|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2008 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 #include <linux/module.h> |
|
30 #include <linux/types.h> |
|
31 #include <linux/init.h> |
|
32 #include <linux/pci.h> |
|
33 #include <linux/vmalloc.h> |
|
34 #include <linux/pagemap.h> |
|
35 #include <linux/delay.h> |
|
36 #include <linux/netdevice.h> |
|
37 #include <linux/tcp.h> |
|
38 #include <linux/ipv6.h> |
|
39 #include <net/checksum.h> |
|
40 #include <net/ip6_checksum.h> |
|
41 #include <linux/mii.h> |
|
42 #include <linux/ethtool.h> |
|
43 #include <linux/if_vlan.h> |
|
44 #include <linux/cpu.h> |
|
45 #include <linux/smp.h> |
|
46 #include <linux/pm_qos_params.h> |
|
47 #include <linux/aer.h> |
|
48 |
|
49 #include "e1000.h" |
|
50 |
|
51 #define DRV_VERSION "1.0.2-k2" |
|
52 char e1000e_driver_name[] = "e1000e"; |
|
53 const char e1000e_driver_version[] = DRV_VERSION; |
|
54 |
|
55 static const struct e1000_info *e1000_info_tbl[] = { |
|
56 [board_82571] = &e1000_82571_info, |
|
57 [board_82572] = &e1000_82572_info, |
|
58 [board_82573] = &e1000_82573_info, |
|
59 [board_82574] = &e1000_82574_info, |
|
60 [board_82583] = &e1000_82583_info, |
|
61 [board_80003es2lan] = &e1000_es2_info, |
|
62 [board_ich8lan] = &e1000_ich8_info, |
|
63 [board_ich9lan] = &e1000_ich9_info, |
|
64 [board_ich10lan] = &e1000_ich10_info, |
|
65 [board_pchlan] = &e1000_pch_info, |
|
66 }; |
|
67 |
|
68 #ifdef DEBUG |
|
69 /** |
|
70 * e1000_get_hw_dev_name - return device name string |
|
71 * used by hardware layer to print debugging information |
|
72 **/ |
|
73 char *e1000e_get_hw_dev_name(struct e1000_hw *hw) |
|
74 { |
|
75 return hw->adapter->netdev->name; |
|
76 } |
|
77 #endif |
|
78 |
|
79 /** |
|
80 * e1000_desc_unused - calculate if we have unused descriptors |
|
81 **/ |
|
82 static int e1000_desc_unused(struct e1000_ring *ring) |
|
83 { |
|
84 if (ring->next_to_clean > ring->next_to_use) |
|
85 return ring->next_to_clean - ring->next_to_use - 1; |
|
86 |
|
87 return ring->count + ring->next_to_clean - ring->next_to_use - 1; |
|
88 } |
|
89 |
|
90 /** |
|
91 * e1000_receive_skb - helper function to handle Rx indications |
|
92 * @adapter: board private structure |
|
93 * @status: descriptor status field as written by hardware |
|
94 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) |
|
95 * @skb: pointer to sk_buff to be indicated to stack |
|
96 **/ |
|
97 static void e1000_receive_skb(struct e1000_adapter *adapter, |
|
98 struct net_device *netdev, |
|
99 struct sk_buff *skb, |
|
100 u8 status, __le16 vlan) |
|
101 { |
|
102 skb->protocol = eth_type_trans(skb, netdev); |
|
103 |
|
104 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) |
|
105 vlan_gro_receive(&adapter->napi, adapter->vlgrp, |
|
106 le16_to_cpu(vlan), skb); |
|
107 else |
|
108 napi_gro_receive(&adapter->napi, skb); |
|
109 } |
|
110 |
|
111 /** |
|
112 * e1000_rx_checksum - Receive Checksum Offload for 82543 |
|
113 * @adapter: board private structure |
|
114 * @status_err: receive descriptor status and error fields |
|
115 * @csum: receive descriptor csum field |
|
116 * @sk_buff: socket buffer with received data |
|
117 **/ |
|
118 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
|
119 u32 csum, struct sk_buff *skb) |
|
120 { |
|
121 u16 status = (u16)status_err; |
|
122 u8 errors = (u8)(status_err >> 24); |
|
123 skb->ip_summed = CHECKSUM_NONE; |
|
124 |
|
125 /* Ignore Checksum bit is set */ |
|
126 if (status & E1000_RXD_STAT_IXSM) |
|
127 return; |
|
128 /* TCP/UDP checksum error bit is set */ |
|
129 if (errors & E1000_RXD_ERR_TCPE) { |
|
130 /* let the stack verify checksum errors */ |
|
131 adapter->hw_csum_err++; |
|
132 return; |
|
133 } |
|
134 |
|
135 /* TCP/UDP Checksum has not been calculated */ |
|
136 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) |
|
137 return; |
|
138 |
|
139 /* It must be a TCP or UDP packet with a valid checksum */ |
|
140 if (status & E1000_RXD_STAT_TCPCS) { |
|
141 /* TCP checksum is good */ |
|
142 skb->ip_summed = CHECKSUM_UNNECESSARY; |
|
143 } else { |
|
144 /* |
|
145 * IP fragment with UDP payload |
|
146 * Hardware complements the payload checksum, so we undo it |
|
147 * and then put the value in host order for further stack use. |
|
148 */ |
|
149 __sum16 sum = (__force __sum16)htons(csum); |
|
150 skb->csum = csum_unfold(~sum); |
|
151 skb->ip_summed = CHECKSUM_COMPLETE; |
|
152 } |
|
153 adapter->hw_csum_good++; |
|
154 } |
|
155 |
|
156 /** |
|
157 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
|
158 * @adapter: address of board private structure |
|
159 **/ |
|
160 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
161 int cleaned_count) |
|
162 { |
|
163 struct net_device *netdev = adapter->netdev; |
|
164 struct pci_dev *pdev = adapter->pdev; |
|
165 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
166 struct e1000_rx_desc *rx_desc; |
|
167 struct e1000_buffer *buffer_info; |
|
168 struct sk_buff *skb; |
|
169 unsigned int i; |
|
170 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; |
|
171 |
|
172 i = rx_ring->next_to_use; |
|
173 buffer_info = &rx_ring->buffer_info[i]; |
|
174 |
|
175 while (cleaned_count--) { |
|
176 skb = buffer_info->skb; |
|
177 if (skb) { |
|
178 skb_trim(skb, 0); |
|
179 goto map_skb; |
|
180 } |
|
181 |
|
182 skb = netdev_alloc_skb(netdev, bufsz); |
|
183 if (!skb) { |
|
184 /* Better luck next round */ |
|
185 adapter->alloc_rx_buff_failed++; |
|
186 break; |
|
187 } |
|
188 |
|
189 /* |
|
190 * Make buffer alignment 2 beyond a 16 byte boundary |
|
191 * this will result in a 16 byte aligned IP header after |
|
192 * the 14 byte MAC header is removed |
|
193 */ |
|
194 skb_reserve(skb, NET_IP_ALIGN); |
|
195 |
|
196 buffer_info->skb = skb; |
|
197 map_skb: |
|
198 buffer_info->dma = pci_map_single(pdev, skb->data, |
|
199 adapter->rx_buffer_len, |
|
200 PCI_DMA_FROMDEVICE); |
|
201 if (pci_dma_mapping_error(pdev, buffer_info->dma)) { |
|
202 dev_err(&pdev->dev, "RX DMA map failed\n"); |
|
203 adapter->rx_dma_failed++; |
|
204 break; |
|
205 } |
|
206 |
|
207 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
208 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
209 |
|
210 i++; |
|
211 if (i == rx_ring->count) |
|
212 i = 0; |
|
213 buffer_info = &rx_ring->buffer_info[i]; |
|
214 } |
|
215 |
|
216 if (rx_ring->next_to_use != i) { |
|
217 rx_ring->next_to_use = i; |
|
218 if (i-- == 0) |
|
219 i = (rx_ring->count - 1); |
|
220 |
|
221 /* |
|
222 * Force memory writes to complete before letting h/w |
|
223 * know there are new descriptors to fetch. (Only |
|
224 * applicable for weak-ordered memory model archs, |
|
225 * such as IA-64). |
|
226 */ |
|
227 wmb(); |
|
228 writel(i, adapter->hw.hw_addr + rx_ring->tail); |
|
229 } |
|
230 } |
|
231 |
|
232 /** |
|
233 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split |
|
234 * @adapter: address of board private structure |
|
235 **/ |
|
236 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, |
|
237 int cleaned_count) |
|
238 { |
|
239 struct net_device *netdev = adapter->netdev; |
|
240 struct pci_dev *pdev = adapter->pdev; |
|
241 union e1000_rx_desc_packet_split *rx_desc; |
|
242 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
243 struct e1000_buffer *buffer_info; |
|
244 struct e1000_ps_page *ps_page; |
|
245 struct sk_buff *skb; |
|
246 unsigned int i, j; |
|
247 |
|
248 i = rx_ring->next_to_use; |
|
249 buffer_info = &rx_ring->buffer_info[i]; |
|
250 |
|
251 while (cleaned_count--) { |
|
252 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
|
253 |
|
254 for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
|
255 ps_page = &buffer_info->ps_pages[j]; |
|
256 if (j >= adapter->rx_ps_pages) { |
|
257 /* all unused desc entries get hw null ptr */ |
|
258 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); |
|
259 continue; |
|
260 } |
|
261 if (!ps_page->page) { |
|
262 ps_page->page = alloc_page(GFP_ATOMIC); |
|
263 if (!ps_page->page) { |
|
264 adapter->alloc_rx_buff_failed++; |
|
265 goto no_buffers; |
|
266 } |
|
267 ps_page->dma = pci_map_page(pdev, |
|
268 ps_page->page, |
|
269 0, PAGE_SIZE, |
|
270 PCI_DMA_FROMDEVICE); |
|
271 if (pci_dma_mapping_error(pdev, ps_page->dma)) { |
|
272 dev_err(&adapter->pdev->dev, |
|
273 "RX DMA page map failed\n"); |
|
274 adapter->rx_dma_failed++; |
|
275 goto no_buffers; |
|
276 } |
|
277 } |
|
278 /* |
|
279 * Refresh the desc even if buffer_addrs |
|
280 * didn't change because each write-back |
|
281 * erases this info. |
|
282 */ |
|
283 rx_desc->read.buffer_addr[j+1] = |
|
284 cpu_to_le64(ps_page->dma); |
|
285 } |
|
286 |
|
287 skb = netdev_alloc_skb(netdev, |
|
288 adapter->rx_ps_bsize0 + NET_IP_ALIGN); |
|
289 |
|
290 if (!skb) { |
|
291 adapter->alloc_rx_buff_failed++; |
|
292 break; |
|
293 } |
|
294 |
|
295 /* |
|
296 * Make buffer alignment 2 beyond a 16 byte boundary |
|
297 * this will result in a 16 byte aligned IP header after |
|
298 * the 14 byte MAC header is removed |
|
299 */ |
|
300 skb_reserve(skb, NET_IP_ALIGN); |
|
301 |
|
302 buffer_info->skb = skb; |
|
303 buffer_info->dma = pci_map_single(pdev, skb->data, |
|
304 adapter->rx_ps_bsize0, |
|
305 PCI_DMA_FROMDEVICE); |
|
306 if (pci_dma_mapping_error(pdev, buffer_info->dma)) { |
|
307 dev_err(&pdev->dev, "RX DMA map failed\n"); |
|
308 adapter->rx_dma_failed++; |
|
309 /* cleanup skb */ |
|
310 dev_kfree_skb_any(skb); |
|
311 buffer_info->skb = NULL; |
|
312 break; |
|
313 } |
|
314 |
|
315 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); |
|
316 |
|
317 i++; |
|
318 if (i == rx_ring->count) |
|
319 i = 0; |
|
320 buffer_info = &rx_ring->buffer_info[i]; |
|
321 } |
|
322 |
|
323 no_buffers: |
|
324 if (rx_ring->next_to_use != i) { |
|
325 rx_ring->next_to_use = i; |
|
326 |
|
327 if (!(i--)) |
|
328 i = (rx_ring->count - 1); |
|
329 |
|
330 /* |
|
331 * Force memory writes to complete before letting h/w |
|
332 * know there are new descriptors to fetch. (Only |
|
333 * applicable for weak-ordered memory model archs, |
|
334 * such as IA-64). |
|
335 */ |
|
336 wmb(); |
|
337 /* |
|
338 * Hardware increments by 16 bytes, but packet split |
|
339 * descriptors are 32 bytes...so we increment tail |
|
340 * twice as much. |
|
341 */ |
|
342 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); |
|
343 } |
|
344 } |
|
345 |
|
346 /** |
|
347 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers |
|
348 * @adapter: address of board private structure |
|
349 * @cleaned_count: number of buffers to allocate this pass |
|
350 **/ |
|
351 |
|
352 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
|
353 int cleaned_count) |
|
354 { |
|
355 struct net_device *netdev = adapter->netdev; |
|
356 struct pci_dev *pdev = adapter->pdev; |
|
357 struct e1000_rx_desc *rx_desc; |
|
358 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
359 struct e1000_buffer *buffer_info; |
|
360 struct sk_buff *skb; |
|
361 unsigned int i; |
|
362 unsigned int bufsz = 256 - |
|
363 16 /* for skb_reserve */ - |
|
364 NET_IP_ALIGN; |
|
365 |
|
366 i = rx_ring->next_to_use; |
|
367 buffer_info = &rx_ring->buffer_info[i]; |
|
368 |
|
369 while (cleaned_count--) { |
|
370 skb = buffer_info->skb; |
|
371 if (skb) { |
|
372 skb_trim(skb, 0); |
|
373 goto check_page; |
|
374 } |
|
375 |
|
376 skb = netdev_alloc_skb(netdev, bufsz); |
|
377 if (unlikely(!skb)) { |
|
378 /* Better luck next round */ |
|
379 adapter->alloc_rx_buff_failed++; |
|
380 break; |
|
381 } |
|
382 |
|
383 /* Make buffer alignment 2 beyond a 16 byte boundary |
|
384 * this will result in a 16 byte aligned IP header after |
|
385 * the 14 byte MAC header is removed |
|
386 */ |
|
387 skb_reserve(skb, NET_IP_ALIGN); |
|
388 |
|
389 buffer_info->skb = skb; |
|
390 check_page: |
|
391 /* allocate a new page if necessary */ |
|
392 if (!buffer_info->page) { |
|
393 buffer_info->page = alloc_page(GFP_ATOMIC); |
|
394 if (unlikely(!buffer_info->page)) { |
|
395 adapter->alloc_rx_buff_failed++; |
|
396 break; |
|
397 } |
|
398 } |
|
399 |
|
400 if (!buffer_info->dma) |
|
401 buffer_info->dma = pci_map_page(pdev, |
|
402 buffer_info->page, 0, |
|
403 PAGE_SIZE, |
|
404 PCI_DMA_FROMDEVICE); |
|
405 |
|
406 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
407 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
408 |
|
409 if (unlikely(++i == rx_ring->count)) |
|
410 i = 0; |
|
411 buffer_info = &rx_ring->buffer_info[i]; |
|
412 } |
|
413 |
|
414 if (likely(rx_ring->next_to_use != i)) { |
|
415 rx_ring->next_to_use = i; |
|
416 if (unlikely(i-- == 0)) |
|
417 i = (rx_ring->count - 1); |
|
418 |
|
419 /* Force memory writes to complete before letting h/w |
|
420 * know there are new descriptors to fetch. (Only |
|
421 * applicable for weak-ordered memory model archs, |
|
422 * such as IA-64). */ |
|
423 wmb(); |
|
424 writel(i, adapter->hw.hw_addr + rx_ring->tail); |
|
425 } |
|
426 } |
|
427 |
|
428 /** |
|
429 * e1000_clean_rx_irq - Send received data up the network stack; legacy |
|
430 * @adapter: board private structure |
|
431 * |
|
432 * the return value indicates whether actual cleaning was done, there |
|
433 * is no guarantee that everything was cleaned |
|
434 **/ |
|
435 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
436 int *work_done, int work_to_do) |
|
437 { |
|
438 struct net_device *netdev = adapter->netdev; |
|
439 struct pci_dev *pdev = adapter->pdev; |
|
440 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
441 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
442 struct e1000_buffer *buffer_info, *next_buffer; |
|
443 u32 length; |
|
444 unsigned int i; |
|
445 int cleaned_count = 0; |
|
446 bool cleaned = 0; |
|
447 unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
|
448 |
|
449 i = rx_ring->next_to_clean; |
|
450 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
451 buffer_info = &rx_ring->buffer_info[i]; |
|
452 |
|
453 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
454 struct sk_buff *skb; |
|
455 u8 status; |
|
456 |
|
457 if (*work_done >= work_to_do) |
|
458 break; |
|
459 (*work_done)++; |
|
460 |
|
461 status = rx_desc->status; |
|
462 skb = buffer_info->skb; |
|
463 buffer_info->skb = NULL; |
|
464 |
|
465 prefetch(skb->data - NET_IP_ALIGN); |
|
466 |
|
467 i++; |
|
468 if (i == rx_ring->count) |
|
469 i = 0; |
|
470 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
471 prefetch(next_rxd); |
|
472 |
|
473 next_buffer = &rx_ring->buffer_info[i]; |
|
474 |
|
475 cleaned = 1; |
|
476 cleaned_count++; |
|
477 pci_unmap_single(pdev, |
|
478 buffer_info->dma, |
|
479 adapter->rx_buffer_len, |
|
480 PCI_DMA_FROMDEVICE); |
|
481 buffer_info->dma = 0; |
|
482 |
|
483 length = le16_to_cpu(rx_desc->length); |
|
484 |
|
485 /* |
|
486 * !EOP means multiple descriptors were used to store a single |
|
487 * packet, if that's the case we need to toss it. In fact, we |
|
488 * need to toss every packet with the EOP bit clear and the |
|
489 * next frame that _does_ have the EOP bit set, as it is by |
|
490 * definition only a frame fragment |
|
491 */ |
|
492 if (unlikely(!(status & E1000_RXD_STAT_EOP))) |
|
493 adapter->flags2 |= FLAG2_IS_DISCARDING; |
|
494 |
|
495 if (adapter->flags2 & FLAG2_IS_DISCARDING) { |
|
496 /* All receives must fit into a single buffer */ |
|
497 e_dbg("%s: Receive packet consumed multiple buffers\n", |
|
498 netdev->name); |
|
499 /* recycle */ |
|
500 buffer_info->skb = skb; |
|
501 if (status & E1000_RXD_STAT_EOP) |
|
502 adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
|
503 goto next_desc; |
|
504 } |
|
505 |
|
506 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { |
|
507 /* recycle */ |
|
508 buffer_info->skb = skb; |
|
509 goto next_desc; |
|
510 } |
|
511 |
|
512 /* adjust length to remove Ethernet CRC */ |
|
513 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
|
514 length -= 4; |
|
515 |
|
516 total_rx_bytes += length; |
|
517 total_rx_packets++; |
|
518 |
|
519 /* |
|
520 * code added for copybreak, this should improve |
|
521 * performance for small packets with large amounts |
|
522 * of reassembly being done in the stack |
|
523 */ |
|
524 if (length < copybreak) { |
|
525 struct sk_buff *new_skb = |
|
526 netdev_alloc_skb(netdev, length + NET_IP_ALIGN); |
|
527 if (new_skb) { |
|
528 skb_reserve(new_skb, NET_IP_ALIGN); |
|
529 skb_copy_to_linear_data_offset(new_skb, |
|
530 -NET_IP_ALIGN, |
|
531 (skb->data - |
|
532 NET_IP_ALIGN), |
|
533 (length + |
|
534 NET_IP_ALIGN)); |
|
535 /* save the skb in buffer_info as good */ |
|
536 buffer_info->skb = skb; |
|
537 skb = new_skb; |
|
538 } |
|
539 /* else just continue with the old one */ |
|
540 } |
|
541 /* end copybreak code */ |
|
542 skb_put(skb, length); |
|
543 |
|
544 /* Receive Checksum Offload */ |
|
545 e1000_rx_checksum(adapter, |
|
546 (u32)(status) | |
|
547 ((u32)(rx_desc->errors) << 24), |
|
548 le16_to_cpu(rx_desc->csum), skb); |
|
549 |
|
