devices/igb/igb_ethtool-3.18-orig.c
branchstable-1.5
changeset 2685 740291442c05
equal deleted inserted replaced
2684:56587a22d05c 2685:740291442c05
       
     1 /* Intel(R) Gigabit Ethernet Linux driver
       
     2  * Copyright(c) 2007-2014 Intel Corporation.
       
     3  *
       
     4  * This program is free software; you can redistribute it and/or modify it
       
     5  * under the terms and conditions of the GNU General Public License,
       
     6  * version 2, as published by the Free Software Foundation.
       
     7  *
       
     8  * This program is distributed in the hope it will be useful, but WITHOUT
       
     9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    11  * more details.
       
    12  *
       
    13  * You should have received a copy of the GNU General Public License along with
       
    14  * this program; if not, see <http://www.gnu.org/licenses/>.
       
    15  *
       
    16  * The full GNU General Public License is included in this distribution in
       
    17  * the file called "COPYING".
       
    18  *
       
    19  * Contact Information:
       
    20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    22  */
       
    23 
       
    24 /* ethtool support for igb */
       
    25 
       
    26 #include <linux/vmalloc.h>
       
    27 #include <linux/netdevice.h>
       
    28 #include <linux/pci.h>
       
    29 #include <linux/delay.h>
       
    30 #include <linux/interrupt.h>
       
    31 #include <linux/if_ether.h>
       
    32 #include <linux/ethtool.h>
       
    33 #include <linux/sched.h>
       
    34 #include <linux/slab.h>
       
    35 #include <linux/pm_runtime.h>
       
    36 #include <linux/highmem.h>
       
    37 #include <linux/mdio.h>
       
    38 
       
    39 #include "igb.h"
       
    40 
       
    41 struct igb_stats {
       
    42 	char stat_string[ETH_GSTRING_LEN];
       
    43 	int sizeof_stat;
       
    44 	int stat_offset;
       
    45 };
       
    46 
       
    47 #define IGB_STAT(_name, _stat) { \
       
    48 	.stat_string = _name, \
       
    49 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
       
    50 	.stat_offset = offsetof(struct igb_adapter, _stat) \
       
    51 }
       
    52 static const struct igb_stats igb_gstrings_stats[] = {
       
    53 	IGB_STAT("rx_packets", stats.gprc),
       
    54 	IGB_STAT("tx_packets", stats.gptc),
       
    55 	IGB_STAT("rx_bytes", stats.gorc),
       
    56 	IGB_STAT("tx_bytes", stats.gotc),
       
    57 	IGB_STAT("rx_broadcast", stats.bprc),
       
    58 	IGB_STAT("tx_broadcast", stats.bptc),
       
    59 	IGB_STAT("rx_multicast", stats.mprc),
       
    60 	IGB_STAT("tx_multicast", stats.mptc),
       
    61 	IGB_STAT("multicast", stats.mprc),
       
    62 	IGB_STAT("collisions", stats.colc),
       
    63 	IGB_STAT("rx_crc_errors", stats.crcerrs),
       
    64 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
       
    65 	IGB_STAT("rx_missed_errors", stats.mpc),
       
    66 	IGB_STAT("tx_aborted_errors", stats.ecol),
       
    67 	IGB_STAT("tx_carrier_errors", stats.tncrs),
       
    68 	IGB_STAT("tx_window_errors", stats.latecol),
       
    69 	IGB_STAT("tx_abort_late_coll", stats.latecol),
       
    70 	IGB_STAT("tx_deferred_ok", stats.dc),
       
    71 	IGB_STAT("tx_single_coll_ok", stats.scc),
       
    72 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
       
    73 	IGB_STAT("tx_timeout_count", tx_timeout_count),
       
    74 	IGB_STAT("rx_long_length_errors", stats.roc),
       
    75 	IGB_STAT("rx_short_length_errors", stats.ruc),
       
    76 	IGB_STAT("rx_align_errors", stats.algnerrc),
       
    77 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
       
    78 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
       
    79 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
       
    80 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
       
    81 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
       
    82 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
       
    83 	IGB_STAT("rx_long_byte_count", stats.gorc),
       
    84 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
       
    85 	IGB_STAT("tx_smbus", stats.mgptc),
       
    86 	IGB_STAT("rx_smbus", stats.mgprc),
       
    87 	IGB_STAT("dropped_smbus", stats.mgpdc),
       
    88 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
       
    89 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
       
    90 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
       
    91 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
       
    92 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
       
    93 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
       
    94 };
       
    95 
       
    96 #define IGB_NETDEV_STAT(_net_stat) { \
       
    97 	.stat_string = __stringify(_net_stat), \
       
    98 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
       
    99 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
       
   100 }
       
   101 static const struct igb_stats igb_gstrings_net_stats[] = {
       
   102 	IGB_NETDEV_STAT(rx_errors),
       
   103 	IGB_NETDEV_STAT(tx_errors),
       
   104 	IGB_NETDEV_STAT(tx_dropped),
       
   105 	IGB_NETDEV_STAT(rx_length_errors),
       
   106 	IGB_NETDEV_STAT(rx_over_errors),
       
   107 	IGB_NETDEV_STAT(rx_frame_errors),
       
   108 	IGB_NETDEV_STAT(rx_fifo_errors),
       
   109 	IGB_NETDEV_STAT(tx_fifo_errors),
       
   110 	IGB_NETDEV_STAT(tx_heartbeat_errors)
       
   111 };
       
   112 
       
   113 #define IGB_GLOBAL_STATS_LEN	\
       
   114 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
       
   115 #define IGB_NETDEV_STATS_LEN	\
       
   116 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
       
   117 #define IGB_RX_QUEUE_STATS_LEN \
       
   118 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
       
   119 
       
   120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
       
   121 
       
   122 #define IGB_QUEUE_STATS_LEN \
       
   123 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
       
   124 	  IGB_RX_QUEUE_STATS_LEN) + \
       
   125 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
       
   126 	  IGB_TX_QUEUE_STATS_LEN))
       
   127 #define IGB_STATS_LEN \
       
   128 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
       
   129 
       
   130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
       
   131 	"Register test  (offline)", "Eeprom test    (offline)",
       
   132 	"Interrupt test (offline)", "Loopback test  (offline)",
       
   133 	"Link test   (on/offline)"
       
   134 };
       
   135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
       
   136 
       
   137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
       
   138 {
       
   139 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   140 	struct e1000_hw *hw = &adapter->hw;
       
   141 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
       
   142 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
       
   143 	u32 status;
       
   144 	u32 speed;
       
   145 
       
   146 	status = rd32(E1000_STATUS);
       
   147 	if (hw->phy.media_type == e1000_media_type_copper) {
       
   148 
       
   149 		ecmd->supported = (SUPPORTED_10baseT_Half |
       
   150 				   SUPPORTED_10baseT_Full |
       
   151 				   SUPPORTED_100baseT_Half |
       
   152 				   SUPPORTED_100baseT_Full |
       
   153 				   SUPPORTED_1000baseT_Full|
       
   154 				   SUPPORTED_Autoneg |
       
   155 				   SUPPORTED_TP |
       
   156 				   SUPPORTED_Pause);
       
   157 		ecmd->advertising = ADVERTISED_TP;
       
   158 
       
   159 		if (hw->mac.autoneg == 1) {
       
   160 			ecmd->advertising |= ADVERTISED_Autoneg;
       
   161 			/* the e1000 autoneg seems to match ethtool nicely */
       
   162 			ecmd->advertising |= hw->phy.autoneg_advertised;
       
   163 		}
       
   164 
       
   165 		ecmd->port = PORT_TP;
       
   166 		ecmd->phy_address = hw->phy.addr;
       
   167 		ecmd->transceiver = XCVR_INTERNAL;
       
   168 	} else {
       
   169 		ecmd->supported = (SUPPORTED_FIBRE |
       
   170 				   SUPPORTED_1000baseKX_Full |
       
   171 				   SUPPORTED_Autoneg |
       
   172 				   SUPPORTED_Pause);
       
   173 		ecmd->advertising = (ADVERTISED_FIBRE |
       
   174 				     ADVERTISED_1000baseKX_Full);
       
   175 		if (hw->mac.type == e1000_i354) {
       
   176 			if ((hw->device_id ==
       
   177 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
       
   178 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
       
   179 				ecmd->supported |= SUPPORTED_2500baseX_Full;
       
   180 				ecmd->supported &=
       
   181 					~SUPPORTED_1000baseKX_Full;
       
   182 				ecmd->advertising |= ADVERTISED_2500baseX_Full;
       
   183 				ecmd->advertising &=
       
   184 					~ADVERTISED_1000baseKX_Full;
       
   185 			}
       
   186 		}
       
   187 		if (eth_flags->e100_base_fx) {
       
   188 			ecmd->supported |= SUPPORTED_100baseT_Full;
       
   189 			ecmd->advertising |= ADVERTISED_100baseT_Full;
       
   190 		}
       
   191 		if (hw->mac.autoneg == 1)
       
   192 			ecmd->advertising |= ADVERTISED_Autoneg;
       
   193 
       
   194 		ecmd->port = PORT_FIBRE;
       
   195 		ecmd->transceiver = XCVR_EXTERNAL;
       
   196 	}
       
   197 	if (hw->mac.autoneg != 1)
       
   198 		ecmd->advertising &= ~(ADVERTISED_Pause |
       
   199 				       ADVERTISED_Asym_Pause);
       
   200 
       
   201 	switch (hw->fc.requested_mode) {
       
   202 	case e1000_fc_full:
       
   203 		ecmd->advertising |= ADVERTISED_Pause;
       
   204 		break;
       
   205 	case e1000_fc_rx_pause:
       
   206 		ecmd->advertising |= (ADVERTISED_Pause |
       
   207 				      ADVERTISED_Asym_Pause);
       
   208 		break;
       
   209 	case e1000_fc_tx_pause:
       
   210 		ecmd->advertising |=  ADVERTISED_Asym_Pause;
       
   211 		break;
       
   212 	default:
       
   213 		ecmd->advertising &= ~(ADVERTISED_Pause |
       
   214 				       ADVERTISED_Asym_Pause);
       
   215 	}
       
   216 	if (status & E1000_STATUS_LU) {
       
   217 		if ((status & E1000_STATUS_2P5_SKU) &&
       
   218 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
       
   219 			speed = SPEED_2500;
       
   220 		} else if (status & E1000_STATUS_SPEED_1000) {
       
   221 			speed = SPEED_1000;
       
   222 		} else if (status & E1000_STATUS_SPEED_100) {
       
   223 			speed = SPEED_100;
       
   224 		} else {
       
   225 			speed = SPEED_10;
       
   226 		}
       
   227 		if ((status & E1000_STATUS_FD) ||
       
   228 		    hw->phy.media_type != e1000_media_type_copper)
       
   229 			ecmd->duplex = DUPLEX_FULL;
       
   230 		else
       
   231 			ecmd->duplex = DUPLEX_HALF;
       
   232 	} else {
       
   233 		speed = SPEED_UNKNOWN;
       
   234 		ecmd->duplex = DUPLEX_UNKNOWN;
       
   235 	}
       
   236 	ethtool_cmd_speed_set(ecmd, speed);
       
   237 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
       
   238 	    hw->mac.autoneg)
       
   239 		ecmd->autoneg = AUTONEG_ENABLE;
       
   240 	else
       
   241 		ecmd->autoneg = AUTONEG_DISABLE;
       
   242 
       
   243 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
       
   244 	if (hw->phy.media_type == e1000_media_type_copper)
       
   245 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
       
   246 						      ETH_TP_MDI;
       
   247 	else
       
   248 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
       
   249 
       
   250 	if (hw->phy.mdix == AUTO_ALL_MODES)
       
   251 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
       
   252 	else
       
   253 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
       
   254 
       
   255 	return 0;
       
   256 }
       
   257 
       
   258 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
       
   259 {
       
   260 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   261 	struct e1000_hw *hw = &adapter->hw;
       
   262 
       
   263 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
       
   264 	 * cannot be changed
       
   265 	 */
       
   266 	if (igb_check_reset_block(hw)) {
       
   267 		dev_err(&adapter->pdev->dev,
       
   268 			"Cannot change link characteristics when SoL/IDER is active.\n");
       
   269 		return -EINVAL;
       
   270 	}
       
   271 
       
   272 	/* MDI setting is only allowed when autoneg enabled because
       
   273 	 * some hardware doesn't allow MDI setting when speed or
       
   274 	 * duplex is forced.
       
   275 	 */
       
   276 	if (ecmd->eth_tp_mdix_ctrl) {
       
   277 		if (hw->phy.media_type != e1000_media_type_copper)
       
   278 			return -EOPNOTSUPP;
       
   279 
       
   280 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
       
   281 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
       
   282 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
       
   283 			return -EINVAL;
       
   284 		}
       
   285 	}
       
   286 
       
   287 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
       
   288 		usleep_range(1000, 2000);
       
   289 
       
   290 	if (ecmd->autoneg == AUTONEG_ENABLE) {
       
   291 		hw->mac.autoneg = 1;
       
   292 		if (hw->phy.media_type == e1000_media_type_fiber) {
       
   293 			hw->phy.autoneg_advertised = ecmd->advertising |
       
   294 						     ADVERTISED_FIBRE |
       
   295 						     ADVERTISED_Autoneg;
       
   296 			switch (adapter->link_speed) {
       
   297 			case SPEED_2500:
       
   298 				hw->phy.autoneg_advertised =
       
   299 					ADVERTISED_2500baseX_Full;
       
   300 				break;
       
   301 			case SPEED_1000:
       
   302 				hw->phy.autoneg_advertised =
       
   303 					ADVERTISED_1000baseT_Full;
       
   304 				break;
       
   305 			case SPEED_100:
       
   306 				hw->phy.autoneg_advertised =
       
   307 					ADVERTISED_100baseT_Full;
       
   308 				break;
       
   309 			default:
       
   310 				break;
       
   311 			}
       
   312 		} else {
       
   313 			hw->phy.autoneg_advertised = ecmd->advertising |
       
   314 						     ADVERTISED_TP |
       
   315 						     ADVERTISED_Autoneg;
       
   316 		}
       
   317 		ecmd->advertising = hw->phy.autoneg_advertised;
       
   318 		if (adapter->fc_autoneg)
       
   319 			hw->fc.requested_mode = e1000_fc_default;
       
   320 	} else {
       
   321 		u32 speed = ethtool_cmd_speed(ecmd);
       
   322 		/* calling this overrides forced MDI setting */
       
   323 		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
       
   324 			clear_bit(__IGB_RESETTING, &adapter->state);
       
   325 			return -EINVAL;
       
   326 		}
       
   327 	}
       
   328 
       
   329 	/* MDI-X => 2; MDI => 1; Auto => 3 */
       
   330 	if (ecmd->eth_tp_mdix_ctrl) {
       
   331 		/* fix up the value for auto (3 => 0) as zero is mapped
       
   332 		 * internally to auto
       
   333 		 */
       
   334 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
       
   335 			hw->phy.mdix = AUTO_ALL_MODES;
       
   336 		else
       
   337 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
       
   338 	}
       
   339 
       
   340 	/* reset the link */
       
   341 	if (netif_running(adapter->netdev)) {
       
   342 		igb_down(adapter);
       
   343 		igb_up(adapter);
       
   344 	} else
       
   345 		igb_reset(adapter);
       
   346 
       
   347 	clear_bit(__IGB_RESETTING, &adapter->state);
       
   348 	return 0;
       
   349 }
       
   350 
       
   351 static u32 igb_get_link(struct net_device *netdev)
       
   352 {
       
   353 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   354 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
   355 
       
   356 	/* If the link is not reported up to netdev, interrupts are disabled,
       
   357 	 * and so the physical link state may have changed since we last
       
   358 	 * looked. Set get_link_status to make sure that the true link
       
   359 	 * state is interrogated, rather than pulling a cached and possibly
       
   360 	 * stale link state from the driver.
       
