devices/e1000/e1000_main-2.6.35-orig.c
branchredundancy
changeset 2356 72f8e46d9548
equal deleted inserted replaced
2355:6dd16bc8a858 2356:72f8e46d9548
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000.h"
       
    30 #include <net/ip6_checksum.h>
       
    31 
       
    32 char e1000_driver_name[] = "e1000";
       
    33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
       
    34 #define DRV_VERSION "7.3.21-k6-NAPI"
       
    35 const char e1000_driver_version[] = DRV_VERSION;
       
    36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
       
    37 
       
    38 /* e1000_pci_tbl - PCI Device ID Table
       
    39  *
       
    40  * Last entry must be all 0s
       
    41  *
       
    42  * Macro expands to...
       
    43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
       
    44  */
       
    45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
       
    46 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
       
    47 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
       
    48 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
       
    49 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
       
    50 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
       
    51 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
       
    52 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
       
    53 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
       
    54 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
       
    55 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
       
    56 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
       
    57 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
       
    58 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
       
    59 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
       
    60 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
       
    61 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
       
    62 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
       
    63 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
       
    64 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
       
    65 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
       
    66 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
       
    67 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
       
    68 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
       
    69 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
       
    70 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
       
    71 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
       
    72 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
       
    73 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
       
    74 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
       
    75 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
       
    76 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
       
    77 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
       
    78 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
       
    79 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
       
    80 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
       
    81 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
       
    82 	/* required last entry */
       
    83 	{0,}
       
    84 };
       
    85 
       
    86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
    87 
       
    88 int e1000_up(struct e1000_adapter *adapter);
       
    89 void e1000_down(struct e1000_adapter *adapter);
       
    90 void e1000_reinit_locked(struct e1000_adapter *adapter);
       
    91 void e1000_reset(struct e1000_adapter *adapter);
       
    92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
       
    93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
       
    94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
       
    95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
       
    96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
       
    97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
    98                              struct e1000_tx_ring *txdr);
       
    99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
   100                              struct e1000_rx_ring *rxdr);
       
   101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
   102                              struct e1000_tx_ring *tx_ring);
       
   103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
   104                              struct e1000_rx_ring *rx_ring);
       
   105 void e1000_update_stats(struct e1000_adapter *adapter);
       
   106 
       
   107 static int e1000_init_module(void);
       
   108 static void e1000_exit_module(void);
       
   109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
       
   110 static void __devexit e1000_remove(struct pci_dev *pdev);
       
   111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
       
   112 static int e1000_sw_init(struct e1000_adapter *adapter);
       
   113 static int e1000_open(struct net_device *netdev);
       
   114 static int e1000_close(struct net_device *netdev);
       
   115 static void e1000_configure_tx(struct e1000_adapter *adapter);
       
   116 static void e1000_configure_rx(struct e1000_adapter *adapter);
       
   117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
       
   118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
       
   119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
       
   120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
   121                                 struct e1000_tx_ring *tx_ring);
       
   122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
   123                                 struct e1000_rx_ring *rx_ring);
       
   124 static void e1000_set_rx_mode(struct net_device *netdev);
       
   125 static void e1000_update_phy_info(unsigned long data);
       
   126 static void e1000_watchdog(unsigned long data);
       
   127 static void e1000_82547_tx_fifo_stall(unsigned long data);
       
   128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
       
   129 				    struct net_device *netdev);
       
   130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
       
   131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
       
   132 static int e1000_set_mac(struct net_device *netdev, void *p);
       
   133 static irqreturn_t e1000_intr(int irq, void *data);
       
   134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
   135 			       struct e1000_tx_ring *tx_ring);
       
   136 static int e1000_clean(struct napi_struct *napi, int budget);
       
   137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   138 			       struct e1000_rx_ring *rx_ring,
       
   139 			       int *work_done, int work_to_do);
       
   140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
       
   141 				     struct e1000_rx_ring *rx_ring,
       
   142 				     int *work_done, int work_to_do);
       
   143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
   144 				   struct e1000_rx_ring *rx_ring,
       
   145 				   int cleaned_count);
       
   146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
       
   147 					 struct e1000_rx_ring *rx_ring,
       
   148 					 int cleaned_count);
       
   149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
       
   150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
   151 			   int cmd);
       
   152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
       
   153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
       
   154 static void e1000_tx_timeout(struct net_device *dev);
       
   155 static void e1000_reset_task(struct work_struct *work);
       
   156 static void e1000_smartspeed(struct e1000_adapter *adapter);
       
   157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
   158                                        struct sk_buff *skb);
       
   159 
       
   160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
       
   161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
       
   162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
       
   163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
       
   164 
       
   165 #ifdef CONFIG_PM
       
   166 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
       
   167 static int e1000_resume(struct pci_dev *pdev);
       
   168 #endif
       
   169 static void e1000_shutdown(struct pci_dev *pdev);
       
   170 
       
   171 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   172 /* for netdump / net console */
       
   173 static void e1000_netpoll (struct net_device *netdev);
       
   174 #endif
       
   175 
       
   176 #define COPYBREAK_DEFAULT 256
       
   177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
       
   178 module_param(copybreak, uint, 0644);
       
   179 MODULE_PARM_DESC(copybreak,
       
   180 	"Maximum size of packet that is copied to a new buffer on receive");
       
   181 
       
   182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
   183                      pci_channel_state_t state);
       
   184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
       
   185 static void e1000_io_resume(struct pci_dev *pdev);
       
   186 
       
   187 static struct pci_error_handlers e1000_err_handler = {
       
   188 	.error_detected = e1000_io_error_detected,
       
   189 	.slot_reset = e1000_io_slot_reset,
       
   190 	.resume = e1000_io_resume,
       
   191 };
       
   192 
       
   193 static struct pci_driver e1000_driver = {
       
   194 	.name     = e1000_driver_name,
       
   195 	.id_table = e1000_pci_tbl,
       
   196 	.probe    = e1000_probe,
       
   197 	.remove   = __devexit_p(e1000_remove),
       
   198 #ifdef CONFIG_PM
       
   199 	/* Power Managment Hooks */
       
   200 	.suspend  = e1000_suspend,
       
   201 	.resume   = e1000_resume,
       
   202 #endif
       
   203 	.shutdown = e1000_shutdown,
       
   204 	.err_handler = &e1000_err_handler
       
   205 };
       
   206 
       
   207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
       
   208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
       
   209 MODULE_LICENSE("GPL");
       
   210 MODULE_VERSION(DRV_VERSION);
       
   211 
       
   212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
       
   213 module_param(debug, int, 0);
       
   214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   215 
       
   216 /**
       
   217  * e1000_get_hw_dev - return device
       
   218  * used by hardware layer to print debugging information
       
   219  *
       
   220  **/
       
   221 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
       
   222 {
       
   223 	struct e1000_adapter *adapter = hw->back;
       
   224 	return adapter->netdev;
       
   225 }
       
   226 
       
   227 /**
       
   228  * e1000_init_module - Driver Registration Routine
       
   229  *
       
   230  * e1000_init_module is the first routine called when the driver is
       
   231  * loaded. All it does is register with the PCI subsystem.
       
   232  **/
       
   233 
       
   234 static int __init e1000_init_module(void)
       
   235 {
       
   236 	int ret;
       
   237 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
       
   238 
       
   239 	pr_info("%s\n", e1000_copyright);
       
   240 
       
   241 	ret = pci_register_driver(&e1000_driver);
       
   242 	if (copybreak != COPYBREAK_DEFAULT) {
       
   243 		if (copybreak == 0)
       
   244 			pr_info("copybreak disabled\n");
       
   245 		else
       
   246 			pr_info("copybreak enabled for "
       
   247 				   "packets <= %u bytes\n", copybreak);
       
   248 	}
       
   249 	return ret;
       
   250 }
       
   251 
       
   252 module_init(e1000_init_module);
       
   253 
       
   254 /**
       
   255  * e1000_exit_module - Driver Exit Cleanup Routine
       
   256  *
       
   257  * e1000_exit_module is called just before the driver is removed
       
   258  * from memory.
       
   259  **/
       
   260 
       
   261 static void __exit e1000_exit_module(void)
       
   262 {
       
   263 	pci_unregister_driver(&e1000_driver);
       
   264 }
       
   265 
       
   266 module_exit(e1000_exit_module);
       
   267 
       
   268 static int e1000_request_irq(struct e1000_adapter *adapter)
       
   269 {
       
   270 	struct net_device *netdev = adapter->netdev;
       
   271 	irq_handler_t handler = e1000_intr;
       
   272 	int irq_flags = IRQF_SHARED;
       
   273 	int err;
       
   274 
       
   275 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
       
   276 	                  netdev);
       
   277 	if (err) {
       
   278 		e_err("Unable to allocate interrupt Error: %d\n", err);
       
   279 	}
       
   280 
       
   281 	return err;
       
   282 }
       
   283 
       
   284 static void e1000_free_irq(struct e1000_adapter *adapter)
       
   285 {
       
   286 	struct net_device *netdev = adapter->netdev;
       
   287 
       
   288 	free_irq(adapter->pdev->irq, netdev);
       
   289 }
       
   290 
       
   291 /**
       
   292  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
   293  * @adapter: board private structure
       
   294  **/
       
   295 
       
   296 static void e1000_irq_disable(struct e1000_adapter *adapter)
       
   297 {
       
   298 	struct e1000_hw *hw = &adapter->hw;
       
   299 
       
   300 	ew32(IMC, ~0);
       
   301 	E1000_WRITE_FLUSH();
       
   302 	synchronize_irq(adapter->pdev->irq);
       
   303 }
       
   304 
       
   305 /**
       
   306  * e1000_irq_enable - Enable default interrupt generation settings
       
   307  * @adapter: board private structure
       
   308  **/
       
   309 
       
   310 static void e1000_irq_enable(struct e1000_adapter *adapter)
       
   311 {
       
   312 	struct e1000_hw *hw = &adapter->hw;
       
   313 
       
   314 	ew32(IMS, IMS_ENABLE_MASK);
       
   315 	E1000_WRITE_FLUSH();
       
   316 }
       
   317 
       
   318 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
   319 {
       
   320 	struct e1000_hw *hw = &adapter->hw;
       
   321 	struct net_device *netdev = adapter->netdev;
       
   322 	u16 vid = hw->mng_cookie.vlan_id;
       
   323 	u16 old_vid = adapter->mng_vlan_id;
       
   324 	if (adapter->vlgrp) {
       
   325 		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
       
   326 			if (hw->mng_cookie.status &
       
   327 				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
       
   328 				e1000_vlan_rx_add_vid(netdev, vid);
       
   329 				adapter->mng_vlan_id = vid;
       
   330 			} else
       
   331 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
   332 
       
   333 			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
       
   334 					(vid != old_vid) &&
       
   335 			    !vlan_group_get_device(adapter->vlgrp, old_vid))
       
   336 				e1000_vlan_rx_kill_vid(netdev, old_vid);
       
   337 		} else
       
   338 			adapter->mng_vlan_id = vid;
       
   339 	}
       
   340 }
       
   341 
       
   342 static void e1000_init_manageability(struct e1000_adapter *adapter)
       
   343 {
       
   344 	struct e1000_hw *hw = &adapter->hw;
       
   345 
       
   346 	if (adapter->en_mng_pt) {
       
   347 		u32 manc = er32(MANC);
       
   348 
       
   349 		/* disable hardware interception of ARP */
       
   350 		manc &= ~(E1000_MANC_ARP_EN);
       
   351 
       
   352 		ew32(MANC, manc);
       
   353 	}
       
   354 }
       
   355 
       
   356 static void e1000_release_manageability(struct e1000_adapter *adapter)
       
   357 {
       
   358 	struct e1000_hw *hw = &adapter->hw;
       
   359 
       
   360 	if (adapter->en_mng_pt) {
       
   361 		u32 manc = er32(MANC);
       
   362 
       
   363 		/* re-enable hardware interception of ARP */
       
   364 		manc |= E1000_MANC_ARP_EN;
       
   365 
       
   366 		ew32(MANC, manc);
       
   367 	}
       
   368 }
       
   369 
       
   370 /**
       
   371  * e1000_configure - configure the hardware for RX and TX
       
   372  * @adapter = private board structure
       
   373  **/
       
   374 static void e1000_configure(struct e1000_adapter *adapter)
       
   375 {
       
   376 	struct net_device *netdev = adapter->netdev;
       
   377 	int i;
       
   378 
       
   379 	e1000_set_rx_mode(netdev);
       
   380 
       
   381 	e1000_restore_vlan(adapter);
       
   382 	e1000_init_manageability(adapter);
       
   383 
       
   384 	e1000_configure_tx(adapter);
       
   385 	e1000_setup_rctl(adapter);
       
   386 	e1000_configure_rx(adapter);
       
   387 	/* call E1000_DESC_UNUSED which always leaves
       
   388 	 * at least 1 descriptor unused to make sure
       
   389 	 * next_to_use != next_to_clean */
       
   390 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
   391 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
       
   392 		adapter->alloc_rx_buf(adapter, ring,
       
   393 		                      E1000_DESC_UNUSED(ring));
       
   394 	}
       
   395 }
       
   396 
       
   397 int e1000_up(struct e1000_adapter *adapter)
       
   398 {
       
   399 	struct e1000_hw *hw = &adapter->hw;
       
   400 
       
   401 	/* hardware has been reset, we need to reload some things */
       
   402 	e1000_configure(adapter);
       
   403 
       
   404 	clear_bit(__E1000_DOWN, &adapter->flags);
       
   405 
       
   406 	napi_enable(&adapter->napi);
       
   407 
       
   408 	e1000_irq_enable(adapter);
       
   409 
       
   410 	netif_wake_queue(adapter->netdev);
       
   411 
       
   412 	/* fire a link change interrupt to start the watchdog */
       
   413 	ew32(ICS, E1000_ICS_LSC);
       
   414 	return 0;
       
   415 }
       
   416 
       
   417 /**
       
   418  * e1000_power_up_phy - restore link in case the phy was powered down
       
   419  * @adapter: address of board private structure
       
   420  *
       
   421  * The phy may be powered down to save power and turn off link when the
       
   422  * driver is unloaded and wake on lan is not enabled (among others)
       
   423  * *** this routine MUST be followed by a call to e1000_reset ***
       
   424  *
       
   425  **/
       
   426 
       
   427 void e1000_power_up_phy(struct e1000_adapter *adapter)
       
   428 {
       
   429 	struct e1000_hw *hw = &adapter->hw;
       
   430 	u16 mii_reg = 0;
       
   431 
       
   432 	/* Just clear the power down bit to wake the phy back up */
       
   433 	if (hw->media_type == e1000_media_type_copper) {
       
   434 		/* according to the manual, the phy will retain its
       
   435 		 * settings across a power-down/up cycle */
       
   436 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
       
   437 		mii_reg &= ~MII_CR_POWER_DOWN;
       
   438 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
       
   439 	}
       
   440 }
       
   441 
       
   442 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
   443 {
       
   444 	struct e1000_hw *hw = &adapter->hw;
       
   445 
       
   446 	/* Power down the PHY so no link is implied when interface is down *
       
   447 	 * The PHY cannot be powered down if any of the following is true *
       
   448 	 * (a) WoL is enabled
       
   449 	 * (b) AMT is active
       
   450 	 * (c) SoL/IDER session is active */
       
   451 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
       
   452 	   hw->media_type == e1000_media_type_copper) {
       
   453 		u16 mii_reg = 0;
       
   454 
       
   455 		switch (hw->mac_type) {
       
   456 		case e1000_82540:
       
   457 		case e1000_82545:
       
   458 		case e1000_82545_rev_3:
       
   459 		case e1000_82546:
       
   460 		case e1000_82546_rev_3:
       
   461 		case e1000_82541:
       
   462 		case e1000_82541_rev_2:
       
   463 		case e1000_82547:
       
   464 		case e1000_82547_rev_2:
       
   465 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
       
   466 				goto out;
       
   467 			break;
       
   468 		default:
       
   469 			goto out;
       
   470 		}
       
   471 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
       
   472 		mii_reg |= MII_CR_POWER_DOWN;
       
   473 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
       
   474 		mdelay(1);
       
   475 	}
       
   476 out:
       
   477 	return;
       
   478 }
       
   479 
       
   480 void e1000_down(struct e1000_adapter *adapter)
       
   481 {
       
   482 	struct e1000_hw *hw = &adapter->hw;
       
   483 	struct net_device *netdev = adapter->netdev;
       
   484 	u32 rctl, tctl;
       
   485 
       
   486 	/* signal that we're down so the interrupt handler does not
       
   487 	 * reschedule our watchdog timer */
       
   488 	set_bit(__E1000_DOWN, &adapter->flags);
       
   489 
       
   490 	/* disable receives in the hardware */
       
   491 	rctl = er32(RCTL);
       
   492 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
   493 	/* flush and sleep below */
       
   494 
       
   495 	netif_tx_disable(netdev);
       
   496 
       
   497 	/* disable transmits in the hardware */
       
   498 	tctl = er32(TCTL);
       
   499 	tctl &= ~E1000_TCTL_EN;
       
   500 	ew32(TCTL, tctl);
       
   501 	/* flush both disables and wait for them to finish */
       
   502 	E1000_WRITE_FLUSH();
       
   503 	msleep(10);
       
   504 
       
   505 	napi_disable(&adapter->napi);
       
   506 
       
   507 	e1000_irq_disable(adapter);
       
   508 
       
   509 	del_timer_sync(&adapter->tx_fifo_stall_timer);
       
   510 	del_timer_sync(&adapter->watchdog_timer);
       
   511 	del_timer_sync(&adapter->phy_info_timer);
       
   512 
       
   513 	adapter->link_speed = 0;
       
   514 	adapter->link_duplex = 0;
       
   515 	netif_carrier_off(netdev);
       
   516 
       
   517 	e1000_reset(adapter);
       
   518 	e1000_clean_all_tx_rings(adapter);
       
   519 	e1000_clean_all_rx_rings(adapter);
       
   520 }
       
   521 
       
   522 void e1000_reinit_locked(struct e1000_adapter *adapter)
       
   523 {
       
   524 	WARN_ON(in_interrupt());
       
   525 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   526 		msleep(1);
       
   527 	e1000_down(adapter);
       
   528 	e1000_up(adapter);
       
   529 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   530 }
       
   531 
       
   532 void e1000_reset(struct e1000_adapter *adapter)
       
   533 {
       
   534 	struct e1000_hw *hw = &adapter->hw;
       
   535 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
       
   536 	bool legacy_pba_adjust = false;
       
   537 	u16 hwm;
       
   538 
       
   539 	/* Repartition Pba for greater than 9k mtu
       
   540 	 * To take effect CTRL.RST is required.
       
   541 	 */
       
   542 
       
   543 	switch (hw->mac_type) {
       
   544 	case e1000_82542_rev2_0:
       
   545 	case e1000_82542_rev2_1:
       
   546 	case e1000_82543:
       
   547 	case e1000_82544:
       
   548 	case e1000_82540:
       
   549 	case e1000_82541:
       
   550 	case e1000_82541_rev_2:
       
   551 		legacy_pba_adjust = true;
       
   552 		pba = E1000_PBA_48K;
       
   553 		break;
       
   554 	case e1000_82545:
       
   555 	case e1000_82545_rev_3:
       
   556 	case e1000_82546:
       
   557 	case e1000_82546_rev_3:
       
   558 		pba = E1000_PBA_48K;
       
   559 		break;
       
   560 	case e1000_82547:
       
   561 	case e1000_82547_rev_2:
       
   562 		legacy_pba_adjust = true;
       
   563 		pba = E1000_PBA_30K;
       
   564 		break;
       
   565 	case e1000_undefined:
       
   566 	case e1000_num_macs:
       
   567 		break;
       
   568 	}
       
   569 
       
   570 	if (legacy_pba_adjust) {
       
   571 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
       
   572 			pba -= 8; /* allocate more FIFO for Tx */
       
   573 
       
   574 		if (hw->mac_type == e1000_82547) {
       
   575 			adapter->tx_fifo_head = 0;
       
   576 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
       
   577 			adapter->tx_fifo_size =
       
   578 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
       
   579 			atomic_set(&adapter->tx_fifo_stall, 0);
       
   580 		}
       
   581 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
       
   582 		/* adjust PBA for jumbo frames */
       
   583 		ew32(PBA, pba);
       
   584 
       
   585 		/* To maintain wire speed transmits, the Tx FIFO should be
       
   586 		 * large enough to accommodate two full transmit packets,
       
   587 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
       
   588 		 * the Rx FIFO should be large enough to accommodate at least
       
   589 		 * one full receive packet and is similarly rounded up and
       
   590 		 * expressed in KB. */
       
   591 		pba = er32(PBA);
       
   592 		/* upper 16 bits has Tx packet buffer allocation size in KB */
       
   593 		tx_space = pba >> 16;
       
   594 		/* lower 16 bits has Rx packet buffer allocation size in KB */
       
   595 		pba &= 0xffff;
       
   596 		/*
       
   597 		 * the tx fifo also stores 16 bytes of information about the tx
       
   598 		 * but don't include ethernet FCS because hardware appends it
       
   599 		 */
       
   600 		min_tx_space = (hw->max_frame_size +
       
   601 		                sizeof(struct e1000_tx_desc) -
       
   602 		                ETH_FCS_LEN) * 2;
       
   603 		min_tx_space = ALIGN(min_tx_space, 1024);
       
   604 		min_tx_space >>= 10;
       
   605 		/* software strips receive CRC, so leave room for it */
       
   606 		min_rx_space = hw->max_frame_size;
       
   607 		min_rx_space = ALIGN(min_rx_space, 1024);
       
   608 		min_rx_space >>= 10;
       
   609 
       
   610 		/* If current Tx allocation is less than the min Tx FIFO size,
       
   611 		 * and the min Tx FIFO size is less than the current Rx FIFO
       
   612 		 * allocation, take space away from current Rx allocation */
       
   613 		if (tx_space < min_tx_space &&
       
   614 		    ((min_tx_space - tx_space) < pba)) {
       
   615 			pba = pba - (min_tx_space - tx_space);
       
   616 
       
   617 			/* PCI/PCIx hardware has PBA alignment constraints */
       
   618 			switch (hw->mac_type) {
       
   619 			case e1000_82545 ... e1000_82546_rev_3:
       
   620 				pba &= ~(E1000_PBA_8K - 1);
       
   621 				break;
       
   622 			default:
       
   623 				break;
       
   624 			}
       
   625 
       
   626 			/* if short on rx space, rx wins and must trump tx
       
   627 			 * adjustment or use Early Receive if available */
       
   628 			if (pba < min_rx_space)
       
   629 				pba = min_rx_space;
       
   630 		}
       
   631 	}
       
   632 
       
   633 	ew32(PBA, pba);
       
   634 
       
   635 	/*
       
   636 	 * flow control settings:
       
   637 	 * The high water mark must be low enough to fit one full frame
       
   638 	 * (or the size used for early receive) above it in the Rx FIFO.
       
