devices/igb/e1000_mac-3.18-orig.c
branchstable-1.5
changeset 2685 740291442c05
equal deleted inserted replaced
2684:56587a22d05c 2685:740291442c05
       
     1 /* Intel(R) Gigabit Ethernet Linux driver
       
     2  * Copyright(c) 2007-2014 Intel Corporation.
       
     3  *
       
     4  * This program is free software; you can redistribute it and/or modify it
       
     5  * under the terms and conditions of the GNU General Public License,
       
     6  * version 2, as published by the Free Software Foundation.
       
     7  *
       
     8  * This program is distributed in the hope it will be useful, but WITHOUT
       
     9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    11  * more details.
       
    12  *
       
    13  * You should have received a copy of the GNU General Public License along with
       
    14  * this program; if not, see <http://www.gnu.org/licenses/>.
       
    15  *
       
    16  * The full GNU General Public License is included in this distribution in
       
    17  * the file called "COPYING".
       
    18  *
       
    19  * Contact Information:
       
    20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    22  */
       
    23 
       
    24 #include <linux/if_ether.h>
       
    25 #include <linux/delay.h>
       
    26 #include <linux/pci.h>
       
    27 #include <linux/netdevice.h>
       
    28 #include <linux/etherdevice.h>
       
    29 
       
    30 #include "e1000_mac.h"
       
    31 
       
    32 #include "igb.h"
       
    33 
       
    34 static s32 igb_set_default_fc(struct e1000_hw *hw);
       
    35 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
       
    36 
       
    37 /**
       
    38  *  igb_get_bus_info_pcie - Get PCIe bus information
       
    39  *  @hw: pointer to the HW structure
       
    40  *
       
    41  *  Determines and stores the system bus information for a particular
       
    42  *  network interface.  The following bus information is determined and stored:
       
    43  *  bus speed, bus width, type (PCIe), and PCIe function.
       
    44  **/
       
    45 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
       
    46 {
       
    47 	struct e1000_bus_info *bus = &hw->bus;
       
    48 	s32 ret_val;
       
    49 	u32 reg;
       
    50 	u16 pcie_link_status;
       
    51 
       
    52 	bus->type = e1000_bus_type_pci_express;
       
    53 
       
    54 	ret_val = igb_read_pcie_cap_reg(hw,
       
    55 					PCI_EXP_LNKSTA,
       
    56 					&pcie_link_status);
       
    57 	if (ret_val) {
       
    58 		bus->width = e1000_bus_width_unknown;
       
    59 		bus->speed = e1000_bus_speed_unknown;
       
    60 	} else {
       
    61 		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
       
    62 		case PCI_EXP_LNKSTA_CLS_2_5GB:
       
    63 			bus->speed = e1000_bus_speed_2500;
       
    64 			break;
       
    65 		case PCI_EXP_LNKSTA_CLS_5_0GB:
       
    66 			bus->speed = e1000_bus_speed_5000;
       
    67 			break;
       
    68 		default:
       
    69 			bus->speed = e1000_bus_speed_unknown;
       
    70 			break;
       
    71 		}
       
    72 
       
    73 		bus->width = (enum e1000_bus_width)((pcie_link_status &
       
    74 						     PCI_EXP_LNKSTA_NLW) >>
       
    75 						     PCI_EXP_LNKSTA_NLW_SHIFT);
       
    76 	}
       
    77 
       
    78 	reg = rd32(E1000_STATUS);
       
    79 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
       
    80 
       
    81 	return 0;
       
    82 }
       
    83 
       
    84 /**
       
    85  *  igb_clear_vfta - Clear VLAN filter table
       
    86  *  @hw: pointer to the HW structure
       
    87  *
       
    88  *  Clears the register array which contains the VLAN filter table by
       
    89  *  setting all the values to 0.
       
    90  **/
       
    91 void igb_clear_vfta(struct e1000_hw *hw)
       
    92 {
       
    93 	u32 offset;
       
    94 
       
    95 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
    96 		array_wr32(E1000_VFTA, offset, 0);
       
    97 		wrfl();
       
    98 	}
       
    99 }
       
   100 
       
   101 /**
       
   102  *  igb_write_vfta - Write value to VLAN filter table
       
   103  *  @hw: pointer to the HW structure
       
   104  *  @offset: register offset in VLAN filter table
       
   105  *  @value: register value written to VLAN filter table
       
   106  *
       
   107  *  Writes value at the given offset in the register array which stores
       
   108  *  the VLAN filter table.
       
   109  **/
       
   110 static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
       
   111 {
       
   112 	array_wr32(E1000_VFTA, offset, value);
       
   113 	wrfl();
       
   114 }
       
   115 
       
   116 /* Due to a hw errata, if the host tries to  configure the VFTA register
       
   117  * while performing queries from the BMC or DMA, then the VFTA in some
       
   118  * cases won't be written.
       
   119  */
       
   120 
       
   121 /**
       
   122  *  igb_clear_vfta_i350 - Clear VLAN filter table
       
   123  *  @hw: pointer to the HW structure
       
   124  *
       
   125  *  Clears the register array which contains the VLAN filter table by
       
   126  *  setting all the values to 0.
       
   127  **/
       
   128 void igb_clear_vfta_i350(struct e1000_hw *hw)
       
   129 {
       
   130 	u32 offset;
       
   131 	int i;
       
   132 
       
   133 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
   134 		for (i = 0; i < 10; i++)
       
   135 			array_wr32(E1000_VFTA, offset, 0);
       
   136 
       
   137 		wrfl();
       
   138 	}
       
   139 }
       
   140 
       
   141 /**
       
   142  *  igb_write_vfta_i350 - Write value to VLAN filter table
       
   143  *  @hw: pointer to the HW structure
       
   144  *  @offset: register offset in VLAN filter table
       
   145  *  @value: register value written to VLAN filter table
       
   146  *
       
   147  *  Writes value at the given offset in the register array which stores
       
   148  *  the VLAN filter table.
       
   149  **/
       
   150 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
       
   151 {
       
   152 	int i;
       
   153 
       
   154 	for (i = 0; i < 10; i++)
       
   155 		array_wr32(E1000_VFTA, offset, value);
       
   156 
       
   157 	wrfl();
       
   158 }
       
   159 
       
   160 /**
       
   161  *  igb_init_rx_addrs - Initialize receive address's
       
   162  *  @hw: pointer to the HW structure
       
   163  *  @rar_count: receive address registers
       
   164  *
       
   165  *  Setups the receive address registers by setting the base receive address
       
   166  *  register to the devices MAC address and clearing all the other receive
       
   167  *  address registers to 0.
       
   168  **/
       
   169 void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
       
   170 {
       
   171 	u32 i;
       
   172 	u8 mac_addr[ETH_ALEN] = {0};
       
   173 
       
   174 	/* Setup the receive address */
       
   175 	hw_dbg("Programming MAC Address into RAR[0]\n");
       
   176 
       
   177 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
       
   178 
       
   179 	/* Zero out the other (rar_entry_count - 1) receive addresses */
       
   180 	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
       
   181 	for (i = 1; i < rar_count; i++)
       
   182 		hw->mac.ops.rar_set(hw, mac_addr, i);
       
   183 }
       
   184 
       
   185 /**
       
   186  *  igb_vfta_set - enable or disable vlan in VLAN filter table
       
   187  *  @hw: pointer to the HW structure
       
   188  *  @vid: VLAN id to add or remove
       
   189  *  @add: if true add filter, if false remove
       
   190  *
       
   191  *  Sets or clears a bit in the VLAN filter table array based on VLAN id
       
   192  *  and if we are adding or removing the filter
       
   193  **/
       
   194 s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
       
   195 {
       
   196 	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
       
   197 	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
       
   198 	u32 vfta;
       
   199 	struct igb_adapter *adapter = hw->back;
       
   200 	s32 ret_val = 0;
       
   201 
       
   202 	vfta = adapter->shadow_vfta[index];
       
   203 
       
   204 	/* bit was set/cleared before we started */
       
   205 	if ((!!(vfta & mask)) == add) {
       
   206 		ret_val = -E1000_ERR_CONFIG;
       
   207 	} else {
       
   208 		if (add)
       
   209 			vfta |= mask;
       
   210 		else
       
   211 			vfta &= ~mask;
       
   212 	}
       
   213 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
       
   214 		igb_write_vfta_i350(hw, index, vfta);
       
   215 	else
       
   216 		igb_write_vfta(hw, index, vfta);
       
   217 	adapter->shadow_vfta[index] = vfta;
       
   218 
       
   219 	return ret_val;
       
   220 }
       
   221 
       
   222 /**
       
   223  *  igb_check_alt_mac_addr - Check for alternate MAC addr
       
   224  *  @hw: pointer to the HW structure
       
   225  *
       
   226  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
       
   227  *  can be setup by pre-boot software and must be treated like a permanent
       
   228  *  address and must override the actual permanent MAC address.  If an
       
   229  *  alternate MAC address is found it is saved in the hw struct and
       
   230  *  programmed into RAR0 and the function returns success, otherwise the
       
   231  *  function returns an error.
       