   361 	 */
       
   362 	if (!netif_carrier_ok(netdev))
       
   363 		mac->get_link_status = 1;
       
   364 
       
   365 	return igb_has_link(adapter);
       
   366 }
       
   367 
       
   368 static void igb_get_pauseparam(struct net_device *netdev,
       
   369 			       struct ethtool_pauseparam *pause)
       
   370 {
       
   371 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   372 	struct e1000_hw *hw = &adapter->hw;
       
   373 
       
   374 	pause->autoneg =
       
   375 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
       
   376 
       
   377 	if (hw->fc.current_mode == e1000_fc_rx_pause)
       
   378 		pause->rx_pause = 1;
       
   379 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
       
   380 		pause->tx_pause = 1;
       
   381 	else if (hw->fc.current_mode == e1000_fc_full) {
       
   382 		pause->rx_pause = 1;
       
   383 		pause->tx_pause = 1;
       
   384 	}
       
   385 }
       
   386 
       
   387 static int igb_set_pauseparam(struct net_device *netdev,
       
   388 			      struct ethtool_pauseparam *pause)
       
   389 {
       
   390 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   391 	struct e1000_hw *hw = &adapter->hw;
       
   392 	int retval = 0;
       
   393 
       
   394 	/* 100basefx does not support setting link flow control */
       
   395 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
       
   396 		return -EINVAL;
       
   397 
       
   398 	adapter->fc_autoneg = pause->autoneg;
       
   399 
       
   400 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
       
   401 		usleep_range(1000, 2000);
       
   402 
       
   403 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
       
   404 		hw->fc.requested_mode = e1000_fc_default;
       
   405 		if (netif_running(adapter->netdev)) {
       
   406 			igb_down(adapter);
       
   407 			igb_up(adapter);
       
   408 		} else {
       
   409 			igb_reset(adapter);
       
   410 		}
       
   411 	} else {
       
   412 		if (pause->rx_pause && pause->tx_pause)
       
   413 			hw->fc.requested_mode = e1000_fc_full;
       
   414 		else if (pause->rx_pause && !pause->tx_pause)
       
   415 			hw->fc.requested_mode = e1000_fc_rx_pause;
       
   416 		else if (!pause->rx_pause && pause->tx_pause)
       
   417 			hw->fc.requested_mode = e1000_fc_tx_pause;
       
   418 		else if (!pause->rx_pause && !pause->tx_pause)
       
   419 			hw->fc.requested_mode = e1000_fc_none;
       
   420 
       
   421 		hw->fc.current_mode = hw->fc.requested_mode;
       
   422 
       
   423 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
       
   424 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
       
   425 	}
       
   426 
       
   427 	clear_bit(__IGB_RESETTING, &adapter->state);
       
   428 	return retval;
       
   429 }
       
   430 
       
   431 static u32 igb_get_msglevel(struct net_device *netdev)
       
   432 {
       
   433 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   434 	return adapter->msg_enable;
       
   435 }
       
   436 
       
   437 static void igb_set_msglevel(struct net_device *netdev, u32 data)
       
   438 {
       
   439 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   440 	adapter->msg_enable = data;
       
   441 }
       
   442 
       
   443 static int igb_get_regs_len(struct net_device *netdev)
       
   444 {
       
   445 #define IGB_REGS_LEN 739
       
   446 	return IGB_REGS_LEN * sizeof(u32);
       
   447 }
       
   448 
       
   449 static void igb_get_regs(struct net_device *netdev,
       
   450 			 struct ethtool_regs *regs, void *p)
       
   451 {
       
   452 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   453 	struct e1000_hw *hw = &adapter->hw;
       
   454 	u32 *regs_buff = p;
       
   455 	u8 i;
       
   456 
       
   457 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
       
   458 
       
   459 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
       
   460 
       
   461 	/* General Registers */
       
   462 	regs_buff[0] = rd32(E1000_CTRL);
       
   463 	regs_buff[1] = rd32(E1000_STATUS);
       
   464 	regs_buff[2] = rd32(E1000_CTRL_EXT);
       
   465 	regs_buff[3] = rd32(E1000_MDIC);
       
   466 	regs_buff[4] = rd32(E1000_SCTL);
       
   467 	regs_buff[5] = rd32(E1000_CONNSW);
       
   468 	regs_buff[6] = rd32(E1000_VET);
       
   469 	regs_buff[7] = rd32(E1000_LEDCTL);
       
   470 	regs_buff[8] = rd32(E1000_PBA);
       
   471 	regs_buff[9] = rd32(E1000_PBS);
       
   472 	regs_buff[10] = rd32(E1000_FRTIMER);
       
   473 	regs_buff[11] = rd32(E1000_TCPTIMER);
       
   474 
       
   475 	/* NVM Register */
       
   476 	regs_buff[12] = rd32(E1000_EECD);
       
   477 
       
   478 	/* Interrupt */
       
   479 	/* Reading EICS for EICR because they read the
       
   480 	 * same but EICS does not clear on read
       
   481 	 */
       
   482 	regs_buff[13] = rd32(E1000_EICS);
       
   483 	regs_buff[14] = rd32(E1000_EICS);
       
   484 	regs_buff[15] = rd32(E1000_EIMS);
       
   485 	regs_buff[16] = rd32(E1000_EIMC);
       
   486 	regs_buff[17] = rd32(E1000_EIAC);
       
   487 	regs_buff[18] = rd32(E1000_EIAM);
       
   488 	/* Reading ICS for ICR because they read the
       
   489 	 * same but ICS does not clear on read
       
   490 	 */
       
   491 	regs_buff[19] = rd32(E1000_ICS);
       
   492 	regs_buff[20] = rd32(E1000_ICS);
       
   493 	regs_buff[21] = rd32(E1000_IMS);
       
   494 	regs_buff[22] = rd32(E1000_IMC);
       
   495 	regs_buff[23] = rd32(E1000_IAC);
       
   496 	regs_buff[24] = rd32(E1000_IAM);
       
   497 	regs_buff[25] = rd32(E1000_IMIRVP);
       
   498 
       
   499 	/* Flow Control */
       
   500 	regs_buff[26] = rd32(E1000_FCAL);
       
   501 	regs_buff[27] = rd32(E1000_FCAH);
       
   502 	regs_buff[28] = rd32(E1000_FCTTV);
       
   503 	regs_buff[29] = rd32(E1000_FCRTL);
       
   504 	regs_buff[30] = rd32(E1000_FCRTH);
       
   505 	regs_buff[31] = rd32(E1000_FCRTV);
       
   506 
       
   507 	/* Receive */
       
   508 	regs_buff[32] = rd32(E1000_RCTL);
       
   509 	regs_buff[33] = rd32(E1000_RXCSUM);
       
   510 	regs_buff[34] = rd32(E1000_RLPML);
       
   511 	regs_buff[35] = rd32(E1000_RFCTL);
       
   512 	regs_buff[36] = rd32(E1000_MRQC);
       
   513 	regs_buff[37] = rd32(E1000_VT_CTL);
       
   514 
       
   515 	/* Transmit */
       
   516 	regs_buff[38] = rd32(E1000_TCTL);
       
   517 	regs_buff[39] = rd32(E1000_TCTL_EXT);
       
   518 	regs_buff[40] = rd32(E1000_TIPG);
       
   519 	regs_buff[41] = rd32(E1000_DTXCTL);
       
   520 
       
   521 	/* Wake Up */
       
   522 	regs_buff[42] = rd32(E1000_WUC);
       
   523 	regs_buff[43] = rd32(E1000_WUFC);
       
   524 	regs_buff[44] = rd32(E1000_WUS);
       
   525 	regs_buff[45] = rd32(E1000_IPAV);
       
   526 	regs_buff[46] = rd32(E1000_WUPL);
       
   527 
       
   528 	/* MAC */
       
   529 	regs_buff[47] = rd32(E1000_PCS_CFG0);
       
   530 	regs_buff[48] = rd32(E1000_PCS_LCTL);
       
   531 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
       
   532 	regs_buff[50] = rd32(E1000_PCS_ANADV);
       
   533 	regs_buff[51] = rd32(E1000_PCS_LPAB);
       
   534 	regs_buff[52] = rd32(E1000_PCS_NPTX);
       
   535 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
       
   536 
       
   537 	/* Statistics */
       
   538 	regs_buff[54] = adapter->stats.crcerrs;
       
   539 	regs_buff[55] = adapter->stats.algnerrc;
       
   540 	regs_buff[56] = adapter->stats.symerrs;
       
   541 	regs_buff[57] = adapter->stats.rxerrc;
       
   542 	regs_buff[58] = adapter->stats.mpc;
       
   543 	regs_buff[59] = adapter->stats.scc;
       
   544 	regs_buff[60] = adapter->stats.ecol;
       
   545 	regs_buff[61] = adapter->stats.mcc;
       
   546 	regs_buff[62] = adapter->stats.latecol;
       
   547 	regs_buff[63] = adapter->stats.colc;
       
   548 	regs_buff[64] = adapter->stats.dc;
       
   549 	regs_buff[65] = adapter->stats.tncrs;
       
   550 	regs_buff[66] = adapter->stats.sec;
       
   551 	regs_buff[67] = adapter->stats.htdpmc;
       
   552 	regs_buff[68] = adapter->stats.rlec;
       
   553 	regs_buff[69] = adapter->stats.xonrxc;
       
   554 	regs_buff[70] = adapter->stats.xontxc;
       
   555 	regs_buff[71] = adapter->stats.xoffrxc;
       
   556 	regs_buff[72] = adapter->stats.xofftxc;
       
   557 	regs_buff[73] = adapter->stats.fcruc;
       
   558 	regs_buff[74] = adapter->stats.prc64;
       
   559 	regs_buff[75] = adapter->stats.prc127;
       
   560 	regs_buff[76] = adapter->stats.prc255;
       
   561 	regs_buff[77] = adapter->stats.prc511;
       
   562 	regs_buff[78] = adapter->stats.prc1023;
       
   563 	regs_buff[79] = adapter->stats.prc1522;
       
   564 	regs_buff[80] = adapter->stats.gprc;
       
   565 	regs_buff[81] = adapter->stats.bprc;
       
   566 	regs_buff[82] = adapter->stats.mprc;
       
   567 	regs_buff[83] = adapter->stats.gptc;
       
   568 	regs_buff[84] = adapter->stats.gorc;
       
   569 	regs_buff[86] = adapter->stats.gotc;
       
   570 	regs_buff[88] = adapter->stats.rnbc;
       
   571 	regs_buff[89] = adapter->stats.ruc;
       
   572 	regs_buff[90] = adapter->stats.rfc;
       
   573 	regs_buff[91] = adapter->stats.roc;
       
   574 	regs_buff[92] = adapter->stats.rjc;
       
   575 	regs_buff[93] = adapter->stats.mgprc;
       
   576 	regs_buff[94] = adapter->stats.mgpdc;
       
   577 	regs_buff[95] = adapter->stats.mgptc;
       
   578 	regs_buff[96] = adapter->stats.tor;
       
   579 	regs_buff[98] = adapter->stats.tot;
       
   580 	regs_buff[100] = adapter->stats.tpr;
       
   581 	regs_buff[101] = adapter->stats.tpt;
       
   582 	regs_buff[102] = adapter->stats.ptc64;
       
   583 	regs_buff[103] = adapter->stats.ptc127;
       
   584 	regs_buff[104] = adapter->stats.ptc255;
       
   585 	regs_buff[105] = adapter->stats.ptc511;
       
   586 	regs_buff[106] = adapter->stats.ptc1023;
       
   587 	regs_buff[107] = adapter->stats.ptc1522;
       
   588 	regs_buff[108] = adapter->stats.mptc;
       
   589 	regs_buff[109] = adapter->stats.bptc;
       
   590 	regs_buff[110] = adapter->stats.tsctc;
       
   591 	regs_buff[111] = adapter->stats.iac;
       
   592 	regs_buff[112] = adapter->stats.rpthc;
       
   593 	regs_buff[113] = adapter->stats.hgptc;
       
   594 	regs_buff[114] = adapter->stats.hgorc;
       
   595 	regs_buff[116] = adapter->stats.hgotc;
       
   596 	regs_buff[118] = adapter->stats.lenerrs;
       
   597 	regs_buff[119] = adapter->stats.scvpc;
       
   598 	regs_buff[120] = adapter->stats.hrmpc;
       
   599 
       
   600 	for (i = 0; i < 4; i++)
       
   601 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
       
   602 	for (i = 0; i < 4; i++)
       
   603 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
       
   604 	for (i = 0; i < 4; i++)
       
   605 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
       
   606 	for (i = 0; i < 4; i++)
       
   607 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
       
   608 	for (i = 0; i < 4; i++)
       
   609 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
       
   610 	for (i = 0; i < 4; i++)
       
   611 		regs_buff[141 + i] = rd32(E1000_RDH(i));
       
   612 	for (i = 0; i < 4; i++)
       
   613 		regs_buff[145 + i] = rd32(E1000_RDT(i));
       
   614 	for (i = 0; i < 4; i++)
       
   615 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
       
   616 
       
   617 	for (i = 0; i < 10; i++)
       
   618 		regs_buff[153 + i] = rd32(E1000_EITR(i));
       
   619 	for (i = 0; i < 8; i++)
       
   620 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
       
   621 	for (i = 0; i < 8; i++)
       
   622 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
       
   623 	for (i = 0; i < 16; i++)
       
   624 		regs_buff[179 + i] = rd32(E1000_RAL(i));
       
   625 	for (i = 0; i < 16; i++)
       
   626 		regs_buff[195 + i] = rd32(E1000_RAH(i));
       
   627 
       
   628 	for (i = 0; i < 4; i++)
       
   629 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
       
   630 	for (i = 0; i < 4; i++)
       
   631 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
       
   632 	for (i = 0; i < 4; i++)
       
   633 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
       
   634 	for (i = 0; i < 4; i++)
       
   635 		regs_buff[223 + i] = rd32(E1000_TDH(i));
       
   636 	for (i = 0; i < 4; i++)
       
   637 		regs_buff[227 + i] = rd32(E1000_TDT(i));
       
   638 	for (i = 0; i < 4; i++)
       
   639 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
       
   640 	for (i = 0; i < 4; i++)
       
   641 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
       
   642 	for (i = 0; i < 4; i++)
       
   643 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
       
   644 	for (i = 0; i < 4; i++)
       
   645 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
       
   646 
       
   647 	for (i = 0; i < 4; i++)
       
   648 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
       
   649 	for (i = 0; i < 4; i++)
       
   650 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
       
   651 	for (i = 0; i < 32; i++)
       
   652 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
       
   653 	for (i = 0; i < 128; i++)
       
   654 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
       
   655 	for (i = 0; i < 128; i++)
       
   656 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
       
   657 	for (i = 0; i < 4; i++)
       
