devices/igb/e1000_phy-3.18-ethercat.c
branchstable-1.5
changeset 2685 740291442c05
equal deleted inserted replaced
2684:56587a22d05c 2685:740291442c05
       
     1 /* Intel(R) Gigabit Ethernet Linux driver
       
     2  * Copyright(c) 2007-2014 Intel Corporation.
       
     3  *
       
     4  * This program is free software; you can redistribute it and/or modify it
       
     5  * under the terms and conditions of the GNU General Public License,
       
     6  * version 2, as published by the Free Software Foundation.
       
     7  *
       
     8  * This program is distributed in the hope it will be useful, but WITHOUT
       
     9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    11  * more details.
       
    12  *
       
    13  * You should have received a copy of the GNU General Public License along with
       
    14  * this program; if not, see <http://www.gnu.org/licenses/>.
       
    15  *
       
    16  * The full GNU General Public License is included in this distribution in
       
    17  * the file called "COPYING".
       
    18  *
       
    19  * Contact Information:
       
    20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    22  */
       
    23 
       
    24 #include <linux/if_ether.h>
       
    25 #include <linux/delay.h>
       
    26 
       
    27 #include "e1000_mac-3.18-ethercat.h"
       
    28 #include "e1000_phy-3.18-ethercat.h"
       
    29 
       
    30 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
       
    31 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
       
    32 					     u16 *phy_ctrl);
       
    33 static s32  igb_wait_autoneg(struct e1000_hw *hw);
       
    34 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
       
    35 
       
    36 /* Cable length tables */
       
    37 static const u16 e1000_m88_cable_length_table[] = {
       
    38 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
       
    39 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
       
    40 	(sizeof(e1000_m88_cable_length_table) / \
       
    41 	sizeof(e1000_m88_cable_length_table[0]))
       
    42 
       
    43 static const u16 e1000_igp_2_cable_length_table[] = {
       
    44 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
       
    45 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
       
    46 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
       
    47 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
       
    48 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
       
    49 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
       
    50 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
       
    51 	104, 109, 114, 118, 121, 124};
       
    52 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
       
    53 	(sizeof(e1000_igp_2_cable_length_table) / \
       
    54 	 sizeof(e1000_igp_2_cable_length_table[0]))
       
    55 
       
    56 /**
       
    57  *  igb_check_reset_block - Check if PHY reset is blocked
       
    58  *  @hw: pointer to the HW structure
       
    59  *
       
    60  *  Read the PHY management control register and check whether a PHY reset
       
    61  *  is blocked.  If a reset is not blocked return 0, otherwise
       
    62  *  return E1000_BLK_PHY_RESET (12).
       
    63  **/
       
    64 s32 igb_check_reset_block(struct e1000_hw *hw)
       
    65 {
       
    66 	u32 manc;
       
    67 
       
    68 	manc = rd32(E1000_MANC);
       
    69 
       
    70 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
       
    71 }
       
    72 
       
    73 /**
       
    74  *  igb_get_phy_id - Retrieve the PHY ID and revision
       
    75  *  @hw: pointer to the HW structure
       
    76  *
       
    77  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
       
    78  *  revision in the hardware structure.
       
    79  **/
       
    80 s32 igb_get_phy_id(struct e1000_hw *hw)
       
    81 {
       
    82 	struct e1000_phy_info *phy = &hw->phy;
       
    83 	s32 ret_val = 0;
       
    84 	u16 phy_id;
       
    85 
       
    86 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
       
    87 	if (ret_val)
       
    88 		goto out;
       
    89 
       
    90 	phy->id = (u32)(phy_id << 16);
       
    91 	udelay(20);
       
    92 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
       
    93 	if (ret_val)
       
    94 		goto out;
       
    95 
       
    96 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
       
    97 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
       
    98 
       
    99 out:
       
   100 	return ret_val;
       
   101 }
       
   102 
       
   103 /**
       
   104  *  igb_phy_reset_dsp - Reset PHY DSP
       
   105  *  @hw: pointer to the HW structure
       
   106  *
       
   107  *  Reset the digital signal processor.
       
   108  **/
       
   109 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
       
   110 {
       
   111 	s32 ret_val = 0;
       
   112 
       
   113 	if (!(hw->phy.ops.write_reg))
       
   114 		goto out;
       
   115 
       
   116 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
       
   117 	if (ret_val)
       
   118 		goto out;
       
   119 
       
   120 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
       
   121 
       
   122 out:
       
   123 	return ret_val;
       
   124 }
       
   125 
       
   126 /**
       
   127  *  igb_read_phy_reg_mdic - Read MDI control register
       
   128  *  @hw: pointer to the HW structure
       
   129  *  @offset: register offset to be read
       
   130  *  @data: pointer to the read data
       
   131  *
       
   132  *  Reads the MDI control regsiter in the PHY at offset and stores the
       
   133  *  information read to data.
       
   134  **/
       
   135 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
       
   136 {
       
   137 	struct e1000_phy_info *phy = &hw->phy;
       
   138 	u32 i, mdic = 0;
       
   139 	s32 ret_val = 0;
       
   140 
       
   141 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   142 		hw_dbg("PHY Address %d is out of range\n", offset);
       
   143 		ret_val = -E1000_ERR_PARAM;
       
   144 		goto out;
       
   145 	}
       
   146 
       
   147 	/* Set up Op-code, Phy Address, and register offset in the MDI
       
   148 	 * Control register.  The MAC will take care of interfacing with the
       
   149 	 * PHY to retrieve the desired data.
       
   150 	 */
       
   151 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
       
   152 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   153 		(E1000_MDIC_OP_READ));
       
   154 
       
   155 	wr32(E1000_MDIC, mdic);
       
   156 
       
   157 	/* Poll the ready bit to see if the MDI read completed
       
   158 	 * Increasing the time out as testing showed failures with
       
   159 	 * the lower time out
       
   160 	 */
       
   161 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   162 		udelay(50);
       
   163 		mdic = rd32(E1000_MDIC);
       
   164 		if (mdic & E1000_MDIC_READY)
       
   165 			break;
       
   166 	}
       
   167 	if (!(mdic & E1000_MDIC_READY)) {
       
   168 		hw_dbg("MDI Read did not complete\n");
       
   169 		ret_val = -E1000_ERR_PHY;
       
   170 		goto out;
       
   171 	}
       
   172 	if (mdic & E1000_MDIC_ERROR) {
       
   173 		hw_dbg("MDI Error\n");
       
   174 		ret_val = -E1000_ERR_PHY;
       
   175 		goto out;
       
   176 	}
       
   177 	*data = (u16) mdic;
       
   178 
       
   179 out:
       
   180 	return ret_val;
       
   181 }
       
   182 
       
   183 /**
       
   184  *  igb_write_phy_reg_mdic - Write MDI control register
       
   185  *  @hw: pointer to the HW structure
       
   186  *  @offset: register offset to write to
       
   187  *  @data: data to write to register at offset
       
   188  *
       
   189  *  Writes data to MDI control register in the PHY at offset.
       
   190  **/
       
   191 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
       
   192 {
       
   193 	struct e1000_phy_info *phy = &hw->phy;
       
   194 	u32 i, mdic = 0;
       
   195 	s32 ret_val = 0;
       
   196 
       
   197 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   198 		hw_dbg("PHY Address %d is out of range\n", offset);
       
   199 		ret_val = -E1000_ERR_PARAM;
       
   200 		goto out;
       
   201 	}
       
   202 
       
   203 	/* Set up Op-code, Phy Address, and register offset in the MDI
       
   204 	 * Control register.  The MAC will take care of interfacing with the
       
   205 	 * PHY to retrieve the desired data.
       
   206 	 */
       
   207 	mdic = (((u32)data) |
       
   208 		(offset << E1000_MDIC_REG_SHIFT) |
       
   209 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   210 		(E1000_MDIC_OP_WRITE));
       
   211 
       
   212 	wr32(E1000_MDIC, mdic);
       
   213 
       
   214 	/* Poll the ready bit to see if the MDI read completed
       
   215 	 * Increasing the time out as testing showed failures with
       
   216 	 * the lower time out
       
   217 	 */
       
   218 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   219 		udelay(50);
       
   220 		mdic = rd32(E1000_MDIC);
       
   221 		if (mdic & E1000_MDIC_READY)
       
   222 			break;
       
   223 	}
       
   224 	if (!(mdic & E1000_MDIC_READY)) {
       
   225 		hw_dbg("MDI Write did not complete\n");
       
   226 		ret_val = -E1000_ERR_PHY;
       
   227 		goto out;
       
   228 	}
       
   229 	if (mdic & E1000_MDIC_ERROR) {
       
   230 		hw_dbg("MDI Error\n");
       
   231 		ret_val = -E1000_ERR_PHY;
       
   232 		goto out;
       
   233 	}
       
   234 
       
   235 out:
       
   236 	return ret_val;
       
   237 }
       
   238 
       
   239 /**
       
   240  *  igb_read_phy_reg_i2c - Read PHY register using i2c
       
   241  *  @hw: pointer to the HW structure
       
   242  *  @offset: register offset to be read
       
   243  *  @data: pointer to the read data
       
   244  *
       
   245  *  Reads the PHY register at offset using the i2c interface and stores the
       
   246  *  retrieved information in data.
       
   247  **/
       
   248 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
       
   249 {
       
   250 	struct e1000_phy_info *phy = &hw->phy;
       
   251 	u32 i, i2ccmd = 0;
       
   252 
       
   253 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
       
   254 	 * register.  The MAC will take care of interfacing with the
       
   255 	 * PHY to retrieve the desired data.
       
   256 	 */
       
   257 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
       
   258 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
       
   259 		  (E1000_I2CCMD_OPCODE_READ));
       
   260 
       
   261 	wr32(E1000_I2CCMD, i2ccmd);
       
   262 
       
   263 	/* Poll the ready bit to see if the I2C read completed */
       
   264 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
       
   265 		udelay(50);
       
   266 		i2ccmd = rd32(E1000_I2CCMD);
       
   267 		if (i2ccmd & E1000_I2CCMD_READY)
       
   268 			break;
       
   269 	}
       
   270 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
       
   271 		hw_dbg("I2CCMD Read did not complete\n");
       
   272 		return -E1000_ERR_PHY;
       
   273 	}
       
   274 	if (i2ccmd & E1000_I2CCMD_ERROR) {
       
   275 		hw_dbg("I2CCMD Error bit set\n");
       
   276 		return -E1000_ERR_PHY;
       
   277 	}
       
   278 
       
   279 	/* Need to byte-swap the 16-bit value. */
       
   280 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
       
   281 
       
   282 	return 0;
       
   283 }
       
   284 
       
   285 /**
       
   286  *  igb_write_phy_reg_i2c - Write PHY register using i2c
       
   287  *  @hw: pointer to the HW structure
       
   288  *  @offset: register offset to write to
       
   289  *  @data: data to write at register offset
       
   290  *
       
   291  *  Writes the data to PHY register at the offset using the i2c interface.
       