   232  **/
       
   233 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
       
   234 {
       
   235 	u32 i;
       
   236 	s32 ret_val = 0;
       
   237 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
       
   238 	u8 alt_mac_addr[ETH_ALEN];
       
   239 
       
   240 	/* Alternate MAC address is handled by the option ROM for 82580
       
   241 	 * and newer. SW support not required.
       
   242 	 */
       
   243 	if (hw->mac.type >= e1000_82580)
       
   244 		goto out;
       
   245 
       
   246 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
       
   247 				 &nvm_alt_mac_addr_offset);
       
   248 	if (ret_val) {
       
   249 		hw_dbg("NVM Read Error\n");
       
   250 		goto out;
       
   251 	}
       
   252 
       
   253 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
       
   254 	    (nvm_alt_mac_addr_offset == 0x0000))
       
   255 		/* There is no Alternate MAC Address */
       
   256 		goto out;
       
   257 
       
   258 	if (hw->bus.func == E1000_FUNC_1)
       
   259 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
       
   260 	if (hw->bus.func == E1000_FUNC_2)
       
   261 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
       
   262 
       
   263 	if (hw->bus.func == E1000_FUNC_3)
       
   264 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
       
   265 	for (i = 0; i < ETH_ALEN; i += 2) {
       
   266 		offset = nvm_alt_mac_addr_offset + (i >> 1);
       
   267 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
       
   268 		if (ret_val) {
       
   269 			hw_dbg("NVM Read Error\n");
       
   270 			goto out;
       
   271 		}
       
   272 
       
   273 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
       
   274 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
       
   275 	}
       
   276 
       
   277 	/* if multicast bit is set, the alternate address will not be used */
       
   278 	if (is_multicast_ether_addr(alt_mac_addr)) {
       
   279 		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
       
   280 		goto out;
       
   281 	}
       
   282 
       
   283 	/* We have a valid alternate MAC address, and we want to treat it the
       
   284 	 * same as the normal permanent MAC address stored by the HW into the
       
   285 	 * RAR. Do this by mapping this address into RAR0.
       
   286 	 */
       
   287 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
       
   288 
       
   289 out:
       
   290 	return ret_val;
       
   291 }
       
   292 
       
   293 /**
       
   294  *  igb_rar_set - Set receive address register
       
   295  *  @hw: pointer to the HW structure
       
   296  *  @addr: pointer to the receive address
       
   297  *  @index: receive address array register
       
   298  *
       
   299  *  Sets the receive address array register at index to the address passed
       
   300  *  in by addr.
       
   301  **/
       
   302 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
       
   303 {
       
   304 	u32 rar_low, rar_high;
       
   305 
       
   306 	/* HW expects these in little endian so we reverse the byte order
       
   307 	 * from network order (big endian) to little endian
       
   308 	 */
       
   309 	rar_low = ((u32) addr[0] |
       
   310 		   ((u32) addr[1] << 8) |
       
   311 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
       
   312 
       
   313 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
       
   314 
       
   315 	/* If MAC address zero, no need to set the AV bit */
       
   316 	if (rar_low || rar_high)
       
   317 		rar_high |= E1000_RAH_AV;
       
   318 
       
   319 	/* Some bridges will combine consecutive 32-bit writes into
       
   320 	 * a single burst write, which will malfunction on some parts.
       
   321 	 * The flushes avoid this.
       
   322 	 */
       
   323 	wr32(E1000_RAL(index), rar_low);
       
   324 	wrfl();
       
   325 	wr32(E1000_RAH(index), rar_high);
       
   326 	wrfl();
       
   327 }
       
   328 
       
   329 /**
       
   330  *  igb_mta_set - Set multicast filter table address
       
   331  *  @hw: pointer to the HW structure
       
   332  *  @hash_value: determines the MTA register and bit to set
       
   333  *
       
   334  *  The multicast table address is a register array of 32-bit registers.
       
   335  *  The hash_value is used to determine what register the bit is in, the
       
   336  *  current value is read, the new bit is OR'd in and the new value is
       
   337  *  written back into the register.
       
   338  **/
       
   339 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
       
   340 {
       
   341 	u32 hash_bit, hash_reg, mta;
       
   342 
       
   343 	/* The MTA is a register array of 32-bit registers. It is
       
   344 	 * treated like an array of (32*mta_reg_count) bits.  We want to
       
   345 	 * set bit BitArray[hash_value]. So we figure out what register
       
   346 	 * the bit is in, read it, OR in the new bit, then write
       
   347 	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
       
   348 	 * mask to bits 31:5 of the hash value which gives us the
       
   349 	 * register we're modifying.  The hash bit within that register
       
   350 	 * is determined by the lower 5 bits of the hash value.
       
   351 	 */
       
   352 	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
       
   353 	hash_bit = hash_value & 0x1F;
       
   354 
       
   355 	mta = array_rd32(E1000_MTA, hash_reg);
       
   356 
       
   357 	mta |= (1 << hash_bit);
       
   358 
       
   359 	array_wr32(E1000_MTA, hash_reg, mta);
       
   360 	wrfl();
       
   361 }
       
   362 
       
   363 /**
       
   364  *  igb_hash_mc_addr - Generate a multicast hash value
       
   365  *  @hw: pointer to the HW structure
       
   366  *  @mc_addr: pointer to a multicast address
       
   367  *
       
   368  *  Generates a multicast address hash value which is used to determine
       
   369  *  the multicast filter table array address and new table value.  See
       
   370  *  igb_mta_set()
       
   371  **/
       
   372 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
       
   373 {
       
   374 	u32 hash_value, hash_mask;
       
   375 	u8 bit_shift = 0;
       
   376 
       
   377 	/* Register count multiplied by bits per register */
       
   378 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
       
   379 
       
   380 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
       
   381 	 * where 0xFF would still fall within the hash mask.
       
   382 	 */
       
   383 	while (hash_mask >> bit_shift != 0xFF)
       
   384 		bit_shift++;
       
   385 
       
   386 	/* The portion of the address that is used for the hash table
       
   387 	 * is determined by the mc_filter_type setting.
       
   388 	 * The algorithm is such that there is a total of 8 bits of shifting.
       
   389 	 * The bit_shift for a mc_filter_type of 0 represents the number of
       
   390 	 * left-shifts where the MSB of mc_addr[5] would still fall within
       
   391 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
       
   392 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
       
   393 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
       
   394 	 * cases are a variation of this algorithm...essentially raising the
       
   395 	 * number of bits to shift mc_addr[5] left, while still keeping the
       
   396 	 * 8-bit shifting total.
       
   397 	 *
       
   398 	 * For example, given the following Destination MAC Address and an
       
   399 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
       
   400 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
       
   401 	 * values resulting from each mc_filter_type...
       