   658 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
       
   659 
       
   660 	regs_buff[547] = rd32(E1000_TDFH);
       
   661 	regs_buff[548] = rd32(E1000_TDFT);
       
   662 	regs_buff[549] = rd32(E1000_TDFHS);
       
   663 	regs_buff[550] = rd32(E1000_TDFPC);
       
   664 
       
   665 	if (hw->mac.type > e1000_82580) {
       
   666 		regs_buff[551] = adapter->stats.o2bgptc;
       
   667 		regs_buff[552] = adapter->stats.b2ospc;
       
   668 		regs_buff[553] = adapter->stats.o2bspc;
       
   669 		regs_buff[554] = adapter->stats.b2ogprc;
       
   670 	}
       
   671 
       
   672 	if (hw->mac.type != e1000_82576)
       
   673 		return;
       
   674 	for (i = 0; i < 12; i++)
       
   675 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
       
   676 	for (i = 0; i < 4; i++)
       
   677 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
       
   678 	for (i = 0; i < 12; i++)
       
   679 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
       
   680 	for (i = 0; i < 12; i++)
       
   681 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
       
   682 	for (i = 0; i < 12; i++)
       
   683 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
       
   684 	for (i = 0; i < 12; i++)
       
   685 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
       
   686 	for (i = 0; i < 12; i++)
       
   687 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
       
   688 	for (i = 0; i < 12; i++)
       
   689 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
       
   690 
       
   691 	for (i = 0; i < 12; i++)
       
   692 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
       
   693 	for (i = 0; i < 12; i++)
       
   694 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
       
   695 	for (i = 0; i < 12; i++)
       
   696 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
       
   697 	for (i = 0; i < 12; i++)
       
   698 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
       
   699 	for (i = 0; i < 12; i++)
       
   700 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
       
   701 	for (i = 0; i < 12; i++)
       
   702 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
       
   703 	for (i = 0; i < 12; i++)
       
   704 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
       
   705 	for (i = 0; i < 12; i++)
       
   706 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
       
   707 }
       
   708 
       
   709 static int igb_get_eeprom_len(struct net_device *netdev)
       
   710 {
       
   711 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   712 	return adapter->hw.nvm.word_size * 2;
       
   713 }
       
   714 
       
   715 static int igb_get_eeprom(struct net_device *netdev,
       
   716 			  struct ethtool_eeprom *eeprom, u8 *bytes)
       
   717 {
       
   718 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   719 	struct e1000_hw *hw = &adapter->hw;
       
   720 	u16 *eeprom_buff;
       
   721 	int first_word, last_word;
       
   722 	int ret_val = 0;
       
   723 	u16 i;
       
   724 
       
   725 	if (eeprom->len == 0)
       
   726 		return -EINVAL;
       
   727 
       
   728 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
       
   729 
       
   730 	first_word = eeprom->offset >> 1;
       
   731 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   732 
       
   733 	eeprom_buff = kmalloc(sizeof(u16) *
       
   734 			(last_word - first_word + 1), GFP_KERNEL);
       
   735 	if (!eeprom_buff)
       
   736 		return -ENOMEM;
       
   737 
       
   738 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
       
   739 		ret_val = hw->nvm.ops.read(hw, first_word,
       
   740 					   last_word - first_word + 1,
       
   741 					   eeprom_buff);
       
   742 	else {
       
   743 		for (i = 0; i < last_word - first_word + 1; i++) {
       
   744 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
       
   745 						   &eeprom_buff[i]);
       
   746 			if (ret_val)
       
   747 				break;
       
   748 		}
       
   749 	}
       
   750 
       
   751 	/* Device's eeprom is always little-endian, word addressable */
       
   752 	for (i = 0; i < last_word - first_word + 1; i++)
       
   753 		le16_to_cpus(&eeprom_buff[i]);
       
   754 
       
   755 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
       
   756 			eeprom->len);
       
   757 	kfree(eeprom_buff);
       
   758 
       
   759 	return ret_val;
       
   760 }
       
   761 
       
   762 static int igb_set_eeprom(struct net_device *netdev,
       
   763 			  struct ethtool_eeprom *eeprom, u8 *bytes)
       
   764 {
       
   765 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   766 	struct e1000_hw *hw = &adapter->hw;
       
   767 	u16 *eeprom_buff;
       
   768 	void *ptr;
       
   769 	int max_len, first_word, last_word, ret_val = 0;
       
   770 	u16 i;
       
   771 
       
   772 	if (eeprom->len == 0)
       
   773 		return -EOPNOTSUPP;
       
   774 
       
   775 	if ((hw->mac.type >= e1000_i210) &&
       
   776 	    !igb_get_flash_presence_i210(hw)) {
       
   777 		return -EOPNOTSUPP;
       
   778 	}
       
   779 
       
   780 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
       
   781 		return -EFAULT;
       
   782 
       
   783 	max_len = hw->nvm.word_size * 2;
       
   784 
       
   785 	first_word = eeprom->offset >> 1;
       
   786 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   787 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
       
   788 	if (!eeprom_buff)
       
   789 		return -ENOMEM;
       
   790 
       
   791 	ptr = (void *)eeprom_buff;
       
   792 
       
   793 	if (eeprom->offset & 1) {
       
   794 		/* need read/modify/write of first changed EEPROM word
       
   795 		 * only the second byte of the word is being modified
       
   796 		 */
       
   797 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
       
   798 					    &eeprom_buff[0]);
       
   799 		ptr++;
       
   800 	}
       
   801 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
       
   802 		/* need read/modify/write of last changed EEPROM word
       
   803 		 * only the first byte of the word is being modified
       
   804 		 */
       
   805 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
       
   806 				   &eeprom_buff[last_word - first_word]);
       
   807 	}
       
   808 
       
   809 	/* Device's eeprom is always little-endian, word addressable */
       
   810 	for (i = 0; i < last_word - first_word + 1; i++)
       
   811 		le16_to_cpus(&eeprom_buff[i]);
       
   812 
       
   813 	memcpy(ptr, bytes, eeprom->len);
       
   814 
       
   815 	for (i = 0; i < last_word - first_word + 1; i++)
       
   816 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
       
   817 
       
   818 	ret_val = hw->nvm.ops.write(hw, first_word,
       
   819 				    last_word - first_word + 1, eeprom_buff);
       
   820 
       
   821 	/* Update the checksum if nvm write succeeded */
       
   822 	if (ret_val == 0)
       
   823 		hw->nvm.ops.update(hw);
       
   824 
       
   825 	igb_set_fw_version(adapter);
       
   826 	kfree(eeprom_buff);
       
   827 	return ret_val;
       
   828 }
       
   829 
       
   830 static void igb_get_drvinfo(struct net_device *netdev,
       
   831 			    struct ethtool_drvinfo *drvinfo)
       
   832 {
       
   833 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   834 
       
   835 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
       
   836 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
       
   837 
       
   838 	/* EEPROM image version # is reported as firmware version # for
       
   839 	 * 82575 controllers
       
   840 	 */
       
   841 	strlcpy(drvinfo->fw_version, adapter->fw_version,
       
   842 		sizeof(drvinfo->fw_version));
       
   843 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
       
   844 		sizeof(drvinfo->bus_info));
       
   845 	drvinfo->n_stats = IGB_STATS_LEN;
       
   846 	drvinfo->testinfo_len = IGB_TEST_LEN;
       
   847 	drvinfo->regdump_len = igb_get_regs_len(netdev);
       
   848 	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
       
   849 }
       
   850 
       
   851 static void igb_get_ringparam(struct net_device *netdev,
       
   852 			      struct ethtool_ringparam *ring)
       
   853 {
       
   854 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   855 
       
   856 	ring->rx_max_pending = IGB_MAX_RXD;
       
   857 	ring->tx_max_pending = IGB_MAX_TXD;
       
   858 	ring->rx_pending = adapter->rx_ring_count;
       
   859 	ring->tx_pending = adapter->tx_ring_count;
       
   860 }
       
   861 
       
   862 static int igb_set_ringparam(struct net_device *netdev,
       
   863 			     struct ethtool_ringparam *ring)
       
   864 {
       
   865 	struct igb_adapter *adapter = netdev_priv(netdev);
       
   866 	struct igb_ring *temp_ring;
       
   867 	int i, err = 0;
       
   868 	u16 new_rx_count, new_tx_count;
       
   869 
       
   870 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
   871 		return -EINVAL;
       
   872 
       
   873 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
       
   874 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
       
   875 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
       
   876 
       
   877 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
       
   878 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
       
   879 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
       
   880 
       
   881 	if ((new_tx_count == adapter->tx_ring_count) &&
       
   882 	    (new_rx_count == adapter->rx_ring_count)) {
       
   883 		/* nothing to do */
       
   884 		return 0;
       
   885 	}
       
   886 
       
   887 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
       
   888 		usleep_range(1000, 2000);
       
   889 
       
   890 	if (!netif_running(adapter->netdev)) {
       
   891 		for (i = 0; i < adapter->num_tx_queues; i++)
       
   892 			adapter->tx_ring[i]->count = new_tx_count;
       
   893 		for (i = 0; i < adapter->num_rx_queues; i++)
       
   894 			adapter->rx_ring[i]->count = new_rx_count;
       
   895 		adapter->tx_ring_count = new_tx_count;
       
   896 		adapter->rx_ring_count = new_rx_count;
       
   897 		goto clear_reset;
       
   898 	}
       
   899 
       
   900 	if (adapter->num_tx_queues > adapter->num_rx_queues)
       
   901 		temp_ring = vmalloc(adapter->num_tx_queues *
       
   902 				    sizeof(struct igb_ring));
       
   903 	else
       
   904 		temp_ring = vmalloc(adapter->num_rx_queues *
       
   905 				    sizeof(struct igb_ring));
       
   906 
       
   907 	if (!temp_ring) {
       
   908 		err = -ENOMEM;
       
   909 		goto clear_reset;
       
   910 	}
       
   911 
       
   912 	igb_down(adapter);
       
   913 
       
   914 	/* We can't just free everything and then setup again,
       
   915 	 * because the ISRs in MSI-X mode get passed pointers
       
   916 	 * to the Tx and Rx ring structs.
       
   917 	 */
       
   918 	if (new_tx_count != adapter->tx_ring_count) {
       
   919 		for (i = 0; i < adapter->num_tx_queues; i++) {
       
   920 			memcpy(&temp_ring[i], adapter->tx_ring[i],
       
   921 			       sizeof(struct igb_ring));
       
   922 
       
   923 			temp_ring[i].count = new_tx_count;
       
   924 			err = igb_setup_tx_resources(&temp_ring[i]);
       
   925 			if (err) {
       
   926 				while (i) {
       
   927 					i--;
       
   928 					igb_free_tx_resources(&temp_ring[i]);
       
   929 				}
       
   930 				goto err_setup;
       
   931 			}
       
   932 		}
       
   933 
       
   934 		for (i = 0; i < adapter->num_tx_queues; i++) {
       
   935 			igb_free_tx_resources(adapter->tx_ring[i]);
       
   936 
       
   937 			memcpy(adapter->tx_ring[i], &temp_ring[i],
       
   938 			       sizeof(struct igb_ring));
       
   939 		}
       
   940 
       
   941 		adapter->tx_ring_count = new_tx_count;
       
   942 	}
       
   943 
       
   944 	if (new_rx_count != adapter->rx_ring_count) {
       
   945 		for (i = 0; i < adapter->num_rx_queues; i++) {
       
   946 			memcpy(&temp_ring[i], adapter->rx_ring[i],
       
   947 			       sizeof(struct igb_ring));
       
   948 
       
   949 			temp_ring[i].count = new_rx_count;
       
   950 			err = igb_setup_rx_resources(&temp_ring[i]);
       
   951 			if (err) {
       
   952 				while (i) {
       
   953 					i--;
       
   954 					igb_free_rx_resources(&temp_ring[i]);
       
   955 				}
       
   956 				goto err_setup;
       
   957 			}
       
   958 
       
   959 		}
       
   960 
       
   961 		for (i = 0; i < adapter->num_rx_queues; i++) {
       
   962 			igb_free_rx_resources(adapter->rx_ring[i]);
       
   963 
       
   964 			memcpy(adapter->rx_ring[i], &temp_ring[i],
       
   965 			       sizeof(struct igb_ring));
       
   966 		}
       
   967 
       
   968 		adapter->rx_ring_count = new_rx_count;
       
   969 	}
       
   970 err_setup:
       
   971 	igb_up(adapter);
       
   972 	vfree(temp_ring);
       
   973 clear_reset:
       
   974 	clear_bit(__IGB_RESETTING, &adapter->state);
       
   975 	return err;
       
   976 }
       
   977 
       
   978 /* ethtool register test data */
       
   979 struct igb_reg_test {
       
   980 	u16 reg;
       
   981 	u16 reg_offset;
       
   982 	u16 array_len;
       
   983 	u16 test_type;
       
   984 	u32 mask;
       
   985 	u32 write;
       
   986 };
       
   987 
       
   988 /* In the hardware, registers are laid out either singly, in arrays
       
   989  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
       
   990  * most tests take place on arrays or single registers (handled
       
   991  * as a single-element array) and special-case the tables.
       
   992  * Table tests are always pattern tests.
       
   993  *
       
   994  * We also make provision for some required setup steps by specifying
       
   995  * registers to be written without any read-back testing.
       