   639 	 * Set it to the lower of:
       
   640 	 * - 90% of the Rx FIFO size, and
       
   641 	 * - the full Rx FIFO size minus the early receive size (for parts
       
   642 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
       
   643 	 * - the full Rx FIFO size minus one full frame
       
   644 	 */
       
   645 	hwm = min(((pba << 10) * 9 / 10),
       
   646 		  ((pba << 10) - hw->max_frame_size));
       
   647 
       
   648 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
       
   649 	hw->fc_low_water = hw->fc_high_water - 8;
       
   650 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
       
   651 	hw->fc_send_xon = 1;
       
   652 	hw->fc = hw->original_fc;
       
   653 
       
   654 	/* Allow time for pending master requests to run */
       
   655 	e1000_reset_hw(hw);
       
   656 	if (hw->mac_type >= e1000_82544)
       
   657 		ew32(WUC, 0);
       
   658 
       
   659 	if (e1000_init_hw(hw))
       
   660 		e_err("Hardware Error\n");
       
   661 	e1000_update_mng_vlan(adapter);
       
   662 
       
   663 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
       
   664 	if (hw->mac_type >= e1000_82544 &&
       
   665 	    hw->autoneg == 1 &&
       
   666 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
       
   667 		u32 ctrl = er32(CTRL);
       
   668 		/* clear phy power management bit if we are in gig only mode,
       
   669 		 * which if enabled will attempt negotiation to 100Mb, which
       
   670 		 * can cause a loss of link at power off or driver unload */
       
   671 		ctrl &= ~E1000_CTRL_SWDPIN3;
       
   672 		ew32(CTRL, ctrl);
       
   673 	}
       
   674 
       
   675 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
   676 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
       
   677 
       
   678 	e1000_reset_adaptive(hw);
       
   679 	e1000_phy_get_info(hw, &adapter->phy_info);
       
   680 
       
   681 	e1000_release_manageability(adapter);
       
   682 }
       
   683 
       
   684 /**
       
   685  *  Dump the eeprom for users having checksum issues
       
   686  **/
       
   687 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
       
   688 {
       
   689 	struct net_device *netdev = adapter->netdev;
       
   690 	struct ethtool_eeprom eeprom;
       
   691 	const struct ethtool_ops *ops = netdev->ethtool_ops;
       
   692 	u8 *data;
       
   693 	int i;
       
   694 	u16 csum_old, csum_new = 0;
       
   695 
       
   696 	eeprom.len = ops->get_eeprom_len(netdev);
       
   697 	eeprom.offset = 0;
       
   698 
       
   699 	data = kmalloc(eeprom.len, GFP_KERNEL);
       
   700 	if (!data) {
       
   701 		pr_err("Unable to allocate memory to dump EEPROM data\n");
       
   702 		return;
       
   703 	}
       
   704 
       
   705 	ops->get_eeprom(netdev, &eeprom, data);
       
   706 
       
   707 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
       
   708 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
       
   709 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
       
   710 		csum_new += data[i] + (data[i + 1] << 8);
       
   711 	csum_new = EEPROM_SUM - csum_new;
       
   712 
       
   713 	pr_err("/*********************/\n");
       
   714 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
       
   715 	pr_err("Calculated              : 0x%04x\n", csum_new);
       
   716 
       
   717 	pr_err("Offset    Values\n");
       
   718 	pr_err("========  ======\n");
       
   719 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
       
   720 
       
   721 	pr_err("Include this output when contacting your support provider.\n");
       
   722 	pr_err("This is not a software error! Something bad happened to\n");
       
   723 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
       
   724 	pr_err("result in further problems, possibly loss of data,\n");
       
   725 	pr_err("corruption or system hangs!\n");
       
   726 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
       
   727 	pr_err("which is invalid and requires you to set the proper MAC\n");
       
   728 	pr_err("address manually before continuing to enable this network\n");
       
   729 	pr_err("device. Please inspect the EEPROM dump and report the\n");
       
   730 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
       
   731 	pr_err("/*********************/\n");
       
   732 
       
   733 	kfree(data);
       
   734 }
       
   735 
       
   736 /**
       
   737  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
       
   738  * @pdev: PCI device information struct
       
   739  *
       
   740  * Return true if an adapter needs ioport resources
       
   741  **/
       
   742 static int e1000_is_need_ioport(struct pci_dev *pdev)
       
   743 {
       
   744 	switch (pdev->device) {
       
   745 	case E1000_DEV_ID_82540EM:
       
   746 	case E1000_DEV_ID_82540EM_LOM:
       
   747 	case E1000_DEV_ID_82540EP:
       
   748 	case E1000_DEV_ID_82540EP_LOM:
       
   749 	case E1000_DEV_ID_82540EP_LP:
       
   750 	case E1000_DEV_ID_82541EI:
       
   751 	case E1000_DEV_ID_82541EI_MOBILE:
       
   752 	case E1000_DEV_ID_82541ER:
       
   753 	case E1000_DEV_ID_82541ER_LOM:
       
   754 	case E1000_DEV_ID_82541GI:
       
   755 	case E1000_DEV_ID_82541GI_LF:
       
   756 	case E1000_DEV_ID_82541GI_MOBILE:
       
   757 	case E1000_DEV_ID_82544EI_COPPER:
       
   758 	case E1000_DEV_ID_82544EI_FIBER:
       
   759 	case E1000_DEV_ID_82544GC_COPPER:
       
   760 	case E1000_DEV_ID_82544GC_LOM:
       
   761 	case E1000_DEV_ID_82545EM_COPPER:
       
   762 	case E1000_DEV_ID_82545EM_FIBER:
       
   763 	case E1000_DEV_ID_82546EB_COPPER:
       
   764 	case E1000_DEV_ID_82546EB_FIBER:
       
   765 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
       
   766 		return true;
       
   767 	default:
       
   768 		return false;
       
   769 	}
       
   770 }
       
   771 
       
   772 static const struct net_device_ops e1000_netdev_ops = {
       
   773 	.ndo_open		= e1000_open,
       
   774 	.ndo_stop		= e1000_close,
       
   775 	.ndo_start_xmit		= e1000_xmit_frame,
       
   776 	.ndo_get_stats		= e1000_get_stats,
       
   777 	.ndo_set_rx_mode	= e1000_set_rx_mode,
       
   778 	.ndo_set_mac_address	= e1000_set_mac,
       
   779 	.ndo_tx_timeout 	= e1000_tx_timeout,
       
   780 	.ndo_change_mtu		= e1000_change_mtu,
       
   781 	.ndo_do_ioctl		= e1000_ioctl,
       
   782 	.ndo_validate_addr	= eth_validate_addr,
       
   783 
       
   784 	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
       
   785 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
       
   786 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
       
   787 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   788 	.ndo_poll_controller	= e1000_netpoll,
       
   789 #endif
       
   790 };
       
   791 
       
   792 /**
       
   793  * e1000_probe - Device Initialization Routine
       
   794  * @pdev: PCI device information struct
       
   795  * @ent: entry in e1000_pci_tbl
       
   796  *
       
   797  * Returns 0 on success, negative on failure
       
   798  *
       
   799  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
   800  * The OS initialization, configuring of the adapter private structure,
       
   801  * and a hardware reset occur.
       
   802  **/
       
   803 static int __devinit e1000_probe(struct pci_dev *pdev,
       
   804 				 const struct pci_device_id *ent)
       
   805 {
       
   806 	struct net_device *netdev;
       
   807 	struct e1000_adapter *adapter;
       
   808 	struct e1000_hw *hw;
       
   809 
       
   810 	static int cards_found = 0;
       
   811 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
       
   812 	int i, err, pci_using_dac;
       
   813 	u16 eeprom_data = 0;
       
   814 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
       
   815 	int bars, need_ioport;
       
   816 
       
   817 	/* do not allocate ioport bars when not needed */
       
   818 	need_ioport = e1000_is_need_ioport(pdev);
       
   819 	if (need_ioport) {
       
   820 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
       
   821 		err = pci_enable_device(pdev);
       
   822 	} else {
       
   823 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
       
   824 		err = pci_enable_device_mem(pdev);
       
   825 	}
       
   826 	if (err)
       
   827 		return err;
       
   828 
       
   829 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
       
   830 	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
       
   831 		pci_using_dac = 1;
       
   832 	} else {
       
   833 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
       
   834 		if (err) {
       
   835 			err = dma_set_coherent_mask(&pdev->dev,
       
   836 						    DMA_BIT_MASK(32));
       
   837 			if (err) {
       
   838 				pr_err("No usable DMA config, aborting\n");
       
   839 				goto err_dma;
       
   840 			}
       
   841 		}
       
   842 		pci_using_dac = 0;
       
   843 	}
       
   844 
       
   845 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
       
   846 	if (err)
       
   847 		goto err_pci_reg;
       
   848 
       
   849 	pci_set_master(pdev);
       
   850 	err = pci_save_state(pdev);
       
   851 	if (err)
       
   852 		goto err_alloc_etherdev;
       
   853 
       
   854 	err = -ENOMEM;
       
   855 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
   856 	if (!netdev)
       
   857 		goto err_alloc_etherdev;
       
   858 
       
   859 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
   860 
       
   861 	pci_set_drvdata(pdev, netdev);
       
   862 	adapter = netdev_priv(netdev);
       
   863 	adapter->netdev = netdev;
       
   864 	adapter->pdev = pdev;
       
   865 	adapter->msg_enable = (1 << debug) - 1;
       
   866 	adapter->bars = bars;
       
   867 	adapter->need_ioport = need_ioport;
       
   868 
       
   869 	hw = &adapter->hw;
       
   870 	hw->back = adapter;
       
   871 
       
   872 	err = -EIO;
       
   873 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
       
   874 	if (!hw->hw_addr)
       
   875 		goto err_ioremap;
       
   876 
       
   877 	if (adapter->need_ioport) {
       
   878 		for (i = BAR_1; i <= BAR_5; i++) {
       
   879 			if (pci_resource_len(pdev, i) == 0)
       
   880 				continue;
       
   881 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
       
   882 				hw->io_base = pci_resource_start(pdev, i);
       
   883 				break;
       
   884 			}
       
   885 		}
       
   886 	}
       
   887 
       
   888 	netdev->netdev_ops = &e1000_netdev_ops;
       
   889 	e1000_set_ethtool_ops(netdev);
       
   890 	netdev->watchdog_timeo = 5 * HZ;
       
   891 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
       
   892 
       
   893 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
   894 
       
   895 	adapter->bd_number = cards_found;
       
   896 
       
   897 	/* setup the private structure */
       
   898 
       
   899 	err = e1000_sw_init(adapter);
       
   900 	if (err)
       
   901 		goto err_sw_init;
       
   902 
       
   903 	err = -EIO;
       
   904 
       
   905 	if (hw->mac_type >= e1000_82543) {
       
   906 		netdev->features = NETIF_F_SG |
       
   907 				   NETIF_F_HW_CSUM |
       
   908 				   NETIF_F_HW_VLAN_TX |
       
   909 				   NETIF_F_HW_VLAN_RX |
       
   910 				   NETIF_F_HW_VLAN_FILTER;
       
   911 	}
       
   912 
       
   913 	if ((hw->mac_type >= e1000_82544) &&
       
   914 	   (hw->mac_type != e1000_82547))
       
   915 		netdev->features |= NETIF_F_TSO;
       
   916 
       
   917 	if (pci_using_dac)
       
   918 		netdev->features |= NETIF_F_HIGHDMA;
       
   919 
       
   920 	netdev->vlan_features |= NETIF_F_TSO;
       
   921 	netdev->vlan_features |= NETIF_F_HW_CSUM;
       
   922 	netdev->vlan_features |= NETIF_F_SG;
       
   923 
       
   924 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
       
   925 
       
   926 	/* initialize eeprom parameters */
       
   927 	if (e1000_init_eeprom_params(hw)) {
       
   928 		e_err("EEPROM initialization failed\n");
       
   929 		goto err_eeprom;
       
   930 	}
       
   931 
       
   932 	/* before reading the EEPROM, reset the controller to
       
   933 	 * put the device in a known good starting state */
       
   934 
       
   935 	e1000_reset_hw(hw);
       
   936 
       
   937 	/* make sure the EEPROM is good */
       
   938 	if (e1000_validate_eeprom_checksum(hw) < 0) {
       
   939 		e_err("The EEPROM Checksum Is Not Valid\n");
       
   940 		e1000_dump_eeprom(adapter);
       
   941 		/*
       
   942 		 * set MAC address to all zeroes to invalidate and temporary
       
   943 		 * disable this device for the user. This blocks regular
       
   944 		 * traffic while still permitting ethtool ioctls from reaching
       
   945 		 * the hardware as well as allowing the user to run the
       
   946 		 * interface after manually setting a hw addr using
       
   947 		 * `ip set address`
       
   948 		 */
       
   949 		memset(hw->mac_addr, 0, netdev->addr_len);
       
   950 	} else {
       
   951 		/* copy the MAC address out of the EEPROM */
       
   952 		if (e1000_read_mac_addr(hw))
       
   953 			e_err("EEPROM Read Error\n");
       
   954 	}
       
   955 	/* don't block initalization here due to bad MAC address */
       
   956 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
       
   957 	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
       
   958 
       
   959 	if (!is_valid_ether_addr(netdev->perm_addr))
       
   960 		e_err("Invalid MAC Address\n");
       
   961 
       
   962 	e1000_get_bus_info(hw);
       
   963 
       
   964 	init_timer(&adapter->tx_fifo_stall_timer);
       
   965 	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
       
   966 	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
       
   967 
       
   968 	init_timer(&adapter->watchdog_timer);
       
   969 	adapter->watchdog_timer.function = &e1000_watchdog;
       
   970 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
   971 
       
   972 	init_timer(&adapter->phy_info_timer);
       
   973 	adapter->phy_info_timer.function = &e1000_update_phy_info;
       
   974 	adapter->phy_info_timer.data = (unsigned long)adapter;
       
   975 
       
   976 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
       
   977 
       
   978 	e1000_check_options(adapter);
       
   979 
       
   980 	/* Initial Wake on LAN setting
       
   981 	 * If APM wake is enabled in the EEPROM,
       
   982 	 * enable the ACPI Magic Packet filter
       
   983 	 */
       
   984 
       
   985 	switch (hw->mac_type) {
       
   986 	case e1000_82542_rev2_0:
       
   987 	case e1000_82542_rev2_1:
       
   988 	case e1000_82543:
       
   989 		break;
       
   990 	case e1000_82544:
       
   991 		e1000_read_eeprom(hw,
       
   992 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
       
   993 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
       
   994 		break;
       
   995 	case e1000_82546:
       
   996 	case e1000_82546_rev_3:
       
   997 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
       
   998 			e1000_read_eeprom(hw,
       
   999 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
  1000 			break;
       
  1001 		}
       
  1002 		/* Fall Through */
       
  1003 	default:
       
  1004 		e1000_read_eeprom(hw,
       
  1005 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
  1006 		break;
       
  1007 	}
       
  1008 	if (eeprom_data & eeprom_apme_mask)
       
  1009 		adapter->eeprom_wol |= E1000_WUFC_MAG;
       
  1010 
       
  1011 	/* now that we have the eeprom settings, apply the special cases
       
  1012 	 * where the eeprom may be wrong or the board simply won't support
       
  1013 	 * wake on lan on a particular port */
       
  1014 	switch (pdev->device) {
       
  1015 	case E1000_DEV_ID_82546GB_PCIE:
       
  1016 		adapter->eeprom_wol = 0;
       
  1017 		break;
       
  1018 	case E1000_DEV_ID_82546EB_FIBER:
       
  1019 	case E1000_DEV_ID_82546GB_FIBER:
       
  1020 		/* Wake events only supported on port A for dual fiber
       
  1021 		 * regardless of eeprom setting */
       
  1022 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
       
  1023 			adapter->eeprom_wol = 0;
       
  1024 		break;
       
  1025 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1026 		/* if quad port adapter, disable WoL on all but port A */
       
  1027 		if (global_quad_port_a != 0)
       
  1028 			adapter->eeprom_wol = 0;
       
  1029 		else
       
  1030 			adapter->quad_port_a = 1;
       
  1031 		/* Reset for multiple quad port adapters */
       
  1032 		if (++global_quad_port_a == 4)
       
  1033 			global_quad_port_a = 0;
       
  1034 		break;
       
  1035 	}
       
  1036 
       
  1037 	/* initialize the wol settings based on the eeprom settings */
       
  1038 	adapter->wol = adapter->eeprom_wol;
       
  1039 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  1040 
       
  1041 	/* reset the hardware with the new settings */
       
  1042 	e1000_reset(adapter);
       
  1043 
       
  1044 	strcpy(netdev->name, "eth%d");
       
  1045 	err = register_netdev(netdev);
       
  1046 	if (err)
       
  1047 		goto err_register;
       
  1048 
       
  1049 	/* print bus type/speed/width info */
       
  1050 	e_info("(PCI%s:%dMHz:%d-bit) %pM\n",
       
  1051 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
       
  1052 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
       
  1053 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
       
  1054 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
       
  1055 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
       
  1056 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
       
  1057 	       netdev->dev_addr);
       
  1058 
       
  1059 	/* carrier off reporting is important to ethtool even BEFORE open */
       
  1060 	netif_carrier_off(netdev);
       
  1061 
       
  1062 	e_info("Intel(R) PRO/1000 Network Connection\n");
       
  1063 
       
  1064 	cards_found++;
       
  1065 	return 0;
       
  1066 
       
  1067 err_register:
       
  1068 err_eeprom:
       
  1069 	e1000_phy_hw_reset(hw);
       
  1070 
       
  1071 	if (hw->flash_address)
       
  1072 		iounmap(hw->flash_address);
       
  1073 	kfree(adapter->tx_ring);
       
  1074 	kfree(adapter->rx_ring);
       
  1075 err_sw_init:
       
  1076 	iounmap(hw->hw_addr);
       
  1077 err_ioremap:
       
  1078 	free_netdev(netdev);
       
  1079 err_alloc_etherdev:
       
  1080 	pci_release_selected_regions(pdev, bars);
       
  1081 err_pci_reg:
       
  1082 err_dma:
       
  1083 	pci_disable_device(pdev);
       
  1084 	return err;
       
  1085 }
       
  1086 
       
  1087 /**
       
  1088  * e1000_remove - Device Removal Routine
       
  1089  * @pdev: PCI device information struct
       
  1090  *
       
  1091  * e1000_remove is called by the PCI subsystem to alert the driver
       
  1092  * that it should release a PCI device.  The could be caused by a
       
  1093  * Hot-Plug event, or because the driver is going to be removed from
       
  1094  * memory.
       
  1095  **/
       
  1096 
       
  1097 static void __devexit e1000_remove(struct pci_dev *pdev)
       
  1098 {
       
  1099 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  1100 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1101 	struct e1000_hw *hw = &adapter->hw;
       
  1102 
       
  1103 	set_bit(__E1000_DOWN, &adapter->flags);
       
  1104 	del_timer_sync(&adapter->tx_fifo_stall_timer);
       
  1105 	del_timer_sync(&adapter->watchdog_timer);
       
  1106 	del_timer_sync(&adapter->phy_info_timer);
       
  1107 
       
  1108 	cancel_work_sync(&adapter->reset_task);
       
  1109 
       
  1110 	e1000_release_manageability(adapter);
       
  1111 
       
  1112 	unregister_netdev(netdev);
       
  1113 
       
  1114 	e1000_phy_hw_reset(hw);
       
  1115 
       
  1116 	kfree(adapter->tx_ring);
       
  1117 	kfree(adapter->rx_ring);
       
  1118 
       
  1119 	iounmap(hw->hw_addr);
       
  1120 	if (hw->flash_address)
       
  1121 		iounmap(hw->flash_address);
       
  1122 	pci_release_selected_regions(pdev, adapter->bars);
       
  1123 
       
  1124 	free_netdev(netdev);
       
  1125 
       
  1126 	pci_disable_device(pdev);
       
  1127 }
       
  1128 
       
  1129 /**
       
  1130  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  1131  * @adapter: board private structure to initialize
       
  1132  *
       
  1133  * e1000_sw_init initializes the Adapter private data structure.
       
  1134  * Fields are initialized based on PCI device information and
       
  1135  * OS network device settings (MTU size).
       
  1136  **/
       
  1137 
       
  1138 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
       
  1139 {
       
  1140 	struct e1000_hw *hw = &adapter->hw;
       
  1141 	struct net_device *netdev = adapter->netdev;
       
  1142 	struct pci_dev *pdev = adapter->pdev;
       
  1143 
       
  1144 	/* PCI config space info */
       
  1145 
       
  1146 	hw->vendor_id = pdev->vendor;
       
  1147 	hw->device_id = pdev->device;
       
  1148 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
       
  1149 	hw->subsystem_id = pdev->subsystem_device;
       
  1150 	hw->revision_id = pdev->revision;
       
  1151 
       
  1152 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
       
  1153 
       
  1154 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  1155 	hw->max_frame_size = netdev->mtu +
       
  1156 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  1157 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
       
  1158 
       
  1159 	/* identify the MAC */
       
  1160 
       
  1161 	if (e1000_set_mac_type(hw)) {
       
  1162 		e_err("Unknown MAC Type\n");
       
  1163 		return -EIO;
       
  1164 	}
       
  1165 
       
  1166 	switch (hw->mac_type) {
       
  1167 	default:
       
  1168 		break;
       
  1169 	case e1000_82541:
       
  1170 	case e1000_82547:
       
  1171 	case e1000_82541_rev_2:
       
  1172 	case e1000_82547_rev_2:
       
  1173 		hw->phy_init_script = 1;
       
  1174 		break;
       
  1175 	}
       
  1176 
       
  1177 	e1000_set_media_type(hw);
       
  1178 
       
  1179 	hw->wait_autoneg_complete = false;
       
  1180 	hw->tbi_compatibility_en = true;
       
  1181 	hw->adaptive_ifs = true;
       
  1182 
       
  1183 	/* Copper options */
       
  1184 
       
  1185 	if (hw->media_type == e1000_media_type_copper) {
       
  1186 		hw->mdix = AUTO_ALL_MODES;
       
  1187 		hw->disable_polarity_correction = false;
       
  1188 		hw->master_slave = E1000_MASTER_SLAVE;
       
  1189 	}
       
  1190 
       
  1191 	adapter->num_tx_queues = 1;
       
  1192 	adapter->num_rx_queues = 1;
       
  1193 
       
  1194 	if (e1000_alloc_queues(adapter)) {
       
  1195 		e_err("Unable to allocate memory for queues\n");
       
  1196 		return -ENOMEM;
       
  1197 	}
       
  1198 
       
  1199 	/* Explicitly disable IRQ since the NIC can be in any state. */
       
  1200 	e1000_irq_disable(adapter);
       
  1201 
       
  1202 	spin_lock_init(&adapter->stats_lock);
       
  1203 
       
  1204 	set_bit(__E1000_DOWN, &adapter->flags);
       
  1205 
       
  1206 	return 0;
       
  1207 }
       
  1208 
       
  1209 /**
       
  1210  * e1000_alloc_queues - Allocate memory for all rings
       
  1211  * @adapter: board private structure to initialize
       
  1212  *
       
  1213  * We allocate one ring per queue at run-time since we don't know the
       
  1214  * number of queues at compile-time.
       
