being reset, or if the pci
       
  5222 	 * connection is down.
       
  5223 	 */
       
  5224 	if (adapter->link_speed == 0)
       
  5225 		return;
       
  5226 	if (pci_channel_offline(pdev))
       
  5227 		return;
       
  5228 
       
  5229 	bytes = 0;
       
  5230 	packets = 0;
       
  5231 
       
  5232 	rcu_read_lock();
       
  5233 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  5234 		struct igb_ring *ring = adapter->rx_ring[i];
       
  5235 		u32 rqdpc = rd32(E1000_RQDPC(i));
       
  5236 		if (hw->mac.type >= e1000_i210)
       
  5237 			wr32(E1000_RQDPC(i), 0);
       
  5238 
       
  5239 		if (rqdpc) {
       
  5240 			ring->rx_stats.drops += rqdpc;
       
  5241 			net_stats->rx_fifo_errors += rqdpc;
       
  5242 		}
       
  5243 
       
  5244 		do {
       
  5245 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
       
  5246 			_bytes = ring->rx_stats.bytes;
       
  5247 			_packets = ring->rx_stats.packets;
       
  5248 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
       
  5249 		bytes += _bytes;
       
  5250 		packets += _packets;
       
  5251 	}
       
  5252 
       
  5253 	net_stats->rx_bytes = bytes;
       
  5254 	net_stats->rx_packets = packets;
       
  5255 
       
  5256 	bytes = 0;
       
  5257 	packets = 0;
       
  5258 	for (i = 0; i < adapter->num_tx_queues; i++) {
       
  5259 		struct igb_ring *ring = adapter->tx_ring[i];
       
  5260 		do {
       
  5261 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
       
  5262 			_bytes = ring->tx_stats.bytes;
       
  5263 			_packets = ring->tx_stats.packets;
       
  5264 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
       
  5265 		bytes += _bytes;
       
  5266 		packets += _packets;
       
  5267 	}
       
  5268 	net_stats->tx_bytes = bytes;
       
  5269 	net_stats->tx_packets = packets;
       
  5270 	rcu_read_unlock();
       
  5271 
       
  5272 	/* read stats registers */
       
  5273 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
       
  5274 	adapter->stats.gprc += rd32(E1000_GPRC);
       
  5275 	adapter->stats.gorc += rd32(E1000_GORCL);
       
  5276 	rd32(E1000_GORCH); /* clear GORCL */
       
  5277 	adapter->stats.bprc += rd32(E1000_BPRC);
       
  5278 	adapter->stats.mprc += rd32(E1000_MPRC);
       
  5279 	adapter->stats.roc += rd32(E1000_ROC);
       
  5280 
       
  5281 	adapter->stats.prc64 += rd32(E1000_PRC64);
       
  5282 	adapter->stats.prc127 += rd32(E1000_PRC127);
       
  5283 	adapter->stats.prc255 += rd32(E1000_PRC255);
       
  5284 	adapter->stats.prc511 += rd32(E1000_PRC511);
       
  5285 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
       
  5286 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
       
  5287 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
       
  5288 	adapter->stats.sec += rd32(E1000_SEC);
       
  5289 
       
  5290 	mpc = rd32(E1000_MPC);
       
  5291 	adapter->stats.mpc += mpc;
       
  5292 	net_stats->rx_fifo_errors += mpc;
       
  5293 	adapter->stats.scc += rd32(E1000_SCC);
       
  5294 	adapter->stats.ecol += rd32(E1000_ECOL);
       
  5295 	adapter->stats.mcc += rd32(E1000_MCC);
       
  5296 	adapter->stats.latecol += rd32(E1000_LATECOL);
       
  5297 	adapter->stats.dc += rd32(E1000_DC);
       
  5298 	adapter->stats.rlec += rd32(E1000_RLEC);
       
  5299 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
       
  5300 	adapter->stats.xontxc += rd32(E1000_XONTXC);
       
  5301 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
       
  5302 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
       
  5303 	adapter->stats.fcruc += rd32(E1000_FCRUC);
       
  5304 	adapter->stats.gptc += rd32(E1000_GPTC);
       
  5305 	adapter->stats.gotc += rd32(E1000_GOTCL);
       
  5306 	rd32(E1000_GOTCH); /* clear GOTCL */
       
  5307 	adapter->stats.rnbc += rd32(E1000_RNBC);
       
  5308 	adapter->stats.ruc += rd32(E1000_RUC);
       
  5309 	adapter->stats.rfc += rd32(E1000_RFC);
       
  5310 	adapter->stats.rjc += rd32(E1000_RJC);
       
  5311 	adapter->stats.tor += rd32(E1000_TORH);
       
  5312 	adapter->stats.tot += rd32(E1000_TOTH);
       
  5313 	adapter->stats.tpr += rd32(E1000_TPR);
       
  5314 
       
  5315 	adapter->stats.ptc64 += rd32(E1000_PTC64);
       
  5316 	adapter->stats.ptc127 += rd32(E1000_PTC127);
       
  5317 	adapter->stats.ptc255 += rd32(E1000_PTC255);
       
  5318 	adapter->stats.ptc511 += rd32(E1000_PTC511);
       
  5319 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
       
  5320 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
       
  5321 
       
  5322 	adapter->stats.mptc += rd32(E1000_MPTC);
       
  5323 	adapter->stats.bptc += rd32(E1000_BPTC);
       
  5324 
       
  5325 	adapter->stats.tpt += rd32(E1000_TPT);
       
  5326 	adapter->stats.colc += rd32(E1000_COLC);
       
  5327 
       
  5328 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
       
  5329 	/* read internal phy specific stats */
       
  5330 	reg = rd32(E1000_CTRL_EXT);
       
  5331 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
       
  5332 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
       
  5333 
       
  5334 		/* this stat has invalid values on i210/i211 */
       
  5335 		if ((hw->mac.type != e1000_i210) &&
       
  5336 		    (hw->mac.type != e1000_i211))
       
  5337 			adapter->stats.tncrs += rd32(E1000_TNCRS);
       
  5338 	}
       
  5339 
       
  5340 	adapter->stats.tsctc += rd32(E1000_TSCTC);
       
  5341 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
       
  5342 
       
  5343 	adapter->stats.iac += rd32(E1000_IAC);
       
  5344 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
       
  5345 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
       
  5346 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
       
  5347 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
       
  5348 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
       
  5349 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
       
  5350 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
       
  5351 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
       
  5352 
       
  5353 	/* Fill out the OS statistics structure */
       
  5354 	net_stats->multicast = adapter->stats.mprc;
       
  5355 	net_stats->collisions = adapter->stats.colc;
       
  5356 
       
  5357 	/* Rx Errors */
       
  5358 
       
  5359 	/* RLEC on some newer hardware can be incorrect so build
       
  5360 	 * our own version based on RUC and ROC
       
  5361 	 */
       
  5362 	net_stats->rx_errors = adapter->stats.rxerrc +
       
  5363 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  5364 		adapter->stats.ruc + adapter->stats.roc +
       
  5365 		adapter->stats.cexterr;
       
  5366 	net_stats->rx_length_errors = adapter->stats.ruc +
       
  5367 				      adapter->stats.roc;
       
  5368 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
       
  5369 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
       
  5370 	net_stats->rx_missed_errors = adapter->stats.mpc;
       
  5371 
       
  5372 	/* Tx Errors */
       
  5373 	net_stats->tx_errors = adapter->stats.ecol +
       
  5374 			       adapter->stats.latecol;
       
  5375 	net_stats->tx_aborted_errors = adapter->stats.ecol;
       
  5376 	net_stats->tx_window_errors = adapter->stats.latecol;
       
  5377 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
       
  5378 
       
  5379 	/* Tx Dropped needs to be maintained elsewhere */
       
  5380 
       
  5381 	/* Management Stats */
       
  5382 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
       
  5383 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
       
  5384 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
       
  5385 
       
  5386 	/* OS2BMC Stats */
       
  5387 	reg = rd32(E1000_MANC);
       
  5388 	if (reg & E1000_MANC_EN_BMC2OS) {
       
  5389 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
       
  5390 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
       
  5391 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
       
  5392 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
       
  5393 	}
       
  5394 }
       
  5395 
       
  5396 static irqreturn_t igb_msix_other(int irq, void *data)
       
  5397 {
       
  5398 	struct igb_adapter *adapter = data;
       
  5399 	struct e1000_hw *hw = &adapter->hw;
       
  5400 	u32 icr = rd32(E1000_ICR);
       
  5401 	/* reading ICR causes bit 31 of EICR to be cleared */
       
  5402 
       
  5403 	if (icr & E1000_ICR_DRSTA)
       
  5404 		schedule_work(&adapter->reset_task);
       
  5405 
       
  5406 	if (icr & E1000_ICR_DOUTSYNC) {
       
  5407 		/* HW is reporting DMA is out of sync */
       
  5408 		adapter->stats.doosync++;
       
  5409 		/* The DMA Out of Sync is also indication of a spoof event
       
  5410 		 * in IOV mode. Check the Wrong VM Behavior register to
       
  5411 		 * see if it is really a spoof event.
       
  5412 		 */
       
  5413 		igb_check_wvbr(adapter);
       
  5414 	}
       
  5415 
       
  5416 	/* Check for a mailbox event */
       
  5417 	if (icr & E1000_ICR_VMMB)
       
  5418 		igb_msg_task(adapter);
       
  5419 
       
  5420 	if (icr & E1000_ICR_LSC) {
       
  5421 		hw->mac.get_link_status = 1;
       
  5422 		/* guard against interrupt when we're going down */
       
  5423 		if (!test_bit(__IGB_DOWN, &adapter->state))
       
  5424 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  5425 	}
       
  5426 
       
  5427 	if (icr & E1000_ICR_TS) {
       
  5428 		u32 tsicr = rd32(E1000_TSICR);
       
  5429 
       
  5430 		if (tsicr & E1000_TSICR_TXTS) {
       
  5431 			/* acknowledge the interrupt */
       
  5432 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
       
  5433 			/* retrieve hardware timestamp */
       
  5434 			schedule_work(&adapter->ptp_tx_work);
       
  5435 		}
       
  5436 	}
       
  5437 
       
  5438 	wr32(E1000_EIMS, adapter->eims_other);
       
  5439 
       
  5440 	return IRQ_HANDLED;
       
  5441 }
       
  5442 
       
  5443 static void igb_write_itr(struct igb_q_vector *q_vector)
       
  5444 {
       
  5445 	struct igb_adapter *adapter = q_vector->adapter;
       
  5446 	u32 itr_val = q_vector->itr_val & 0x7FFC;
       
  5447 
       
  5448 	if (!q_vector->set_itr)
       
  5449 		return;
       
  5450 
       
  5451 	if (!itr_val)
       
  5452 		itr_val = 0x4;
       
  5453 
       
  5454 	if (adapter->hw.mac.type == e1000_82575)
       
  5455 		itr_val |= itr_val << 16;
       
  5456 	else
       
  5457 		itr_val |= E1000_EITR_CNT_IGNR;
       
  5458 
       
  5459 	writel(itr_val, q_vector->itr_register);
       
  5460 	q_vector->set_itr = 0;
       
  5461 }
       
  5462 
       
  5463 static irqreturn_t igb_msix_ring(int irq, void *data)
       
  5464 {
       
  5465 	struct igb_q_vector *q_vector = data;
       
  5466 
       
  5467 	/* Write the ITR value calculated from the previous interrupt. */
       
  5468 	igb_write_itr(q_vector);
       
  5469 
       
  5470 	napi_schedule(&q_vector->napi);
       
  5471 
       
  5472 	return IRQ_HANDLED;
       
  5473 }
       
  5474 
       
  5475 #ifdef CONFIG_IGB_DCA
       
  5476 static void igb_update_tx_dca(struct igb_adapter *adapter,
       
  5477 			      struct igb_ring *tx_ring,
       
  5478 			      int cpu)
       
  5479 {
       
  5480 	struct e1000_hw *hw = &adapter->hw;
       
  5481 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
       
  5482 
       
  5483 	if (hw->mac.type != e1000_82575)
       
  5484 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
       
  5485 
       
  5486 	/* We can enable relaxed ordering for reads, but not writes when
       
  5487 	 * DCA is enabled.  This is due to a known issue in some chipsets
       
  5488 	 * which will cause the DCA tag to be cleared.
       
  5489 	 */
       
  5490 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
       
  5491 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
       
  5492 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
       
  5493 
       
  5494 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
       
  5495 }
       
  5496 
       
  5497 static void igb_update_rx_dca(struct igb_adapter *adapter,
       
  5498 			      struct igb_ring *rx_ring,
       
  5499 			      int cpu)
       
  5500 {
       
  5501 	struct e1000_hw *hw = &adapter->hw;
       
  5502 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
       
  5503 
       
  5504 	if (hw->mac.type != e1000_82575)
       
  5505 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
       
  5506 
       
  5507 	/* We can enable relaxed ordering for reads, but not writes when
       
  5508 	 * DCA is enabled.  This is due to a known issue in some chipsets
       
  5509 	 * which will cause the DCA tag to be cleared.
       