   402 	 * [0] [1] [2] [3] [4] [5]
       
   403 	 * 01  AA  00  12  34  56
       
   404 	 * LSB                 MSB
       
   405 	 *
       
   406 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
       
   407 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
       
   408 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
       
   409 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
       
   410 	 */
       
   411 	switch (hw->mac.mc_filter_type) {
       
   412 	default:
       
   413 	case 0:
       
   414 		break;
       
   415 	case 1:
       
   416 		bit_shift += 1;
       
   417 		break;
       
   418 	case 2:
       
   419 		bit_shift += 2;
       
   420 		break;
       
   421 	case 3:
       
   422 		bit_shift += 4;
       
   423 		break;
       
   424 	}
       
   425 
       
   426 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
       
   427 				  (((u16) mc_addr[5]) << bit_shift)));
       
   428 
       
   429 	return hash_value;
       
   430 }
       
   431 
       
   432 /**
       
   433  *  igb_update_mc_addr_list - Update Multicast addresses
       
   434  *  @hw: pointer to the HW structure
       
   435  *  @mc_addr_list: array of multicast addresses to program
       
   436  *  @mc_addr_count: number of multicast addresses to program
       
   437  *
       
   438  *  Updates entire Multicast Table Array.
       
   439  *  The caller must have a packed mc_addr_list of multicast addresses.
       
   440  **/
       
   441 void igb_update_mc_addr_list(struct e1000_hw *hw,
       
   442 			     u8 *mc_addr_list, u32 mc_addr_count)
       
   443 {
       
   444 	u32 hash_value, hash_bit, hash_reg;
       
   445 	int i;
       
   446 
       
   447 	/* clear mta_shadow */
       
   448 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
       
   449 
       
   450 	/* update mta_shadow from mc_addr_list */
       
   451 	for (i = 0; (u32) i < mc_addr_count; i++) {
       
   452 		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
       
   453 
       
   454 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
       
   455 		hash_bit = hash_value & 0x1F;
       
   456 
       
   457 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
       
   458 		mc_addr_list += (ETH_ALEN);
       
   459 	}
       
   460 
       
   461 	/* replace the entire MTA table */
       
   462 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
       
   463 		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
       
   464 	wrfl();
       
   465 }
       
   466 
       
   467 /**
       
   468  *  igb_clear_hw_cntrs_base - Clear base hardware counters
       
   469  *  @hw: pointer to the HW structure
       
   470  *
       
   471  *  Clears the base hardware counters by reading the counter registers.
       
   472  **/
       
   473 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
       
   474 {
       
   475 	rd32(E1000_CRCERRS);
       
   476 	rd32(E1000_SYMERRS);
       
   477 	rd32(E1000_MPC);
       
   478 	rd32(E1000_SCC);
       
   479 	rd32(E1000_ECOL);
       
   480 	rd32(E1000_MCC);
       
   481 	rd32(E1000_LATECOL);
       
   482 	rd32(E1000_COLC);
       
   483 	rd32(E1000_DC);
       
   484 	rd32(E1000_SEC);
       
   485 	rd32(E1000_RLEC);
       
   486 	rd32(E1000_XONRXC);
       
   487 	rd32(E1000_XONTXC);
       
   488 	rd32(E1000_XOFFRXC);
       
   489 	rd32(E1000_XOFFTXC);
       
   490 	rd32(E1000_FCRUC);
       
   491 	rd32(E1000_GPRC);
       
   492 	rd32(E1000_BPRC);
       
   493 	rd32(E1000_MPRC);
       
   494 	rd32(E1000_GPTC);
       
   495 	rd32(E1000_GORCL);
       
   496 	rd32(E1000_GORCH);
       
   497 	rd32(E1000_GOTCL);
       
   498 	rd32(E1000_GOTCH);
       
   499 	rd32(E1000_RNBC);
       
   500 	rd32(E1000_RUC);
       
   501 	rd32(E1000_RFC);
       
   502 	rd32(E1000_ROC);
       
   503 	rd32(E1000_RJC);
       
   504 	rd32(E1000_TORL);
       
   505 	rd32(E1000_TORH);
       
   506 	rd32(E1000_TOTL);
       
   507 	rd32(E1000_TOTH);
       
   508 	rd32(E1000_TPR);
       
   509 	rd32(E1000_TPT);
       
   510 	rd32(E1000_MPTC);
       
   511 	rd32(E1000_BPTC);
       
   512 }
       
   513 
       
   514 /**
       
   515  *  igb_check_for_copper_link - Check for link (Copper)
       
   516  *  @hw: pointer to the HW structure
       
   517  *
       
   518  *  Checks to see of the link status of the hardware has changed.  If a
       
   519  *  change in link status has been detected, then we read the PHY registers
       
   520  *  to get the current speed/duplex if link exists.
       
   521  **/
       
   522 s32 igb_check_for_copper_link(struct e1000_hw *hw)
       
   523 {
       
   524 	struct e1000_mac_info *mac = &hw->mac;
       
   525 	s32 ret_val;
       
   526 	bool link;
       
   527 
       
   528 	/* We only want to go out to the PHY registers to see if Auto-Neg
       
   529 	 * has completed and/or if our link status has changed.  The
       
   530 	 * get_link_status flag is set upon receiving a Link Status
       
   531 	 * Change or Rx Sequence Error interrupt.
       
   532 	 */
       
   533 	if (!mac->get_link_status) {
       
   534 		ret_val = 0;
       
   535 		goto out;
       
   536 	}
       
   537 
       
   538 	/* First we want to see if the MII Status Register reports
       
   539 	 * link.  If so, then we want to get the current speed/duplex
       
   540 	 * of the PHY.
       
   541 	 */
       
   542 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
       
   543 	if (ret_val)
       
   544 		goto out;
       
   545 
       
   546 	if (!link)
       
   547 		goto out; /* No link detected */
       
   548 
       
   549 	mac->get_link_status = false;
       
   550 
       
   551 	/* Check if there was DownShift, must be checked
       
   552 	 * immediately after link-up
       
   553 	 */
       
   554 	igb_check_downshift(hw);
       
   555 
       
   556 	/* If we are forcing speed/duplex, then we simply return since
       
   557 	 * we have already determined whether we have link or not.
       
   558 	 */
       
   559 	if (!mac->autoneg) {
       
   560 		ret_val = -E1000_ERR_CONFIG;
       
   561 		goto out;
       
   562 	}
       
   563 
       
   564 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
       
   565 	 * of MAC speed/duplex configuration.  So we only need to
       
   566 	 * configure Collision Distance in the MAC.
       
   567 	 */
       
   568 	igb_config_collision_dist(hw);
       
   569 
       
   570 	/* Configure Flow Control now that Auto-Neg has completed.
       
   571 	 * First, we need to restore the desired flow control
       
   572 	 * settings because we may have had to re-autoneg with a
       
   573 	 * different link partner.
       
   574 	 */
       
   575 	ret_val = igb_config_fc_after_link_up(hw);
       
   576 	if (ret_val)
       
   577 		hw_dbg("Error configuring flow control\n");
       
   578 
       
   579 out:
       
   580 	return ret_val;
       
   581 }
       
   582 
       
   583 /**
       
   584  *  igb_setup_link - Setup flow control and link settings
       
   585  *  @hw: pointer to the HW structure
       
   586  *
       
   587  *  Determines which flow control settings to use, then configures flow
       
   588  *  control.  Calls the appropriate media-specific link configuration
       
   589  *  function.  Assuming the adapter has a valid link partner, a valid link
       
   590  *  should be established.  Assumes the hardware has previously been reset
       
   591  *  and the transmitter and receiver are not enabled.
       
   592  **/
       
   593 s32 igb_setup_link(struct e1000_hw *hw)
       
   594 {
       
   595 	s32 ret_val = 0;
       
   596 
       
   597 	/* In the case of the phy reset being blocked, we already have a link.
       
   598 	 * We do not need to set it up again.
       
   599 	 */
       
   600 	if (igb_check_reset_block(hw))
       
   601 		goto out;
       
   602 
       
   603 	/* If requested flow control is set to default, set flow control
       
   604 	 * based on the EEPROM flow control settings.
       
   605 	 */
       
   606 	if (hw->fc.requested_mode == e1000_fc_default) {
       
   607 		ret_val = igb_set_default_fc(hw);
       
   608 		if (ret_val)
       
   609 			goto out;
       
   610 	}
       
   611 
       
   612 	/* We want to save off the original Flow Control configuration just
       
   613 	 * in case we get disconnected and then reconnected into a different
       
   614 	 * hub or switch with different Flow Control capabilities.
       