  1215  **/
       
  1216 
       
  1217 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
       
  1218 {
       
  1219 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
       
  1220 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
       
  1221 	if (!adapter->tx_ring)
       
  1222 		return -ENOMEM;
       
  1223 
       
  1224 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
       
  1225 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
       
  1226 	if (!adapter->rx_ring) {
       
  1227 		kfree(adapter->tx_ring);
       
  1228 		return -ENOMEM;
       
  1229 	}
       
  1230 
       
  1231 	return E1000_SUCCESS;
       
  1232 }
       
  1233 
       
  1234 /**
       
  1235  * e1000_open - Called when a network interface is made active
       
  1236  * @netdev: network interface device structure
       
  1237  *
       
  1238  * Returns 0 on success, negative value on failure
       
  1239  *
       
  1240  * The open entry point is called when a network interface is made
       
  1241  * active by the system (IFF_UP).  At this point all resources needed
       
  1242  * for transmit and receive operations are allocated, the interrupt
       
  1243  * handler is registered with the OS, the watchdog timer is started,
       
  1244  * and the stack is notified that the interface is ready.
       
  1245  **/
       
  1246 
       
  1247 static int e1000_open(struct net_device *netdev)
       
  1248 {
       
  1249 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1250 	struct e1000_hw *hw = &adapter->hw;
       
  1251 	int err;
       
  1252 
       
  1253 	/* disallow open during test */
       
  1254 	if (test_bit(__E1000_TESTING, &adapter->flags))
       
  1255 		return -EBUSY;
       
  1256 
       
  1257 	netif_carrier_off(netdev);
       
  1258 
       
  1259 	/* allocate transmit descriptors */
       
  1260 	err = e1000_setup_all_tx_resources(adapter);
       
  1261 	if (err)
       
  1262 		goto err_setup_tx;
       
  1263 
       
  1264 	/* allocate receive descriptors */
       
  1265 	err = e1000_setup_all_rx_resources(adapter);
       
  1266 	if (err)
       
  1267 		goto err_setup_rx;
       
  1268 
       
  1269 	e1000_power_up_phy(adapter);
       
  1270 
       
  1271 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  1272 	if ((hw->mng_cookie.status &
       
  1273 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
  1274 		e1000_update_mng_vlan(adapter);
       
  1275 	}
       
  1276 
       
  1277 	/* before we allocate an interrupt, we must be ready to handle it.
       
  1278 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
       
  1279 	 * as soon as we call pci_request_irq, so we have to setup our
       
  1280 	 * clean_rx handler before we do so.  */
       
  1281 	e1000_configure(adapter);
       
  1282 
       
  1283 	err = e1000_request_irq(adapter);
       
  1284 	if (err)
       
  1285 		goto err_req_irq;
       
  1286 
       
  1287 	/* From here on the code is the same as e1000_up() */
       
  1288 	clear_bit(__E1000_DOWN, &adapter->flags);
       
  1289 
       
  1290 	napi_enable(&adapter->napi);
       
  1291 
       
  1292 	e1000_irq_enable(adapter);
       
  1293 
       
  1294 	netif_start_queue(netdev);
       
  1295 
       
  1296 	/* fire a link status change interrupt to start the watchdog */
       
  1297 	ew32(ICS, E1000_ICS_LSC);
       
  1298 
       
  1299 	return E1000_SUCCESS;
       
  1300 
       
  1301 err_req_irq:
       
  1302 	e1000_power_down_phy(adapter);
       
  1303 	e1000_free_all_rx_resources(adapter);
       
  1304 err_setup_rx:
       
  1305 	e1000_free_all_tx_resources(adapter);
       
  1306 err_setup_tx:
       
  1307 	e1000_reset(adapter);
       
  1308 
       
  1309 	return err;
       
  1310 }
       
  1311 
       
  1312 /**
       
  1313  * e1000_close - Disables a network interface
       
  1314  * @netdev: network interface device structure
       
  1315  *
       
  1316  * Returns 0, this is not allowed to fail
       
  1317  *
       
  1318  * The close entry point is called when an interface is de-activated
       
  1319  * by the OS.  The hardware is still under the drivers control, but
       
  1320  * needs to be disabled.  A global MAC reset is issued to stop the
       
  1321  * hardware, and all transmit and receive resources are freed.
       
  1322  **/
       
  1323 
       
  1324 static int e1000_close(struct net_device *netdev)
       
  1325 {
       
  1326 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1327 	struct e1000_hw *hw = &adapter->hw;
       
  1328 
       
  1329 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  1330 	e1000_down(adapter);
       
  1331 	e1000_power_down_phy(adapter);
       
  1332 	e1000_free_irq(adapter);
       
  1333 
       
  1334 	e1000_free_all_tx_resources(adapter);
       
  1335 	e1000_free_all_rx_resources(adapter);
       
  1336 
       
  1337 	/* kill manageability vlan ID if supported, but not if a vlan with
       
  1338 	 * the same ID is registered on the host OS (let 8021q kill it) */
       
  1339 	if ((hw->mng_cookie.status &
       
  1340 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  1341 	     !(adapter->vlgrp &&
       
  1342 	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
       
  1343 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  1344 	}
       
  1345 
       
  1346 	return 0;
       
  1347 }
       
  1348 
       
  1349 /**
       
  1350  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
       
  1351  * @adapter: address of board private structure
       
  1352  * @start: address of beginning of memory
       
  1353  * @len: length of memory
       
  1354  **/
       
  1355 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
       
  1356 				  unsigned long len)
       
  1357 {
       
  1358 	struct e1000_hw *hw = &adapter->hw;
       
  1359 	unsigned long begin = (unsigned long)start;
       
  1360 	unsigned long end = begin + len;
       
  1361 
       
  1362 	/* First rev 82545 and 82546 need to not allow any memory
       
  1363 	 * write location to cross 64k boundary due to errata 23 */
       
  1364 	if (hw->mac_type == e1000_82545 ||
       
  1365 	    hw->mac_type == e1000_82546) {
       
  1366 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
       
  1367 	}
       
  1368 
       
  1369 	return true;
       
  1370 }
       
  1371 
       
  1372 /**
       
  1373  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
       
  1374  * @adapter: board private structure
       
  1375  * @txdr:    tx descriptor ring (for a specific queue) to setup
       
  1376  *
       
  1377  * Return 0 on success, negative on failure
       
  1378  **/
       
  1379 
       
  1380 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
  1381 				    struct e1000_tx_ring *txdr)
       
  1382 {
       
  1383 	struct pci_dev *pdev = adapter->pdev;
       
  1384 	int size;
       
  1385 
       
  1386 	size = sizeof(struct e1000_buffer) * txdr->count;
       
  1387 	txdr->buffer_info = vmalloc(size);
       
  1388 	if (!txdr->buffer_info) {
       
  1389 		e_err("Unable to allocate memory for the Tx descriptor ring\n");
       
  1390 		return -ENOMEM;
       
  1391 	}
       
  1392 	memset(txdr->buffer_info, 0, size);
       
  1393 
       
  1394 	/* round up to nearest 4K */
       
  1395 
       
  1396 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
  1397 	txdr->size = ALIGN(txdr->size, 4096);
       
  1398 
       
  1399 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
       
  1400 					GFP_KERNEL);
       
  1401 	if (!txdr->desc) {
       
  1402 setup_tx_desc_die:
       
  1403 		vfree(txdr->buffer_info);
       
  1404 		e_err("Unable to allocate memory for the Tx descriptor ring\n");
       
  1405 		return -ENOMEM;
       
  1406 	}
       
  1407 
       
  1408 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1409 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1410 		void *olddesc = txdr->desc;
       
  1411 		dma_addr_t olddma = txdr->dma;
       
  1412 		e_err("txdr align check failed: %u bytes at %p\n",
       
  1413 		      txdr->size, txdr->desc);
       
  1414 		/* Try again, without freeing the previous */
       
  1415 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
       
  1416 						&txdr->dma, GFP_KERNEL);
       
  1417 		/* Failed allocation, critical failure */
       
  1418 		if (!txdr->desc) {
       
  1419 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
       
  1420 					  olddma);
       
  1421 			goto setup_tx_desc_die;
       
  1422 		}
       
  1423 
       
  1424 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1425 			/* give up */
       
  1426 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
       
  1427 					  txdr->dma);
       
  1428 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
       
  1429 					  olddma);
       
  1430 			e_err("Unable to allocate aligned memory "
       
  1431 			      "for the transmit descriptor ring\n");
       
  1432 			vfree(txdr->buffer_info);
       
  1433 			return -ENOMEM;
       
  1434 		} else {
       
  1435 			/* Free old allocation, new allocation was successful */
       
  1436 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
       
  1437 					  olddma);
       
  1438 		}
       
  1439 	}
       
  1440 	memset(txdr->desc, 0, txdr->size);
       
  1441 
       
  1442 	txdr->next_to_use = 0;
       
  1443 	txdr->next_to_clean = 0;
       
  1444 
       
  1445 	return 0;
       
  1446 }
       
  1447 
       
  1448 /**
       
  1449  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
       
  1450  * 				  (Descriptors) for all queues
       
  1451  * @adapter: board private structure
       
  1452  *
       
  1453  * Return 0 on success, negative on failure
       
  1454  **/
       
  1455 
       
  1456 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
       
  1457 {
       
  1458 	int i, err = 0;
       
  1459 
       
  1460 	for (i = 0; i < adapter->num_tx_queues; i++) {
       
  1461 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1462 		if (err) {
       
  1463 			e_err("Allocation for Tx Queue %u failed\n", i);
       
  1464 			for (i-- ; i >= 0; i--)
       
  1465 				e1000_free_tx_resources(adapter,
       
  1466 							&adapter->tx_ring[i]);
       
  1467 			break;
       
  1468 		}
       
  1469 	}
       
  1470 
       
  1471 	return err;
       
  1472 }
       
  1473 
       
  1474 /**
       
  1475  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  1476  * @adapter: board private structure
       
  1477  *
       
  1478  * Configure the Tx unit of the MAC after a reset.
       
  1479  **/
       
  1480 
       
  1481 static void e1000_configure_tx(struct e1000_adapter *adapter)
       
  1482 {
       
  1483 	u64 tdba;
       
  1484 	struct e1000_hw *hw = &adapter->hw;
       
  1485 	u32 tdlen, tctl, tipg;
       
  1486 	u32 ipgr1, ipgr2;
       
  1487 
       
  1488 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  1489 
       
  1490 	switch (adapter->num_tx_queues) {
       
  1491 	case 1:
       
  1492 	default:
       
  1493 		tdba = adapter->tx_ring[0].dma;
       
  1494 		tdlen = adapter->tx_ring[0].count *
       
  1495 			sizeof(struct e1000_tx_desc);
       
  1496 		ew32(TDLEN, tdlen);
       
  1497 		ew32(TDBAH, (tdba >> 32));
       
  1498 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
       
  1499 		ew32(TDT, 0);
       
  1500 		ew32(TDH, 0);
       
  1501 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
       
  1502 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
       
  1503 		break;
       
  1504 	}
       
  1505 
       
  1506 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  1507 	if ((hw->media_type == e1000_media_type_fiber ||
       
  1508 	     hw->media_type == e1000_media_type_internal_serdes))
       
  1509 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
       
  1510 	else
       
  1511 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
       
  1512 
       
  1513 	switch (hw->mac_type) {
       
  1514 	case e1000_82542_rev2_0:
       
  1515 	case e1000_82542_rev2_1:
       
  1516 		tipg = DEFAULT_82542_TIPG_IPGT;
       
  1517 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
       
  1518 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
       
  1519 		break;
       
  1520 	default:
       
  1521 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1522 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
       
  1523 		break;
       
  1524 	}
       
  1525 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
       
  1526 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
       
  1527 	ew32(TIPG, tipg);
       
  1528 
       
  1529 	/* Set the Tx Interrupt Delay register */
       
  1530 
       
  1531 	ew32(TIDV, adapter->tx_int_delay);
       
  1532 	if (hw->mac_type >= e1000_82540)
       
  1533 		ew32(TADV, adapter->tx_abs_int_delay);
       
  1534 
       
  1535 	/* Program the Transmit Control Register */
       
  1536 
       
  1537 	tctl = er32(TCTL);
       
  1538 	tctl &= ~E1000_TCTL_CT;
       
  1539 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  1540 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  1541 
       
  1542 	e1000_config_collision_dist(hw);
       
  1543 
       
  1544 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  1545 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
       
  1546 
       
  1547 	/* only set IDE if we are delaying interrupts using the timers */
       
  1548 	if (adapter->tx_int_delay)
       
  1549 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
       
  1550 
       
  1551 	if (hw->mac_type < e1000_82543)
       
  1552 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
       
  1553 	else
       
  1554 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  1555 
       
  1556 	/* Cache if we're 82544 running in PCI-X because we'll
       
  1557 	 * need this to apply a workaround later in the send path. */
       
  1558 	if (hw->mac_type == e1000_82544 &&
       
  1559 	    hw->bus_type == e1000_bus_type_pcix)
       
  1560 		adapter->pcix_82544 = 1;
       
  1561 
       
  1562 	ew32(TCTL, tctl);
       
  1563 
       
  1564 }
       
  1565 
       
  1566 /**
       
  1567  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
       
  1568  * @adapter: board private structure
       
  1569  * @rxdr:    rx descriptor ring (for a specific queue) to setup
       
  1570  *
       
  1571  * Returns 0 on success, negative on failure
       
  1572  **/
       
  1573 
       
  1574 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
  1575 				    struct e1000_rx_ring *rxdr)
       
  1576 {
       
  1577 	struct pci_dev *pdev = adapter->pdev;
       
  1578 	int size, desc_len;
       
  1579 
       
  1580 	size = sizeof(struct e1000_buffer) * rxdr->count;
       
  1581 	rxdr->buffer_info = vmalloc(size);
       
  1582 	if (!rxdr->buffer_info) {
       
  1583 		e_err("Unable to allocate memory for the Rx descriptor ring\n");
       
  1584 		return -ENOMEM;
       
  1585 	}
       
  1586 	memset(rxdr->buffer_info, 0, size);
       
  1587 
       
  1588 	desc_len = sizeof(struct e1000_rx_desc);
       
  1589 
       
  1590 	/* Round up to nearest 4K */
       
  1591 
       
  1592 	rxdr->size = rxdr->count * desc_len;
       
  1593 	rxdr->size = ALIGN(rxdr->size, 4096);
       
  1594 
       
  1595 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
       
  1596 					GFP_KERNEL);
       
  1597 
       
  1598 	if (!rxdr->desc) {
       
  1599 		e_err("Unable to allocate memory for the Rx descriptor ring\n");
       
  1600 setup_rx_desc_die:
       
  1601 		vfree(rxdr->buffer_info);
       
  1602 		return -ENOMEM;
       
  1603 	}
       
  1604 
       
  1605 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1606 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1607 		void *olddesc = rxdr->desc;
       
  1608 		dma_addr_t olddma = rxdr->dma;
       
  1609 		e_err("rxdr align check failed: %u bytes at %p\n",
       
  1610 		      rxdr->size, rxdr->desc);
       
  1611 		/* Try again, without freeing the previous */
       
  1612 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
       
  1613 						&rxdr->dma, GFP_KERNEL);
       
  1614 		/* Failed allocation, critical failure */
       
  1615 		if (!rxdr->desc) {
       
  1616 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
       
  1617 					  olddma);
       
  1618 			e_err("Unable to allocate memory for the Rx descriptor "
       
  1619 			      "ring\n");
       
  1620 			goto setup_rx_desc_die;
       
  1621 		}
       
  1622 
       
  1623 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1624 			/* give up */
       
  1625 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
       
  1626 					  rxdr->dma);
       
  1627 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
       
  1628 					  olddma);
       
  1629 			e_err("Unable to allocate aligned memory for the Rx "
       
  1630 			      "descriptor ring\n");
       
  1631 			goto setup_rx_desc_die;
       
  1632 		} else {
       
  1633 			/* Free old allocation, new allocation was successful */
       
  1634 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
       
  1635 					  olddma);
       
  1636 		}
       
  1637 	}
       
  1638 	memset(rxdr->desc, 0, rxdr->size);
       
  1639 
       
  1640 	rxdr->next_to_clean = 0;
       
  1641 	rxdr->next_to_use = 0;
       
  1642 	rxdr->rx_skb_top = NULL;
       
  1643 
       
  1644 	return 0;
       
  1645 }
       
  1646 
       
  1647 /**
       
  1648  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
       
  1649  * 				  (Descriptors) for all queues
       
  1650  * @adapter: board private structure
       
  1651  *
       
  1652  * Return 0 on success, negative on failure
       
  1653  **/
       
  1654 
       
  1655 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
       
  1656 {
       
  1657 	int i, err = 0;
       
  1658 
       
  1659 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1660 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
       
  1661 		if (err) {
       
  1662 			e_err("Allocation for Rx Queue %u failed\n", i);
       
  1663 			for (i-- ; i >= 0; i--)
       
  1664 				e1000_free_rx_resources(adapter,
       
  1665 							&adapter->rx_ring[i]);
       
  1666 			break;
       
  1667 		}
       
  1668 	}
       
  1669 
       
  1670 	return err;
       
  1671 }
       
  1672 
       
  1673 /**
       
  1674  * e1000_setup_rctl - configure the receive control registers
       
  1675  * @adapter: Board private structure
       
  1676  **/
       
  1677 static void e1000_setup_rctl(struct e1000_adapter *adapter)
       
  1678 {
       
  1679 	struct e1000_hw *hw = &adapter->hw;
       
  1680 	u32 rctl;
       
  1681 
       
  1682 	rctl = er32(RCTL);
       
  1683 
       
  1684 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  1685 
       
  1686 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  1687 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1688 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1689 
       
  1690 	if (hw->tbi_compatibility_on == 1)
       
  1691 		rctl |= E1000_RCTL_SBP;
       
  1692 	else
       
  1693 		rctl &= ~E1000_RCTL_SBP;
       
  1694 
       
  1695 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  1696 		rctl &= ~E1000_RCTL_LPE;
       
  1697 	else
       
  1698 		rctl |= E1000_RCTL_LPE;
       
  1699 
       
  1700 	/* Setup buffer sizes */
       
  1701 	rctl &= ~E1000_RCTL_SZ_4096;
       
  1702 	rctl |= E1000_RCTL_BSEX;
       
  1703 	switch (adapter->rx_buffer_len) {
       
  1704 		case E1000_RXBUFFER_2048:
       
  1705 		default:
       
  1706 			rctl |= E1000_RCTL_SZ_2048;
       
  1707 			rctl &= ~E1000_RCTL_BSEX;
       
  1708 			break;
       
  1709 		case E1000_RXBUFFER_4096:
       
  1710 			rctl |= E1000_RCTL_SZ_4096;
       
  1711 			break;
       
  1712 		case E1000_RXBUFFER_8192:
       
  1713 			rctl |= E1000_RCTL_SZ_8192;
       
  1714 			break;
       
  1715 		case E1000_RXBUFFER_16384:
       
  1716 			rctl |= E1000_RCTL_SZ_16384;
       
  1717 			break;
       
  1718 	}
       
  1719 
       
  1720 	ew32(RCTL, rctl);
       
  1721 }
       
  1722 
       
  1723 /**
       
  1724  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
       
  1725  * @adapter: board private structure
       
  1726  *
       
  1727  * Configure the Rx unit of the MAC after a reset.
       
  1728  **/
       
  1729 
       
  1730 static void e1000_configure_rx(struct e1000_adapter *adapter)
       
  1731 {
       
  1732 	u64 rdba;
       
  1733 	struct e1000_hw *hw = &adapter->hw;
       
  1734 	u32 rdlen, rctl, rxcsum;
       
  1735 
       
  1736 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  1737 		rdlen = adapter->rx_ring[0].count *
       
  1738 		        sizeof(struct e1000_rx_desc);
       
  1739 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
       
  1740 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
       
  1741 	} else {
       
  1742 		rdlen = adapter->rx_ring[0].count *
       
  1743 		        sizeof(struct e1000_rx_desc);
       
  1744 		adapter->clean_rx = e1000_clean_rx_irq;
       
  1745 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  1746 	}
       
  1747 
       
  1748 	/* disable receives while setting up the descriptors */
       
  1749 	rctl = er32(RCTL);
       
  1750 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1751 
       
  1752 	/* set the Receive Delay Timer Register */
       
  1753 	ew32(RDTR, adapter->rx_int_delay);
       
  1754 
       
  1755 	if (hw->mac_type >= e1000_82540) {
       
  1756 		ew32(RADV, adapter->rx_abs_int_delay);
       
  1757 		if (adapter->itr_setting != 0)
       
  1758 			ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  1759 	}
       
  1760 
       
  1761 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
       
  1762 	 * the Base and Length of the Rx Descriptor Ring */
       
  1763 	switch (adapter->num_rx_queues) {
       
  1764 	case 1:
       
  1765 	default:
       
  1766 		rdba = adapter->rx_ring[0].dma;
       
  1767 		ew32(RDLEN, rdlen);
       
  1768 		ew32(RDBAH, (rdba >> 32));
       
  1769 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
       
  1770 		ew32(RDT, 0);
       
  1771 		ew32(RDH, 0);
       
  1772 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
       
  1773 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
       
  1774 		break;
       
  1775 	}
       
  1776 
       
  1777 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
       
  1778 	if (hw->mac_type >= e1000_82543) {
       
  1779 		rxcsum = er32(RXCSUM);
       
  1780 		if (adapter->rx_csum)
       
  1781 			rxcsum |= E1000_RXCSUM_TUOFL;
       
  1782 		else
       
  1783 			/* don't need to clear IPPCSE as it defaults to 0 */
       
  1784 			rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  1785 		ew32(RXCSUM, rxcsum);
       
  1786 	}
       
  1787 
       
  1788 	/* Enable Receives */
       
  1789 	ew32(RCTL, rctl);
       
  1790 }
       
  1791 
       
  1792 /**
       
  1793  * e1000_free_tx_resources - Free Tx Resources per Queue
       
  1794  * @adapter: board private structure
       
  1795  * @tx_ring: Tx descriptor ring for a specific queue
       
  1796  *
       
  1797  * Free all transmit software resources
       
  1798  **/
       
  1799 
       
  1800 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
  1801 				    struct e1000_tx_ring *tx_ring)
       
  1802 {
       
  1803 	struct pci_dev *pdev = adapter->pdev;
       
  1804 
       
  1805 	e1000_clean_tx_ring(adapter, tx_ring);
       
  1806 
       
  1807 	vfree(tx_ring->buffer_info);
       
  1808 	tx_ring->buffer_info = NULL;
       
  1809 
       
  1810 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
       
  1811 			  tx_ring->dma);
       
  1812 
       
  1813 	tx_ring->desc = NULL;
       
  1814 }
       
  1815 
       
  1816 /**
       
  1817  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
       
  1818  * @adapter: board private structure
       
  1819  *
       
  1820  * Free all transmit software resources
       
  1821  **/
       
  1822 
       
  1823 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
       
  1824 {
       
  1825 	int i;
       
  1826 
       
  1827 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  1828 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1829 }
       
  1830 
       
  1831 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
       
  1832 					     struct e1000_buffer *buffer_info)
       
  1833 {
       
  1834 	if (buffer_info->dma) {
       
  1835 		if (buffer_info->mapped_as_page)
       
  1836 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
       
  1837 				       buffer_info->length, DMA_TO_DEVICE);
       
  1838 		else
       
  1839 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
       
  1840 					 buffer_info->length,
       
  1841 					 DMA_TO_DEVICE);
       
  1842 		buffer_info->dma = 0;
       
  1843 	}
       
  1844 	if (buffer_info->skb) {
       
  1845 		dev_kfree_skb_any(buffer_info->skb);
       
  1846 		buffer_info->skb = NULL;
       
  1847 	}
       
  1848 	buffer_info->time_stamp = 0;
       