   292  **/
       
   293 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
       
   294 {
       
   295 	struct e1000_phy_info *phy = &hw->phy;
       
   296 	u32 i, i2ccmd = 0;
       
   297 	u16 phy_data_swapped;
       
   298 
       
   299 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
       
   300 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
       
   301 		hw_dbg("PHY I2C Address %d is out of range.\n",
       
   302 			  hw->phy.addr);
       
   303 		return -E1000_ERR_CONFIG;
       
   304 	}
       
   305 
       
   306 	/* Swap the data bytes for the I2C interface */
       
   307 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
       
   308 
       
   309 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
       
   310 	 * register.  The MAC will take care of interfacing with the
       
   311 	 * PHY to retrieve the desired data.
       
   312 	 */
       
   313 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
       
   314 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
       
   315 		  E1000_I2CCMD_OPCODE_WRITE |
       
   316 		  phy_data_swapped);
       
   317 
       
   318 	wr32(E1000_I2CCMD, i2ccmd);
       
   319 
       
   320 	/* Poll the ready bit to see if the I2C read completed */
       
   321 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
       
   322 		udelay(50);
       
   323 		i2ccmd = rd32(E1000_I2CCMD);
       
   324 		if (i2ccmd & E1000_I2CCMD_READY)
       
   325 			break;
       
   326 	}
       
   327 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
       
   328 		hw_dbg("I2CCMD Write did not complete\n");
       
   329 		return -E1000_ERR_PHY;
       
   330 	}
       
   331 	if (i2ccmd & E1000_I2CCMD_ERROR) {
       
   332 		hw_dbg("I2CCMD Error bit set\n");
       
   333 		return -E1000_ERR_PHY;
       
   334 	}
       
   335 
       
   336 	return 0;
       
   337 }
       
   338 
       
   339 /**
       
   340  *  igb_read_sfp_data_byte - Reads SFP module data.
       
   341  *  @hw: pointer to the HW structure
       
   342  *  @offset: byte location offset to be read
       
   343  *  @data: read data buffer pointer
       
   344  *
       
   345  *  Reads one byte from SFP module data stored
       
   346  *  in SFP resided EEPROM memory or SFP diagnostic area.
       
   347  *  Function should be called with
       
   348  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
       
   349  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
       
   350  *  access
       
   351  **/
       
   352 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
       
   353 {
       
   354 	u32 i = 0;
       
   355 	u32 i2ccmd = 0;
       
   356 	u32 data_local = 0;
       
   357 
       
   358 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
       
   359 		hw_dbg("I2CCMD command address exceeds upper limit\n");
       
   360 		return -E1000_ERR_PHY;
       
   361 	}
       
   362 
       
   363 	/* Set up Op-code, EEPROM Address,in the I2CCMD
       
   364 	 * register. The MAC will take care of interfacing with the
       
   365 	 * EEPROM to retrieve the desired data.
       
   366 	 */
       
   367 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
       
   368 		  E1000_I2CCMD_OPCODE_READ);
       
   369 
       
   370 	wr32(E1000_I2CCMD, i2ccmd);
       
   371 
       
   372 	/* Poll the ready bit to see if the I2C read completed */
       
   373 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
       
   374 		udelay(50);
       
   375 		data_local = rd32(E1000_I2CCMD);
       
   376 		if (data_local & E1000_I2CCMD_READY)
       
   377 			break;
       
   378 	}
       
   379 	if (!(data_local & E1000_I2CCMD_READY)) {
       
   380 		hw_dbg("I2CCMD Read did not complete\n");
       
   381 		return -E1000_ERR_PHY;
       
   382 	}
       
   383 	if (data_local & E1000_I2CCMD_ERROR) {
       
   384 		hw_dbg("I2CCMD Error bit set\n");
       
   385 		return -E1000_ERR_PHY;
       
   386 	}
       
   387 	*data = (u8) data_local & 0xFF;
       
   388 
       
   389 	return 0;
       
   390 }
       
   391 
       
   392 /**
       
   393  *  igb_read_phy_reg_igp - Read igp PHY register
       
   394  *  @hw: pointer to the HW structure
       
   395  *  @offset: register offset to be read
       
   396  *  @data: pointer to the read data
       
   397  *
       
   398  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
   399  *  and storing the retrieved information in data.  Release any acquired
       
   400  *  semaphores before exiting.
       
   401  **/
       
   402 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
       
   403 {
       
   404 	s32 ret_val = 0;
       
   405 
       
   406 	if (!(hw->phy.ops.acquire))
       
   407 		goto out;
       
   408 
       
   409 	ret_val = hw->phy.ops.acquire(hw);
       
   410 	if (ret_val)
       
   411 		goto out;
       
   412 
       
   413 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
   414 		ret_val = igb_write_phy_reg_mdic(hw,
       
   415 						 IGP01E1000_PHY_PAGE_SELECT,
       
   416 						 (u16)offset);
       
   417 		if (ret_val) {
       
   418 			hw->phy.ops.release(hw);
       
   419 			goto out;
       
   420 		}
       
   421 	}
       
   422 
       
   423 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   424 					data);
       
   425 
       
   426 	hw->phy.ops.release(hw);
       
   427 
       
   428 out:
       
   429 	return ret_val;
       
   430 }
       
   431 
       
   432 /**
       
   433  *  igb_write_phy_reg_igp - Write igp PHY register
       
   434  *  @hw: pointer to the HW structure
       
   435  *  @offset: register offset to write to
       
   436  *  @data: data to write at register offset
       
   437  *
       
   438  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
   439  *  at the offset.  Release any acquired semaphores before exiting.
       
   440  **/
       
   441 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
       
   442 {
       
   443 	s32 ret_val = 0;
       
   444 
       
   445 	if (!(hw->phy.ops.acquire))
       
   446 		goto out;
       
   447 
       
   448 	ret_val = hw->phy.ops.acquire(hw);
       
   449 	if (ret_val)
       
   450 		goto out;
       
   451 
       
   452 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
   453 		ret_val = igb_write_phy_reg_mdic(hw,
       
   454 						 IGP01E1000_PHY_PAGE_SELECT,
       
   455 						 (u16)offset);
       
   456 		if (ret_val) {
       
   457 			hw->phy.ops.release(hw);
       
   458 			goto out;
       
   459 		}
       
   460 	}
       
   461 
       
   462 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   463 					 data);
       
   464 
       
   465 	hw->phy.ops.release(hw);
       
   466 
       
   467 out:
       
   468 	return ret_val;
       
   469 }
       
   470 
       
   471 /**
       
   472  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
       
   473  *  @hw: pointer to the HW structure
       
   474  *
       
   475  *  Sets up Carrier-sense on Transmit and downshift values.
       
   476  **/
       
   477 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
       
   478 {
       
   479 	struct e1000_phy_info *phy = &hw->phy;
       
   480 	s32 ret_val;
       
   481 	u16 phy_data;
       
   482 
       
   483 	if (phy->reset_disable) {
       
   484 		ret_val = 0;
       
   485 		goto out;
       
   486 	}
       
   487 
       
   488 	if (phy->type == e1000_phy_82580) {
       
   489 		ret_val = hw->phy.ops.reset(hw);
       
   490 		if (ret_val) {
       
   491 			hw_dbg("Error resetting the PHY.\n");
       
   492 			goto out;
       
   493 		}
       
   494 	}
       
   495 
       
   496 	/* Enable CRS on TX. This must be set for half-duplex operation. */
       
   497 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
       
   498 	if (ret_val)
       
   499 		goto out;
       
   500 
       
   501 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
       
   502 
       
   503 	/* Enable downshift */
       
   504 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
       
   505 
       
   506 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
       
   507 	if (ret_val)
       
   508 		goto out;
       
   509 
       
   510 	/* Set MDI/MDIX mode */
       
   511 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
       
   512 	if (ret_val)
       
   513 		goto out;
       
   514 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
       
   515 	/* Options:
       
   516 	 *   0 - Auto (default)
       
   517 	 *   1 - MDI mode
       
   518 	 *   2 - MDI-X mode
       
   519 	 */
       
   520 	switch (hw->phy.mdix) {
       
   521 	case 1:
       
   522 		break;
       
   523 	case 2:
       
   524 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
       
   525 		break;
       
   526 	case 0:
       
   527 	default:
       
   528 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
       
   529 		break;
       
   530 	}
       
   531 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
       
   532 
       
   533 out:
       
   534 	return ret_val;
       
   535 }
       
   536 
       
   537 /**
       
   538  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
       
   539  *  @hw: pointer to the HW structure
       
   540  *
       
   541  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
       
   542  *  and downshift values are set also.
       
   543  **/
       
   544 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
       
   545 {
       
   546 	struct e1000_phy_info *phy = &hw->phy;
       
   547 	s32 ret_val;
       
   548 	u16 phy_data;
       
   549 
       
   550 	if (phy->reset_disable) {
       
   551 		ret_val = 0;
       
   552 		goto out;
       
   553 	}
       
   554 
       
   555 	/* Enable CRS on TX. This must be set for half-duplex operation. */
       
   556 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   557 	if (ret_val)
       
   558 		goto out;
       
   559 
       
   560 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
   561 
       
   562 	/* Options:
       
   563 	 *   MDI/MDI-X = 0 (default)
       
   564 	 *   0 - Auto for all speeds
       
   565 	 *   1 - MDI mode
       
   566 	 *   2 - MDI-X mode
       
   567 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
   568 	 */
       
   569 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
   570 
       
   571 	switch (phy->mdix) {
       
   572 	case 1:
       
   573 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
       
   574 		break;
       
   575 	case 2:
       
   576 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
       
   577 		break;
       
   578 	case 3:
       
   579 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
       
   580 		break;
       
   581 	case 0:
       
   582 	default:
       
   583 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
       
   584 		break;
       
   585 	}
       
   586 
       
   587 	/* Options:
       
   588 	 *   disable_polarity_correction = 0 (default)
       
   589 	 *       Automatic Correction for Reversed Cable Polarity
       
   590 	 *   0 - Disabled
       
   591 	 *   1 - Enabled
       
   592 	 */
       
   593 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
       
   594 	if (phy->disable_polarity_correction == 1)
       
   595 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
       
   596 
       
   597 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
   598 	if (ret_val)
       
   599 		goto out;
       
   600 
       
   601 	if (phy->revision < E1000_REVISION_4) {
       
   602 		/* Force TX_CLK in the Extended PHY Specific Control Register
       
   603 		 * to 25MHz clock.
       
   604 		 */
       
   605 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
       
   606 					    &phy_data);
       
   607 		if (ret_val)
       
   608 			goto out;
       
   609 
       
   610 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
   611 
       
   612 		if ((phy->revision == E1000_REVISION_2) &&
       
   613 		    (phy->id == M88E1111_I_PHY_ID)) {
       
   614 			/* 82573L PHY - set the downshift counter to 5x. */
       
   615 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
       
   616 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
       
   617 		} else {
       
   618 			/* Configure Master and Slave downshift values */
       
   619 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
       
   620 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
       
   621 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
       
   622 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
       
   623 		}
       
   624 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
       
   625 					     phy_data);
       
   626 		if (ret_val)
       
   627 			goto out;
       
   628 	}
       
   629 
       
   630 	/* Commit the changes. */
       
   631 	ret_val = igb_phy_sw_reset(hw);
       
   632 	if (ret_val) {
       
   633 		hw_dbg("Error committing the PHY changes\n");
       
   634 		goto out;
       
   635 	}
       
   636 
       
   637 out:
       
   638 	return ret_val;
       
   639 }
       
   640 
       
   641 /**
       
   642  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
       
   643  *  @hw: pointer to the HW structure
       
   644  *
       
   645  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
       
   646  *  Also enables and sets the downshift parameters.
       