550 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); |
|
551 |
|
552 next_desc: |
|
553 rx_desc->status = 0; |
|
554 |
|
555 /* return some buffers to hardware, one at a time is too slow */ |
|
556 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
|
557 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
558 cleaned_count = 0; |
|
559 } |
|
560 |
|
561 /* use prefetched values */ |
|
562 rx_desc = next_rxd; |
|
563 buffer_info = next_buffer; |
|
564 } |
|
565 rx_ring->next_to_clean = i; |
|
566 |
|
567 cleaned_count = e1000_desc_unused(rx_ring); |
|
568 if (cleaned_count) |
|
569 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
570 |
|
571 adapter->total_rx_bytes += total_rx_bytes; |
|
572 adapter->total_rx_packets += total_rx_packets; |
|
573 adapter->net_stats.rx_bytes += total_rx_bytes; |
|
574 adapter->net_stats.rx_packets += total_rx_packets; |
|
575 return cleaned; |
|
576 } |
|
577 |
|
578 static void e1000_put_txbuf(struct e1000_adapter *adapter, |
|
579 struct e1000_buffer *buffer_info) |
|
580 { |
|
581 buffer_info->dma = 0; |
|
582 if (buffer_info->skb) { |
|
583 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb, |
|
584 DMA_TO_DEVICE); |
|
585 dev_kfree_skb_any(buffer_info->skb); |
|
586 buffer_info->skb = NULL; |
|
587 } |
|
588 buffer_info->time_stamp = 0; |
|
589 } |
|
590 |
|
591 static void e1000_print_tx_hang(struct e1000_adapter *adapter) |
|
592 { |
|
593 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
594 unsigned int i = tx_ring->next_to_clean; |
|
595 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; |
|
596 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
597 |
|
598 /* detected Tx unit hang */ |
|
599 e_err("Detected Tx Unit Hang:\n" |
|
600 " TDH <%x>\n" |
|
601 " TDT <%x>\n" |
|
602 " next_to_use <%x>\n" |
|
603 " next_to_clean <%x>\n" |
|
604 "buffer_info[next_to_clean]:\n" |
|
605 " time_stamp <%lx>\n" |
|
606 " next_to_watch <%x>\n" |
|
607 " jiffies <%lx>\n" |
|
608 " next_to_watch.status <%x>\n", |
|
609 readl(adapter->hw.hw_addr + tx_ring->head), |
|
610 readl(adapter->hw.hw_addr + tx_ring->tail), |
|
611 tx_ring->next_to_use, |
|
612 tx_ring->next_to_clean, |
|
613 tx_ring->buffer_info[eop].time_stamp, |
|
614 eop, |
|
615 jiffies, |
|
616 eop_desc->upper.fields.status); |
|
617 } |
|
618 |
|
619 /** |
|
620 * e1000_clean_tx_irq - Reclaim resources after transmit completes |
|
621 * @adapter: board private structure |
|
622 * |
|
623 * the return value indicates whether actual cleaning was done, there |
|
624 * is no guarantee that everything was cleaned |
|
625 **/ |
|
626 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) |
|
627 { |
|
628 struct net_device *netdev = adapter->netdev; |
|
629 struct e1000_hw *hw = &adapter->hw; |
|
630 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
631 struct e1000_tx_desc *tx_desc, *eop_desc; |
|
632 struct e1000_buffer *buffer_info; |
|
633 unsigned int i, eop; |
|
634 unsigned int count = 0; |
|
635 unsigned int total_tx_bytes = 0, total_tx_packets = 0; |
|
636 |
|
637 i = tx_ring->next_to_clean; |
|
638 eop = tx_ring->buffer_info[i].next_to_watch; |
|
639 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
640 |
|
641 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
|
642 (count < tx_ring->count)) { |
|
643 bool cleaned = false; |
|
644 for (; !cleaned; count++) { |
|
645 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
646 buffer_info = &tx_ring->buffer_info[i]; |
|
647 cleaned = (i == eop); |
|
648 |
|
649 if (cleaned) { |
|
650 struct sk_buff *skb = buffer_info->skb; |
|
651 unsigned int segs, bytecount; |
|
652 segs = skb_shinfo(skb)->gso_segs ?: 1; |
|
653 /* multiply data chunks by size of headers */ |
|
654 bytecount = ((segs - 1) * skb_headlen(skb)) + |
|
655 skb->len; |
|
656 total_tx_packets += segs; |
|
657 total_tx_bytes += bytecount; |
|
658 } |
|
659 |
|
660 e1000_put_txbuf(adapter, buffer_info); |
|
661 tx_desc->upper.data = 0; |
|
662 |
|
663 i++; |
|
664 if (i == tx_ring->count) |
|
665 i = 0; |
|
666 } |
|
667 |
|
668 eop = tx_ring->buffer_info[i].next_to_watch; |
|
669 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
670 } |
|
671 |
|
672 tx_ring->next_to_clean = i; |
|
673 |
|
674 #define TX_WAKE_THRESHOLD 32 |
|
675 if (count && netif_carrier_ok(netdev) && |
|
676 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { |
|
677 /* Make sure that anybody stopping the queue after this |
|
678 * sees the new next_to_clean. |
|
679 */ |
|
680 smp_mb(); |
|
681 |
|
682 if (netif_queue_stopped(netdev) && |
|
683 !(test_bit(__E1000_DOWN, &adapter->state))) { |
|
684 netif_wake_queue(netdev); |
|
685 ++adapter->restart_queue; |
|
686 } |
|
687 } |
|
688 |
|
689 if (adapter->detect_tx_hung) { |
|
690 /* Detect a transmit hang in hardware, this serializes the |
|
691 * check with the clearing of time_stamp and movement of i */ |
|
692 adapter->detect_tx_hung = 0; |
|
693 if (tx_ring->buffer_info[i].time_stamp && |
|
694 time_after(jiffies, tx_ring->buffer_info[i].time_stamp |
|
695 + (adapter->tx_timeout_factor * HZ)) |
|
696 && !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
|
697 e1000_print_tx_hang(adapter); |
|
698 netif_stop_queue(netdev); |
|
699 } |
|
700 } |
|
701 adapter->total_tx_bytes += total_tx_bytes; |
|
702 adapter->total_tx_packets += total_tx_packets; |
|
703 adapter->net_stats.tx_bytes += total_tx_bytes; |
|
704 adapter->net_stats.tx_packets += total_tx_packets; |
|
705 return (count < tx_ring->count); |
|
706 } |
|
707 |
|
708 /** |
|
709 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split |
|
710 * @adapter: board private structure |
|
711 * |
|
712 * the return value indicates whether actual cleaning was done, there |
|
713 * is no guarantee that everything was cleaned |
|
714 **/ |
|
715 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
|
716 int *work_done, int work_to_do) |
|
717 { |
|
718 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; |
|
719 struct net_device *netdev = adapter->netdev; |
|
720 struct pci_dev *pdev = adapter->pdev; |
|
721 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
722 struct e1000_buffer *buffer_info, *next_buffer; |
|
723 struct e1000_ps_page *ps_page; |
|
724 struct sk_buff *skb; |
|
725 unsigned int i, j; |
|
726 u32 length, staterr; |
|
727 int cleaned_count = 0; |
|
728 bool cleaned = 0; |
|
729 unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
|
730 |
|
731 i = rx_ring->next_to_clean; |
|
732 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
|
733 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
|
734 buffer_info = &rx_ring->buffer_info[i]; |
|
735 |
|
736 while (staterr & E1000_RXD_STAT_DD) { |
|
737 if (*work_done >= work_to_do) |
|
738 break; |
|
739 (*work_done)++; |
|
740 skb = buffer_info->skb; |
|
741 |
|
742 /* in the packet split case this is header only */ |
|
743 prefetch(skb->data - NET_IP_ALIGN); |
|
744 |
|
745 i++; |
|
746 if (i == rx_ring->count) |
|
747 i = 0; |
|
748 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); |
|
749 prefetch(next_rxd); |
|
750 |
|
751 next_buffer = &rx_ring->buffer_info[i]; |
|
752 |
|
753 cleaned = 1; |
|
754 cleaned_count++; |
|
755 pci_unmap_single(pdev, buffer_info->dma, |
|
756 adapter->rx_ps_bsize0, |
|
757 PCI_DMA_FROMDEVICE); |
|
758 buffer_info->dma = 0; |
|
759 |
|
760 /* see !EOP comment in other rx routine */ |
|
761 if (!(staterr & E1000_RXD_STAT_EOP)) |
|
762 adapter->flags2 |= FLAG2_IS_DISCARDING; |
|
763 |
|
764 if (adapter->flags2 & FLAG2_IS_DISCARDING) { |
|
765 e_dbg("%s: Packet Split buffers didn't pick up the " |
|
766 "full packet\n", netdev->name); |
|
767 dev_kfree_skb_irq(skb); |
|
768 if (staterr & E1000_RXD_STAT_EOP) |
|
769 adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
|
770 goto next_desc; |
|
771 } |
|
772 |
|
773 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { |
|
774 dev_kfree_skb_irq(skb); |
|
775 goto next_desc; |
|
776 } |
|
777 |
|
778 length = le16_to_cpu(rx_desc->wb.middle.length0); |
|
779 |
|
780 if (!length) { |
|
781 e_dbg("%s: Last part of the packet spanning multiple " |
|
782 "descriptors\n", netdev->name); |
|
783 dev_kfree_skb_irq(skb); |
|
784 goto next_desc; |
|
785 } |
|
786 |
|
787 /* Good Receive */ |
|
788 skb_put(skb, length); |
|
789 |
|
790 { |
|
791 /* |
|
792 * this looks ugly, but it seems compiler issues make it |
|
793 * more efficient than reusing j |
|
794 */ |
|
795 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); |
|
796 |
|
797 /* |
|
798 * page alloc/put takes too long and effects small packet |
|
799 * throughput, so unsplit small packets and save the alloc/put |
|
800 * only valid in softirq (napi) context to call kmap_* |
|
801 */ |
|
802 if (l1 && (l1 <= copybreak) && |
|
803 ((length + l1) <= adapter->rx_ps_bsize0)) { |
|
804 u8 *vaddr; |
|
805 |
|
806 ps_page = &buffer_info->ps_pages[0]; |
|
807 |
|
808 /* |
|
809 * there is no documentation about how to call |
|
810 * kmap_atomic, so we can't hold the mapping |
|
811 * very long |
|
812 */ |
|
813 pci_dma_sync_single_for_cpu(pdev, ps_page->dma, |
|
814 PAGE_SIZE, PCI_DMA_FROMDEVICE); |
|
815 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); |
|
816 memcpy(skb_tail_pointer(skb), vaddr, l1); |
|
817 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); |
|
818 pci_dma_sync_single_for_device(pdev, ps_page->dma, |
|
819 PAGE_SIZE, PCI_DMA_FROMDEVICE); |
|
820 |
|
821 /* remove the CRC */ |
|
822 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
|
823 l1 -= 4; |
|
824 |
|
825 skb_put(skb, l1); |
|
826 goto copydone; |
|
827 } /* if */ |
|
828 } |
|
829 |
|
830 for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
|
831 length = le16_to_cpu(rx_desc->wb.upper.length[j]); |
|
832 if (!length) |
|
833 break; |
|
834 |
|
835 ps_page = &buffer_info->ps_pages[j]; |
|
836 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, |
|
837 PCI_DMA_FROMDEVICE); |
|
838 ps_page->dma = 0; |
|
839 skb_fill_page_desc(skb, j, ps_page->page, 0, length); |
|
840 ps_page->page = NULL; |
|
841 skb->len += length; |
|
842 skb->data_len += length; |
|
843 skb->truesize += length; |
|
844 } |
|
845 |
|
846 /* strip the ethernet crc, problem is we're using pages now so |
|
847 * this whole operation can get a little cpu intensive |
|
848 */ |
|
849 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
|
850 pskb_trim(skb, skb->len - 4); |
|
851 |
|
852 copydone: |
|
853 total_rx_bytes += skb->len; |
|
854 total_rx_packets++; |
|
855 |
|
856 e1000_rx_checksum(adapter, staterr, le16_to_cpu( |
|
857 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); |
|
858 |
|
859 if (rx_desc->wb.upper.header_status & |
|
860 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) |
|
861 adapter->rx_hdr_split++; |
|
862 |
|
863 e1000_receive_skb(adapter, netdev, skb, |
|
864 staterr, rx_desc->wb.middle.vlan); |
|
865 |
|
866 next_desc: |
|
867 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); |
|
868 buffer_info->skb = NULL; |
|
869 |
|
870 /* return some buffers to hardware, one at a time is too slow */ |
|
871 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
|
872 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
873 cleaned_count = 0; |
|
874 } |
|
875 |
|
876 /* use prefetched values */ |
|
877 rx_desc = next_rxd; |
|
878 buffer_info = next_buffer; |
|
879 |
|
880 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
|
881 } |
|
882 rx_ring->next_to_clean = i; |
|
883 |
|
884 cleaned_count = e1000_desc_unused(rx_ring); |
|
885 if (cleaned_count) |
|
886 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
887 |
|
888 adapter->total_rx_bytes += total_rx_bytes; |
|
889 adapter->total_rx_packets += total_rx_packets; |
|
890 adapter->net_stats.rx_bytes += total_rx_bytes; |
|
891 adapter->net_stats.rx_packets += total_rx_packets; |
|
892 return cleaned; |
|
893 } |
|
894 |
|
895 /** |
|
896 * e1000_consume_page - helper function |
|
897 **/ |
|
898 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, |
|
899 u16 length) |
|
900 { |
|
901 bi->page = NULL; |
|
902 skb->len += length; |
|
903 skb->data_len += length; |
|
904 skb->truesize += length; |
|
905 } |
|
906 |
|
907 /** |
|
908 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy |
|
909 * @adapter: board private structure |
|
910 * |
|
911 * the return value indicates whether actual cleaning was done, there |
|
912 * is no guarantee that everything was cleaned |
|
913 **/ |
|
914 |
|
915 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
|
916 int *work_done, int work_to_do) |
|
917 { |
|
918 struct net_device *netdev = adapter->netdev; |
|
919 struct pci_dev *pdev = adapter->pdev; |
|
920 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
921 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
922 struct e1000_buffer *buffer_info, *next_buffer; |
|
923 u32 length; |
|
924 unsigned int i; |
|
925 int cleaned_count = 0; |
|
926 bool cleaned = false; |
|
927 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
928 |
|
929 i = rx_ring->next_to_clean; |
|
930 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
931 buffer_info = &rx_ring->buffer_info[i]; |
|
932 |
|
933 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
934 struct sk_buff *skb; |
|
935 u8 status; |
|
936 |
|
937 if (*work_done >= work_to_do) |
|
938 break; |
|
939 (*work_done)++; |
|
940 |
|
941 status = rx_desc->status; |
|
942 skb = buffer_info->skb; |
|
943 buffer_info->skb = NULL; |
|
944 |
|
945 ++i; |
|
946 if (i == rx_ring->count) |
|
947 i = 0; |
|
948 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
949 prefetch(next_rxd); |
|
950 |
|
951 next_buffer = &rx_ring->buffer_info[i]; |
|
952 |
|
953 cleaned = true; |
|
954 cleaned_count++; |
|
955 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE, |
|
956 PCI_DMA_FROMDEVICE); |
|
957 buffer_info->dma = 0; |
|
958 |
|
959 length = le16_to_cpu(rx_desc->length); |
|
960 |
|
961 /* errors is only valid for DD + EOP descriptors */ |
|
962 if (unlikely((status & E1000_RXD_STAT_EOP) && |
|
963 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { |
|
964 /* recycle both page and skb */ |
|
965 buffer_info->skb = skb; |
|
966 /* an error means any chain goes out the window |
|
967 * too */ |
|
968 if (rx_ring->rx_skb_top) |
|
969 dev_kfree_skb(rx_ring->rx_skb_top); |
|
970 rx_ring->rx_skb_top = NULL; |
|
971 goto next_desc; |
|
972 } |
|
973 |
|
974 #define rxtop rx_ring->rx_skb_top |
|
975 if (!(status & E1000_RXD_STAT_EOP)) { |
|
976 /* this descriptor is only the beginning (or middle) */ |
|
977 if (!rxtop) { |
|
978 /* this is the beginning of a chain */ |
|
979 rxtop = skb; |
|
980 skb_fill_page_desc(rxtop, 0, buffer_info->page, |
|
981 0, length); |
|
982 } else { |
|
983 /* this is the middle of a chain */ |
|
984 skb_fill_page_desc(rxtop, |
|
985 skb_shinfo(rxtop)->nr_frags, |
|
986 buffer_info->page, 0, length); |
|
987 /* re-use the skb, only consumed the page */ |
|
988 buffer_info->skb = skb; |
|
989 } |
|
990 e1000_consume_page(buffer_info, rxtop, length); |
|
991 goto next_desc; |
|
992 } else { |
|
993 if (rxtop) { |
|
994 /* end of the chain */ |
|
995 skb_fill_page_desc(rxtop, |
|
996 skb_shinfo(rxtop)->nr_frags, |
|
997 buffer_info->page, 0, length); |
|
998 /* re-use the current skb, we only consumed the |
|
999 * page */ |
|
1000 buffer_info->skb = skb; |
|
1001 skb = rxtop; |
|
1002 rxtop = NULL; |
|
1003 e1000_consume_page(buffer_info, skb, length); |
|
1004 } else { |
|
1005 /* no chain, got EOP, this buf is the packet |
|
1006 * copybreak to save the put_page/alloc_page */ |
|
1007 if (length <= copybreak && |
|
1008 skb_tailroom(skb) >= length) { |
|
1009 u8 *vaddr; |
|
1010 vaddr = kmap_atomic(buffer_info->page, |
|
1011 KM_SKB_DATA_SOFTIRQ); |
|
1012 memcpy(skb_tail_pointer(skb), vaddr, |
|
1013 length); |
|
1014 kunmap_atomic(vaddr, |
|
1015 KM_SKB_DATA_SOFTIRQ); |
|
1016 /* re-use the page, so don't erase |
|
1017 * buffer_info->page */ |
|
1018 skb_put(skb, length); |
|
1019 } else { |
|
1020 skb_fill_page_desc(skb, 0, |
|
1021 buffer_info->page, 0, |
|
1022 length); |
|
1023 e1000_consume_page(buffer_info, skb, |
|
1024 length); |
|
1025 } |
|
1026 } |
|
1027 } |
|
1028 |
|
1029 /* Receive Checksum Offload XXX recompute due to CRC strip? */ |
|
1030 e1000_rx_checksum(adapter, |
|
1031 (u32)(status) | |
|
1032 ((u32)(rx_desc->errors) << 24), |
|
1033 le16_to_cpu(rx_desc->csum), skb); |
|
1034 |
|
1035 /* probably a little skewed due to removing CRC */ |
|
1036 total_rx_bytes += skb->len; |
|
1037 total_rx_packets++; |
|
1038 |
|
1039 /* eth type trans needs skb->data to point to something */ |
|
1040 if (!pskb_may_pull(skb, ETH_HLEN)) { |
|
1041 e_err("pskb_may_pull failed.\n"); |
|
1042 dev_kfree_skb(skb); |
|
1043 goto next_desc; |
|
1044 } |
|
1045 |
|
1046 e1000_receive_skb(adapter, netdev, skb, status, |
|
1047 rx_desc->special); |
|
1048 |
|
1049 next_desc: |
|
1050 rx_desc->status = 0; |
|
1051 |
|