   615 	 */
       
   616 	hw->fc.current_mode = hw->fc.requested_mode;
       
   617 
       
   618 	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
       
   619 
       
   620 	/* Call the necessary media_type subroutine to configure the link. */
       
   621 	ret_val = hw->mac.ops.setup_physical_interface(hw);
       
   622 	if (ret_val)
       
   623 		goto out;
       
   624 
       
   625 	/* Initialize the flow control address, type, and PAUSE timer
       
   626 	 * registers to their default values.  This is done even if flow
       
   627 	 * control is disabled, because it does not hurt anything to
       
   628 	 * initialize these registers.
       
   629 	 */
       
   630 	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
       
   631 	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
       
   632 	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
       
   633 	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
       
   634 
       
   635 	wr32(E1000_FCTTV, hw->fc.pause_time);
       
   636 
       
   637 	ret_val = igb_set_fc_watermarks(hw);
       
   638 
       
   639 out:
       
   640 
       
   641 	return ret_val;
       
   642 }
       
   643 
       
   644 /**
       
   645  *  igb_config_collision_dist - Configure collision distance
       
   646  *  @hw: pointer to the HW structure
       
   647  *
       
   648  *  Configures the collision distance to the default value and is used
       
   649  *  during link setup. Currently no func pointer exists and all
       
   650  *  implementations are handled in the generic version of this function.
       
   651  **/
       
   652 void igb_config_collision_dist(struct e1000_hw *hw)
       
   653 {
       
   654 	u32 tctl;
       
   655 
       
   656 	tctl = rd32(E1000_TCTL);
       
   657 
       
   658 	tctl &= ~E1000_TCTL_COLD;
       
   659 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
       
   660 
       
   661 	wr32(E1000_TCTL, tctl);
       
   662 	wrfl();
       
   663 }
       
   664 
       
   665 /**
       
   666  *  igb_set_fc_watermarks - Set flow control high/low watermarks
       
   667  *  @hw: pointer to the HW structure
       
   668  *
       
   669  *  Sets the flow control high/low threshold (watermark) registers.  If
       
   670  *  flow control XON frame transmission is enabled, then set XON frame
       
   671  *  tansmission as well.
       
   672  **/
       
   673 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
       
   674 {
       
   675 	s32 ret_val = 0;
       
   676 	u32 fcrtl = 0, fcrth = 0;
       
   677 
       
   678 	/* Set the flow control receive threshold registers.  Normally,
       
   679 	 * these registers will be set to a default threshold that may be
       
   680 	 * adjusted later by the driver's runtime code.  However, if the
       
   681 	 * ability to transmit pause frames is not enabled, then these
       
   682 	 * registers will be set to 0.
       
   683 	 */
       
   684 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
       
   685 		/* We need to set up the Receive Threshold high and low water
       
   686 		 * marks as well as (optionally) enabling the transmission of
       
   687 		 * XON frames.
       
   688 		 */
       
   689 		fcrtl = hw->fc.low_water;
       
   690 		if (hw->fc.send_xon)
       
   691 			fcrtl |= E1000_FCRTL_XONE;
       
   692 
       
   693 		fcrth = hw->fc.high_water;
       
   694 	}
       
   695 	wr32(E1000_FCRTL, fcrtl);
       
   696 	wr32(E1000_FCRTH, fcrth);
       
   697 
       
   698 	return ret_val;
       
   699 }
       
   700 
       
   701 /**
       
   702  *  igb_set_default_fc - Set flow control default values
       
   703  *  @hw: pointer to the HW structure
       
   704  *
       
   705  *  Read the EEPROM for the default values for flow control and store the
       
   706  *  values.
       
   707  **/
       
   708 static s32 igb_set_default_fc(struct e1000_hw *hw)
       
   709 {
       
   710 	s32 ret_val = 0;
       
   711 	u16 lan_offset;
       
   712 	u16 nvm_data;
       
   713 
       
   714 	/* Read and store word 0x0F of the EEPROM. This word contains bits
       
   715 	 * that determine the hardware's default PAUSE (flow control) mode,
       
   716 	 * a bit that determines whether the HW defaults to enabling or
       
   717 	 * disabling auto-negotiation, and the direction of the
       
   718 	 * SW defined pins. If there is no SW over-ride of the flow
       
   719 	 * control setting, then the variable hw->fc will
       
   720 	 * be initialized based on a value in the EEPROM.
       
   721 	 */
       
   722 	if (hw->mac.type == e1000_i350) {
       
   723 		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
       
   724 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
       
   725 					   + lan_offset, 1, &nvm_data);
       
   726 	 } else {
       
   727 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
       
   728 					   1, &nvm_data);
       
   729 	 }
       
   730 
       
   731 	if (ret_val) {
       
   732 		hw_dbg("NVM Read Error\n");
       
   733 		goto out;
       
   734 	}
       
   735 
       
   736 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
       
   737 		hw->fc.requested_mode = e1000_fc_none;
       
   738 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
       
   739 		 NVM_WORD0F_ASM_DIR)
       
   740 		hw->fc.requested_mode = e1000_fc_tx_pause;
       
   741 	else
       
   742 		hw->fc.requested_mode = e1000_fc_full;
       
   743 
       
   744 out:
       
   745 	return ret_val;
       
   746 }
       
   747 
       
   748 /**
       
   749  *  igb_force_mac_fc - Force the MAC's flow control settings
       
   750  *  @hw: pointer to the HW structure
       
   751  *
       
   752  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
       
   753  *  device control register to reflect the adapter settings.  TFCE and RFCE
       
   754  *  need to be explicitly set by software when a copper PHY is used because
       
   755  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
       
   756  *  also configure these bits when link is forced on a fiber connection.
       
   757  **/
       
   758 s32 igb_force_mac_fc(struct e1000_hw *hw)
       
   759 {
       
   760 	u32 ctrl;
       
   761 	s32 ret_val = 0;
       
   762 
       
   763 	ctrl = rd32(E1000_CTRL);
       
   764 
       
   765 	/* Because we didn't get link via the internal auto-negotiation
       
   766 	 * mechanism (we either forced link or we got link via PHY
       
   767 	 * auto-neg), we have to manually enable/disable transmit an
       
   768 	 * receive flow control.
       
   769 	 *
       
   770 	 * The "Case" statement below enables/disable flow control
       
   771 	 * according to the "hw->fc.current_mode" parameter.
       
   772 	 *
       
   773 	 * The possible values of the "fc" parameter are:
       
   774 	 *      0:  Flow control is completely disabled
       
   775 	 *      1:  Rx flow control is enabled (we can receive pause
       
   776 	 *          frames but not send pause frames).
       
   777 	 *      2:  Tx flow control is enabled (we can send pause frames
       
   778 	 *          frames but we do not receive pause frames).
       
   779 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
       
   780 	 *  other:  No other values should be possible at this point.
       
   781 	 */
       
   782 	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
       
   783 
       
   784 	switch (hw->fc.current_mode) {
       
   785 	case e1000_fc_none:
       
   786 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
       
   787 		break;
       
   788 	case e1000_fc_rx_pause:
       
   789 		ctrl &= (~E1000_CTRL_TFCE);
       
   790 		ctrl |= E1000_CTRL_RFCE;
       
   791 		break;
       
   792 	case e1000_fc_tx_pause:
       
   793 		ctrl &= (~E1000_CTRL_RFCE);
       
   794 		ctrl |= E1000_CTRL_TFCE;
       
   795 		break;
       
   796 	case e1000_fc_full:
       
   797 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
       
   798 		break;
       
   799 	default:
       
   800 		hw_dbg("Flow control param set incorrectly\n");
       
   801 		ret_val = -E1000_ERR_CONFIG;
       
   802 		goto out;
       
   803 	}
       
   804 
       
   805 	wr32(E1000_CTRL, ctrl);
       
   806 
       
   807 out:
       
   808 	return ret_val;
       
   809 }
       
   810 
       
   811 /**
       
   812  *  igb_config_fc_after_link_up - Configures flow control after link
       
   813  *  @hw: pointer to the HW structure
       
   814  *
       
   815  *  Checks the status of auto-negotiation after link up to ensure that the
       
   816  *  speed and duplex were not forced.  If the link needed to be forced, then
       
   817  *  flow control needs to be forced also.  If auto-negotiation is enabled
       
   818  *  and did not fail, then we configure flow control based on our link
       
   819  *  partner.
       