   647  **/
       
   648 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
       
   649 {
       
   650 	struct e1000_phy_info *phy = &hw->phy;
       
   651 	s32 ret_val;
       
   652 	u16 phy_data;
       
   653 
       
   654 	if (phy->reset_disable)
       
   655 		return 0;
       
   656 
       
   657 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
       
   658 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   659 	if (ret_val)
       
   660 		return ret_val;
       
   661 
       
   662 	/* Options:
       
   663 	 *   MDI/MDI-X = 0 (default)
       
   664 	 *   0 - Auto for all speeds
       
   665 	 *   1 - MDI mode
       
   666 	 *   2 - MDI-X mode
       
   667 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
   668 	 */
       
   669 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
   670 
       
   671 	switch (phy->mdix) {
       
   672 	case 1:
       
   673 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
       
   674 		break;
       
   675 	case 2:
       
   676 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
       
   677 		break;
       
   678 	case 3:
       
   679 		/* M88E1112 does not support this mode) */
       
   680 		if (phy->id != M88E1112_E_PHY_ID) {
       
   681 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
       
   682 			break;
       
   683 		}
       
   684 	case 0:
       
   685 	default:
       
   686 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
       
   687 		break;
       
   688 	}
       
   689 
       
   690 	/* Options:
       
   691 	 *   disable_polarity_correction = 0 (default)
       
   692 	 *       Automatic Correction for Reversed Cable Polarity
       
   693 	 *   0 - Disabled
       
   694 	 *   1 - Enabled
       
   695 	 */
       
   696 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
       
   697 	if (phy->disable_polarity_correction == 1)
       
   698 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
       
   699 
       
   700 	/* Enable downshift and setting it to X6 */
       
   701 	if (phy->id == M88E1543_E_PHY_ID) {
       
   702 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
       
   703 		ret_val =
       
   704 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
   705 		if (ret_val)
       
   706 			return ret_val;
       
   707 
       
   708 		ret_val = igb_phy_sw_reset(hw);
       
   709 		if (ret_val) {
       
   710 			hw_dbg("Error committing the PHY changes\n");
       
   711 			return ret_val;
       
   712 		}
       
   713 	}
       
   714 
       
   715 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
       
   716 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
       
   717 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
       
   718 
       
   719 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
   720 	if (ret_val)
       
   721 		return ret_val;
       
   722 
       
   723 	/* Commit the changes. */
       
   724 	ret_val = igb_phy_sw_reset(hw);
       
   725 	if (ret_val) {
       
   726 		hw_dbg("Error committing the PHY changes\n");
       
   727 		return ret_val;
       
   728 	}
       
   729 	ret_val = igb_set_master_slave_mode(hw);
       
   730 	if (ret_val)
       
   731 		return ret_val;
       
   732 
       
   733 	return 0;
       
   734 }
       
   735 
       
   736 /**
       
   737  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
       
   738  *  @hw: pointer to the HW structure
       
   739  *
       
   740  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
       
   741  *  igp PHY's.
       
   742  **/
       
   743 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
       
   744 {
       
   745 	struct e1000_phy_info *phy = &hw->phy;
       
   746 	s32 ret_val;
       
   747 	u16 data;
       
   748 
       
   749 	if (phy->reset_disable) {
       
   750 		ret_val = 0;
       
   751 		goto out;
       
   752 	}
       
   753 
       
   754 	ret_val = phy->ops.reset(hw);
       
   755 	if (ret_val) {
       
   756 		hw_dbg("Error resetting the PHY.\n");
       
   757 		goto out;
       
   758 	}
       
   759 
       
   760 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
       
   761 	 * timeout issues when LFS is enabled.
       
   762 	 */
       
   763 	msleep(100);
       
   764 
       
   765 	/* The NVM settings will configure LPLU in D3 for
       
   766 	 * non-IGP1 PHYs.
       
   767 	 */
       
   768 	if (phy->type == e1000_phy_igp) {
       
   769 		/* disable lplu d3 during driver init */
       
   770 		if (phy->ops.set_d3_lplu_state)
       
   771 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
       
   772 		if (ret_val) {
       
   773 			hw_dbg("Error Disabling LPLU D3\n");
       
   774 			goto out;
       
   775 		}
       
   776 	}
       
   777 
       
   778 	/* disable lplu d0 during driver init */
       
   779 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
       
   780 	if (ret_val) {
       
   781 		hw_dbg("Error Disabling LPLU D0\n");
       
   782 		goto out;
       
   783 	}
       
   784 	/* Configure mdi-mdix settings */
       
   785 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
       
   786 	if (ret_val)
       
   787 		goto out;
       
   788 
       
   789 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
   790 
       
   791 	switch (phy->mdix) {
       
   792 	case 1:
       
   793 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   794 		break;
       
   795 	case 2:
       
   796 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   797 		break;
       
   798 	case 0:
       
   799 	default:
       
   800 		data |= IGP01E1000_PSCR_AUTO_MDIX;
       
   801 		break;
       
   802 	}
       
   803 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
       
   804 	if (ret_val)
       
   805 		goto out;
       
   806 
       
   807 	/* set auto-master slave resolution settings */
       
   808 	if (hw->mac.autoneg) {
       
   809 		/* when autonegotiation advertisement is only 1000Mbps then we
       
   810 		 * should disable SmartSpeed and enable Auto MasterSlave
       
   811 		 * resolution as hardware default.
       
   812 		 */
       
   813 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
       
   814 			/* Disable SmartSpeed */
       
   815 			ret_val = phy->ops.read_reg(hw,
       
   816 						    IGP01E1000_PHY_PORT_CONFIG,
       
   817 						    &data);
       
   818 			if (ret_val)
       
   819 				goto out;
       
   820 
       
   821 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   822 			ret_val = phy->ops.write_reg(hw,
       
   823 						     IGP01E1000_PHY_PORT_CONFIG,
       
   824 						     data);
       
   825 			if (ret_val)
       
   826 				goto out;
       
   827 
       
   828 			/* Set auto Master/Slave resolution process */
       
   829 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
       
   830 			if (ret_val)
       
   831 				goto out;
       
   832 
       
   833 			data &= ~CR_1000T_MS_ENABLE;
       
   834 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
       
   835 			if (ret_val)
       
   836 				goto out;
       
   837 		}
       
   838 
       
   839 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
       
   840 		if (ret_val)
       
   841 			goto out;
       
   842 
       
   843 		/* load defaults for future use */
       
   844 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
       
   845 			((data & CR_1000T_MS_VALUE) ?
       
   846 			e1000_ms_force_master :
       
   847 			e1000_ms_force_slave) :
       
   848 			e1000_ms_auto;
       
   849 
       
   850 		switch (phy->ms_type) {
       
   851 		case e1000_ms_force_master:
       
   852 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
       
   853 			break;
       
   854 		case e1000_ms_force_slave:
       
   855 			data |= CR_1000T_MS_ENABLE;
       
   856 			data &= ~(CR_1000T_MS_VALUE);
       
   857 			break;
       
   858 		case e1000_ms_auto:
       
   859 			data &= ~CR_1000T_MS_ENABLE;
       
   860 		default:
       
   861 			break;
       
   862 		}
       
   863 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
       
   864 		if (ret_val)
       
   865 			goto out;
       
   866 	}
       
   867 
       
   868 out:
       
   869 	return ret_val;
       
   870 }
       
   871 
       
   872 /**
       
   873  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
       
   874  *  @hw: pointer to the HW structure
       
   875  *
       
   876  *  Performs initial bounds checking on autoneg advertisement parameter, then
       
   877  *  configure to advertise the full capability.  Setup the PHY to autoneg
       
   878  *  and restart the negotiation process between the link partner.  If
       
   879  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
       
   880  **/
       
   881 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
       
   882 {
       
   883 	struct e1000_phy_info *phy = &hw->phy;
       
   884 	s32 ret_val;
       
   885 	u16 phy_ctrl;
       
   886 
       
   887 	/* Perform some bounds checking on the autoneg advertisement
       
   888 	 * parameter.
       
   889 	 */
       
   890 	phy->autoneg_advertised &= phy->autoneg_mask;
       
   891 
       
   892 	/* If autoneg_advertised is zero, we assume it was not defaulted
       
   893 	 * by the calling code so we set to advertise full capability.
       
   894 	 */
       
   895 	if (phy->autoneg_advertised == 0)
       
   896 		phy->autoneg_advertised = phy->autoneg_mask;
       
   897 
       
   898 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
       
   899 	ret_val = igb_phy_setup_autoneg(hw);
       
   900 	if (ret_val) {
       
   901 		hw_dbg("Error Setting up Auto-Negotiation\n");
       
   902 		goto out;
       
   903 	}
       
   904 	hw_dbg("Restarting Auto-Neg\n");
       
   905 
       
   906 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
       
   907 	 * the Auto Neg Restart bit in the PHY control register.
       
   908 	 */
       
   909 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
       
   910 	if (ret_val)
       
   911 		goto out;
       
   912 
       
   913 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
       
   914 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
       
   915 	if (ret_val)
       
   916 		goto out;
       
   917 
       
   918 	/* Does the user want to wait for Auto-Neg to complete here, or
       
   919 	 * check at a later time (for example, callback routine).
       
   920 	 */
       
   921 	if (phy->autoneg_wait_to_complete) {
       
   922 		ret_val = igb_wait_autoneg(hw);
       
   923 		if (ret_val) {
       
   924 			hw_dbg("Error while waiting for autoneg to complete\n");
       
   925 			goto out;
       
   926 		}
       
   927 	}
       
   928 
       
   929 	hw->mac.get_link_status = true;
       
   930 
       
   931 out:
       
   932 	return ret_val;
       
   933 }
       
   934 
       
   935 /**
       
   936  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
       
   937  *  @hw: pointer to the HW structure
       
   938  *
       
   939  *  Reads the MII auto-neg advertisement register and/or the 1000T control
       
   940  *  register and if the PHY is already setup for auto-negotiation, then
       
   941  *  return successful.  Otherwise, setup advertisement and flow control to
       
   942  *  the appropriate values for the wanted auto-negotiation.
       
   943  **/
       
   944 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
       
   945 {
       
   946 	struct e1000_phy_info *phy = &hw->phy;
       
   947 	s32 ret_val;
       
   948 	u16 mii_autoneg_adv_reg;
       
   949 	u16 mii_1000t_ctrl_reg = 0;
       
   950 
       
   951 	phy->autoneg_advertised &= phy->autoneg_mask;
       
   952 
       
   953 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
       
   954 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
       
   955 	if (ret_val)
       
   956 		goto out;
       
   957 
       
   958 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
       
   959 		/* Read the MII 1000Base-T Control Register (Address 9). */
       
   960 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
       
   961 					    &mii_1000t_ctrl_reg);
       
   962 		if (ret_val)
       
   963 			goto out;
       
   964 	}
       
   965 
       
   966 	/* Need to parse both autoneg_advertised and fc and set up
       
   967 	 * the appropriate PHY registers.  First we will parse for
       
   968 	 * autoneg_advertised software override.  Since we can advertise
       
   969 	 * a plethora of combinations, we need to check each bit
       
   970 	 * individually.
       