1052 /* return some buffers to hardware, one at a time is too slow */ |
|
1053 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
1054 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
1055 cleaned_count = 0; |
|
1056 } |
|
1057 |
|
1058 /* use prefetched values */ |
|
1059 rx_desc = next_rxd; |
|
1060 buffer_info = next_buffer; |
|
1061 } |
|
1062 rx_ring->next_to_clean = i; |
|
1063 |
|
1064 cleaned_count = e1000_desc_unused(rx_ring); |
|
1065 if (cleaned_count) |
|
1066 adapter->alloc_rx_buf(adapter, cleaned_count); |
|
1067 |
|
1068 adapter->total_rx_bytes += total_rx_bytes; |
|
1069 adapter->total_rx_packets += total_rx_packets; |
|
1070 adapter->net_stats.rx_bytes += total_rx_bytes; |
|
1071 adapter->net_stats.rx_packets += total_rx_packets; |
|
1072 return cleaned; |
|
1073 } |
|
1074 |
|
1075 /** |
|
1076 * e1000_clean_rx_ring - Free Rx Buffers per Queue |
|
1077 * @adapter: board private structure |
|
1078 **/ |
|
1079 static void e1000_clean_rx_ring(struct e1000_adapter *adapter) |
|
1080 { |
|
1081 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1082 struct e1000_buffer *buffer_info; |
|
1083 struct e1000_ps_page *ps_page; |
|
1084 struct pci_dev *pdev = adapter->pdev; |
|
1085 unsigned int i, j; |
|
1086 |
|
1087 /* Free all the Rx ring sk_buffs */ |
|
1088 for (i = 0; i < rx_ring->count; i++) { |
|
1089 buffer_info = &rx_ring->buffer_info[i]; |
|
1090 if (buffer_info->dma) { |
|
1091 if (adapter->clean_rx == e1000_clean_rx_irq) |
|
1092 pci_unmap_single(pdev, buffer_info->dma, |
|
1093 adapter->rx_buffer_len, |
|
1094 PCI_DMA_FROMDEVICE); |
|
1095 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) |
|
1096 pci_unmap_page(pdev, buffer_info->dma, |
|
1097 PAGE_SIZE, |
|
1098 PCI_DMA_FROMDEVICE); |
|
1099 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) |
|
1100 pci_unmap_single(pdev, buffer_info->dma, |
|
1101 adapter->rx_ps_bsize0, |
|
1102 PCI_DMA_FROMDEVICE); |
|
1103 buffer_info->dma = 0; |
|
1104 } |
|
1105 |
|
1106 if (buffer_info->page) { |
|
1107 put_page(buffer_info->page); |
|
1108 buffer_info->page = NULL; |
|
1109 } |
|
1110 |
|
1111 if (buffer_info->skb) { |
|
1112 dev_kfree_skb(buffer_info->skb); |
|
1113 buffer_info->skb = NULL; |
|
1114 } |
|
1115 |
|
1116 for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
|
1117 ps_page = &buffer_info->ps_pages[j]; |
|
1118 if (!ps_page->page) |
|
1119 break; |
|
1120 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, |
|
1121 PCI_DMA_FROMDEVICE); |
|
1122 ps_page->dma = 0; |
|
1123 put_page(ps_page->page); |
|
1124 ps_page->page = NULL; |
|
1125 } |
|
1126 } |
|
1127 |
|
1128 /* there also may be some cached data from a chained receive */ |
|
1129 if (rx_ring->rx_skb_top) { |
|
1130 dev_kfree_skb(rx_ring->rx_skb_top); |
|
1131 rx_ring->rx_skb_top = NULL; |
|
1132 } |
|
1133 |
|
1134 /* Zero out the descriptor ring */ |
|
1135 memset(rx_ring->desc, 0, rx_ring->size); |
|
1136 |
|
1137 rx_ring->next_to_clean = 0; |
|
1138 rx_ring->next_to_use = 0; |
|
1139 adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
|
1140 |
|
1141 writel(0, adapter->hw.hw_addr + rx_ring->head); |
|
1142 writel(0, adapter->hw.hw_addr + rx_ring->tail); |
|
1143 } |
|
1144 |
|
1145 static void e1000e_downshift_workaround(struct work_struct *work) |
|
1146 { |
|
1147 struct e1000_adapter *adapter = container_of(work, |
|
1148 struct e1000_adapter, downshift_task); |
|
1149 |
|
1150 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); |
|
1151 } |
|
1152 |
|
1153 /** |
|
1154 * e1000_intr_msi - Interrupt Handler |
|
1155 * @irq: interrupt number |
|
1156 * @data: pointer to a network interface device structure |
|
1157 **/ |
|
1158 static irqreturn_t e1000_intr_msi(int irq, void *data) |
|
1159 { |
|
1160 struct net_device *netdev = data; |
|
1161 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1162 struct e1000_hw *hw = &adapter->hw; |
|
1163 u32 icr = er32(ICR); |
|
1164 |
|
1165 /* |
|
1166 * read ICR disables interrupts using IAM |
|
1167 */ |
|
1168 |
|
1169 if (icr & E1000_ICR_LSC) { |
|
1170 hw->mac.get_link_status = 1; |
|
1171 /* |
|
1172 * ICH8 workaround-- Call gig speed drop workaround on cable |
|
1173 * disconnect (LSC) before accessing any PHY registers |
|
1174 */ |
|
1175 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
|
1176 (!(er32(STATUS) & E1000_STATUS_LU))) |
|
1177 schedule_work(&adapter->downshift_task); |
|
1178 |
|
1179 /* |
|
1180 * 80003ES2LAN workaround-- For packet buffer work-around on |
|
1181 * link down event; disable receives here in the ISR and reset |
|
1182 * adapter in watchdog |
|
1183 */ |
|
1184 if (netif_carrier_ok(netdev) && |
|
1185 adapter->flags & FLAG_RX_NEEDS_RESTART) { |
|
1186 /* disable receives */ |
|
1187 u32 rctl = er32(RCTL); |
|
1188 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1189 adapter->flags |= FLAG_RX_RESTART_NOW; |
|
1190 } |
|
1191 /* guard against interrupt when we're going down */ |
|
1192 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1193 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
1194 } |
|
1195 |
|
1196 if (napi_schedule_prep(&adapter->napi)) { |
|
1197 adapter->total_tx_bytes = 0; |
|
1198 adapter->total_tx_packets = 0; |
|
1199 adapter->total_rx_bytes = 0; |
|
1200 adapter->total_rx_packets = 0; |
|
1201 __napi_schedule(&adapter->napi); |
|
1202 } |
|
1203 |
|
1204 return IRQ_HANDLED; |
|
1205 } |
|
1206 |
|
1207 /** |
|
1208 * e1000_intr - Interrupt Handler |
|
1209 * @irq: interrupt number |
|
1210 * @data: pointer to a network interface device structure |
|
1211 **/ |
|
1212 static irqreturn_t e1000_intr(int irq, void *data) |
|
1213 { |
|
1214 struct net_device *netdev = data; |
|
1215 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1216 struct e1000_hw *hw = &adapter->hw; |
|
1217 u32 rctl, icr = er32(ICR); |
|
1218 |
|
1219 if (!icr) |
|
1220 return IRQ_NONE; /* Not our interrupt */ |
|
1221 |
|
1222 /* |
|
1223 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
|
1224 * not set, then the adapter didn't send an interrupt |
|
1225 */ |
|
1226 if (!(icr & E1000_ICR_INT_ASSERTED)) |
|
1227 return IRQ_NONE; |
|
1228 |
|
1229 /* |
|
1230 * Interrupt Auto-Mask...upon reading ICR, |
|
1231 * interrupts are masked. No need for the |
|
1232 * IMC write |
|
1233 */ |
|
1234 |
|
1235 if (icr & E1000_ICR_LSC) { |
|
1236 hw->mac.get_link_status = 1; |
|
1237 /* |
|
1238 * ICH8 workaround-- Call gig speed drop workaround on cable |
|
1239 * disconnect (LSC) before accessing any PHY registers |
|
1240 */ |
|
1241 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
|
1242 (!(er32(STATUS) & E1000_STATUS_LU))) |
|
1243 schedule_work(&adapter->downshift_task); |
|
1244 |
|
1245 /* |
|
1246 * 80003ES2LAN workaround-- |
|
1247 * For packet buffer work-around on link down event; |
|
1248 * disable receives here in the ISR and |
|
1249 * reset adapter in watchdog |
|
1250 */ |
|
1251 if (netif_carrier_ok(netdev) && |
|
1252 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { |
|
1253 /* disable receives */ |
|
1254 rctl = er32(RCTL); |
|
1255 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1256 adapter->flags |= FLAG_RX_RESTART_NOW; |
|
1257 } |
|
1258 /* guard against interrupt when we're going down */ |
|
1259 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1260 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
1261 } |
|
1262 |
|
1263 if (napi_schedule_prep(&adapter->napi)) { |
|
1264 adapter->total_tx_bytes = 0; |
|
1265 adapter->total_tx_packets = 0; |
|
1266 adapter->total_rx_bytes = 0; |
|
1267 adapter->total_rx_packets = 0; |
|
1268 __napi_schedule(&adapter->napi); |
|
1269 } |
|
1270 |
|
1271 return IRQ_HANDLED; |
|
1272 } |
|
1273 |
|
1274 static irqreturn_t e1000_msix_other(int irq, void *data) |
|
1275 { |
|
1276 struct net_device *netdev = data; |
|
1277 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1278 struct e1000_hw *hw = &adapter->hw; |
|
1279 u32 icr = er32(ICR); |
|
1280 |
|
1281 if (!(icr & E1000_ICR_INT_ASSERTED)) { |
|
1282 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1283 ew32(IMS, E1000_IMS_OTHER); |
|
1284 return IRQ_NONE; |
|
1285 } |
|
1286 |
|
1287 if (icr & adapter->eiac_mask) |
|
1288 ew32(ICS, (icr & adapter->eiac_mask)); |
|
1289 |
|
1290 if (icr & E1000_ICR_OTHER) { |
|
1291 if (!(icr & E1000_ICR_LSC)) |
|
1292 goto no_link_interrupt; |
|
1293 hw->mac.get_link_status = 1; |
|
1294 /* guard against interrupt when we're going down */ |
|
1295 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1296 mod_timer(&adapter->watchdog_timer, jiffies + 1); |
|
1297 } |
|
1298 |
|
1299 no_link_interrupt: |
|
1300 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
1301 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); |
|
1302 |
|
1303 return IRQ_HANDLED; |
|
1304 } |
|
1305 |
|
1306 |
|
1307 static irqreturn_t e1000_intr_msix_tx(int irq, void *data) |
|
1308 { |
|
1309 struct net_device *netdev = data; |
|
1310 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1311 struct e1000_hw *hw = &adapter->hw; |
|
1312 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1313 |
|
1314 |
|
1315 adapter->total_tx_bytes = 0; |
|
1316 adapter->total_tx_packets = 0; |
|
1317 |
|
1318 if (!e1000_clean_tx_irq(adapter)) |
|
1319 /* Ring was not completely cleaned, so fire another interrupt */ |
|
1320 ew32(ICS, tx_ring->ims_val); |
|
1321 |
|
1322 return IRQ_HANDLED; |
|
1323 } |
|
1324 |
|
1325 static irqreturn_t e1000_intr_msix_rx(int irq, void *data) |
|
1326 { |
|
1327 struct net_device *netdev = data; |
|
1328 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1329 |
|
1330 /* Write the ITR value calculated at the end of the |
|
1331 * previous interrupt. |
|
1332 */ |
|
1333 if (adapter->rx_ring->set_itr) { |
|
1334 writel(1000000000 / (adapter->rx_ring->itr_val * 256), |
|
1335 adapter->hw.hw_addr + adapter->rx_ring->itr_register); |
|
1336 adapter->rx_ring->set_itr = 0; |
|
1337 } |
|
1338 |
|
1339 if (napi_schedule_prep(&adapter->napi)) { |
|
1340 adapter->total_rx_bytes = 0; |
|
1341 adapter->total_rx_packets = 0; |
|
1342 __napi_schedule(&adapter->napi); |
|
1343 } |
|
1344 return IRQ_HANDLED; |
|
1345 } |
|
1346 |
|
1347 /** |
|
1348 * e1000_configure_msix - Configure MSI-X hardware |
|
1349 * |
|
1350 * e1000_configure_msix sets up the hardware to properly |
|
1351 * generate MSI-X interrupts. |
|
1352 **/ |
|
1353 static void e1000_configure_msix(struct e1000_adapter *adapter) |
|
1354 { |
|
1355 struct e1000_hw *hw = &adapter->hw; |
|
1356 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1357 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1358 int vector = 0; |
|
1359 u32 ctrl_ext, ivar = 0; |
|
1360 |
|
1361 adapter->eiac_mask = 0; |
|
1362 |
|
1363 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ |
|
1364 if (hw->mac.type == e1000_82574) { |
|
1365 u32 rfctl = er32(RFCTL); |
|
1366 rfctl |= E1000_RFCTL_ACK_DIS; |
|
1367 ew32(RFCTL, rfctl); |
|
1368 } |
|
1369 |
|
1370 #define E1000_IVAR_INT_ALLOC_VALID 0x8 |
|
1371 /* Configure Rx vector */ |
|
1372 rx_ring->ims_val = E1000_IMS_RXQ0; |
|
1373 adapter->eiac_mask |= rx_ring->ims_val; |
|
1374 if (rx_ring->itr_val) |
|
1375 writel(1000000000 / (rx_ring->itr_val * 256), |
|
1376 hw->hw_addr + rx_ring->itr_register); |
|
1377 else |
|
1378 writel(1, hw->hw_addr + rx_ring->itr_register); |
|
1379 ivar = E1000_IVAR_INT_ALLOC_VALID | vector; |
|
1380 |
|
1381 /* Configure Tx vector */ |
|
1382 tx_ring->ims_val = E1000_IMS_TXQ0; |
|
1383 vector++; |
|
1384 if (tx_ring->itr_val) |
|
1385 writel(1000000000 / (tx_ring->itr_val * 256), |
|
1386 hw->hw_addr + tx_ring->itr_register); |
|
1387 else |
|
1388 writel(1, hw->hw_addr + tx_ring->itr_register); |
|
1389 adapter->eiac_mask |= tx_ring->ims_val; |
|
1390 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); |
|
1391 |
|
1392 /* set vector for Other Causes, e.g. link changes */ |
|
1393 vector++; |
|
1394 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); |
|
1395 if (rx_ring->itr_val) |
|
1396 writel(1000000000 / (rx_ring->itr_val * 256), |
|
1397 hw->hw_addr + E1000_EITR_82574(vector)); |
|
1398 else |
|
1399 writel(1, hw->hw_addr + E1000_EITR_82574(vector)); |
|
1400 |
|
1401 /* Cause Tx interrupts on every write back */ |
|
1402 ivar |= (1 << 31); |
|
1403 |
|
1404 ew32(IVAR, ivar); |
|
1405 |
|
1406 /* enable MSI-X PBA support */ |
|
1407 ctrl_ext = er32(CTRL_EXT); |
|
1408 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; |
|
1409 |
|
1410 /* Auto-Mask Other interrupts upon ICR read */ |
|
1411 #define E1000_EIAC_MASK_82574 0x01F00000 |
|
1412 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); |
|
1413 ctrl_ext |= E1000_CTRL_EXT_EIAME; |
|
1414 ew32(CTRL_EXT, ctrl_ext); |
|
1415 e1e_flush(); |
|
1416 } |
|
1417 |
|
1418 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) |
|
1419 { |
|
1420 if (adapter->msix_entries) { |
|
1421 pci_disable_msix(adapter->pdev); |
|
1422 kfree(adapter->msix_entries); |
|
1423 adapter->msix_entries = NULL; |
|
1424 } else if (adapter->flags & FLAG_MSI_ENABLED) { |
|
1425 pci_disable_msi(adapter->pdev); |
|
1426 adapter->flags &= ~FLAG_MSI_ENABLED; |
|
1427 } |
|
1428 |
|
1429 return; |
|
1430 } |
|
1431 |
|
1432 /** |
|
1433 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported |
|
1434 * |
|
1435 * Attempt to configure interrupts using the best available |
|
1436 * capabilities of the hardware and kernel. |
|
1437 **/ |
|
1438 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) |
|
1439 { |
|
1440 int err; |
|
1441 int numvecs, i; |
|
1442 |
|
1443 |
|
1444 switch (adapter->int_mode) { |
|
1445 case E1000E_INT_MODE_MSIX: |
|
1446 if (adapter->flags & FLAG_HAS_MSIX) { |
|
1447 numvecs = 3; /* RxQ0, TxQ0 and other */ |
|
1448 adapter->msix_entries = kcalloc(numvecs, |
|
1449 sizeof(struct msix_entry), |
|
1450 GFP_KERNEL); |
|
1451 if (adapter->msix_entries) { |
|
1452 for (i = 0; i < numvecs; i++) |
|
1453 adapter->msix_entries[i].entry = i; |
|
1454 |
|
1455 err = pci_enable_msix(adapter->pdev, |
|
1456 adapter->msix_entries, |
|
1457 numvecs); |
|
1458 if (err == 0) |
|
1459 return; |
|
1460 } |
|
1461 /* MSI-X failed, so fall through and try MSI */ |
|
1462 e_err("Failed to initialize MSI-X interrupts. " |
|
1463 "Falling back to MSI interrupts.\n"); |
|
1464 e1000e_reset_interrupt_capability(adapter); |
|
1465 } |
|
1466 adapter->int_mode = E1000E_INT_MODE_MSI; |
|
1467 /* Fall through */ |
|
1468 case E1000E_INT_MODE_MSI: |
|
1469 if (!pci_enable_msi(adapter->pdev)) { |
|
1470 adapter->flags |= FLAG_MSI_ENABLED; |
|
1471 } else { |
|
1472 adapter->int_mode = E1000E_INT_MODE_LEGACY; |
|
1473 e_err("Failed to initialize MSI interrupts. Falling " |
|
1474 "back to legacy interrupts.\n"); |
|
1475 } |
|
1476 /* Fall through */ |
|
1477 case E1000E_INT_MODE_LEGACY: |
|
1478 /* Don't do anything; this is the system default */ |
|
1479 break; |
|
1480 } |
|
1481 |
|
1482 return; |
|
1483 } |
|
1484 |
|
1485 /** |
|
1486 * e1000_request_msix - Initialize MSI-X interrupts |
|
1487 * |
|
1488 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the |
|
1489 * kernel. |
|
1490 **/ |
|
1491 static int e1000_request_msix(struct e1000_adapter *adapter) |
|
1492 { |
|
1493 struct net_device *netdev = adapter->netdev; |
|
1494 int err = 0, vector = 0; |
|
1495 |
|
1496 if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
|
1497 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); |
|
1498 else |
|
1499 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); |
|
1500 err = request_irq(adapter->msix_entries[vector].vector, |
|
1501 &e1000_intr_msix_rx, 0, adapter->rx_ring->name, |
|
1502 netdev); |
|
1503 if (err) |
|
1504 goto out; |
|
1505 adapter->rx_ring->itr_register = E1000_EITR_82574(vector); |
|
1506 adapter->rx_ring->itr_val = adapter->itr; |
|
1507 vector++; |
|
1508 |
|
1509 if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
|
1510 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); |
|
1511 else |
|
1512 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); |
|
1513 err = request_irq(adapter->msix_entries[vector].vector, |
|
1514 &e1000_intr_msix_tx, 0, adapter->tx_ring->name, |
|
1515 netdev); |
|
1516 if (err) |
|
1517 goto out; |
|
1518 adapter->tx_ring->itr_register = E1000_EITR_82574(vector); |
|
1519 adapter->tx_ring->itr_val = adapter->itr; |
|
1520 vector++; |
|
1521 |
|
1522 err = request_irq(adapter->msix_entries[vector].vector, |
|
1523 &e1000_msix_other, 0, netdev->name, netdev); |
|
1524 if (err) |
|
1525 goto out; |
|
1526 |
|
1527 e1000_configure_msix(adapter); |
|
1528 return 0; |
|
1529 out: |
|
1530 return err; |
|
1531 } |
|
1532 |
|
1533 /** |
|
1534 * e1000_request_irq - initialize interrupts |
|
1535 * |
|
1536 * Attempts to configure interrupts using the best available |
|
1537 * capabilities of the hardware and kernel. |
|
1538 **/ |
|
1539 static int e1000_request_irq(struct e1000_adapter *adapter) |
|
1540 { |
|
1541 struct net_device *netdev = adapter->netdev; |