   820  **/
       
   821 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
       
   822 {
       
   823 	struct e1000_mac_info *mac = &hw->mac;
       
   824 	s32 ret_val = 0;
       
   825 	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
       
   826 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
       
   827 	u16 speed, duplex;
       
   828 
       
   829 	/* Check for the case where we have fiber media and auto-neg failed
       
   830 	 * so we had to force link.  In this case, we need to force the
       
   831 	 * configuration of the MAC to match the "fc" parameter.
       
   832 	 */
       
   833 	if (mac->autoneg_failed) {
       
   834 		if (hw->phy.media_type == e1000_media_type_internal_serdes)
       
   835 			ret_val = igb_force_mac_fc(hw);
       
   836 	} else {
       
   837 		if (hw->phy.media_type == e1000_media_type_copper)
       
   838 			ret_val = igb_force_mac_fc(hw);
       
   839 	}
       
   840 
       
   841 	if (ret_val) {
       
   842 		hw_dbg("Error forcing flow control settings\n");
       
   843 		goto out;
       
   844 	}
       
   845 
       
   846 	/* Check for the case where we have copper media and auto-neg is
       
   847 	 * enabled.  In this case, we need to check and see if Auto-Neg
       
   848 	 * has completed, and if so, how the PHY and link partner has
       
   849 	 * flow control configured.
       
   850 	 */
       
   851 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
       
   852 		/* Read the MII Status Register and check to see if AutoNeg
       
   853 		 * has completed.  We read this twice because this reg has
       
   854 		 * some "sticky" (latched) bits.
       
   855 		 */
       
   856 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
       
   857 						   &mii_status_reg);
       
   858 		if (ret_val)
       
   859 			goto out;
       
   860 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
       
   861 						   &mii_status_reg);
       
   862 		if (ret_val)
       
   863 			goto out;
       
   864 
       
   865 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
       
   866 			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
       
   867 			goto out;
       
   868 		}
       
   869 
       
   870 		/* The AutoNeg process has completed, so we now need to
       
   871 		 * read both the Auto Negotiation Advertisement
       
   872 		 * Register (Address 4) and the Auto_Negotiation Base
       
   873 		 * Page Ability Register (Address 5) to determine how
       
   874 		 * flow control was negotiated.
       
   875 		 */
       
   876 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
       
   877 					    &mii_nway_adv_reg);
       
   878 		if (ret_val)
       
   879 			goto out;
       
   880 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
       
   881 					    &mii_nway_lp_ability_reg);
       
   882 		if (ret_val)
       
   883 			goto out;
       
   884 
       
   885 		/* Two bits in the Auto Negotiation Advertisement Register
       
   886 		 * (Address 4) and two bits in the Auto Negotiation Base
       
   887 		 * Page Ability Register (Address 5) determine flow control
       
   888 		 * for both the PHY and the link partner.  The following
       
   889 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
       
   890 		 * 1999, describes these PAUSE resolution bits and how flow
       
   891 		 * control is determined based upon these settings.
       
   892 		 * NOTE:  DC = Don't Care
       
   893 		 *
       
   894 		 *   LOCAL DEVICE  |   LINK PARTNER
       
   895 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
       
   896 		 *-------|---------|-------|---------|--------------------
       
   897 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
       
   898 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
       
   899 		 *   0   |    1    |   1   |    0    | e1000_fc_none
       
   900 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
   901 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
       
   902 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
       
   903 		 *   1   |    1    |   0   |    0    | e1000_fc_none
       
   904 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
   905 		 *
       
   906 		 * Are both PAUSE bits set to 1?  If so, this implies
       
   907 		 * Symmetric Flow Control is enabled at both ends.  The
       
   908 		 * ASM_DIR bits are irrelevant per the spec.
       
   909 		 *
       
   910 		 * For Symmetric Flow Control:
       
   911 		 *
       
   912 		 *   LOCAL DEVICE  |   LINK PARTNER
       
   913 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
   914 		 *-------|---------|-------|---------|--------------------
       
   915 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
       
   916 		 *
       
   917 		 */
       
   918 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
   919 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
       
   920 			/* Now we need to check if the user selected RX ONLY
       
   921 			 * of pause frames.  In this case, we had to advertise
       
   922 			 * FULL flow control because we could not advertise RX
       
   923 			 * ONLY. Hence, we must now check to see if we need to
       
   924 			 * turn OFF  the TRANSMISSION of PAUSE frames.
       
   925 			 */
       
   926 			if (hw->fc.requested_mode == e1000_fc_full) {
       
   927 				hw->fc.current_mode = e1000_fc_full;
       
   928 				hw_dbg("Flow Control = FULL.\n");
       
   929 			} else {
       
   930 				hw->fc.current_mode = e1000_fc_rx_pause;
       
   931 				hw_dbg("Flow Control = RX PAUSE frames only.\n");
       
   932 			}
       
   933 		}
       
   934 		/* For receiving PAUSE frames ONLY.
       
   935 		 *
       
   936 		 *   LOCAL DEVICE  |   LINK PARTNER
       
   937 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
   938 		 *-------|---------|-------|---------|--------------------
       
   939 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
   940 		 */
       
   941 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
   942 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
   943 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
   944 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
   945 			hw->fc.current_mode = e1000_fc_tx_pause;
       
   946 			hw_dbg("Flow Control = TX PAUSE frames only.\n");
       
   947 		}
       
   948 		/* For transmitting PAUSE frames ONLY.
       
   949 		 *
       
   950 		 *   LOCAL DEVICE  |   LINK PARTNER
       
   951 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
   952 		 *-------|---------|-------|---------|--------------------
       
   953 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
   954 		 */
       
   955 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
   956 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
   957 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
   958 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
   959 			hw->fc.current_mode = e1000_fc_rx_pause;
       
   960 			hw_dbg("Flow Control = RX PAUSE frames only.\n");
       
   961 		}
       
   962 		/* Per the IEEE spec, at this point flow control should be
       
   963 		 * disabled.  However, we want to consider that we could
       
   964 		 * be connected to a legacy switch that doesn't advertise
       
   965 		 * desired flow control, but can be forced on the link
       
   966 		 * partner.  So if we advertised no flow control, that is
       
   967 		 * what we will resolve to.  If we advertised some kind of
       
   968 		 * receive capability (Rx Pause Only or Full Flow Control)
       
   969 		 * and the link partner advertised none, we will configure
       
   970 		 * ourselves to enable Rx Flow Control only.  We can do
       
   971 		 * this safely for two reasons:  If the link partner really
       
   972 		 * didn't want flow control enabled, and we enable Rx, no
       
   973 		 * harm done since we won't be receiving any PAUSE frames
       
   974 		 * anyway.  If the intent on the link partner was to have
       
   975 		 * flow control enabled, then by us enabling RX only, we
       
   976 		 * can at least receive pause frames and process them.
       
   977 		 * This is a good idea because in most cases, since we are
       
   978 		 * predominantly a server NIC, more times than not we will
       
   979 		 * be asked to delay transmission of packets than asking
       
   980 		 * our link partner to pause transmission of frames.
       
   981 		 */
       
   982 		else if ((hw->fc.requested_mode == e1000_fc_none) ||
       
   983 			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
       
   984 			 (hw->fc.strict_ieee)) {
       
   985 			hw->fc.current_mode = e1000_fc_none;
       
   986 			hw_dbg("Flow Control = NONE.\n");
       
   987 		} else {
       
   988 			hw->fc.current_mode = e1000_fc_rx_pause;
       
   989 			hw_dbg("Flow Control = RX PAUSE frames only.\n");
       
   990 		}
       
   991 
       
   992 		/* Now we need to do one last check...  If we auto-
       
   993 		 * negotiated to HALF DUPLEX, flow control should not be
       
   994 		 * enabled per IEEE 802.3 spec.
       