   996  */
       
   997 
       
   998 #define PATTERN_TEST	1
       
   999 #define SET_READ_TEST	2
       
  1000 #define WRITE_NO_TEST	3
       
  1001 #define TABLE32_TEST	4
       
  1002 #define TABLE64_TEST_LO	5
       
  1003 #define TABLE64_TEST_HI	6
       
  1004 
       
  1005 /* i210 reg test */
       
  1006 static struct igb_reg_test reg_test_i210[] = {
       
  1007 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1008 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
       
  1009 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
       
  1010 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1011 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1012 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
       
  1013 	/* RDH is read-only for i210, only test RDT. */
       
  1014 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1015 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
       
  1016 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1017 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
       
  1018 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1019 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1020 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
       
  1021 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1022 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
       
  1023 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
       
  1024 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
       
  1025 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
       
  1026 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
       
  1027 						0xFFFFFFFF, 0xFFFFFFFF },
       
  1028 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
       
  1029 						0x900FFFFF, 0xFFFFFFFF },
       
  1030 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
       
  1031 						0xFFFFFFFF, 0xFFFFFFFF },
       
  1032 	{ 0, 0, 0, 0, 0 }
       
  1033 };
       
  1034 
       
  1035 /* i350 reg test */
       
  1036 static struct igb_reg_test reg_test_i350[] = {
       
  1037 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1038 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
       
  1039 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
       
  1040 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
       
  1041 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1042 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1043 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
       
  1044 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1045 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1046 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
       
  1047 	/* RDH is read-only for i350, only test RDT. */
       
  1048 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1049 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1050 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
       
  1051 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1052 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
       
  1053 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1054 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1055 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
       
  1056 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1057 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1058 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
       
  1059 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1060 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1061 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
       
  1062 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
       
  1063 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
       
  1064 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
       
  1065 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
       
  1066 						0xFFFFFFFF, 0xFFFFFFFF },
       
  1067 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
       
  1068 						0xC3FFFFFF, 0xFFFFFFFF },
       
  1069 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
       
  1070 						0xFFFFFFFF, 0xFFFFFFFF },
       
  1071 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
       
  1072 						0xC3FFFFFF, 0xFFFFFFFF },
       
  1073 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
       
  1074 						0xFFFFFFFF, 0xFFFFFFFF },
       
  1075 	{ 0, 0, 0, 0 }
       
  1076 };
       
  1077 
       
  1078 /* 82580 reg test */
       
  1079 static struct igb_reg_test reg_test_82580[] = {
       
  1080 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1081 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
       
  1082 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
       
  1083 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1084 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1085 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1086 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
       
  1087 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1088 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1089 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
       
  1090 	/* RDH is read-only for 82580, only test RDT. */
       
  1091 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1092 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1093 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
       
  1094 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1095 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
       
  1096 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1097 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1098 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
       
  1099 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1100 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1101 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
       
  1102 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1103 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1104 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
       
  1105 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
       
  1106 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
       
  1107 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
       
  1108 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
       
  1109 						0xFFFFFFFF, 0xFFFFFFFF },
       
  1110 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
       
  1111 						0x83FFFFFF, 0xFFFFFFFF },
       
  1112 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
       
  1113 						0xFFFFFFFF, 0xFFFFFFFF },
       
  1114 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
       
  1115 						0x83FFFFFF, 0xFFFFFFFF },
       
  1116 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
       
  1117 						0xFFFFFFFF, 0xFFFFFFFF },
       
  1118 	{ 0, 0, 0, 0 }
       
  1119 };
       
  1120 
       
  1121 /* 82576 reg test */
       
  1122 static struct igb_reg_test reg_test_82576[] = {
       
  1123 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1124 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
       
  1125 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
       
  1126 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1127 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1128 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1129 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
       
  1130 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1131 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1132 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
       
  1133 	/* Enable all RX queues before testing. */
       
  1134 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
       
  1135 	  E1000_RXDCTL_QUEUE_ENABLE },
       
  1136 	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
       
  1137 	  E1000_RXDCTL_QUEUE_ENABLE },
       
  1138 	/* RDH is read-only for 82576, only test RDT. */
       
  1139 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1140 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1141 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
       
  1142 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
       
  1143 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
       
  1144 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1145 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
       
  1146 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1147 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1148 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
       
  1149 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1150 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1151 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
       
  1152 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
       
  1153 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
       
  1154 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
       
  1155 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
       
  1156 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1157 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
       
  1158 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1159 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
       
  1160 	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1161 	{ 0, 0, 0, 0 }
       
  1162 };
       
  1163 
       
  1164 /* 82575 register test */
       
  1165 static struct igb_reg_test reg_test_82575[] = {
       
  1166 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1167 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
       
  1168 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
       
  1169 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1170 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1171 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1172 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
       
  1173 	/* Enable all four RX queues before testing. */
       
  1174 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
       
  1175 	  E1000_RXDCTL_QUEUE_ENABLE },
       
  1176 	/* RDH is read-only for 82575, only test RDT. */
       
  1177 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1178 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
       
  1179 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
       
  1180 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
       
  1181 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
       
  1182 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
       
  1183 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1184 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
       
  1185 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
       
  1186 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
       
  1187 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
       
  1188 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
       
  1189 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
       
  1190 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1191 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
       
  1192 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
       
  1193 	{ 0, 0, 0, 0 }
       
  1194 };
       
  1195 
       
  1196 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
       
  1197 			     int reg, u32 mask, u32 write)
       
  1198 {
       
  1199 	struct e1000_hw *hw = &adapter->hw;
       
  1200 	u32 pat, val;
       
  1201 	static const u32 _test[] = {
       
  1202 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
       
  1203 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
       
  1204 		wr32(reg, (_test[pat] & write));
       
  1205 		val = rd32(reg) & mask;
       
  1206 		if (val != (_test[pat] & write & mask)) {
       
  1207 			dev_err(&adapter->pdev->dev,
       
  1208 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
       
  1209 				reg, val, (_test[pat] & write & mask));
       
  1210 			*data = reg;
       
  1211 			return true;
       
  1212 		}
       
  1213 	}
       
  1214 
       
  1215 	return false;
       
  1216 }
       
  1217 
       
  1218 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
       
  1219 			      int reg, u32 mask, u32 write)
       
  1220 {
       
  1221 	struct e1000_hw *hw = &adapter->hw;
       
  1222 	u32 val;
       
  1223 
       
  1224 	wr32(reg, write & mask);
       
  1225 	val = rd32(reg);
       
  1226 	if ((write & mask) != (val & mask)) {
       
  1227 		dev_err(&adapter->pdev->dev,
       
  1228 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
       
  1229 			reg, (val & mask), (write & mask));
       
  1230 		*data = reg;
       
  1231 		return true;
       
  1232 	}
       
  1233 
       
  1234 	return false;
       
  1235 }
       
  1236 
       
  1237 #define REG_PATTERN_TEST(reg, mask, write) \
       
  1238 	do { \
       
  1239 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
       
  1240 			return 1; \
       
  1241 	} while (0)
       
  1242 
       
  1243 #define REG_SET_AND_CHECK(reg, mask, write) \
       
  1244 	do { \
       
  1245 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
       
  1246 			return 1; \
       
  1247 	} while (0)
       
  1248 
       
  1249 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
       
  1250 {
       
  1251 	struct e1000_hw *hw = &adapter->hw;
       
  1252 	struct igb_reg_test *test;
       
  1253 	u32 value, before, after;
       
  1254 	u32 i, toggle;
       
  1255 
       
  1256 	switch (adapter->hw.mac.type) {
       
  1257 	case e1000_i350:
       
  1258 	case e1000_i354:
       
  1259 		test = reg_test_i350;
       
  1260 		toggle = 0x7FEFF3FF;
       
  1261 		break;
       
  1262 	case e1000_i210:
       
  1263 	case e1000_i211:
       
  1264 		test = reg_test_i210;
       
  1265 		toggle = 0x7FEFF3FF;
       
  1266 		break;
       
  1267 	case e1000_82580:
       
  1268 		test = reg_test_82580;
       
  1269 		toggle = 0x7FEFF3FF;
       
  1270 		break;
       
  1271 	case e1000_82576:
       
  1272 		test = reg_test_82576;
       
  1273 		toggle = 0x7FFFF3FF;
       
  1274 		break;
       
  1275 	default:
       
  1276 		test = reg_test_82575;
       
  1277 		toggle = 0x7FFFF3FF;
       
  1278 		break;
       
  1279 	}
       
  1280 
       
  1281 	/* Because the status register is such a special case,
       
  1282 	 * we handle it separately from the rest of the register
       
  1283 	 * tests.  Some bits are read-only, some toggle, and some
       
  1284 	 * are writable on newer MACs.
       
  1285 	 */
       
  1286 	before = rd32(E1000_STATUS);
       
  1287 	value = (rd32(E1000_STATUS) & toggle);
       
  1288 	wr32(E1000_STATUS, toggle);
       
  1289 	after = rd32(E1000_STATUS) & toggle;
       
  1290 	if (value != after) {
       
  1291 		dev_err(&adapter->pdev->dev,
       
  1292 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
       
  1293 			after, value);
       
  1294 		*data = 1;
       
  1295 		return 1;
       
  1296 	}
       
  1297 	/* restore previous status */
       
  1298 	wr32(E1000_STATUS, before);
       
  1299 
       
  1300 	/* Perform the remainder of the register test, looping through
       
  1301 	 * the test table until we either fail or reach the null entry.
       
  1302 	 */
       
  1303 	while (test->reg) {
       
  1304 		for (i = 0; i < test->array_len; i++) {
       
  1305 			switch (test->test_type) {
       
  1306 			case PATTERN_TEST:
       
  1307 				REG_PATTERN_TEST(test->reg +
       
  1308 						(i * test->reg_offset),
       
  1309 						test->mask,
       
  1310 						test->write);
       
  1311 				break;
       
  1312 			case SET_READ_TEST:
       
  1313 				REG_SET_AND_CHECK(test->reg +
       
  1314 						(i * test->reg_offset),
       
  1315 						test->mask,
       
  1316 						test->write);
       
  1317 				break;
       
  1318 			case WRITE_NO_TEST:
       
  1319 				writel(test->write,
       
  1320 				    (adapter->hw.hw_addr + test->reg)
       
  1321 					+ (i * test->reg_offset));
       
  1322 				break;
       
  1323 			case TABLE32_TEST:
       
  1324 				REG_PATTERN_TEST(test->reg + (i * 4),
       
  1325 						test->mask,
       
  1326 						test->write);
       
  1327 				break;
       
  1328 			case TABLE64_TEST_LO:
       
  1329 				REG_PATTERN_TEST(test->reg + (i * 8),
       
  1330 						test->mask,
       
  1331 						test->write);
       
  1332 				break;
       
  1333 			case TABLE64_TEST_HI:
       
  1334 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
       
  1335 						test->mask,
       
  1336 						test->write);
       
  1337 				break;
       
  1338 			}
       
  1339 		}
       
  1340 		test++;
       
  1341 	}
       
  1342 
       
  1343 	*data = 0;
       
  1344 	return 0;
       
  1345 }
       
  1346 
       
  1347 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
       
  1348 {
       
  1349 	struct e1000_hw *hw = &adapter->hw;
       
  1350 
       
  1351 	*data = 0;
       
  1352 
       
  1353 	/* Validate eeprom on all parts but flashless */
       
  1354 	switch (hw->mac.type) {
       
  1355 	case e1000_i210:
       
  1356 	case e1000_i211:
       
  1357 		if (igb_get_flash_presence_i210(hw)) {
       
  1358 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
       
  1359 				*data = 2;
       
  1360 		}
       
  1361 		break;
       
  1362 	default:
       
  1363 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
       
  1364 			*data = 2;
       
  1365 		break;
       
  1366 	}
       
  1367 
       
  1368 	return *data;
       
  1369 }
       
  1370 
       
  1371 static irqreturn_t igb_test_intr(int irq, void *data)
       
  1372 {
       
  1373 	struct igb_adapter *adapter = (struct igb_adapter *) data;
       
  1374 	struct e1000_hw *hw = &adapter->hw;
       
  1375 
       
  1376 	adapter->test_icr |= rd32(E1000_ICR);
       
  1377 
       
  1378 	return IRQ_HANDLED;
       
  1379 }
       
  1380 
       
  1381 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
       
  1382 {
       
  1383 	struct e1000_hw *hw = &adapter->hw;
       
  1384 	struct net_device *netdev = adapter->netdev;
       
  1385 	u32 mask, ics_mask, i = 0, shared_int = true;
       
  1386 	u32 irq = adapter->pdev->irq;
       
  1387 
       
  1388 	*data = 0;
       
  1389 
       
  1390 	/* Hook up test interrupt handler just for this test */
       
  1391 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
       
  1392 		if (request_irq(adapter->msix_entries[0].vector,
       
  1393 				igb_test_intr, 0, netdev->name, adapter)) {
       
  1394 			*data = 1;
       
  1395 			return -1;
       
  1396 		}
       
  1397 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
       
  1398 		shared_int = false;
       
  1399 		if (request_irq(irq,
       
  1400 				igb_test_intr, 0, netdev->name, adapter)) {
       
  1401 			*data = 1;
       
  1402 			return -1;
       
  1403 		}
       
  1404 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
       
  1405 				netdev->name, adapter)) {
       
  1406 		shared_int = false;
       
  1407 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
       
  1408 		 netdev->name, adapter)) {
       
  1409 		*data = 1;
       
  1410 		return -1;
       
  1411 	}
       
  1412 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
       
  1413 		(shared_int ? "shared" : "unshared"));
       
  1414 
       
  1415 	/* Disable all the interrupts */
       
  1416 	wr32(E1000_IMC, ~0);
       
  1417 	wrfl();
       
  1418 	usleep_range(10000, 11000);
       
  1419 
       
  1420 	/* Define all writable bits for ICS */
       
  1421 	switch (hw->mac.type) {
       
  1422 	case e1000_82575:
       
  1423 		ics_mask = 0x37F47EDD;
       
  1424 		break;
       
  1425 	case e1000_82576:
       
  1426 		ics_mask = 0x77D4FBFD;
       
  1427 		break;
       
  1428 	case e1000_82580:
       
  1429 		ics_mask = 0x77DCFED5;
       
  1430 		break;
       
  1431 	case e1000_i350:
       
  1432 	case e1000_i354:
       
  1433 	case e1000_i210:
       
  1434 	case e1000_i211:
       
  1435 		ics_mask = 0x77DCFED5;
       
  1436 		break;
       
  1437 	default:
       
  1438 		ics_mask = 0x7FFFFFFF;
       
  1439 		break;
       
  1440 	}
       
  1441 
       
  1442 	/* Test each interrupt */
       
  1443 	for (; i < 31; i++) {
       
  1444 		/* Interrupt to test */
       
  1445 		mask = 1 << i;
       
  1446 
       
  1447 		if (!(mask & ics_mask))
       
  1448 			continue;
       
  1449 
       
  1450 		if (!shared_int) {
       
  1451 			/* Disable the interrupt to be reported in
       
  1452 			 * the cause register and then force the same
       
  1453 			 * interrupt and see if one gets posted.  If
       
  1454 			 * an interrupt was posted to the bus, the
       
  1455 			 * test failed.
       
  1456 			 */
       
  1457 			adapter->test_icr = 0;
       
  1458 
       
  1459 			/* Flush any pending interrupts */
       
  1460 			wr32(E1000_ICR, ~0);
       
  1461 
       
  1462 			wr32(E1000_IMC, mask);
       
  1463 			wr32(E1000_ICS, mask);
       
  1464 			wrfl();
       
  1465 			usleep_range(10000, 11000);
       
  1466 
       
  1467 			if (adapter->test_icr & mask) {
       
  1468 				*data = 3;
       
  1469 				break;
       
  1470 			}
       
  1471 		}
       
  1472 
       
  1473 		/* Enable the interrupt to be reported in
       
  1474 		 * the cause register and then force the same
       
  1475 		 * interrupt and see if one gets posted.  If
       
  1476 		 * an interrupt was not posted to the bus, the
       
  1477 		 * test failed.
       
  1478 		 */
       
  1479 		adapter->test_icr = 0;
       
  1480 
       
  1481 		/* Flush any pending interrupts */
       
  1482 		wr32(E1000_ICR, ~0);
       
  1483 
       
  1484 		wr32(E1000_IMS, mask);
       
  1485 		wr32(E1000_ICS, mask);
       
  1486 		wrfl();
       
  1487 		usleep_range(10000, 11000);
       
  1488 
       
  1489 		if (!(adapter->test_icr & mask)) {
       
  1490 			*data = 4;
       
  1491 			break;
       
  1492 		}
       
  1493 
       
  1494 		if (!shared_int) {
       
  1495 			/* Disable the other interrupts to be reported in
       
  1496 			 * the cause register and then force the other
       
  1497 			 * interrupts and see if any get posted.  If
       
  1498 			 * an interrupt was posted to the bus, the
       
  1499 			 * test failed.
       