  1849 	/* buffer_info must be completely set up in the transmit path */
       
  1850 }
       
  1851 
       
  1852 /**
       
  1853  * e1000_clean_tx_ring - Free Tx Buffers
       
  1854  * @adapter: board private structure
       
  1855  * @tx_ring: ring to be cleaned
       
  1856  **/
       
  1857 
       
  1858 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
  1859 				struct e1000_tx_ring *tx_ring)
       
  1860 {
       
  1861 	struct e1000_hw *hw = &adapter->hw;
       
  1862 	struct e1000_buffer *buffer_info;
       
  1863 	unsigned long size;
       
  1864 	unsigned int i;
       
  1865 
       
  1866 	/* Free all the Tx ring sk_buffs */
       
  1867 
       
  1868 	for (i = 0; i < tx_ring->count; i++) {
       
  1869 		buffer_info = &tx_ring->buffer_info[i];
       
  1870 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  1871 	}
       
  1872 
       
  1873 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  1874 	memset(tx_ring->buffer_info, 0, size);
       
  1875 
       
  1876 	/* Zero out the descriptor ring */
       
  1877 
       
  1878 	memset(tx_ring->desc, 0, tx_ring->size);
       
  1879 
       
  1880 	tx_ring->next_to_use = 0;
       
  1881 	tx_ring->next_to_clean = 0;
       
  1882 	tx_ring->last_tx_tso = 0;
       
  1883 
       
  1884 	writel(0, hw->hw_addr + tx_ring->tdh);
       
  1885 	writel(0, hw->hw_addr + tx_ring->tdt);
       
  1886 }
       
  1887 
       
  1888 /**
       
  1889  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
       
  1890  * @adapter: board private structure
       
  1891  **/
       
  1892 
       
  1893 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
       
  1894 {
       
  1895 	int i;
       
  1896 
       
  1897 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  1898 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
       
  1899 }
       
  1900 
       
  1901 /**
       
  1902  * e1000_free_rx_resources - Free Rx Resources
       
  1903  * @adapter: board private structure
       
  1904  * @rx_ring: ring to clean the resources from
       
  1905  *
       
  1906  * Free all receive software resources
       
  1907  **/
       
  1908 
       
  1909 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
  1910 				    struct e1000_rx_ring *rx_ring)
       
  1911 {
       
  1912 	struct pci_dev *pdev = adapter->pdev;
       
  1913 
       
  1914 	e1000_clean_rx_ring(adapter, rx_ring);
       
  1915 
       
  1916 	vfree(rx_ring->buffer_info);
       
  1917 	rx_ring->buffer_info = NULL;
       
  1918 
       
  1919 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
       
  1920 			  rx_ring->dma);
       
  1921 
       
  1922 	rx_ring->desc = NULL;
       
  1923 }
       
  1924 
       
  1925 /**
       
  1926  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
       
  1927  * @adapter: board private structure
       
  1928  *
       
  1929  * Free all receive software resources
       
  1930  **/
       
  1931 
       
  1932 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
       
  1933 {
       
  1934 	int i;
       
  1935 
       
  1936 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  1937 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
       
  1938 }
       
  1939 
       
  1940 /**
       
  1941  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  1942  * @adapter: board private structure
       
  1943  * @rx_ring: ring to free buffers from
       
  1944  **/
       
  1945 
       
  1946 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
  1947 				struct e1000_rx_ring *rx_ring)
       
  1948 {
       
  1949 	struct e1000_hw *hw = &adapter->hw;
       
  1950 	struct e1000_buffer *buffer_info;
       
  1951 	struct pci_dev *pdev = adapter->pdev;
       
  1952 	unsigned long size;
       
  1953 	unsigned int i;
       
  1954 
       
  1955 	/* Free all the Rx ring sk_buffs */
       
  1956 	for (i = 0; i < rx_ring->count; i++) {
       
  1957 		buffer_info = &rx_ring->buffer_info[i];
       
  1958 		if (buffer_info->dma &&
       
  1959 		    adapter->clean_rx == e1000_clean_rx_irq) {
       
  1960 			dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  1961 			                 buffer_info->length,
       
  1962 					 DMA_FROM_DEVICE);
       
  1963 		} else if (buffer_info->dma &&
       
  1964 		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
       
  1965 			dma_unmap_page(&pdev->dev, buffer_info->dma,
       
  1966 				       buffer_info->length,
       
  1967 				       DMA_FROM_DEVICE);
       
  1968 		}
       
  1969 
       
  1970 		buffer_info->dma = 0;
       
  1971 		if (buffer_info->page) {
       
  1972 			put_page(buffer_info->page);
       
  1973 			buffer_info->page = NULL;
       
  1974 		}
       
  1975 		if (buffer_info->skb) {
       
  1976 			dev_kfree_skb(buffer_info->skb);
       
  1977 			buffer_info->skb = NULL;
       
  1978 		}
       
  1979 	}
       
  1980 
       
  1981 	/* there also may be some cached data from a chained receive */
       
  1982 	if (rx_ring->rx_skb_top) {
       
  1983 		dev_kfree_skb(rx_ring->rx_skb_top);
       
  1984 		rx_ring->rx_skb_top = NULL;
       
  1985 	}
       
  1986 
       
  1987 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  1988 	memset(rx_ring->buffer_info, 0, size);
       
  1989 
       
  1990 	/* Zero out the descriptor ring */
       
  1991 	memset(rx_ring->desc, 0, rx_ring->size);
       
  1992 
       
  1993 	rx_ring->next_to_clean = 0;
       
  1994 	rx_ring->next_to_use = 0;
       
  1995 
       
  1996 	writel(0, hw->hw_addr + rx_ring->rdh);
       
  1997 	writel(0, hw->hw_addr + rx_ring->rdt);
       
  1998 }
       
  1999 
       
  2000 /**
       
  2001  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
       
  2002  * @adapter: board private structure
       
  2003  **/
       
  2004 
       
  2005 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
       
  2006 {
       
  2007 	int i;
       
  2008 
       
  2009 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2010 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
       
  2011 }
       
  2012 
       
  2013 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
       
  2014  * and memory write and invalidate disabled for certain operations
       
  2015  */
       
  2016 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
       
  2017 {
       
  2018 	struct e1000_hw *hw = &adapter->hw;
       
  2019 	struct net_device *netdev = adapter->netdev;
       
  2020 	u32 rctl;
       
  2021 
       
  2022 	e1000_pci_clear_mwi(hw);
       
  2023 
       
  2024 	rctl = er32(RCTL);
       
  2025 	rctl |= E1000_RCTL_RST;
       
  2026 	ew32(RCTL, rctl);
       
  2027 	E1000_WRITE_FLUSH();
       
  2028 	mdelay(5);
       
  2029 
       
  2030 	if (netif_running(netdev))
       
  2031 		e1000_clean_all_rx_rings(adapter);
       
  2032 }
       
  2033 
       
  2034 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
       
  2035 {
       
  2036 	struct e1000_hw *hw = &adapter->hw;
       
  2037 	struct net_device *netdev = adapter->netdev;
       
  2038 	u32 rctl;
       
  2039 
       
  2040 	rctl = er32(RCTL);
       
  2041 	rctl &= ~E1000_RCTL_RST;
       
  2042 	ew32(RCTL, rctl);
       
  2043 	E1000_WRITE_FLUSH();
       
  2044 	mdelay(5);
       
  2045 
       
  2046 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
  2047 		e1000_pci_set_mwi(hw);
       
  2048 
       
  2049 	if (netif_running(netdev)) {
       
  2050 		/* No need to loop, because 82542 supports only 1 queue */
       
  2051 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
       
  2052 		e1000_configure_rx(adapter);
       
  2053 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
       
  2054 	}
       
  2055 }
       
  2056 
       
  2057 /**
       
  2058  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  2059  * @netdev: network interface device structure
       
  2060  * @p: pointer to an address structure
       
  2061  *
       
  2062  * Returns 0 on success, negative on failure
       
  2063  **/
       
  2064 
       
  2065 static int e1000_set_mac(struct net_device *netdev, void *p)
       
  2066 {
       
  2067 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2068 	struct e1000_hw *hw = &adapter->hw;
       
  2069 	struct sockaddr *addr = p;
       
  2070 
       
  2071 	if (!is_valid_ether_addr(addr->sa_data))
       
  2072 		return -EADDRNOTAVAIL;
       
  2073 
       
  2074 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2075 
       
  2076 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2077 		e1000_enter_82542_rst(adapter);
       
  2078 
       
  2079 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  2080 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
       
  2081 
       
  2082 	e1000_rar_set(hw, hw->mac_addr, 0);
       
  2083 
       
  2084 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2085 		e1000_leave_82542_rst(adapter);
       
  2086 
       
  2087 	return 0;
       
  2088 }
       
  2089 
       
  2090 /**
       
  2091  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
       
  2092  * @netdev: network interface device structure
       
  2093  *
       
  2094  * The set_rx_mode entry point is called whenever the unicast or multicast
       
  2095  * address lists or the network interface flags are updated. This routine is
       
  2096  * responsible for configuring the hardware for proper unicast, multicast,
       
  2097  * promiscuous mode, and all-multi behavior.
       
  2098  **/
       
  2099 
       
  2100 static void e1000_set_rx_mode(struct net_device *netdev)
       
  2101 {
       
  2102 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2103 	struct e1000_hw *hw = &adapter->hw;
       
  2104 	struct netdev_hw_addr *ha;
       
  2105 	bool use_uc = false;
       
  2106 	u32 rctl;
       
  2107 	u32 hash_value;
       
  2108 	int i, rar_entries = E1000_RAR_ENTRIES;
       
  2109 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
       
  2110 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
       
  2111 
       
  2112 	if (!mcarray) {
       
  2113 		e_err("memory allocation failed\n");
       
  2114 		return;
       
  2115 	}
       
  2116 
       
  2117 	/* Check for Promiscuous and All Multicast modes */
       
  2118 
       
  2119 	rctl = er32(RCTL);
       
  2120 
       
  2121 	if (netdev->flags & IFF_PROMISC) {
       
  2122 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2123 		rctl &= ~E1000_RCTL_VFE;
       
  2124 	} else {
       
  2125 		if (netdev->flags & IFF_ALLMULTI)
       
  2126 			rctl |= E1000_RCTL_MPE;
       
  2127 		else
       
  2128 			rctl &= ~E1000_RCTL_MPE;
       
  2129 		/* Enable VLAN filter if there is a VLAN */
       
  2130 		if (adapter->vlgrp)
       
  2131 			rctl |= E1000_RCTL_VFE;
       
  2132 	}
       
  2133 
       
  2134 	if (netdev_uc_count(netdev) > rar_entries - 1) {
       
  2135 		rctl |= E1000_RCTL_UPE;
       
  2136 	} else if (!(netdev->flags & IFF_PROMISC)) {
       
  2137 		rctl &= ~E1000_RCTL_UPE;
       
  2138 		use_uc = true;
       
  2139 	}
       
  2140 
       
  2141 	ew32(RCTL, rctl);
       
  2142 
       
  2143 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2144 
       
  2145 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2146 		e1000_enter_82542_rst(adapter);
       
  2147 
       
  2148 	/* load the first 14 addresses into the exact filters 1-14. Unicast
       
  2149 	 * addresses take precedence to avoid disabling unicast filtering
       
  2150 	 * when possible.
       
  2151 	 *
       
  2152 	 * RAR 0 is used for the station MAC adddress
       
  2153 	 * if there are not 14 addresses, go ahead and clear the filters
       
  2154 	 */
       
  2155 	i = 1;
       
  2156 	if (use_uc)
       
  2157 		netdev_for_each_uc_addr(ha, netdev) {
       
  2158 			if (i == rar_entries)
       
  2159 				break;
       
  2160 			e1000_rar_set(hw, ha->addr, i++);
       
  2161 		}
       
  2162 
       
  2163 	netdev_for_each_mc_addr(ha, netdev) {
       
  2164 		if (i == rar_entries) {
       
  2165 			/* load any remaining addresses into the hash table */
       
  2166 			u32 hash_reg, hash_bit, mta;
       
  2167 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
       
  2168 			hash_reg = (hash_value >> 5) & 0x7F;
       
  2169 			hash_bit = hash_value & 0x1F;
       
  2170 			mta = (1 << hash_bit);
       
  2171 			mcarray[hash_reg] |= mta;
       
  2172 		} else {
       
  2173 			e1000_rar_set(hw, ha->addr, i++);
       
  2174 		}
       
  2175 	}
       
  2176 
       
  2177 	for (; i < rar_entries; i++) {
       
  2178 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
       
  2179 		E1000_WRITE_FLUSH();
       
  2180 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
       
  2181 		E1000_WRITE_FLUSH();
       
  2182 	}
       
  2183 
       
  2184 	/* write the hash table completely, write from bottom to avoid
       
  2185 	 * both stupid write combining chipsets, and flushing each write */
       
  2186 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
       
  2187 		/*
       
  2188 		 * If we are on an 82544 has an errata where writing odd
       
  2189 		 * offsets overwrites the previous even offset, but writing
       
  2190 		 * backwards over the range solves the issue by always
       
  2191 		 * writing the odd offset first
       
  2192 		 */
       
  2193 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
       
  2194 	}
       
  2195 	E1000_WRITE_FLUSH();
       
  2196 
       
  2197 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2198 		e1000_leave_82542_rst(adapter);
       
  2199 
       
  2200 	kfree(mcarray);
       
  2201 }
       
  2202 
       
  2203 /* Need to wait a few seconds after link up to get diagnostic information from
       
  2204  * the phy */
       
  2205 
       
  2206 static void e1000_update_phy_info(unsigned long data)
       
  2207 {
       
  2208 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
       
  2209 	struct e1000_hw *hw = &adapter->hw;
       
  2210 	e1000_phy_get_info(hw, &adapter->phy_info);
       
  2211 }
       
  2212 
       
  2213 /**
       
  2214  * e1000_82547_tx_fifo_stall - Timer Call-back
       
  2215  * @data: pointer to adapter cast into an unsigned long
       
  2216  **/
       
  2217 
       
  2218 static void e1000_82547_tx_fifo_stall(unsigned long data)
       
  2219 {
       
  2220 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
       
  2221 	struct e1000_hw *hw = &adapter->hw;
       
  2222 	struct net_device *netdev = adapter->netdev;
       
  2223 	u32 tctl;
       
  2224 
       
  2225 	if (atomic_read(&adapter->tx_fifo_stall)) {
       
  2226 		if ((er32(TDT) == er32(TDH)) &&
       
  2227 		   (er32(TDFT) == er32(TDFH)) &&
       
  2228 		   (er32(TDFTS) == er32(TDFHS))) {
       
  2229 			tctl = er32(TCTL);
       
  2230 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
       
  2231 			ew32(TDFT, adapter->tx_head_addr);
       
  2232 			ew32(TDFH, adapter->tx_head_addr);
       
  2233 			ew32(TDFTS, adapter->tx_head_addr);
       
  2234 			ew32(TDFHS, adapter->tx_head_addr);
       
  2235 			ew32(TCTL, tctl);
       
  2236 			E1000_WRITE_FLUSH();
       
  2237 
       
  2238 			adapter->tx_fifo_head = 0;
       
  2239 			atomic_set(&adapter->tx_fifo_stall, 0);
       
  2240 			netif_wake_queue(netdev);
       
  2241 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
       
  2242 			mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  2243 		}
       
  2244 	}
       
  2245 }
       
  2246 
       
  2247 bool e1000_has_link(struct e1000_adapter *adapter)
       
  2248 {
       
  2249 	struct e1000_hw *hw = &adapter->hw;
       
  2250 	bool link_active = false;
       
  2251 
       
  2252 	/* get_link_status is set on LSC (link status) interrupt or
       
  2253 	 * rx sequence error interrupt.  get_link_status will stay
       
  2254 	 * false until the e1000_check_for_link establishes link
       
  2255 	 * for copper adapters ONLY
       
  2256 	 */
       
  2257 	switch (hw->media_type) {
       
  2258 	case e1000_media_type_copper:
       
  2259 		if (hw->get_link_status) {
       
  2260 			e1000_check_for_link(hw);
       
  2261 			link_active = !hw->get_link_status;
       
  2262 		} else {
       
  2263 			link_active = true;
       
  2264 		}
       
  2265 		break;
       
  2266 	case e1000_media_type_fiber:
       
  2267 		e1000_check_for_link(hw);
       
  2268 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
       
  2269 		break;
       
  2270 	case e1000_media_type_internal_serdes:
       
  2271 		e1000_check_for_link(hw);
       
  2272 		link_active = hw->serdes_has_link;
       
  2273 		break;
       
  2274 	default:
       
  2275 		break;
       
  2276 	}
       
  2277 
       
  2278 	return link_active;
       
  2279 }
       
  2280 
       
  2281 /**
       
  2282  * e1000_watchdog - Timer Call-back
       
  2283  * @data: pointer to adapter cast into an unsigned long
       
  2284  **/
       
  2285 static void e1000_watchdog(unsigned long data)
       
  2286 {
       
  2287 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
       
  2288 	struct e1000_hw *hw = &adapter->hw;
       
  2289 	struct net_device *netdev = adapter->netdev;
       
  2290 	struct e1000_tx_ring *txdr = adapter->tx_ring;
       
  2291 	u32 link, tctl;
       
  2292 
       
  2293 	link = e1000_has_link(adapter);
       
  2294 	if ((netif_carrier_ok(netdev)) && link)
       
  2295 		goto link_up;
       
  2296 
       
  2297 	if (link) {
       
  2298 		if (!netif_carrier_ok(netdev)) {
       
  2299 			u32 ctrl;
       
  2300 			bool txb2b = true;
       
  2301 			/* update snapshot of PHY registers on LSC */
       
  2302 			e1000_get_speed_and_duplex(hw,
       
  2303 			                           &adapter->link_speed,
       
  2304 			                           &adapter->link_duplex);
       
  2305 
       
  2306 			ctrl = er32(CTRL);
       
  2307 			pr_info("%s NIC Link is Up %d Mbps %s, "
       
  2308 				"Flow Control: %s\n",
       
  2309 				netdev->name,
       
  2310 				adapter->link_speed,
       
  2311 				adapter->link_duplex == FULL_DUPLEX ?
       
  2312 				"Full Duplex" : "Half Duplex",
       
  2313 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
       
  2314 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
       
  2315 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
       
  2316 				E1000_CTRL_TFCE) ? "TX" : "None")));
       
  2317 
       
  2318 			/* adjust timeout factor according to speed/duplex */
       
  2319 			adapter->tx_timeout_factor = 1;
       
  2320 			switch (adapter->link_speed) {
       
  2321 			case SPEED_10:
       
  2322 				txb2b = false;
       
  2323 				adapter->tx_timeout_factor = 16;
       
  2324 				break;
       
  2325 			case SPEED_100:
       
  2326 				txb2b = false;
       
  2327 				/* maybe add some timeout factor ? */
       
  2328 				break;
       
  2329 			}
       
  2330 
       
  2331 			/* enable transmits in the hardware */
       
  2332 			tctl = er32(TCTL);
       
  2333 			tctl |= E1000_TCTL_EN;
       
  2334 			ew32(TCTL, tctl);
       
  2335 
       
  2336 			netif_carrier_on(netdev);
       
  2337 			if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  2338 				mod_timer(&adapter->phy_info_timer,
       
  2339 				          round_jiffies(jiffies + 2 * HZ));
       
  2340 			adapter->smartspeed = 0;
       
  2341 		}
       
  2342 	} else {
       
  2343 		if (netif_carrier_ok(netdev)) {
       
  2344 			adapter->link_speed = 0;
       
  2345 			adapter->link_duplex = 0;
       
  2346 			pr_info("%s NIC Link is Down\n",
       
  2347 				netdev->name);
       
  2348 			netif_carrier_off(netdev);
       
  2349 
       
  2350 			if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  2351 				mod_timer(&adapter->phy_info_timer,
       
  2352 				          round_jiffies(jiffies + 2 * HZ));
       
  2353 		}
       
  2354 
       
  2355 		e1000_smartspeed(adapter);
       
  2356 	}
       
  2357 
       
  2358 link_up:
       
  2359 	e1000_update_stats(adapter);
       
  2360 
       
  2361 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  2362 	adapter->tpt_old = adapter->stats.tpt;
       
  2363 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
       
  2364 	adapter->colc_old = adapter->stats.colc;
       
  2365 
       
  2366 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
       
  2367 	adapter->gorcl_old = adapter->stats.gorcl;
       
  2368 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
       
  2369 	adapter->gotcl_old = adapter->stats.gotcl;
       
  2370 
       
  2371 	e1000_update_adaptive(hw);
       
  2372 
       
  2373 	if (!netif_carrier_ok(netdev)) {
       
  2374 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
       
  2375 			/* We've lost link, so the controller stops DMA,
       
  2376 			 * but we've got queued Tx work that's never going
       
  2377 			 * to get done, so reset controller to flush Tx.
       
  2378 			 * (Do the reset outside of interrupt context). */
       
  2379 			adapter->tx_timeout_count++;
       
  2380 			schedule_work(&adapter->reset_task);
       
  2381 			/* return immediately since reset is imminent */
       
  2382 			return;
       
  2383 		}
       
  2384 	}
       
  2385 
       
  2386 	/* Simple mode for Interrupt Throttle Rate (ITR) */
       
  2387 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
       
  2388 		/*
       
  2389 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
       
  2390 		 * Total asymmetrical Tx or Rx gets ITR=8000;
       
  2391 		 * everyone else is between 2000-8000.
       
  2392 		 */
       
  2393 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
       
  2394 		u32 dif = (adapter->gotcl > adapter->gorcl ?
       
  2395 			    adapter->gotcl - adapter->gorcl :
       
  2396 			    adapter->gorcl - adapter->gotcl) / 10000;
       
  2397 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
       
  2398 
       
  2399 		ew32(ITR, 1000000000 / (itr * 256));
       
  2400 	}
       
  2401 
       
  2402 	/* Cause software interrupt to ensure rx ring is cleaned */
       
  2403 	ew32(ICS, E1000_ICS_RXDMT0);
       
  2404 
       
  2405 	/* Force detection of hung controller every watchdog period */
       
  2406 	adapter->detect_tx_hung = true;
       
  2407 
       
  2408 	/* Reset the timer */
       
  2409 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  2410 		mod_timer(&adapter->watchdog_timer,
       
  2411 		          round_jiffies(jiffies + 2 * HZ));
       
  2412 }
       
  2413 
       
  2414 enum latency_range {
       
  2415 	lowest_latency = 0,
       
  2416 	low_latency = 1,
       
  2417 	bulk_latency = 2,
       
  2418 	latency_invalid = 255
       
  2419 };
       
  2420 
       
  2421 /**
       
  2422  * e1000_update_itr - update the dynamic ITR value based on statistics
       
  2423  * @adapter: pointer to adapter
       
  2424  * @itr_setting: current adapter->itr
       
  2425  * @packets: the number of packets during this measurement interval
       
  2426  * @bytes: the number of bytes during this measurement interval
       
  2427  *
       
  2428  *      Stores a new ITR value based on packets and byte
       
  2429  *      counts during the last interrupt.  The advantage of per interrupt
       
  2430  *      computation is faster updates and more accurate ITR for the current
       
  2431  *      traffic pattern.  Constants in this function were computed
       
  2432  *      based on theoretical maximum wire speed and thresholds were set based
       
  2433  *      on testing data as well as attempting to minimize response time
       
  2434  *      while increasing bulk throughput.
       