   995 		 */
       
   996 		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
       
   997 		if (ret_val) {
       
   998 			hw_dbg("Error getting link speed and duplex\n");
       
   999 			goto out;
       
  1000 		}
       
  1001 
       
  1002 		if (duplex == HALF_DUPLEX)
       
  1003 			hw->fc.current_mode = e1000_fc_none;
       
  1004 
       
  1005 		/* Now we call a subroutine to actually force the MAC
       
  1006 		 * controller to use the correct flow control settings.
       
  1007 		 */
       
  1008 		ret_val = igb_force_mac_fc(hw);
       
  1009 		if (ret_val) {
       
  1010 			hw_dbg("Error forcing flow control settings\n");
       
  1011 			goto out;
       
  1012 		}
       
  1013 	}
       
  1014 	/* Check for the case where we have SerDes media and auto-neg is
       
  1015 	 * enabled.  In this case, we need to check and see if Auto-Neg
       
  1016 	 * has completed, and if so, how the PHY and link partner has
       
  1017 	 * flow control configured.
       
  1018 	 */
       
  1019 	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
       
  1020 		&& mac->autoneg) {
       
  1021 		/* Read the PCS_LSTS and check to see if AutoNeg
       
  1022 		 * has completed.
       
  1023 		 */
       
  1024 		pcs_status_reg = rd32(E1000_PCS_LSTAT);
       
  1025 
       
  1026 		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
       
  1027 			hw_dbg("PCS Auto Neg has not completed.\n");
       
  1028 			return ret_val;
       
  1029 		}
       
  1030 
       
  1031 		/* The AutoNeg process has completed, so we now need to
       
  1032 		 * read both the Auto Negotiation Advertisement
       
  1033 		 * Register (PCS_ANADV) and the Auto_Negotiation Base
       
  1034 		 * Page Ability Register (PCS_LPAB) to determine how
       
  1035 		 * flow control was negotiated.
       
  1036 		 */
       
  1037 		pcs_adv_reg = rd32(E1000_PCS_ANADV);
       
  1038 		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
       
  1039 
       
  1040 		/* Two bits in the Auto Negotiation Advertisement Register
       
  1041 		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
       
  1042 		 * Page Ability Register (PCS_LPAB) determine flow control
       
  1043 		 * for both the PHY and the link partner.  The following
       
  1044 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
       
  1045 		 * 1999, describes these PAUSE resolution bits and how flow
       
  1046 		 * control is determined based upon these settings.
       
  1047 		 * NOTE:  DC = Don't Care
       
  1048 		 *
       
  1049 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1050 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
       
  1051 		 *-------|---------|-------|---------|--------------------
       
  1052 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
       
  1053 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
       
  1054 		 *   0   |    1    |   1   |    0    | e1000_fc_none
       
  1055 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1056 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
       
  1057 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
       
  1058 		 *   1   |    1    |   0   |    0    | e1000_fc_none
       
  1059 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1060 		 *
       
  1061 		 * Are both PAUSE bits set to 1?  If so, this implies
       
  1062 		 * Symmetric Flow Control is enabled at both ends.  The
       
  1063 		 * ASM_DIR bits are irrelevant per the spec.
       
  1064 		 *
       
  1065 		 * For Symmetric Flow Control:
       
  1066 		 *
       
  1067 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1068 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1069 		 *-------|---------|-------|---------|--------------------
       
  1070 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
       
  1071 		 *
       
  1072 		 */
       
  1073 		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
       
  1074 		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
       
  1075 			/* Now we need to check if the user selected Rx ONLY
       
  1076 			 * of pause frames.  In this case, we had to advertise
       
  1077 			 * FULL flow control because we could not advertise Rx
       
  1078 			 * ONLY. Hence, we must now check to see if we need to
       
  1079 			 * turn OFF the TRANSMISSION of PAUSE frames.
       
  1080 			 */
       
  1081 			if (hw->fc.requested_mode == e1000_fc_full) {
       
  1082 				hw->fc.current_mode = e1000_fc_full;
       
  1083 				hw_dbg("Flow Control = FULL.\n");
       
  1084 			} else {
       
  1085 				hw->fc.current_mode = e1000_fc_rx_pause;
       
  1086 				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
       
  1087 			}
       
  1088 		}
       
  1089 		/* For receiving PAUSE frames ONLY.
       
  1090 		 *
       
  1091 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1092 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1093 		 *-------|---------|-------|---------|--------------------
       
  1094 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1095 		 */
       
  1096 		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
       
  1097 			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
       
  1098 			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
       
  1099 			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
       
  1100 			hw->fc.current_mode = e1000_fc_tx_pause;
       
  1101 			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
       
  1102 		}
       
  1103 		/* For transmitting PAUSE frames ONLY.
       
  1104 		 *
       
  1105 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1106 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1107 		 *-------|---------|-------|---------|--------------------
       
  1108 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1109 		 */
       
  1110 		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
       
  1111 			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
       
  1112 			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
       
  1113 			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
       
  1114 			hw->fc.current_mode = e1000_fc_rx_pause;
       
  1115 			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
       
  1116 		} else {
       
  1117 			/* Per the IEEE spec, at this point flow control
       
  1118 			 * should be disabled.
       
  1119 			 */
       
  1120 			hw->fc.current_mode = e1000_fc_none;
       
  1121 			hw_dbg("Flow Control = NONE.\n");
       
  1122 		}
       
  1123 
       
  1124 		/* Now we call a subroutine to actually force the MAC
       
  1125 		 * controller to use the correct flow control settings.
       
  1126 		 */
       
  1127 		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
       
  1128 		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
       
  1129 		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
       
  1130 
       
  1131 		ret_val = igb_force_mac_fc(hw);
       
  1132 		if (ret_val) {
       
  1133 			hw_dbg("Error forcing flow control settings\n");
       
  1134 			return ret_val;
       
  1135 		}
       
  1136 	}
       
  1137 
       
  1138 out:
       
  1139 	return ret_val;
       
  1140 }
       
  1141 
       
  1142 /**
       
  1143  *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
       
  1144  *  @hw: pointer to the HW structure
       
  1145  *  @speed: stores the current speed
       
  1146  *  @duplex: stores the current duplex
       
  1147  *
       
  1148  *  Read the status register for the current speed/duplex and store the current
       
  1149  *  speed and duplex for copper connections.
       
  1150  **/
       
  1151 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
       
  1152 				      u16 *duplex)
       
  1153 {
       
  1154 	u32 status;
       
  1155 
       
  1156 	status = rd32(E1000_STATUS);
       
  1157 	if (status & E1000_STATUS_SPEED_1000) {
       
  1158 		*speed = SPEED_1000;
       
  1159 		hw_dbg("1000 Mbs, ");
       
  1160 	} else if (status & E1000_STATUS_SPEED_100) {
       
  1161 		*speed = SPEED_100;
       
  1162 		hw_dbg("100 Mbs, ");
       
  1163 	} else {
       
  1164 		*speed = SPEED_10;
       
  1165 		hw_dbg("10 Mbs, ");
       
  1166 	}
       
  1167 
       
  1168 	if (status & E1000_STATUS_FD) {
       
  1169 		*duplex = FULL_DUPLEX;
       
  1170 		hw_dbg("Full Duplex\n");
       
  1171 	} else {
       
  1172 		*duplex = HALF_DUPLEX;
       
  1173 		hw_dbg("Half Duplex\n");
       
  1174 	}
       
  1175 
       
  1176 	return 0;
       
  1177 }
       
  1178 
       
  1179 /**
       
  1180  *  igb_get_hw_semaphore - Acquire hardware semaphore
       
  1181  *  @hw: pointer to the HW structure
       
  1182  *
       
  1183  *  Acquire the HW semaphore to access the PHY or NVM
       
  1184  **/
       
  1185 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
       
  1186 {
       
  1187 	u32 swsm;
       