|
1542 int err; |
|
1543 |
|
1544 if (adapter->msix_entries) { |
|
1545 err = e1000_request_msix(adapter); |
|
1546 if (!err) |
|
1547 return err; |
|
1548 /* fall back to MSI */ |
|
1549 e1000e_reset_interrupt_capability(adapter); |
|
1550 adapter->int_mode = E1000E_INT_MODE_MSI; |
|
1551 e1000e_set_interrupt_capability(adapter); |
|
1552 } |
|
1553 if (adapter->flags & FLAG_MSI_ENABLED) { |
|
1554 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0, |
|
1555 netdev->name, netdev); |
|
1556 if (!err) |
|
1557 return err; |
|
1558 |
|
1559 /* fall back to legacy interrupt */ |
|
1560 e1000e_reset_interrupt_capability(adapter); |
|
1561 adapter->int_mode = E1000E_INT_MODE_LEGACY; |
|
1562 } |
|
1563 |
|
1564 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED, |
|
1565 netdev->name, netdev); |
|
1566 if (err) |
|
1567 e_err("Unable to allocate interrupt, Error: %d\n", err); |
|
1568 |
|
1569 return err; |
|
1570 } |
|
1571 |
|
1572 static void e1000_free_irq(struct e1000_adapter *adapter) |
|
1573 { |
|
1574 struct net_device *netdev = adapter->netdev; |
|
1575 |
|
1576 if (adapter->msix_entries) { |
|
1577 int vector = 0; |
|
1578 |
|
1579 free_irq(adapter->msix_entries[vector].vector, netdev); |
|
1580 vector++; |
|
1581 |
|
1582 free_irq(adapter->msix_entries[vector].vector, netdev); |
|
1583 vector++; |
|
1584 |
|
1585 /* Other Causes interrupt vector */ |
|
1586 free_irq(adapter->msix_entries[vector].vector, netdev); |
|
1587 return; |
|
1588 } |
|
1589 |
|
1590 free_irq(adapter->pdev->irq, netdev); |
|
1591 } |
|
1592 |
|
1593 /** |
|
1594 * e1000_irq_disable - Mask off interrupt generation on the NIC |
|
1595 **/ |
|
1596 static void e1000_irq_disable(struct e1000_adapter *adapter) |
|
1597 { |
|
1598 struct e1000_hw *hw = &adapter->hw; |
|
1599 |
|
1600 ew32(IMC, ~0); |
|
1601 if (adapter->msix_entries) |
|
1602 ew32(EIAC_82574, 0); |
|
1603 e1e_flush(); |
|
1604 synchronize_irq(adapter->pdev->irq); |
|
1605 } |
|
1606 |
|
1607 /** |
|
1608 * e1000_irq_enable - Enable default interrupt generation settings |
|
1609 **/ |
|
1610 static void e1000_irq_enable(struct e1000_adapter *adapter) |
|
1611 { |
|
1612 struct e1000_hw *hw = &adapter->hw; |
|
1613 |
|
1614 if (adapter->msix_entries) { |
|
1615 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); |
|
1616 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); |
|
1617 } else { |
|
1618 ew32(IMS, IMS_ENABLE_MASK); |
|
1619 } |
|
1620 e1e_flush(); |
|
1621 } |
|
1622 |
|
1623 /** |
|
1624 * e1000_get_hw_control - get control of the h/w from f/w |
|
1625 * @adapter: address of board private structure |
|
1626 * |
|
1627 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
|
1628 * For ASF and Pass Through versions of f/w this means that |
|
1629 * the driver is loaded. For AMT version (only with 82573) |
|
1630 * of the f/w this means that the network i/f is open. |
|
1631 **/ |
|
1632 static void e1000_get_hw_control(struct e1000_adapter *adapter) |
|
1633 { |
|
1634 struct e1000_hw *hw = &adapter->hw; |
|
1635 u32 ctrl_ext; |
|
1636 u32 swsm; |
|
1637 |
|
1638 /* Let firmware know the driver has taken over */ |
|
1639 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
|
1640 swsm = er32(SWSM); |
|
1641 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); |
|
1642 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
|
1643 ctrl_ext = er32(CTRL_EXT); |
|
1644 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
|
1645 } |
|
1646 } |
|
1647 |
|
1648 /** |
|
1649 * e1000_release_hw_control - release control of the h/w to f/w |
|
1650 * @adapter: address of board private structure |
|
1651 * |
|
1652 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
|
1653 * For ASF and Pass Through versions of f/w this means that the |
|
1654 * driver is no longer loaded. For AMT version (only with 82573) i |
|
1655 * of the f/w this means that the network i/f is closed. |
|
1656 * |
|
1657 **/ |
|
1658 static void e1000_release_hw_control(struct e1000_adapter *adapter) |
|
1659 { |
|
1660 struct e1000_hw *hw = &adapter->hw; |
|
1661 u32 ctrl_ext; |
|
1662 u32 swsm; |
|
1663 |
|
1664 /* Let firmware taken over control of h/w */ |
|
1665 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
|
1666 swsm = er32(SWSM); |
|
1667 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); |
|
1668 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
|
1669 ctrl_ext = er32(CTRL_EXT); |
|
1670 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
|
1671 } |
|
1672 } |
|
1673 |
|
1674 /** |
|
1675 * @e1000_alloc_ring - allocate memory for a ring structure |
|
1676 **/ |
|
1677 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, |
|
1678 struct e1000_ring *ring) |
|
1679 { |
|
1680 struct pci_dev *pdev = adapter->pdev; |
|
1681 |
|
1682 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, |
|
1683 GFP_KERNEL); |
|
1684 if (!ring->desc) |
|
1685 return -ENOMEM; |
|
1686 |
|
1687 return 0; |
|
1688 } |
|
1689 |
|
1690 /** |
|
1691 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) |
|
1692 * @adapter: board private structure |
|
1693 * |
|
1694 * Return 0 on success, negative on failure |
|
1695 **/ |
|
1696 int e1000e_setup_tx_resources(struct e1000_adapter *adapter) |
|
1697 { |
|
1698 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1699 int err = -ENOMEM, size; |
|
1700 |
|
1701 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
1702 tx_ring->buffer_info = vmalloc(size); |
|
1703 if (!tx_ring->buffer_info) |
|
1704 goto err; |
|
1705 memset(tx_ring->buffer_info, 0, size); |
|
1706 |
|
1707 /* round up to nearest 4K */ |
|
1708 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); |
|
1709 tx_ring->size = ALIGN(tx_ring->size, 4096); |
|
1710 |
|
1711 err = e1000_alloc_ring_dma(adapter, tx_ring); |
|
1712 if (err) |
|
1713 goto err; |
|
1714 |
|
1715 tx_ring->next_to_use = 0; |
|
1716 tx_ring->next_to_clean = 0; |
|
1717 |
|
1718 return 0; |
|
1719 err: |
|
1720 vfree(tx_ring->buffer_info); |
|
1721 e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
|
1722 return err; |
|
1723 } |
|
1724 |
|
1725 /** |
|
1726 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) |
|
1727 * @adapter: board private structure |
|
1728 * |
|
1729 * Returns 0 on success, negative on failure |
|
1730 **/ |
|
1731 int e1000e_setup_rx_resources(struct e1000_adapter *adapter) |
|
1732 { |
|
1733 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1734 struct e1000_buffer *buffer_info; |
|
1735 int i, size, desc_len, err = -ENOMEM; |
|
1736 |
|
1737 size = sizeof(struct e1000_buffer) * rx_ring->count; |
|
1738 rx_ring->buffer_info = vmalloc(size); |
|
1739 if (!rx_ring->buffer_info) |
|
1740 goto err; |
|
1741 memset(rx_ring->buffer_info, 0, size); |
|
1742 |
|
1743 for (i = 0; i < rx_ring->count; i++) { |
|
1744 buffer_info = &rx_ring->buffer_info[i]; |
|
1745 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, |
|
1746 sizeof(struct e1000_ps_page), |
|
1747 GFP_KERNEL); |
|
1748 if (!buffer_info->ps_pages) |
|
1749 goto err_pages; |
|
1750 } |
|
1751 |
|
1752 desc_len = sizeof(union e1000_rx_desc_packet_split); |
|
1753 |
|
1754 /* Round up to nearest 4K */ |
|
1755 rx_ring->size = rx_ring->count * desc_len; |
|
1756 rx_ring->size = ALIGN(rx_ring->size, 4096); |
|
1757 |
|
1758 err = e1000_alloc_ring_dma(adapter, rx_ring); |
|
1759 if (err) |
|
1760 goto err_pages; |
|
1761 |
|
1762 rx_ring->next_to_clean = 0; |
|
1763 rx_ring->next_to_use = 0; |
|
1764 rx_ring->rx_skb_top = NULL; |
|
1765 |
|
1766 return 0; |
|
1767 |
|
1768 err_pages: |
|
1769 for (i = 0; i < rx_ring->count; i++) { |
|
1770 buffer_info = &rx_ring->buffer_info[i]; |
|
1771 kfree(buffer_info->ps_pages); |
|
1772 } |
|
1773 err: |
|
1774 vfree(rx_ring->buffer_info); |
|
1775 e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
|
1776 return err; |
|
1777 } |
|
1778 |
|
1779 /** |
|
1780 * e1000_clean_tx_ring - Free Tx Buffers |
|
1781 * @adapter: board private structure |
|
1782 **/ |
|
1783 static void e1000_clean_tx_ring(struct e1000_adapter *adapter) |
|
1784 { |
|
1785 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1786 struct e1000_buffer *buffer_info; |
|
1787 unsigned long size; |
|
1788 unsigned int i; |
|
1789 |
|
1790 for (i = 0; i < tx_ring->count; i++) { |
|
1791 buffer_info = &tx_ring->buffer_info[i]; |
|
1792 e1000_put_txbuf(adapter, buffer_info); |
|
1793 } |
|
1794 |
|
1795 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
1796 memset(tx_ring->buffer_info, 0, size); |
|
1797 |
|
1798 memset(tx_ring->desc, 0, tx_ring->size); |
|
1799 |
|
1800 tx_ring->next_to_use = 0; |
|
1801 tx_ring->next_to_clean = 0; |
|
1802 |
|
1803 writel(0, adapter->hw.hw_addr + tx_ring->head); |
|
1804 writel(0, adapter->hw.hw_addr + tx_ring->tail); |
|
1805 } |
|
1806 |
|
1807 /** |
|
1808 * e1000e_free_tx_resources - Free Tx Resources per Queue |
|
1809 * @adapter: board private structure |
|
1810 * |
|
1811 * Free all transmit software resources |
|
1812 **/ |
|
1813 void e1000e_free_tx_resources(struct e1000_adapter *adapter) |
|
1814 { |
|
1815 struct pci_dev *pdev = adapter->pdev; |
|
1816 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
1817 |
|
1818 e1000_clean_tx_ring(adapter); |
|
1819 |
|
1820 vfree(tx_ring->buffer_info); |
|
1821 tx_ring->buffer_info = NULL; |
|
1822 |
|
1823 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
|
1824 tx_ring->dma); |
|
1825 tx_ring->desc = NULL; |
|
1826 } |
|
1827 |
|
1828 /** |
|
1829 * e1000e_free_rx_resources - Free Rx Resources |
|
1830 * @adapter: board private structure |
|
1831 * |
|
1832 * Free all receive software resources |
|
1833 **/ |
|
1834 |
|
1835 void e1000e_free_rx_resources(struct e1000_adapter *adapter) |
|
1836 { |
|
1837 struct pci_dev *pdev = adapter->pdev; |
|
1838 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
1839 int i; |
|
1840 |
|
1841 e1000_clean_rx_ring(adapter); |
|
1842 |
|
1843 for (i = 0; i < rx_ring->count; i++) { |
|
1844 kfree(rx_ring->buffer_info[i].ps_pages); |
|
1845 } |
|
1846 |
|
1847 vfree(rx_ring->buffer_info); |
|
1848 rx_ring->buffer_info = NULL; |
|
1849 |
|
1850 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
|
1851 rx_ring->dma); |
|
1852 rx_ring->desc = NULL; |
|
1853 } |
|
1854 |
|
1855 /** |
|
1856 * e1000_update_itr - update the dynamic ITR value based on statistics |
|
1857 * @adapter: pointer to adapter |
|
1858 * @itr_setting: current adapter->itr |
|
1859 * @packets: the number of packets during this measurement interval |
|
1860 * @bytes: the number of bytes during this measurement interval |
|
1861 * |
|
1862 * Stores a new ITR value based on packets and byte |
|
1863 * counts during the last interrupt. The advantage of per interrupt |
|
1864 * computation is faster updates and more accurate ITR for the current |
|
1865 * traffic pattern. Constants in this function were computed |
|
1866 * based on theoretical maximum wire speed and thresholds were set based |
|
1867 * on testing data as well as attempting to minimize response time |
|
1868 * while increasing bulk throughput. This functionality is controlled |
|
1869 * by the InterruptThrottleRate module parameter. |
|
1870 **/ |
|
1871 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
|
1872 u16 itr_setting, int packets, |
|
1873 int bytes) |
|
1874 { |
|
1875 unsigned int retval = itr_setting; |
|
1876 |
|
1877 if (packets == 0) |
|
1878 goto update_itr_done; |
|
1879 |
|
1880 switch (itr_setting) { |
|
1881 case lowest_latency: |
|
1882 /* handle TSO and jumbo frames */ |
|
1883 if (bytes/packets > 8000) |
|
1884 retval = bulk_latency; |
|
1885 else if ((packets < 5) && (bytes > 512)) { |
|
1886 retval = low_latency; |
|
1887 } |
|
1888 break; |
|
1889 case low_latency: /* 50 usec aka 20000 ints/s */ |
|
1890 if (bytes > 10000) { |
|
1891 /* this if handles the TSO accounting */ |
|
1892 if (bytes/packets > 8000) { |
|
1893 retval = bulk_latency; |
|
1894 } else if ((packets < 10) || ((bytes/packets) > 1200)) { |
|
1895 retval = bulk_latency; |
|
1896 } else if ((packets > 35)) { |
|
1897 retval = lowest_latency; |
|
1898 } |
|
1899 } else if (bytes/packets > 2000) { |
|
1900 retval = bulk_latency; |
|
1901 } else if (packets <= 2 && bytes < 512) { |
|
1902 retval = lowest_latency; |
|
1903 } |
|
1904 break; |
|
1905 case bulk_latency: /* 250 usec aka 4000 ints/s */ |
|
1906 if (bytes > 25000) { |
|
1907 if (packets > 35) { |
|
1908 retval = low_latency; |
|
1909 } |
|
1910 } else if (bytes < 6000) { |
|
1911 retval = low_latency; |
|
1912 } |
|
1913 break; |
|
1914 } |
|
1915 |
|
1916 update_itr_done: |
|
1917 return retval; |
|
1918 } |
|
1919 |
|
1920 static void e1000_set_itr(struct e1000_adapter *adapter) |
|
1921 { |
|
1922 struct e1000_hw *hw = &adapter->hw; |
|
1923 u16 current_itr; |
|
1924 u32 new_itr = adapter->itr; |
|
1925 |
|
1926 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
|
1927 if (adapter->link_speed != SPEED_1000) { |
|
1928 current_itr = 0; |
|
1929 new_itr = 4000; |
|
1930 goto set_itr_now; |
|
1931 } |
|
1932 |
|
1933 adapter->tx_itr = e1000_update_itr(adapter, |
|
1934 adapter->tx_itr, |
|
1935 adapter->total_tx_packets, |
|
1936 adapter->total_tx_bytes); |
|
1937 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
1938 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
|
1939 adapter->tx_itr = low_latency; |
|
1940 |
|
1941 adapter->rx_itr = e1000_update_itr(adapter, |
|
1942 adapter->rx_itr, |
|
1943 adapter->total_rx_packets, |
|
1944 adapter->total_rx_bytes); |
|
1945 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
1946 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
|
1947 adapter->rx_itr = low_latency; |
|
1948 |
|
1949 current_itr = max(adapter->rx_itr, adapter->tx_itr); |
|
1950 |
|
1951 switch (current_itr) { |
|
1952 /* counts and packets in update_itr are dependent on these numbers */ |
|
1953 case lowest_latency: |
|
1954 new_itr = 70000; |
|
1955 break; |
|
1956 case low_latency: |
|
1957 new_itr = 20000; /* aka hwitr = ~200 */ |
|
1958 break; |
|
1959 case bulk_latency: |
|
1960 new_itr = 4000; |
|
1961 break; |
|
1962 default: |
|
1963 break; |
|
1964 } |
|
1965 |
|
1966 set_itr_now: |
|
1967 if (new_itr != adapter->itr) { |
|
1968 /* |
|
1969 * this attempts to bias the interrupt rate towards Bulk |
|
1970 * by adding intermediate steps when interrupt rate is |
|
1971 * increasing |
|
1972 */ |
|
1973 new_itr = new_itr > adapter->itr ? |
|
1974 min(adapter->itr + (new_itr >> 2), new_itr) : |
|
1975 new_itr; |
|
1976 adapter->itr = new_itr; |
|
1977 adapter->rx_ring->itr_val = new_itr; |
|
1978 if (adapter->msix_entries) |
|
1979 adapter->rx_ring->set_itr = 1; |
|
1980 else |
|
1981 ew32(ITR, 1000000000 / (new_itr * 256)); |
|
1982 } |
|
1983 } |
|
1984 |
|
1985 /** |
|
1986 * e1000_alloc_queues - Allocate memory for all rings |
|
1987 * @adapter: board private structure to initialize |
|
1988 **/ |
|
1989 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) |
|
1990 { |
|
1991 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
|
1992 if (!adapter->tx_ring) |
|
1993 goto err; |
|
1994 |
|
1995 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
|
1996 if (!adapter->rx_ring) |
|
1997 goto err; |
|
1998 |
|
1999 return 0; |
|
2000 err: |
|
2001 e_err("Unable to allocate memory for queues\n"); |
|
2002 kfree(adapter->rx_ring); |
|
2003 kfree(adapter->tx_ring); |
|
2004 return -ENOMEM; |
|
2005 } |
|
2006 |
|
2007 /** |
|
2008 * e1000_clean - NAPI Rx polling callback |
|
2009 * @napi: struct associated with this polling callback |
|
2010 * @budget: amount of packets driver is allowed to process this poll |
|
2011 **/ |
|
2012 static int e1000_clean(struct napi_struct *napi, int budget) |
|
2013 { |
|
2014 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); |
|
2015 struct e1000_hw *hw = &adapter->hw; |
|
2016 struct net_device *poll_dev = adapter->netdev; |
|
2017 int tx_cleaned = 1, work_done = 0; |
|
2018 |
|
2019 adapter = netdev_priv(poll_dev); |
|
2020 |
|
2021 if (adapter->msix_entries && |
|
2022 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) |
|
2023 goto clean_rx; |
|
2024 |
|
2025 tx_cleaned = e1000_clean_tx_irq(adapter); |
|
2026 |
|
2027 clean_rx: |
|
2028 adapter->clean_rx(adapter, &work_done, budget); |
|
2029 |
|
2030 if (!tx_cleaned) |
|
2031 work_done = budget; |
|
2032 |
|
2033 /* If budget not fully consumed, exit the polling mode */ |
|
2034 if (work_done < budget) { |
|
2035 if (adapter->itr_setting & 3) |
|
2036 e1000_set_itr(adapter); |
|
2037 napi_complete(napi); |
|
2038 if (!test_bit(__E1000_DOWN, &adapter->state)) { |
|
2039 if (adapter->msix_entries) |
|
2040 ew32(IMS, adapter->rx_ring->ims_val); |
|
2041 else |
|
2042 e1000_irq_enable(adapter); |
|
2043 } |
|
2044 } |
|
2045 |
|
2046 return work_done; |
|
2047 } |
|
2048 |
|
2049 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
|
2050 { |
|
2051 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2052 struct e1000_hw *hw = &adapter->hw; |