  2435  *      this functionality is controlled by the InterruptThrottleRate module
       
  2436  *      parameter (see e1000_param.c)
       
  2437  **/
       
  2438 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
       
  2439 				     u16 itr_setting, int packets, int bytes)
       
  2440 {
       
  2441 	unsigned int retval = itr_setting;
       
  2442 	struct e1000_hw *hw = &adapter->hw;
       
  2443 
       
  2444 	if (unlikely(hw->mac_type < e1000_82540))
       
  2445 		goto update_itr_done;
       
  2446 
       
  2447 	if (packets == 0)
       
  2448 		goto update_itr_done;
       
  2449 
       
  2450 	switch (itr_setting) {
       
  2451 	case lowest_latency:
       
  2452 		/* jumbo frames get bulk treatment*/
       
  2453 		if (bytes/packets > 8000)
       
  2454 			retval = bulk_latency;
       
  2455 		else if ((packets < 5) && (bytes > 512))
       
  2456 			retval = low_latency;
       
  2457 		break;
       
  2458 	case low_latency:  /* 50 usec aka 20000 ints/s */
       
  2459 		if (bytes > 10000) {
       
  2460 			/* jumbo frames need bulk latency setting */
       
  2461 			if (bytes/packets > 8000)
       
  2462 				retval = bulk_latency;
       
  2463 			else if ((packets < 10) || ((bytes/packets) > 1200))
       
  2464 				retval = bulk_latency;
       
  2465 			else if ((packets > 35))
       
  2466 				retval = lowest_latency;
       
  2467 		} else if (bytes/packets > 2000)
       
  2468 			retval = bulk_latency;
       
  2469 		else if (packets <= 2 && bytes < 512)
       
  2470 			retval = lowest_latency;
       
  2471 		break;
       
  2472 	case bulk_latency: /* 250 usec aka 4000 ints/s */
       
  2473 		if (bytes > 25000) {
       
  2474 			if (packets > 35)
       
  2475 				retval = low_latency;
       
  2476 		} else if (bytes < 6000) {
       
  2477 			retval = low_latency;
       
  2478 		}
       
  2479 		break;
       
  2480 	}
       
  2481 
       
  2482 update_itr_done:
       
  2483 	return retval;
       
  2484 }
       
  2485 
       
  2486 static void e1000_set_itr(struct e1000_adapter *adapter)
       
  2487 {
       
  2488 	struct e1000_hw *hw = &adapter->hw;
       
  2489 	u16 current_itr;
       
  2490 	u32 new_itr = adapter->itr;
       
  2491 
       
  2492 	if (unlikely(hw->mac_type < e1000_82540))
       
  2493 		return;
       
  2494 
       
  2495 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
       
  2496 	if (unlikely(adapter->link_speed != SPEED_1000)) {
       
  2497 		current_itr = 0;
       
  2498 		new_itr = 4000;
       
  2499 		goto set_itr_now;
       
  2500 	}
       
  2501 
       
  2502 	adapter->tx_itr = e1000_update_itr(adapter,
       
  2503 	                            adapter->tx_itr,
       
  2504 	                            adapter->total_tx_packets,
       
  2505 	                            adapter->total_tx_bytes);
       
  2506 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2507 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
       
  2508 		adapter->tx_itr = low_latency;
       
  2509 
       
  2510 	adapter->rx_itr = e1000_update_itr(adapter,
       
  2511 	                            adapter->rx_itr,
       
  2512 	                            adapter->total_rx_packets,
       
  2513 	                            adapter->total_rx_bytes);
       
  2514 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2515 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
       
  2516 		adapter->rx_itr = low_latency;
       
  2517 
       
  2518 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
       
  2519 
       
  2520 	switch (current_itr) {
       
  2521 	/* counts and packets in update_itr are dependent on these numbers */
       
  2522 	case lowest_latency:
       
  2523 		new_itr = 70000;
       
  2524 		break;
       
  2525 	case low_latency:
       
  2526 		new_itr = 20000; /* aka hwitr = ~200 */
       
  2527 		break;
       
  2528 	case bulk_latency:
       
  2529 		new_itr = 4000;
       
  2530 		break;
       
  2531 	default:
       
  2532 		break;
       
  2533 	}
       
  2534 
       
  2535 set_itr_now:
       
  2536 	if (new_itr != adapter->itr) {
       
  2537 		/* this attempts to bias the interrupt rate towards Bulk
       
  2538 		 * by adding intermediate steps when interrupt rate is
       
  2539 		 * increasing */
       
  2540 		new_itr = new_itr > adapter->itr ?
       
  2541 		             min(adapter->itr + (new_itr >> 2), new_itr) :
       
  2542 		             new_itr;
       
  2543 		adapter->itr = new_itr;
       
  2544 		ew32(ITR, 1000000000 / (new_itr * 256));
       
  2545 	}
       
  2546 }
       
  2547 
       
  2548 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  2549 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  2550 #define E1000_TX_FLAGS_TSO		0x00000004
       
  2551 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  2552 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  2553 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  2554 
       
  2555 static int e1000_tso(struct e1000_adapter *adapter,
       
  2556 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
       
  2557 {
       
  2558 	struct e1000_context_desc *context_desc;
       
  2559 	struct e1000_buffer *buffer_info;
       
  2560 	unsigned int i;
       
  2561 	u32 cmd_length = 0;
       
  2562 	u16 ipcse = 0, tucse, mss;
       
  2563 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
       
  2564 	int err;
       
  2565 
       
  2566 	if (skb_is_gso(skb)) {
       
  2567 		if (skb_header_cloned(skb)) {
       
  2568 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  2569 			if (err)
       
  2570 				return err;
       
  2571 		}
       
  2572 
       
  2573 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  2574 		mss = skb_shinfo(skb)->gso_size;
       
  2575 		if (skb->protocol == htons(ETH_P_IP)) {
       
  2576 			struct iphdr *iph = ip_hdr(skb);
       
  2577 			iph->tot_len = 0;
       
  2578 			iph->check = 0;
       
  2579 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
       
  2580 								 iph->daddr, 0,
       
  2581 								 IPPROTO_TCP,
       
  2582 								 0);
       
  2583 			cmd_length = E1000_TXD_CMD_IP;
       
  2584 			ipcse = skb_transport_offset(skb) - 1;
       
  2585 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
       
  2586 			ipv6_hdr(skb)->payload_len = 0;
       
  2587 			tcp_hdr(skb)->check =
       
  2588 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
       
  2589 						 &ipv6_hdr(skb)->daddr,
       
  2590 						 0, IPPROTO_TCP, 0);
       
  2591 			ipcse = 0;
       
  2592 		}
       
  2593 		ipcss = skb_network_offset(skb);
       
  2594 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
       
  2595 		tucss = skb_transport_offset(skb);
       
  2596 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
       
  2597 		tucse = 0;
       
  2598 
       
  2599 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  2600 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  2601 
       
  2602 		i = tx_ring->next_to_use;
       
  2603 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2604 		buffer_info = &tx_ring->buffer_info[i];
       
  2605 
       
  2606 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  2607 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  2608 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  2609 		context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  2610 		context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  2611 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  2612 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  2613 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  2614 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  2615 
       
  2616 		buffer_info->time_stamp = jiffies;
       
  2617 		buffer_info->next_to_watch = i;
       
  2618 
       
  2619 		if (++i == tx_ring->count) i = 0;
       
  2620 		tx_ring->next_to_use = i;
       
  2621 
       
  2622 		return true;
       
  2623 	}
       
  2624 	return false;
       
  2625 }
       
  2626 
       
  2627 static bool e1000_tx_csum(struct e1000_adapter *adapter,
       
  2628 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
       
  2629 {
       
  2630 	struct e1000_context_desc *context_desc;
       
  2631 	struct e1000_buffer *buffer_info;
       
  2632 	unsigned int i;
       
  2633 	u8 css;
       
  2634 	u32 cmd_len = E1000_TXD_CMD_DEXT;
       
  2635 
       
  2636 	if (skb->ip_summed != CHECKSUM_PARTIAL)
       
  2637 		return false;
       
  2638 
       
  2639 	switch (skb->protocol) {
       
  2640 	case cpu_to_be16(ETH_P_IP):
       
  2641 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
       
  2642 			cmd_len |= E1000_TXD_CMD_TCP;
       
  2643 		break;
       
  2644 	case cpu_to_be16(ETH_P_IPV6):
       
  2645 		/* XXX not handling all IPV6 headers */
       
  2646 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
       
  2647 			cmd_len |= E1000_TXD_CMD_TCP;
       
  2648 		break;
       
  2649 	default:
       
  2650 		if (unlikely(net_ratelimit()))
       
  2651 			e_warn("checksum_partial proto=%x!\n", skb->protocol);
       
  2652 		break;
       
  2653 	}
       
  2654 
       
  2655 	css = skb_transport_offset(skb);
       
  2656 
       
  2657 	i = tx_ring->next_to_use;
       
  2658 	buffer_info = &tx_ring->buffer_info[i];
       
  2659 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2660 
       
  2661 	context_desc->lower_setup.ip_config = 0;
       
  2662 	context_desc->upper_setup.tcp_fields.tucss = css;
       
  2663 	context_desc->upper_setup.tcp_fields.tucso =
       
  2664 		css + skb->csum_offset;
       
  2665 	context_desc->upper_setup.tcp_fields.tucse = 0;
       
  2666 	context_desc->tcp_seg_setup.data = 0;
       
  2667 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
       
  2668 
       
  2669 	buffer_info->time_stamp = jiffies;
       
  2670 	buffer_info->next_to_watch = i;
       
  2671 
       
  2672 	if (unlikely(++i == tx_ring->count)) i = 0;
       
  2673 	tx_ring->next_to_use = i;
       
  2674 
       
  2675 	return true;
       
  2676 }
       
  2677 
       
  2678 #define E1000_MAX_TXD_PWR	12
       
  2679 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
       
  2680 
       
  2681 static int e1000_tx_map(struct e1000_adapter *adapter,
       
  2682 			struct e1000_tx_ring *tx_ring,
       
  2683 			struct sk_buff *skb, unsigned int first,
       
  2684 			unsigned int max_per_txd, unsigned int nr_frags,
       
  2685 			unsigned int mss)
       
  2686 {
       
  2687 	struct e1000_hw *hw = &adapter->hw;
       
  2688 	struct pci_dev *pdev = adapter->pdev;
       
  2689 	struct e1000_buffer *buffer_info;
       
  2690 	unsigned int len = skb_headlen(skb);
       
  2691 	unsigned int offset = 0, size, count = 0, i;
       
  2692 	unsigned int f;
       
  2693 
       
  2694 	i = tx_ring->next_to_use;
       
  2695 
       
  2696 	while (len) {
       
  2697 		buffer_info = &tx_ring->buffer_info[i];
       
  2698 		size = min(len, max_per_txd);
       
  2699 		/* Workaround for Controller erratum --
       
  2700 		 * descriptor for non-tso packet in a linear SKB that follows a
       
  2701 		 * tso gets written back prematurely before the data is fully
       
  2702 		 * DMA'd to the controller */
       
  2703 		if (!skb->data_len && tx_ring->last_tx_tso &&
       
  2704 		    !skb_is_gso(skb)) {
       
  2705 			tx_ring->last_tx_tso = 0;
       
  2706 			size -= 4;
       
  2707 		}
       
  2708 
       
  2709 		/* Workaround for premature desc write-backs
       
  2710 		 * in TSO mode.  Append 4-byte sentinel desc */
       
  2711 		if (unlikely(mss && !nr_frags && size == len && size > 8))
       
  2712 			size -= 4;
       
  2713 		/* work-around for errata 10 and it applies
       
  2714 		 * to all controllers in PCI-X mode
       
  2715 		 * The fix is to make sure that the first descriptor of a
       
  2716 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
       
  2717 		 */
       
  2718 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
       
  2719 		                (size > 2015) && count == 0))
       
  2720 		        size = 2015;
       
  2721 
       
  2722 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
       
  2723 		 * terminating buffers within evenly-aligned dwords. */
       
  2724 		if (unlikely(adapter->pcix_82544 &&
       
  2725 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
       
  2726 		   size > 4))
       
  2727 			size -= 4;
       
  2728 
       
  2729 		buffer_info->length = size;
       
  2730 		/* set time_stamp *before* dma to help avoid a possible race */
       
  2731 		buffer_info->time_stamp = jiffies;
       
  2732 		buffer_info->mapped_as_page = false;
       
  2733 		buffer_info->dma = dma_map_single(&pdev->dev,
       
  2734 						  skb->data + offset,
       
  2735 						  size,	DMA_TO_DEVICE);
       
  2736 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
       
  2737 			goto dma_error;
       
  2738 		buffer_info->next_to_watch = i;
       
  2739 
       
  2740 		len -= size;
       
  2741 		offset += size;
       
  2742 		count++;
       
  2743 		if (len) {
       
  2744 			i++;
       
  2745 			if (unlikely(i == tx_ring->count))
       
  2746 				i = 0;
       
  2747 		}
       
  2748 	}
       
  2749 
       
  2750 	for (f = 0; f < nr_frags; f++) {
       
  2751 		struct skb_frag_struct *frag;
       
  2752 
       
  2753 		frag = &skb_shinfo(skb)->frags[f];
       
  2754 		len = frag->size;
       
  2755 		offset = frag->page_offset;
       
  2756 
       
  2757 		while (len) {
       
  2758 			i++;
       
  2759 			if (unlikely(i == tx_ring->count))
       
  2760 				i = 0;
       
  2761 
       
  2762 			buffer_info = &tx_ring->buffer_info[i];
       
  2763 			size = min(len, max_per_txd);
       
  2764 			/* Workaround for premature desc write-backs
       
  2765 			 * in TSO mode.  Append 4-byte sentinel desc */
       
  2766 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
       
  2767 				size -= 4;
       
  2768 			/* Workaround for potential 82544 hang in PCI-X.
       
  2769 			 * Avoid terminating buffers within evenly-aligned
       
  2770 			 * dwords. */
       
  2771 			if (unlikely(adapter->pcix_82544 &&
       
  2772 			    !((unsigned long)(page_to_phys(frag->page) + offset
       
  2773 			                      + size - 1) & 4) &&
       
  2774 			    size > 4))
       
  2775 				size -= 4;
       
  2776 
       
  2777 			buffer_info->length = size;
       
  2778 			buffer_info->time_stamp = jiffies;
       
  2779 			buffer_info->mapped_as_page = true;
       
  2780 			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
       
  2781 							offset,	size,
       
  2782 							DMA_TO_DEVICE);
       
  2783 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
       
  2784 				goto dma_error;
       
  2785 			buffer_info->next_to_watch = i;
       
  2786 
       
  2787 			len -= size;
       
  2788 			offset += size;
       
  2789 			count++;
       
  2790 		}
       
  2791 	}
       
  2792 
       
  2793 	tx_ring->buffer_info[i].skb = skb;
       
  2794 	tx_ring->buffer_info[first].next_to_watch = i;
       
  2795 
       
  2796 	return count;
       
  2797 
       
  2798 dma_error:
       
  2799 	dev_err(&pdev->dev, "TX DMA map failed\n");
       
  2800 	buffer_info->dma = 0;
       
  2801 	if (count)
       
  2802 		count--;
       
  2803 
       
  2804 	while (count--) {
       
  2805 		if (i==0)
       
  2806 			i += tx_ring->count;
       
  2807 		i--;
       
  2808 		buffer_info = &tx_ring->buffer_info[i];
       
  2809 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  2810 	}
       
  2811 
       
  2812 	return 0;
       
  2813 }
       
  2814 
       
  2815 static void e1000_tx_queue(struct e1000_adapter *adapter,
       
  2816 			   struct e1000_tx_ring *tx_ring, int tx_flags,
       
  2817 			   int count)
       
  2818 {
       
  2819 	struct e1000_hw *hw = &adapter->hw;
       
  2820 	struct e1000_tx_desc *tx_desc = NULL;
       
  2821 	struct e1000_buffer *buffer_info;
       
  2822 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  2823 	unsigned int i;
       
  2824 
       
  2825 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
       
  2826 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  2827 		             E1000_TXD_CMD_TSE;
       
  2828 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  2829 
       
  2830 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
       
  2831 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  2832 	}
       
  2833 
       
  2834 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
       
  2835 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  2836 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  2837 	}
       
  2838 
       
  2839 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
       
  2840 		txd_lower |= E1000_TXD_CMD_VLE;
       
  2841 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  2842 	}
       
  2843 
       
  2844 	i = tx_ring->next_to_use;
       
  2845 
       
  2846 	while (count--) {
       
  2847 		buffer_info = &tx_ring->buffer_info[i];
       
  2848 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  2849 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  2850 		tx_desc->lower.data =
       
  2851 			cpu_to_le32(txd_lower | buffer_info->length);
       
  2852 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  2853 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  2854 	}
       
  2855 
       
  2856 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  2857 
       
  2858 	/* Force memory writes to complete before letting h/w
       
  2859 	 * know there are new descriptors to fetch.  (Only
       
  2860 	 * applicable for weak-ordered memory model archs,
       
  2861 	 * such as IA-64). */
       
  2862 	wmb();
       
  2863 
       
  2864 	tx_ring->next_to_use = i;
       
  2865 	writel(i, hw->hw_addr + tx_ring->tdt);
       
  2866 	/* we need this if more than one processor can write to our tail
       
  2867 	 * at a time, it syncronizes IO on IA64/Altix systems */
       
  2868 	mmiowb();
       
  2869 }
       
  2870 
       
  2871 /**
       
  2872  * 82547 workaround to avoid controller hang in half-duplex environment.
       
  2873  * The workaround is to avoid queuing a large packet that would span
       
  2874  * the internal Tx FIFO ring boundary by notifying the stack to resend
       
  2875  * the packet at a later time.  This gives the Tx FIFO an opportunity to
       
  2876  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
       
  2877  * to the beginning of the Tx FIFO.
       
  2878  **/
       
  2879 
       
  2880 #define E1000_FIFO_HDR			0x10
       
  2881 #define E1000_82547_PAD_LEN		0x3E0
       
  2882 
       
  2883 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
  2884 				       struct sk_buff *skb)
       
  2885 {
       
  2886 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
       
  2887 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
       
  2888 
       
  2889 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
       
  2890 
       
  2891 	if (adapter->link_duplex != HALF_DUPLEX)
       
  2892 		goto no_fifo_stall_required;
       
  2893 
       
  2894 	if (atomic_read(&adapter->tx_fifo_stall))
       
  2895 		return 1;
       
  2896 
       
  2897 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
       
  2898 		atomic_set(&adapter->tx_fifo_stall, 1);
       
  2899 		return 1;
       
  2900 	}
       
  2901 
       
  2902 no_fifo_stall_required:
       
  2903 	adapter->tx_fifo_head += skb_fifo_len;
       
  2904 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
       
  2905 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
       
  2906 	return 0;
       
  2907 }
       
  2908 
       
  2909 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  2910 {
       
  2911 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2912 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
       
  2913 
       
  2914 	netif_stop_queue(netdev);
       
  2915 	/* Herbert's original patch had:
       
  2916 	 *  smp_mb__after_netif_stop_queue();
       
  2917 	 * but since that doesn't exist yet, just open code it. */
       
  2918 	smp_mb();
       
  2919 
       
  2920 	/* We need to check again in a case another CPU has just
       
  2921 	 * made room available. */
       
  2922 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
       
  2923 		return -EBUSY;
       
  2924 
       
  2925 	/* A reprieve! */
       
  2926 	netif_start_queue(netdev);
       
  2927 	++adapter->restart_queue;
       
  2928 	return 0;
       
  2929 }
       
  2930 
       
  2931 static int e1000_maybe_stop_tx(struct net_device *netdev,
       
  2932                                struct e1000_tx_ring *tx_ring, int size)
       
  2933 {
       
  2934 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
       
  2935 		return 0;
       
  2936 	return __e1000_maybe_stop_tx(netdev, size);
       
  2937 }
       
  2938 
       
  2939 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  2940 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
       
  2941 				    struct net_device *netdev)
       
  2942 {
       
  2943 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2944 	struct e1000_hw *hw = &adapter->hw;
       
  2945 	struct e1000_tx_ring *tx_ring;
       
  2946 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
       
  2947 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  2948 	unsigned int tx_flags = 0;
       
  2949 	unsigned int len = skb_headlen(skb);
       
  2950 	unsigned int nr_frags;
       
  2951 	unsigned int mss;
       
  2952 	int count = 0;
       
  2953 	int tso;
       
  2954 	unsigned int f;
       
  2955 
       
  2956 	/* This goes back to the question of how to logically map a tx queue
       
  2957 	 * to a flow.  Right now, performance is impacted slightly negatively
       
  2958 	 * if using multiple tx queues.  If the stack breaks away from a
       
  2959 	 * single qdisc implementation, we can look at this again. */
       
  2960 	tx_ring = adapter->tx_ring;
       
  2961 
       
  2962 	if (unlikely(skb->len <= 0)) {
       
  2963 		dev_kfree_skb_any(skb);
       
  2964 		return NETDEV_TX_OK;
       
  2965 	}
       
  2966 
       
  2967 	mss = skb_shinfo(skb)->gso_size;
       
  2968 	/* The controller does a simple calculation to
       
  2969 	 * make sure there is enough room in the FIFO before
       
  2970 	 * initiating the DMA for each buffer.  The calc is:
       
  2971 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  2972 	 * overrun the FIFO, adjust the max buffer len if mss
       
  2973 	 * drops. */
       
  2974 	if (mss) {
       
  2975 		u8 hdr_len;
       
  2976 		max_per_txd = min(mss << 2, max_per_txd);
       
  2977 		max_txd_pwr = fls(max_per_txd) - 1;
       
  2978 
       
  2979 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  2980 		if (skb->data_len && hdr_len == len) {
       
  2981 			switch (hw->mac_type) {
       
  2982 				unsigned int pull_size;
       
  2983 			case e1000_82544:
       
  2984 				/* Make sure we have room to chop off 4 bytes,
       
  2985 				 * and that the end alignment will work out to
       
  2986 				 * this hardware's requirements
       
  2987 				 * NOTE: this is a TSO only workaround
       
  2988 				 * if end byte alignment not correct move us
       
  2989 				 * into the next dword */
       
  2990 				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
       
  2991 					break;
       
  2992 				/* fall through */
       
  2993 				pull_size = min((unsigned int)4, skb->data_len);
       
  2994 				if (!__pskb_pull_tail(skb, pull_size)) {
       
  2995 					e_err("__pskb_pull_tail failed.\n");
       
  2996 					dev_kfree_skb_any(skb);
       
  2997 					return NETDEV_TX_OK;
       
  2998 				}
       
  2999 				len = skb_headlen(skb);
       
  3000 				break;
       
  3001 			default:
       
  3002 				/* do nothing */
       
  3003 				break;
       
  3004 			}
       
  3005 		}
       
  3006 	}
       
  3007 
       
  3008 	/* reserve a descriptor for the offload context */
       
  3009 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
       
  3010 		count++;
       
  3011 	count++;
       
  3012 
       
  3013 	/* Controller Erratum workaround */
       
  3014 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
       
  3015 		count++;
       
  3016 
       
  3017 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  3018 
       
  3019 	if (adapter->pcix_82544)
       
  3020 		count++;
       