   971 	 */
       
   972 
       
   973 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
       
   974 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
       
   975 	 * the  1000Base-T Control Register (Address 9).
       
   976 	 */
       
   977 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
       
   978 				 NWAY_AR_100TX_HD_CAPS |
       
   979 				 NWAY_AR_10T_FD_CAPS   |
       
   980 				 NWAY_AR_10T_HD_CAPS);
       
   981 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
       
   982 
       
   983 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
       
   984 
       
   985 	/* Do we want to advertise 10 Mb Half Duplex? */
       
   986 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
       
   987 		hw_dbg("Advertise 10mb Half duplex\n");
       
   988 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
       
   989 	}
       
   990 
       
   991 	/* Do we want to advertise 10 Mb Full Duplex? */
       
   992 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
       
   993 		hw_dbg("Advertise 10mb Full duplex\n");
       
   994 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
       
   995 	}
       
   996 
       
   997 	/* Do we want to advertise 100 Mb Half Duplex? */
       
   998 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
       
   999 		hw_dbg("Advertise 100mb Half duplex\n");
       
  1000 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
       
  1001 	}
       
  1002 
       
  1003 	/* Do we want to advertise 100 Mb Full Duplex? */
       
  1004 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
       
  1005 		hw_dbg("Advertise 100mb Full duplex\n");
       
  1006 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
       
  1007 	}
       
  1008 
       
  1009 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
       
  1010 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
       
  1011 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
       
  1012 
       
  1013 	/* Do we want to advertise 1000 Mb Full Duplex? */
       
  1014 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
       
  1015 		hw_dbg("Advertise 1000mb Full duplex\n");
       
  1016 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
       
  1017 	}
       
  1018 
       
  1019 	/* Check for a software override of the flow control settings, and
       
  1020 	 * setup the PHY advertisement registers accordingly.  If
       
  1021 	 * auto-negotiation is enabled, then software will have to set the
       
  1022 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
       
  1023 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
       
  1024 	 * negotiation.
       
  1025 	 *
       
  1026 	 * The possible values of the "fc" parameter are:
       
  1027 	 *      0:  Flow control is completely disabled
       
  1028 	 *      1:  Rx flow control is enabled (we can receive pause frames
       
  1029 	 *          but not send pause frames).
       
  1030 	 *      2:  Tx flow control is enabled (we can send pause frames
       
  1031 	 *          but we do not support receiving pause frames).
       
  1032 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
       
  1033 	 *  other:  No software override.  The flow control configuration
       
  1034 	 *          in the EEPROM is used.
       
  1035 	 */
       
  1036 	switch (hw->fc.current_mode) {
       
  1037 	case e1000_fc_none:
       
  1038 		/* Flow control (RX & TX) is completely disabled by a
       
  1039 		 * software over-ride.
       
  1040 		 */
       
  1041 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1042 		break;
       
  1043 	case e1000_fc_rx_pause:
       
  1044 		/* RX Flow control is enabled, and TX Flow control is
       
  1045 		 * disabled, by a software over-ride.
       
  1046 		 *
       
  1047 		 * Since there really isn't a way to advertise that we are
       
  1048 		 * capable of RX Pause ONLY, we will advertise that we
       
  1049 		 * support both symmetric and asymmetric RX PAUSE.  Later
       
  1050 		 * (in e1000_config_fc_after_link_up) we will disable the
       
  1051 		 * hw's ability to send PAUSE frames.
       
  1052 		 */
       
  1053 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1054 		break;
       
  1055 	case e1000_fc_tx_pause:
       
  1056 		/* TX Flow control is enabled, and RX Flow control is
       
  1057 		 * disabled, by a software over-ride.
       
  1058 		 */
       
  1059 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
       
  1060 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
       
  1061 		break;
       
  1062 	case e1000_fc_full:
       
  1063 		/* Flow control (both RX and TX) is enabled by a software
       
  1064 		 * over-ride.
       
  1065 		 */
       
  1066 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1067 		break;
       
  1068 	default:
       
  1069 		hw_dbg("Flow control param set incorrectly\n");
       
  1070 		ret_val = -E1000_ERR_CONFIG;
       
  1071 		goto out;
       
  1072 	}
       
  1073 
       
  1074 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
       
  1075 	if (ret_val)
       
  1076 		goto out;
       
  1077 
       
  1078 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
       
  1079 
       
  1080 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
       
  1081 		ret_val = phy->ops.write_reg(hw,
       
  1082 					     PHY_1000T_CTRL,
       
  1083 					     mii_1000t_ctrl_reg);
       
  1084 		if (ret_val)
       
  1085 			goto out;
       
  1086 	}
       
  1087 
       
  1088 out:
       
  1089 	return ret_val;
       
  1090 }
       
  1091 
       
  1092 /**
       
  1093  *  igb_setup_copper_link - Configure copper link settings
       
  1094  *  @hw: pointer to the HW structure
       
  1095  *
       
  1096  *  Calls the appropriate function to configure the link for auto-neg or forced
       
  1097  *  speed and duplex.  Then we check for link, once link is established calls
       
  1098  *  to configure collision distance and flow control are called.  If link is
       
  1099  *  not established, we return -E1000_ERR_PHY (-2).
       
  1100  **/
       
  1101 s32 igb_setup_copper_link(struct e1000_hw *hw)
       
  1102 {
       
  1103 	s32 ret_val;
       
  1104 	bool link;
       
  1105 
       
  1106 	if (hw->mac.autoneg) {
       
  1107 		/* Setup autoneg and flow control advertisement and perform
       
  1108 		 * autonegotiation.
       
  1109 		 */
       
  1110 		ret_val = igb_copper_link_autoneg(hw);
       
  1111 		if (ret_val)
       
  1112 			goto out;
       
  1113 	} else {
       
  1114 		/* PHY will be set to 10H, 10F, 100H or 100F
       
  1115 		 * depending on user settings.
       
  1116 		 */
       
  1117 		hw_dbg("Forcing Speed and Duplex\n");
       
  1118 		ret_val = hw->phy.ops.force_speed_duplex(hw);
       
  1119 		if (ret_val) {
       
  1120 			hw_dbg("Error Forcing Speed and Duplex\n");
       
  1121 			goto out;
       
  1122 		}
       
  1123 	}
       
  1124 
       
  1125 	/* Check link status. Wait up to 100 microseconds for link to become
       
  1126 	 * valid.
       
  1127 	 */
       
  1128 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
       
  1129 	if (ret_val)
       
  1130 		goto out;
       
  1131 
       
  1132 	if (link) {
       
  1133 		hw_dbg("Valid link established!!!\n");
       
  1134 		igb_config_collision_dist(hw);
       
  1135 		ret_val = igb_config_fc_after_link_up(hw);
       
  1136 	} else {
       
  1137 		hw_dbg("Unable to establish link!!!\n");
       
  1138 	}
       
  1139 
       
  1140 out:
       
  1141 	return ret_val;
       
  1142 }
       
  1143 
       
  1144 /**
       
  1145  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
       
  1146  *  @hw: pointer to the HW structure
       
  1147  *
       
  1148  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1149  *  auto-crossover to force MDI manually.  Waits for link and returns
       
  1150  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
       
  1151  **/
       
  1152 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
       
  1153 {
       
  1154 	struct e1000_phy_info *phy = &hw->phy;
       
  1155 	s32 ret_val;
       
  1156 	u16 phy_data;
       
  1157 	bool link;
       
  1158 
       
  1159 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
       
  1160 	if (ret_val)
       
  1161 		goto out;
       
  1162 
       
  1163 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1164 
       
  1165 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
       
  1166 	if (ret_val)
       
  1167 		goto out;
       
  1168 
       
  1169 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
       
  1170 	 * forced whenever speed and duplex are forced.
       
  1171 	 */
       
  1172 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
       
  1173 	if (ret_val)
       
  1174 		goto out;
       
  1175 
       
  1176 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
  1177 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  1178 
       
  1179 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
       
  1180 	if (ret_val)
       
  1181 		goto out;
       
  1182 
       
  1183 	hw_dbg("IGP PSCR: %X\n", phy_data);
       
  1184 
       
  1185 	udelay(1);
       
  1186 
       
  1187 	if (phy->autoneg_wait_to_complete) {
       
  1188 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
       
  1189 
       
  1190 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
       
  1191 		if (ret_val)
       
  1192 			goto out;
       
  1193 
       
  1194 		if (!link)
       
  1195 			hw_dbg("Link taking longer than expected.\n");
       
  1196 
       
  1197 		/* Try once more */
       
  1198 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
       
  1199 		if (ret_val)
       
  1200 			goto out;
       
  1201 	}
       
  1202 
       
  1203 out:
       
  1204 	return ret_val;
       
  1205 }
       
  1206 
       
  1207 /**
       
  1208  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
       
  1209  *  @hw: pointer to the HW structure
       
  1210  *
       
  1211  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1212  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
       
  1213  *  changes.  If time expires while waiting for link up, we reset the DSP.
       
  1214  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
       
  1215  *  successful completion, else return corresponding error code.
       
  1216  **/
       
  1217 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
       
  1218 {
       
  1219 	struct e1000_phy_info *phy = &hw->phy;
       
  1220 	s32 ret_val;
       
  1221 	u16 phy_data;
       
  1222 	bool link;
       
  1223 
       
  1224 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
       
  1225 	if (phy->type != e1000_phy_i210) {
       
  1226 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
       
  1227 		 * requires MDI forced whenever speed and duplex are forced.
       
  1228 		 */
       
  1229 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
       
  1230 					    &phy_data);
       
  1231 		if (ret_val)
       
  1232 			goto out;
       
  1233 
       
  1234 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1235 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
       
  1236 					     phy_data);
       
  1237 		if (ret_val)
       
  1238 			goto out;
       
  1239 
       
  1240 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
       
  1241 	}
       
  1242 
       
  1243 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
       
  1244 	if (ret_val)
       
  1245 		goto out;
       
  1246 
       
  1247 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1248 
       
  1249 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
       
  1250 	if (ret_val)
       
  1251 		goto out;
       
  1252 
       
  1253 	/* Reset the phy to commit changes. */
       
  1254 	ret_val = igb_phy_sw_reset(hw);
       
  1255 	if (ret_val)
       
  1256 		goto out;
       
  1257 
       
  1258 	if (phy->autoneg_wait_to_complete) {
       
  1259 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
       
  1260 
       
  1261 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
       
  1262 		if (ret_val)
       
  1263 			goto out;
       
  1264 
       
  1265 		if (!link) {
       
  1266 			bool reset_dsp = true;
       
  1267 
       
  1268 			switch (hw->phy.id) {
       
  1269 			case I347AT4_E_PHY_ID:
       
  1270 			case M88E1112_E_PHY_ID:
       
  1271 			case I210_I_PHY_ID:
       
  1272 				reset_dsp = false;
       
  1273 				break;
       
  1274 			default:
       
  1275 				if (hw->phy.type != e1000_phy_m88)
       
  1276 					reset_dsp = false;
       
  1277 				break;
       
  1278 			}
       
  1279 			if (!reset_dsp)
       
  1280 				hw_dbg("Link taking longer than expected.\n");
       
  1281 			else {
       
  1282 				/* We didn't get link.
       