  1188 	s32 ret_val = 0;
       
  1189 	s32 timeout = hw->nvm.word_size + 1;
       
  1190 	s32 i = 0;
       
  1191 
       
  1192 	/* Get the SW semaphore */
       
  1193 	while (i < timeout) {
       
  1194 		swsm = rd32(E1000_SWSM);
       
  1195 		if (!(swsm & E1000_SWSM_SMBI))
       
  1196 			break;
       
  1197 
       
  1198 		udelay(50);
       
  1199 		i++;
       
  1200 	}
       
  1201 
       
  1202 	if (i == timeout) {
       
  1203 		hw_dbg("Driver can't access device - SMBI bit is set.\n");
       
  1204 		ret_val = -E1000_ERR_NVM;
       
  1205 		goto out;
       
  1206 	}
       
  1207 
       
  1208 	/* Get the FW semaphore. */
       
  1209 	for (i = 0; i < timeout; i++) {
       
  1210 		swsm = rd32(E1000_SWSM);
       
  1211 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
       
  1212 
       
  1213 		/* Semaphore acquired if bit latched */
       
  1214 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
       
  1215 			break;
       
  1216 
       
  1217 		udelay(50);
       
  1218 	}
       
  1219 
       
  1220 	if (i == timeout) {
       
  1221 		/* Release semaphores */
       
  1222 		igb_put_hw_semaphore(hw);
       
  1223 		hw_dbg("Driver can't access the NVM\n");
       
  1224 		ret_val = -E1000_ERR_NVM;
       
  1225 		goto out;
       
  1226 	}
       
  1227 
       
  1228 out:
       
  1229 	return ret_val;
       
  1230 }
       
  1231 
       
  1232 /**
       
  1233  *  igb_put_hw_semaphore - Release hardware semaphore
       
  1234  *  @hw: pointer to the HW structure
       
  1235  *
       
  1236  *  Release hardware semaphore used to access the PHY or NVM
       
  1237  **/
       
  1238 void igb_put_hw_semaphore(struct e1000_hw *hw)
       
  1239 {
       
  1240 	u32 swsm;
       
  1241 
       
  1242 	swsm = rd32(E1000_SWSM);
       
  1243 
       
  1244 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
  1245 
       
  1246 	wr32(E1000_SWSM, swsm);
       
  1247 }
       
  1248 
       
  1249 /**
       
  1250  *  igb_get_auto_rd_done - Check for auto read completion
       
  1251  *  @hw: pointer to the HW structure
       
  1252  *
       
  1253  *  Check EEPROM for Auto Read done bit.
       
  1254  **/
       
  1255 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
       
  1256 {
       
  1257 	s32 i = 0;
       
  1258 	s32 ret_val = 0;
       
  1259 
       
  1260 
       
  1261 	while (i < AUTO_READ_DONE_TIMEOUT) {
       
  1262 		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
       
  1263 			break;
       
  1264 		usleep_range(1000, 2000);
       
  1265 		i++;
       
  1266 	}
       
  1267 
       
  1268 	if (i == AUTO_READ_DONE_TIMEOUT) {
       
  1269 		hw_dbg("Auto read by HW from NVM has not completed.\n");
       
  1270 		ret_val = -E1000_ERR_RESET;
       
  1271 		goto out;
       
  1272 	}
       
  1273 
       
  1274 out:
       
  1275 	return ret_val;
       
  1276 }
       
  1277 
       
  1278 /**
       
  1279  *  igb_valid_led_default - Verify a valid default LED config
       
  1280  *  @hw: pointer to the HW structure
       
  1281  *  @data: pointer to the NVM (EEPROM)
       
  1282  *
       
  1283  *  Read the EEPROM for the current default LED configuration.  If the
       
  1284  *  LED configuration is not valid, set to a valid LED configuration.
       
  1285  **/
       
  1286 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
       
  1287 {
       
  1288 	s32 ret_val;
       
  1289 
       
  1290 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  1291 	if (ret_val) {
       
  1292 		hw_dbg("NVM Read Error\n");
       
  1293 		goto out;
       
  1294 	}
       
  1295 
       
  1296 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
       
  1297 		switch (hw->phy.media_type) {
       
  1298 		case e1000_media_type_internal_serdes:
       
  1299 			*data = ID_LED_DEFAULT_82575_SERDES;
       
  1300 			break;
       
  1301 		case e1000_media_type_copper:
       
  1302 		default:
       
  1303 			*data = ID_LED_DEFAULT;
       
  1304 			break;
       
  1305 		}
       
  1306 	}
       
  1307 out:
       
  1308 	return ret_val;
       
  1309 }
       
  1310 
       
  1311 /**
       
  1312  *  igb_id_led_init -
       
  1313  *  @hw: pointer to the HW structure
       
  1314  *
       
  1315  **/
       
  1316 s32 igb_id_led_init(struct e1000_hw *hw)
       
  1317 {
       
  1318 	struct e1000_mac_info *mac = &hw->mac;
       
  1319 	s32 ret_val;
       
  1320 	const u32 ledctl_mask = 0x000000FF;
       
  1321 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
       
  1322 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
       
  1323 	u16 data, i, temp;
       
  1324 	const u16 led_mask = 0x0F;
       
  1325 
       
  1326 	/* i210 and i211 devices have different LED mechanism */
       
  1327 	if ((hw->mac.type == e1000_i210) ||
       
  1328 	    (hw->mac.type == e1000_i211))
       
  1329 		ret_val = igb_valid_led_default_i210(hw, &data);
       
  1330 	else
       
  1331 		ret_val = igb_valid_led_default(hw, &data);
       
  1332 
       
  1333 	if (ret_val)
       
  1334 		goto out;
       
  1335 
       
  1336 	mac->ledctl_default = rd32(E1000_LEDCTL);
       
  1337 	mac->ledctl_mode1 = mac->ledctl_default;
       
  1338 	mac->ledctl_mode2 = mac->ledctl_default;
       
  1339 
       
  1340 	for (i = 0; i < 4; i++) {
       
  1341 		temp = (data >> (i << 2)) & led_mask;
       
  1342 		switch (temp) {
       
  1343 		case ID_LED_ON1_DEF2:
       
  1344 		case ID_LED_ON1_ON2:
       
  1345 		case ID_LED_ON1_OFF2:
       
  1346 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1347 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
       
  1348 			break;
       
  1349 		case ID_LED_OFF1_DEF2:
       
  1350 		case ID_LED_OFF1_ON2:
       
  1351 		case ID_LED_OFF1_OFF2:
       
  1352 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1353 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
       
  1354 			break;
       
  1355 		default:
       
  1356 			/* Do nothing */
       
  1357 			break;
       
  1358 		}
       
  1359 		switch (temp) {
       
  1360 		case ID_LED_DEF1_ON2:
       
  1361 		case ID_LED_ON1_ON2:
       
  1362 		case ID_LED_OFF1_ON2:
       
  1363 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1364 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
       
  1365 			break;
       
  1366 		case ID_LED_DEF1_OFF2:
       
  1367 		case ID_LED_ON1_OFF2:
       
  1368 		case ID_LED_OFF1_OFF2:
       
  1369 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1370 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
       
  1371 			break;
       
  1372 		default:
       
  1373 			/* Do nothing */
       
  1374 			break;
       
  1375 		}
       
  1376 	}
       
  1377 
       
  1378 out:
       
  1379 	return ret_val;
       
  1380 }
       
  1381 
       
  1382 /**
       
  1383  *  igb_cleanup_led - Set LED config to default operation
       
  1384  *  @hw: pointer to the HW structure
       
  1385  *
       
  1386  *  Remove the current LED configuration and set the LED configuration
       
  1387  *  to the default value, saved from the EEPROM.
       
  1388  **/
       
  1389 s32 igb_cleanup_led(struct e1000_hw *hw)
       
  1390 {
       
  1391 	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
       
  1392 	return 0;
       
  1393 }
       
  1394 
       
  1395 /**
       
  1396  *  igb_blink_led - Blink LED
       
  1397  *  @hw: pointer to the HW structure
       
  1398  *
       
  1399  *  Blink the led's which are set to be on.
       