  5510 	 */
       
  5511 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
       
  5512 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
       
  5513 
       
  5514 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
       
  5515 }
       
  5516 
       
  5517 static void igb_update_dca(struct igb_q_vector *q_vector)
       
  5518 {
       
  5519 	struct igb_adapter *adapter = q_vector->adapter;
       
  5520 	int cpu = get_cpu();
       
  5521 
       
  5522 	if (q_vector->cpu == cpu)
       
  5523 		goto out_no_update;
       
  5524 
       
  5525 	if (q_vector->tx.ring)
       
  5526 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
       
  5527 
       
  5528 	if (q_vector->rx.ring)
       
  5529 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
       
  5530 
       
  5531 	q_vector->cpu = cpu;
       
  5532 out_no_update:
       
  5533 	put_cpu();
       
  5534 }
       
  5535 
       
  5536 static void igb_setup_dca(struct igb_adapter *adapter)
       
  5537 {
       
  5538 	struct e1000_hw *hw = &adapter->hw;
       
  5539 	int i;
       
  5540 
       
  5541 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
       
  5542 		return;
       
  5543 
       
  5544 	/* Always use CB2 mode, difference is masked in the CB driver. */
       
  5545 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
       
  5546 
       
  5547 	for (i = 0; i < adapter->num_q_vectors; i++) {
       
  5548 		adapter->q_vector[i]->cpu = -1;
       
  5549 		igb_update_dca(adapter->q_vector[i]);
       
  5550 	}
       
  5551 }
       
  5552 
       
  5553 static int __igb_notify_dca(struct device *dev, void *data)
       
  5554 {
       
  5555 	struct net_device *netdev = dev_get_drvdata(dev);
       
  5556 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  5557 	struct pci_dev *pdev = adapter->pdev;
       
  5558 	struct e1000_hw *hw = &adapter->hw;
       
  5559 	unsigned long event = *(unsigned long *)data;
       
  5560 
       
  5561 	switch (event) {
       
  5562 	case DCA_PROVIDER_ADD:
       
  5563 		/* if already enabled, don't do it again */
       
  5564 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
       
  5565 			break;
       
  5566 		if (dca_add_requester(dev) == 0) {
       
  5567 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
       
  5568 			dev_info(&pdev->dev, "DCA enabled\n");
       
  5569 			igb_setup_dca(adapter);
       
  5570 			break;
       
  5571 		}
       
  5572 		/* Fall Through since DCA is disabled. */
       
  5573 	case DCA_PROVIDER_REMOVE:
       
  5574 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
       
  5575 			/* without this a class_device is left
       
  5576 			 * hanging around in the sysfs model
       
  5577 			 */
       
  5578 			dca_remove_requester(dev);
       
  5579 			dev_info(&pdev->dev, "DCA disabled\n");
       
  5580 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
       
  5581 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
       
  5582 		}
       
  5583 		break;
       
  5584 	}
       
  5585 
       
  5586 	return 0;
       
  5587 }
       
  5588 
       
  5589 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
       
  5590 			  void *p)
       
  5591 {
       
  5592 	int ret_val;
       
  5593 
       
  5594 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
       
  5595 					 __igb_notify_dca);
       
  5596 
       
  5597 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
       
  5598 }
       
  5599 #endif /* CONFIG_IGB_DCA */
       
  5600 
       
  5601 #ifdef CONFIG_PCI_IOV
       
  5602 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
       
  5603 {
       
  5604 	unsigned char mac_addr[ETH_ALEN];
       
  5605 
       
  5606 	eth_zero_addr(mac_addr);
       
  5607 	igb_set_vf_mac(adapter, vf, mac_addr);
       
  5608 
       
  5609 	/* By default spoof check is enabled for all VFs */
       
  5610 	adapter->vf_data[vf].spoofchk_enabled = true;
       
  5611 
       
  5612 	return 0;
       
  5613 }
       
  5614 
       
  5615 #endif
       
  5616 static void igb_ping_all_vfs(struct igb_adapter *adapter)
       
  5617 {
       
  5618 	struct e1000_hw *hw = &adapter->hw;
       
  5619 	u32 ping;
       
  5620 	int i;
       
  5621 
       
  5622 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
       
  5623 		ping = E1000_PF_CONTROL_MSG;
       
  5624 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
       
  5625 			ping |= E1000_VT_MSGTYPE_CTS;
       
  5626 		igb_write_mbx(hw, &ping, 1, i);
       
  5627 	}
       
  5628 }
       
  5629 
       
  5630 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
       
  5631 {
       
  5632 	struct e1000_hw *hw = &adapter->hw;
       
  5633 	u32 vmolr = rd32(E1000_VMOLR(vf));
       
  5634 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
       
  5635 
       
  5636 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
       
  5637 			    IGB_VF_FLAG_MULTI_PROMISC);
       
  5638 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
       
  5639 
       
  5640 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
       
  5641 		vmolr |= E1000_VMOLR_MPME;
       
  5642 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
       
  5643 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
       
  5644 	} else {
       
  5645 		/* if we have hashes and we are clearing a multicast promisc
       
  5646 		 * flag we need to write the hashes to the MTA as this step
       
  5647 		 * was previously skipped
       
  5648 		 */
       
  5649 		if (vf_data->num_vf_mc_hashes > 30) {
       
  5650 			vmolr |= E1000_VMOLR_MPME;
       
  5651 		} else if (vf_data->num_vf_mc_hashes) {
       
  5652 			int j;
       
  5653 
       
  5654 			vmolr |= E1000_VMOLR_ROMPE;
       
  5655 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
       
  5656 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
       
  5657 		}
       
  5658 	}
       
  5659 
       
  5660 	wr32(E1000_VMOLR(vf), vmolr);
       
  5661 
       
  5662 	/* there are flags left unprocessed, likely not supported */
       
  5663 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
       
  5664 		return -EINVAL;
       
  5665 
       
  5666 	return 0;
       
  5667 }
       
  5668 
       
  5669 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
       
  5670 				  u32 *msgbuf, u32 vf)
       
  5671 {
       
  5672 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
       
  5673 	u16 *hash_list = (u16 *)&msgbuf[1];
       
  5674 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
       
  5675 	int i;
       
  5676 
       
  5677 	/* salt away the number of multicast addresses assigned
       
  5678 	 * to this VF for later use to restore when the PF multi cast
       
  5679 	 * list changes
       
  5680 	 */
       
  5681 	vf_data->num_vf_mc_hashes = n;
       
  5682 
       
  5683 	/* only up to 30 hash values supported */
       
  5684 	if (n > 30)
       
  5685 		n = 30;
       
  5686 
       
  5687 	/* store the hashes for later use */
       
  5688 	for (i = 0; i < n; i++)
       
  5689 		vf_data->vf_mc_hashes[i] = hash_list[i];
       
  5690 
       
  5691 	/* Flush and reset the mta with the new values */
       
  5692 	igb_set_rx_mode(adapter->netdev);
       
  5693 
       
  5694 	return 0;
       
  5695 }
       
  5696 
       
  5697 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
       
  5698 {
       
  5699 	struct e1000_hw *hw = &adapter->hw;
       
  5700 	struct vf_data_storage *vf_data;
       
  5701 	int i, j;
       
  5702 
       
  5703 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
       
  5704 		u32 vmolr = rd32(E1000_VMOLR(i));
       
  5705 
       
  5706 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
       
  5707 
       
  5708 		vf_data = &adapter->vf_data[i];
       
  5709 
       
  5710 		if ((vf_data->num_vf_mc_hashes > 30) ||
       
  5711 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
       
  5712 			vmolr |= E1000_VMOLR_MPME;
       
  5713 		} else if (vf_data->num_vf_mc_hashes) {
       
  5714 			vmolr |= E1000_VMOLR_ROMPE;
       
  5715 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
       
  5716 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
       
  5717 		}
       
  5718 		wr32(E1000_VMOLR(i), vmolr);
       
  5719 	}
       
  5720 }
       
  5721 
       
  5722 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
       
  5723 {
       
  5724 	struct e1000_hw *hw = &adapter->hw;
       
  5725 	u32 pool_mask, reg, vid;
       
  5726 	int i;
       
  5727 
       
  5728 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
       
  5729 
       
  5730 	/* Find the vlan filter for this id */
       
  5731 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
       
  5732 		reg = rd32(E1000_VLVF(i));
       
  5733 
       
  5734 		/* remove the vf from the pool */
       
  5735 		reg &= ~pool_mask;
       
  5736 
       
  5737 		/* if pool is empty then remove entry from vfta */
       
  5738 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
       
  5739 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
       
  5740 			reg = 0;
       
  5741 			vid = reg & E1000_VLVF_VLANID_MASK;
       
  5742 			igb_vfta_set(hw, vid, false);
       
  5743 		}
       
  5744 
       
  5745 		wr32(E1000_VLVF(i), reg);
       
  5746 	}
       
  5747 
       
  5748 	adapter->vf_data[vf].vlans_enabled = 0;
       
  5749 }
       
  5750 
       
  5751 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
       
  5752 {
       
  5753 	struct e1000_hw *hw = &adapter->hw;
       
  5754 	u32 reg, i;
       
  5755 
       
  5756 	/* The vlvf table only exists on 82576 hardware and newer */
       
  5757 	if (hw->mac.type < e1000_82576)
       
  5758 		return -1;
       
  5759 
       
  5760 	/* we only need to do this if VMDq is enabled */
       
  5761 	if (!adapter->vfs_allocated_count)
       
  5762 		return -1;
       
  5763 
       
  5764 	/* Find the vlan filter for this id */
       
  5765 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
       
  5766 		reg = rd32(E1000_VLVF(i));
       
  5767 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
       
  5768 		    vid == (reg & E1000_VLVF_VLANID_MASK))
       
  5769 			break;
       
  5770 	}
       
  5771 
       
  5772 	if (add) {
       
  5773 		if (i == E1000_VLVF_ARRAY_SIZE) {
       
  5774 			/* Did not find a matching VLAN ID entry that was
       
  5775 			 * enabled.  Search for a free filter entry, i.e.
       
  5776 			 * one without the enable bit set
       
  5777 			 */
       
  5778 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
       
  5779 				reg = rd32(E1000_VLVF(i));
       
  5780 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
       
  5781 					break;
       
  5782 			}
       
  5783 		}
       
  5784 		if (i < E1000_VLVF_ARRAY_SIZE) {
       
  5785 			/* Found an enabled/available entry */
       
  5786 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
       
  5787 
       
  5788 			/* if !enabled we need to set this up in vfta */
       
  5789 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
       
  5790 				/* add VID to filter table */
       
  5791 				igb_vfta_set(hw, vid, true);
       
  5792 				reg |= E1000_VLVF_VLANID_ENABLE;
       
  5793 			}
       
  5794 			reg &= ~E1000_VLVF_VLANID_MASK;
       
  5795 			reg |= vid;
       
  5796 			wr32(E1000_VLVF(i), reg);
       
  5797 
       
  5798 			/* do not modify RLPML for PF devices */
       
  5799 			if (vf >= adapter->vfs_allocated_count)
       
  5800 				return 0;
       
  5801 
       
  5802 			if (!adapter->vf_data[vf].vlans_enabled) {
       
  5803 				u32 size;
       
  5804 
       
  5805 				reg = rd32(E1000_VMOLR(vf));
       
  5806 				size = reg & E1000_VMOLR_RLPML_MASK;
       
  5807 				size += 4;
       
  5808 				reg &= ~E1000_VMOLR_RLPML_MASK;
       
  5809 				reg |= size;
       
  5810 				wr32(E1000_VMOLR(vf), reg);
       
  5811 			}
       
  5812 
       
  5813 			adapter->vf_data[vf].vlans_enabled++;
       
  5814 		}
       
  5815 	} else {
       
  5816 		if (i < E1000_VLVF_ARRAY_SIZE) {
       
  5817 			/* remove vf from the pool */
       
  5818 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
       
  5819 			/* if pool is empty then remove entry from vfta */
       
  5820 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
       
  5821 				reg = 0;
       
  5822 				igb_vfta_set(hw, vid, false);
       
  5823 			}
       
  5824 			wr32(E1000_VLVF(i), reg);
       
  5825 
       
  5826 			/* do not modify RLPML for PF devices */
       
  5827 			if (vf >= adapter->vfs_allocated_count)
       
  5828 				return 0;
       
  5829 
       
  5830 			adapter->vf_data[vf].vlans_enabled--;
       
  5831 			if (!adapter->vf_data[vf].vlans_enabled) {
       
  5832 				u32 size;
       
  5833 
       
  5834 				reg = rd32(E1000_VMOLR(vf));
       
  5835 				size = reg & E1000_VMOLR_RLPML_MASK;
       
  5836 				size -= 4;
       
  5837 				reg &= ~E1000_VMOLR_RLPML_MASK;
       
  5838 				reg |= size;
       
  5839 				wr32(E1000_VMOLR(vf), reg);
       
  5840 			}
       
  5841 		}
       
  5842 	}
       
  5843 	return 0;
       
  5844 }
       
  5845 
       
  5846 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
       
  5847 {
       
  5848 	struct e1000_hw *hw = &adapter->hw;
       
  5849 
       
  5850 	if (vid)
       
  5851 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
       
  5852 	else
       
  5853 		wr32(E1000_VMVIR(vf), 0);
       
  5854 }
       
  5855 
       
  5856 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
       
  5857 			       int vf, u16 vlan, u8 qos)
       
  5858 {
       
  5859 	int err = 0;
       
  5860 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  5861 
       
  5862 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
       
  5863 		return -EINVAL;
       
  5864 	if (vlan || qos) {
       
  5865 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
       
  5866 		if (err)
       
  5867 			goto out;
       
  5868 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
       
  5869 		igb_set_vmolr(adapter, vf, !vlan);
       
  5870 		adapter->vf_data[vf].pf_vlan = vlan;
       
  5871 		adapter->vf_data[vf].pf_qos = qos;
       
  5872 		dev_info(&adapter->pdev->dev,
       
  5873 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
       
  5874 		if (test_bit(__IGB_DOWN, &adapter->state)) {
       
  5875 			dev_warn(&adapter->pdev->dev,
       
  5876 				 "The VF VLAN has been set, but the PF device is not up.\n");
       
  5877 			dev_warn(&adapter->pdev->dev,
       
  5878 				 "Bring the PF device up before attempting to use the VF device.\n");
       
  5879 		}
       
  5880 	} else {
       
  5881 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
       
  5882 			     false, vf);
       
  5883 		igb_set_vmvir(adapter, vlan, vf);
       
  5884 		igb_set_vmolr(adapter, vf, true);
       
  5885 		adapter->vf_data[vf].pf_vlan = 0;
       
  5886 		adapter->vf_data[vf].pf_qos = 0;
       
  5887 	}
       
  5888 out:
       
  5889 	return err;
       
  5890 }
       
  5891 
       
  5892 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
       
  5893 {
       
  5894 	struct e1000_hw *hw = &adapter->hw;
       
  5895 	int i;
       
  5896 	u32 reg;
       
  5897 
       
  5898 	/* Find the vlan filter for this id */
       
  5899 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
       
  5900 		reg = rd32(E1000_VLVF(i));
       
  5901 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
       
  5902 		    vid == (reg & E1000_VLVF_VLANID_MASK))
       
  5903 			break;
       
  5904 	}
       
  5905 
       
  5906 	if (i >= E1000_VLVF_ARRAY_SIZE)
       
  5907 		i = -1;
       
  5908 
       
  5909 	return i;
       
  5910 }
       
  5911 
       
  5912 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
       
  5913 {
       
  5914 	struct e1000_hw *hw = &adapter->hw;
       
  5915 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
       
  5916 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
       
  5917 	int err = 0;
       
  5918 
       
  5919 	/* If in promiscuous mode we need to make sure the PF also has
       
  5920 	 * the VLAN filter set.
       