  1283 				 * Reset the DSP and cross our fingers.
       
  1284 				 */
       
  1285 				ret_val = phy->ops.write_reg(hw,
       
  1286 						M88E1000_PHY_PAGE_SELECT,
       
  1287 						0x001d);
       
  1288 				if (ret_val)
       
  1289 					goto out;
       
  1290 				ret_val = igb_phy_reset_dsp(hw);
       
  1291 				if (ret_val)
       
  1292 					goto out;
       
  1293 			}
       
  1294 		}
       
  1295 
       
  1296 		/* Try once more */
       
  1297 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
       
  1298 					   100000, &link);
       
  1299 		if (ret_val)
       
  1300 			goto out;
       
  1301 	}
       
  1302 
       
  1303 	if (hw->phy.type != e1000_phy_m88 ||
       
  1304 	    hw->phy.id == I347AT4_E_PHY_ID ||
       
  1305 	    hw->phy.id == M88E1112_E_PHY_ID ||
       
  1306 	    hw->phy.id == I210_I_PHY_ID)
       
  1307 		goto out;
       
  1308 
       
  1309 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
  1310 	if (ret_val)
       
  1311 		goto out;
       
  1312 
       
  1313 	/* Resetting the phy means we need to re-force TX_CLK in the
       
  1314 	 * Extended PHY Specific Control Register to 25MHz clock from
       
  1315 	 * the reset value of 2.5MHz.
       
  1316 	 */
       
  1317 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
  1318 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
  1319 	if (ret_val)
       
  1320 		goto out;
       
  1321 
       
  1322 	/* In addition, we must re-enable CRS on Tx for both half and full
       
  1323 	 * duplex.
       
  1324 	 */
       
  1325 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1326 	if (ret_val)
       
  1327 		goto out;
       
  1328 
       
  1329 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1330 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1331 
       
  1332 out:
       
  1333 	return ret_val;
       
  1334 }
       
  1335 
       
  1336 /**
       
  1337  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
       
  1338  *  @hw: pointer to the HW structure
       
  1339  *  @phy_ctrl: pointer to current value of PHY_CONTROL
       
  1340  *
       
  1341  *  Forces speed and duplex on the PHY by doing the following: disable flow
       
  1342  *  control, force speed/duplex on the MAC, disable auto speed detection,
       
  1343  *  disable auto-negotiation, configure duplex, configure speed, configure
       
  1344  *  the collision distance, write configuration to CTRL register.  The
       
  1345  *  caller must write to the PHY_CONTROL register for these settings to
       
  1346  *  take affect.
       
  1347  **/
       
  1348 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
       
  1349 					     u16 *phy_ctrl)
       
  1350 {
       
  1351 	struct e1000_mac_info *mac = &hw->mac;
       
  1352 	u32 ctrl;
       
  1353 
       
  1354 	/* Turn off flow control when forcing speed/duplex */
       
  1355 	hw->fc.current_mode = e1000_fc_none;
       
  1356 
       
  1357 	/* Force speed/duplex on the mac */
       
  1358 	ctrl = rd32(E1000_CTRL);
       
  1359 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1360 	ctrl &= ~E1000_CTRL_SPD_SEL;
       
  1361 
       
  1362 	/* Disable Auto Speed Detection */
       
  1363 	ctrl &= ~E1000_CTRL_ASDE;
       
  1364 
       
  1365 	/* Disable autoneg on the phy */
       
  1366 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
       
  1367 
       
  1368 	/* Forcing Full or Half Duplex? */
       
  1369 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
       
  1370 		ctrl &= ~E1000_CTRL_FD;
       
  1371 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
       
  1372 		hw_dbg("Half Duplex\n");
       
  1373 	} else {
       
  1374 		ctrl |= E1000_CTRL_FD;
       
  1375 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
       
  1376 		hw_dbg("Full Duplex\n");
       
  1377 	}
       
  1378 
       
  1379 	/* Forcing 10mb or 100mb? */
       
  1380 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
       
  1381 		ctrl |= E1000_CTRL_SPD_100;
       
  1382 		*phy_ctrl |= MII_CR_SPEED_100;
       
  1383 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
       
  1384 		hw_dbg("Forcing 100mb\n");
       
  1385 	} else {
       
  1386 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1387 		*phy_ctrl |= MII_CR_SPEED_10;
       
  1388 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
       
  1389 		hw_dbg("Forcing 10mb\n");
       
  1390 	}
       
  1391 
       
  1392 	igb_config_collision_dist(hw);
       
  1393 
       
  1394 	wr32(E1000_CTRL, ctrl);
       
  1395 }
       
  1396 
       
  1397 /**
       
  1398  *  igb_set_d3_lplu_state - Sets low power link up state for D3
       
  1399  *  @hw: pointer to the HW structure
       
  1400  *  @active: boolean used to enable/disable lplu
       
  1401  *
       
  1402  *  Success returns 0, Failure returns 1
       
  1403  *
       
  1404  *  The low power link up (lplu) state is set to the power management level D3
       
  1405  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
       
  1406  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
       
  1407  *  is used during Dx states where the power conservation is most important.
       
  1408  *  During driver activity, SmartSpeed should be enabled so performance is
       
  1409  *  maintained.
       
  1410  **/
       
  1411 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
       
  1412 {
       
  1413 	struct e1000_phy_info *phy = &hw->phy;
       
  1414 	s32 ret_val = 0;
       
  1415 	u16 data;
       
  1416 
       
  1417 	if (!(hw->phy.ops.read_reg))
       
  1418 		goto out;
       
  1419 
       
  1420 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
       
  1421 	if (ret_val)
       
  1422 		goto out;
       
  1423 
       
  1424 	if (!active) {
       
  1425 		data &= ~IGP02E1000_PM_D3_LPLU;
       
  1426 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
       
  1427 					     data);
       
  1428 		if (ret_val)
       
  1429 			goto out;
       
  1430 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  1431 		 * during Dx states where the power conservation is most
       
  1432 		 * important.  During driver activity we should enable
       
  1433 		 * SmartSpeed, so performance is maintained.
       
  1434 		 */
       
  1435 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  1436 			ret_val = phy->ops.read_reg(hw,
       
  1437 						    IGP01E1000_PHY_PORT_CONFIG,
       
  1438 						    &data);
       
  1439 			if (ret_val)
       
  1440 				goto out;
       
  1441 
       
  1442 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  1443 			ret_val = phy->ops.write_reg(hw,
       
  1444 						     IGP01E1000_PHY_PORT_CONFIG,
       
  1445 						     data);
       
  1446 			if (ret_val)
       
  1447 				goto out;
       
  1448 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  1449 			ret_val = phy->ops.read_reg(hw,
       
  1450 						     IGP01E1000_PHY_PORT_CONFIG,
       
  1451 						     &data);
       
  1452 			if (ret_val)
       
  1453 				goto out;
       
  1454 
       
  1455 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1456 			ret_val = phy->ops.write_reg(hw,
       
  1457 						     IGP01E1000_PHY_PORT_CONFIG,
       
  1458 						     data);
       
  1459 			if (ret_val)
       
  1460 				goto out;
       
  1461 		}
       
  1462 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
  1463 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
  1464 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
       
  1465 		data |= IGP02E1000_PM_D3_LPLU;
       
  1466 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
       
  1467 					      data);
       
  1468 		if (ret_val)
       
  1469 			goto out;
       
  1470 
       
  1471 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  1472 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1473 					    &data);
       
  1474 		if (ret_val)
       
  1475 			goto out;
       
  1476 
       
  1477 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1478 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1479 					     data);
       
  1480 	}
       
  1481 
       
  1482 out:
       
  1483 	return ret_val;
       
  1484 }
       
  1485 
       
  1486 /**
       
  1487  *  igb_check_downshift - Checks whether a downshift in speed occurred
       
  1488  *  @hw: pointer to the HW structure
       
  1489  *
       
  1490  *  Success returns 0, Failure returns 1
       
  1491  *
       
  1492  *  A downshift is detected by querying the PHY link health.
       
  1493  **/
       
  1494 s32 igb_check_downshift(struct e1000_hw *hw)
       
  1495 {
       
  1496 	struct e1000_phy_info *phy = &hw->phy;
       
  1497 	s32 ret_val;
       
  1498 	u16 phy_data, offset, mask;
       
  1499 
       
  1500 	switch (phy->type) {
       
  1501 	case e1000_phy_i210:
       
  1502 	case e1000_phy_m88:
       
  1503 	case e1000_phy_gg82563:
       
  1504 		offset	= M88E1000_PHY_SPEC_STATUS;
       
  1505 		mask	= M88E1000_PSSR_DOWNSHIFT;
       
  1506 		break;
       
  1507 	case e1000_phy_igp_2:
       
  1508 	case e1000_phy_igp:
       
  1509 	case e1000_phy_igp_3:
       
  1510 		offset	= IGP01E1000_PHY_LINK_HEALTH;
       
  1511 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
       
  1512 		break;
       
  1513 	default:
       
  1514 		/* speed downshift not supported */
       
  1515 		phy->speed_downgraded = false;
       
  1516 		ret_val = 0;
       
  1517 		goto out;
       
  1518 	}
       
  1519 
       
  1520 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
       
  1521 
       
  1522 	if (!ret_val)
       
  1523 		phy->speed_downgraded = (phy_data & mask) ? true : false;
       
  1524 
       
  1525 out:
       
  1526 	return ret_val;
       
  1527 }
       
  1528 
       
  1529 /**
       
  1530  *  igb_check_polarity_m88 - Checks the polarity.
       
  1531  *  @hw: pointer to the HW structure
       
  1532  *
       
  1533  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1534  *
       
  1535  *  Polarity is determined based on the PHY specific status register.
       
  1536  **/
       
  1537 s32 igb_check_polarity_m88(struct e1000_hw *hw)
       
  1538 {
       
  1539 	struct e1000_phy_info *phy = &hw->phy;
       
  1540 	s32 ret_val;
       
  1541 	u16 data;
       
  1542 
       
  1543 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
       
  1544 
       
  1545 	if (!ret_val)
       
  1546 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
       
  1547 				      ? e1000_rev_polarity_reversed
       
  1548 				      : e1000_rev_polarity_normal;
       
  1549 
       
  1550 	return ret_val;
       
  1551 }
       
  1552 
       
  1553 /**
       
  1554  *  igb_check_polarity_igp - Checks the polarity.
       
  1555  *  @hw: pointer to the HW structure
       
  1556  *
       
  1557  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1558  *
       
  1559  *  Polarity is determined based on the PHY port status register, and the
       
  1560  *  current speed (since there is no polarity at 100Mbps).
       