  1500 			 */
       
  1501 			adapter->test_icr = 0;
       
  1502 
       
  1503 			/* Flush any pending interrupts */
       
  1504 			wr32(E1000_ICR, ~0);
       
  1505 
       
  1506 			wr32(E1000_IMC, ~mask);
       
  1507 			wr32(E1000_ICS, ~mask);
       
  1508 			wrfl();
       
  1509 			usleep_range(10000, 11000);
       
  1510 
       
  1511 			if (adapter->test_icr & mask) {
       
  1512 				*data = 5;
       
  1513 				break;
       
  1514 			}
       
  1515 		}
       
  1516 	}
       
  1517 
       
  1518 	/* Disable all the interrupts */
       
  1519 	wr32(E1000_IMC, ~0);
       
  1520 	wrfl();
       
  1521 	usleep_range(10000, 11000);
       
  1522 
       
  1523 	/* Unhook test interrupt handler */
       
  1524 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
       
  1525 		free_irq(adapter->msix_entries[0].vector, adapter);
       
  1526 	else
       
  1527 		free_irq(irq, adapter);
       
  1528 
       
  1529 	return *data;
       
  1530 }
       
  1531 
       
  1532 static void igb_free_desc_rings(struct igb_adapter *adapter)
       
  1533 {
       
  1534 	igb_free_tx_resources(&adapter->test_tx_ring);
       
  1535 	igb_free_rx_resources(&adapter->test_rx_ring);
       
  1536 }
       
  1537 
       
  1538 static int igb_setup_desc_rings(struct igb_adapter *adapter)
       
  1539 {
       
  1540 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
       
  1541 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
       
  1542 	struct e1000_hw *hw = &adapter->hw;
       
  1543 	int ret_val;
       
  1544 
       
  1545 	/* Setup Tx descriptor ring and Tx buffers */
       
  1546 	tx_ring->count = IGB_DEFAULT_TXD;
       
  1547 	tx_ring->dev = &adapter->pdev->dev;
       
  1548 	tx_ring->netdev = adapter->netdev;
       
  1549 	tx_ring->reg_idx = adapter->vfs_allocated_count;
       
  1550 
       
  1551 	if (igb_setup_tx_resources(tx_ring)) {
       
  1552 		ret_val = 1;
       
  1553 		goto err_nomem;
       
  1554 	}
       
  1555 
       
  1556 	igb_setup_tctl(adapter);
       
  1557 	igb_configure_tx_ring(adapter, tx_ring);
       
  1558 
       
  1559 	/* Setup Rx descriptor ring and Rx buffers */
       
  1560 	rx_ring->count = IGB_DEFAULT_RXD;
       
  1561 	rx_ring->dev = &adapter->pdev->dev;
       
  1562 	rx_ring->netdev = adapter->netdev;
       
  1563 	rx_ring->reg_idx = adapter->vfs_allocated_count;
       
  1564 
       
  1565 	if (igb_setup_rx_resources(rx_ring)) {
       
  1566 		ret_val = 3;
       
  1567 		goto err_nomem;
       
  1568 	}
       
  1569 
       
  1570 	/* set the default queue to queue 0 of PF */
       
  1571 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
       
  1572 
       
  1573 	/* enable receive ring */
       
  1574 	igb_setup_rctl(adapter);
       
  1575 	igb_configure_rx_ring(adapter, rx_ring);
       
  1576 
       
  1577 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
       
  1578 
       
  1579 	return 0;
       
  1580 
       
  1581 err_nomem:
       
  1582 	igb_free_desc_rings(adapter);
       
  1583 	return ret_val;
       
  1584 }
       
  1585 
       
  1586 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
       
  1587 {
       
  1588 	struct e1000_hw *hw = &adapter->hw;
       
  1589 
       
  1590 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1591 	igb_write_phy_reg(hw, 29, 0x001F);
       
  1592 	igb_write_phy_reg(hw, 30, 0x8FFC);
       
  1593 	igb_write_phy_reg(hw, 29, 0x001A);
       
  1594 	igb_write_phy_reg(hw, 30, 0x8FF0);
       
  1595 }
       
  1596 
       
  1597 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
       
  1598 {
       
  1599 	struct e1000_hw *hw = &adapter->hw;
       
  1600 	u32 ctrl_reg = 0;
       
  1601 
       
  1602 	hw->mac.autoneg = false;
       
  1603 
       
  1604 	if (hw->phy.type == e1000_phy_m88) {
       
  1605 		if (hw->phy.id != I210_I_PHY_ID) {
       
  1606 			/* Auto-MDI/MDIX Off */
       
  1607 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
       
  1608 			/* reset to update Auto-MDI/MDIX */
       
  1609 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
       
  1610 			/* autoneg off */
       
  1611 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
       
  1612 		} else {
       
  1613 			/* force 1000, set loopback  */
       
  1614 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
       
  1615 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
       
  1616 		}
       
  1617 	} else if (hw->phy.type == e1000_phy_82580) {
       
  1618 		/* enable MII loopback */
       
  1619 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
       
  1620 	}
       
  1621 
       
  1622 	/* add small delay to avoid loopback test failure */
       
  1623 	msleep(50);
       
  1624 
       
  1625 	/* force 1000, set loopback */
       
  1626 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
       
  1627 
       
  1628 	/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1629 	ctrl_reg = rd32(E1000_CTRL);
       
  1630 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1631 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1632 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1633 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
       
  1634 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
       
  1635 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
       
  1636 
       
  1637 	if (hw->phy.type == e1000_phy_m88)
       
  1638 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
       
  1639 
       
  1640 	wr32(E1000_CTRL, ctrl_reg);
       
  1641 
       
  1642 	/* Disable the receiver on the PHY so when a cable is plugged in, the
       
  1643 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
       
  1644 	 */
       
  1645 	if (hw->phy.type == e1000_phy_m88)
       
  1646 		igb_phy_disable_receiver(adapter);
       
  1647 
       
  1648 	mdelay(500);
       
  1649 	return 0;
       
  1650 }
       
  1651 
       
  1652 static int igb_set_phy_loopback(struct igb_adapter *adapter)
       
  1653 {
       
  1654 	return igb_integrated_phy_loopback(adapter);
       
  1655 }
       
  1656 
       
  1657 static int igb_setup_loopback_test(struct igb_adapter *adapter)
       
  1658 {
       
  1659 	struct e1000_hw *hw = &adapter->hw;
       
  1660 	u32 reg;
       
  1661 
       
  1662 	reg = rd32(E1000_CTRL_EXT);
       
  1663 
       
  1664 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
       
  1665 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
       
  1666 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
       
  1667 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
       
  1668 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
       
  1669 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
       
  1670 		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
       
  1671 		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
       
  1672 			/* Enable DH89xxCC MPHY for near end loopback */
       
  1673 			reg = rd32(E1000_MPHY_ADDR_CTL);
       
  1674 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
       
  1675 			E1000_MPHY_PCS_CLK_REG_OFFSET;
       
  1676 			wr32(E1000_MPHY_ADDR_CTL, reg);
       
  1677 
       
  1678 			reg = rd32(E1000_MPHY_DATA);
       
  1679 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
       
  1680 			wr32(E1000_MPHY_DATA, reg);
       
  1681 		}
       
  1682 
       
  1683 		reg = rd32(E1000_RCTL);
       
  1684 		reg |= E1000_RCTL_LBM_TCVR;
       
  1685 		wr32(E1000_RCTL, reg);
       
  1686 
       
  1687 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
       
  1688 
       
  1689 		reg = rd32(E1000_CTRL);
       
  1690 		reg &= ~(E1000_CTRL_RFCE |
       
  1691 			 E1000_CTRL_TFCE |
       
  1692 			 E1000_CTRL_LRST);
       
  1693 		reg |= E1000_CTRL_SLU |
       
  1694 		       E1000_CTRL_FD;
       
  1695 		wr32(E1000_CTRL, reg);
       
  1696 
       
  1697 		/* Unset switch control to serdes energy detect */
       
  1698 		reg = rd32(E1000_CONNSW);
       
  1699 		reg &= ~E1000_CONNSW_ENRGSRC;
       
  1700 		wr32(E1000_CONNSW, reg);
       
  1701 
       
  1702 		/* Unset sigdetect for SERDES loopback on
       
  1703 		 * 82580 and newer devices.
       
  1704 		 */
       
  1705 		if (hw->mac.type >= e1000_82580) {
       
  1706 			reg = rd32(E1000_PCS_CFG0);
       
  1707 			reg |= E1000_PCS_CFG_IGN_SD;
       
  1708 			wr32(E1000_PCS_CFG0, reg);
       
  1709 		}
       
  1710 
       
  1711 		/* Set PCS register for forced speed */
       
  1712 		reg = rd32(E1000_PCS_LCTL);
       
  1713 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
       
  1714 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
       
  1715 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
       
  1716 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
       
  1717 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
       
  1718 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
       
  1719 		wr32(E1000_PCS_LCTL, reg);
       
  1720 
       
  1721 		return 0;
       
  1722 	}
       
  1723 
       
  1724 	return igb_set_phy_loopback(adapter);
       
  1725 }
       
  1726 
       
  1727 static void igb_loopback_cleanup(struct igb_adapter *adapter)
       
  1728 {
       
  1729 	struct e1000_hw *hw = &adapter->hw;
       
  1730 	u32 rctl;
       
  1731 	u16 phy_reg;
       
  1732 
       
  1733 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
       
  1734 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
       
  1735 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
       
  1736 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
       
  1737 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
       
  1738 		u32 reg;
       
  1739 
       
  1740 		/* Disable near end loopback on DH89xxCC */
       
  1741 		reg = rd32(E1000_MPHY_ADDR_CTL);
       
  1742 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
       
  1743 		E1000_MPHY_PCS_CLK_REG_OFFSET;
       
  1744 		wr32(E1000_MPHY_ADDR_CTL, reg);
       
  1745 
       
  1746 		reg = rd32(E1000_MPHY_DATA);
       
  1747 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
       
  1748 		wr32(E1000_MPHY_DATA, reg);
       
  1749 	}
       
  1750 
       
  1751 	rctl = rd32(E1000_RCTL);
       
  1752 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
       
  1753 	wr32(E1000_RCTL, rctl);
       
  1754 
       
  1755 	hw->mac.autoneg = true;
       
  1756 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
       
  1757 	if (phy_reg & MII_CR_LOOPBACK) {
       
  1758 		phy_reg &= ~MII_CR_LOOPBACK;
       
  1759 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
       
  1760 		igb_phy_sw_reset(hw);
       
  1761 	}
       
  1762 }
       
  1763 
       
  1764 static void igb_create_lbtest_frame(struct sk_buff *skb,
       
  1765 				    unsigned int frame_size)
       
  1766 {
       
  1767 	memset(skb->data, 0xFF, frame_size);
       
  1768 	frame_size /= 2;
       
  1769 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
       
  1770 	memset(&skb->data[frame_size + 10], 0xBE, 1);
       
  1771 	memset(&skb->data[frame_size + 12], 0xAF, 1);
       
  1772 }
       
  1773 
       
  1774 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
       
  1775 				  unsigned int frame_size)
       
  1776 {
       
  1777 	unsigned char *data;
       
  1778 	bool match = true;
       
  1779 
       
  1780 	frame_size >>= 1;
       
  1781 
       
  1782 	data = kmap(rx_buffer->page);
       
  1783 
       
  1784 	if (data[3] != 0xFF ||
       
  1785 	    data[frame_size + 10] != 0xBE ||
       
  1786 	    data[frame_size + 12] != 0xAF)
       
  1787 		match = false;
       
  1788 
       
  1789 	kunmap(rx_buffer->page);
       
  1790 
       
  1791 	return match;
       
  1792 }
       
  1793 
       
  1794 static int igb_clean_test_rings(struct igb_ring *rx_ring,
       
  1795 				struct igb_ring *tx_ring,
       
  1796 				unsigned int size)
       
  1797 {
       
  1798 	union e1000_adv_rx_desc *rx_desc;
       
  1799 	struct igb_rx_buffer *rx_buffer_info;
       
  1800 	struct igb_tx_buffer *tx_buffer_info;
       
  1801 	u16 rx_ntc, tx_ntc, count = 0;
       
  1802 
       
  1803 	/* initialize next to clean and descriptor values */
       
  1804 	rx_ntc = rx_ring->next_to_clean;
       
  1805 	tx_ntc = tx_ring->next_to_clean;
       
  1806 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
       
  1807 
       
  1808 	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
       
  1809 		/* check Rx buffer */
       
  1810 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
       
  1811 
       
  1812 		/* sync Rx buffer for CPU read */
       
  1813 		dma_sync_single_for_cpu(rx_ring->dev,
       
  1814 					rx_buffer_info->dma,
       
  1815 					IGB_RX_BUFSZ,
       
  1816 					DMA_FROM_DEVICE);
       
  1817 
       
  1818 		/* verify contents of skb */
       
  1819 		if (igb_check_lbtest_frame(rx_buffer_info, size))
       
  1820 			count++;
       
  1821 
       
  1822 		/* sync Rx buffer for device write */
       
  1823 		dma_sync_single_for_device(rx_ring->dev,
       
  1824 					   rx_buffer_info->dma,
       
  1825 					   IGB_RX_BUFSZ,
       
  1826 					   DMA_FROM_DEVICE);
       
  1827 
       
  1828 		/* unmap buffer on Tx side */
       
  1829 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
       
  1830 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
       
  1831 
       
  1832 		/* increment Rx/Tx next to clean counters */
       
  1833 		rx_ntc++;
       
  1834 		if (rx_ntc == rx_ring->count)
       
  1835 			rx_ntc = 0;
       
  1836 		tx_ntc++;
       
  1837 		if (tx_ntc == tx_ring->count)
       
  1838 			tx_ntc = 0;
       
  1839 
       
  1840 		/* fetch next descriptor */
       
  1841 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
       
  1842 	}
       
  1843 
       
  1844 	netdev_tx_reset_queue(txring_txq(tx_ring));
       
  1845 
       
  1846 	/* re-map buffers to ring, store next to clean values */
       
  1847 	igb_alloc_rx_buffers(rx_ring, count);
       
  1848 	rx_ring->next_to_clean = rx_ntc;
       
  1849 	tx_ring->next_to_clean = tx_ntc;
       
  1850 
       
  1851 	return count;
       
  1852 }
       
  1853 
       
  1854 static int igb_run_loopback_test(struct igb_adapter *adapter)
       
  1855 {
       
  1856 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
       
  1857 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
       
  1858 	u16 i, j, lc, good_cnt;
       
  1859 	int ret_val = 0;
       
  1860 	unsigned int size = IGB_RX_HDR_LEN;
       
  1861 	netdev_tx_t tx_ret_val;
       
  1862 	struct sk_buff *skb;
       
  1863 
       
  1864 	/* allocate test skb */
       
  1865 	skb = alloc_skb(size, GFP_KERNEL);
       
  1866 	if (!skb)
       
  1867 		return 11;
       
  1868 
       
  1869 	/* place data into test skb */
       
  1870 	igb_create_lbtest_frame(skb, size);
       
  1871 	skb_put(skb, size);
       
  1872 
       
  1873 	/* Calculate the loop count based on the largest descriptor ring
       
  1874 	 * The idea is to wrap the largest ring a number of times using 64
       
  1875 	 * send/receive pairs during each loop
       
  1876 	 */
       
  1877 
       
  1878 	if (rx_ring->count <= tx_ring->count)
       
  1879 		lc = ((tx_ring->count / 64) * 2) + 1;
       
  1880 	else
       
  1881 		lc = ((rx_ring->count / 64) * 2) + 1;
       
  1882 
       
  1883 	for (j = 0; j <= lc; j++) { /* loop count loop */
       
  1884 		/* reset count of good packets */
       
  1885 		good_cnt = 0;
       