  1400  **/
       
  1401 s32 igb_blink_led(struct e1000_hw *hw)
       
  1402 {
       
  1403 	u32 ledctl_blink = 0;
       
  1404 	u32 i;
       
  1405 
       
  1406 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1407 		/* always blink LED0 for PCI-E fiber */
       
  1408 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
       
  1409 		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1410 	} else {
       
  1411 		/* Set the blink bit for each LED that's "on" (0x0E)
       
  1412 		 * (or "off" if inverted) in ledctl_mode2.  The blink
       
  1413 		 * logic in hardware only works when mode is set to "on"
       
  1414 		 * so it must be changed accordingly when the mode is
       
  1415 		 * "off" and inverted.
       
  1416 		 */
       
  1417 		ledctl_blink = hw->mac.ledctl_mode2;
       
  1418 		for (i = 0; i < 32; i += 8) {
       
  1419 			u32 mode = (hw->mac.ledctl_mode2 >> i) &
       
  1420 			    E1000_LEDCTL_LED0_MODE_MASK;
       
  1421 			u32 led_default = hw->mac.ledctl_default >> i;
       
  1422 
       
  1423 			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
       
  1424 			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
       
  1425 			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
       
  1426 			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
       
  1427 				ledctl_blink &=
       
  1428 				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
       
  1429 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
       
  1430 						 E1000_LEDCTL_MODE_LED_ON) << i;
       
  1431 			}
       
  1432 		}
       
  1433 	}
       
  1434 
       
  1435 	wr32(E1000_LEDCTL, ledctl_blink);
       
  1436 
       
  1437 	return 0;
       
  1438 }
       
  1439 
       
  1440 /**
       
  1441  *  igb_led_off - Turn LED off
       
  1442  *  @hw: pointer to the HW structure
       
  1443  *
       
  1444  *  Turn LED off.
       
  1445  **/
       
  1446 s32 igb_led_off(struct e1000_hw *hw)
       
  1447 {
       
  1448 	switch (hw->phy.media_type) {
       
  1449 	case e1000_media_type_copper:
       
  1450 		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
       
  1451 		break;
       
  1452 	default:
       
  1453 		break;
       
  1454 	}
       
  1455 
       
  1456 	return 0;
       
  1457 }
       
  1458 
       
  1459 /**
       
  1460  *  igb_disable_pcie_master - Disables PCI-express master access
       
  1461  *  @hw: pointer to the HW structure
       
  1462  *
       
  1463  *  Returns 0 (0) if successful, else returns -10
       
  1464  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
       
  1465  *  the master requests to be disabled.
       
  1466  *
       
  1467  *  Disables PCI-Express master access and verifies there are no pending
       
  1468  *  requests.
       
  1469  **/
       
  1470 s32 igb_disable_pcie_master(struct e1000_hw *hw)
       
  1471 {
       
  1472 	u32 ctrl;
       
  1473 	s32 timeout = MASTER_DISABLE_TIMEOUT;
       
  1474 	s32 ret_val = 0;
       
  1475 
       
  1476 	if (hw->bus.type != e1000_bus_type_pci_express)
       
  1477 		goto out;
       
  1478 
       
  1479 	ctrl = rd32(E1000_CTRL);
       
  1480 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
       
  1481 	wr32(E1000_CTRL, ctrl);
       
  1482 
       
  1483 	while (timeout) {
       
  1484 		if (!(rd32(E1000_STATUS) &
       
  1485 		      E1000_STATUS_GIO_MASTER_ENABLE))
       
  1486 			break;
       
  1487 		udelay(100);
       
  1488 		timeout--;
       
  1489 	}
       
  1490 
       
  1491 	if (!timeout) {
       
  1492 		hw_dbg("Master requests are pending.\n");
       
  1493 		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
       
  1494 		goto out;
       
  1495 	}
       
  1496 
       
  1497 out:
       
  1498 	return ret_val;
       
  1499 }
       
  1500 
       
  1501 /**
       
  1502  *  igb_validate_mdi_setting - Verify MDI/MDIx settings
       
  1503  *  @hw: pointer to the HW structure
       
  1504  *
       
  1505  *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
       
  1506  *  set, which is forced to MDI mode only.
       
  1507  **/
       
  1508 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
       
  1509 {
       
  1510 	s32 ret_val = 0;
       
  1511 
       
  1512 	/* All MDI settings are supported on 82580 and newer. */
       
  1513 	if (hw->mac.type >= e1000_82580)
       
  1514 		goto out;
       
  1515 
       
  1516 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
       
  1517 		hw_dbg("Invalid MDI setting detected\n");
       
  1518 		hw->phy.mdix = 1;
       
  1519 		ret_val = -E1000_ERR_CONFIG;
       
  1520 		goto out;
       
  1521 	}
       
  1522 
       
  1523 out:
       
  1524 	return ret_val;
       
  1525 }
       
  1526 
       
  1527 /**
       
  1528  *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
       
  1529  *  @hw: pointer to the HW structure
       
  1530  *  @reg: 32bit register offset such as E1000_SCTL
       
  1531  *  @offset: register offset to write to
       
  1532  *  @data: data to write at register offset
       
  1533  *
       
  1534  *  Writes an address/data control type register.  There are several of these
       
  1535  *  and they all have the format address << 8 | data and bit 31 is polled for
       
  1536  *  completion.
       
  1537  **/
       
  1538 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
       
  1539 			      u32 offset, u8 data)
       
  1540 {
       
  1541 	u32 i, regvalue = 0;
       
  1542 	s32 ret_val = 0;
       
  1543 
       
  1544 	/* Set up the address and data */
       
  1545 	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
       
  1546 	wr32(reg, regvalue);
       
  1547 
       
  1548 	/* Poll the ready bit to see if the MDI read completed */
       
  1549 	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
       
  1550 		udelay(5);
       
  1551 		regvalue = rd32(reg);
       
  1552 		if (regvalue & E1000_GEN_CTL_READY)
       
  1553 			break;
       
  1554 	}
       
  1555 	if (!(regvalue & E1000_GEN_CTL_READY)) {
       
  1556 		hw_dbg("Reg %08x did not indicate ready\n", reg);
       
  1557 		ret_val = -E1000_ERR_PHY;
       
  1558 		goto out;
       
  1559 	}
       
  1560 
       
  1561 out:
       
  1562 	return ret_val;
       
  1563 }
       
  1564 
       
  1565 /**
       
  1566  *  igb_enable_mng_pass_thru - Enable processing of ARP's
       
  1567  *  @hw: pointer to the HW structure
       
  1568  *
       
  1569  *  Verifies the hardware needs to leave interface enabled so that frames can
       
  1570  *  be directed to and from the management interface.
       
  1571  **/
       
  1572 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
       
  1573 {
       
  1574 	u32 manc;
       
  1575 	u32 fwsm, factps;
       
  1576 	bool ret_val = false;
       
  1577 
       
  1578 	if (!hw->mac.asf_firmware_present)
       
  1579 		goto out;
       
  1580 
       
  1581 	manc = rd32(E1000_MANC);
       
  1582 
       
  1583 	if (!(manc & E1000_MANC_RCV_TCO_EN))
       
  1584 		goto out;
       
  1585 
       
  1586 	if (hw->mac.arc_subsystem_valid) {
       
  1587 		fwsm = rd32(E1000_FWSM);
       
  1588 		factps = rd32(E1000_FACTPS);
       
  1589 
       
  1590 		if (!(factps & E1000_FACTPS_MNGCG) &&
       
  1591 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
       
  1592 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
       
  1593 			ret_val = true;
       
  1594 			goto out;
       
  1595 		}
       
  1596 	} else {
       
  1597 		if ((manc & E1000_MANC_SMBUS_EN) &&
       
  1598 		    !(manc & E1000_MANC_ASF_EN)) {
       
  1599 			ret_val = true;
       
  1600 			goto out;
       
  1601 		}
       
  1602 	}
       
  1603 
       
  1604 out:
       
  1605 	return ret_val;
       
  1606 }