|
2053 u32 vfta, index; |
|
2054 |
|
2055 /* don't update vlan cookie if already programmed */ |
|
2056 if ((adapter->hw.mng_cookie.status & |
|
2057 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
|
2058 (vid == adapter->mng_vlan_id)) |
|
2059 return; |
|
2060 /* add VID to filter table */ |
|
2061 index = (vid >> 5) & 0x7F; |
|
2062 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
|
2063 vfta |= (1 << (vid & 0x1F)); |
|
2064 e1000e_write_vfta(hw, index, vfta); |
|
2065 } |
|
2066 |
|
2067 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
|
2068 { |
|
2069 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2070 struct e1000_hw *hw = &adapter->hw; |
|
2071 u32 vfta, index; |
|
2072 |
|
2073 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2074 e1000_irq_disable(adapter); |
|
2075 vlan_group_set_device(adapter->vlgrp, vid, NULL); |
|
2076 |
|
2077 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2078 e1000_irq_enable(adapter); |
|
2079 |
|
2080 if ((adapter->hw.mng_cookie.status & |
|
2081 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
|
2082 (vid == adapter->mng_vlan_id)) { |
|
2083 /* release control to f/w */ |
|
2084 e1000_release_hw_control(adapter); |
|
2085 return; |
|
2086 } |
|
2087 |
|
2088 /* remove VID from filter table */ |
|
2089 index = (vid >> 5) & 0x7F; |
|
2090 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
|
2091 vfta &= ~(1 << (vid & 0x1F)); |
|
2092 e1000e_write_vfta(hw, index, vfta); |
|
2093 } |
|
2094 |
|
2095 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
|
2096 { |
|
2097 struct net_device *netdev = adapter->netdev; |
|
2098 u16 vid = adapter->hw.mng_cookie.vlan_id; |
|
2099 u16 old_vid = adapter->mng_vlan_id; |
|
2100 |
|
2101 if (!adapter->vlgrp) |
|
2102 return; |
|
2103 |
|
2104 if (!vlan_group_get_device(adapter->vlgrp, vid)) { |
|
2105 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
2106 if (adapter->hw.mng_cookie.status & |
|
2107 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { |
|
2108 e1000_vlan_rx_add_vid(netdev, vid); |
|
2109 adapter->mng_vlan_id = vid; |
|
2110 } |
|
2111 |
|
2112 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
|
2113 (vid != old_vid) && |
|
2114 !vlan_group_get_device(adapter->vlgrp, old_vid)) |
|
2115 e1000_vlan_rx_kill_vid(netdev, old_vid); |
|
2116 } else { |
|
2117 adapter->mng_vlan_id = vid; |
|
2118 } |
|
2119 } |
|
2120 |
|
2121 |
|
2122 static void e1000_vlan_rx_register(struct net_device *netdev, |
|
2123 struct vlan_group *grp) |
|
2124 { |
|
2125 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2126 struct e1000_hw *hw = &adapter->hw; |
|
2127 u32 ctrl, rctl; |
|
2128 |
|
2129 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2130 e1000_irq_disable(adapter); |
|
2131 adapter->vlgrp = grp; |
|
2132 |
|
2133 if (grp) { |
|
2134 /* enable VLAN tag insert/strip */ |
|
2135 ctrl = er32(CTRL); |
|
2136 ctrl |= E1000_CTRL_VME; |
|
2137 ew32(CTRL, ctrl); |
|
2138 |
|
2139 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
|
2140 /* enable VLAN receive filtering */ |
|
2141 rctl = er32(RCTL); |
|
2142 rctl &= ~E1000_RCTL_CFIEN; |
|
2143 ew32(RCTL, rctl); |
|
2144 e1000_update_mng_vlan(adapter); |
|
2145 } |
|
2146 } else { |
|
2147 /* disable VLAN tag insert/strip */ |
|
2148 ctrl = er32(CTRL); |
|
2149 ctrl &= ~E1000_CTRL_VME; |
|
2150 ew32(CTRL, ctrl); |
|
2151 |
|
2152 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
|
2153 if (adapter->mng_vlan_id != |
|
2154 (u16)E1000_MNG_VLAN_NONE) { |
|
2155 e1000_vlan_rx_kill_vid(netdev, |
|
2156 adapter->mng_vlan_id); |
|
2157 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
2158 } |
|
2159 } |
|
2160 } |
|
2161 |
|
2162 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
2163 e1000_irq_enable(adapter); |
|
2164 } |
|
2165 |
|
2166 static void e1000_restore_vlan(struct e1000_adapter *adapter) |
|
2167 { |
|
2168 u16 vid; |
|
2169 |
|
2170 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
|
2171 |
|
2172 if (!adapter->vlgrp) |
|
2173 return; |
|
2174 |
|
2175 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
|
2176 if (!vlan_group_get_device(adapter->vlgrp, vid)) |
|
2177 continue; |
|
2178 e1000_vlan_rx_add_vid(adapter->netdev, vid); |
|
2179 } |
|
2180 } |
|
2181 |
|
2182 static void e1000_init_manageability(struct e1000_adapter *adapter) |
|
2183 { |
|
2184 struct e1000_hw *hw = &adapter->hw; |
|
2185 u32 manc, manc2h; |
|
2186 |
|
2187 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) |
|
2188 return; |
|
2189 |
|
2190 manc = er32(MANC); |
|
2191 |
|
2192 /* |
|
2193 * enable receiving management packets to the host. this will probably |
|
2194 * generate destination unreachable messages from the host OS, but |
|
2195 * the packets will be handled on SMBUS |
|
2196 */ |
|
2197 manc |= E1000_MANC_EN_MNG2HOST; |
|
2198 manc2h = er32(MANC2H); |
|
2199 #define E1000_MNG2HOST_PORT_623 (1 << 5) |
|
2200 #define E1000_MNG2HOST_PORT_664 (1 << 6) |
|
2201 manc2h |= E1000_MNG2HOST_PORT_623; |
|
2202 manc2h |= E1000_MNG2HOST_PORT_664; |
|
2203 ew32(MANC2H, manc2h); |
|
2204 ew32(MANC, manc); |
|
2205 } |
|
2206 |
|
2207 /** |
|
2208 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
|
2209 * @adapter: board private structure |
|
2210 * |
|
2211 * Configure the Tx unit of the MAC after a reset. |
|
2212 **/ |
|
2213 static void e1000_configure_tx(struct e1000_adapter *adapter) |
|
2214 { |
|
2215 struct e1000_hw *hw = &adapter->hw; |
|
2216 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
2217 u64 tdba; |
|
2218 u32 tdlen, tctl, tipg, tarc; |
|
2219 u32 ipgr1, ipgr2; |
|
2220 |
|
2221 /* Setup the HW Tx Head and Tail descriptor pointers */ |
|
2222 tdba = tx_ring->dma; |
|
2223 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); |
|
2224 ew32(TDBAL, (tdba & DMA_BIT_MASK(32))); |
|
2225 ew32(TDBAH, (tdba >> 32)); |
|
2226 ew32(TDLEN, tdlen); |
|
2227 ew32(TDH, 0); |
|
2228 ew32(TDT, 0); |
|
2229 tx_ring->head = E1000_TDH; |
|
2230 tx_ring->tail = E1000_TDT; |
|
2231 |
|
2232 /* Set the default values for the Tx Inter Packet Gap timer */ |
|
2233 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ |
|
2234 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ |
|
2235 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ |
|
2236 |
|
2237 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) |
|
2238 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ |
|
2239 |
|
2240 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
|
2241 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
|
2242 ew32(TIPG, tipg); |
|
2243 |
|
2244 /* Set the Tx Interrupt Delay register */ |
|
2245 ew32(TIDV, adapter->tx_int_delay); |
|
2246 /* Tx irq moderation */ |
|
2247 ew32(TADV, adapter->tx_abs_int_delay); |
|
2248 |
|
2249 /* Program the Transmit Control Register */ |
|
2250 tctl = er32(TCTL); |
|
2251 tctl &= ~E1000_TCTL_CT; |
|
2252 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
|
2253 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
|
2254 |
|
2255 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { |
|
2256 tarc = er32(TARC(0)); |
|
2257 /* |
|
2258 * set the speed mode bit, we'll clear it if we're not at |
|
2259 * gigabit link later |
|
2260 */ |
|
2261 #define SPEED_MODE_BIT (1 << 21) |
|
2262 tarc |= SPEED_MODE_BIT; |
|
2263 ew32(TARC(0), tarc); |
|
2264 } |
|
2265 |
|
2266 /* errata: program both queues to unweighted RR */ |
|
2267 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { |
|
2268 tarc = er32(TARC(0)); |
|
2269 tarc |= 1; |
|
2270 ew32(TARC(0), tarc); |
|
2271 tarc = er32(TARC(1)); |
|
2272 tarc |= 1; |
|
2273 ew32(TARC(1), tarc); |
|
2274 } |
|
2275 |
|
2276 /* Setup Transmit Descriptor Settings for eop descriptor */ |
|
2277 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
|
2278 |
|
2279 /* only set IDE if we are delaying interrupts using the timers */ |
|
2280 if (adapter->tx_int_delay) |
|
2281 adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
|
2282 |
|
2283 /* enable Report Status bit */ |
|
2284 adapter->txd_cmd |= E1000_TXD_CMD_RS; |
|
2285 |
|
2286 ew32(TCTL, tctl); |
|
2287 |
|
2288 e1000e_config_collision_dist(hw); |
|
2289 |
|
2290 adapter->tx_queue_len = adapter->netdev->tx_queue_len; |
|
2291 } |
|
2292 |
|
2293 /** |
|
2294 * e1000_setup_rctl - configure the receive control registers |
|
2295 * @adapter: Board private structure |
|
2296 **/ |
|
2297 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ |
|
2298 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) |
|
2299 static void e1000_setup_rctl(struct e1000_adapter *adapter) |
|
2300 { |
|
2301 struct e1000_hw *hw = &adapter->hw; |
|
2302 u32 rctl, rfctl; |
|
2303 u32 psrctl = 0; |
|
2304 u32 pages = 0; |
|
2305 |
|
2306 /* Program MC offset vector base */ |
|
2307 rctl = er32(RCTL); |
|
2308 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
|
2309 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
|
2310 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
2311 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
2312 |
|
2313 /* Do not Store bad packets */ |
|
2314 rctl &= ~E1000_RCTL_SBP; |
|
2315 |
|
2316 /* Enable Long Packet receive */ |
|
2317 if (adapter->netdev->mtu <= ETH_DATA_LEN) |
|
2318 rctl &= ~E1000_RCTL_LPE; |
|
2319 else |
|
2320 rctl |= E1000_RCTL_LPE; |
|
2321 |
|
2322 /* Some systems expect that the CRC is included in SMBUS traffic. The |
|
2323 * hardware strips the CRC before sending to both SMBUS (BMC) and to |
|
2324 * host memory when this is enabled |
|
2325 */ |
|
2326 if (adapter->flags2 & FLAG2_CRC_STRIPPING) |
|
2327 rctl |= E1000_RCTL_SECRC; |
|
2328 |
|
2329 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ |
|
2330 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { |
|
2331 u16 phy_data; |
|
2332 |
|
2333 e1e_rphy(hw, PHY_REG(770, 26), &phy_data); |
|
2334 phy_data &= 0xfff8; |
|
2335 phy_data |= (1 << 2); |
|
2336 e1e_wphy(hw, PHY_REG(770, 26), phy_data); |
|
2337 |
|
2338 e1e_rphy(hw, 22, &phy_data); |
|
2339 phy_data &= 0x0fff; |
|
2340 phy_data |= (1 << 14); |
|
2341 e1e_wphy(hw, 0x10, 0x2823); |
|
2342 e1e_wphy(hw, 0x11, 0x0003); |
|
2343 e1e_wphy(hw, 22, phy_data); |
|
2344 } |
|
2345 |
|
2346 /* Setup buffer sizes */ |
|
2347 rctl &= ~E1000_RCTL_SZ_4096; |
|
2348 rctl |= E1000_RCTL_BSEX; |
|
2349 switch (adapter->rx_buffer_len) { |
|
2350 case 2048: |
|
2351 default: |
|
2352 rctl |= E1000_RCTL_SZ_2048; |
|
2353 rctl &= ~E1000_RCTL_BSEX; |
|
2354 break; |
|
2355 case 4096: |
|
2356 rctl |= E1000_RCTL_SZ_4096; |
|
2357 break; |
|
2358 case 8192: |
|
2359 rctl |= E1000_RCTL_SZ_8192; |
|
2360 break; |
|
2361 case 16384: |
|
2362 rctl |= E1000_RCTL_SZ_16384; |
|
2363 break; |
|
2364 } |
|
2365 |
|
2366 /* |
|
2367 * 82571 and greater support packet-split where the protocol |
|
2368 * header is placed in skb->data and the packet data is |
|
2369 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. |
|
2370 * In the case of a non-split, skb->data is linearly filled, |
|
2371 * followed by the page buffers. Therefore, skb->data is |
|
2372 * sized to hold the largest protocol header. |
|
2373 * |
|
2374 * allocations using alloc_page take too long for regular MTU |
|
2375 * so only enable packet split for jumbo frames |
|
2376 * |
|
2377 * Using pages when the page size is greater than 16k wastes |
|
2378 * a lot of memory, since we allocate 3 pages at all times |
|
2379 * per packet. |
|
2380 */ |
|
2381 pages = PAGE_USE_COUNT(adapter->netdev->mtu); |
|
2382 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) && |
|
2383 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) |
|
2384 adapter->rx_ps_pages = pages; |
|
2385 else |
|
2386 adapter->rx_ps_pages = 0; |
|
2387 |
|
2388 if (adapter->rx_ps_pages) { |
|
2389 /* Configure extra packet-split registers */ |
|
2390 rfctl = er32(RFCTL); |
|
2391 rfctl |= E1000_RFCTL_EXTEN; |
|
2392 /* |
|
2393 * disable packet split support for IPv6 extension headers, |
|
2394 * because some malformed IPv6 headers can hang the Rx |
|
2395 */ |
|
2396 rfctl |= (E1000_RFCTL_IPV6_EX_DIS | |
|
2397 E1000_RFCTL_NEW_IPV6_EXT_DIS); |
|
2398 |
|
2399 ew32(RFCTL, rfctl); |
|
2400 |
|
2401 /* Enable Packet split descriptors */ |
|
2402 rctl |= E1000_RCTL_DTYP_PS; |
|
2403 |
|
2404 psrctl |= adapter->rx_ps_bsize0 >> |
|
2405 E1000_PSRCTL_BSIZE0_SHIFT; |
|
2406 |
|
2407 switch (adapter->rx_ps_pages) { |
|
2408 case 3: |
|
2409 psrctl |= PAGE_SIZE << |
|
2410 E1000_PSRCTL_BSIZE3_SHIFT; |
|
2411 case 2: |
|
2412 psrctl |= PAGE_SIZE << |
|
2413 E1000_PSRCTL_BSIZE2_SHIFT; |
|
2414 case 1: |
|
2415 psrctl |= PAGE_SIZE >> |
|
2416 E1000_PSRCTL_BSIZE1_SHIFT; |
|
2417 break; |
|
2418 } |
|
2419 |
|
2420 ew32(PSRCTL, psrctl); |
|
2421 } |
|
2422 |
|
2423 ew32(RCTL, rctl); |
|
2424 /* just started the receive unit, no need to restart */ |
|
2425 adapter->flags &= ~FLAG_RX_RESTART_NOW; |
|
2426 } |
|
2427 |
|
2428 /** |
|
2429 * e1000_configure_rx - Configure Receive Unit after Reset |
|
2430 * @adapter: board private structure |
|
2431 * |
|
2432 * Configure the Rx unit of the MAC after a reset. |
|
2433 **/ |
|
2434 static void e1000_configure_rx(struct e1000_adapter *adapter) |
|
2435 { |
|
2436 struct e1000_hw *hw = &adapter->hw; |
|
2437 struct e1000_ring *rx_ring = adapter->rx_ring; |
|
2438 u64 rdba; |
|
2439 u32 rdlen, rctl, rxcsum, ctrl_ext; |
|
2440 |
|
2441 if (adapter->rx_ps_pages) { |
|
2442 /* this is a 32 byte descriptor */ |
|
2443 rdlen = rx_ring->count * |
|
2444 sizeof(union e1000_rx_desc_packet_split); |
|
2445 adapter->clean_rx = e1000_clean_rx_irq_ps; |
|
2446 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; |
|
2447 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { |
|
2448 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); |
|
2449 adapter->clean_rx = e1000_clean_jumbo_rx_irq; |
|
2450 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; |
|
2451 } else { |
|
2452 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); |
|
2453 adapter->clean_rx = e1000_clean_rx_irq; |
|
2454 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
|
2455 } |
|
2456 |
|
2457 /* disable receives while setting up the descriptors */ |
|
2458 rctl = er32(RCTL); |
|
2459 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
2460 e1e_flush(); |
|
2461 msleep(10); |
|
2462 |
|
2463 /* set the Receive Delay Timer Register */ |
|
2464 ew32(RDTR, adapter->rx_int_delay); |
|
2465 |
|
2466 /* irq moderation */ |
|
2467 ew32(RADV, adapter->rx_abs_int_delay); |
|
2468 if (adapter->itr_setting != 0) |
|
2469 ew32(ITR, 1000000000 / (adapter->itr * 256)); |
|
2470 |
|
2471 ctrl_ext = er32(CTRL_EXT); |
|
2472 /* Reset delay timers after every interrupt */ |
|
2473 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; |
|
2474 /* Auto-Mask interrupts upon ICR access */ |
|
2475 ctrl_ext |= E1000_CTRL_EXT_IAME; |
|
2476 ew32(IAM, 0xffffffff); |
|
2477 ew32(CTRL_EXT, ctrl_ext); |
|
2478 e1e_flush(); |
|
2479 |
|
2480 /* |
|
2481 * Setup the HW Rx Head and Tail Descriptor Pointers and |
|
2482 * the Base and Length of the Rx Descriptor Ring |
|
2483 */ |
|
2484 rdba = rx_ring->dma; |
|
2485 ew32(RDBAL, (rdba & DMA_BIT_MASK(32))); |
|
2486 ew32(RDBAH, (rdba >> 32)); |
|
2487 ew32(RDLEN, rdlen); |
|
2488 ew32(RDH, 0); |
|
2489 ew32(RDT, 0); |
|
2490 rx_ring->head = E1000_RDH; |
|
2491 rx_ring->tail = E1000_RDT; |
|
2492 |
|
2493 /* Enable Receive Checksum Offload for TCP and UDP */ |
|
2494 rxcsum = er32(RXCSUM); |
|
2495 if (adapter->flags & FLAG_RX_CSUM_ENABLED) { |
|
2496 rxcsum |= E1000_RXCSUM_TUOFL; |
|
2497 |
|
2498 /* |
|
2499 * IPv4 payload checksum for UDP fragments must be |
|
2500 * used in conjunction with packet-split. |
|
2501 */ |
|
2502 if (adapter->rx_ps_pages) |
|
2503 rxcsum |= E1000_RXCSUM_IPPCSE; |
|
2504 } else { |
|
2505 rxcsum &= ~E1000_RXCSUM_TUOFL; |
|
2506 /* no need to clear IPPCSE as it defaults to 0 */ |
|
2507 } |
|
2508 ew32(RXCSUM, rxcsum); |
|
2509 |
|
2510 /* |
|
2511 * Enable early receives on supported devices, only takes effect when |
|
2512 * packet size is equal or larger than the specified value (in 8 byte |
|
2513 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 |
|
2514 */ |
|
2515 if ((adapter->flags & FLAG_HAS_ERT) && |
|
2516 (adapter->netdev->mtu > ETH_DATA_LEN)) { |
|
2517 u32 rxdctl = er32(RXDCTL(0)); |
|
2518 ew32(RXDCTL(0), rxdctl | 0x3); |
|
2519 ew32(ERT, E1000_ERT_2048 | (1 << 13)); |
|
2520 /* |
|
2521 * With jumbo frames and early-receive enabled, excessive |
|
2522 * C4->C2 latencies result in dropped transactions. |
|
2523 */ |
|
2524 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, |
|
2525 e1000e_driver_name, 55); |
|
2526 } else { |
|
2527 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, |
|
2528 e1000e_driver_name, |
|
2529 PM_QOS_DEFAULT_VALUE); |
|
2530 } |
|
2531 |
|
2532 /* Enable Receives */ |
|
2533 ew32(RCTL, rctl); |
|
2534 } |
|
2535 |
|
2536 /** |
|