  1886 
       
  1887 		/* place 64 packets on the transmit queue*/
       
  1888 		for (i = 0; i < 64; i++) {
       
  1889 			skb_get(skb);
       
  1890 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
       
  1891 			if (tx_ret_val == NETDEV_TX_OK)
       
  1892 				good_cnt++;
       
  1893 		}
       
  1894 
       
  1895 		if (good_cnt != 64) {
       
  1896 			ret_val = 12;
       
  1897 			break;
       
  1898 		}
       
  1899 
       
  1900 		/* allow 200 milliseconds for packets to go from Tx to Rx */
       
  1901 		msleep(200);
       
  1902 
       
  1903 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
       
  1904 		if (good_cnt != 64) {
       
  1905 			ret_val = 13;
       
  1906 			break;
       
  1907 		}
       
  1908 	} /* end loop count loop */
       
  1909 
       
  1910 	/* free the original skb */
       
  1911 	kfree_skb(skb);
       
  1912 
       
  1913 	return ret_val;
       
  1914 }
       
  1915 
       
  1916 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
       
  1917 {
       
  1918 	/* PHY loopback cannot be performed if SoL/IDER
       
  1919 	 * sessions are active
       
  1920 	 */
       
  1921 	if (igb_check_reset_block(&adapter->hw)) {
       
  1922 		dev_err(&adapter->pdev->dev,
       
  1923 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
       
  1924 		*data = 0;
       
  1925 		goto out;
       
  1926 	}
       
  1927 
       
  1928 	if (adapter->hw.mac.type == e1000_i354) {
       
  1929 		dev_info(&adapter->pdev->dev,
       
  1930 			"Loopback test not supported on i354.\n");
       
  1931 		*data = 0;
       
  1932 		goto out;
       
  1933 	}
       
  1934 	*data = igb_setup_desc_rings(adapter);
       
  1935 	if (*data)
       
  1936 		goto out;
       
  1937 	*data = igb_setup_loopback_test(adapter);
       
  1938 	if (*data)
       
  1939 		goto err_loopback;
       
  1940 	*data = igb_run_loopback_test(adapter);
       
  1941 	igb_loopback_cleanup(adapter);
       
  1942 
       
  1943 err_loopback:
       
  1944 	igb_free_desc_rings(adapter);
       
  1945 out:
       
  1946 	return *data;
       
  1947 }
       
  1948 
       
  1949 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
       
  1950 {
       
  1951 	struct e1000_hw *hw = &adapter->hw;
       
  1952 	*data = 0;
       
  1953 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1954 		int i = 0;
       
  1955 
       
  1956 		hw->mac.serdes_has_link = false;
       
  1957 
       
  1958 		/* On some blade server designs, link establishment
       
  1959 		 * could take as long as 2-3 minutes
       
  1960 		 */
       
  1961 		do {
       
  1962 			hw->mac.ops.check_for_link(&adapter->hw);
       
  1963 			if (hw->mac.serdes_has_link)
       
  1964 				return *data;
       
  1965 			msleep(20);
       
  1966 		} while (i++ < 3750);
       
  1967 
       
  1968 		*data = 1;
       
  1969 	} else {
       
  1970 		hw->mac.ops.check_for_link(&adapter->hw);
       
  1971 		if (hw->mac.autoneg)
       
  1972 			msleep(5000);
       
  1973 
       
  1974 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
       
  1975 			*data = 1;
       
  1976 	}
       
  1977 	return *data;
       
  1978 }
       
  1979 
       
  1980 static void igb_diag_test(struct net_device *netdev,
       
  1981 			  struct ethtool_test *eth_test, u64 *data)
       
  1982 {
       
  1983 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  1984 	u16 autoneg_advertised;
       
  1985 	u8 forced_speed_duplex, autoneg;
       
  1986 	bool if_running = netif_running(netdev);
       
  1987 
       
  1988 	set_bit(__IGB_TESTING, &adapter->state);
       
  1989 
       
  1990 	/* can't do offline tests on media switching devices */
       
  1991 	if (adapter->hw.dev_spec._82575.mas_capable)
       
  1992 		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
       
  1993 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
       
  1994 		/* Offline tests */
       
  1995 
       
  1996 		/* save speed, duplex, autoneg settings */
       
  1997 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
       
  1998 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
       
  1999 		autoneg = adapter->hw.mac.autoneg;
       
  2000 
       
  2001 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
       
  2002 
       
  2003 		/* power up link for link test */
       
  2004 		igb_power_up_link(adapter);
       
  2005 
       
  2006 		/* Link test performed before hardware reset so autoneg doesn't
       
  2007 		 * interfere with test result
       
  2008 		 */
       
  2009 		if (igb_link_test(adapter, &data[4]))
       
  2010 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  2011 
       
  2012 		if (if_running)
       
  2013 			/* indicate we're in test mode */
       
  2014 			dev_close(netdev);
       
  2015 		else
       
  2016 			igb_reset(adapter);
       
  2017 
       
  2018 		if (igb_reg_test(adapter, &data[0]))
       
  2019 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  2020 
       
  2021 		igb_reset(adapter);
       
  2022 		if (igb_eeprom_test(adapter, &data[1]))
       
  2023 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  2024 
       
  2025 		igb_reset(adapter);
       
  2026 		if (igb_intr_test(adapter, &data[2]))
       
  2027 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  2028 
       
  2029 		igb_reset(adapter);
       
  2030 		/* power up link for loopback test */
       
  2031 		igb_power_up_link(adapter);
       
  2032 		if (igb_loopback_test(adapter, &data[3]))
       
  2033 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  2034 
       
  2035 		/* restore speed, duplex, autoneg settings */
       
  2036 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
       
  2037 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
       
  2038 		adapter->hw.mac.autoneg = autoneg;
       
  2039 
       
  2040 		/* force this routine to wait until autoneg complete/timeout */
       
  2041 		adapter->hw.phy.autoneg_wait_to_complete = true;
       
  2042 		igb_reset(adapter);
       
  2043 		adapter->hw.phy.autoneg_wait_to_complete = false;
       
  2044 
       
  2045 		clear_bit(__IGB_TESTING, &adapter->state);
       
  2046 		if (if_running)
       
  2047 			dev_open(netdev);
       
  2048 	} else {
       
  2049 		dev_info(&adapter->pdev->dev, "online testing starting\n");
       
  2050 
       
  2051 		/* PHY is powered down when interface is down */
       
  2052 		if (if_running && igb_link_test(adapter, &data[4]))
       
  2053 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  2054 		else
       
  2055 			data[4] = 0;
       
  2056 
       
  2057 		/* Online tests aren't run; pass by default */
       
  2058 		data[0] = 0;
       
  2059 		data[1] = 0;
       
  2060 		data[2] = 0;
       
  2061 		data[3] = 0;
       
  2062 
       
  2063 		clear_bit(__IGB_TESTING, &adapter->state);
       
  2064 	}
       
  2065 	msleep_interruptible(4 * 1000);
       
  2066 }
       
  2067 
       
  2068 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  2069 {
       
  2070 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2071 
       
  2072 	wol->wolopts = 0;
       
  2073 
       
  2074 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
       
  2075 		return;
       
  2076 
       
  2077 	wol->supported = WAKE_UCAST | WAKE_MCAST |
       
  2078 			 WAKE_BCAST | WAKE_MAGIC |
       
  2079 			 WAKE_PHY;
       
  2080 
       
  2081 	/* apply any specific unsupported masks here */
       
  2082 	switch (adapter->hw.device_id) {
       
  2083 	default:
       
  2084 		break;
       
  2085 	}
       
  2086 
       
  2087 	if (adapter->wol & E1000_WUFC_EX)
       
  2088 		wol->wolopts |= WAKE_UCAST;
       
  2089 	if (adapter->wol & E1000_WUFC_MC)
       
  2090 		wol->wolopts |= WAKE_MCAST;
       
  2091 	if (adapter->wol & E1000_WUFC_BC)
       
  2092 		wol->wolopts |= WAKE_BCAST;
       
  2093 	if (adapter->wol & E1000_WUFC_MAG)
       
  2094 		wol->wolopts |= WAKE_MAGIC;
       
  2095 	if (adapter->wol & E1000_WUFC_LNKC)
       
  2096 		wol->wolopts |= WAKE_PHY;
       
  2097 }
       
  2098 
       
  2099 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  2100 {
       
  2101 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2102 
       
  2103 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
       
  2104 		return -EOPNOTSUPP;
       
  2105 
       
  2106 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
       
  2107 		return wol->wolopts ? -EOPNOTSUPP : 0;
       
  2108 
       
  2109 	/* these settings will always override what we currently have */
       
  2110 	adapter->wol = 0;
       
  2111 
       
  2112 	if (wol->wolopts & WAKE_UCAST)
       
  2113 		adapter->wol |= E1000_WUFC_EX;
       
  2114 	if (wol->wolopts & WAKE_MCAST)
       
  2115 		adapter->wol |= E1000_WUFC_MC;
       
  2116 	if (wol->wolopts & WAKE_BCAST)
       
  2117 		adapter->wol |= E1000_WUFC_BC;
       
  2118 	if (wol->wolopts & WAKE_MAGIC)
       
  2119 		adapter->wol |= E1000_WUFC_MAG;
       
  2120 	if (wol->wolopts & WAKE_PHY)
       
  2121 		adapter->wol |= E1000_WUFC_LNKC;
       
  2122 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  2123 
       
  2124 	return 0;
       
  2125 }
       
  2126 
       
  2127 /* bit defines for adapter->led_status */
       
  2128 #define IGB_LED_ON		0
       
  2129 
       
  2130 static int igb_set_phys_id(struct net_device *netdev,
       
  2131 			   enum ethtool_phys_id_state state)
       
  2132 {
       
  2133 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2134 	struct e1000_hw *hw = &adapter->hw;
       
  2135 
       
  2136 	switch (state) {
       
  2137 	case ETHTOOL_ID_ACTIVE:
       
  2138 		igb_blink_led(hw);
       
  2139 		return 2;
       
  2140 	case ETHTOOL_ID_ON:
       
  2141 		igb_blink_led(hw);
       
  2142 		break;
       
  2143 	case ETHTOOL_ID_OFF:
       
  2144 		igb_led_off(hw);
       
  2145 		break;
       
  2146 	case ETHTOOL_ID_INACTIVE:
       
  2147 		igb_led_off(hw);
       
  2148 		clear_bit(IGB_LED_ON, &adapter->led_status);
       
  2149 		igb_cleanup_led(hw);
       
  2150 		break;
       
  2151 	}
       
  2152 
       
  2153 	return 0;
       
  2154 }
       
  2155 
       
  2156 static int igb_set_coalesce(struct net_device *netdev,
       
  2157 			    struct ethtool_coalesce *ec)
       
  2158 {
       
  2159 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2160 	int i;
       
  2161 
       
  2162 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
       
  2163 	    ((ec->rx_coalesce_usecs > 3) &&
       
  2164 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
       
  2165 	    (ec->rx_coalesce_usecs == 2))
       
  2166 		return -EINVAL;
       
  2167 
       
  2168 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
       
  2169 	    ((ec->tx_coalesce_usecs > 3) &&
       
  2170 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
       
  2171 	    (ec->tx_coalesce_usecs == 2))
       
  2172 		return -EINVAL;
       
  2173 
       
  2174 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
       
  2175 		return -EINVAL;
       
  2176 
       
  2177 	/* If ITR is disabled, disable DMAC */
       
  2178 	if (ec->rx_coalesce_usecs == 0) {
       
  2179 		if (adapter->flags & IGB_FLAG_DMAC)
       
  2180 			adapter->flags &= ~IGB_FLAG_DMAC;
       
  2181 	}
       
  2182 
       
  2183 	/* convert to rate of irq's per second */
       
  2184 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
       
  2185 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
       
  2186 	else
       
  2187 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
       
  2188 
       
  2189 	/* convert to rate of irq's per second */
       
  2190 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
       
  2191 		adapter->tx_itr_setting = adapter->rx_itr_setting;
       
  2192 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
       
  2193 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
       
  2194 	else
       
  2195 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
       
  2196 
       
  2197 	for (i = 0; i < adapter->num_q_vectors; i++) {
       
  2198 		struct igb_q_vector *q_vector = adapter->q_vector[i];
       
  2199 		q_vector->tx.work_limit = adapter->tx_work_limit;
       
  2200 		if (q_vector->rx.ring)
       
  2201 			q_vector->itr_val = adapter->rx_itr_setting;
       
  2202 		else
       
  2203 			q_vector->itr_val = adapter->tx_itr_setting;
       
  2204 		if (q_vector->itr_val && q_vector->itr_val <= 3)
       
  2205 			q_vector->itr_val = IGB_START_ITR;
       
  2206 		q_vector->set_itr = 1;
       
  2207 	}
       
  2208 
       
  2209 	return 0;
       
  2210 }
       
  2211 
       
  2212 static int igb_get_coalesce(struct net_device *netdev,
       
  2213 			    struct ethtool_coalesce *ec)
       
  2214 {
       
  2215 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2216 
       
  2217 	if (adapter->rx_itr_setting <= 3)
       
  2218 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
       
  2219 	else
       
  2220 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
       
  2221 
       
  2222 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
       
  2223 		if (adapter->tx_itr_setting <= 3)
       
  2224 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
       
  2225 		else
       
  2226 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
       
  2227 	}
       
  2228 
       
  2229 	return 0;
       
  2230 }
       
  2231 
       
  2232 static int igb_nway_reset(struct net_device *netdev)
       
  2233 {
       
  2234 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2235 	if (netif_running(netdev))
       
  2236 		igb_reinit_locked(adapter);
       
  2237 	return 0;
       
  2238 }
       
  2239 
       
  2240 static int igb_get_sset_count(struct net_device *netdev, int sset)
       
  2241 {
       
  2242 	switch (sset) {
       
  2243 	case ETH_SS_STATS:
       
  2244 		return IGB_STATS_LEN;
       
  2245 	case ETH_SS_TEST:
       
  2246 		return IGB_TEST_LEN;
       
  2247 	default:
       
  2248 		return -ENOTSUPP;
       
  2249 	}
       
  2250 }
       
  2251 
       
  2252 static void igb_get_ethtool_stats(struct net_device *netdev,
       
  2253 				  struct ethtool_stats *stats, u64 *data)
       
  2254 {
       
  2255 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2256 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
       
  2257 	unsigned int start;
       
  2258 	struct igb_ring *ring;
       
  2259 	int i, j;
       
  2260 	char *p;
       
  2261 
       
  2262 	spin_lock(&adapter->stats64_lock);
       
  2263 	igb_update_stats(adapter, net_stats);
       
  2264 
       
  2265 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
       
  2266 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
       
  2267 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
       
  2268 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
       
  2269 	}
       
  2270 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
       
  2271 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
       
  2272 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
       
  2273 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
       
  2274 	}
       
  2275 	for (j = 0; j < adapter->num_tx_queues; j++) {
       
  2276 		u64	restart2;
       
  2277 
       
  2278 		ring = adapter->tx_ring[j];
       
  2279 		do {
       
  2280 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
       
  2281 			data[i]   = ring->tx_stats.packets;
       
  2282 			data[i+1] = ring->tx_stats.bytes;
       
  2283 			data[i+2] = ring->tx_stats.restart_queue;
       