  3021 
       
  3022 	/* work-around for errata 10 and it applies to all controllers
       
  3023 	 * in PCI-X mode, so add one more descriptor to the count
       
  3024 	 */
       
  3025 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
       
  3026 			(len > 2015)))
       
  3027 		count++;
       
  3028 
       
  3029 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  3030 	for (f = 0; f < nr_frags; f++)
       
  3031 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
       
  3032 				       max_txd_pwr);
       
  3033 	if (adapter->pcix_82544)
       
  3034 		count += nr_frags;
       
  3035 
       
  3036 	/* need: count + 2 desc gap to keep tail from touching
       
  3037 	 * head, otherwise try next time */
       
  3038 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
       
  3039 		return NETDEV_TX_BUSY;
       
  3040 
       
  3041 	if (unlikely(hw->mac_type == e1000_82547)) {
       
  3042 		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
       
  3043 			netif_stop_queue(netdev);
       
  3044 			if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3045 				mod_timer(&adapter->tx_fifo_stall_timer,
       
  3046 				          jiffies + 1);
       
  3047 			return NETDEV_TX_BUSY;
       
  3048 		}
       
  3049 	}
       
  3050 
       
  3051 	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
       
  3052 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  3053 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  3054 	}
       
  3055 
       
  3056 	first = tx_ring->next_to_use;
       
  3057 
       
  3058 	tso = e1000_tso(adapter, tx_ring, skb);
       
  3059 	if (tso < 0) {
       
  3060 		dev_kfree_skb_any(skb);
       
  3061 		return NETDEV_TX_OK;
       
  3062 	}
       
  3063 
       
  3064 	if (likely(tso)) {
       
  3065 		if (likely(hw->mac_type != e1000_82544))
       
  3066 			tx_ring->last_tx_tso = 1;
       
  3067 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  3068 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
       
  3069 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  3070 
       
  3071 	if (likely(skb->protocol == htons(ETH_P_IP)))
       
  3072 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  3073 
       
  3074 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
       
  3075 	                     nr_frags, mss);
       
  3076 
       
  3077 	if (count) {
       
  3078 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
       
  3079 		/* Make sure there is space in the ring for the next send. */
       
  3080 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
       
  3081 
       
  3082 	} else {
       
  3083 		dev_kfree_skb_any(skb);
       
  3084 		tx_ring->buffer_info[first].time_stamp = 0;
       
  3085 		tx_ring->next_to_use = first;
       
  3086 	}
       
  3087 
       
  3088 	return NETDEV_TX_OK;
       
  3089 }
       
  3090 
       
  3091 /**
       
  3092  * e1000_tx_timeout - Respond to a Tx Hang
       
  3093  * @netdev: network interface device structure
       
  3094  **/
       
  3095 
       
  3096 static void e1000_tx_timeout(struct net_device *netdev)
       
  3097 {
       
  3098 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3099 
       
  3100 	/* Do the reset outside of interrupt context */
       
  3101 	adapter->tx_timeout_count++;
       
  3102 	schedule_work(&adapter->reset_task);
       
  3103 }
       
  3104 
       
  3105 static void e1000_reset_task(struct work_struct *work)
       
  3106 {
       
  3107 	struct e1000_adapter *adapter =
       
  3108 		container_of(work, struct e1000_adapter, reset_task);
       
  3109 
       
  3110 	e1000_reinit_locked(adapter);
       
  3111 }
       
  3112 
       
  3113 /**
       
  3114  * e1000_get_stats - Get System Network Statistics
       
  3115  * @netdev: network interface device structure
       
  3116  *
       
  3117  * Returns the address of the device statistics structure.
       
  3118  * The statistics are actually updated from the timer callback.
       
  3119  **/
       
  3120 
       
  3121 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
       
  3122 {
       
  3123 	/* only return the current stats */
       
  3124 	return &netdev->stats;
       
  3125 }
       
  3126 
       
  3127 /**
       
  3128  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  3129  * @netdev: network interface device structure
       
  3130  * @new_mtu: new value for maximum frame size
       
  3131  *
       
  3132  * Returns 0 on success, negative on failure
       
  3133  **/
       
  3134 
       
  3135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  3136 {
       
  3137 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3138 	struct e1000_hw *hw = &adapter->hw;
       
  3139 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  3140 
       
  3141 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
       
  3142 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
       
  3143 		e_err("Invalid MTU setting\n");
       
  3144 		return -EINVAL;
       
  3145 	}
       
  3146 
       
  3147 	/* Adapter-specific max frame size limits. */
       
  3148 	switch (hw->mac_type) {
       
  3149 	case e1000_undefined ... e1000_82542_rev2_1:
       
  3150 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
       
  3151 			e_err("Jumbo Frames not supported.\n");
       
  3152 			return -EINVAL;
       
  3153 		}
       
  3154 		break;
       
  3155 	default:
       
  3156 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
       
  3157 		break;
       
  3158 	}
       
  3159 
       
  3160 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
  3161 		msleep(1);
       
  3162 	/* e1000_down has a dependency on max_frame_size */
       
  3163 	hw->max_frame_size = max_frame;
       
  3164 	if (netif_running(netdev))
       
  3165 		e1000_down(adapter);
       
  3166 
       
  3167 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  3168 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  3169 	 * larger slab size.
       
  3170 	 * i.e. RXBUFFER_2048 --> size-4096 slab
       
  3171 	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
       
  3172 	 *  fragmented skbs */
       
  3173 
       
  3174 	if (max_frame <= E1000_RXBUFFER_2048)
       
  3175 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
       
  3176 	else
       
  3177 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
       
  3178 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
       
  3179 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
       
  3180 		adapter->rx_buffer_len = PAGE_SIZE;
       
  3181 #endif
       
  3182 
       
  3183 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  3184 	if (!hw->tbi_compatibility_on &&
       
  3185 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
       
  3186 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
       
  3187 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  3188 
       
  3189 	pr_info("%s changing MTU from %d to %d\n",
       
  3190 		netdev->name, netdev->mtu, new_mtu);
       
  3191 	netdev->mtu = new_mtu;
       
  3192 
       
  3193 	if (netif_running(netdev))
       
  3194 		e1000_up(adapter);
       
  3195 	else
       
  3196 		e1000_reset(adapter);
       
  3197 
       
  3198 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
  3199 
       
  3200 	return 0;
       
  3201 }
       
  3202 
       
  3203 /**
       
  3204  * e1000_update_stats - Update the board statistics counters
       
  3205  * @adapter: board private structure
       
  3206  **/
       
  3207 
       
  3208 void e1000_update_stats(struct e1000_adapter *adapter)
       
  3209 {
       
  3210 	struct net_device *netdev = adapter->netdev;
       
  3211 	struct e1000_hw *hw = &adapter->hw;
       
  3212 	struct pci_dev *pdev = adapter->pdev;
       
  3213 	unsigned long flags;
       
  3214 	u16 phy_tmp;
       
  3215 
       
  3216 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
       
  3217 
       
  3218 	/*
       
  3219 	 * Prevent stats update while adapter is being reset, or if the pci
       
  3220 	 * connection is down.
       
  3221 	 */
       
  3222 	if (adapter->link_speed == 0)
       
  3223 		return;
       
  3224 	if (pci_channel_offline(pdev))
       
  3225 		return;
       
  3226 
       
  3227 	spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3228 
       
  3229 	/* these counters are modified from e1000_tbi_adjust_stats,
       
  3230 	 * called from the interrupt context, so they must only
       
  3231 	 * be written while holding adapter->stats_lock
       
  3232 	 */
       
  3233 
       
  3234 	adapter->stats.crcerrs += er32(CRCERRS);
       
  3235 	adapter->stats.gprc += er32(GPRC);
       
  3236 	adapter->stats.gorcl += er32(GORCL);
       
  3237 	adapter->stats.gorch += er32(GORCH);
       
  3238 	adapter->stats.bprc += er32(BPRC);
       
  3239 	adapter->stats.mprc += er32(MPRC);
       
  3240 	adapter->stats.roc += er32(ROC);
       
  3241 
       
  3242 	adapter->stats.prc64 += er32(PRC64);
       
  3243 	adapter->stats.prc127 += er32(PRC127);
       
  3244 	adapter->stats.prc255 += er32(PRC255);
       
  3245 	adapter->stats.prc511 += er32(PRC511);
       
  3246 	adapter->stats.prc1023 += er32(PRC1023);
       
  3247 	adapter->stats.prc1522 += er32(PRC1522);
       
  3248 
       
  3249 	adapter->stats.symerrs += er32(SYMERRS);
       
  3250 	adapter->stats.mpc += er32(MPC);
       
  3251 	adapter->stats.scc += er32(SCC);
       
  3252 	adapter->stats.ecol += er32(ECOL);
       
  3253 	adapter->stats.mcc += er32(MCC);
       
  3254 	adapter->stats.latecol += er32(LATECOL);
       
  3255 	adapter->stats.dc += er32(DC);
       
  3256 	adapter->stats.sec += er32(SEC);
       
  3257 	adapter->stats.rlec += er32(RLEC);
       
  3258 	adapter->stats.xonrxc += er32(XONRXC);
       
  3259 	adapter->stats.xontxc += er32(XONTXC);
       
  3260 	adapter->stats.xoffrxc += er32(XOFFRXC);
       
  3261 	adapter->stats.xofftxc += er32(XOFFTXC);
       
  3262 	adapter->stats.fcruc += er32(FCRUC);
       
  3263 	adapter->stats.gptc += er32(GPTC);
       
  3264 	adapter->stats.gotcl += er32(GOTCL);
       
  3265 	adapter->stats.gotch += er32(GOTCH);
       
  3266 	adapter->stats.rnbc += er32(RNBC);
       
  3267 	adapter->stats.ruc += er32(RUC);
       
  3268 	adapter->stats.rfc += er32(RFC);
       
  3269 	adapter->stats.rjc += er32(RJC);
       
  3270 	adapter->stats.torl += er32(TORL);
       
  3271 	adapter->stats.torh += er32(TORH);
       
  3272 	adapter->stats.totl += er32(TOTL);
       
  3273 	adapter->stats.toth += er32(TOTH);
       
  3274 	adapter->stats.tpr += er32(TPR);
       
  3275 
       
  3276 	adapter->stats.ptc64 += er32(PTC64);
       
  3277 	adapter->stats.ptc127 += er32(PTC127);
       
  3278 	adapter->stats.ptc255 += er32(PTC255);
       
  3279 	adapter->stats.ptc511 += er32(PTC511);
       
  3280 	adapter->stats.ptc1023 += er32(PTC1023);
       
  3281 	adapter->stats.ptc1522 += er32(PTC1522);
       
  3282 
       
  3283 	adapter->stats.mptc += er32(MPTC);
       
  3284 	adapter->stats.bptc += er32(BPTC);
       
  3285 
       
  3286 	/* used for adaptive IFS */
       
  3287 
       
  3288 	hw->tx_packet_delta = er32(TPT);
       
  3289 	adapter->stats.tpt += hw->tx_packet_delta;
       
  3290 	hw->collision_delta = er32(COLC);
       
  3291 	adapter->stats.colc += hw->collision_delta;
       
  3292 
       
  3293 	if (hw->mac_type >= e1000_82543) {
       
  3294 		adapter->stats.algnerrc += er32(ALGNERRC);
       
  3295 		adapter->stats.rxerrc += er32(RXERRC);
       
  3296 		adapter->stats.tncrs += er32(TNCRS);
       
  3297 		adapter->stats.cexterr += er32(CEXTERR);
       
  3298 		adapter->stats.tsctc += er32(TSCTC);
       
  3299 		adapter->stats.tsctfc += er32(TSCTFC);
       
  3300 	}
       
  3301 
       
  3302 	/* Fill out the OS statistics structure */
       
  3303 	netdev->stats.multicast = adapter->stats.mprc;
       
  3304 	netdev->stats.collisions = adapter->stats.colc;
       
  3305 
       
  3306 	/* Rx Errors */
       
  3307 
       
  3308 	/* RLEC on some newer hardware can be incorrect so build
       
  3309 	* our own version based on RUC and ROC */
       
  3310 	netdev->stats.rx_errors = adapter->stats.rxerrc +
       
  3311 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  3312 		adapter->stats.ruc + adapter->stats.roc +
       
  3313 		adapter->stats.cexterr;
       
  3314 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
       
  3315 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
       
  3316 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
       
  3317 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
       
  3318 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
       
  3319 
       
  3320 	/* Tx Errors */
       
  3321 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
       
  3322 	netdev->stats.tx_errors = adapter->stats.txerrc;
       
  3323 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
       
  3324 	netdev->stats.tx_window_errors = adapter->stats.latecol;
       
  3325 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
       
  3326 	if (hw->bad_tx_carr_stats_fd &&
       
  3327 	    adapter->link_duplex == FULL_DUPLEX) {
       
  3328 		netdev->stats.tx_carrier_errors = 0;
       
  3329 		adapter->stats.tncrs = 0;
       
  3330 	}
       
  3331 
       
  3332 	/* Tx Dropped needs to be maintained elsewhere */
       
  3333 
       
  3334 	/* Phy Stats */
       
  3335 	if (hw->media_type == e1000_media_type_copper) {
       
  3336 		if ((adapter->link_speed == SPEED_1000) &&
       
  3337 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
       
  3338 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
       
  3339 			adapter->phy_stats.idle_errors += phy_tmp;
       
  3340 		}
       
  3341 
       
  3342 		if ((hw->mac_type <= e1000_82546) &&
       
  3343 		   (hw->phy_type == e1000_phy_m88) &&
       
  3344 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
       
  3345 			adapter->phy_stats.receive_errors += phy_tmp;
       
  3346 	}
       
  3347 
       
  3348 	/* Management Stats */
       
  3349 	if (hw->has_smbus) {
       
  3350 		adapter->stats.mgptc += er32(MGTPTC);
       
  3351 		adapter->stats.mgprc += er32(MGTPRC);
       
  3352 		adapter->stats.mgpdc += er32(MGTPDC);
       
  3353 	}
       
  3354 
       
  3355 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3356 }
       
  3357 
       
  3358 /**
       
  3359  * e1000_intr - Interrupt Handler
       
  3360  * @irq: interrupt number
       
  3361  * @data: pointer to a network interface device structure
       
  3362  **/
       
  3363 
       
  3364 static irqreturn_t e1000_intr(int irq, void *data)
       
  3365 {
       
  3366 	struct net_device *netdev = data;
       
  3367 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3368 	struct e1000_hw *hw = &adapter->hw;
       
  3369 	u32 icr = er32(ICR);
       
  3370 
       
  3371 	if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
       
  3372 		return IRQ_NONE;  /* Not our interrupt */
       
  3373 
       
  3374 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
       
  3375 		hw->get_link_status = 1;
       
  3376 		/* guard against interrupt when we're going down */
       
  3377 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3378 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  3379 	}
       
  3380 
       
  3381 	/* disable interrupts, without the synchronize_irq bit */
       
  3382 	ew32(IMC, ~0);
       
  3383 	E1000_WRITE_FLUSH();
       
  3384 
       
  3385 	if (likely(napi_schedule_prep(&adapter->napi))) {
       
  3386 		adapter->total_tx_bytes = 0;
       
  3387 		adapter->total_tx_packets = 0;
       
  3388 		adapter->total_rx_bytes = 0;
       
  3389 		adapter->total_rx_packets = 0;
       
  3390 		__napi_schedule(&adapter->napi);
       
  3391 	} else {
       
  3392 		/* this really should not happen! if it does it is basically a
       
  3393 		 * bug, but not a hard error, so enable ints and continue */
       
  3394 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3395 			e1000_irq_enable(adapter);
       
  3396 	}
       
  3397 
       
  3398 	return IRQ_HANDLED;
       
  3399 }
       
  3400 
       
  3401 /**
       
  3402  * e1000_clean - NAPI Rx polling callback
       
  3403  * @adapter: board private structure
       
  3404  **/
       
  3405 static int e1000_clean(struct napi_struct *napi, int budget)
       
  3406 {
       
  3407 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
       
  3408 	int tx_clean_complete = 0, work_done = 0;
       
  3409 
       
  3410 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
       
  3411 
       
  3412 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
       
  3413 
       
  3414 	if (!tx_clean_complete)
       
  3415 		work_done = budget;
       
  3416 
       
  3417 	/* If budget not fully consumed, exit the polling mode */
       
  3418 	if (work_done < budget) {
       
  3419 		if (likely(adapter->itr_setting & 3))
       
  3420 			e1000_set_itr(adapter);
       
  3421 		napi_complete(napi);
       
  3422 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3423 			e1000_irq_enable(adapter);
       
  3424 	}
       
  3425 
       
  3426 	return work_done;
       
  3427 }
       
  3428 
       
  3429 /**
       
  3430  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
  3431  * @adapter: board private structure
       
  3432  **/
       
  3433 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
  3434 			       struct e1000_tx_ring *tx_ring)
       
  3435 {
       
  3436 	struct e1000_hw *hw = &adapter->hw;
       
  3437 	struct net_device *netdev = adapter->netdev;
       
  3438 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
  3439 	struct e1000_buffer *buffer_info;
       
  3440 	unsigned int i, eop;
       
  3441 	unsigned int count = 0;
       
  3442 	unsigned int total_tx_bytes=0, total_tx_packets=0;
       
  3443 
       
  3444 	i = tx_ring->next_to_clean;
       
  3445 	eop = tx_ring->buffer_info[i].next_to_watch;
       
  3446 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3447 
       
  3448 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
       
  3449 	       (count < tx_ring->count)) {
       
  3450 		bool cleaned = false;
       
  3451 		rmb();	/* read buffer_info after eop_desc */
       
  3452 		for ( ; !cleaned; count++) {
       
  3453 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3454 			buffer_info = &tx_ring->buffer_info[i];
       
  3455 			cleaned = (i == eop);
       
  3456 
       
  3457 			if (cleaned) {
       
  3458 				struct sk_buff *skb = buffer_info->skb;
       
  3459 				unsigned int segs, bytecount;
       
  3460 				segs = skb_shinfo(skb)->gso_segs ?: 1;
       
  3461 				/* multiply data chunks by size of headers */
       
  3462 				bytecount = ((segs - 1) * skb_headlen(skb)) +
       
  3463 				            skb->len;
       
  3464 				total_tx_packets += segs;
       
  3465 				total_tx_bytes += bytecount;
       
  3466 			}
       
  3467 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  3468 			tx_desc->upper.data = 0;
       
  3469 
       
  3470 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  3471 		}
       
  3472 
       
  3473 		eop = tx_ring->buffer_info[i].next_to_watch;
       
  3474 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3475 	}
       
  3476 
       
  3477 	tx_ring->next_to_clean = i;
       
  3478 
       
  3479 #define TX_WAKE_THRESHOLD 32
       
  3480 	if (unlikely(count && netif_carrier_ok(netdev) &&
       
  3481 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
       
  3482 		/* Make sure that anybody stopping the queue after this
       
  3483 		 * sees the new next_to_clean.
       
  3484 		 */
       
  3485 		smp_mb();
       
  3486 
       
  3487 		if (netif_queue_stopped(netdev) &&
       
  3488 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
       
  3489 			netif_wake_queue(netdev);
       
  3490 			++adapter->restart_queue;
       
  3491 		}
       
  3492 	}
       
  3493 
       
  3494 	if (adapter->detect_tx_hung) {
       
  3495 		/* Detect a transmit hang in hardware, this serializes the
       
  3496 		 * check with the clearing of time_stamp and movement of i */
       
  3497 		adapter->detect_tx_hung = false;
       
  3498 		if (tx_ring->buffer_info[eop].time_stamp &&
       
  3499 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
       
  3500 		               (adapter->tx_timeout_factor * HZ)) &&
       
  3501 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
       
  3502 
       
  3503 			/* detected Tx unit hang */
       
  3504 			e_err("Detected Tx Unit Hang\n"
       
  3505 			      "  Tx Queue             <%lu>\n"
       
  3506 			      "  TDH                  <%x>\n"
       
  3507 			      "  TDT                  <%x>\n"
       
  3508 			      "  next_to_use          <%x>\n"
       
  3509 			      "  next_to_clean        <%x>\n"
       
  3510 			      "buffer_info[next_to_clean]\n"
       
  3511 			      "  time_stamp           <%lx>\n"
       
  3512 			      "  next_to_watch        <%x>\n"
       
  3513 			      "  jiffies              <%lx>\n"
       
  3514 			      "  next_to_watch.status <%x>\n",
       
  3515 				(unsigned long)((tx_ring - adapter->tx_ring) /
       
  3516 					sizeof(struct e1000_tx_ring)),
       
  3517 				readl(hw->hw_addr + tx_ring->tdh),
       
  3518 				readl(hw->hw_addr + tx_ring->tdt),
       
  3519 				tx_ring->next_to_use,
       
  3520 				tx_ring->next_to_clean,
       
  3521 				tx_ring->buffer_info[eop].time_stamp,
       
  3522 				eop,
       
  3523 				jiffies,
       
  3524 				eop_desc->upper.fields.status);
       
  3525 			netif_stop_queue(netdev);
       
  3526 		}
       
  3527 	}
       
  3528 	adapter->total_tx_bytes += total_tx_bytes;
       
  3529 	adapter->total_tx_packets += total_tx_packets;
       
  3530 	netdev->stats.tx_bytes += total_tx_bytes;
       
  3531 	netdev->stats.tx_packets += total_tx_packets;
       
  3532 	return (count < tx_ring->count);
       
  3533 }
       
  3534 
       
  3535 /**
       
  3536  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
  3537  * @adapter:     board private structure
       
  3538  * @status_err:  receive descriptor status and error fields
       
  3539  * @csum:        receive descriptor csum field
       
  3540  * @sk_buff:     socket buffer with received data
       
  3541  **/
       
  3542 
       
  3543 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
       
  3544 			      u32 csum, struct sk_buff *skb)
       
  3545 {
       
  3546 	struct e1000_hw *hw = &adapter->hw;
       
  3547 	u16 status = (u16)status_err;
       
  3548 	u8 errors = (u8)(status_err >> 24);
       
  3549 	skb->ip_summed = CHECKSUM_NONE;
       
  3550 
       
  3551 	/* 82543 or newer only */
       
  3552 	if (unlikely(hw->mac_type < e1000_82543)) return;
       
  3553 	/* Ignore Checksum bit is set */
       
  3554 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
       
  3555 	/* TCP/UDP checksum error bit is set */
       
  3556 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
       
  3557 		/* let the stack verify checksum errors */
       
  3558 		adapter->hw_csum_err++;
       
  3559 		return;
       
  3560 	}
       
  3561 	/* TCP/UDP Checksum has not been calculated */
       
  3562 	if (!(status & E1000_RXD_STAT_TCPCS))
       
  3563 		return;
       
  3564 
       
  3565 	/* It must be a TCP or UDP packet with a valid checksum */
       
  3566 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
       
  3567 		/* TCP checksum is good */
       
  3568 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
  3569 	}
       
  3570 	adapter->hw_csum_good++;
       
  3571 }
       
  3572 
       
  3573 /**
       
  3574  * e1000_consume_page - helper function
       
  3575  **/
       
  3576 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
       
  3577                                u16 length)
       
  3578 {
       
  3579 	bi->page = NULL;
       
  3580 	skb->len += length;
       
  3581 	skb->data_len += length;
       
  3582 	skb->truesize += length;
       