  5921 	 */
       
  5922 	if (add && (adapter->netdev->flags & IFF_PROMISC))
       
  5923 		err = igb_vlvf_set(adapter, vid, add,
       
  5924 				   adapter->vfs_allocated_count);
       
  5925 	if (err)
       
  5926 		goto out;
       
  5927 
       
  5928 	err = igb_vlvf_set(adapter, vid, add, vf);
       
  5929 
       
  5930 	if (err)
       
  5931 		goto out;
       
  5932 
       
  5933 	/* Go through all the checks to see if the VLAN filter should
       
  5934 	 * be wiped completely.
       
  5935 	 */
       
  5936 	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
       
  5937 		u32 vlvf, bits;
       
  5938 		int regndx = igb_find_vlvf_entry(adapter, vid);
       
  5939 
       
  5940 		if (regndx < 0)
       
  5941 			goto out;
       
  5942 		/* See if any other pools are set for this VLAN filter
       
  5943 		 * entry other than the PF.
       
  5944 		 */
       
  5945 		vlvf = bits = rd32(E1000_VLVF(regndx));
       
  5946 		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
       
  5947 			      adapter->vfs_allocated_count);
       
  5948 		/* If the filter was removed then ensure PF pool bit
       
  5949 		 * is cleared if the PF only added itself to the pool
       
  5950 		 * because the PF is in promiscuous mode.
       
  5951 		 */
       
  5952 		if ((vlvf & VLAN_VID_MASK) == vid &&
       
  5953 		    !test_bit(vid, adapter->active_vlans) &&
       
  5954 		    !bits)
       
  5955 			igb_vlvf_set(adapter, vid, add,
       
  5956 				     adapter->vfs_allocated_count);
       
  5957 	}
       
  5958 
       
  5959 out:
       
  5960 	return err;
       
  5961 }
       
  5962 
       
  5963 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
       
  5964 {
       
  5965 	/* clear flags - except flag that indicates PF has set the MAC */
       
  5966 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
       
  5967 	adapter->vf_data[vf].last_nack = jiffies;
       
  5968 
       
  5969 	/* reset offloads to defaults */
       
  5970 	igb_set_vmolr(adapter, vf, true);
       
  5971 
       
  5972 	/* reset vlans for device */
       
  5973 	igb_clear_vf_vfta(adapter, vf);
       
  5974 	if (adapter->vf_data[vf].pf_vlan)
       
  5975 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
       
  5976 				    adapter->vf_data[vf].pf_vlan,
       
  5977 				    adapter->vf_data[vf].pf_qos);
       
  5978 	else
       
  5979 		igb_clear_vf_vfta(adapter, vf);
       
  5980 
       
  5981 	/* reset multicast table array for vf */
       
  5982 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
       
  5983 
       
  5984 	/* Flush and reset the mta with the new values */
       
  5985 	igb_set_rx_mode(adapter->netdev);
       
  5986 }
       
  5987 
       
  5988 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
       
  5989 {
       
  5990 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
       
  5991 
       
  5992 	/* clear mac address as we were hotplug removed/added */
       
  5993 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
       
  5994 		eth_zero_addr(vf_mac);
       
  5995 
       
  5996 	/* process remaining reset events */
       
  5997 	igb_vf_reset(adapter, vf);
       
  5998 }
       
  5999 
       
  6000 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
       
  6001 {
       
  6002 	struct e1000_hw *hw = &adapter->hw;
       
  6003 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
       
  6004 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
       
  6005 	u32 reg, msgbuf[3];
       
  6006 	u8 *addr = (u8 *)(&msgbuf[1]);
       
  6007 
       
  6008 	/* process all the same items cleared in a function level reset */
       
  6009 	igb_vf_reset(adapter, vf);
       
  6010 
       
  6011 	/* set vf mac address */
       
  6012 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
       
  6013 
       
  6014 	/* enable transmit and receive for vf */
       
  6015 	reg = rd32(E1000_VFTE);
       
  6016 	wr32(E1000_VFTE, reg | (1 << vf));
       
  6017 	reg = rd32(E1000_VFRE);
       
  6018 	wr32(E1000_VFRE, reg | (1 << vf));
       
  6019 
       
  6020 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
       
  6021 
       
  6022 	/* reply to reset with ack and vf mac address */
       
  6023 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
       
  6024 	memcpy(addr, vf_mac, ETH_ALEN);
       
  6025 	igb_write_mbx(hw, msgbuf, 3, vf);
       
  6026 }
       
  6027 
       
  6028 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
       
  6029 {
       
  6030 	/* The VF MAC Address is stored in a packed array of bytes
       
  6031 	 * starting at the second 32 bit word of the msg array
       
  6032 	 */
       
  6033 	unsigned char *addr = (char *)&msg[1];
       
  6034 	int err = -1;
       
  6035 
       
  6036 	if (is_valid_ether_addr(addr))
       
  6037 		err = igb_set_vf_mac(adapter, vf, addr);
       
  6038 
       
  6039 	return err;
       
  6040 }
       
  6041 
       
  6042 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
       
  6043 {
       
  6044 	struct e1000_hw *hw = &adapter->hw;
       
  6045 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
       
  6046 	u32 msg = E1000_VT_MSGTYPE_NACK;
       
  6047 
       
  6048 	/* if device isn't clear to send it shouldn't be reading either */
       
  6049 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
       
  6050 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
       
  6051 		igb_write_mbx(hw, &msg, 1, vf);
       
  6052 		vf_data->last_nack = jiffies;
       
  6053 	}
       
  6054 }
       
  6055 
       
  6056 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
       
  6057 {
       
  6058 	struct pci_dev *pdev = adapter->pdev;
       
  6059 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
       
  6060 	struct e1000_hw *hw = &adapter->hw;
       
  6061 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
       
  6062 	s32 retval;
       
  6063 
       
  6064 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
       
  6065 
       
  6066 	if (retval) {
       
  6067 		/* if receive failed revoke VF CTS stats and restart init */
       
  6068 		dev_err(&pdev->dev, "Error receiving message from VF\n");
       
  6069 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
       
  6070 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
       
  6071 			return;
       
  6072 		goto out;
       
  6073 	}
       
  6074 
       
  6075 	/* this is a message we already processed, do nothing */
       
  6076 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
       
  6077 		return;
       
  6078 
       
  6079 	/* until the vf completes a reset it should not be
       
  6080 	 * allowed to start any configuration.
       
  6081 	 */
       
  6082 	if (msgbuf[0] == E1000_VF_RESET) {
       
  6083 		igb_vf_reset_msg(adapter, vf);
       
  6084 		return;
       
  6085 	}
       
  6086 
       
  6087 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
       
  6088 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
       
  6089 			return;
       
  6090 		retval = -1;
       
  6091 		goto out;
       
  6092 	}
       
  6093 
       
  6094 	switch ((msgbuf[0] & 0xFFFF)) {
       
  6095 	case E1000_VF_SET_MAC_ADDR:
       
  6096 		retval = -EINVAL;
       
  6097 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
       
  6098 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
       
  6099 		else
       
  6100 			dev_warn(&pdev->dev,
       
  6101 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
       
  6102 				 vf);
       
  6103 		break;
       
  6104 	case E1000_VF_SET_PROMISC:
       
  6105 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
       
  6106 		break;
       
  6107 	case E1000_VF_SET_MULTICAST:
       
  6108 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
       
  6109 		break;
       
  6110 	case E1000_VF_SET_LPE:
       
  6111 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
       
  6112 		break;
       
  6113 	case E1000_VF_SET_VLAN:
       
  6114 		retval = -1;
       
  6115 		if (vf_data->pf_vlan)
       
  6116 			dev_warn(&pdev->dev,
       
  6117 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
       
  6118 				 vf);
       
  6119 		else
       
  6120 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
       
  6121 		break;
       
  6122 	default:
       
  6123 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
       
  6124 		retval = -1;
       
  6125 		break;
       
  6126 	}
       
  6127 
       
  6128 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
       
  6129 out:
       
  6130 	/* notify the VF of the results of what it sent us */
       
  6131 	if (retval)
       
  6132 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
       
  6133 	else
       
  6134 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
       
  6135 
       
  6136 	igb_write_mbx(hw, msgbuf, 1, vf);
       
  6137 }
       
  6138 
       
  6139 static void igb_msg_task(struct igb_adapter *adapter)
       
  6140 {
       
  6141 	struct e1000_hw *hw = &adapter->hw;
       
  6142 	u32 vf;
       
  6143 
       
  6144 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
       
  6145 		/* process any reset requests */
       
  6146 		if (!igb_check_for_rst(hw, vf))
       
  6147 			igb_vf_reset_event(adapter, vf);
       
  6148 
       
  6149 		/* process any messages pending */
       
  6150 		if (!igb_check_for_msg(hw, vf))
       
  6151 			igb_rcv_msg_from_vf(adapter, vf);
       
  6152 
       
  6153 		/* process any acks */
       
  6154 		if (!igb_check_for_ack(hw, vf))
       
  6155 			igb_rcv_ack_from_vf(adapter, vf);
       
  6156 	}
       
  6157 }
       
  6158 
       
  6159 /**
       
  6160  *  igb_set_uta - Set unicast filter table address
       
  6161  *  @adapter: board private structure
       
  6162  *
       
  6163  *  The unicast table address is a register array of 32-bit registers.
       
  6164  *  The table is meant to be used in a way similar to how the MTA is used
       
  6165  *  however due to certain limitations in the hardware it is necessary to
       
  6166  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
       
  6167  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
       
  6168  **/
       
  6169 static void igb_set_uta(struct igb_adapter *adapter)
       
  6170 {
       
  6171 	struct e1000_hw *hw = &adapter->hw;
       
  6172 	int i;
       
  6173 
       
  6174 	/* The UTA table only exists on 82576 hardware and newer */
       
  6175 	if (hw->mac.type < e1000_82576)
       
  6176 		return;
       
  6177 
       
  6178 	/* we only need to do this if VMDq is enabled */
       
  6179 	if (!adapter->vfs_allocated_count)
       
  6180 		return;
       
  6181 
       
  6182 	for (i = 0; i < hw->mac.uta_reg_count; i++)
       
  6183 		array_wr32(E1000_UTA, i, ~0);
       
  6184 }
       
  6185 
       
  6186 /**
       
  6187  *  igb_intr_msi - Interrupt Handler
       
  6188  *  @irq: interrupt number
       
  6189  *  @data: pointer to a network interface device structure
       
  6190  **/
       
  6191 static irqreturn_t igb_intr_msi(int irq, void *data)
       
  6192 {
       
  6193 	struct igb_adapter *adapter = data;
       
  6194 	struct igb_q_vector *q_vector = adapter->q_vector[0];
       
  6195 	struct e1000_hw *hw = &adapter->hw;
       
  6196 	/* read ICR disables interrupts using IAM */
       
  6197 	u32 icr = rd32(E1000_ICR);
       
  6198 
       
  6199 	igb_write_itr(q_vector);
       
  6200 
       
  6201 	if (icr & E1000_ICR_DRSTA)
       
  6202 		schedule_work(&adapter->reset_task);
       
  6203 
       
  6204 	if (icr & E1000_ICR_DOUTSYNC) {
       
  6205 		/* HW is reporting DMA is out of sync */
       
  6206 		adapter->stats.doosync++;
       
  6207 	}
       
  6208 
       
  6209 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
       
  6210 		hw->mac.get_link_status = 1;
       
  6211 		if (!test_bit(__IGB_DOWN, &adapter->state))
       
  6212 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  6213 	}
       
  6214 
       
  6215 	if (icr & E1000_ICR_TS) {
       
  6216 		u32 tsicr = rd32(E1000_TSICR);
       
  6217 
       
  6218 		if (tsicr & E1000_TSICR_TXTS) {
       
  6219 			/* acknowledge the interrupt */
       
  6220 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
       
  6221 			/* retrieve hardware timestamp */
       
  6222 			schedule_work(&adapter->ptp_tx_work);
       
  6223 		}
       
  6224 	}
       
  6225 
       
  6226 	napi_schedule(&q_vector->napi);
       
  6227 
       
  6228 	return IRQ_HANDLED;
       
  6229 }
       
  6230 
       
  6231 /**
       
  6232  *  igb_intr - Legacy Interrupt Handler
       
  6233  *  @irq: interrupt number
       
  6234  *  @data: pointer to a network interface device structure
       
  6235  **/
       
  6236 static irqreturn_t igb_intr(int irq, void *data)
       
  6237 {
       
  6238 	struct igb_adapter *adapter = data;
       
  6239 	struct igb_q_vector *q_vector = adapter->q_vector[0];
       
  6240 	struct e1000_hw *hw = &adapter->hw;
       
  6241 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
       
  6242 	 * need for the IMC write
       
  6243 	 */
       
  6244 	u32 icr = rd32(E1000_ICR);
       
  6245 
       
  6246 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
       
  6247 	 * not set, then the adapter didn't send an interrupt
       
  6248 	 */
       
  6249 	if (!(icr & E1000_ICR_INT_ASSERTED))
       
  6250 		return IRQ_NONE;
       
  6251 
       
  6252 	igb_write_itr(q_vector);
       
  6253 
       
  6254 	if (icr & E1000_ICR_DRSTA)
       
  6255 		schedule_work(&adapter->reset_task);
       
  6256 
       
  6257 	if (icr & E1000_ICR_DOUTSYNC) {
       
  6258 		/* HW is reporting DMA is out of sync */
       
  6259 		adapter->stats.doosync++;
       
  6260 	}
       
  6261 
       
  6262 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
       
  6263 		hw->mac.get_link_status = 1;
       
  6264 		/* guard against interrupt when we're going down */
       
  6265 		if (!test_bit(__IGB_DOWN, &adapter->state))
       
  6266 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  6267 	}
       
  6268 
       
  6269 	if (icr & E1000_ICR_TS) {
       
  6270 		u32 tsicr = rd32(E1000_TSICR);
       
  6271 
       
  6272 		if (tsicr & E1000_TSICR_TXTS) {
       
  6273 			/* acknowledge the interrupt */
       
  6274 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
       
  6275 			/* retrieve hardware timestamp */
       
  6276 			schedule_work(&adapter->ptp_tx_work);
       
  6277 		}
       
  6278 	}
       
  6279 
       
  6280 	napi_schedule(&q_vector->napi);
       
  6281 
       
  6282 	return IRQ_HANDLED;
       
  6283 }
       
  6284 
       
  6285 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
       
  6286 {
       
  6287 	struct igb_adapter *adapter = q_vector->adapter;
       