  2284 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
       
  2285 		do {
       
  2286 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
       
  2287 			restart2  = ring->tx_stats.restart_queue2;
       
  2288 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
       
  2289 		data[i+2] += restart2;
       
  2290 
       
  2291 		i += IGB_TX_QUEUE_STATS_LEN;
       
  2292 	}
       
  2293 	for (j = 0; j < adapter->num_rx_queues; j++) {
       
  2294 		ring = adapter->rx_ring[j];
       
  2295 		do {
       
  2296 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
       
  2297 			data[i]   = ring->rx_stats.packets;
       
  2298 			data[i+1] = ring->rx_stats.bytes;
       
  2299 			data[i+2] = ring->rx_stats.drops;
       
  2300 			data[i+3] = ring->rx_stats.csum_err;
       
  2301 			data[i+4] = ring->rx_stats.alloc_failed;
       
  2302 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
       
  2303 		i += IGB_RX_QUEUE_STATS_LEN;
       
  2304 	}
       
  2305 	spin_unlock(&adapter->stats64_lock);
       
  2306 }
       
  2307 
       
  2308 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
       
  2309 {
       
  2310 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2311 	u8 *p = data;
       
  2312 	int i;
       
  2313 
       
  2314 	switch (stringset) {
       
  2315 	case ETH_SS_TEST:
       
  2316 		memcpy(data, *igb_gstrings_test,
       
  2317 			IGB_TEST_LEN*ETH_GSTRING_LEN);
       
  2318 		break;
       
  2319 	case ETH_SS_STATS:
       
  2320 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
       
  2321 			memcpy(p, igb_gstrings_stats[i].stat_string,
       
  2322 			       ETH_GSTRING_LEN);
       
  2323 			p += ETH_GSTRING_LEN;
       
  2324 		}
       
  2325 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
       
  2326 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
       
  2327 			       ETH_GSTRING_LEN);
       
  2328 			p += ETH_GSTRING_LEN;
       
  2329 		}
       
  2330 		for (i = 0; i < adapter->num_tx_queues; i++) {
       
  2331 			sprintf(p, "tx_queue_%u_packets", i);
       
  2332 			p += ETH_GSTRING_LEN;
       
  2333 			sprintf(p, "tx_queue_%u_bytes", i);
       
  2334 			p += ETH_GSTRING_LEN;
       
  2335 			sprintf(p, "tx_queue_%u_restart", i);
       
  2336 			p += ETH_GSTRING_LEN;
       
  2337 		}
       
  2338 		for (i = 0; i < adapter->num_rx_queues; i++) {
       
  2339 			sprintf(p, "rx_queue_%u_packets", i);
       
  2340 			p += ETH_GSTRING_LEN;
       
  2341 			sprintf(p, "rx_queue_%u_bytes", i);
       
  2342 			p += ETH_GSTRING_LEN;
       
  2343 			sprintf(p, "rx_queue_%u_drops", i);
       
  2344 			p += ETH_GSTRING_LEN;
       
  2345 			sprintf(p, "rx_queue_%u_csum_err", i);
       
  2346 			p += ETH_GSTRING_LEN;
       
  2347 			sprintf(p, "rx_queue_%u_alloc_failed", i);
       
  2348 			p += ETH_GSTRING_LEN;
       
  2349 		}
       
  2350 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
       
  2351 		break;
       
  2352 	}
       
  2353 }
       
  2354 
       
  2355 static int igb_get_ts_info(struct net_device *dev,
       
  2356 			   struct ethtool_ts_info *info)
       
  2357 {
       
  2358 	struct igb_adapter *adapter = netdev_priv(dev);
       
  2359 
       
  2360 	if (adapter->ptp_clock)
       
  2361 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
       
  2362 	else
       
  2363 		info->phc_index = -1;
       
  2364 
       
  2365 	switch (adapter->hw.mac.type) {
       
  2366 	case e1000_82575:
       
  2367 		info->so_timestamping =
       
  2368 			SOF_TIMESTAMPING_TX_SOFTWARE |
       
  2369 			SOF_TIMESTAMPING_RX_SOFTWARE |
       
  2370 			SOF_TIMESTAMPING_SOFTWARE;
       
  2371 		return 0;
       
  2372 	case e1000_82576:
       
  2373 	case e1000_82580:
       
  2374 	case e1000_i350:
       
  2375 	case e1000_i354:
       
  2376 	case e1000_i210:
       
  2377 	case e1000_i211:
       
  2378 		info->so_timestamping =
       
  2379 			SOF_TIMESTAMPING_TX_SOFTWARE |
       
  2380 			SOF_TIMESTAMPING_RX_SOFTWARE |
       
  2381 			SOF_TIMESTAMPING_SOFTWARE |
       
  2382 			SOF_TIMESTAMPING_TX_HARDWARE |
       
  2383 			SOF_TIMESTAMPING_RX_HARDWARE |
       
  2384 			SOF_TIMESTAMPING_RAW_HARDWARE;
       
  2385 
       
  2386 		info->tx_types =
       
  2387 			(1 << HWTSTAMP_TX_OFF) |
       
  2388 			(1 << HWTSTAMP_TX_ON);
       
  2389 
       
  2390 		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
       
  2391 
       
  2392 		/* 82576 does not support timestamping all packets. */
       
  2393 		if (adapter->hw.mac.type >= e1000_82580)
       
  2394 			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
       
  2395 		else
       
  2396 			info->rx_filters |=
       
  2397 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
       
  2398 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
       
  2399 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
       
  2400 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
       
  2401 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
       
  2402 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
       
  2403 				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
       
  2404 
       
  2405 		return 0;
       
  2406 	default:
       
  2407 		return -EOPNOTSUPP;
       
  2408 	}
       
  2409 }
       
  2410 
       
  2411 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
       
  2412 				 struct ethtool_rxnfc *cmd)
       
  2413 {
       
  2414 	cmd->data = 0;
       
  2415 
       
  2416 	/* Report default options for RSS on igb */
       
  2417 	switch (cmd->flow_type) {
       
  2418 	case TCP_V4_FLOW:
       
  2419 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
       
  2420 		/* Fall through */
       
  2421 	case UDP_V4_FLOW:
       
  2422 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
       
  2423 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
       
  2424 		/* Fall through */
       
  2425 	case SCTP_V4_FLOW:
       
  2426 	case AH_ESP_V4_FLOW:
       
  2427 	case AH_V4_FLOW:
       
  2428 	case ESP_V4_FLOW:
       
  2429 	case IPV4_FLOW:
       
  2430 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
       
  2431 		break;
       
  2432 	case TCP_V6_FLOW:
       
  2433 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
       
  2434 		/* Fall through */
       
  2435 	case UDP_V6_FLOW:
       
  2436 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
       
  2437 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
       
  2438 		/* Fall through */
       
  2439 	case SCTP_V6_FLOW:
       
  2440 	case AH_ESP_V6_FLOW:
       
  2441 	case AH_V6_FLOW:
       
  2442 	case ESP_V6_FLOW:
       
  2443 	case IPV6_FLOW:
       
  2444 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
       
  2445 		break;
       
  2446 	default:
       
  2447 		return -EINVAL;
       
  2448 	}
       
  2449 
       
  2450 	return 0;
       
  2451 }
       
  2452 
       
  2453 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
       
  2454 			 u32 *rule_locs)
       
  2455 {
       
  2456 	struct igb_adapter *adapter = netdev_priv(dev);
       
  2457 	int ret = -EOPNOTSUPP;
       
  2458 
       
  2459 	switch (cmd->cmd) {
       
  2460 	case ETHTOOL_GRXRINGS:
       
  2461 		cmd->data = adapter->num_rx_queues;
       
  2462 		ret = 0;
       
  2463 		break;
       
  2464 	case ETHTOOL_GRXFH:
       
  2465 		ret = igb_get_rss_hash_opts(adapter, cmd);
       
  2466 		break;
       
  2467 	default:
       
  2468 		break;
       
  2469 	}
       
  2470 
       
  2471 	return ret;
       
  2472 }
       
  2473 
       
  2474 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
       
  2475 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
       
  2476 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
       
  2477 				struct ethtool_rxnfc *nfc)
       
  2478 {
       
  2479 	u32 flags = adapter->flags;
       
  2480 
       
  2481 	/* RSS does not support anything other than hashing
       
  2482 	 * to queues on src and dst IPs and ports
       
  2483 	 */
       
  2484 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
       
  2485 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
       
  2486 		return -EINVAL;
       
  2487 
       
  2488 	switch (nfc->flow_type) {
       
  2489 	case TCP_V4_FLOW:
       
  2490 	case TCP_V6_FLOW:
       
  2491 		if (!(nfc->data & RXH_IP_SRC) ||
       
  2492 		    !(nfc->data & RXH_IP_DST) ||
       
  2493 		    !(nfc->data & RXH_L4_B_0_1) ||
       
  2494 		    !(nfc->data & RXH_L4_B_2_3))
       
  2495 			return -EINVAL;
       
  2496 		break;
       
  2497 	case UDP_V4_FLOW:
       
  2498 		if (!(nfc->data & RXH_IP_SRC) ||
       
  2499 		    !(nfc->data & RXH_IP_DST))
       
  2500 			return -EINVAL;
       
  2501 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
       
  2502 		case 0:
       
  2503 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
       
  2504 			break;
       
  2505 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
       
  2506 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
       
  2507 			break;
       
  2508 		default:
       
  2509 			return -EINVAL;
       
  2510 		}
       
  2511 		break;
       
  2512 	case UDP_V6_FLOW:
       
  2513 		if (!(nfc->data & RXH_IP_SRC) ||
       
  2514 		    !(nfc->data & RXH_IP_DST))
       
  2515 			return -EINVAL;
       
  2516 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
       
  2517 		case 0:
       
  2518 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
       
  2519 			break;
       
  2520 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
       
  2521 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
       
  2522 			break;
       
  2523 		default:
       
  2524 			return -EINVAL;
       
  2525 		}
       
  2526 		break;
       
  2527 	case AH_ESP_V4_FLOW:
       
  2528 	case AH_V4_FLOW:
       
  2529 	case ESP_V4_FLOW:
       
  2530 	case SCTP_V4_FLOW:
       
  2531 	case AH_ESP_V6_FLOW:
       
  2532 	case AH_V6_FLOW:
       
  2533 	case ESP_V6_FLOW:
       
  2534 	case SCTP_V6_FLOW:
       
  2535 		if (!(nfc->data & RXH_IP_SRC) ||
       
  2536 		    !(nfc->data & RXH_IP_DST) ||
       
  2537 		    (nfc->data & RXH_L4_B_0_1) ||
       
  2538 		    (nfc->data & RXH_L4_B_2_3))
       
  2539 			return -EINVAL;
       
  2540 		break;
       
  2541 	default:
       
  2542 		return -EINVAL;
       
  2543 	}
       
  2544 
       
  2545 	/* if we changed something we need to update flags */
       
  2546 	if (flags != adapter->flags) {
       
  2547 		struct e1000_hw *hw = &adapter->hw;
       
  2548 		u32 mrqc = rd32(E1000_MRQC);
       
  2549 
       
  2550 		if ((flags & UDP_RSS_FLAGS) &&
       
  2551 		    !(adapter->flags & UDP_RSS_FLAGS))
       
  2552 			dev_err(&adapter->pdev->dev,
       
  2553 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
       
  2554 
       
  2555 		adapter->flags = flags;
       
  2556 
       
  2557 		/* Perform hash on these packet types */
       
  2558 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
       
  2559 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
       
  2560 			E1000_MRQC_RSS_FIELD_IPV6 |
       
  2561 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
       
  2562 
       
  2563 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
       
  2564 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
       
  2565 
       
  2566 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
       
  2567 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
       
  2568 
       
  2569 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
       
  2570 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
       
  2571 
       
  2572 		wr32(E1000_MRQC, mrqc);
       
  2573 	}
       
  2574 
       
  2575 	return 0;
       
  2576 }
       
  2577 
       
  2578 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
       
  2579 {
       
  2580 	struct igb_adapter *adapter = netdev_priv(dev);
       
  2581 	int ret = -EOPNOTSUPP;
       
  2582 
       
  2583 	switch (cmd->cmd) {
       
  2584 	case ETHTOOL_SRXFH:
       
  2585 		ret = igb_set_rss_hash_opt(adapter, cmd);
       
  2586 		break;
       
  2587 	default:
       
  2588 		break;
       
  2589 	}
       
  2590 
       
  2591 	return ret;
       
  2592 }
       
  2593 
       
  2594 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
       
  2595 {
       
  2596 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2597 	struct e1000_hw *hw = &adapter->hw;
       
  2598 	u32 ret_val;
       
  2599 	u16 phy_data;
       
  2600 
       
  2601 	if ((hw->mac.type < e1000_i350) ||
       
  2602 	    (hw->phy.media_type != e1000_media_type_copper))
       
  2603 		return -EOPNOTSUPP;
       
  2604 
       
  2605 	edata->supported = (SUPPORTED_1000baseT_Full |
       
  2606 			    SUPPORTED_100baseT_Full);
       
  2607 	if (!hw->dev_spec._82575.eee_disable)
       
  2608 		edata->advertised =
       
  2609 			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
       
  2610 
       
  2611 	/* The IPCNFG and EEER registers are not supported on I354. */
       
  2612 	if (hw->mac.type == e1000_i354) {
       
  2613 		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
       
  2614 	} else {
       
  2615 		u32 eeer;
       
  2616 
       
  2617 		eeer = rd32(E1000_EEER);
       
  2618 
       
  2619 		/* EEE status on negotiated link */
       
  2620 		if (eeer & E1000_EEER_EEE_NEG)
       
  2621 			edata->eee_active = true;
       
  2622 
       
  2623 		if (eeer & E1000_EEER_TX_LPI_EN)
       
  2624 			edata->tx_lpi_enabled = true;
       
  2625 	}
       
  2626 
       
  2627 	/* EEE Link Partner Advertised */
       
  2628 	switch (hw->mac.type) {
       
  2629 	case e1000_i350:
       
  2630 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
       
  2631 					   &phy_data);
       
  2632 		if (ret_val)
       
  2633 			return -ENODATA;
       
  2634 
       
  2635 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
       
  2636 		break;
       
  2637 	case e1000_i354:
       
  2638 	case e1000_i210:
       
  2639 	case e1000_i211:
       
  2640 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
       
  2641 					     E1000_EEE_LP_ADV_DEV_I210,
       
  2642 					     &phy_data);
       
  2643 		if (ret_val)
       
  2644 			return -ENODATA;
       
  2645 
       
  2646 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
       
  2647 
       
  2648 		break;
       
  2649 	default:
       
  2650 		break;
       
  2651 	}
       
  2652 
       
  2653 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
       
  2654 
       
  2655 	if ((hw->mac.type == e1000_i354) &&
       
  2656 	    (edata->eee_enabled))
       
  2657 		edata->tx_lpi_enabled = true;
       
  2658 
       
  2659 	/* Report correct negotiated EEE status for devices that
       
  2660 	 * wrongly report EEE at half-duplex
       
  2661 	 */
       
  2662 	if (adapter->link_duplex == HALF_DUPLEX) {
       
  2663 		edata->eee_enabled = false;
       
  2664 		edata->eee_active = false;
       
  2665 		edata->tx_lpi_enabled = false;
       
  2666 		edata->advertised &= ~edata->advertised;
       
  2667 	}
       
  2668 
       
  2669 	return 0;
       