  1561  **/
       
  1562 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
       
  1563 {
       
  1564 	struct e1000_phy_info *phy = &hw->phy;
       
  1565 	s32 ret_val;
       
  1566 	u16 data, offset, mask;
       
  1567 
       
  1568 	/* Polarity is determined based on the speed of
       
  1569 	 * our connection.
       
  1570 	 */
       
  1571 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  1572 	if (ret_val)
       
  1573 		goto out;
       
  1574 
       
  1575 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  1576 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  1577 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
       
  1578 		mask	= IGP01E1000_PHY_POLARITY_MASK;
       
  1579 	} else {
       
  1580 		/* This really only applies to 10Mbps since
       
  1581 		 * there is no polarity for 100Mbps (always 0).
       
  1582 		 */
       
  1583 		offset	= IGP01E1000_PHY_PORT_STATUS;
       
  1584 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
       
  1585 	}
       
  1586 
       
  1587 	ret_val = phy->ops.read_reg(hw, offset, &data);
       
  1588 
       
  1589 	if (!ret_val)
       
  1590 		phy->cable_polarity = (data & mask)
       
  1591 				      ? e1000_rev_polarity_reversed
       
  1592 				      : e1000_rev_polarity_normal;
       
  1593 
       
  1594 out:
       
  1595 	return ret_val;
       
  1596 }
       
  1597 
       
  1598 /**
       
  1599  *  igb_wait_autoneg - Wait for auto-neg completion
       
  1600  *  @hw: pointer to the HW structure
       
  1601  *
       
  1602  *  Waits for auto-negotiation to complete or for the auto-negotiation time
       
  1603  *  limit to expire, which ever happens first.
       
  1604  **/
       
  1605 static s32 igb_wait_autoneg(struct e1000_hw *hw)
       
  1606 {
       
  1607 	s32 ret_val = 0;
       
  1608 	u16 i, phy_status;
       
  1609 
       
  1610 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
       
  1611 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
       
  1612 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
       
  1613 		if (ret_val)
       
  1614 			break;
       
  1615 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
       
  1616 		if (ret_val)
       
  1617 			break;
       
  1618 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
       
  1619 			break;
       
  1620 		msleep(100);
       
  1621 	}
       
  1622 
       
  1623 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
       
  1624 	 * has completed.
       
  1625 	 */
       
  1626 	return ret_val;
       
  1627 }
       
  1628 
       
  1629 /**
       
  1630  *  igb_phy_has_link - Polls PHY for link
       
  1631  *  @hw: pointer to the HW structure
       
  1632  *  @iterations: number of times to poll for link
       
  1633  *  @usec_interval: delay between polling attempts
       
  1634  *  @success: pointer to whether polling was successful or not
       
  1635  *
       
  1636  *  Polls the PHY status register for link, 'iterations' number of times.
       
  1637  **/
       
  1638 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
       
  1639 		     u32 usec_interval, bool *success)
       
  1640 {
       
  1641 	s32 ret_val = 0;
       
  1642 	u16 i, phy_status;
       
  1643 
       
  1644 	for (i = 0; i < iterations; i++) {
       
  1645 		/* Some PHYs require the PHY_STATUS register to be read
       
  1646 		 * twice due to the link bit being sticky.  No harm doing
       
  1647 		 * it across the board.
       
  1648 		 */
       
  1649 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
       
  1650 		if (ret_val && usec_interval > 0) {
       
  1651 			/* If the first read fails, another entity may have
       
  1652 			 * ownership of the resources, wait and try again to
       
  1653 			 * see if they have relinquished the resources yet.
       
  1654 			 */
       
  1655 			if (usec_interval >= 1000)
       
  1656 				mdelay(usec_interval/1000);
       
  1657 			else
       
  1658 				udelay(usec_interval);
       
  1659 		}
       
  1660 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
       
  1661 		if (ret_val)
       
  1662 			break;
       
  1663 		if (phy_status & MII_SR_LINK_STATUS)
       
  1664 			break;
       
  1665 		if (usec_interval >= 1000)
       
  1666 			mdelay(usec_interval/1000);
       
  1667 		else
       
  1668 			udelay(usec_interval);
       
  1669 	}
       
  1670 
       
  1671 	*success = (i < iterations) ? true : false;
       
  1672 
       
  1673 	return ret_val;
       
  1674 }
       
  1675 
       
  1676 /**
       
  1677  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
       
  1678  *  @hw: pointer to the HW structure
       
  1679  *
       
  1680  *  Reads the PHY specific status register to retrieve the cable length
       
  1681  *  information.  The cable length is determined by averaging the minimum and
       
  1682  *  maximum values to get the "average" cable length.  The m88 PHY has four
       
  1683  *  possible cable length values, which are:
       
  1684  *	Register Value		Cable Length
       
  1685  *	0			< 50 meters
       
  1686  *	1			50 - 80 meters
       
  1687  *	2			80 - 110 meters
       
  1688  *	3			110 - 140 meters
       
  1689  *	4			> 140 meters
       
  1690  **/
       
  1691 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
       
  1692 {
       
  1693 	struct e1000_phy_info *phy = &hw->phy;
       
  1694 	s32 ret_val;
       
  1695 	u16 phy_data, index;
       
  1696 
       
  1697 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1698 	if (ret_val)
       
  1699 		goto out;
       
  1700 
       
  1701 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
       
  1702 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
       
  1703 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
       
  1704 		ret_val = -E1000_ERR_PHY;
       
  1705 		goto out;
       
  1706 	}
       
  1707 
       
  1708 	phy->min_cable_length = e1000_m88_cable_length_table[index];
       
  1709 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
       
  1710 
       
  1711 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1712 
       
  1713 out:
       
  1714 	return ret_val;
       
  1715 }
       
  1716 
       
  1717 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
       
  1718 {
       
  1719 	struct e1000_phy_info *phy = &hw->phy;
       
  1720 	s32 ret_val;
       
  1721 	u16 phy_data, phy_data2, index, default_page, is_cm;
       
  1722 
       
  1723 	switch (hw->phy.id) {
       
  1724 	case I210_I_PHY_ID:
       
  1725 		/* Get cable length from PHY Cable Diagnostics Control Reg */
       
  1726 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
       
  1727 					    (I347AT4_PCDL + phy->addr),
       
  1728 					    &phy_data);
       
  1729 		if (ret_val)
       
  1730 			return ret_val;
       
  1731 
       
  1732 		/* Check if the unit of cable length is meters or cm */
       
  1733 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
       
  1734 					    I347AT4_PCDC, &phy_data2);
       
  1735 		if (ret_val)
       
  1736 			return ret_val;
       
  1737 
       
  1738 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
       
  1739 
       
  1740 		/* Populate the phy structure with cable length in meters */
       
  1741 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
       
  1742 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
       
  1743 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
       
  1744 		break;
       
  1745 	case M88E1543_E_PHY_ID:
       
  1746 	case I347AT4_E_PHY_ID:
       
  1747 		/* Remember the original page select and set it to 7 */
       
  1748 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
       
  1749 					    &default_page);
       
  1750 		if (ret_val)
       
  1751 			goto out;
       
  1752 
       
  1753 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
       
  1754 		if (ret_val)
       
  1755 			goto out;
       
  1756 
       
  1757 		/* Get cable length from PHY Cable Diagnostics Control Reg */
       
  1758 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
       
  1759 					    &phy_data);
       
  1760 		if (ret_val)
       
  1761 			goto out;
       
  1762 
       
  1763 		/* Check if the unit of cable length is meters or cm */
       
  1764 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
       
  1765 		if (ret_val)
       
  1766 			goto out;
       
  1767 
       
  1768 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
       
  1769 
       
  1770 		/* Populate the phy structure with cable length in meters */
       
  1771 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
       
  1772 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
       
  1773 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
       
  1774 
       
  1775 		/* Reset the page selec to its original value */
       
  1776 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
       
  1777 					     default_page);
       
  1778 		if (ret_val)
       
  1779 			goto out;
       
  1780 		break;
       
  1781 	case M88E1112_E_PHY_ID:
       
  1782 		/* Remember the original page select and set it to 5 */
       
  1783 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
       
  1784 					    &default_page);
       
  1785 		if (ret_val)
       
  1786 			goto out;
       
  1787 
       
  1788 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
       
  1789 		if (ret_val)
       
  1790 			goto out;
       
  1791 
       
  1792 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
       
  1793 					    &phy_data);
       
  1794 		if (ret_val)
       
  1795 			goto out;
       
  1796 
       
  1797 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
       
  1798 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
       
  1799 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
       
  1800 			ret_val = -E1000_ERR_PHY;
       
  1801 			goto out;
       
  1802 		}
       
  1803 
       
  1804 		phy->min_cable_length = e1000_m88_cable_length_table[index];
       
  1805 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
       
  1806 
       
  1807 		phy->cable_length = (phy->min_cable_length +
       
  1808 				     phy->max_cable_length) / 2;
       
  1809 
       
  1810 		/* Reset the page select to its original value */
       
  1811 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
       
  1812 					     default_page);
       
  1813 		if (ret_val)
       
  1814 			goto out;
       
  1815 
       
  1816 		break;
       
  1817 	default:
       
  1818 		ret_val = -E1000_ERR_PHY;
       
  1819 		goto out;
       
  1820 	}
       
  1821 
       
  1822 out:
       
  1823 	return ret_val;
       
  1824 }
       
  1825 
       
  1826 /**
       
  1827  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
       
  1828  *  @hw: pointer to the HW structure
       
  1829  *
       
  1830  *  The automatic gain control (agc) normalizes the amplitude of the
       
  1831  *  received signal, adjusting for the attenuation produced by the
       
  1832  *  cable.  By reading the AGC registers, which represent the
       
  1833  *  combination of coarse and fine gain value, the value can be put
       
  1834  *  into a lookup table to obtain the approximate cable length
       
  1835  *  for each channel.
       
  1836  **/
       
  1837 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
       
  1838 {
       
  1839 	struct e1000_phy_info *phy = &hw->phy;
       
  1840 	s32 ret_val = 0;
       
  1841 	u16 phy_data, i, agc_value = 0;
       
  1842 	u16 cur_agc_index, max_agc_index = 0;
       
  1843 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
       
  1844 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
       
  1845 		IGP02E1000_PHY_AGC_A,
       
  1846 		IGP02E1000_PHY_AGC_B,
       
  1847 		IGP02E1000_PHY_AGC_C,
       
  1848 		IGP02E1000_PHY_AGC_D
       
  1849 	};
       
  1850 
       
  1851 	/* Read the AGC registers for all channels */
       
  1852 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
       
  1853 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
       
  1854 		if (ret_val)
       
  1855 			goto out;
       
  1856 
       
  1857 		/* Getting bits 15:9, which represent the combination of
       
  1858 		 * coarse and fine gain values.  The result is a number
       
  1859 		 * that can be put into the lookup table to obtain the
       
  1860 		 * approximate cable length.
       