2537 * e1000_update_mc_addr_list - Update Multicast addresses |
|
2538 * @hw: pointer to the HW structure |
|
2539 * @mc_addr_list: array of multicast addresses to program |
|
2540 * @mc_addr_count: number of multicast addresses to program |
|
2541 * @rar_used_count: the first RAR register free to program |
|
2542 * @rar_count: total number of supported Receive Address Registers |
|
2543 * |
|
2544 * Updates the Receive Address Registers and Multicast Table Array. |
|
2545 * The caller must have a packed mc_addr_list of multicast addresses. |
|
2546 * The parameter rar_count will usually be hw->mac.rar_entry_count |
|
2547 * unless there are workarounds that change this. Currently no func pointer |
|
2548 * exists and all implementations are handled in the generic version of this |
|
2549 * function. |
|
2550 **/ |
|
2551 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, |
|
2552 u32 mc_addr_count, u32 rar_used_count, |
|
2553 u32 rar_count) |
|
2554 { |
|
2555 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count, |
|
2556 rar_used_count, rar_count); |
|
2557 } |
|
2558 |
|
2559 /** |
|
2560 * e1000_set_multi - Multicast and Promiscuous mode set |
|
2561 * @netdev: network interface device structure |
|
2562 * |
|
2563 * The set_multi entry point is called whenever the multicast address |
|
2564 * list or the network interface flags are updated. This routine is |
|
2565 * responsible for configuring the hardware for proper multicast, |
|
2566 * promiscuous mode, and all-multi behavior. |
|
2567 **/ |
|
2568 static void e1000_set_multi(struct net_device *netdev) |
|
2569 { |
|
2570 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2571 struct e1000_hw *hw = &adapter->hw; |
|
2572 struct e1000_mac_info *mac = &hw->mac; |
|
2573 struct dev_mc_list *mc_ptr; |
|
2574 u8 *mta_list; |
|
2575 u32 rctl; |
|
2576 int i; |
|
2577 |
|
2578 /* Check for Promiscuous and All Multicast modes */ |
|
2579 |
|
2580 rctl = er32(RCTL); |
|
2581 |
|
2582 if (netdev->flags & IFF_PROMISC) { |
|
2583 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
2584 rctl &= ~E1000_RCTL_VFE; |
|
2585 } else { |
|
2586 if (netdev->flags & IFF_ALLMULTI) { |
|
2587 rctl |= E1000_RCTL_MPE; |
|
2588 rctl &= ~E1000_RCTL_UPE; |
|
2589 } else { |
|
2590 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
2591 } |
|
2592 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
|
2593 rctl |= E1000_RCTL_VFE; |
|
2594 } |
|
2595 |
|
2596 ew32(RCTL, rctl); |
|
2597 |
|
2598 if (netdev->mc_count) { |
|
2599 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); |
|
2600 if (!mta_list) |
|
2601 return; |
|
2602 |
|
2603 /* prepare a packed array of only addresses. */ |
|
2604 mc_ptr = netdev->mc_list; |
|
2605 |
|
2606 for (i = 0; i < netdev->mc_count; i++) { |
|
2607 if (!mc_ptr) |
|
2608 break; |
|
2609 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, |
|
2610 ETH_ALEN); |
|
2611 mc_ptr = mc_ptr->next; |
|
2612 } |
|
2613 |
|
2614 e1000_update_mc_addr_list(hw, mta_list, i, 1, |
|
2615 mac->rar_entry_count); |
|
2616 kfree(mta_list); |
|
2617 } else { |
|
2618 /* |
|
2619 * if we're called from probe, we might not have |
|
2620 * anything to do here, so clear out the list |
|
2621 */ |
|
2622 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count); |
|
2623 } |
|
2624 } |
|
2625 |
|
2626 /** |
|
2627 * e1000_configure - configure the hardware for Rx and Tx |
|
2628 * @adapter: private board structure |
|
2629 **/ |
|
2630 static void e1000_configure(struct e1000_adapter *adapter) |
|
2631 { |
|
2632 e1000_set_multi(adapter->netdev); |
|
2633 |
|
2634 e1000_restore_vlan(adapter); |
|
2635 e1000_init_manageability(adapter); |
|
2636 |
|
2637 e1000_configure_tx(adapter); |
|
2638 e1000_setup_rctl(adapter); |
|
2639 e1000_configure_rx(adapter); |
|
2640 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring)); |
|
2641 } |
|
2642 |
|
2643 /** |
|
2644 * e1000e_power_up_phy - restore link in case the phy was powered down |
|
2645 * @adapter: address of board private structure |
|
2646 * |
|
2647 * The phy may be powered down to save power and turn off link when the |
|
2648 * driver is unloaded and wake on lan is not enabled (among others) |
|
2649 * *** this routine MUST be followed by a call to e1000e_reset *** |
|
2650 **/ |
|
2651 void e1000e_power_up_phy(struct e1000_adapter *adapter) |
|
2652 { |
|
2653 u16 mii_reg = 0; |
|
2654 |
|
2655 /* Just clear the power down bit to wake the phy back up */ |
|
2656 if (adapter->hw.phy.media_type == e1000_media_type_copper) { |
|
2657 /* |
|
2658 * According to the manual, the phy will retain its |
|
2659 * settings across a power-down/up cycle |
|
2660 */ |
|
2661 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); |
|
2662 mii_reg &= ~MII_CR_POWER_DOWN; |
|
2663 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); |
|
2664 } |
|
2665 |
|
2666 adapter->hw.mac.ops.setup_link(&adapter->hw); |
|
2667 } |
|
2668 |
|
2669 /** |
|
2670 * e1000_power_down_phy - Power down the PHY |
|
2671 * |
|
2672 * Power down the PHY so no link is implied when interface is down |
|
2673 * The PHY cannot be powered down is management or WoL is active |
|
2674 */ |
|
2675 static void e1000_power_down_phy(struct e1000_adapter *adapter) |
|
2676 { |
|
2677 struct e1000_hw *hw = &adapter->hw; |
|
2678 u16 mii_reg; |
|
2679 |
|
2680 /* WoL is enabled */ |
|
2681 if (adapter->wol) |
|
2682 return; |
|
2683 |
|
2684 /* non-copper PHY? */ |
|
2685 if (adapter->hw.phy.media_type != e1000_media_type_copper) |
|
2686 return; |
|
2687 |
|
2688 /* reset is blocked because of a SoL/IDER session */ |
|
2689 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw)) |
|
2690 return; |
|
2691 |
|
2692 /* manageability (AMT) is enabled */ |
|
2693 if (er32(MANC) & E1000_MANC_SMBUS_EN) |
|
2694 return; |
|
2695 |
|
2696 /* power down the PHY */ |
|
2697 e1e_rphy(hw, PHY_CONTROL, &mii_reg); |
|
2698 mii_reg |= MII_CR_POWER_DOWN; |
|
2699 e1e_wphy(hw, PHY_CONTROL, mii_reg); |
|
2700 mdelay(1); |
|
2701 } |
|
2702 |
|
2703 /** |
|
2704 * e1000e_reset - bring the hardware into a known good state |
|
2705 * |
|
2706 * This function boots the hardware and enables some settings that |
|
2707 * require a configuration cycle of the hardware - those cannot be |
|
2708 * set/changed during runtime. After reset the device needs to be |
|
2709 * properly configured for Rx, Tx etc. |
|
2710 */ |
|
2711 void e1000e_reset(struct e1000_adapter *adapter) |
|
2712 { |
|
2713 struct e1000_mac_info *mac = &adapter->hw.mac; |
|
2714 struct e1000_fc_info *fc = &adapter->hw.fc; |
|
2715 struct e1000_hw *hw = &adapter->hw; |
|
2716 u32 tx_space, min_tx_space, min_rx_space; |
|
2717 u32 pba = adapter->pba; |
|
2718 u16 hwm; |
|
2719 |
|
2720 /* reset Packet Buffer Allocation to default */ |
|
2721 ew32(PBA, pba); |
|
2722 |
|
2723 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { |
|
2724 /* |
|
2725 * To maintain wire speed transmits, the Tx FIFO should be |
|
2726 * large enough to accommodate two full transmit packets, |
|
2727 * rounded up to the next 1KB and expressed in KB. Likewise, |
|
2728 * the Rx FIFO should be large enough to accommodate at least |
|
2729 * one full receive packet and is similarly rounded up and |
|
2730 * expressed in KB. |
|
2731 */ |
|
2732 pba = er32(PBA); |
|
2733 /* upper 16 bits has Tx packet buffer allocation size in KB */ |
|
2734 tx_space = pba >> 16; |
|
2735 /* lower 16 bits has Rx packet buffer allocation size in KB */ |
|
2736 pba &= 0xffff; |
|
2737 /* |
|
2738 * the Tx fifo also stores 16 bytes of information about the tx |
|
2739 * but don't include ethernet FCS because hardware appends it |
|
2740 */ |
|
2741 min_tx_space = (adapter->max_frame_size + |
|
2742 sizeof(struct e1000_tx_desc) - |
|
2743 ETH_FCS_LEN) * 2; |
|
2744 min_tx_space = ALIGN(min_tx_space, 1024); |
|
2745 min_tx_space >>= 10; |
|
2746 /* software strips receive CRC, so leave room for it */ |
|
2747 min_rx_space = adapter->max_frame_size; |
|
2748 min_rx_space = ALIGN(min_rx_space, 1024); |
|
2749 min_rx_space >>= 10; |
|
2750 |
|
2751 /* |
|
2752 * If current Tx allocation is less than the min Tx FIFO size, |
|
2753 * and the min Tx FIFO size is less than the current Rx FIFO |
|
2754 * allocation, take space away from current Rx allocation |
|
2755 */ |
|
2756 if ((tx_space < min_tx_space) && |
|
2757 ((min_tx_space - tx_space) < pba)) { |
|
2758 pba -= min_tx_space - tx_space; |
|
2759 |
|
2760 /* |
|
2761 * if short on Rx space, Rx wins and must trump tx |
|
2762 * adjustment or use Early Receive if available |
|
2763 */ |
|
2764 if ((pba < min_rx_space) && |
|
2765 (!(adapter->flags & FLAG_HAS_ERT))) |
|
2766 /* ERT enabled in e1000_configure_rx */ |
|
2767 pba = min_rx_space; |
|
2768 } |
|
2769 |
|
2770 ew32(PBA, pba); |
|
2771 } |
|
2772 |
|
2773 |
|
2774 /* |
|
2775 * flow control settings |
|
2776 * |
|
2777 * The high water mark must be low enough to fit one full frame |
|
2778 * (or the size used for early receive) above it in the Rx FIFO. |
|
2779 * Set it to the lower of: |
|
2780 * - 90% of the Rx FIFO size, and |
|
2781 * - the full Rx FIFO size minus the early receive size (for parts |
|
2782 * with ERT support assuming ERT set to E1000_ERT_2048), or |
|
2783 * - the full Rx FIFO size minus one full frame |
|
2784 */ |
|
2785 if (hw->mac.type == e1000_pchlan) { |
|
2786 /* |
|
2787 * Workaround PCH LOM adapter hangs with certain network |
|
2788 * loads. If hangs persist, try disabling Tx flow control. |
|
2789 */ |
|
2790 if (adapter->netdev->mtu > ETH_DATA_LEN) { |
|
2791 fc->high_water = 0x3500; |
|
2792 fc->low_water = 0x1500; |
|
2793 } else { |
|
2794 fc->high_water = 0x5000; |
|
2795 fc->low_water = 0x3000; |
|
2796 } |
|
2797 } else { |
|
2798 if ((adapter->flags & FLAG_HAS_ERT) && |
|
2799 (adapter->netdev->mtu > ETH_DATA_LEN)) |
|
2800 hwm = min(((pba << 10) * 9 / 10), |
|
2801 ((pba << 10) - (E1000_ERT_2048 << 3))); |
|
2802 else |
|
2803 hwm = min(((pba << 10) * 9 / 10), |
|
2804 ((pba << 10) - adapter->max_frame_size)); |
|
2805 |
|
2806 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ |
|
2807 fc->low_water = fc->high_water - 8; |
|
2808 } |
|
2809 |
|
2810 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) |
|
2811 fc->pause_time = 0xFFFF; |
|
2812 else |
|
2813 fc->pause_time = E1000_FC_PAUSE_TIME; |
|
2814 fc->send_xon = 1; |
|
2815 fc->current_mode = fc->requested_mode; |
|
2816 |
|
2817 /* Allow time for pending master requests to run */ |
|
2818 mac->ops.reset_hw(hw); |
|
2819 |
|
2820 /* |
|
2821 * For parts with AMT enabled, let the firmware know |
|
2822 * that the network interface is in control |
|
2823 */ |
|
2824 if (adapter->flags & FLAG_HAS_AMT) |
|
2825 e1000_get_hw_control(adapter); |
|
2826 |
|
2827 ew32(WUC, 0); |
|
2828 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) |
|
2829 e1e_wphy(&adapter->hw, BM_WUC, 0); |
|
2830 |
|
2831 if (mac->ops.init_hw(hw)) |
|
2832 e_err("Hardware Error\n"); |
|
2833 |
|
2834 /* additional part of the flow-control workaround above */ |
|
2835 if (hw->mac.type == e1000_pchlan) |
|
2836 ew32(FCRTV_PCH, 0x1000); |
|
2837 |
|
2838 e1000_update_mng_vlan(adapter); |
|
2839 |
|
2840 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
|
2841 ew32(VET, ETH_P_8021Q); |
|
2842 |
|
2843 e1000e_reset_adaptive(hw); |
|
2844 e1000_get_phy_info(hw); |
|
2845 |
|
2846 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && |
|
2847 !(adapter->flags & FLAG_SMART_POWER_DOWN)) { |
|
2848 u16 phy_data = 0; |
|
2849 /* |
|
2850 * speed up time to link by disabling smart power down, ignore |
|
2851 * the return value of this function because there is nothing |
|
2852 * different we would do if it failed |
|
2853 */ |
|
2854 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
|
2855 phy_data &= ~IGP02E1000_PM_SPD; |
|
2856 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
|
2857 } |
|
2858 } |
|
2859 |
|
2860 int e1000e_up(struct e1000_adapter *adapter) |
|
2861 { |
|
2862 struct e1000_hw *hw = &adapter->hw; |
|
2863 |
|
2864 /* hardware has been reset, we need to reload some things */ |
|
2865 e1000_configure(adapter); |
|
2866 |
|
2867 clear_bit(__E1000_DOWN, &adapter->state); |
|
2868 |
|
2869 napi_enable(&adapter->napi); |
|
2870 if (adapter->msix_entries) |
|
2871 e1000_configure_msix(adapter); |
|
2872 e1000_irq_enable(adapter); |
|
2873 |
|
2874 netif_wake_queue(adapter->netdev); |
|
2875 |
|
2876 /* fire a link change interrupt to start the watchdog */ |
|
2877 ew32(ICS, E1000_ICS_LSC); |
|
2878 return 0; |
|
2879 } |
|
2880 |
|
2881 void e1000e_down(struct e1000_adapter *adapter) |
|
2882 { |
|
2883 struct net_device *netdev = adapter->netdev; |
|
2884 struct e1000_hw *hw = &adapter->hw; |
|
2885 u32 tctl, rctl; |
|
2886 |
|
2887 /* |
|
2888 * signal that we're down so the interrupt handler does not |
|
2889 * reschedule our watchdog timer |
|
2890 */ |
|
2891 set_bit(__E1000_DOWN, &adapter->state); |
|
2892 |
|
2893 /* disable receives in the hardware */ |
|
2894 rctl = er32(RCTL); |
|
2895 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
2896 /* flush and sleep below */ |
|
2897 |
|
2898 netif_stop_queue(netdev); |
|
2899 |
|
2900 /* disable transmits in the hardware */ |
|
2901 tctl = er32(TCTL); |
|
2902 tctl &= ~E1000_TCTL_EN; |
|
2903 ew32(TCTL, tctl); |
|
2904 /* flush both disables and wait for them to finish */ |
|
2905 e1e_flush(); |
|
2906 msleep(10); |
|
2907 |
|
2908 napi_disable(&adapter->napi); |
|
2909 e1000_irq_disable(adapter); |
|
2910 |
|
2911 del_timer_sync(&adapter->watchdog_timer); |
|
2912 del_timer_sync(&adapter->phy_info_timer); |
|
2913 |
|
2914 netdev->tx_queue_len = adapter->tx_queue_len; |
|
2915 netif_carrier_off(netdev); |
|
2916 adapter->link_speed = 0; |
|
2917 adapter->link_duplex = 0; |
|
2918 |
|
2919 if (!pci_channel_offline(adapter->pdev)) |
|
2920 e1000e_reset(adapter); |
|
2921 e1000_clean_tx_ring(adapter); |
|
2922 e1000_clean_rx_ring(adapter); |
|
2923 |
|
2924 /* |
|
2925 * TODO: for power management, we could drop the link and |
|
2926 * pci_disable_device here. |
|
2927 */ |
|
2928 } |
|
2929 |
|
2930 void e1000e_reinit_locked(struct e1000_adapter *adapter) |
|
2931 { |
|
2932 might_sleep(); |
|
2933 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
|
2934 msleep(1); |
|
2935 e1000e_down(adapter); |
|
2936 e1000e_up(adapter); |
|
2937 clear_bit(__E1000_RESETTING, &adapter->state); |
|
2938 } |
|
2939 |
|
2940 /** |
|
2941 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
|
2942 * @adapter: board private structure to initialize |
|
2943 * |
|
2944 * e1000_sw_init initializes the Adapter private data structure. |
|
2945 * Fields are initialized based on PCI device information and |
|
2946 * OS network device settings (MTU size). |
|
2947 **/ |
|
2948 static int __devinit e1000_sw_init(struct e1000_adapter *adapter) |
|
2949 { |
|
2950 struct net_device *netdev = adapter->netdev; |
|
2951 |
|
2952 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; |
|
2953 adapter->rx_ps_bsize0 = 128; |
|
2954 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; |
|
2955 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; |
|
2956 |
|
2957 e1000e_set_interrupt_capability(adapter); |
|
2958 |
|
2959 if (e1000_alloc_queues(adapter)) |
|
2960 return -ENOMEM; |
|
2961 |
|
2962 /* Explicitly disable IRQ since the NIC can be in any state. */ |
|
2963 e1000_irq_disable(adapter); |
|
2964 |
|
2965 set_bit(__E1000_DOWN, &adapter->state); |
|
2966 return 0; |
|
2967 } |
|
2968 |
|
2969 /** |
|
2970 * e1000_intr_msi_test - Interrupt Handler |
|
2971 * @irq: interrupt number |
|
2972 * @data: pointer to a network interface device structure |
|
2973 **/ |
|
2974 static irqreturn_t e1000_intr_msi_test(int irq, void *data) |
|
2975 { |
|
2976 struct net_device *netdev = data; |
|
2977 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2978 struct e1000_hw *hw = &adapter->hw; |
|
2979 u32 icr = er32(ICR); |
|
2980 |
|
2981 e_dbg("%s: icr is %08X\n", netdev->name, icr); |
|
2982 if (icr & E1000_ICR_RXSEQ) { |
|
2983 adapter->flags &= ~FLAG_MSI_TEST_FAILED; |
|
2984 wmb(); |
|
2985 } |
|
2986 |
|
2987 return IRQ_HANDLED; |
|
2988 } |
|
2989 |
|
2990 /** |
|
2991 * e1000_test_msi_interrupt - Returns 0 for successful test |
|
2992 * @adapter: board private struct |
|
2993 * |
|
2994 * code flow taken from tg3.c |
|
2995 **/ |
|
2996 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) |
|
2997 { |
|
2998 struct net_device *netdev = adapter->netdev; |
|
2999 struct e1000_hw *hw = &adapter->hw; |
|
3000 int err; |
|
3001 |
|
3002 /* poll_enable hasn't been called yet, so don't need disable */ |
|
3003 /* clear any pending events */ |
|
3004 er32(ICR); |
|
3005 |
|
3006 /* free the real vector and request a test handler */ |
|
3007 e1000_free_irq(adapter); |
|
3008 e1000e_reset_interrupt_capability(adapter); |
|
3009 |
|
3010 /* Assume that the test fails, if it succeeds then the test |