  6288 	struct e1000_hw *hw = &adapter->hw;
       
  6289 
       
  6290 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
       
  6291 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
       
  6292 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
       
  6293 			igb_set_itr(q_vector);
       
  6294 		else
       
  6295 			igb_update_ring_itr(q_vector);
       
  6296 	}
       
  6297 
       
  6298 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
       
  6299 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
       
  6300 			wr32(E1000_EIMS, q_vector->eims_value);
       
  6301 		else
       
  6302 			igb_irq_enable(adapter);
       
  6303 	}
       
  6304 }
       
  6305 
       
  6306 /**
       
  6307  *  igb_poll - NAPI Rx polling callback
       
  6308  *  @napi: napi polling structure
       
  6309  *  @budget: count of how many packets we should handle
       
  6310  **/
       
  6311 static int igb_poll(struct napi_struct *napi, int budget)
       
  6312 {
       
  6313 	struct igb_q_vector *q_vector = container_of(napi,
       
  6314 						     struct igb_q_vector,
       
  6315 						     napi);
       
  6316 	bool clean_complete = true;
       
  6317 
       
  6318 #ifdef CONFIG_IGB_DCA
       
  6319 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
       
  6320 		igb_update_dca(q_vector);
       
  6321 #endif
       
  6322 	if (q_vector->tx.ring)
       
  6323 		clean_complete = igb_clean_tx_irq(q_vector);
       
  6324 
       
  6325 	if (q_vector->rx.ring)
       
  6326 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
       
  6327 
       
  6328 	/* If all work not completed, return budget and keep polling */
       
  6329 	if (!clean_complete)
       
  6330 		return budget;
       
  6331 
       
  6332 	/* If not enough Rx work done, exit the polling mode */
       
  6333 	napi_complete(napi);
       
  6334 	igb_ring_irq_enable(q_vector);
       
  6335 
       
  6336 	return 0;
       
  6337 }
       
  6338 
       
  6339 /**
       
  6340  *  igb_clean_tx_irq - Reclaim resources after transmit completes
       
  6341  *  @q_vector: pointer to q_vector containing needed info
       
  6342  *
       
  6343  *  returns true if ring is completely cleaned
       
  6344  **/
       
  6345 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
       
  6346 {
       
  6347 	struct igb_adapter *adapter = q_vector->adapter;
       
  6348 	struct igb_ring *tx_ring = q_vector->tx.ring;
       
  6349 	struct igb_tx_buffer *tx_buffer;
       
  6350 	union e1000_adv_tx_desc *tx_desc;
       
  6351 	unsigned int total_bytes = 0, total_packets = 0;
       
  6352 	unsigned int budget = q_vector->tx.work_limit;
       
  6353 	unsigned int i = tx_ring->next_to_clean;
       
  6354 
       
  6355 	if (test_bit(__IGB_DOWN, &adapter->state))
       
  6356 		return true;
       
  6357 
       
  6358 	tx_buffer = &tx_ring->tx_buffer_info[i];
       
  6359 	tx_desc = IGB_TX_DESC(tx_ring, i);
       
  6360 	i -= tx_ring->count;
       
  6361 
       
  6362 	do {
       
  6363 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
       
  6364 
       
  6365 		/* if next_to_watch is not set then there is no work pending */
       
  6366 		if (!eop_desc)
       
  6367 			break;
       
  6368 
       
  6369 		/* prevent any other reads prior to eop_desc */
       
  6370 		read_barrier_depends();
       
  6371 
       
  6372 		/* if DD is not set pending work has not been completed */
       
  6373 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
       
  6374 			break;
       
  6375 
       
  6376 		/* clear next_to_watch to prevent false hangs */
       
  6377 		tx_buffer->next_to_watch = NULL;
       
  6378 
       
  6379 		/* update the statistics for this packet */
       
  6380 		total_bytes += tx_buffer->bytecount;
       
  6381 		total_packets += tx_buffer->gso_segs;
       
  6382 
       
  6383 		/* free the skb */
       
  6384 		dev_consume_skb_any(tx_buffer->skb);
       
  6385 
       
  6386 		/* unmap skb header data */
       
  6387 		dma_unmap_single(tx_ring->dev,
       
  6388 				 dma_unmap_addr(tx_buffer, dma),
       
  6389 				 dma_unmap_len(tx_buffer, len),
       
  6390 				 DMA_TO_DEVICE);
       
  6391 
       
  6392 		/* clear tx_buffer data */
       
  6393 		tx_buffer->skb = NULL;
       
  6394 		dma_unmap_len_set(tx_buffer, len, 0);
       
  6395 
       
  6396 		/* clear last DMA location and unmap remaining buffers */
       
  6397 		while (tx_desc != eop_desc) {
       
  6398 			tx_buffer++;
       
  6399 			tx_desc++;
       
  6400 			i++;
       
  6401 			if (unlikely(!i)) {
       
  6402 				i -= tx_ring->count;
       
  6403 				tx_buffer = tx_ring->tx_buffer_info;
       
  6404 				tx_desc = IGB_TX_DESC(tx_ring, 0);
       
  6405 			}
       
  6406 
       
  6407 			/* unmap any remaining paged data */
       
  6408 			if (dma_unmap_len(tx_buffer, len)) {
       
  6409 				dma_unmap_page(tx_ring->dev,
       
  6410 					       dma_unmap_addr(tx_buffer, dma),
       
  6411 					       dma_unmap_len(tx_buffer, len),
       
  6412 					       DMA_TO_DEVICE);
       
  6413 				dma_unmap_len_set(tx_buffer, len, 0);
       
  6414 			}
       
  6415 		}
       
  6416 
       
  6417 		/* move us one more past the eop_desc for start of next pkt */
       
  6418 		tx_buffer++;
       
  6419 		tx_desc++;
       
  6420 		i++;
       
  6421 		if (unlikely(!i)) {
       
  6422 			i -= tx_ring->count;
       
  6423 			tx_buffer = tx_ring->tx_buffer_info;
       
  6424 			tx_desc = IGB_TX_DESC(tx_ring, 0);
       
  6425 		}
       
  6426 
       
  6427 		/* issue prefetch for next Tx descriptor */
       
  6428 		prefetch(tx_desc);
       
  6429 
       
  6430 		/* update budget accounting */
       
  6431 		budget--;
       
  6432 	} while (likely(budget));
       
  6433 
       
  6434 	netdev_tx_completed_queue(txring_txq(tx_ring),
       
  6435 				  total_packets, total_bytes);
       
  6436 	i += tx_ring->count;
       
  6437 	tx_ring->next_to_clean = i;
       
  6438 	u64_stats_update_begin(&tx_ring->tx_syncp);
       
  6439 	tx_ring->tx_stats.bytes += total_bytes;
       
  6440 	tx_ring->tx_stats.packets += total_packets;
       
  6441 	u64_stats_update_end(&tx_ring->tx_syncp);
       
  6442 	q_vector->tx.total_bytes += total_bytes;
       
  6443 	q_vector->tx.total_packets += total_packets;
       
  6444 
       
  6445 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
       
  6446 		struct e1000_hw *hw = &adapter->hw;
       
  6447 
       
  6448 		/* Detect a transmit hang in hardware, this serializes the
       
  6449 		 * check with the clearing of time_stamp and movement of i
       
  6450 		 */
       
  6451 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
       
  6452 		if (tx_buffer->next_to_watch &&
       
  6453 		    time_after(jiffies, tx_buffer->time_stamp +
       
  6454 			       (adapter->tx_timeout_factor * HZ)) &&
       
  6455 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
       
  6456 
       
  6457 			/* detected Tx unit hang */
       
  6458 			dev_err(tx_ring->dev,
       
  6459 				"Detected Tx Unit Hang\n"
       
  6460 				"  Tx Queue             <%d>\n"
       
  6461 				"  TDH                  <%x>\n"
       
  6462 				"  TDT                  <%x>\n"
       
  6463 				"  next_to_use          <%x>\n"
       
  6464 				"  next_to_clean        <%x>\n"
       
  6465 				"buffer_info[next_to_clean]\n"
       
  6466 				"  time_stamp           <%lx>\n"
       
  6467 				"  next_to_watch        <%p>\n"
       
  6468 				"  jiffies              <%lx>\n"
       
  6469 				"  desc.status          <%x>\n",
       
  6470 				tx_ring->queue_index,
       
  6471 				rd32(E1000_TDH(tx_ring->reg_idx)),
       
  6472 				readl(tx_ring->tail),
       
  6473 				tx_ring->next_to_use,
       
  6474 				tx_ring->next_to_clean,
       
  6475 				tx_buffer->time_stamp,
       
  6476 				tx_buffer->next_to_watch,
       
  6477 				jiffies,
       
  6478 				tx_buffer->next_to_watch->wb.status);
       
  6479 			netif_stop_subqueue(tx_ring->netdev,
       
  6480 					    tx_ring->queue_index);
       
  6481 
       
  6482 			/* we are about to reset, no point in enabling stuff */
       
  6483 			return true;
       
  6484 		}
       
  6485 	}
       
  6486 
       
  6487 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
       
  6488 	if (unlikely(total_packets &&
       
  6489 	    netif_carrier_ok(tx_ring->netdev) &&
       
  6490 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
       
  6491 		/* Make sure that anybody stopping the queue after this
       
  6492 		 * sees the new next_to_clean.
       
  6493 		 */
       
  6494 		smp_mb();
       
  6495 		if (__netif_subqueue_stopped(tx_ring->netdev,
       
  6496 					     tx_ring->queue_index) &&
       
  6497 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
       
  6498 			netif_wake_subqueue(tx_ring->netdev,
       
  6499 					    tx_ring->queue_index);
       
  6500 
       
  6501 			u64_stats_update_begin(&tx_ring->tx_syncp);
       
  6502 			tx_ring->tx_stats.restart_queue++;
       
  6503 			u64_stats_update_end(&tx_ring->tx_syncp);
       
  6504 		}
       
  6505 	}
       
  6506 
       
  6507 	return !!budget;
       
  6508 }
       
  6509 
       
  6510 /**
       
  6511  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
       
  6512  *  @rx_ring: rx descriptor ring to store buffers on
       
  6513  *  @old_buff: donor buffer to have page reused
       
  6514  *
       
  6515  *  Synchronizes page for reuse by the adapter
       
  6516  **/
       
  6517 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
       
  6518 			      struct igb_rx_buffer *old_buff)
       
  6519 {
       
  6520 	struct igb_rx_buffer *new_buff;
       
  6521 	u16 nta = rx_ring->next_to_alloc;
       
  6522 
       
  6523 	new_buff = &rx_ring->rx_buffer_info[nta];
       
  6524 
       
  6525 	/* update, and store next to alloc */
       
  6526 	nta++;
       
  6527 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
       
  6528 
       
  6529 	/* transfer page from old buffer to new buffer */
       
  6530 	*new_buff = *old_buff;
       
  6531 
       
  6532 	/* sync the buffer for use by the device */
       
  6533 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
       
  6534 					 old_buff->page_offset,
       
  6535 					 IGB_RX_BUFSZ,
       
  6536 					 DMA_FROM_DEVICE);
       
  6537 }
       
  6538 
       
  6539 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
       
  6540 				  struct page *page,
       
  6541 				  unsigned int truesize)
       
  6542 {
       
  6543 	/* avoid re-using remote pages */
       
  6544 	if (unlikely(page_to_nid(page) != numa_node_id()))
       
  6545 		return false;
       
  6546 
       
  6547 	if (unlikely(page->pfmemalloc))
       
  6548 		return false;
       
  6549 
       
  6550 #if (PAGE_SIZE < 8192)
       
  6551 	/* if we are only owner of page we can reuse it */
       
  6552 	if (unlikely(page_count(page) != 1))
       
  6553 		return false;
       
  6554 
       
  6555 	/* flip page offset to other buffer */
       
  6556 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
       
  6557 
       
  6558 	/* Even if we own the page, we are not allowed to use atomic_set()
       
  6559 	 * This would break get_page_unless_zero() users.
       
  6560 	 */
       
  6561 	atomic_inc(&page->_count);
       
  6562 #else
       
  6563 	/* move offset up to the next cache line */
       
  6564 	rx_buffer->page_offset += truesize;
       
  6565 
       
  6566 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
       
  6567 		return false;
       
  6568 
       
  6569 	/* bump ref count on page before it is given to the stack */
       
  6570 	get_page(page);
       
  6571 #endif
       
  6572 
       
  6573 	return true;
       
  6574 }
       
  6575 
       
  6576 /**
       
  6577  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
       
  6578  *  @rx_ring: rx descriptor ring to transact packets on
       
  6579  *  @rx_buffer: buffer containing page to add
       
  6580  *  @rx_desc: descriptor containing length of buffer written by hardware
       
  6581  *  @skb: sk_buff to place the data into
       
  6582  *
       
  6583  *  This function will add the data contained in rx_buffer->page to the skb.
       
  6584  *  This is done either through a direct copy if the data in the buffer is
       
  6585  *  less than the skb header size, otherwise it will just attach the page as
       
  6586  *  a frag to the skb.
       
  6587  *
       
  6588  *  The function will then update the page offset if necessary and return
       
  6589  *  true if the buffer can be reused by the adapter.
       