  1861 		 */
       
  1862 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
       
  1863 				IGP02E1000_AGC_LENGTH_MASK;
       
  1864 
       
  1865 		/* Array index bound check. */
       
  1866 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
       
  1867 		    (cur_agc_index == 0)) {
       
  1868 			ret_val = -E1000_ERR_PHY;
       
  1869 			goto out;
       
  1870 		}
       
  1871 
       
  1872 		/* Remove min & max AGC values from calculation. */
       
  1873 		if (e1000_igp_2_cable_length_table[min_agc_index] >
       
  1874 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1875 			min_agc_index = cur_agc_index;
       
  1876 		if (e1000_igp_2_cable_length_table[max_agc_index] <
       
  1877 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1878 			max_agc_index = cur_agc_index;
       
  1879 
       
  1880 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
       
  1881 	}
       
  1882 
       
  1883 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
       
  1884 		      e1000_igp_2_cable_length_table[max_agc_index]);
       
  1885 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
       
  1886 
       
  1887 	/* Calculate cable length with the error range of +/- 10 meters. */
       
  1888 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
       
  1889 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
       
  1890 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
       
  1891 
       
  1892 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1893 
       
  1894 out:
       
  1895 	return ret_val;
       
  1896 }
       
  1897 
       
  1898 /**
       
  1899  *  igb_get_phy_info_m88 - Retrieve PHY information
       
  1900  *  @hw: pointer to the HW structure
       
  1901  *
       
  1902  *  Valid for only copper links.  Read the PHY status register (sticky read)
       
  1903  *  to verify that link is up.  Read the PHY special control register to
       
  1904  *  determine the polarity and 10base-T extended distance.  Read the PHY
       
  1905  *  special status register to determine MDI/MDIx and current speed.  If
       
  1906  *  speed is 1000, then determine cable length, local and remote receiver.
       
  1907  **/
       
  1908 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
       
  1909 {
       
  1910 	struct e1000_phy_info *phy = &hw->phy;
       
  1911 	s32  ret_val;
       
  1912 	u16 phy_data;
       
  1913 	bool link;
       
  1914 
       
  1915 	if (phy->media_type != e1000_media_type_copper) {
       
  1916 		hw_dbg("Phy info is only valid for copper media\n");
       
  1917 		ret_val = -E1000_ERR_CONFIG;
       
  1918 		goto out;
       
  1919 	}
       
  1920 
       
  1921 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
       
  1922 	if (ret_val)
       
  1923 		goto out;
       
  1924 
       
  1925 	if (!link) {
       
  1926 		hw_dbg("Phy info is only valid if link is up\n");
       
  1927 		ret_val = -E1000_ERR_CONFIG;
       
  1928 		goto out;
       
  1929 	}
       
  1930 
       
  1931 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1932 	if (ret_val)
       
  1933 		goto out;
       
  1934 
       
  1935 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
       
  1936 				   ? true : false;
       
  1937 
       
  1938 	ret_val = igb_check_polarity_m88(hw);
       
  1939 	if (ret_val)
       
  1940 		goto out;
       
  1941 
       
  1942 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1943 	if (ret_val)
       
  1944 		goto out;
       
  1945 
       
  1946 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
       
  1947 
       
  1948 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
       
  1949 		ret_val = phy->ops.get_cable_length(hw);
       
  1950 		if (ret_val)
       
  1951 			goto out;
       
  1952 
       
  1953 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
       
  1954 		if (ret_val)
       
  1955 			goto out;
       
  1956 
       
  1957 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
       
  1958 				? e1000_1000t_rx_status_ok
       
  1959 				: e1000_1000t_rx_status_not_ok;
       
  1960 
       
  1961 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
       
  1962 				 ? e1000_1000t_rx_status_ok
       
  1963 				 : e1000_1000t_rx_status_not_ok;
       
  1964 	} else {
       
  1965 		/* Set values to "undefined" */
       
  1966 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  1967 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  1968 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  1969 	}
       
  1970 
       
  1971 out:
       
  1972 	return ret_val;
       
  1973 }
       
  1974 
       
  1975 /**
       
  1976  *  igb_get_phy_info_igp - Retrieve igp PHY information
       
  1977  *  @hw: pointer to the HW structure
       
  1978  *
       
  1979  *  Read PHY status to determine if link is up.  If link is up, then
       
  1980  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  1981  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  1982  *  determine on the cable length, local and remote receiver.
       
  1983  **/
       
  1984 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
       
  1985 {
       
  1986 	struct e1000_phy_info *phy = &hw->phy;
       
  1987 	s32 ret_val;
       
  1988 	u16 data;
       
  1989 	bool link;
       
  1990 
       
  1991 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
       
  1992 	if (ret_val)
       
  1993 		goto out;
       
  1994 
       
  1995 	if (!link) {
       
  1996 		hw_dbg("Phy info is only valid if link is up\n");
       
  1997 		ret_val = -E1000_ERR_CONFIG;
       
  1998 		goto out;
       
  1999 	}
       
  2000 
       
  2001 	phy->polarity_correction = true;
       
  2002 
       
  2003 	ret_val = igb_check_polarity_igp(hw);
       
  2004 	if (ret_val)
       
  2005 		goto out;
       
  2006 
       
  2007 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  2008 	if (ret_val)
       
  2009 		goto out;
       
  2010 
       
  2011 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
       
  2012 
       
  2013 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  2014 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  2015 		ret_val = phy->ops.get_cable_length(hw);
       
  2016 		if (ret_val)
       
  2017 			goto out;
       
  2018 
       
  2019 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
       
  2020 		if (ret_val)
       
  2021 			goto out;
       
  2022 
       
  2023 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
       
  2024 				? e1000_1000t_rx_status_ok
       
  2025 				: e1000_1000t_rx_status_not_ok;
       
  2026 
       
  2027 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
       
  2028 				 ? e1000_1000t_rx_status_ok
       
  2029 				 : e1000_1000t_rx_status_not_ok;
       
  2030 	} else {
       
  2031 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2032 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2033 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2034 	}
       
  2035 
       
  2036 out:
       
  2037 	return ret_val;
       
  2038 }
       
  2039 
       
  2040 /**
       
  2041  *  igb_phy_sw_reset - PHY software reset
       
  2042  *  @hw: pointer to the HW structure
       
  2043  *
       
  2044  *  Does a software reset of the PHY by reading the PHY control register and
       
  2045  *  setting/write the control register reset bit to the PHY.
       
  2046  **/
       
  2047 s32 igb_phy_sw_reset(struct e1000_hw *hw)
       
  2048 {
       
  2049 	s32 ret_val = 0;
       
  2050 	u16 phy_ctrl;
       
  2051 
       
  2052 	if (!(hw->phy.ops.read_reg))
       
  2053 		goto out;
       
  2054 
       
  2055 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
       
  2056 	if (ret_val)
       
  2057 		goto out;
       
  2058 
       
  2059 	phy_ctrl |= MII_CR_RESET;
       
  2060 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
       
  2061 	if (ret_val)
       
  2062 		goto out;
       
  2063 
       
  2064 	udelay(1);
       
  2065 
       
  2066 out:
       
  2067 	return ret_val;
       
  2068 }
       
  2069 
       
  2070 /**
       
  2071  *  igb_phy_hw_reset - PHY hardware reset
       
  2072  *  @hw: pointer to the HW structure
       
  2073  *
       
  2074  *  Verify the reset block is not blocking us from resetting.  Acquire
       
  2075  *  semaphore (if necessary) and read/set/write the device control reset
       
  2076  *  bit in the PHY.  Wait the appropriate delay time for the device to
       
  2077  *  reset and release the semaphore (if necessary).
       
  2078  **/
       
  2079 s32 igb_phy_hw_reset(struct e1000_hw *hw)
       
  2080 {
       
  2081 	struct e1000_phy_info *phy = &hw->phy;
       
  2082 	s32  ret_val;
       
  2083 	u32 ctrl;
       
  2084 
       
  2085 	ret_val = igb_check_reset_block(hw);
       
  2086 	if (ret_val) {
       
  2087 		ret_val = 0;
       
  2088 		goto out;
       
  2089 	}
       
  2090 
       
  2091 	ret_val = phy->ops.acquire(hw);
       
  2092 	if (ret_val)
       
  2093 		goto out;
       
  2094 
       
  2095 	ctrl = rd32(E1000_CTRL);
       
  2096 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
       
  2097 	wrfl();
       
  2098 
       
  2099 	udelay(phy->reset_delay_us);
       
  2100 
       
  2101 	wr32(E1000_CTRL, ctrl);
       
  2102 	wrfl();
       
  2103 
       
  2104 	udelay(150);
       
  2105 
       
  2106 	phy->ops.release(hw);
       
  2107 
       
  2108 	ret_val = phy->ops.get_cfg_done(hw);
       
  2109 
       
  2110 out:
       
  2111 	return ret_val;
       
  2112 }
       
  2113 
       
  2114 /**
       
  2115  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
       
  2116  *  @hw: pointer to the HW structure
       
  2117  *
       
  2118  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
       
  2119  **/
       
  2120 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
       
  2121 {
       
  2122 	hw_dbg("Running IGP 3 PHY init script\n");
       
  2123 
       
  2124 	/* PHY init IGP 3 */
       
  2125 	/* Enable rise/fall, 10-mode work in class-A */
       
  2126 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
       
  2127 	/* Remove all caps from Replica path filter */
       
  2128 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
       
  2129 	/* Bias trimming for ADC, AFE and Driver (Default) */
       
  2130 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
       
  2131 	/* Increase Hybrid poly bias */
       
  2132 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
       
  2133 	/* Add 4% to TX amplitude in Giga mode */
       
  2134 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
       
  2135 	/* Disable trimming (TTT) */
       
  2136 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
       
  2137 	/* Poly DC correction to 94.6% + 2% for all channels */
       
  2138 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
       
  2139 	/* ABS DC correction to 95.9% */
       
  2140 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
       
  2141 	/* BG temp curve trim */
       
  2142 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
       
  2143 	/* Increasing ADC OPAMP stage 1 currents to max */
       
  2144 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
       
  2145 	/* Force 1000 ( required for enabling PHY regs configuration) */
       
  2146 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
       
  2147 	/* Set upd_freq to 6 */
       
  2148 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
       
  2149 	/* Disable NPDFE */
       
  2150 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
       
  2151 	/* Disable adaptive fixed FFE (Default) */
       
  2152 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
       
  2153 	/* Enable FFE hysteresis */
       
  2154 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
       
  2155 	/* Fixed FFE for short cable lengths */
       
  2156 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
       
  2157 	/* Fixed FFE for medium cable lengths */
       
  2158 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
       
  2159 	/* Fixed FFE for long cable lengths */
       
  2160 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
       
  2161 	/* Enable Adaptive Clip Threshold */
       
  2162 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
       
  2163 	/* AHT reset limit to 1 */
       
  2164 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
       
  2165 	/* Set AHT master delay to 127 msec */
       
  2166 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
       
  2167 	/* Set scan bits for AHT */
       
  2168 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
       
  2169 	/* Set AHT Preset bits */
       
  2170 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
       
  2171 	/* Change integ_factor of channel A to 3 */
       
  2172 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
       
  2173 	/* Change prop_factor of channels BCD to 8 */
       
  2174 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
       
  2175 	/* Change cg_icount + enable integbp for channels BCD */
       
  2176 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
       
  2177 	/* Change cg_icount + enable integbp + change prop_factor_master
       
  2178 	 * to 8 for channel A
       
  2179 	 */
       
  2180 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
       
  2181 	/* Disable AHT in Slave mode on channel A */
       
  2182 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
       
  2183 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
       
  2184 	 * Enable SPD+B2B
       
  2185 	 */
       
  2186 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
       
  2187 	/* Enable restart AN on an1000_dis change */
       
  2188 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
       
  2189 	/* Enable wh_fifo read clock in 10/100 modes */
       
  2190 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
       
  2191 	/* Restart AN, Speed selection is 1000 */
       
  2192 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
       
  2193 
       
  2194 	return 0;
       
  2195 }
       
  2196 
       
  2197 /**
       
  2198  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
       
  2199  * @hw: pointer to the HW structure
       
  2200  *
       
  2201  * In the case of a PHY power down to save power, or to turn off link during a
       
  2202  * driver unload, restore the link to previous settings.
       