|
3011 * MSI irq handler will unset this flag */ |
|
3012 adapter->flags |= FLAG_MSI_TEST_FAILED; |
|
3013 |
|
3014 err = pci_enable_msi(adapter->pdev); |
|
3015 if (err) |
|
3016 goto msi_test_failed; |
|
3017 |
|
3018 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0, |
|
3019 netdev->name, netdev); |
|
3020 if (err) { |
|
3021 pci_disable_msi(adapter->pdev); |
|
3022 goto msi_test_failed; |
|
3023 } |
|
3024 |
|
3025 wmb(); |
|
3026 |
|
3027 e1000_irq_enable(adapter); |
|
3028 |
|
3029 /* fire an unusual interrupt on the test handler */ |
|
3030 ew32(ICS, E1000_ICS_RXSEQ); |
|
3031 e1e_flush(); |
|
3032 msleep(50); |
|
3033 |
|
3034 e1000_irq_disable(adapter); |
|
3035 |
|
3036 rmb(); |
|
3037 |
|
3038 if (adapter->flags & FLAG_MSI_TEST_FAILED) { |
|
3039 adapter->int_mode = E1000E_INT_MODE_LEGACY; |
|
3040 err = -EIO; |
|
3041 e_info("MSI interrupt test failed!\n"); |
|
3042 } |
|
3043 |
|
3044 free_irq(adapter->pdev->irq, netdev); |
|
3045 pci_disable_msi(adapter->pdev); |
|
3046 |
|
3047 if (err == -EIO) |
|
3048 goto msi_test_failed; |
|
3049 |
|
3050 /* okay so the test worked, restore settings */ |
|
3051 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name); |
|
3052 msi_test_failed: |
|
3053 e1000e_set_interrupt_capability(adapter); |
|
3054 e1000_request_irq(adapter); |
|
3055 return err; |
|
3056 } |
|
3057 |
|
3058 /** |
|
3059 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored |
|
3060 * @adapter: board private struct |
|
3061 * |
|
3062 * code flow taken from tg3.c, called with e1000 interrupts disabled. |
|
3063 **/ |
|
3064 static int e1000_test_msi(struct e1000_adapter *adapter) |
|
3065 { |
|
3066 int err; |
|
3067 u16 pci_cmd; |
|
3068 |
|
3069 if (!(adapter->flags & FLAG_MSI_ENABLED)) |
|
3070 return 0; |
|
3071 |
|
3072 /* disable SERR in case the MSI write causes a master abort */ |
|
3073 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); |
|
3074 pci_write_config_word(adapter->pdev, PCI_COMMAND, |
|
3075 pci_cmd & ~PCI_COMMAND_SERR); |
|
3076 |
|
3077 err = e1000_test_msi_interrupt(adapter); |
|
3078 |
|
3079 /* restore previous setting of command word */ |
|
3080 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); |
|
3081 |
|
3082 /* success ! */ |
|
3083 if (!err) |
|
3084 return 0; |
|
3085 |
|
3086 /* EIO means MSI test failed */ |
|
3087 if (err != -EIO) |
|
3088 return err; |
|
3089 |
|
3090 /* back to INTx mode */ |
|
3091 e_warn("MSI interrupt test failed, using legacy interrupt.\n"); |
|
3092 |
|
3093 e1000_free_irq(adapter); |
|
3094 |
|
3095 err = e1000_request_irq(adapter); |
|
3096 |
|
3097 return err; |
|
3098 } |
|
3099 |
|
3100 /** |
|
3101 * e1000_open - Called when a network interface is made active |
|
3102 * @netdev: network interface device structure |
|
3103 * |
|
3104 * Returns 0 on success, negative value on failure |
|
3105 * |
|
3106 * The open entry point is called when a network interface is made |
|
3107 * active by the system (IFF_UP). At this point all resources needed |
|
3108 * for transmit and receive operations are allocated, the interrupt |
|
3109 * handler is registered with the OS, the watchdog timer is started, |
|
3110 * and the stack is notified that the interface is ready. |
|
3111 **/ |
|
3112 static int e1000_open(struct net_device *netdev) |
|
3113 { |
|
3114 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3115 struct e1000_hw *hw = &adapter->hw; |
|
3116 int err; |
|
3117 |
|
3118 /* disallow open during test */ |
|
3119 if (test_bit(__E1000_TESTING, &adapter->state)) |
|
3120 return -EBUSY; |
|
3121 |
|
3122 netif_carrier_off(netdev); |
|
3123 |
|
3124 /* allocate transmit descriptors */ |
|
3125 err = e1000e_setup_tx_resources(adapter); |
|
3126 if (err) |
|
3127 goto err_setup_tx; |
|
3128 |
|
3129 /* allocate receive descriptors */ |
|
3130 err = e1000e_setup_rx_resources(adapter); |
|
3131 if (err) |
|
3132 goto err_setup_rx; |
|
3133 |
|
3134 e1000e_power_up_phy(adapter); |
|
3135 |
|
3136 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
3137 if ((adapter->hw.mng_cookie.status & |
|
3138 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) |
|
3139 e1000_update_mng_vlan(adapter); |
|
3140 |
|
3141 /* |
|
3142 * If AMT is enabled, let the firmware know that the network |
|
3143 * interface is now open |
|
3144 */ |
|
3145 if (adapter->flags & FLAG_HAS_AMT) |
|
3146 e1000_get_hw_control(adapter); |
|
3147 |
|
3148 /* |
|
3149 * before we allocate an interrupt, we must be ready to handle it. |
|
3150 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
|
3151 * as soon as we call pci_request_irq, so we have to setup our |
|
3152 * clean_rx handler before we do so. |
|
3153 */ |
|
3154 e1000_configure(adapter); |
|
3155 |
|
3156 err = e1000_request_irq(adapter); |
|
3157 if (err) |
|
3158 goto err_req_irq; |
|
3159 |
|
3160 /* |
|
3161 * Work around PCIe errata with MSI interrupts causing some chipsets to |
|
3162 * ignore e1000e MSI messages, which means we need to test our MSI |
|
3163 * interrupt now |
|
3164 */ |
|
3165 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { |
|
3166 err = e1000_test_msi(adapter); |
|
3167 if (err) { |
|
3168 e_err("Interrupt allocation failed\n"); |
|
3169 goto err_req_irq; |
|
3170 } |
|
3171 } |
|
3172 |
|
3173 /* From here on the code is the same as e1000e_up() */ |
|
3174 clear_bit(__E1000_DOWN, &adapter->state); |
|
3175 |
|
3176 napi_enable(&adapter->napi); |
|
3177 |
|
3178 e1000_irq_enable(adapter); |
|
3179 |
|
3180 netif_start_queue(netdev); |
|
3181 |
|
3182 /* fire a link status change interrupt to start the watchdog */ |
|
3183 ew32(ICS, E1000_ICS_LSC); |
|
3184 |
|
3185 return 0; |
|
3186 |
|
3187 err_req_irq: |
|
3188 e1000_release_hw_control(adapter); |
|
3189 e1000_power_down_phy(adapter); |
|
3190 e1000e_free_rx_resources(adapter); |
|
3191 err_setup_rx: |
|
3192 e1000e_free_tx_resources(adapter); |
|
3193 err_setup_tx: |
|
3194 e1000e_reset(adapter); |
|
3195 |
|
3196 return err; |
|
3197 } |
|
3198 |
|
3199 /** |
|
3200 * e1000_close - Disables a network interface |
|
3201 * @netdev: network interface device structure |
|
3202 * |
|
3203 * Returns 0, this is not allowed to fail |
|
3204 * |
|
3205 * The close entry point is called when an interface is de-activated |
|
3206 * by the OS. The hardware is still under the drivers control, but |
|
3207 * needs to be disabled. A global MAC reset is issued to stop the |
|
3208 * hardware, and all transmit and receive resources are freed. |
|
3209 **/ |
|
3210 static int e1000_close(struct net_device *netdev) |
|
3211 { |
|
3212 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3213 |
|
3214 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
|
3215 e1000e_down(adapter); |
|
3216 e1000_power_down_phy(adapter); |
|
3217 e1000_free_irq(adapter); |
|
3218 |
|
3219 e1000e_free_tx_resources(adapter); |
|
3220 e1000e_free_rx_resources(adapter); |
|
3221 |
|
3222 /* |
|
3223 * kill manageability vlan ID if supported, but not if a vlan with |
|
3224 * the same ID is registered on the host OS (let 8021q kill it) |
|
3225 */ |
|
3226 if ((adapter->hw.mng_cookie.status & |
|
3227 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
|
3228 !(adapter->vlgrp && |
|
3229 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) |
|
3230 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
|
3231 |
|
3232 /* |
|
3233 * If AMT is enabled, let the firmware know that the network |
|
3234 * interface is now closed |
|
3235 */ |
|
3236 if (adapter->flags & FLAG_HAS_AMT) |
|
3237 e1000_release_hw_control(adapter); |
|
3238 |
|
3239 return 0; |
|
3240 } |
|
3241 /** |
|
3242 * e1000_set_mac - Change the Ethernet Address of the NIC |
|
3243 * @netdev: network interface device structure |
|
3244 * @p: pointer to an address structure |
|
3245 * |
|
3246 * Returns 0 on success, negative on failure |
|
3247 **/ |
|
3248 static int e1000_set_mac(struct net_device *netdev, void *p) |
|
3249 { |
|
3250 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3251 struct sockaddr *addr = p; |
|
3252 |
|
3253 if (!is_valid_ether_addr(addr->sa_data)) |
|
3254 return -EADDRNOTAVAIL; |
|
3255 |
|
3256 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
3257 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); |
|
3258 |
|
3259 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); |
|
3260 |
|
3261 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { |
|
3262 /* activate the work around */ |
|
3263 e1000e_set_laa_state_82571(&adapter->hw, 1); |
|
3264 |
|
3265 /* |
|
3266 * Hold a copy of the LAA in RAR[14] This is done so that |
|
3267 * between the time RAR[0] gets clobbered and the time it |
|
3268 * gets fixed (in e1000_watchdog), the actual LAA is in one |
|
3269 * of the RARs and no incoming packets directed to this port |
|
3270 * are dropped. Eventually the LAA will be in RAR[0] and |
|
3271 * RAR[14] |
|
3272 */ |
|
3273 e1000e_rar_set(&adapter->hw, |
|
3274 adapter->hw.mac.addr, |
|
3275 adapter->hw.mac.rar_entry_count - 1); |
|
3276 } |
|
3277 |
|
3278 return 0; |
|
3279 } |
|
3280 |
|
3281 /** |
|
3282 * e1000e_update_phy_task - work thread to update phy |
|
3283 * @work: pointer to our work struct |
|
3284 * |
|
3285 * this worker thread exists because we must acquire a |
|
3286 * semaphore to read the phy, which we could msleep while |
|
3287 * waiting for it, and we can't msleep in a timer. |
|
3288 **/ |
|
3289 static void e1000e_update_phy_task(struct work_struct *work) |
|
3290 { |
|
3291 struct e1000_adapter *adapter = container_of(work, |
|
3292 struct e1000_adapter, update_phy_task); |
|
3293 e1000_get_phy_info(&adapter->hw); |
|
3294 } |
|
3295 |
|
3296 /* |
|
3297 * Need to wait a few seconds after link up to get diagnostic information from |
|
3298 * the phy |
|
3299 */ |
|
3300 static void e1000_update_phy_info(unsigned long data) |
|
3301 { |
|
3302 struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
|
3303 schedule_work(&adapter->update_phy_task); |
|
3304 } |
|
3305 |
|
3306 /** |
|
3307 * e1000e_update_stats - Update the board statistics counters |
|
3308 * @adapter: board private structure |
|
3309 **/ |
|
3310 void e1000e_update_stats(struct e1000_adapter *adapter) |
|
3311 { |
|
3312 struct e1000_hw *hw = &adapter->hw; |
|
3313 struct pci_dev *pdev = adapter->pdev; |
|
3314 u16 phy_data; |
|
3315 |
|
3316 /* |
|
3317 * Prevent stats update while adapter is being reset, or if the pci |
|
3318 * connection is down. |
|
3319 */ |
|
3320 if (adapter->link_speed == 0) |
|
3321 return; |
|
3322 if (pci_channel_offline(pdev)) |
|
3323 return; |
|
3324 |
|
3325 adapter->stats.crcerrs += er32(CRCERRS); |
|
3326 adapter->stats.gprc += er32(GPRC); |
|
3327 adapter->stats.gorc += er32(GORCL); |
|
3328 er32(GORCH); /* Clear gorc */ |
|
3329 adapter->stats.bprc += er32(BPRC); |
|
3330 adapter->stats.mprc += er32(MPRC); |
|
3331 adapter->stats.roc += er32(ROC); |
|
3332 |
|
3333 adapter->stats.mpc += er32(MPC); |
|
3334 if ((hw->phy.type == e1000_phy_82578) || |
|
3335 (hw->phy.type == e1000_phy_82577)) { |
|
3336 e1e_rphy(hw, HV_SCC_UPPER, &phy_data); |
|
3337 e1e_rphy(hw, HV_SCC_LOWER, &phy_data); |
|
3338 adapter->stats.scc += phy_data; |
|
3339 |
|
3340 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data); |
|
3341 e1e_rphy(hw, HV_ECOL_LOWER, &phy_data); |
|
3342 adapter->stats.ecol += phy_data; |
|
3343 |
|
3344 e1e_rphy(hw, HV_MCC_UPPER, &phy_data); |
|
3345 e1e_rphy(hw, HV_MCC_LOWER, &phy_data); |
|
3346 adapter->stats.mcc += phy_data; |
|
3347 |
|
3348 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data); |
|
3349 e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data); |
|
3350 adapter->stats.latecol += phy_data; |
|
3351 |
|
3352 e1e_rphy(hw, HV_DC_UPPER, &phy_data); |
|
3353 e1e_rphy(hw, HV_DC_LOWER, &phy_data); |
|
3354 adapter->stats.dc += phy_data; |
|
3355 } else { |
|
3356 adapter->stats.scc += er32(SCC); |
|
3357 adapter->stats.ecol += er32(ECOL); |
|
3358 adapter->stats.mcc += er32(MCC); |
|
3359 adapter->stats.latecol += er32(LATECOL); |
|
3360 adapter->stats.dc += er32(DC); |
|
3361 } |
|
3362 adapter->stats.xonrxc += er32(XONRXC); |
|
3363 adapter->stats.xontxc += er32(XONTXC); |
|
3364 adapter->stats.xoffrxc += er32(XOFFRXC); |
|
3365 adapter->stats.xofftxc += er32(XOFFTXC); |
|
3366 adapter->stats.gptc += er32(GPTC); |
|
3367 adapter->stats.gotc += er32(GOTCL); |
|
3368 er32(GOTCH); /* Clear gotc */ |
|
3369 adapter->stats.rnbc += er32(RNBC); |
|
3370 adapter->stats.ruc += er32(RUC); |
|
3371 |
|
3372 adapter->stats.mptc += er32(MPTC); |
|
3373 adapter->stats.bptc += er32(BPTC); |
|
3374 |
|
3375 /* used for adaptive IFS */ |
|
3376 |
|
3377 hw->mac.tx_packet_delta = er32(TPT); |
|
3378 adapter->stats.tpt += hw->mac.tx_packet_delta; |
|
3379 if ((hw->phy.type == e1000_phy_82578) || |
|
3380 (hw->phy.type == e1000_phy_82577)) { |
|
3381 e1e_rphy(hw, HV_COLC_UPPER, &phy_data); |
|
3382 e1e_rphy(hw, HV_COLC_LOWER, &phy_data); |
|
3383 hw->mac.collision_delta = phy_data; |
|
3384 } else { |
|
3385 hw->mac.collision_delta = er32(COLC); |
|
3386 } |
|
3387 adapter->stats.colc += hw->mac.collision_delta; |
|
3388 |
|
3389 adapter->stats.algnerrc += er32(ALGNERRC); |
|
3390 adapter->stats.rxerrc += er32(RXERRC); |
|
3391 if ((hw->phy.type == e1000_phy_82578) || |
|
3392 (hw->phy.type == e1000_phy_82577)) { |
|
3393 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data); |
|
3394 e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data); |
|
3395 adapter->stats.tncrs += phy_data; |
|
3396 } else { |
|
3397 if ((hw->mac.type != e1000_82574) && |
|
3398 (hw->mac.type != e1000_82583)) |
|
3399 adapter->stats.tncrs += er32(TNCRS); |
|
3400 } |
|
3401 adapter->stats.cexterr += er32(CEXTERR); |
|
3402 adapter->stats.tsctc += er32(TSCTC); |
|
3403 adapter->stats.tsctfc += er32(TSCTFC); |
|
3404 |
|
3405 /* Fill out the OS statistics structure */ |
|
3406 adapter->net_stats.multicast = adapter->stats.mprc; |
|
3407 adapter->net_stats.collisions = adapter->stats.colc; |
|
3408 |
|
3409 /* Rx Errors */ |
|
3410 |
|
3411 /* |
|
3412 * RLEC on some newer hardware can be incorrect so build |
|
3413 * our own version based on RUC and ROC |
|
3414 */ |
|
3415 adapter->net_stats.rx_errors = adapter->stats.rxerrc + |
|
3416 adapter->stats.crcerrs + adapter->stats.algnerrc + |
|
3417 adapter->stats.ruc + adapter->stats.roc + |
|
3418 adapter->stats.cexterr; |
|
3419 adapter->net_stats.rx_length_errors = adapter->stats.ruc + |
|
3420 adapter->stats.roc; |
|
3421 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; |
|
3422 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; |
|
3423 adapter->net_stats.rx_missed_errors = adapter->stats.mpc; |
|
3424 |
|
3425 /* Tx Errors */ |
|
3426 adapter->net_stats.tx_errors = adapter->stats.ecol + |
|
3427 adapter->stats.latecol; |
|
3428 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; |
|
3429 adapter->net_stats.tx_window_errors = adapter->stats.latecol; |
|
3430 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; |
|
3431 |
|
3432 /* Tx Dropped needs to be maintained elsewhere */ |
|
3433 |
|
3434 /* Management Stats */ |
|
3435 adapter->stats.mgptc += er32(MGTPTC); |
|
3436 adapter->stats.mgprc += er32(MGTPRC); |
|
3437 adapter->stats.mgpdc += er32(MGTPDC); |
|
3438 } |
|
3439 |
|
3440 /** |
|
3441 * e1000_phy_read_status - Update the PHY register status snapshot |
|
3442 * @adapter: board private structure |
|
3443 **/ |
|
3444 static void e1000_phy_read_status(struct e1000_adapter *adapter) |
|
3445 { |
|
3446 struct e1000_hw *hw = &adapter->hw; |
|
3447 struct e1000_phy_regs *phy = &adapter->phy_regs; |
|
3448 int ret_val; |
|
3449 |
|
3450 if ((er32(STATUS) & E1000_STATUS_LU) && |
|
3451 (adapter->hw.phy.media_type == e1000_media_type_copper)) { |
|
3452 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); |
|
3453 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); |
|
3454 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); |
|
3455 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); |
|
3456 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); |
|
3457 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); |
|
3458 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); |
|
3459 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); |
|
3460 if (ret_val) |
|
3461 e_warn("Error reading PHY register\n"); |
|
3462 } else { |
|
3463 /* |
|
3464 * Do not read PHY registers if link is not up |
|
3465 * Set values to typical power-on defaults |
|
3466 */ |
|
3467 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); |
|
3468 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | |
|
3469 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | |
|
3470 BMSR_ERCAP); |
|
3471 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | |
|
3472 ADVERTISE_ALL | ADVERTISE_CSMA); |
|
3473 phy->lpa = 0; |
|
3474 phy->expansion = EXPANSION_ENABLENPAGE; |
|