  6590  **/
       
  6591 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
       
  6592 			    struct igb_rx_buffer *rx_buffer,
       
  6593 			    union e1000_adv_rx_desc *rx_desc,
       
  6594 			    struct sk_buff *skb)
       
  6595 {
       
  6596 	struct page *page = rx_buffer->page;
       
  6597 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
       
  6598 #if (PAGE_SIZE < 8192)
       
  6599 	unsigned int truesize = IGB_RX_BUFSZ;
       
  6600 #else
       
  6601 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
       
  6602 #endif
       
  6603 
       
  6604 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
       
  6605 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
       
  6606 
       
  6607 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
       
  6608 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
       
  6609 			va += IGB_TS_HDR_LEN;
       
  6610 			size -= IGB_TS_HDR_LEN;
       
  6611 		}
       
  6612 
       
  6613 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
       
  6614 
       
  6615 		/* we can reuse buffer as-is, just make sure it is local */
       
  6616 		if (likely((page_to_nid(page) == numa_node_id()) &&
       
  6617 			   !page->pfmemalloc))
       
  6618 			return true;
       
  6619 
       
  6620 		/* this page cannot be reused so discard it */
       
  6621 		put_page(page);
       
  6622 		return false;
       
  6623 	}
       
  6624 
       
  6625 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
       
  6626 			rx_buffer->page_offset, size, truesize);
       
  6627 
       
  6628 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
       
  6629 }
       
  6630 
       
  6631 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
       
  6632 					   union e1000_adv_rx_desc *rx_desc,
       
  6633 					   struct sk_buff *skb)
       
  6634 {
       
  6635 	struct igb_rx_buffer *rx_buffer;
       
  6636 	struct page *page;
       
  6637 
       
  6638 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
       
  6639 
       
  6640 	page = rx_buffer->page;
       
  6641 	prefetchw(page);
       
  6642 
       
  6643 	if (likely(!skb)) {
       
  6644 		void *page_addr = page_address(page) +
       
  6645 				  rx_buffer->page_offset;
       
  6646 
       
  6647 		/* prefetch first cache line of first page */
       
  6648 		prefetch(page_addr);
       
  6649 #if L1_CACHE_BYTES < 128
       
  6650 		prefetch(page_addr + L1_CACHE_BYTES);
       
  6651 #endif
       
  6652 
       
  6653 		/* allocate a skb to store the frags */
       
  6654 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
       
  6655 						IGB_RX_HDR_LEN);
       
  6656 		if (unlikely(!skb)) {
       
  6657 			rx_ring->rx_stats.alloc_failed++;
       
  6658 			return NULL;
       
  6659 		}
       
  6660 
       
  6661 		/* we will be copying header into skb->data in
       
  6662 		 * pskb_may_pull so it is in our interest to prefetch
       
  6663 		 * it now to avoid a possible cache miss
       
  6664 		 */
       
  6665 		prefetchw(skb->data);
       
  6666 	}
       
  6667 
       
  6668 	/* we are reusing so sync this buffer for CPU use */
       
  6669 	dma_sync_single_range_for_cpu(rx_ring->dev,
       
  6670 				      rx_buffer->dma,
       
  6671 				      rx_buffer->page_offset,
       
  6672 				      IGB_RX_BUFSZ,
       
  6673 				      DMA_FROM_DEVICE);
       
  6674 
       
  6675 	/* pull page into skb */
       
  6676 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
       
  6677 		/* hand second half of page back to the ring */
       
  6678 		igb_reuse_rx_page(rx_ring, rx_buffer);
       
  6679 	} else {
       
  6680 		/* we are not reusing the buffer so unmap it */
       
  6681 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
       
  6682 			       PAGE_SIZE, DMA_FROM_DEVICE);
       
  6683 	}
       
  6684 
       
  6685 	/* clear contents of rx_buffer */
       
  6686 	rx_buffer->page = NULL;
       
  6687 
       
  6688 	return skb;
       
  6689 }
       
  6690 
       
  6691 static inline void igb_rx_checksum(struct igb_ring *ring,
       
  6692 				   union e1000_adv_rx_desc *rx_desc,
       
  6693 				   struct sk_buff *skb)
       
  6694 {
       
  6695 	skb_checksum_none_assert(skb);
       
  6696 
       
  6697 	/* Ignore Checksum bit is set */
       
  6698 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
       
  6699 		return;
       
  6700 
       
  6701 	/* Rx checksum disabled via ethtool */
       
  6702 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
       
  6703 		return;
       
  6704 
       
  6705 	/* TCP/UDP checksum error bit is set */
       
  6706 	if (igb_test_staterr(rx_desc,
       
  6707 			     E1000_RXDEXT_STATERR_TCPE |
       
  6708 			     E1000_RXDEXT_STATERR_IPE)) {
       
  6709 		/* work around errata with sctp packets where the TCPE aka
       
  6710 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
       
  6711 		 * packets, (aka let the stack check the crc32c)
       
  6712 		 */
       
  6713 		if (!((skb->len == 60) &&
       
  6714 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
       
  6715 			u64_stats_update_begin(&ring->rx_syncp);
       
  6716 			ring->rx_stats.csum_err++;
       
  6717 			u64_stats_update_end(&ring->rx_syncp);
       
  6718 		}
       
  6719 		/* let the stack verify checksum errors */
       
  6720 		return;
       
  6721 	}
       
  6722 	/* It must be a TCP or UDP packet with a valid checksum */
       
  6723 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
       
  6724 				      E1000_RXD_STAT_UDPCS))
       
  6725 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
  6726 
       
  6727 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
       
  6728 		le32_to_cpu(rx_desc->wb.upper.status_error));
       
  6729 }
       
  6730 
       
  6731 static inline void igb_rx_hash(struct igb_ring *ring,
       
  6732 			       union e1000_adv_rx_desc *rx_desc,
       
  6733 			       struct sk_buff *skb)
       
  6734 {
       
  6735 	if (ring->netdev->features & NETIF_F_RXHASH)
       
  6736 		skb_set_hash(skb,
       
  6737 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
       
  6738 			     PKT_HASH_TYPE_L3);
       
  6739 }
       
  6740 
       
  6741 /**
       
  6742  *  igb_is_non_eop - process handling of non-EOP buffers
       
  6743  *  @rx_ring: Rx ring being processed
       
  6744  *  @rx_desc: Rx descriptor for current buffer
       
  6745  *  @skb: current socket buffer containing buffer in progress
       
  6746  *
       
  6747  *  This function updates next to clean.  If the buffer is an EOP buffer
       
  6748  *  this function exits returning false, otherwise it will place the
       
  6749  *  sk_buff in the next buffer to be chained and return true indicating
       
  6750  *  that this is in fact a non-EOP buffer.
       
  6751  **/
       
  6752 static bool igb_is_non_eop(struct igb_ring *rx_ring,
       
  6753 			   union e1000_adv_rx_desc *rx_desc)
       
  6754 {
       
  6755 	u32 ntc = rx_ring->next_to_clean + 1;
       
  6756 
       
  6757 	/* fetch, update, and store next to clean */
       
  6758 	ntc = (ntc < rx_ring->count) ? ntc : 0;
       
  6759 	rx_ring->next_to_clean = ntc;
       
  6760 
       
  6761 	prefetch(IGB_RX_DESC(rx_ring, ntc));
       
  6762 
       
  6763 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
       
  6764 		return false;
       
  6765 
       
  6766 	return true;
       
  6767 }
       
  6768 
       
  6769 /**
       
  6770  *  igb_pull_tail - igb specific version of skb_pull_tail
       
  6771  *  @rx_ring: rx descriptor ring packet is being transacted on
       
  6772  *  @rx_desc: pointer to the EOP Rx descriptor
       
  6773  *  @skb: pointer to current skb being adjusted
       
  6774  *
       
  6775  *  This function is an igb specific version of __pskb_pull_tail.  The
       
  6776  *  main difference between this version and the original function is that
       
  6777  *  this function can make several assumptions about the state of things
       
  6778  *  that allow for significant optimizations versus the standard function.
       
  6779  *  As a result we can do things like drop a frag and maintain an accurate
       
  6780  *  truesize for the skb.
       
  6781  */
       
  6782 static void igb_pull_tail(struct igb_ring *rx_ring,
       
  6783 			  union e1000_adv_rx_desc *rx_desc,
       
  6784 			  struct sk_buff *skb)
       
  6785 {
       
  6786 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
       
  6787 	unsigned char *va;
       
  6788 	unsigned int pull_len;
       
  6789 
       
  6790 	/* it is valid to use page_address instead of kmap since we are
       
  6791 	 * working with pages allocated out of the lomem pool per
       
  6792 	 * alloc_page(GFP_ATOMIC)
       
  6793 	 */
       
  6794 	va = skb_frag_address(frag);
       
  6795 
       
  6796 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
       
  6797 		/* retrieve timestamp from buffer */
       
  6798 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
       
  6799 
       
  6800 		/* update pointers to remove timestamp header */
       
  6801 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
       
  6802 		frag->page_offset += IGB_TS_HDR_LEN;
       
  6803 		skb->data_len -= IGB_TS_HDR_LEN;
       
  6804 		skb->len -= IGB_TS_HDR_LEN;
       
  6805 
       
  6806 		/* move va to start of packet data */
       
  6807 		va += IGB_TS_HDR_LEN;
       
  6808 	}
       
  6809 
       
  6810 	/* we need the header to contain the greater of either ETH_HLEN or
       
  6811 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
       
  6812 	 */
       
  6813 	pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
       
  6814 
       
  6815 	/* align pull length to size of long to optimize memcpy performance */
       
  6816 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
       
  6817 
       
  6818 	/* update all of the pointers */
       
  6819 	skb_frag_size_sub(frag, pull_len);
       
  6820 	frag->page_offset += pull_len;
       
  6821 	skb->data_len -= pull_len;
       
  6822 	skb->tail += pull_len;
       
  6823 }
       
  6824 
       
  6825 /**
       
  6826  *  igb_cleanup_headers - Correct corrupted or empty headers
       
  6827  *  @rx_ring: rx descriptor ring packet is being transacted on
       
  6828  *  @rx_desc: pointer to the EOP Rx descriptor
       
  6829  *  @skb: pointer to current skb being fixed
       
  6830  *
       
  6831  *  Address the case where we are pulling data in on pages only
       
  6832  *  and as such no data is present in the skb header.
       
  6833  *
       
  6834  *  In addition if skb is not at least 60 bytes we need to pad it so that
       
  6835  *  it is large enough to qualify as a valid Ethernet frame.
       
  6836  *
       
  6837  *  Returns true if an error was encountered and skb was freed.
       
  6838  **/
       
  6839 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
       
  6840 				union e1000_adv_rx_desc *rx_desc,
       
  6841 				struct sk_buff *skb)
       
  6842 {
       
  6843 	if (unlikely((igb_test_staterr(rx_desc,
       
  6844 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
       
  6845 		struct net_device *netdev = rx_ring->netdev;
       
  6846 		if (!(netdev->features & NETIF_F_RXALL)) {
       
  6847 			dev_kfree_skb_any(skb);
       
  6848 			return true;
       
  6849 		}
       
  6850 	}
       
  6851 
       
  6852 	/* place header in linear portion of buffer */
       
  6853 	if (skb_is_nonlinear(skb))
       
  6854 		igb_pull_tail(rx_ring, rx_desc, skb);
       
  6855 
       
  6856 	/* if skb_pad returns an error the skb was freed */
       
  6857 	if (unlikely(skb->len < 60)) {
       
  6858 		int pad_len = 60 - skb->len;
       
  6859 
       
  6860 		if (skb_pad(skb, pad_len))
       
  6861 			return true;
       
  6862 		__skb_put(skb, pad_len);
       
  6863 	}
       
  6864 
       
  6865 	return false;
       
  6866 }
       
  6867 
       
  6868 /**
       
  6869  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
       
  6870  *  @rx_ring: rx descriptor ring packet is being transacted on
       
  6871  *  @rx_desc: pointer to the EOP Rx descriptor
       
  6872  *  @skb: pointer to current skb being populated
       
  6873  *
       
  6874  *  This function checks the ring, descriptor, and packet information in
       
  6875  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
       
  6876  *  other fields within the skb.
       
  6877  **/
       
  6878 static void igb_process_skb_fields(struct igb_ring *rx_ring,
       
  6879 				   union e1000_adv_rx_desc *rx_desc,
       
  6880 				   struct sk_buff *skb)
       
  6881 {
       
  6882 	struct net_device *dev = rx_ring->netdev;
       
  6883 
       
  6884 	igb_rx_hash(rx_ring, rx_desc, skb);
       
  6885 
       
  6886 	igb_rx_checksum(rx_ring, rx_desc, skb);
       
  6887 
       
  6888 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
       
  6889 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
       
  6890 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
       
  6891 
       
  6892 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
       
  6893 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
       
  6894 		u16 vid;
       
  6895 
       
  6896 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
       
  6897 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
       
  6898 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
       
  6899 		else
       
  6900 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
       
  6901 
       
  6902 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
       
  6903 	}
       
  6904 
       
  6905 	skb_record_rx_queue(skb, rx_ring->queue_index);
       
  6906 
       
  6907 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
       
  6908 }
       
  6909 
       
  6910 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
       
  6911 {
       
  6912 	struct igb_ring *rx_ring = q_vector->rx.ring;
       
  6913 	struct sk_buff *skb = rx_ring->skb;
       
  6914 	unsigned int total_bytes = 0, total_packets = 0;
       
  6915 	u16 cleaned_count = igb_desc_unused(rx_ring);
       
  6916 
       
  6917 	while (likely(total_packets < budget)) {
       
  6918 		union e1000_adv_rx_desc *rx_desc;
       
  6919 
       
  6920 		/* return some buffers to hardware, one at a time is too slow */
       
  6921 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
       
  6922 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
       
  6923 			cleaned_count = 0;
       
  6924 		}
       
  6925 
       
  6926 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
       
  6927 
       
  6928 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
       
  6929 			break;
       
  6930 
       
  6931 		/* This memory barrier is needed to keep us from reading
       
  6932 		 * any other fields out of the rx_desc until we know the
       
  6933 		 * RXD_STAT_DD bit is set
       
  6934 		 */
       
  6935 		rmb();
       
  6936 
       
  6937 		/* retrieve a buffer from the ring */
       
  6938 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
       
  6939 
       
  6940 		/* exit if we failed to retrieve a buffer */
       
  6941 		if (!skb)
       
  6942 			break;
       
  6943 
       
  6944 		cleaned_count++;
       
  6945 
       
  6946 		/* fetch next buffer in frame if non-eop */
       
  6947 		if (igb_is_non_eop(rx_ring, rx_desc))
       
  6948 			continue;
       
  6949 
       
  6950 		/* verify the packet layout is correct */
       
  6951 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
       
  6952 			skb = NULL;
       
  6953 			continue;
       
  6954 		}
       
  6955 
       
  6956 		/* probably a little skewed due to removing CRC */
       
  6957 		total_bytes += skb->len;
       
  6958 
       
  6959 		/* populate checksum, timestamp, VLAN, and protocol */
       
  6960 		igb_process_skb_fields(rx_ring, rx_desc, skb);
       
  6961 
       
  6962 		napi_gro_receive(&q_vector->napi, skb);
       
  6963 
       
  6964 		/* reset skb pointer */
       
  6965 		skb = NULL;
       
  6966 
       
  6967 		/* update budget accounting */
       
  6968 		total_packets++;
       
  6969 	}
       
  6970 
       
  6971 	/* place incomplete frames back on ring for completion */
       
  6972 	rx_ring->skb = skb;
       