  3583 }
       
  3584 
       
  3585 /**
       
  3586  * e1000_receive_skb - helper function to handle rx indications
       
  3587  * @adapter: board private structure
       
  3588  * @status: descriptor status field as written by hardware
       
  3589  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
       
  3590  * @skb: pointer to sk_buff to be indicated to stack
       
  3591  */
       
  3592 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
       
  3593 			      __le16 vlan, struct sk_buff *skb)
       
  3594 {
       
  3595 	if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
       
  3596 		vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  3597 		                         le16_to_cpu(vlan) &
       
  3598 		                         E1000_RXD_SPC_VLAN_MASK);
       
  3599 	} else {
       
  3600 		netif_receive_skb(skb);
       
  3601 	}
       
  3602 }
       
  3603 
       
  3604 /**
       
  3605  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
       
  3606  * @adapter: board private structure
       
  3607  * @rx_ring: ring to clean
       
  3608  * @work_done: amount of napi work completed this call
       
  3609  * @work_to_do: max amount of work allowed for this call to do
       
  3610  *
       
  3611  * the return value indicates whether actual cleaning was done, there
       
  3612  * is no guarantee that everything was cleaned
       
  3613  */
       
  3614 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
       
  3615 				     struct e1000_rx_ring *rx_ring,
       
  3616 				     int *work_done, int work_to_do)
       
  3617 {
       
  3618 	struct e1000_hw *hw = &adapter->hw;
       
  3619 	struct net_device *netdev = adapter->netdev;
       
  3620 	struct pci_dev *pdev = adapter->pdev;
       
  3621 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
  3622 	struct e1000_buffer *buffer_info, *next_buffer;
       
  3623 	unsigned long irq_flags;
       
  3624 	u32 length;
       
  3625 	unsigned int i;
       
  3626 	int cleaned_count = 0;
       
  3627 	bool cleaned = false;
       
  3628 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  3629 
       
  3630 	i = rx_ring->next_to_clean;
       
  3631 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  3632 	buffer_info = &rx_ring->buffer_info[i];
       
  3633 
       
  3634 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
  3635 		struct sk_buff *skb;
       
  3636 		u8 status;
       
  3637 
       
  3638 		if (*work_done >= work_to_do)
       
  3639 			break;
       
  3640 		(*work_done)++;
       
  3641 		rmb(); /* read descriptor and rx_buffer_info after status DD */
       
  3642 
       
  3643 		status = rx_desc->status;
       
  3644 		skb = buffer_info->skb;
       
  3645 		buffer_info->skb = NULL;
       
  3646 
       
  3647 		if (++i == rx_ring->count) i = 0;
       
  3648 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
  3649 		prefetch(next_rxd);
       
  3650 
       
  3651 		next_buffer = &rx_ring->buffer_info[i];
       
  3652 
       
  3653 		cleaned = true;
       
  3654 		cleaned_count++;
       
  3655 		dma_unmap_page(&pdev->dev, buffer_info->dma,
       
  3656 			       buffer_info->length, DMA_FROM_DEVICE);
       
  3657 		buffer_info->dma = 0;
       
  3658 
       
  3659 		length = le16_to_cpu(rx_desc->length);
       
  3660 
       
  3661 		/* errors is only valid for DD + EOP descriptors */
       
  3662 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
       
  3663 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
       
  3664 			u8 last_byte = *(skb->data + length - 1);
       
  3665 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
       
  3666 				       last_byte)) {
       
  3667 				spin_lock_irqsave(&adapter->stats_lock,
       
  3668 				                  irq_flags);
       
  3669 				e1000_tbi_adjust_stats(hw, &adapter->stats,
       
  3670 				                       length, skb->data);
       
  3671 				spin_unlock_irqrestore(&adapter->stats_lock,
       
  3672 				                       irq_flags);
       
  3673 				length--;
       
  3674 			} else {
       
  3675 				/* recycle both page and skb */
       
  3676 				buffer_info->skb = skb;
       
  3677 				/* an error means any chain goes out the window
       
  3678 				 * too */
       
  3679 				if (rx_ring->rx_skb_top)
       
  3680 					dev_kfree_skb(rx_ring->rx_skb_top);
       
  3681 				rx_ring->rx_skb_top = NULL;
       
  3682 				goto next_desc;
       
  3683 			}
       
  3684 		}
       
  3685 
       
  3686 #define rxtop rx_ring->rx_skb_top
       
  3687 		if (!(status & E1000_RXD_STAT_EOP)) {
       
  3688 			/* this descriptor is only the beginning (or middle) */
       
  3689 			if (!rxtop) {
       
  3690 				/* this is the beginning of a chain */
       
  3691 				rxtop = skb;
       
  3692 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
       
  3693 				                   0, length);
       
  3694 			} else {
       
  3695 				/* this is the middle of a chain */
       
  3696 				skb_fill_page_desc(rxtop,
       
  3697 				    skb_shinfo(rxtop)->nr_frags,
       
  3698 				    buffer_info->page, 0, length);
       
  3699 				/* re-use the skb, only consumed the page */
       
  3700 				buffer_info->skb = skb;
       
  3701 			}
       
  3702 			e1000_consume_page(buffer_info, rxtop, length);
       
  3703 			goto next_desc;
       
  3704 		} else {
       
  3705 			if (rxtop) {
       
  3706 				/* end of the chain */
       
  3707 				skb_fill_page_desc(rxtop,
       
  3708 				    skb_shinfo(rxtop)->nr_frags,
       
  3709 				    buffer_info->page, 0, length);
       
  3710 				/* re-use the current skb, we only consumed the
       
  3711 				 * page */
       
  3712 				buffer_info->skb = skb;
       
  3713 				skb = rxtop;
       
  3714 				rxtop = NULL;
       
  3715 				e1000_consume_page(buffer_info, skb, length);
       
  3716 			} else {
       
  3717 				/* no chain, got EOP, this buf is the packet
       
  3718 				 * copybreak to save the put_page/alloc_page */
       
  3719 				if (length <= copybreak &&
       
  3720 				    skb_tailroom(skb) >= length) {
       
  3721 					u8 *vaddr;
       
  3722 					vaddr = kmap_atomic(buffer_info->page,
       
  3723 					                    KM_SKB_DATA_SOFTIRQ);
       
  3724 					memcpy(skb_tail_pointer(skb), vaddr, length);
       
  3725 					kunmap_atomic(vaddr,
       
  3726 					              KM_SKB_DATA_SOFTIRQ);
       
  3727 					/* re-use the page, so don't erase
       
  3728 					 * buffer_info->page */
       
  3729 					skb_put(skb, length);
       
  3730 				} else {
       
  3731 					skb_fill_page_desc(skb, 0,
       
  3732 					                   buffer_info->page, 0,
       
  3733 				                           length);
       
  3734 					e1000_consume_page(buffer_info, skb,
       
  3735 					                   length);
       
  3736 				}
       
  3737 			}
       
  3738 		}
       
  3739 
       
  3740 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
       
  3741 		e1000_rx_checksum(adapter,
       
  3742 		                  (u32)(status) |
       
  3743 		                  ((u32)(rx_desc->errors) << 24),
       
  3744 		                  le16_to_cpu(rx_desc->csum), skb);
       
  3745 
       
  3746 		pskb_trim(skb, skb->len - 4);
       
  3747 
       
  3748 		/* probably a little skewed due to removing CRC */
       
  3749 		total_rx_bytes += skb->len;
       
  3750 		total_rx_packets++;
       
  3751 
       
  3752 		/* eth type trans needs skb->data to point to something */
       
  3753 		if (!pskb_may_pull(skb, ETH_HLEN)) {
       
  3754 			e_err("pskb_may_pull failed.\n");
       
  3755 			dev_kfree_skb(skb);
       
  3756 			goto next_desc;
       
  3757 		}
       
  3758 
       
  3759 		skb->protocol = eth_type_trans(skb, netdev);
       
  3760 
       
  3761 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
       
  3762 
       
  3763 next_desc:
       
  3764 		rx_desc->status = 0;
       
  3765 
       
  3766 		/* return some buffers to hardware, one at a time is too slow */
       
  3767 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  3768 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3769 			cleaned_count = 0;
       
  3770 		}
       
  3771 
       
  3772 		/* use prefetched values */
       
  3773 		rx_desc = next_rxd;
       
  3774 		buffer_info = next_buffer;
       
  3775 	}
       
  3776 	rx_ring->next_to_clean = i;
       
  3777 
       
  3778 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  3779 	if (cleaned_count)
       
  3780 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3781 
       
  3782 	adapter->total_rx_packets += total_rx_packets;
       
  3783 	adapter->total_rx_bytes += total_rx_bytes;
       
  3784 	netdev->stats.rx_bytes += total_rx_bytes;
       
  3785 	netdev->stats.rx_packets += total_rx_packets;
       
  3786 	return cleaned;
       
  3787 }
       
  3788 
       
  3789 /*
       
  3790  * this should improve performance for small packets with large amounts
       
  3791  * of reassembly being done in the stack
       
  3792  */
       
  3793 static void e1000_check_copybreak(struct net_device *netdev,
       
  3794 				 struct e1000_buffer *buffer_info,
       
  3795 				 u32 length, struct sk_buff **skb)
       
  3796 {
       
  3797 	struct sk_buff *new_skb;
       
  3798 
       
  3799 	if (length > copybreak)
       
  3800 		return;
       
  3801 
       
  3802 	new_skb = netdev_alloc_skb_ip_align(netdev, length);
       
  3803 	if (!new_skb)
       
  3804 		return;
       
  3805 
       
  3806 	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
       
  3807 				       (*skb)->data - NET_IP_ALIGN,
       
  3808 				       length + NET_IP_ALIGN);
       
  3809 	/* save the skb in buffer_info as good */
       
  3810 	buffer_info->skb = *skb;
       
  3811 	*skb = new_skb;
       
  3812 }
       
  3813 
       
  3814 /**
       
  3815  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
  3816  * @adapter: board private structure
       
  3817  * @rx_ring: ring to clean
       
  3818  * @work_done: amount of napi work completed this call
       
  3819  * @work_to_do: max amount of work allowed for this call to do
       
  3820  */
       
  3821 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  3822 			       struct e1000_rx_ring *rx_ring,
       
  3823 			       int *work_done, int work_to_do)
       
  3824 {
       
  3825 	struct e1000_hw *hw = &adapter->hw;
       
  3826 	struct net_device *netdev = adapter->netdev;
       
  3827 	struct pci_dev *pdev = adapter->pdev;
       
  3828 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
  3829 	struct e1000_buffer *buffer_info, *next_buffer;
       
  3830 	unsigned long flags;
       
  3831 	u32 length;
       
  3832 	unsigned int i;
       
  3833 	int cleaned_count = 0;
       
  3834 	bool cleaned = false;
       
  3835 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  3836 
       
  3837 	i = rx_ring->next_to_clean;
       
  3838 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  3839 	buffer_info = &rx_ring->buffer_info[i];
       
  3840 
       
  3841 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
  3842 		struct sk_buff *skb;
       
  3843 		u8 status;
       
  3844 
       
  3845 		if (*work_done >= work_to_do)
       
  3846 			break;
       
  3847 		(*work_done)++;
       
  3848 		rmb(); /* read descriptor and rx_buffer_info after status DD */
       
  3849 
       
  3850 		status = rx_desc->status;
       
  3851 		skb = buffer_info->skb;
       
  3852 		buffer_info->skb = NULL;
       
  3853 
       
  3854 		prefetch(skb->data - NET_IP_ALIGN);
       
  3855 
       
  3856 		if (++i == rx_ring->count) i = 0;
       
  3857 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
  3858 		prefetch(next_rxd);
       
  3859 
       
  3860 		next_buffer = &rx_ring->buffer_info[i];
       
  3861 
       
  3862 		cleaned = true;
       
  3863 		cleaned_count++;
       
  3864 		dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  3865 				 buffer_info->length, DMA_FROM_DEVICE);
       
  3866 		buffer_info->dma = 0;
       
  3867 
       
  3868 		length = le16_to_cpu(rx_desc->length);
       
  3869 		/* !EOP means multiple descriptors were used to store a single
       
  3870 		 * packet, if thats the case we need to toss it.  In fact, we
       
  3871 		 * to toss every packet with the EOP bit clear and the next
       
  3872 		 * frame that _does_ have the EOP bit set, as it is by
       
  3873 		 * definition only a frame fragment
       
  3874 		 */
       
  3875 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
       
  3876 			adapter->discarding = true;
       
  3877 
       
  3878 		if (adapter->discarding) {
       
  3879 			/* All receives must fit into a single buffer */
       
  3880 			e_info("Receive packet consumed multiple buffers\n");
       
  3881 			/* recycle */
       
  3882 			buffer_info->skb = skb;
       
  3883 			if (status & E1000_RXD_STAT_EOP)
       
  3884 				adapter->discarding = false;
       
  3885 			goto next_desc;
       
  3886 		}
       
  3887 
       
  3888 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
       
  3889 			u8 last_byte = *(skb->data + length - 1);
       
  3890 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
       
  3891 				       last_byte)) {
       
  3892 				spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3893 				e1000_tbi_adjust_stats(hw, &adapter->stats,
       
  3894 				                       length, skb->data);
       
  3895 				spin_unlock_irqrestore(&adapter->stats_lock,
       
  3896 				                       flags);
       
  3897 				length--;
       
  3898 			} else {
       
  3899 				/* recycle */
       
  3900 				buffer_info->skb = skb;
       
  3901 				goto next_desc;
       
  3902 			}
       
  3903 		}
       
  3904 
       
  3905 		/* adjust length to remove Ethernet CRC, this must be
       
  3906 		 * done after the TBI_ACCEPT workaround above */
       
  3907 		length -= 4;
       
  3908 
       
  3909 		/* probably a little skewed due to removing CRC */
       
  3910 		total_rx_bytes += length;
       
  3911 		total_rx_packets++;
       
  3912 
       
  3913 		e1000_check_copybreak(netdev, buffer_info, length, &skb);
       
  3914 
       
  3915 		skb_put(skb, length);
       
  3916 
       
  3917 		/* Receive Checksum Offload */
       
  3918 		e1000_rx_checksum(adapter,
       
  3919 				  (u32)(status) |
       
  3920 				  ((u32)(rx_desc->errors) << 24),
       
  3921 				  le16_to_cpu(rx_desc->csum), skb);
       
  3922 
       
  3923 		skb->protocol = eth_type_trans(skb, netdev);
       
  3924 
       
  3925 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
       
  3926 
       
  3927 next_desc:
       
  3928 		rx_desc->status = 0;
       
  3929 
       
  3930 		/* return some buffers to hardware, one at a time is too slow */
       
  3931 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  3932 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3933 			cleaned_count = 0;
       
  3934 		}
       
  3935 
       
  3936 		/* use prefetched values */
       
  3937 		rx_desc = next_rxd;
       
  3938 		buffer_info = next_buffer;
       
  3939 	}
       
  3940 	rx_ring->next_to_clean = i;
       
  3941 
       
  3942 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  3943 	if (cleaned_count)
       
  3944 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  3945 
       
  3946 	adapter->total_rx_packets += total_rx_packets;
       
  3947 	adapter->total_rx_bytes += total_rx_bytes;
       
  3948 	netdev->stats.rx_bytes += total_rx_bytes;
       
  3949 	netdev->stats.rx_packets += total_rx_packets;
       
  3950 	return cleaned;
       
  3951 }
       
  3952 
       
  3953 /**
       
  3954  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
       
  3955  * @adapter: address of board private structure
       
  3956  * @rx_ring: pointer to receive ring structure
       
  3957  * @cleaned_count: number of buffers to allocate this pass
       
  3958  **/
       
  3959 
       
  3960 static void
       
  3961 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
       
  3962                              struct e1000_rx_ring *rx_ring, int cleaned_count)
       
  3963 {
       
  3964 	struct net_device *netdev = adapter->netdev;
       
  3965 	struct pci_dev *pdev = adapter->pdev;
       
  3966 	struct e1000_rx_desc *rx_desc;
       
  3967 	struct e1000_buffer *buffer_info;
       
  3968 	struct sk_buff *skb;
       
  3969 	unsigned int i;
       
  3970 	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
       
  3971 
       
  3972 	i = rx_ring->next_to_use;
       
  3973 	buffer_info = &rx_ring->buffer_info[i];
       
  3974 
       
  3975 	while (cleaned_count--) {
       
  3976 		skb = buffer_info->skb;
       
  3977 		if (skb) {
       
  3978 			skb_trim(skb, 0);
       
  3979 			goto check_page;
       
  3980 		}
       
  3981 
       
  3982 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
  3983 		if (unlikely(!skb)) {
       
  3984 			/* Better luck next round */
       
  3985 			adapter->alloc_rx_buff_failed++;
       
  3986 			break;
       
  3987 		}
       
  3988 
       
  3989 		/* Fix for errata 23, can't cross 64kB boundary */
       
  3990 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  3991 			struct sk_buff *oldskb = skb;
       
  3992 			e_err("skb align check failed: %u bytes at %p\n",
       
  3993 			      bufsz, skb->data);
       
  3994 			/* Try again, without freeing the previous */
       
  3995 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
  3996 			/* Failed allocation, critical failure */
       
  3997 			if (!skb) {
       
  3998 				dev_kfree_skb(oldskb);
       
  3999 				adapter->alloc_rx_buff_failed++;
       
  4000 				break;
       
  4001 			}
       
  4002 
       
  4003 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4004 				/* give up */
       
  4005 				dev_kfree_skb(skb);
       
  4006 				dev_kfree_skb(oldskb);
       
  4007 				break; /* while (cleaned_count--) */
       
  4008 			}
       
  4009 
       
  4010 			/* Use new allocation */
       
  4011 			dev_kfree_skb(oldskb);
       
  4012 		}
       
  4013 		buffer_info->skb = skb;
       
  4014 		buffer_info->length = adapter->rx_buffer_len;
       
  4015 check_page:
       
  4016 		/* allocate a new page if necessary */
       
  4017 		if (!buffer_info->page) {
       
  4018 			buffer_info->page = alloc_page(GFP_ATOMIC);
       
  4019 			if (unlikely(!buffer_info->page)) {
       
  4020 				adapter->alloc_rx_buff_failed++;
       
  4021 				break;
       
  4022 			}
       
  4023 		}
       
  4024 
       
  4025 		if (!buffer_info->dma) {
       
  4026 			buffer_info->dma = dma_map_page(&pdev->dev,
       
  4027 			                                buffer_info->page, 0,
       
  4028 							buffer_info->length,
       
  4029 							DMA_FROM_DEVICE);
       
  4030 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
       
  4031 				put_page(buffer_info->page);
       
  4032 				dev_kfree_skb(skb);
       
  4033 				buffer_info->page = NULL;
       
  4034 				buffer_info->skb = NULL;
       
  4035 				buffer_info->dma = 0;
       
  4036 				adapter->alloc_rx_buff_failed++;
       
  4037 				break; /* while !buffer_info->skb */
       
  4038 			}
       
  4039 		}
       
  4040 
       
  4041 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4042 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4043 
       
  4044 		if (unlikely(++i == rx_ring->count))
       
  4045 			i = 0;
       
  4046 		buffer_info = &rx_ring->buffer_info[i];
       
  4047 	}
       
  4048 
       
  4049 	if (likely(rx_ring->next_to_use != i)) {
       
  4050 		rx_ring->next_to_use = i;
       
  4051 		if (unlikely(i-- == 0))
       
  4052 			i = (rx_ring->count - 1);
       
  4053 
       
  4054 		/* Force memory writes to complete before letting h/w
       
  4055 		 * know there are new descriptors to fetch.  (Only
       
  4056 		 * applicable for weak-ordered memory model archs,
       
  4057 		 * such as IA-64). */
       
  4058 		wmb();
       
  4059 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
       
  4060 	}
       
  4061 }
       
  4062 
       
  4063 /**
       
  4064  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
  4065  * @adapter: address of board private structure
       
  4066  **/
       
  4067 
       
  4068 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
  4069 				   struct e1000_rx_ring *rx_ring,
       
  4070 				   int cleaned_count)
       
  4071 {
       
  4072 	struct e1000_hw *hw = &adapter->hw;
       
  4073 	struct net_device *netdev = adapter->netdev;
       
  4074 	struct pci_dev *pdev = adapter->pdev;
       
  4075 	struct e1000_rx_desc *rx_desc;
       
  4076 	struct e1000_buffer *buffer_info;
       
  4077 	struct sk_buff *skb;
       
  4078 	unsigned int i;
       
  4079 	unsigned int bufsz = adapter->rx_buffer_len;
       
  4080 
       
  4081 	i = rx_ring->next_to_use;
       
  4082 	buffer_info = &rx_ring->buffer_info[i];
       
  4083 
       
  4084 	while (cleaned_count--) {
       
  4085 		skb = buffer_info->skb;
       
  4086 		if (skb) {
       
  4087 			skb_trim(skb, 0);
       
  4088 			goto map_skb;
       
  4089 		}
       
  4090 
       
  4091 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
  4092 		if (unlikely(!skb)) {
       
  4093 			/* Better luck next round */
       
  4094 			adapter->alloc_rx_buff_failed++;
       
  4095 			break;
       
  4096 		}
       
  4097 
       
  4098 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4099 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4100 			struct sk_buff *oldskb = skb;
       
  4101 			e_err("skb align check failed: %u bytes at %p\n",
       
  4102 			      bufsz, skb->data);
       
  4103 			/* Try again, without freeing the previous */
       
  4104 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
       
  4105 			/* Failed allocation, critical failure */
       
  4106 			if (!skb) {
       
  4107 				dev_kfree_skb(oldskb);
       
  4108 				adapter->alloc_rx_buff_failed++;
       
  4109 				break;
       
  4110 			}
       
  4111 
       
  4112 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4113 				/* give up */
       
  4114 				dev_kfree_skb(skb);
       
  4115 				dev_kfree_skb(oldskb);
       
  4116 				adapter->alloc_rx_buff_failed++;
       
  4117 				break; /* while !buffer_info->skb */
       
  4118 			}
       
  4119 
       
  4120 			/* Use new allocation */
       
  4121 			dev_kfree_skb(oldskb);
       
  4122 		}
       
  4123 		buffer_info->skb = skb;
       
  4124 		buffer_info->length = adapter->rx_buffer_len;
       
  4125 map_skb:
       
  4126 		buffer_info->dma = dma_map_single(&pdev->dev,
       
  4127 						  skb->data,
       
  4128 						  buffer_info->length,
       
  4129 						  DMA_FROM_DEVICE);
       
  4130 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
       
  4131 			dev_kfree_skb(skb);
       
  4132 			buffer_info->skb = NULL;
       
  4133 			buffer_info->dma = 0;
       
  4134 			adapter->alloc_rx_buff_failed++;
       
  4135 			break; /* while !buffer_info->skb */
       
  4136 		}
       
  4137 
       
  4138 		/*
       
  4139 		 * XXX if it was allocated cleanly it will never map to a
       
  4140 		 * boundary crossing
       
  4141 		 */
       
  4142 
       
  4143 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4144 		if (!e1000_check_64k_bound(adapter,
       
  4145 					(void *)(unsigned long)buffer_info->dma,
       
  4146 					adapter->rx_buffer_len)) {
       
  4147 			e_err("dma align check failed: %u bytes at %p\n",
       
  4148 			      adapter->rx_buffer_len,
       
  4149 			      (void *)(unsigned long)buffer_info->dma);
       