  2203  **/
       
  2204 void igb_power_up_phy_copper(struct e1000_hw *hw)
       
  2205 {
       
  2206 	u16 mii_reg = 0;
       
  2207 
       
  2208 	/* The PHY will retain its settings across a power down/up cycle */
       
  2209 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
       
  2210 	mii_reg &= ~MII_CR_POWER_DOWN;
       
  2211 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
       
  2212 }
       
  2213 
       
  2214 /**
       
  2215  * igb_power_down_phy_copper - Power down copper PHY
       
  2216  * @hw: pointer to the HW structure
       
  2217  *
       
  2218  * Power down PHY to save power when interface is down and wake on lan
       
  2219  * is not enabled.
       
  2220  **/
       
  2221 void igb_power_down_phy_copper(struct e1000_hw *hw)
       
  2222 {
       
  2223 	u16 mii_reg = 0;
       
  2224 
       
  2225 	/* The PHY will retain its settings across a power down/up cycle */
       
  2226 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
       
  2227 	mii_reg |= MII_CR_POWER_DOWN;
       
  2228 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
       
  2229 	usleep_range(1000, 2000);
       
  2230 }
       
  2231 
       
  2232 /**
       
  2233  *  igb_check_polarity_82580 - Checks the polarity.
       
  2234  *  @hw: pointer to the HW structure
       
  2235  *
       
  2236  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  2237  *
       
  2238  *  Polarity is determined based on the PHY specific status register.
       
  2239  **/
       
  2240 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
       
  2241 {
       
  2242 	struct e1000_phy_info *phy = &hw->phy;
       
  2243 	s32 ret_val;
       
  2244 	u16 data;
       
  2245 
       
  2246 
       
  2247 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
       
  2248 
       
  2249 	if (!ret_val)
       
  2250 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
       
  2251 				      ? e1000_rev_polarity_reversed
       
  2252 				      : e1000_rev_polarity_normal;
       
  2253 
       
  2254 	return ret_val;
       
  2255 }
       
  2256 
       
  2257 /**
       
  2258  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
       
  2259  *  @hw: pointer to the HW structure
       
  2260  *
       
  2261  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  2262  *  auto-crossover to force MDI manually.  Waits for link and returns
       
  2263  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
       
  2264  **/
       
  2265 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
       
  2266 {
       
  2267 	struct e1000_phy_info *phy = &hw->phy;
       
  2268 	s32 ret_val;
       
  2269 	u16 phy_data;
       
  2270 	bool link;
       
  2271 
       
  2272 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
       
  2273 	if (ret_val)
       
  2274 		goto out;
       
  2275 
       
  2276 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
       
  2277 
       
  2278 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
       
  2279 	if (ret_val)
       
  2280 		goto out;
       
  2281 
       
  2282 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
       
  2283 	 * forced whenever speed and duplex are forced.
       
  2284 	 */
       
  2285 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
       
  2286 	if (ret_val)
       
  2287 		goto out;
       
  2288 
       
  2289 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
       
  2290 
       
  2291 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
       
  2292 	if (ret_val)
       
  2293 		goto out;
       
  2294 
       
  2295 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
       
  2296 
       
  2297 	udelay(1);
       
  2298 
       
  2299 	if (phy->autoneg_wait_to_complete) {
       
  2300 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
       
  2301 
       
  2302 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
       
  2303 		if (ret_val)
       
  2304 			goto out;
       
  2305 
       
  2306 		if (!link)
       
  2307 			hw_dbg("Link taking longer than expected.\n");
       
  2308 
       
  2309 		/* Try once more */
       
  2310 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
       
  2311 		if (ret_val)
       
  2312 			goto out;
       
  2313 	}
       
  2314 
       
  2315 out:
       
  2316 	return ret_val;
       
  2317 }
       
  2318 
       
  2319 /**
       
  2320  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
       
  2321  *  @hw: pointer to the HW structure
       
  2322  *
       
  2323  *  Read PHY status to determine if link is up.  If link is up, then
       
  2324  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  2325  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  2326  *  determine on the cable length, local and remote receiver.
       
  2327  **/
       
  2328 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
       
  2329 {
       
  2330 	struct e1000_phy_info *phy = &hw->phy;
       
  2331 	s32 ret_val;
       
  2332 	u16 data;
       
  2333 	bool link;
       
  2334 
       
  2335 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
       
  2336 	if (ret_val)
       
  2337 		goto out;
       
  2338 
       
  2339 	if (!link) {
       
  2340 		hw_dbg("Phy info is only valid if link is up\n");
       
  2341 		ret_val = -E1000_ERR_CONFIG;
       
  2342 		goto out;
       
  2343 	}
       
  2344 
       
  2345 	phy->polarity_correction = true;
       
  2346 
       
  2347 	ret_val = igb_check_polarity_82580(hw);
       
  2348 	if (ret_val)
       
  2349 		goto out;
       
  2350 
       
  2351 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
       
  2352 	if (ret_val)
       
  2353 		goto out;
       
  2354 
       
  2355 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
       
  2356 
       
  2357 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
       
  2358 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
       
  2359 		ret_val = hw->phy.ops.get_cable_length(hw);
       
  2360 		if (ret_val)
       
  2361 			goto out;
       
  2362 
       
  2363 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
       
  2364 		if (ret_val)
       
  2365 			goto out;
       
  2366 
       
  2367 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
       
  2368 				? e1000_1000t_rx_status_ok
       
  2369 				: e1000_1000t_rx_status_not_ok;
       
  2370 
       
  2371 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
       
  2372 				 ? e1000_1000t_rx_status_ok
       
  2373 				 : e1000_1000t_rx_status_not_ok;
       
  2374 	} else {
       
  2375 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2376 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2377 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2378 	}
       
  2379 
       
  2380 out:
       
  2381 	return ret_val;
       
  2382 }
       
  2383 
       
  2384 /**
       
  2385  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
       
  2386  *  @hw: pointer to the HW structure
       
  2387  *
       
  2388  * Reads the diagnostic status register and verifies result is valid before
       
  2389  * placing it in the phy_cable_length field.
       
  2390  **/
       
  2391 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
       
  2392 {
       
  2393 	struct e1000_phy_info *phy = &hw->phy;
       
  2394 	s32 ret_val;
       
  2395 	u16 phy_data, length;
       
  2396 
       
  2397 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
       
  2398 	if (ret_val)
       
  2399 		goto out;
       
  2400 
       
  2401 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
       
  2402 		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
       
  2403 
       
  2404 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
       
  2405 		ret_val = -E1000_ERR_PHY;
       
  2406 
       
  2407 	phy->cable_length = length;
       
  2408 
       
  2409 out:
       
  2410 	return ret_val;
       
  2411 }
       
  2412 
       
  2413 /**
       
  2414  *  igb_write_phy_reg_gs40g - Write GS40G PHY register
       
  2415  *  @hw: pointer to the HW structure
       
  2416  *  @offset: lower half is register offset to write to
       
  2417  *     upper half is page to use.
       
  2418  *  @data: data to write at register offset
       
  2419  *
       
  2420  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2421  *  at the offset.  Release any acquired semaphores before exiting.
       
  2422  **/
       
  2423 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
       
  2424 {
       
  2425 	s32 ret_val;
       
  2426 	u16 page = offset >> GS40G_PAGE_SHIFT;
       
  2427 
       
  2428 	offset = offset & GS40G_OFFSET_MASK;
       
  2429 	ret_val = hw->phy.ops.acquire(hw);
       
  2430 	if (ret_val)
       
  2431 		return ret_val;
       
  2432 
       
  2433 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
       
  2434 	if (ret_val)
       
  2435 		goto release;
       
  2436 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
       
  2437 
       
  2438 release:
       
  2439 	hw->phy.ops.release(hw);
       
  2440 	return ret_val;
       
  2441 }
       
  2442 
       
  2443 /**
       
  2444  *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
       
  2445  *  @hw: pointer to the HW structure
       
  2446  *  @offset: lower half is register offset to read to
       
  2447  *     upper half is page to use.
       
  2448  *  @data: data to read at register offset
       
  2449  *
       
  2450  *  Acquires semaphore, if necessary, then reads the data in the PHY register
       
  2451  *  at the offset.  Release any acquired semaphores before exiting.
       
  2452  **/
       
  2453 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2454 {
       
  2455 	s32 ret_val;
       
  2456 	u16 page = offset >> GS40G_PAGE_SHIFT;
       
  2457 
       
  2458 	offset = offset & GS40G_OFFSET_MASK;
       
  2459 	ret_val = hw->phy.ops.acquire(hw);
       
  2460 	if (ret_val)
       
  2461 		return ret_val;
       
  2462 
       
  2463 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
       
  2464 	if (ret_val)
       
  2465 		goto release;
       
  2466 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
       
  2467 
       
  2468 release:
       
  2469 	hw->phy.ops.release(hw);
       
  2470 	return ret_val;
       
  2471 }
       
  2472 
       
  2473 /**
       
  2474  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
       
  2475  *  @hw: pointer to the HW structure
       
  2476  *
       
  2477  *  Sets up Master/slave mode
       
  2478  **/
       
  2479 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
       
  2480 {
       
  2481 	s32 ret_val;
       
  2482 	u16 phy_data;
       
  2483 
       
  2484 	/* Resolve Master/Slave mode */
       
  2485 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
       
  2486 	if (ret_val)
       
  2487 		return ret_val;
       
  2488 
       
  2489 	/* load defaults for future use */
       
  2490 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
       
  2491 				   ((phy_data & CR_1000T_MS_VALUE) ?
       
  2492 				    e1000_ms_force_master :
       
  2493 				    e1000_ms_force_slave) : e1000_ms_auto;
       
  2494 
       
  2495 	switch (hw->phy.ms_type) {
       
  2496 	case e1000_ms_force_master:
       
  2497 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
       
  2498 		break;
       
  2499 	case e1000_ms_force_slave:
       
  2500 		phy_data |= CR_1000T_MS_ENABLE;
       
  2501 		phy_data &= ~(CR_1000T_MS_VALUE);
       
  2502 		break;
       
  2503 	case e1000_ms_auto:
       
  2504 		phy_data &= ~CR_1000T_MS_ENABLE;
       
  2505 		/* fall-through */
       
  2506 	default:
       
  2507 		break;
       
  2508 	}
       
  2509 
       
  2510 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
       
  2511 }