  6973 
       
  6974 	u64_stats_update_begin(&rx_ring->rx_syncp);
       
  6975 	rx_ring->rx_stats.packets += total_packets;
       
  6976 	rx_ring->rx_stats.bytes += total_bytes;
       
  6977 	u64_stats_update_end(&rx_ring->rx_syncp);
       
  6978 	q_vector->rx.total_packets += total_packets;
       
  6979 	q_vector->rx.total_bytes += total_bytes;
       
  6980 
       
  6981 	if (cleaned_count)
       
  6982 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
       
  6983 
       
  6984 	return total_packets < budget;
       
  6985 }
       
  6986 
       
  6987 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
       
  6988 				  struct igb_rx_buffer *bi)
       
  6989 {
       
  6990 	struct page *page = bi->page;
       
  6991 	dma_addr_t dma;
       
  6992 
       
  6993 	/* since we are recycling buffers we should seldom need to alloc */
       
  6994 	if (likely(page))
       
  6995 		return true;
       
  6996 
       
  6997 	/* alloc new page for storage */
       
  6998 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
       
  6999 	if (unlikely(!page)) {
       
  7000 		rx_ring->rx_stats.alloc_failed++;
       
  7001 		return false;
       
  7002 	}
       
  7003 
       
  7004 	/* map page for use */
       
  7005 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
       
  7006 
       
  7007 	/* if mapping failed free memory back to system since
       
  7008 	 * there isn't much point in holding memory we can't use
       
  7009 	 */
       
  7010 	if (dma_mapping_error(rx_ring->dev, dma)) {
       
  7011 		__free_page(page);
       
  7012 
       
  7013 		rx_ring->rx_stats.alloc_failed++;
       
  7014 		return false;
       
  7015 	}
       
  7016 
       
  7017 	bi->dma = dma;
       
  7018 	bi->page = page;
       
  7019 	bi->page_offset = 0;
       
  7020 
       
  7021 	return true;
       
  7022 }
       
  7023 
       
  7024 /**
       
  7025  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
       
  7026  *  @adapter: address of board private structure
       
  7027  **/
       
  7028 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
       
  7029 {
       
  7030 	union e1000_adv_rx_desc *rx_desc;
       
  7031 	struct igb_rx_buffer *bi;
       
  7032 	u16 i = rx_ring->next_to_use;
       
  7033 
       
  7034 	/* nothing to do */
       
  7035 	if (!cleaned_count)
       
  7036 		return;
       
  7037 
       
  7038 	rx_desc = IGB_RX_DESC(rx_ring, i);
       
  7039 	bi = &rx_ring->rx_buffer_info[i];
       
  7040 	i -= rx_ring->count;
       
  7041 
       
  7042 	do {
       
  7043 		if (!igb_alloc_mapped_page(rx_ring, bi))
       
  7044 			break;
       
  7045 
       
  7046 		/* Refresh the desc even if buffer_addrs didn't change
       
  7047 		 * because each write-back erases this info.
       
  7048 		 */
       
  7049 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
       
  7050 
       
  7051 		rx_desc++;
       
  7052 		bi++;
       
  7053 		i++;
       
  7054 		if (unlikely(!i)) {
       
  7055 			rx_desc = IGB_RX_DESC(rx_ring, 0);
       
  7056 			bi = rx_ring->rx_buffer_info;
       
  7057 			i -= rx_ring->count;
       
  7058 		}
       
  7059 
       
  7060 		/* clear the hdr_addr for the next_to_use descriptor */
       
  7061 		rx_desc->read.hdr_addr = 0;
       
  7062 
       
  7063 		cleaned_count--;
       
  7064 	} while (cleaned_count);
       
  7065 
       
  7066 	i += rx_ring->count;
       
  7067 
       
  7068 	if (rx_ring->next_to_use != i) {
       
  7069 		/* record the next descriptor to use */
       
  7070 		rx_ring->next_to_use = i;
       
  7071 
       
  7072 		/* update next to alloc since we have filled the ring */
       
  7073 		rx_ring->next_to_alloc = i;
       
  7074 
       
  7075 		/* Force memory writes to complete before letting h/w
       
  7076 		 * know there are new descriptors to fetch.  (Only
       
  7077 		 * applicable for weak-ordered memory model archs,
       
  7078 		 * such as IA-64).
       
  7079 		 */
       
  7080 		wmb();
       
  7081 		writel(i, rx_ring->tail);
       
  7082 	}
       
  7083 }
       
  7084 
       
  7085 /**
       
  7086  * igb_mii_ioctl -
       
  7087  * @netdev:
       
  7088  * @ifreq:
       
  7089  * @cmd:
       
  7090  **/
       
  7091 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  7092 {
       
  7093 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7094 	struct mii_ioctl_data *data = if_mii(ifr);
       
  7095 
       
  7096 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
       
  7097 		return -EOPNOTSUPP;
       
  7098 
       
  7099 	switch (cmd) {
       
  7100 	case SIOCGMIIPHY:
       
  7101 		data->phy_id = adapter->hw.phy.addr;
       
  7102 		break;
       
  7103 	case SIOCGMIIREG:
       
  7104 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
       
  7105 				     &data->val_out))
       
  7106 			return -EIO;
       
  7107 		break;
       
  7108 	case SIOCSMIIREG:
       
  7109 	default:
       
  7110 		return -EOPNOTSUPP;
       
  7111 	}
       
  7112 	return 0;
       
  7113 }
       
  7114 
       
  7115 /**
       
  7116  * igb_ioctl -
       
  7117  * @netdev:
       
  7118  * @ifreq:
       
  7119  * @cmd:
       
  7120  **/
       
  7121 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  7122 {
       
  7123 	switch (cmd) {
       
  7124 	case SIOCGMIIPHY:
       
  7125 	case SIOCGMIIREG:
       
  7126 	case SIOCSMIIREG:
       
  7127 		return igb_mii_ioctl(netdev, ifr, cmd);
       
  7128 	case SIOCGHWTSTAMP:
       
  7129 		return igb_ptp_get_ts_config(netdev, ifr);
       
  7130 	case SIOCSHWTSTAMP:
       
  7131 		return igb_ptp_set_ts_config(netdev, ifr);
       
  7132 	default:
       
  7133 		return -EOPNOTSUPP;
       
  7134 	}
       
  7135 }
       
  7136 
       
  7137 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
       
  7138 {
       
  7139 	struct igb_adapter *adapter = hw->back;
       
  7140 
       
  7141 	pci_read_config_word(adapter->pdev, reg, value);
       
  7142 }
       
  7143 
       
  7144 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
       
  7145 {
       
  7146 	struct igb_adapter *adapter = hw->back;
       
  7147 
       
  7148 	pci_write_config_word(adapter->pdev, reg, *value);
       
  7149 }
       
  7150 
       
  7151 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
       
  7152 {
       
  7153 	struct igb_adapter *adapter = hw->back;
       
  7154 
       
  7155 	if (pcie_capability_read_word(adapter->pdev, reg, value))
       
  7156 		return -E1000_ERR_CONFIG;
       
  7157 
       
  7158 	return 0;
       
  7159 }
       
  7160 
       
  7161 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
       
  7162 {
       
  7163 	struct igb_adapter *adapter = hw->back;
       
  7164 
       
  7165 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
       
  7166 		return -E1000_ERR_CONFIG;
       
  7167 
       
  7168 	return 0;
       
  7169 }
       
  7170 
       
  7171 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
       
  7172 {
       
  7173 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7174 	struct e1000_hw *hw = &adapter->hw;
       
  7175 	u32 ctrl, rctl;
       
  7176 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
       
  7177 
       
  7178 	if (enable) {
       
  7179 		/* enable VLAN tag insert/strip */
       
  7180 		ctrl = rd32(E1000_CTRL);
       
  7181 		ctrl |= E1000_CTRL_VME;
       
  7182 		wr32(E1000_CTRL, ctrl);
       
  7183 
       
  7184 		/* Disable CFI check */
       
  7185 		rctl = rd32(E1000_RCTL);
       
  7186 		rctl &= ~E1000_RCTL_CFIEN;
       
  7187 		wr32(E1000_RCTL, rctl);
       
  7188 	} else {
       
  7189 		/* disable VLAN tag insert/strip */
       
  7190 		ctrl = rd32(E1000_CTRL);
       
  7191 		ctrl &= ~E1000_CTRL_VME;
       
  7192 		wr32(E1000_CTRL, ctrl);
       
  7193 	}
       
  7194 
       
  7195 	igb_rlpml_set(adapter);
       
  7196 }
       
  7197 
       
  7198 static int igb_vlan_rx_add_vid(struct net_device *netdev,
       
  7199 			       __be16 proto, u16 vid)
       
  7200 {
       
  7201 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7202 	struct e1000_hw *hw = &adapter->hw;
       
  7203 	int pf_id = adapter->vfs_allocated_count;
       
  7204 
       
  7205 	/* attempt to add filter to vlvf array */
       
  7206 	igb_vlvf_set(adapter, vid, true, pf_id);
       
  7207 
       
  7208 	/* add the filter since PF can receive vlans w/o entry in vlvf */
       
  7209 	igb_vfta_set(hw, vid, true);
       
  7210 
       
  7211 	set_bit(vid, adapter->active_vlans);
       
  7212 
       
  7213 	return 0;
       
  7214 }
       
  7215 
       
  7216 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
       
  7217 				__be16 proto, u16 vid)
       
  7218 {
       
  7219 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7220 	struct e1000_hw *hw = &adapter->hw;
       
  7221 	int pf_id = adapter->vfs_allocated_count;
       
  7222 	s32 err;
       
  7223 
       
  7224 	/* remove vlan from VLVF table array */
       
  7225 	err = igb_vlvf_set(adapter, vid, false, pf_id);
       
  7226 
       
  7227 	/* if vid was not present in VLVF just remove it from table */
       
  7228 	if (err)
       
  7229 		igb_vfta_set(hw, vid, false);
       
  7230 
       
  7231 	clear_bit(vid, adapter->active_vlans);
       
  7232 
       
  7233 	return 0;
       
  7234 }
       
  7235 
       
  7236 static void igb_restore_vlan(struct igb_adapter *adapter)
       
  7237 {
       
  7238 	u16 vid;
       
  7239 
       
  7240 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
       
  7241 
       
  7242 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
       
  7243 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
       
  7244 }
       
  7245 
       
  7246 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
       
  7247 {
       
  7248 	struct pci_dev *pdev = adapter->pdev;
       
  7249 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
  7250 
       
  7251 	mac->autoneg = 0;
       
  7252 
       
  7253 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
       
  7254 	 * for the switch() below to work
       
  7255 	 */
       
  7256 	if ((spd & 1) || (dplx & ~1))
       
  7257 		goto err_inval;
       
  7258 
       
  7259 	/* Fiber NIC's only allow 1000 gbps Full duplex
       
  7260 	 * and 100Mbps Full duplex for 100baseFx sfp
       
  7261 	 */
       
  7262 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
       
  7263 		switch (spd + dplx) {
       
  7264 		case SPEED_10 + DUPLEX_HALF:
       
  7265 		case SPEED_10 + DUPLEX_FULL:
       
  7266 		case SPEED_100 + DUPLEX_HALF:
       
  7267 			goto err_inval;
       
  7268 		default:
       
  7269 			break;
       
  7270 		}
       
  7271 	}
       
  7272 
       
  7273 	switch (spd + dplx) {
       
  7274 	case SPEED_10 + DUPLEX_HALF:
       
  7275 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
       
  7276 		break;
       
  7277 	case SPEED_10 + DUPLEX_FULL:
       
  7278 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
       
  7279 		break;
       
  7280 	case SPEED_100 + DUPLEX_HALF:
       
  7281 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
       
  7282 		break;
       
  7283 	case SPEED_100 + DUPLEX_FULL:
       
  7284 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
       
  7285 		break;
       
  7286 	case SPEED_1000 + DUPLEX_FULL:
       
  7287 		mac->autoneg = 1;
       
  7288 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
       
  7289 		break;
       
  7290 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
  7291 	default:
       
  7292 		goto err_inval;
       
  7293 	}
       
  7294 
       
  7295 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
       
  7296 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
       
  7297 
       
  7298 	return 0;
       
  7299 
       
  7300 err_inval:
       
  7301 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
       
  7302 	return -EINVAL;
       
  7303 }
       
  7304 
       
  7305 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
       
  7306 			  bool runtime)
       
  7307 {
       
  7308 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  7309 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7310 	struct e1000_hw *hw = &adapter->hw;
       
  7311 	u32 ctrl, rctl, status;
       
  7312 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
       
  7313 #ifdef CONFIG_PM
       
  7314 	int retval = 0;
       
  7315 #endif
       
  7316 
       
  7317 	netif_device_detach(netdev);
       
  7318 
       
  7319 	if (netif_running(netdev))
       
  7320 		__igb_close(netdev, true);
       
  7321 
       
  7322 	igb_clear_interrupt_scheme(adapter);
       
  7323 
       
  7324 #ifdef CONFIG_PM
       
  7325 	retval = pci_save_state(pdev);
       
  7326 	if (retval)
       
  7327 		return retval;
       
  7328 #endif
       
  7329 
       
  7330 	status = rd32(E1000_STATUS);
       
  7331 	if (status & E1000_STATUS_LU)
       
  7332 		wufc &= ~E1000_WUFC_LNKC;
       
  7333 
       
  7334 	if (wufc) {
       
  7335 		igb_setup_rctl(adapter);
       
  7336 		igb_set_rx_mode(netdev);
       
  7337 
       
  7338 		/* turn on all-multi mode if wake on multicast is enabled */
       
  7339 		if (wufc & E1000_WUFC_MC) {
       
  7340 			rctl = rd32(E1000_RCTL);
       
  7341 			rctl |= E1000_RCTL_MPE;
       
  7342 			wr32(E1000_RCTL, rctl);
       
  7343 		}
       
  7344 
       
  7345 		ctrl = rd32(E1000_CTRL);
       
  7346 		/* advertise wake from D3Cold */
       
  7347 		#define E1000_CTRL_ADVD3WUC 0x00100000
       
  7348 		/* phy power management enable */
       
  7349 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  7350 		ctrl |= E1000_CTRL_ADVD3WUC;
       
  7351 		wr32(E1000_CTRL, ctrl);
       
  7352 
       
  7353 		/* Allow time for pending master requests to run */
       
  7354 		igb_disable_pcie_master(hw);
       
  7355 
       
  7356 		wr32(E1000_WUC, E1000_WUC_PME_EN);
       
  7357 		wr32(E1000_WUFC, wufc);
       
  7358 	} else {
       
  7359 		wr32(E1000_WUC, 0);
       
  7360 		wr32(E1000_WUFC, 0);
       
  7361 	}
       
  7362 
       
  7363 	*enable_wake = wufc || adapter->en_mng_pt;
       
  7364 	if (!*enable_wake)
       
  7365 		igb_power_down_link(adapter);
       
  7366 	else
       
  7367 		igb_power_up_link(adapter);
       
  7368 
       
  7369 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  7370 	 * would have already happened in close and is redundant.
       