  4150 			dev_kfree_skb(skb);
       
  4151 			buffer_info->skb = NULL;
       
  4152 
       
  4153 			dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  4154 					 adapter->rx_buffer_len,
       
  4155 					 DMA_FROM_DEVICE);
       
  4156 			buffer_info->dma = 0;
       
  4157 
       
  4158 			adapter->alloc_rx_buff_failed++;
       
  4159 			break; /* while !buffer_info->skb */
       
  4160 		}
       
  4161 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4162 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4163 
       
  4164 		if (unlikely(++i == rx_ring->count))
       
  4165 			i = 0;
       
  4166 		buffer_info = &rx_ring->buffer_info[i];
       
  4167 	}
       
  4168 
       
  4169 	if (likely(rx_ring->next_to_use != i)) {
       
  4170 		rx_ring->next_to_use = i;
       
  4171 		if (unlikely(i-- == 0))
       
  4172 			i = (rx_ring->count - 1);
       
  4173 
       
  4174 		/* Force memory writes to complete before letting h/w
       
  4175 		 * know there are new descriptors to fetch.  (Only
       
  4176 		 * applicable for weak-ordered memory model archs,
       
  4177 		 * such as IA-64). */
       
  4178 		wmb();
       
  4179 		writel(i, hw->hw_addr + rx_ring->rdt);
       
  4180 	}
       
  4181 }
       
  4182 
       
  4183 /**
       
  4184  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
       
  4185  * @adapter:
       
  4186  **/
       
  4187 
       
  4188 static void e1000_smartspeed(struct e1000_adapter *adapter)
       
  4189 {
       
  4190 	struct e1000_hw *hw = &adapter->hw;
       
  4191 	u16 phy_status;
       
  4192 	u16 phy_ctrl;
       
  4193 
       
  4194 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
       
  4195 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
       
  4196 		return;
       
  4197 
       
  4198 	if (adapter->smartspeed == 0) {
       
  4199 		/* If Master/Slave config fault is asserted twice,
       
  4200 		 * we assume back-to-back */
       
  4201 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
       
  4202 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4203 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
       
  4204 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4205 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4206 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
       
  4207 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
       
  4208 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
       
  4209 					    phy_ctrl);
       
  4210 			adapter->smartspeed++;
       
  4211 			if (!e1000_phy_setup_autoneg(hw) &&
       
  4212 			   !e1000_read_phy_reg(hw, PHY_CTRL,
       
  4213 				   	       &phy_ctrl)) {
       
  4214 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4215 					     MII_CR_RESTART_AUTO_NEG);
       
  4216 				e1000_write_phy_reg(hw, PHY_CTRL,
       
  4217 						    phy_ctrl);
       
  4218 			}
       
  4219 		}
       
  4220 		return;
       
  4221 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
       
  4222 		/* If still no link, perhaps using 2/3 pair cable */
       
  4223 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4224 		phy_ctrl |= CR_1000T_MS_ENABLE;
       
  4225 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
       
  4226 		if (!e1000_phy_setup_autoneg(hw) &&
       
  4227 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
       
  4228 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4229 				     MII_CR_RESTART_AUTO_NEG);
       
  4230 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
       
  4231 		}
       
  4232 	}
       
  4233 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
       
  4234 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
       
  4235 		adapter->smartspeed = 0;
       
  4236 }
       
  4237 
       
  4238 /**
       
  4239  * e1000_ioctl -
       
  4240  * @netdev:
       
  4241  * @ifreq:
       
  4242  * @cmd:
       
  4243  **/
       
  4244 
       
  4245 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4246 {
       
  4247 	switch (cmd) {
       
  4248 	case SIOCGMIIPHY:
       
  4249 	case SIOCGMIIREG:
       
  4250 	case SIOCSMIIREG:
       
  4251 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  4252 	default:
       
  4253 		return -EOPNOTSUPP;
       
  4254 	}
       
  4255 }
       
  4256 
       
  4257 /**
       
  4258  * e1000_mii_ioctl -
       
  4259  * @netdev:
       
  4260  * @ifreq:
       
  4261  * @cmd:
       
  4262  **/
       
  4263 
       
  4264 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
  4265 			   int cmd)
       
  4266 {
       
  4267 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4268 	struct e1000_hw *hw = &adapter->hw;
       
  4269 	struct mii_ioctl_data *data = if_mii(ifr);
       
  4270 	int retval;
       
  4271 	u16 mii_reg;
       
  4272 	u16 spddplx;
       
  4273 	unsigned long flags;
       
  4274 
       
  4275 	if (hw->media_type != e1000_media_type_copper)
       
  4276 		return -EOPNOTSUPP;
       
  4277 
       
  4278 	switch (cmd) {
       
  4279 	case SIOCGMIIPHY:
       
  4280 		data->phy_id = hw->phy_addr;
       
  4281 		break;
       
  4282 	case SIOCGMIIREG:
       
  4283 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4284 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
       
  4285 				   &data->val_out)) {
       
  4286 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4287 			return -EIO;
       
  4288 		}
       
  4289 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4290 		break;
       
  4291 	case SIOCSMIIREG:
       
  4292 		if (data->reg_num & ~(0x1F))
       
  4293 			return -EFAULT;
       
  4294 		mii_reg = data->val_in;
       
  4295 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4296 		if (e1000_write_phy_reg(hw, data->reg_num,
       
  4297 					mii_reg)) {
       
  4298 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4299 			return -EIO;
       
  4300 		}
       
  4301 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4302 		if (hw->media_type == e1000_media_type_copper) {
       
  4303 			switch (data->reg_num) {
       
  4304 			case PHY_CTRL:
       
  4305 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4306 					break;
       
  4307 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
       
  4308 					hw->autoneg = 1;
       
  4309 					hw->autoneg_advertised = 0x2F;
       
  4310 				} else {
       
  4311 					if (mii_reg & 0x40)
       
  4312 						spddplx = SPEED_1000;
       
  4313 					else if (mii_reg & 0x2000)
       
  4314 						spddplx = SPEED_100;
       
  4315 					else
       
  4316 						spddplx = SPEED_10;
       
  4317 					spddplx += (mii_reg & 0x100)
       
  4318 						   ? DUPLEX_FULL :
       
  4319 						   DUPLEX_HALF;
       
  4320 					retval = e1000_set_spd_dplx(adapter,
       
  4321 								    spddplx);
       
  4322 					if (retval)
       
  4323 						return retval;
       
  4324 				}
       
  4325 				if (netif_running(adapter->netdev))
       
  4326 					e1000_reinit_locked(adapter);
       
  4327 				else
       
  4328 					e1000_reset(adapter);
       
  4329 				break;
       
  4330 			case M88E1000_PHY_SPEC_CTRL:
       
  4331 			case M88E1000_EXT_PHY_SPEC_CTRL:
       
  4332 				if (e1000_phy_reset(hw))
       
  4333 					return -EIO;
       
  4334 				break;
       
  4335 			}
       
  4336 		} else {
       
  4337 			switch (data->reg_num) {
       
  4338 			case PHY_CTRL:
       
  4339 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4340 					break;
       
  4341 				if (netif_running(adapter->netdev))
       
  4342 					e1000_reinit_locked(adapter);
       
  4343 				else
       
  4344 					e1000_reset(adapter);
       
  4345 				break;
       
  4346 			}
       
  4347 		}
       
  4348 		break;
       
  4349 	default:
       
  4350 		return -EOPNOTSUPP;
       
  4351 	}
       
  4352 	return E1000_SUCCESS;
       
  4353 }
       
  4354 
       
  4355 void e1000_pci_set_mwi(struct e1000_hw *hw)
       
  4356 {
       
  4357 	struct e1000_adapter *adapter = hw->back;
       
  4358 	int ret_val = pci_set_mwi(adapter->pdev);
       
  4359 
       
  4360 	if (ret_val)
       
  4361 		e_err("Error in setting MWI\n");
       
  4362 }
       
  4363 
       
  4364 void e1000_pci_clear_mwi(struct e1000_hw *hw)
       
  4365 {
       
  4366 	struct e1000_adapter *adapter = hw->back;
       
  4367 
       
  4368 	pci_clear_mwi(adapter->pdev);
       
  4369 }
       
  4370 
       
  4371 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
       
  4372 {
       
  4373 	struct e1000_adapter *adapter = hw->back;
       
  4374 	return pcix_get_mmrbc(adapter->pdev);
       
  4375 }
       
  4376 
       
  4377 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
       
  4378 {
       
  4379 	struct e1000_adapter *adapter = hw->back;
       
  4380 	pcix_set_mmrbc(adapter->pdev, mmrbc);
       
  4381 }
       
  4382 
       
  4383 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
       
  4384 {
       
  4385 	outl(value, port);
       
  4386 }
       
  4387 
       
  4388 static void e1000_vlan_rx_register(struct net_device *netdev,
       
  4389 				   struct vlan_group *grp)
       
  4390 {
       
  4391 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4392 	struct e1000_hw *hw = &adapter->hw;
       
  4393 	u32 ctrl, rctl;
       
  4394 
       
  4395 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4396 		e1000_irq_disable(adapter);
       
  4397 	adapter->vlgrp = grp;
       
  4398 
       
  4399 	if (grp) {
       
  4400 		/* enable VLAN tag insert/strip */
       
  4401 		ctrl = er32(CTRL);
       
  4402 		ctrl |= E1000_CTRL_VME;
       
  4403 		ew32(CTRL, ctrl);
       
  4404 
       
  4405 		/* enable VLAN receive filtering */
       
  4406 		rctl = er32(RCTL);
       
  4407 		rctl &= ~E1000_RCTL_CFIEN;
       
  4408 		if (!(netdev->flags & IFF_PROMISC))
       
  4409 			rctl |= E1000_RCTL_VFE;
       
  4410 		ew32(RCTL, rctl);
       
  4411 		e1000_update_mng_vlan(adapter);
       
  4412 	} else {
       
  4413 		/* disable VLAN tag insert/strip */
       
  4414 		ctrl = er32(CTRL);
       
  4415 		ctrl &= ~E1000_CTRL_VME;
       
  4416 		ew32(CTRL, ctrl);
       
  4417 
       
  4418 		/* disable VLAN receive filtering */
       
  4419 		rctl = er32(RCTL);
       
  4420 		rctl &= ~E1000_RCTL_VFE;
       
  4421 		ew32(RCTL, rctl);
       
  4422 
       
  4423 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
       
  4424 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  4425 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  4426 		}
       
  4427 	}
       
  4428 
       
  4429 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4430 		e1000_irq_enable(adapter);
       
  4431 }
       
  4432 
       
  4433 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
       
  4434 {
       
  4435 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4436 	struct e1000_hw *hw = &adapter->hw;
       
  4437 	u32 vfta, index;
       
  4438 
       
  4439 	if ((hw->mng_cookie.status &
       
  4440 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  4441 	    (vid == adapter->mng_vlan_id))
       
  4442 		return;
       
  4443 	/* add VID to filter table */
       
  4444 	index = (vid >> 5) & 0x7F;
       
  4445 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
       
  4446 	vfta |= (1 << (vid & 0x1F));
       
  4447 	e1000_write_vfta(hw, index, vfta);
       
  4448 }
       
  4449 
       
  4450 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
       
  4451 {
       
  4452 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4453 	struct e1000_hw *hw = &adapter->hw;
       
  4454 	u32 vfta, index;
       
  4455 
       
  4456 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4457 		e1000_irq_disable(adapter);
       
  4458 	vlan_group_set_device(adapter->vlgrp, vid, NULL);
       
  4459 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4460 		e1000_irq_enable(adapter);
       
  4461 
       
  4462 	/* remove VID from filter table */
       
  4463 	index = (vid >> 5) & 0x7F;
       
  4464 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
       
  4465 	vfta &= ~(1 << (vid & 0x1F));
       
  4466 	e1000_write_vfta(hw, index, vfta);
       
  4467 }
       
  4468 
       
  4469 static void e1000_restore_vlan(struct e1000_adapter *adapter)
       
  4470 {
       
  4471 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
       
  4472 
       
  4473 	if (adapter->vlgrp) {
       
  4474 		u16 vid;
       
  4475 		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
       
  4476 			if (!vlan_group_get_device(adapter->vlgrp, vid))
       
  4477 				continue;
       
  4478 			e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  4479 		}
       
  4480 	}
       
  4481 }
       
  4482 
       
  4483 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
       
  4484 {
       
  4485 	struct e1000_hw *hw = &adapter->hw;
       
  4486 
       
  4487 	hw->autoneg = 0;
       
  4488 
       
  4489 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
  4490 	if ((hw->media_type == e1000_media_type_fiber) &&
       
  4491 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
       
  4492 		e_err("Unsupported Speed/Duplex configuration\n");
       
  4493 		return -EINVAL;
       
  4494 	}
       
  4495 
       
  4496 	switch (spddplx) {
       
  4497 	case SPEED_10 + DUPLEX_HALF:
       
  4498 		hw->forced_speed_duplex = e1000_10_half;
       
  4499 		break;
       
  4500 	case SPEED_10 + DUPLEX_FULL:
       
  4501 		hw->forced_speed_duplex = e1000_10_full;
       
  4502 		break;
       
  4503 	case SPEED_100 + DUPLEX_HALF:
       
  4504 		hw->forced_speed_duplex = e1000_100_half;
       
  4505 		break;
       
  4506 	case SPEED_100 + DUPLEX_FULL:
       
  4507 		hw->forced_speed_duplex = e1000_100_full;
       
  4508 		break;
       
  4509 	case SPEED_1000 + DUPLEX_FULL:
       
  4510 		hw->autoneg = 1;
       
  4511 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
       
  4512 		break;
       
  4513 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
  4514 	default:
       
  4515 		e_err("Unsupported Speed/Duplex configuration\n");
       
  4516 		return -EINVAL;
       
  4517 	}
       
  4518 	return 0;
       
  4519 }
       
  4520 
       
  4521 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
       
  4522 {
       
  4523 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4524 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4525 	struct e1000_hw *hw = &adapter->hw;
       
  4526 	u32 ctrl, ctrl_ext, rctl, status;
       
  4527 	u32 wufc = adapter->wol;
       
  4528 #ifdef CONFIG_PM
       
  4529 	int retval = 0;
       
  4530 #endif
       
  4531 
       
  4532 	netif_device_detach(netdev);
       
  4533 
       
  4534 	if (netif_running(netdev)) {
       
  4535 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  4536 		e1000_down(adapter);
       
  4537 	}
       
  4538 
       
  4539 #ifdef CONFIG_PM
       
  4540 	retval = pci_save_state(pdev);
       
  4541 	if (retval)
       
  4542 		return retval;
       
  4543 #endif
       
  4544 
       
  4545 	status = er32(STATUS);
       
  4546 	if (status & E1000_STATUS_LU)
       
  4547 		wufc &= ~E1000_WUFC_LNKC;
       
  4548 
       
  4549 	if (wufc) {
       
  4550 		e1000_setup_rctl(adapter);
       
  4551 		e1000_set_rx_mode(netdev);
       
  4552 
       
  4553 		/* turn on all-multi mode if wake on multicast is enabled */
       
  4554 		if (wufc & E1000_WUFC_MC) {
       
  4555 			rctl = er32(RCTL);
       
  4556 			rctl |= E1000_RCTL_MPE;
       
  4557 			ew32(RCTL, rctl);
       
  4558 		}
       
  4559 
       
  4560 		if (hw->mac_type >= e1000_82540) {
       
  4561 			ctrl = er32(CTRL);
       
  4562 			/* advertise wake from D3Cold */
       
  4563 			#define E1000_CTRL_ADVD3WUC 0x00100000
       
  4564 			/* phy power management enable */
       
  4565 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  4566 			ctrl |= E1000_CTRL_ADVD3WUC |
       
  4567 				E1000_CTRL_EN_PHY_PWR_MGMT;
       
  4568 			ew32(CTRL, ctrl);
       
  4569 		}
       
  4570 
       
  4571 		if (hw->media_type == e1000_media_type_fiber ||
       
  4572 		    hw->media_type == e1000_media_type_internal_serdes) {
       
  4573 			/* keep the laser running in D3 */
       
  4574 			ctrl_ext = er32(CTRL_EXT);
       
  4575 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
       
  4576 			ew32(CTRL_EXT, ctrl_ext);
       
  4577 		}
       
  4578 
       
  4579 		ew32(WUC, E1000_WUC_PME_EN);
       
  4580 		ew32(WUFC, wufc);
       
  4581 	} else {
       
  4582 		ew32(WUC, 0);
       
  4583 		ew32(WUFC, 0);
       
  4584 	}
       
  4585 
       
  4586 	e1000_release_manageability(adapter);
       
  4587 
       
  4588 	*enable_wake = !!wufc;
       
  4589 
       
  4590 	/* make sure adapter isn't asleep if manageability is enabled */
       
  4591 	if (adapter->en_mng_pt)
       
  4592 		*enable_wake = true;
       
  4593 
       
  4594 	if (netif_running(netdev))
       
  4595 		e1000_free_irq(adapter);
       
  4596 
       
  4597 	pci_disable_device(pdev);
       
  4598 
       
  4599 	return 0;
       
  4600 }
       
  4601 
       
  4602 #ifdef CONFIG_PM
       
  4603 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
       
  4604 {
       
  4605 	int retval;
       
  4606 	bool wake;
       
  4607 
       
  4608 	retval = __e1000_shutdown(pdev, &wake);
       
  4609 	if (retval)
       
  4610 		return retval;
       
  4611 
       
  4612 	if (wake) {
       
  4613 		pci_prepare_to_sleep(pdev);
       
  4614 	} else {
       
  4615 		pci_wake_from_d3(pdev, false);
       
  4616 		pci_set_power_state(pdev, PCI_D3hot);
       
  4617 	}
       
  4618 
       
  4619 	return 0;
       
  4620 }
       
  4621 
       
  4622 static int e1000_resume(struct pci_dev *pdev)
       
  4623 {
       
  4624 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4625 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4626 	struct e1000_hw *hw = &adapter->hw;
       
  4627 	u32 err;
       
  4628 
       
  4629 	pci_set_power_state(pdev, PCI_D0);
       
  4630 	pci_restore_state(pdev);
       
  4631 	pci_save_state(pdev);
       
  4632 
       
  4633 	if (adapter->need_ioport)
       
  4634 		err = pci_enable_device(pdev);
       
  4635 	else
       
  4636 		err = pci_enable_device_mem(pdev);
       
  4637 	if (err) {
       
  4638 		pr_err("Cannot enable PCI device from suspend\n");
       
  4639 		return err;
       
  4640 	}
       
  4641 	pci_set_master(pdev);
       
  4642 
       
  4643 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4644 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4645 
       
  4646 	if (netif_running(netdev)) {
       
  4647 		err = e1000_request_irq(adapter);
       
  4648 		if (err)
       
  4649 			return err;
       
  4650 	}
       
  4651 
       
  4652 	e1000_power_up_phy(adapter);
       
  4653 	e1000_reset(adapter);
       
  4654 	ew32(WUS, ~0);
       
  4655 
       
  4656 	e1000_init_manageability(adapter);
       
  4657 
       
  4658 	if (netif_running(netdev))
       
  4659 		e1000_up(adapter);
       
  4660 
       
  4661 	netif_device_attach(netdev);
       
  4662 
       
  4663 	return 0;
       
  4664 }
       
  4665 #endif
       
  4666 
       
  4667 static void e1000_shutdown(struct pci_dev *pdev)
       
  4668 {
       
  4669 	bool wake;
       
  4670 
       
  4671 	__e1000_shutdown(pdev, &wake);
       
  4672 
       
  4673 	if (system_state == SYSTEM_POWER_OFF) {
       
  4674 		pci_wake_from_d3(pdev, wake);
       
  4675 		pci_set_power_state(pdev, PCI_D3hot);
       
  4676 	}
       
  4677 }
       
  4678 
       
  4679 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  4680 /*
       
  4681  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  4682  * without having to re-enable interrupts. It's not called while
       
  4683  * the interrupt routine is executing.
       
  4684  */
       
  4685 static void e1000_netpoll(struct net_device *netdev)
       
  4686 {
       
  4687 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4688 
       
  4689 	disable_irq(adapter->pdev->irq);
       
  4690 	e1000_intr(adapter->pdev->irq, netdev);
       
  4691 	enable_irq(adapter->pdev->irq);
       
  4692 }
       
  4693 #endif
       
  4694 
       
  4695 /**
       
  4696  * e1000_io_error_detected - called when PCI error is detected
       
  4697  * @pdev: Pointer to PCI device
       
  4698  * @state: The current pci connection state
       
  4699  *
       
  4700  * This function is called after a PCI bus error affecting
       
  4701  * this device has been detected.
       
  4702  */
       
  4703 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
  4704 						pci_channel_state_t state)
       
  4705 {
       
  4706 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4707 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4708 
       
  4709 	netif_device_detach(netdev);
       
  4710 
       
  4711 	if (state == pci_channel_io_perm_failure)
       
  4712 		return PCI_ERS_RESULT_DISCONNECT;
       
  4713 
       
  4714 	if (netif_running(netdev))
       
  4715 		e1000_down(adapter);
       
  4716 	pci_disable_device(pdev);
       
  4717 
       
  4718 	/* Request a slot slot reset. */
       
  4719 	return PCI_ERS_RESULT_NEED_RESET;
       
  4720 }
       
  4721 
       
  4722 /**
       
  4723  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  4724  * @pdev: Pointer to PCI device
       
  4725  *
       
  4726  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  4727  * resembles the first-half of the e1000_resume routine.
       
  4728  */
       
  4729 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  4730 {
       
  4731 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4732 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4733 	struct e1000_hw *hw = &adapter->hw;
       
  4734 	int err;
       
  4735 
       
  4736 	if (adapter->need_ioport)
       
  4737 		err = pci_enable_device(pdev);
       
  4738 	else
       
  4739 		err = pci_enable_device_mem(pdev);
       
  4740 	if (err) {
       
  4741 		pr_err("Cannot re-enable PCI device after reset.\n");
       
  4742 		return PCI_ERS_RESULT_DISCONNECT;
       
  4743 	}
       
  4744 	pci_set_master(pdev);
       
  4745 
       
  4746 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4747 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4748 
       
  4749 	e1000_reset(adapter);
       
  4750 	ew32(WUS, ~0);
       
  4751 
       
  4752 	return PCI_ERS_RESULT_RECOVERED;
       
  4753 }
       
  4754 
       
  4755 /**
       
  4756  * e1000_io_resume - called when traffic can start flowing again.
       
  4757  * @pdev: Pointer to PCI device
       
  4758  *
       
  4759  * This callback is called when the error recovery driver tells us that
       
  4760  * its OK to resume normal operation. Implementation resembles the
       
  4761  * second-half of the e1000_resume routine.
       
  4762  */
       
  4763 static void e1000_io_resume(struct pci_dev *pdev)
       
  4764 {
       
  4765 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4766 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4767 
       
  4768 	e1000_init_manageability(adapter);
       
  4769 
       
  4770 	if (netif_running(netdev)) {
       
  4771 		if (e1000_up(adapter)) {
       
  4772 			pr_info("can't bring device back up after reset\n");
       
  4773 			return;
       
  4774 		}
       
  4775 	}
       
  4776 
       
  4777 	netif_device_attach(netdev);
       
  4778 }
       
  4779 
       
  4780 /* e1000_main.c */