  2670 }
       
  2671 
       
  2672 static int igb_set_eee(struct net_device *netdev,
       
  2673 		       struct ethtool_eee *edata)
       
  2674 {
       
  2675 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2676 	struct e1000_hw *hw = &adapter->hw;
       
  2677 	struct ethtool_eee eee_curr;
       
  2678 	bool adv1g_eee = true, adv100m_eee = true;
       
  2679 	s32 ret_val;
       
  2680 
       
  2681 	if ((hw->mac.type < e1000_i350) ||
       
  2682 	    (hw->phy.media_type != e1000_media_type_copper))
       
  2683 		return -EOPNOTSUPP;
       
  2684 
       
  2685 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
       
  2686 
       
  2687 	ret_val = igb_get_eee(netdev, &eee_curr);
       
  2688 	if (ret_val)
       
  2689 		return ret_val;
       
  2690 
       
  2691 	if (eee_curr.eee_enabled) {
       
  2692 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
       
  2693 			dev_err(&adapter->pdev->dev,
       
  2694 				"Setting EEE tx-lpi is not supported\n");
       
  2695 			return -EINVAL;
       
  2696 		}
       
  2697 
       
  2698 		/* Tx LPI timer is not implemented currently */
       
  2699 		if (edata->tx_lpi_timer) {
       
  2700 			dev_err(&adapter->pdev->dev,
       
  2701 				"Setting EEE Tx LPI timer is not supported\n");
       
  2702 			return -EINVAL;
       
  2703 		}
       
  2704 
       
  2705 		if (!edata->advertised || (edata->advertised &
       
  2706 		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
       
  2707 			dev_err(&adapter->pdev->dev,
       
  2708 				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
       
  2709 			return -EINVAL;
       
  2710 		}
       
  2711 		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
       
  2712 		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
       
  2713 
       
  2714 	} else if (!edata->eee_enabled) {
       
  2715 		dev_err(&adapter->pdev->dev,
       
  2716 			"Setting EEE options are not supported with EEE disabled\n");
       
  2717 			return -EINVAL;
       
  2718 		}
       
  2719 
       
  2720 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
       
  2721 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
       
  2722 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
       
  2723 		adapter->flags |= IGB_FLAG_EEE;
       
  2724 
       
  2725 		/* reset link */
       
  2726 		if (netif_running(netdev))
       
  2727 			igb_reinit_locked(adapter);
       
  2728 		else
       
  2729 			igb_reset(adapter);
       
  2730 	}
       
  2731 
       
  2732 	if (hw->mac.type == e1000_i354)
       
  2733 		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
       
  2734 	else
       
  2735 		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
       
  2736 
       
  2737 	if (ret_val) {
       
  2738 		dev_err(&adapter->pdev->dev,
       
  2739 			"Problem setting EEE advertisement options\n");
       
  2740 		return -EINVAL;
       
  2741 	}
       
  2742 
       
  2743 	return 0;
       
  2744 }
       
  2745 
       
  2746 static int igb_get_module_info(struct net_device *netdev,
       
  2747 			       struct ethtool_modinfo *modinfo)
       
  2748 {
       
  2749 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2750 	struct e1000_hw *hw = &adapter->hw;
       
  2751 	u32 status = 0;
       
  2752 	u16 sff8472_rev, addr_mode;
       
  2753 	bool page_swap = false;
       
  2754 
       
  2755 	if ((hw->phy.media_type == e1000_media_type_copper) ||
       
  2756 	    (hw->phy.media_type == e1000_media_type_unknown))
       
  2757 		return -EOPNOTSUPP;
       
  2758 
       
  2759 	/* Check whether we support SFF-8472 or not */
       
  2760 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
       
  2761 	if (status)
       
  2762 		return -EIO;
       
  2763 
       
  2764 	/* addressing mode is not supported */
       
  2765 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
       
  2766 	if (status)
       
  2767 		return -EIO;
       
  2768 
       
  2769 	/* addressing mode is not supported */
       
  2770 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
       
  2771 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
       
  2772 		page_swap = true;
       
  2773 	}
       
  2774 
       
  2775 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
       
  2776 		/* We have an SFP, but it does not support SFF-8472 */
       
  2777 		modinfo->type = ETH_MODULE_SFF_8079;
       
  2778 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
       
  2779 	} else {
       
  2780 		/* We have an SFP which supports a revision of SFF-8472 */
       
  2781 		modinfo->type = ETH_MODULE_SFF_8472;
       
  2782 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
       
  2783 	}
       
  2784 
       
  2785 	return 0;
       
  2786 }
       
  2787 
       
  2788 static int igb_get_module_eeprom(struct net_device *netdev,
       
  2789 				 struct ethtool_eeprom *ee, u8 *data)
       
  2790 {
       
  2791 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2792 	struct e1000_hw *hw = &adapter->hw;
       
  2793 	u32 status = 0;
       
  2794 	u16 *dataword;
       
  2795 	u16 first_word, last_word;
       
  2796 	int i = 0;
       
  2797 
       
  2798 	if (ee->len == 0)
       
  2799 		return -EINVAL;
       
  2800 
       
  2801 	first_word = ee->offset >> 1;
       
  2802 	last_word = (ee->offset + ee->len - 1) >> 1;
       
  2803 
       
  2804 	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
       
  2805 			   GFP_KERNEL);
       
  2806 	if (!dataword)
       
  2807 		return -ENOMEM;
       
  2808 
       
  2809 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
       
  2810 	for (i = 0; i < last_word - first_word + 1; i++) {
       
  2811 		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
       
  2812 		if (status) {
       
  2813 			/* Error occurred while reading module */
       
  2814 			kfree(dataword);
       
  2815 			return -EIO;
       
  2816 		}
       
  2817 
       
  2818 		be16_to_cpus(&dataword[i]);
       
  2819 	}
       
  2820 
       
  2821 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
       
  2822 	kfree(dataword);
       
  2823 
       
  2824 	return 0;
       
  2825 }
       
  2826 
       
  2827 static int igb_ethtool_begin(struct net_device *netdev)
       
  2828 {
       
  2829 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2830 	pm_runtime_get_sync(&adapter->pdev->dev);
       
  2831 	return 0;
       
  2832 }
       
  2833 
       
  2834 static void igb_ethtool_complete(struct net_device *netdev)
       
  2835 {
       
  2836 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2837 	pm_runtime_put(&adapter->pdev->dev);
       
  2838 }
       
  2839 
       
  2840 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
       
  2841 {
       
  2842 	return IGB_RETA_SIZE;
       
  2843 }
       
  2844 
       
  2845 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key)
       
  2846 {
       
  2847 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2848 	int i;
       
  2849 
       
  2850 	for (i = 0; i < IGB_RETA_SIZE; i++)
       
  2851 		indir[i] = adapter->rss_indir_tbl[i];
       
  2852 
       
  2853 	return 0;
       
  2854 }
       
  2855 
       
  2856 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
       
  2857 {
       
  2858 	struct e1000_hw *hw = &adapter->hw;
       
  2859 	u32 reg = E1000_RETA(0);
       
  2860 	u32 shift = 0;
       
  2861 	int i = 0;
       
  2862 
       
  2863 	switch (hw->mac.type) {
       
  2864 	case e1000_82575:
       
  2865 		shift = 6;
       
  2866 		break;
       
  2867 	case e1000_82576:
       
  2868 		/* 82576 supports 2 RSS queues for SR-IOV */
       
  2869 		if (adapter->vfs_allocated_count)
       
  2870 			shift = 3;
       
  2871 		break;
       
  2872 	default:
       
  2873 		break;
       
  2874 	}
       
  2875 
       
  2876 	while (i < IGB_RETA_SIZE) {
       
  2877 		u32 val = 0;
       
  2878 		int j;
       
  2879 
       
  2880 		for (j = 3; j >= 0; j--) {
       
  2881 			val <<= 8;
       
  2882 			val |= adapter->rss_indir_tbl[i + j];
       
  2883 		}
       
  2884 
       
  2885 		wr32(reg, val << shift);
       
  2886 		reg += 4;
       
  2887 		i += 4;
       
  2888 	}
       
  2889 }
       
  2890 
       
  2891 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
       
  2892 			const u8 *key)
       
  2893 {
       
  2894 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2895 	struct e1000_hw *hw = &adapter->hw;
       
  2896 	int i;
       
  2897 	u32 num_queues;
       
  2898 
       
  2899 	num_queues = adapter->rss_queues;
       
  2900 
       
  2901 	switch (hw->mac.type) {
       
  2902 	case e1000_82576:
       
  2903 		/* 82576 supports 2 RSS queues for SR-IOV */
       
  2904 		if (adapter->vfs_allocated_count)
       
  2905 			num_queues = 2;
       
  2906 		break;
       
  2907 	default:
       
  2908 		break;
       
  2909 	}
       
  2910 
       
  2911 	/* Verify user input. */
       
  2912 	for (i = 0; i < IGB_RETA_SIZE; i++)
       
  2913 		if (indir[i] >= num_queues)
       
  2914 			return -EINVAL;
       
  2915 
       
  2916 
       
  2917 	for (i = 0; i < IGB_RETA_SIZE; i++)
       
  2918 		adapter->rss_indir_tbl[i] = indir[i];
       
  2919 
       
  2920 	igb_write_rss_indir_tbl(adapter);
       
  2921 
       
  2922 	return 0;
       
  2923 }
       
  2924 
       
  2925 static unsigned int igb_max_channels(struct igb_adapter *adapter)
       
  2926 {
       
  2927 	struct e1000_hw *hw = &adapter->hw;
       
  2928 	unsigned int max_combined = 0;
       
  2929 
       
  2930 	switch (hw->mac.type) {
       
  2931 	case e1000_i211:
       
  2932 		max_combined = IGB_MAX_RX_QUEUES_I211;
       
  2933 		break;
       
  2934 	case e1000_82575:
       
  2935 	case e1000_i210:
       
  2936 		max_combined = IGB_MAX_RX_QUEUES_82575;
       
  2937 		break;
       
  2938 	case e1000_i350:
       
  2939 		if (!!adapter->vfs_allocated_count) {
       
  2940 			max_combined = 1;
       
  2941 			break;
       
  2942 		}
       
  2943 		/* fall through */
       
  2944 	case e1000_82576:
       
  2945 		if (!!adapter->vfs_allocated_count) {
       
  2946 			max_combined = 2;
       
  2947 			break;
       
  2948 		}
       
  2949 		/* fall through */
       
  2950 	case e1000_82580:
       
  2951 	case e1000_i354:
       
  2952 	default:
       
  2953 		max_combined = IGB_MAX_RX_QUEUES;
       
  2954 		break;
       
  2955 	}
       
  2956 
       
  2957 	return max_combined;
       
  2958 }
       
  2959 
       
  2960 static void igb_get_channels(struct net_device *netdev,
       
  2961 			     struct ethtool_channels *ch)
       
  2962 {
       
  2963 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2964 
       
  2965 	/* Report maximum channels */
       
  2966 	ch->max_combined = igb_max_channels(adapter);
       
  2967 
       
  2968 	/* Report info for other vector */
       
  2969 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
       
  2970 		ch->max_other = NON_Q_VECTORS;
       
  2971 		ch->other_count = NON_Q_VECTORS;
       
  2972 	}
       
  2973 
       
  2974 	ch->combined_count = adapter->rss_queues;
       
  2975 }
       
  2976 
       
  2977 static int igb_set_channels(struct net_device *netdev,
       
  2978 			    struct ethtool_channels *ch)
       
  2979 {
       
  2980 	struct igb_adapter *adapter = netdev_priv(netdev);
       
  2981 	unsigned int count = ch->combined_count;
       
  2982 
       
  2983 	/* Verify they are not requesting separate vectors */
       
  2984 	if (!count || ch->rx_count || ch->tx_count)
       
  2985 		return -EINVAL;
       
  2986 
       
  2987 	/* Verify other_count is valid and has not been changed */
       
  2988 	if (ch->other_count != NON_Q_VECTORS)
       
  2989 		return -EINVAL;
       
  2990 
       
  2991 	/* Verify the number of channels doesn't exceed hw limits */
       
  2992 	if (count > igb_max_channels(adapter))
       
  2993 		return -EINVAL;
       
  2994 
       
  2995 	if (count != adapter->rss_queues) {
       
  2996 		adapter->rss_queues = count;
       
  2997 
       
  2998 		/* Hardware has to reinitialize queues and interrupts to
       
  2999 		 * match the new configuration.
       
  3000 		 */
       
  3001 		return igb_reinit_queues(adapter);
       
  3002 	}
       
  3003 
       
  3004 	return 0;
       
  3005 }
       
  3006 
       
  3007 static const struct ethtool_ops igb_ethtool_ops = {
       
  3008 	.get_settings		= igb_get_settings,
       
  3009 	.set_settings		= igb_set_settings,
       
  3010 	.get_drvinfo		= igb_get_drvinfo,
       
  3011 	.get_regs_len		= igb_get_regs_len,
       
  3012 	.get_regs		= igb_get_regs,
       
  3013 	.get_wol		= igb_get_wol,
       
  3014 	.set_wol		= igb_set_wol,
       
  3015 	.get_msglevel		= igb_get_msglevel,
       
  3016 	.set_msglevel		= igb_set_msglevel,
       
  3017 	.nway_reset		= igb_nway_reset,
       
  3018 	.get_link		= igb_get_link,
       
  3019 	.get_eeprom_len		= igb_get_eeprom_len,
       
  3020 	.get_eeprom		= igb_get_eeprom,
       
  3021 	.set_eeprom		= igb_set_eeprom,
       
  3022 	.get_ringparam		= igb_get_ringparam,
       
  3023 	.set_ringparam		= igb_set_ringparam,
       
  3024 	.get_pauseparam		= igb_get_pauseparam,
       
  3025 	.set_pauseparam		= igb_set_pauseparam,
       
  3026 	.self_test		= igb_diag_test,
       
  3027 	.get_strings		= igb_get_strings,
       
  3028 	.set_phys_id		= igb_set_phys_id,
       
  3029 	.get_sset_count		= igb_get_sset_count,
       
  3030 	.get_ethtool_stats	= igb_get_ethtool_stats,
       
  3031 	.get_coalesce		= igb_get_coalesce,
       
  3032 	.set_coalesce		= igb_set_coalesce,
       
  3033 	.get_ts_info		= igb_get_ts_info,
       
  3034 	.get_rxnfc		= igb_get_rxnfc,
       
  3035 	.set_rxnfc		= igb_set_rxnfc,
       
  3036 	.get_eee		= igb_get_eee,
       
  3037 	.set_eee		= igb_set_eee,
       
  3038 	.get_module_info	= igb_get_module_info,
       
  3039 	.get_module_eeprom	= igb_get_module_eeprom,
       
  3040 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
       
  3041 	.get_rxfh		= igb_get_rxfh,
       
  3042 	.set_rxfh		= igb_set_rxfh,
       
  3043 	.get_channels		= igb_get_channels,
       
  3044 	.set_channels		= igb_set_channels,
       
  3045 	.begin			= igb_ethtool_begin,
       
  3046 	.complete		= igb_ethtool_complete,
       
  3047 };
       
  3048 
       
  3049 void igb_set_ethtool_ops(struct net_device *netdev)
       
  3050 {
       
  3051 	netdev->ethtool_ops = &igb_ethtool_ops;
       
  3052 }