  7371 	 */
       
  7372 	igb_release_hw_control(adapter);
       
  7373 
       
  7374 	pci_disable_device(pdev);
       
  7375 
       
  7376 	return 0;
       
  7377 }
       
  7378 
       
  7379 #ifdef CONFIG_PM
       
  7380 #ifdef CONFIG_PM_SLEEP
       
  7381 static int igb_suspend(struct device *dev)
       
  7382 {
       
  7383 	int retval;
       
  7384 	bool wake;
       
  7385 	struct pci_dev *pdev = to_pci_dev(dev);
       
  7386 
       
  7387 	retval = __igb_shutdown(pdev, &wake, 0);
       
  7388 	if (retval)
       
  7389 		return retval;
       
  7390 
       
  7391 	if (wake) {
       
  7392 		pci_prepare_to_sleep(pdev);
       
  7393 	} else {
       
  7394 		pci_wake_from_d3(pdev, false);
       
  7395 		pci_set_power_state(pdev, PCI_D3hot);
       
  7396 	}
       
  7397 
       
  7398 	return 0;
       
  7399 }
       
  7400 #endif /* CONFIG_PM_SLEEP */
       
  7401 
       
  7402 static int igb_resume(struct device *dev)
       
  7403 {
       
  7404 	struct pci_dev *pdev = to_pci_dev(dev);
       
  7405 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  7406 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7407 	struct e1000_hw *hw = &adapter->hw;
       
  7408 	u32 err;
       
  7409 
       
  7410 	pci_set_power_state(pdev, PCI_D0);
       
  7411 	pci_restore_state(pdev);
       
  7412 	pci_save_state(pdev);
       
  7413 
       
  7414 	if (!pci_device_is_present(pdev))
       
  7415 		return -ENODEV;
       
  7416 	err = pci_enable_device_mem(pdev);
       
  7417 	if (err) {
       
  7418 		dev_err(&pdev->dev,
       
  7419 			"igb: Cannot enable PCI device from suspend\n");
       
  7420 		return err;
       
  7421 	}
       
  7422 	pci_set_master(pdev);
       
  7423 
       
  7424 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  7425 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  7426 
       
  7427 	if (igb_init_interrupt_scheme(adapter, true)) {
       
  7428 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
       
  7429 		return -ENOMEM;
       
  7430 	}
       
  7431 
       
  7432 	igb_reset(adapter);
       
  7433 
       
  7434 	/* let the f/w know that the h/w is now under the control of the
       
  7435 	 * driver.
       
  7436 	 */
       
  7437 	igb_get_hw_control(adapter);
       
  7438 
       
  7439 	wr32(E1000_WUS, ~0);
       
  7440 
       
  7441 	if (netdev->flags & IFF_UP) {
       
  7442 		rtnl_lock();
       
  7443 		err = __igb_open(netdev, true);
       
  7444 		rtnl_unlock();
       
  7445 		if (err)
       
  7446 			return err;
       
  7447 	}
       
  7448 
       
  7449 	netif_device_attach(netdev);
       
  7450 	return 0;
       
  7451 }
       
  7452 
       
  7453 #ifdef CONFIG_PM_RUNTIME
       
  7454 static int igb_runtime_idle(struct device *dev)
       
  7455 {
       
  7456 	struct pci_dev *pdev = to_pci_dev(dev);
       
  7457 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  7458 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7459 
       
  7460 	if (!igb_has_link(adapter))
       
  7461 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
       
  7462 
       
  7463 	return -EBUSY;
       
  7464 }
       
  7465 
       
  7466 static int igb_runtime_suspend(struct device *dev)
       
  7467 {
       
  7468 	struct pci_dev *pdev = to_pci_dev(dev);
       
  7469 	int retval;
       
  7470 	bool wake;
       
  7471 
       
  7472 	retval = __igb_shutdown(pdev, &wake, 1);
       
  7473 	if (retval)
       
  7474 		return retval;
       
  7475 
       
  7476 	if (wake) {
       
  7477 		pci_prepare_to_sleep(pdev);
       
  7478 	} else {
       
  7479 		pci_wake_from_d3(pdev, false);
       
  7480 		pci_set_power_state(pdev, PCI_D3hot);
       
  7481 	}
       
  7482 
       
  7483 	return 0;
       
  7484 }
       
  7485 
       
  7486 static int igb_runtime_resume(struct device *dev)
       
  7487 {
       
  7488 	return igb_resume(dev);
       
  7489 }
       
  7490 #endif /* CONFIG_PM_RUNTIME */
       
  7491 #endif
       
  7492 
       
  7493 static void igb_shutdown(struct pci_dev *pdev)
       
  7494 {
       
  7495 	bool wake;
       
  7496 
       
  7497 	__igb_shutdown(pdev, &wake, 0);
       
  7498 
       
  7499 	if (system_state == SYSTEM_POWER_OFF) {
       
  7500 		pci_wake_from_d3(pdev, wake);
       
  7501 		pci_set_power_state(pdev, PCI_D3hot);
       
  7502 	}
       
  7503 }
       
  7504 
       
  7505 #ifdef CONFIG_PCI_IOV
       
  7506 static int igb_sriov_reinit(struct pci_dev *dev)
       
  7507 {
       
  7508 	struct net_device *netdev = pci_get_drvdata(dev);
       
  7509 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7510 	struct pci_dev *pdev = adapter->pdev;
       
  7511 
       
  7512 	rtnl_lock();
       
  7513 
       
  7514 	if (netif_running(netdev))
       
  7515 		igb_close(netdev);
       
  7516 	else
       
  7517 		igb_reset(adapter);
       
  7518 
       
  7519 	igb_clear_interrupt_scheme(adapter);
       
  7520 
       
  7521 	igb_init_queue_configuration(adapter);
       
  7522 
       
  7523 	if (igb_init_interrupt_scheme(adapter, true)) {
       
  7524 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
       
  7525 		return -ENOMEM;
       
  7526 	}
       
  7527 
       
  7528 	if (netif_running(netdev))
       
  7529 		igb_open(netdev);
       
  7530 
       
  7531 	rtnl_unlock();
       
  7532 
       
  7533 	return 0;
       
  7534 }
       
  7535 
       
  7536 static int igb_pci_disable_sriov(struct pci_dev *dev)
       
  7537 {
       
  7538 	int err = igb_disable_sriov(dev);
       
  7539 
       
  7540 	if (!err)
       
  7541 		err = igb_sriov_reinit(dev);
       
  7542 
       
  7543 	return err;
       
  7544 }
       
  7545 
       
  7546 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
       
  7547 {
       
  7548 	int err = igb_enable_sriov(dev, num_vfs);
       
  7549 
       
  7550 	if (err)
       
  7551 		goto out;
       
  7552 
       
  7553 	err = igb_sriov_reinit(dev);
       
  7554 	if (!err)
       
  7555 		return num_vfs;
       
  7556 
       
  7557 out:
       
  7558 	return err;
       
  7559 }
       
  7560 
       
  7561 #endif
       
  7562 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
       
  7563 {
       
  7564 #ifdef CONFIG_PCI_IOV
       
  7565 	if (num_vfs == 0)
       
  7566 		return igb_pci_disable_sriov(dev);
       
  7567 	else
       
  7568 		return igb_pci_enable_sriov(dev, num_vfs);
       
  7569 #endif
       
  7570 	return 0;
       
  7571 }
       
  7572 
       
  7573 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  7574 /* Polling 'interrupt' - used by things like netconsole to send skbs
       
  7575  * without having to re-enable interrupts. It's not called while
       
  7576  * the interrupt routine is executing.
       
  7577  */
       
  7578 static void igb_netpoll(struct net_device *netdev)
       
  7579 {
       
  7580 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7581 	struct e1000_hw *hw = &adapter->hw;
       
  7582 	struct igb_q_vector *q_vector;
       
  7583 	int i;
       
  7584 
       
  7585 	for (i = 0; i < adapter->num_q_vectors; i++) {
       
  7586 		q_vector = adapter->q_vector[i];
       
  7587 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
       
  7588 			wr32(E1000_EIMC, q_vector->eims_value);
       
  7589 		else
       
  7590 			igb_irq_disable(adapter);
       
  7591 		napi_schedule(&q_vector->napi);
       
  7592 	}
       
  7593 }
       
  7594 #endif /* CONFIG_NET_POLL_CONTROLLER */
       
  7595 
       
  7596 /**
       
  7597  *  igb_io_error_detected - called when PCI error is detected
       
  7598  *  @pdev: Pointer to PCI device
       
  7599  *  @state: The current pci connection state
       
  7600  *
       
  7601  *  This function is called after a PCI bus error affecting
       
  7602  *  this device has been detected.
       
  7603  **/
       
  7604 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
       
  7605 					      pci_channel_state_t state)
       
  7606 {
       
  7607 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  7608 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7609 
       
  7610 	netif_device_detach(netdev);
       
  7611 
       
  7612 	if (state == pci_channel_io_perm_failure)
       
  7613 		return PCI_ERS_RESULT_DISCONNECT;
       
  7614 
       
  7615 	if (netif_running(netdev))
       
  7616 		igb_down(adapter);
       
  7617 	pci_disable_device(pdev);
       
  7618 
       
  7619 	/* Request a slot slot reset. */
       
  7620 	return PCI_ERS_RESULT_NEED_RESET;
       
  7621 }
       
  7622 
       
  7623 /**
       
  7624  *  igb_io_slot_reset - called after the pci bus has been reset.
       
  7625  *  @pdev: Pointer to PCI device
       
  7626  *
       
  7627  *  Restart the card from scratch, as if from a cold-boot. Implementation
       
  7628  *  resembles the first-half of the igb_resume routine.
       
  7629  **/
       
  7630 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
       
  7631 {
       
  7632 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  7633 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7634 	struct e1000_hw *hw = &adapter->hw;
       
  7635 	pci_ers_result_t result;
       
  7636 	int err;
       
  7637 
       
  7638 	if (pci_enable_device_mem(pdev)) {
       
  7639 		dev_err(&pdev->dev,
       
  7640 			"Cannot re-enable PCI device after reset.\n");
       
  7641 		result = PCI_ERS_RESULT_DISCONNECT;
       
  7642 	} else {
       
  7643 		pci_set_master(pdev);
       
  7644 		pci_restore_state(pdev);
       
  7645 		pci_save_state(pdev);
       
  7646 
       
  7647 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  7648 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  7649 
       
  7650 		igb_reset(adapter);
       
  7651 		wr32(E1000_WUS, ~0);
       
  7652 		result = PCI_ERS_RESULT_RECOVERED;
       
  7653 	}
       
  7654 
       
  7655 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
       
  7656 	if (err) {
       
  7657 		dev_err(&pdev->dev,
       
  7658 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
       
  7659 			err);
       
  7660 		/* non-fatal, continue */
       
  7661 	}
       
  7662 
       
  7663 	return result;
       
  7664 }
       
  7665 
       
  7666 /**
       
  7667  *  igb_io_resume - called when traffic can start flowing again.
       
  7668  *  @pdev: Pointer to PCI device
       
  7669  *
       
  7670  *  This callback is called when the error recovery driver tells us that
       
  7671  *  its OK to resume normal operation. Implementation resembles the
       
  7672  *  second-half of the igb_resume routine.
       
  7673  */
       
  7674 static void igb_io_resume(struct pci_dev *pdev)
       
  7675 {
       
  7676 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  7677 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7678 
       
  7679 	if (netif_running(netdev)) {
       
  7680 		if (igb_up(adapter)) {
       
  7681 			dev_err(&pdev->dev, "igb_up failed after reset\n");
       
  7682 			return;
       
  7683 		}
       
  7684 	}
       
  7685 
       
  7686 	netif_device_attach(netdev);
       
  7687 
       
  7688 	/* let the f/w know that the h/w is now under the control of the
       
  7689 	 * driver.
       
  7690 	 */
       
  7691 	igb_get_hw_control(adapter);
       
  7692 }
       
  7693 
       
  7694 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
       
  7695 			     u8 qsel)
       
  7696 {
       
  7697 	u32 rar_low, rar_high;
       
  7698 	struct e1000_hw *hw = &adapter->hw;
       
  7699 
       
  7700 	/* HW expects these in little endian so we reverse the byte order
       
  7701 	 * from network order (big endian) to little endian
       
  7702 	 */
       
  7703 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
       
  7704 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
       
  7705 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
       
  7706 
       
  7707 	/* Indicate to hardware the Address is Valid. */
       
  7708 	rar_high |= E1000_RAH_AV;
       
  7709 
       
  7710 	if (hw->mac.type == e1000_82575)
       
  7711 		rar_high |= E1000_RAH_POOL_1 * qsel;
       
  7712 	else
       
  7713 		rar_high |= E1000_RAH_POOL_1 << qsel;
       
  7714 
       
  7715 	wr32(E1000_RAL(index), rar_low);
       
  7716 	wrfl();
       
  7717 	wr32(E1000_RAH(index), rar_high);
       
  7718 	wrfl();
       
  7719 }
       
  7720 
       
  7721 static int igb_set_vf_mac(struct igb_adapter *adapter,
       
  7722 			  int vf, unsigned char *mac_addr)
       
  7723 {
       
  7724 	struct e1000_hw *hw = &adapter->hw;
       
  7725 	/* VF MAC addresses start at end of receive addresses and moves
       
  7726 	 * towards the first, as a result a collision should not be possible
       
  7727 	 */
       
  7728 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
       
  7729 
       
  7730 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
       
  7731 
       
  7732 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
       
  7733 
       
  7734 	return 0;
       
  7735 }
       
  7736 
       
  7737 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
       
  7738 {
       
  7739 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7740 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
       
  7741 		return -EINVAL;
       
  7742 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
       
  7743 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
       
  7744 	dev_info(&adapter->pdev->dev,
       
  7745 		 "Reload the VF driver to make this change effective.");
       
  7746 	if (test_bit(__IGB_DOWN, &adapter->state)) {
       
  7747 		dev_warn(&adapter->pdev->dev,
       
  7748 			 "The VF MAC address has been set, but the PF device is not up.\n");
       
  7749 		dev_warn(&adapter->pdev->dev,
       
  7750 			 "Bring the PF device up before attempting to use the VF device.\n");
       
  7751 	}
       
  7752 	return igb_set_vf_mac(adapter, vf, mac);
       
  7753 }
       
  7754 
       
  7755 static int igb_link_mbps(int internal_link_speed)
       
  7756 {
       
  7757 	switch (internal_link_speed) {
       
  7758 	case SPEED_100:
       
  7759 		return 100;
       
  7760 	case SPEED_1000:
       
  7761 		return 1000;
       
  7762 	default:
       
  7763 		return 0;
       
  7764 	}
       
  7765 }
       
  7766 
       
  7767 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
       
  7768 				  int link_speed)
       
  7769 {
       
  7770 	int rf_dec, rf_int;
       
  7771 	u32 bcnrc_val;
       
  7772 
       
  7773 	if (tx_rate != 0) {
       
  7774 		/* Calculate the rate factor values to set */
       
  7775 		rf_int = link_speed / tx_rate;
       
  7776 		rf_dec = (link_speed - (rf_int * tx_rate));
       
  7777 		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
       
  7778 			 tx_rate;
       
  7779 
       
  7780 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
       
  7781 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
       
  7782 			      E1000_RTTBCNRC_RF_INT_MASK);
       
  7783 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
       
  7784 	} else {
       
  7785 		bcnrc_val = 0;
       
  7786 	}
       
  7787 
       
  7788 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
       
  7789 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
       
  7790 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
       
  7791 	 */
       
  7792 	wr32(E1000_RTTBCNRM, 0x14);
       
  7793 	wr32(E1000_RTTBCNRC, bcnrc_val);
       
  7794 }
       
  7795 
       
  7796 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
       
  7797 {
       
  7798 	int actual_link_speed, i;
       
  7799 	bool reset_rate = false;
       
  7800 
       
  7801 	/* VF TX rate limit was not set or not supported */
       
  7802 	if ((adapter->vf_rate_link_speed == 0) ||
       
  7803 	    (adapter->hw.mac.type != e1000_82576))
       
  7804 		return;
       
  7805 
       
  7806 	actual_link_speed = igb_link_mbps(adapter->link_speed);
       
  7807 	if (actual_link_speed != adapter->vf_rate_link_speed) {
       
  7808 		reset_rate = true;
       
  7809 		adapter->vf_rate_link_speed = 0;
       
  7810 		dev_info(&adapter->pdev->dev,
       
  7811 			 "Link speed has been changed. VF Transmit rate is disabled\n");
       
  7812 	}
       
  7813 
       
  7814 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
       
  7815 		if (reset_rate)
       
  7816 			adapter->vf_data[i].tx_rate = 0;
       
  7817 
       
  7818 		igb_set_vf_rate_limit(&adapter->hw, i,
       
  7819 				      adapter->vf_data[i].tx_rate,
       
  7820 				      actual_link_speed);
       
  7821 	}
       
  7822 }
       
  7823 
       
  7824 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
       
  7825 			     int min_tx_rate, int max_tx_rate)
       
  7826 {
       
  7827 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7828 	struct e1000_hw *hw = &adapter->hw;
       
  7829 	int actual_link_speed;
       
  7830 
       
  7831 	if (hw->mac.type != e1000_82576)
       
  7832 		return -EOPNOTSUPP;
       
  7833 
       
  7834 	if (min_tx_rate)
       
  7835 		return -EINVAL;
       
  7836 
       
  7837 	actual_link_speed = igb_link_mbps(adapter->link_speed);
       
  7838 	if ((vf >= adapter->vfs_allocated_count) ||
       
  7839 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
       
  7840 	    (max_tx_rate < 0) ||
       
  7841 	    (max_tx_rate > actual_link_speed))
       
  7842 		return -EINVAL;
       
  7843 
       
  7844 	adapter->vf_rate_link_speed = actual_link_speed;
       
  7845 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
       
  7846 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
       
  7847 
       
  7848 	return 0;
       
  7849 }
       
  7850 
       
  7851 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
       
  7852 				   bool setting)
       
  7853 {
       
  7854 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7855 	struct e1000_hw *hw = &adapter->hw;
       
  7856 	u32 reg_val, reg_offset;
       
  7857 
       
  7858 	if (!adapter->vfs_allocated_count)
       
  7859 		return -EOPNOTSUPP;
       
  7860 
       
  7861 	if (vf >= adapter->vfs_allocated_count)
       
  7862 		return -EINVAL;
       
  7863 
       
  7864 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
       
  7865 	reg_val = rd32(reg_offset);
       
  7866 	if (setting)
       
  7867 		reg_val |= ((1 << vf) |
       
  7868 			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
       
  7869 	else
       
  7870 		reg_val &= ~((1 << vf) |
       
  7871 			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
       
  7872 	wr32(reg_offset, reg_val);
       
  7873 
       
  7874 	adapter->vf_data[vf].spoofchk_enabled = setting;
       
  7875 	return 0;
       
  7876 }
       
  7877 
       
  7878 static int igb_ndo_get_vf_config(struct net_device *netdev,
       
  7879 				 int vf, struct ifla_vf_info *ivi)
       
  7880 {
       
  7881 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  7882 	if (vf >= adapter->vfs_allocated_count)
       
  7883 		return -EINVAL;
       
  7884 	ivi->vf = vf;
       
  7885 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
       
  7886 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
       
  7887 	ivi->min_tx_rate = 0;
       
  7888 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
       
  7889 	ivi->qos = adapter->vf_data[vf].pf_qos;
       
  7890 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
       
  7891 	return 0;
       
  7892 }
       
  7893 
       
  7894 static void igb_vmm_control(struct igb_adapter *adapter)
       
  7895 {
       
  7896 	struct e1000_hw *hw = &adapter->hw;
       
  7897 	u32 reg;
       
  7898 
       
  7899 	switch (hw->mac.type) {
       
  7900 	case e1000_82575:
       
  7901 	case e1000_i210:
       
  7902 	case e1000_i211:
       
  7903 	case e1000_i354:
       
  7904 	default:
       
  7905 		/* replication is not supported for 82575 */
       
  7906 		return;
       
  7907 	case e1000_82576:
       
  7908 		/* notify HW that the MAC is adding vlan tags */
       
  7909 		reg = rd32(E1000_DTXCTL);
       
  7910 		reg |= E1000_DTXCTL_VLAN_ADDED;
       
  7911 		wr32(E1000_DTXCTL, reg);
       
  7912 		/* Fall through */
       
  7913 	case e1000_82580:
       
  7914 		/* enable replication vlan tag stripping */
       
  7915 		reg = rd32(E1000_RPLOLR);
       
  7916 		reg |= E1000_RPLOLR_STRVLAN;
       
  7917 		wr32(E1000_RPLOLR, reg);
       
  7918 		/* Fall through */
       
  7919 	case e1000_i350:
       
  7920 		/* none of the above registers are supported by i350 */
       
  7921 		break;
       
  7922 	}
       
  7923 
       
  7924 	if (adapter->vfs_allocated_count) {
       
  7925 		igb_vmdq_set_loopback_pf(hw, true);
       
  7926 		igb_vmdq_set_replication_pf(hw, true);
       
  7927 		igb_vmdq_set_anti_spoofing_pf(hw, true,
       
  7928 					      adapter->vfs_allocated_count);
       
  7929 	} else {
       
  7930 		igb_vmdq_set_loopback_pf(hw, false);
       
  7931 		igb_vmdq_set_replication_pf(hw, false);
       
  7932 	}
       
  7933 }
       
  7934 
       
  7935 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
       
  7936 {
       
  7937 	struct e1000_hw *hw = &adapter->hw;
       
  7938 	u32 dmac_thr;
       
  7939 	u16 hwm;
       
  7940 
       
  7941 	if (hw->mac.type > e1000_82580) {
       
  7942 		if (adapter->flags & IGB_FLAG_DMAC) {
       
  7943 			u32 reg;
       
  7944 
       
  7945 			/* force threshold to 0. */
       
  7946 			wr32(E1000_DMCTXTH, 0);
       
  7947 
       
  7948 			/* DMA Coalescing high water mark needs to be greater
       
  7949 			 * than the Rx threshold. Set hwm to PBA - max frame
       
  7950 			 * size in 16B units, capping it at PBA - 6KB.
       
  7951 			 */
       
  7952 			hwm = 64 * pba - adapter->max_frame_size / 16;
       
  7953 			if (hwm < 64 * (pba - 6))
       
  7954 				hwm = 64 * (pba - 6);
       
  7955 			reg = rd32(E1000_FCRTC);
       
  7956 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
       
  7957 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
       
  7958 				& E1000_FCRTC_RTH_COAL_MASK);
       
  7959 			wr32(E1000_FCRTC, reg);
       
  7960 
       
  7961 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
       
  7962 			 * frame size, capping it at PBA - 10KB.
       
  7963 			 */
       
  7964 			dmac_thr = pba - adapter->max_frame_size / 512;
       
  7965 			if (dmac_thr < pba - 10)
       
  7966 				dmac_thr = pba - 10;
       
  7967 			reg = rd32(E1000_DMACR);
       
  7968 			reg &= ~E1000_DMACR_DMACTHR_MASK;
       
  7969 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
       
  7970 				& E1000_DMACR_DMACTHR_MASK);
       
  7971 
       
  7972 			/* transition to L0x or L1 if available..*/
       
  7973 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
       
  7974 
       
  7975 			/* watchdog timer= +-1000 usec in 32usec intervals */
       
  7976 			reg |= (1000 >> 5);
       
  7977 
       
  7978 			/* Disable BMC-to-OS Watchdog Enable */
       
  7979 			if (hw->mac.type != e1000_i354)
       
  7980 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
       
  7981 
       
  7982 			wr32(E1000_DMACR, reg);
       
  7983 
       
  7984 			/* no lower threshold to disable
       
  7985 			 * coalescing(smart fifb)-UTRESH=0
       
  7986 			 */
       
  7987 			wr32(E1000_DMCRTRH, 0);
       
  7988 
       
  7989 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
       
  7990 
       
  7991 			wr32(E1000_DMCTLX, reg);
       
  7992 
       
  7993 			/* free space in tx packet buffer to wake from
       
  7994 			 * DMA coal
       
  7995 			 */
       
  7996 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
       
  7997 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
       
  7998 
       
  7999 			/* make low power state decision controlled
       
  8000 			 * by DMA coal
       
  8001 			 */
       
  8002 			reg = rd32(E1000_PCIEMISC);
       
  8003 			reg &= ~E1000_PCIEMISC_LX_DECISION;
       
  8004 			wr32(E1000_PCIEMISC, reg);
       
  8005 		} /* endif adapter->dmac is not disabled */
       
  8006 	} else if (hw->mac.type == e1000_82580) {
       
  8007 		u32 reg = rd32(E1000_PCIEMISC);
       
  8008 
       
  8009 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
       
  8010 		wr32(E1000_DMACR, 0);
       
  8011 	}
       
  8012 }
       
  8013 
       
  8014 /**
       
  8015  *  igb_read_i2c_byte - Reads 8 bit word over I2C
       
  8016  *  @hw: pointer to hardware structure
       
  8017  *  @byte_offset: byte offset to read
       
  8018  *  @dev_addr: device address
       
  8019  *  @data: value read
       
  8020  *
       
  8021  *  Performs byte read operation over I2C interface at
       
  8022  *  a specified device address.
       
  8023  **/
       
  8024 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
       
  8025 		      u8 dev_addr, u8 *data)
       
  8026 {
       
  8027 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
       
  8028 	struct i2c_client *this_client = adapter->i2c_client;
       
  8029 	s32 status;
       
  8030 	u16 swfw_mask = 0;
       
  8031 
       
  8032 	if (!this_client)
       
  8033 		return E1000_ERR_I2C;
       
  8034 
       
  8035 	swfw_mask = E1000_SWFW_PHY0_SM;
       
  8036 
       
  8037 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
       
  8038 		return E1000_ERR_SWFW_SYNC;
       
  8039 
       
  8040 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
       
  8041 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
       
  8042 
       
  8043 	if (status < 0)
       
  8044 		return E1000_ERR_I2C;
       
  8045 	else {
       
  8046 		*data = status;
       
  8047 		return 0;
       
  8048 	}
       
  8049 }
       
  8050 
       
  8051 /**
       
  8052  *  igb_write_i2c_byte - Writes 8 bit word over I2C
       
  8053  *  @hw: pointer to hardware structure
       
  8054  *  @byte_offset: byte offset to write
       
  8055  *  @dev_addr: device address
       
  8056  *  @data: value to write
       
  8057  *
       
  8058  *  Performs byte write operation over I2C interface at
       
  8059  *  a specified device address.
       
  8060  **/
       
  8061 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
       
  8062 		       u8 dev_addr, u8 data)
       
  8063 {
       
  8064 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
       
  8065 	struct i2c_client *this_client = adapter->i2c_client;
       
  8066 	s32 status;
       
  8067 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
       
  8068 
       
  8069 	if (!this_client)
       
  8070 		return E1000_ERR_I2C;
       
  8071 
       
  8072 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
       
  8073 		return E1000_ERR_SWFW_SYNC;
       
  8074 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
       
  8075 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
       
  8076 
       
  8077 	if (status)
       
  8078 		return E1000_ERR_I2C;
       
  8079 	else
       
  8080 		return 0;
       
  8081 
       
  8082 }
       
  8083 
       
  8084 int igb_reinit_queues(struct igb_adapter *adapter)
       
  8085 {
       
  8086 	struct net_device *netdev = adapter->netdev;
       
  8087 	struct pci_dev *pdev = adapter->pdev;
       
  8088 	int err = 0;
       
  8089 
       
  8090 	if (netif_running(netdev))
       
  8091 		igb_close(netdev);
       
  8092 
       
  8093 	igb_reset_interrupt_capability(adapter);
       
  8094 
       
  8095 	if (igb_init_interrupt_scheme(adapter, true)) {
       
  8096 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
       
  8097 		return -ENOMEM;
       
  8098 	}
       
  8099 
       
  8100 	if (netif_running(netdev))
       
  8101 		err = igb_open(netdev);
       
  8102 
       
  8103 	return err;
       
  8104 }
       
  8105 /* igb_main.c */