3475 phy->ctrl1000 = ADVERTISE_1000FULL; |
|
3476 phy->stat1000 = 0; |
|
3477 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); |
|
3478 } |
|
3479 } |
|
3480 |
|
3481 static void e1000_print_link_info(struct e1000_adapter *adapter) |
|
3482 { |
|
3483 struct e1000_hw *hw = &adapter->hw; |
|
3484 u32 ctrl = er32(CTRL); |
|
3485 |
|
3486 /* Link status message must follow this format for user tools */ |
|
3487 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, " |
|
3488 "Flow Control: %s\n", |
|
3489 adapter->netdev->name, |
|
3490 adapter->link_speed, |
|
3491 (adapter->link_duplex == FULL_DUPLEX) ? |
|
3492 "Full Duplex" : "Half Duplex", |
|
3493 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? |
|
3494 "RX/TX" : |
|
3495 ((ctrl & E1000_CTRL_RFCE) ? "RX" : |
|
3496 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); |
|
3497 } |
|
3498 |
|
3499 bool e1000_has_link(struct e1000_adapter *adapter) |
|
3500 { |
|
3501 struct e1000_hw *hw = &adapter->hw; |
|
3502 bool link_active = 0; |
|
3503 s32 ret_val = 0; |
|
3504 |
|
3505 /* |
|
3506 * get_link_status is set on LSC (link status) interrupt or |
|
3507 * Rx sequence error interrupt. get_link_status will stay |
|
3508 * false until the check_for_link establishes link |
|
3509 * for copper adapters ONLY |
|
3510 */ |
|
3511 switch (hw->phy.media_type) { |
|
3512 case e1000_media_type_copper: |
|
3513 if (hw->mac.get_link_status) { |
|
3514 ret_val = hw->mac.ops.check_for_link(hw); |
|
3515 link_active = !hw->mac.get_link_status; |
|
3516 } else { |
|
3517 link_active = 1; |
|
3518 } |
|
3519 break; |
|
3520 case e1000_media_type_fiber: |
|
3521 ret_val = hw->mac.ops.check_for_link(hw); |
|
3522 link_active = !!(er32(STATUS) & E1000_STATUS_LU); |
|
3523 break; |
|
3524 case e1000_media_type_internal_serdes: |
|
3525 ret_val = hw->mac.ops.check_for_link(hw); |
|
3526 link_active = adapter->hw.mac.serdes_has_link; |
|
3527 break; |
|
3528 default: |
|
3529 case e1000_media_type_unknown: |
|
3530 break; |
|
3531 } |
|
3532 |
|
3533 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && |
|
3534 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { |
|
3535 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ |
|
3536 e_info("Gigabit has been disabled, downgrading speed\n"); |
|
3537 } |
|
3538 |
|
3539 return link_active; |
|
3540 } |
|
3541 |
|
3542 static void e1000e_enable_receives(struct e1000_adapter *adapter) |
|
3543 { |
|
3544 /* make sure the receive unit is started */ |
|
3545 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && |
|
3546 (adapter->flags & FLAG_RX_RESTART_NOW)) { |
|
3547 struct e1000_hw *hw = &adapter->hw; |
|
3548 u32 rctl = er32(RCTL); |
|
3549 ew32(RCTL, rctl | E1000_RCTL_EN); |
|
3550 adapter->flags &= ~FLAG_RX_RESTART_NOW; |
|
3551 } |
|
3552 } |
|
3553 |
|
3554 /** |
|
3555 * e1000_watchdog - Timer Call-back |
|
3556 * @data: pointer to adapter cast into an unsigned long |
|
3557 **/ |
|
3558 static void e1000_watchdog(unsigned long data) |
|
3559 { |
|
3560 struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
|
3561 |
|
3562 /* Do the rest outside of interrupt context */ |
|
3563 schedule_work(&adapter->watchdog_task); |
|
3564 |
|
3565 /* TODO: make this use queue_delayed_work() */ |
|
3566 } |
|
3567 |
|
3568 static void e1000_watchdog_task(struct work_struct *work) |
|
3569 { |
|
3570 struct e1000_adapter *adapter = container_of(work, |
|
3571 struct e1000_adapter, watchdog_task); |
|
3572 struct net_device *netdev = adapter->netdev; |
|
3573 struct e1000_mac_info *mac = &adapter->hw.mac; |
|
3574 struct e1000_phy_info *phy = &adapter->hw.phy; |
|
3575 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
3576 struct e1000_hw *hw = &adapter->hw; |
|
3577 u32 link, tctl; |
|
3578 int tx_pending = 0; |
|
3579 |
|
3580 link = e1000_has_link(adapter); |
|
3581 if ((netif_carrier_ok(netdev)) && link) { |
|
3582 e1000e_enable_receives(adapter); |
|
3583 goto link_up; |
|
3584 } |
|
3585 |
|
3586 if ((e1000e_enable_tx_pkt_filtering(hw)) && |
|
3587 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) |
|
3588 e1000_update_mng_vlan(adapter); |
|
3589 |
|
3590 if (link) { |
|
3591 if (!netif_carrier_ok(netdev)) { |
|
3592 bool txb2b = 1; |
|
3593 /* update snapshot of PHY registers on LSC */ |
|
3594 e1000_phy_read_status(adapter); |
|
3595 mac->ops.get_link_up_info(&adapter->hw, |
|
3596 &adapter->link_speed, |
|
3597 &adapter->link_duplex); |
|
3598 e1000_print_link_info(adapter); |
|
3599 /* |
|
3600 * On supported PHYs, check for duplex mismatch only |
|
3601 * if link has autonegotiated at 10/100 half |
|
3602 */ |
|
3603 if ((hw->phy.type == e1000_phy_igp_3 || |
|
3604 hw->phy.type == e1000_phy_bm) && |
|
3605 (hw->mac.autoneg == true) && |
|
3606 (adapter->link_speed == SPEED_10 || |
|
3607 adapter->link_speed == SPEED_100) && |
|
3608 (adapter->link_duplex == HALF_DUPLEX)) { |
|
3609 u16 autoneg_exp; |
|
3610 |
|
3611 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); |
|
3612 |
|
3613 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) |
|
3614 e_info("Autonegotiated half duplex but" |
|
3615 " link partner cannot autoneg. " |
|
3616 " Try forcing full duplex if " |
|
3617 "link gets many collisions.\n"); |
|
3618 } |
|
3619 |
|
3620 /* |
|
3621 * tweak tx_queue_len according to speed/duplex |
|
3622 * and adjust the timeout factor |
|
3623 */ |
|
3624 netdev->tx_queue_len = adapter->tx_queue_len; |
|
3625 adapter->tx_timeout_factor = 1; |
|
3626 switch (adapter->link_speed) { |
|
3627 case SPEED_10: |
|
3628 txb2b = 0; |
|
3629 netdev->tx_queue_len = 10; |
|
3630 adapter->tx_timeout_factor = 16; |
|
3631 break; |
|
3632 case SPEED_100: |
|
3633 txb2b = 0; |
|
3634 netdev->tx_queue_len = 100; |
|
3635 adapter->tx_timeout_factor = 10; |
|
3636 break; |
|
3637 } |
|
3638 |
|
3639 /* |
|
3640 * workaround: re-program speed mode bit after |
|
3641 * link-up event |
|
3642 */ |
|
3643 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && |
|
3644 !txb2b) { |
|
3645 u32 tarc0; |
|
3646 tarc0 = er32(TARC(0)); |
|
3647 tarc0 &= ~SPEED_MODE_BIT; |
|
3648 ew32(TARC(0), tarc0); |
|
3649 } |
|
3650 |
|
3651 /* |
|
3652 * disable TSO for pcie and 10/100 speeds, to avoid |
|
3653 * some hardware issues |
|
3654 */ |
|
3655 if (!(adapter->flags & FLAG_TSO_FORCE)) { |
|
3656 switch (adapter->link_speed) { |
|
3657 case SPEED_10: |
|
3658 case SPEED_100: |
|
3659 e_info("10/100 speed: disabling TSO\n"); |
|
3660 netdev->features &= ~NETIF_F_TSO; |
|
3661 netdev->features &= ~NETIF_F_TSO6; |
|
3662 break; |
|
3663 case SPEED_1000: |
|
3664 netdev->features |= NETIF_F_TSO; |
|
3665 netdev->features |= NETIF_F_TSO6; |
|
3666 break; |
|
3667 default: |
|
3668 /* oops */ |
|
3669 break; |
|
3670 } |
|
3671 } |
|
3672 |
|
3673 /* |
|
3674 * enable transmits in the hardware, need to do this |
|
3675 * after setting TARC(0) |
|
3676 */ |
|
3677 tctl = er32(TCTL); |
|
3678 tctl |= E1000_TCTL_EN; |
|
3679 ew32(TCTL, tctl); |
|
3680 |
|
3681 /* |
|
3682 * Perform any post-link-up configuration before |
|
3683 * reporting link up. |
|
3684 */ |
|
3685 if (phy->ops.cfg_on_link_up) |
|
3686 phy->ops.cfg_on_link_up(hw); |
|
3687 |
|
3688 netif_carrier_on(netdev); |
|
3689 |
|
3690 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
3691 mod_timer(&adapter->phy_info_timer, |
|
3692 round_jiffies(jiffies + 2 * HZ)); |
|
3693 } |
|
3694 } else { |
|
3695 if (netif_carrier_ok(netdev)) { |
|
3696 adapter->link_speed = 0; |
|
3697 adapter->link_duplex = 0; |
|
3698 /* Link status message must follow this format */ |
|
3699 printk(KERN_INFO "e1000e: %s NIC Link is Down\n", |
|
3700 adapter->netdev->name); |
|
3701 netif_carrier_off(netdev); |
|
3702 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
3703 mod_timer(&adapter->phy_info_timer, |
|
3704 round_jiffies(jiffies + 2 * HZ)); |
|
3705 |
|
3706 if (adapter->flags & FLAG_RX_NEEDS_RESTART) |
|
3707 schedule_work(&adapter->reset_task); |
|
3708 } |
|
3709 } |
|
3710 |
|
3711 link_up: |
|
3712 e1000e_update_stats(adapter); |
|
3713 |
|
3714 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
|
3715 adapter->tpt_old = adapter->stats.tpt; |
|
3716 mac->collision_delta = adapter->stats.colc - adapter->colc_old; |
|
3717 adapter->colc_old = adapter->stats.colc; |
|
3718 |
|
3719 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; |
|
3720 adapter->gorc_old = adapter->stats.gorc; |
|
3721 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; |
|
3722 adapter->gotc_old = adapter->stats.gotc; |
|
3723 |
|
3724 e1000e_update_adaptive(&adapter->hw); |
|
3725 |
|
3726 if (!netif_carrier_ok(netdev)) { |
|
3727 tx_pending = (e1000_desc_unused(tx_ring) + 1 < |
|
3728 tx_ring->count); |
|
3729 if (tx_pending) { |
|
3730 /* |
|
3731 * We've lost link, so the controller stops DMA, |
|
3732 * but we've got queued Tx work that's never going |
|
3733 * to get done, so reset controller to flush Tx. |
|
3734 * (Do the reset outside of interrupt context). |
|
3735 */ |
|
3736 adapter->tx_timeout_count++; |
|
3737 schedule_work(&adapter->reset_task); |
|
3738 /* return immediately since reset is imminent */ |
|
3739 return; |
|
3740 } |
|
3741 } |
|
3742 |
|
3743 /* Cause software interrupt to ensure Rx ring is cleaned */ |
|
3744 if (adapter->msix_entries) |
|
3745 ew32(ICS, adapter->rx_ring->ims_val); |
|
3746 else |
|
3747 ew32(ICS, E1000_ICS_RXDMT0); |
|
3748 |
|
3749 /* Force detection of hung controller every watchdog period */ |
|
3750 adapter->detect_tx_hung = 1; |
|
3751 |
|
3752 /* |
|
3753 * With 82571 controllers, LAA may be overwritten due to controller |
|
3754 * reset from the other port. Set the appropriate LAA in RAR[0] |
|
3755 */ |
|
3756 if (e1000e_get_laa_state_82571(hw)) |
|
3757 e1000e_rar_set(hw, adapter->hw.mac.addr, 0); |
|
3758 |
|
3759 /* Reset the timer */ |
|
3760 if (!test_bit(__E1000_DOWN, &adapter->state)) |
|
3761 mod_timer(&adapter->watchdog_timer, |
|
3762 round_jiffies(jiffies + 2 * HZ)); |
|
3763 } |
|
3764 |
|
3765 #define E1000_TX_FLAGS_CSUM 0x00000001 |
|
3766 #define E1000_TX_FLAGS_VLAN 0x00000002 |
|
3767 #define E1000_TX_FLAGS_TSO 0x00000004 |
|
3768 #define E1000_TX_FLAGS_IPV4 0x00000008 |
|
3769 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
|
3770 #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
|
3771 |
|
3772 static int e1000_tso(struct e1000_adapter *adapter, |
|
3773 struct sk_buff *skb) |
|
3774 { |
|
3775 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
3776 struct e1000_context_desc *context_desc; |
|
3777 struct e1000_buffer *buffer_info; |
|
3778 unsigned int i; |
|
3779 u32 cmd_length = 0; |
|
3780 u16 ipcse = 0, tucse, mss; |
|
3781 u8 ipcss, ipcso, tucss, tucso, hdr_len; |
|
3782 int err; |
|
3783 |
|
3784 if (skb_is_gso(skb)) { |
|
3785 if (skb_header_cloned(skb)) { |
|
3786 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
|
3787 if (err) |
|
3788 return err; |
|
3789 } |
|
3790 |
|
3791 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
3792 mss = skb_shinfo(skb)->gso_size; |
|
3793 if (skb->protocol == htons(ETH_P_IP)) { |
|
3794 struct iphdr *iph = ip_hdr(skb); |
|
3795 iph->tot_len = 0; |
|
3796 iph->check = 0; |
|
3797 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
|
3798 iph->daddr, 0, |
|
3799 IPPROTO_TCP, |
|
3800 0); |
|
3801 cmd_length = E1000_TXD_CMD_IP; |
|
3802 ipcse = skb_transport_offset(skb) - 1; |
|
3803 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { |
|
3804 ipv6_hdr(skb)->payload_len = 0; |
|
3805 tcp_hdr(skb)->check = |
|
3806 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
|
3807 &ipv6_hdr(skb)->daddr, |
|
3808 0, IPPROTO_TCP, 0); |
|
3809 ipcse = 0; |
|
3810 } |
|
3811 ipcss = skb_network_offset(skb); |
|
3812 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
|
3813 tucss = skb_transport_offset(skb); |
|
3814 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
|
3815 tucse = 0; |
|
3816 |
|
3817 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
|
3818 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
|
3819 |
|
3820 i = tx_ring->next_to_use; |
|
3821 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
3822 buffer_info = &tx_ring->buffer_info[i]; |
|
3823 |
|
3824 context_desc->lower_setup.ip_fields.ipcss = ipcss; |
|
3825 context_desc->lower_setup.ip_fields.ipcso = ipcso; |
|
3826 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
|
3827 context_desc->upper_setup.tcp_fields.tucss = tucss; |
|
3828 context_desc->upper_setup.tcp_fields.tucso = tucso; |
|
3829 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
|
3830 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
|
3831 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
|
3832 context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
|
3833 |
|
3834 buffer_info->time_stamp = jiffies; |
|
3835 buffer_info->next_to_watch = i; |
|
3836 |
|
3837 i++; |
|
3838 if (i == tx_ring->count) |
|
3839 i = 0; |
|
3840 tx_ring->next_to_use = i; |
|
3841 |
|
3842 return 1; |
|
3843 } |
|
3844 |
|
3845 return 0; |
|
3846 } |
|
3847 |
|
3848 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) |
|
3849 { |
|
3850 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
3851 struct e1000_context_desc *context_desc; |
|
3852 struct e1000_buffer *buffer_info; |
|
3853 unsigned int i; |
|
3854 u8 css; |
|
3855 u32 cmd_len = E1000_TXD_CMD_DEXT; |
|
3856 __be16 protocol; |
|
3857 |
|
3858 if (skb->ip_summed != CHECKSUM_PARTIAL) |
|
3859 return 0; |
|
3860 |
|
3861 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) |
|
3862 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; |
|
3863 else |
|
3864 protocol = skb->protocol; |
|
3865 |
|
3866 switch (protocol) { |
|
3867 case cpu_to_be16(ETH_P_IP): |
|
3868 if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
|
3869 cmd_len |= E1000_TXD_CMD_TCP; |
|
3870 break; |
|
3871 case cpu_to_be16(ETH_P_IPV6): |
|
3872 /* XXX not handling all IPV6 headers */ |
|
3873 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
|
3874 cmd_len |= E1000_TXD_CMD_TCP; |
|
3875 break; |
|
3876 default: |
|
3877 if (unlikely(net_ratelimit())) |
|
3878 e_warn("checksum_partial proto=%x!\n", |
|
3879 be16_to_cpu(protocol)); |
|
3880 break; |
|
3881 } |
|
3882 |
|
3883 css = skb_transport_offset(skb); |
|
3884 |
|
3885 i = tx_ring->next_to_use; |
|
3886 buffer_info = &tx_ring->buffer_info[i]; |
|
3887 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
3888 |
|
3889 context_desc->lower_setup.ip_config = 0; |
|
3890 context_desc->upper_setup.tcp_fields.tucss = css; |
|
3891 context_desc->upper_setup.tcp_fields.tucso = |
|
3892 css + skb->csum_offset; |
|
3893 context_desc->upper_setup.tcp_fields.tucse = 0; |
|
3894 context_desc->tcp_seg_setup.data = 0; |
|
3895 context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
|
3896 |
|
3897 buffer_info->time_stamp = jiffies; |
|
3898 buffer_info->next_to_watch = i; |
|
3899 |
|
3900 i++; |
|
3901 if (i == tx_ring->count) |
|
3902 i = 0; |
|
3903 tx_ring->next_to_use = i; |
|
3904 |
|
3905 return 1; |
|
3906 } |
|
3907 |
|
3908 #define E1000_MAX_PER_TXD 8192 |
|
3909 #define E1000_MAX_TXD_PWR 12 |
|
3910 |
|
3911 static int e1000_tx_map(struct e1000_adapter *adapter, |
|
3912 struct sk_buff *skb, unsigned int first, |
|
3913 unsigned int max_per_txd, unsigned int nr_frags, |
|
3914 unsigned int mss) |
|
3915 { |
|
3916 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
3917 struct e1000_buffer *buffer_info; |
|
3918 unsigned int len = skb_headlen(skb); |
|
3919 unsigned int offset, size, count = 0, i; |
|
3920 unsigned int f; |
|
3921 dma_addr_t *map; |
|
3922 |
|
3923 i = tx_ring->next_to_use; |
|
3924 |
|
3925 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) { |
|
3926 dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); |
|
3927 adapter->tx_dma_failed++; |
|
3928 return 0; |
|
3929 } |
|
3930 |
|
3931 map = skb_shinfo(skb)->dma_maps; |
|
3932 offset = 0; |
|
3933 |
|
3934 while (len) { |
|
3935 buffer_info = &tx_ring->buffer_info[i]; |
|
3936 size = min(len, max_per_txd); |
|
3937 |
|
3938 buffer_info->length = size; |
|
3939 buffer_info->time_stamp = jiffies; |
|
3940 buffer_info->next_to_watch = i; |
|
3941 buffer_info->dma = skb_shinfo(skb)->dma_head + offset; |
|
3942 count++; |
|
3943 |
|
3944 len -= size; |
|
3945 offset += size; |
|
3946 |
|
3947 if (len) { |
|
3948 i++; |
|
3949 if (i == tx_ring->count) |
|
3950 i = 0; |
|
3951 } |
|
3952 } |
|
3953 |
|
3954 for (f = 0; f < nr_frags; f++) { |
|
3955 struct skb_frag_struct *frag; |
|
3956 |
|
3957 frag = &skb_shinfo(skb)->frags[f]; |
|
3958 len = frag->size; |
|
3959 offset = 0; |
|
3960 |
|
3961 while (len) { |
|
3962 i++; |
|
3963 if (i == tx_ring->count) |
|
3964 i = 0; |
|
3965 |
|
3966 buffer_info = &tx_ring->buffer_info[i]; |
|
3967 size = min(len, max_per_txd); |
|
3968 |
|
3969 buffer_info->length = size; |
|
3970 buffer_info->time_stamp = jiffies; |
|
3971 buffer_info->next_to_watch = i; |
|
3972 buffer_info->dma = map[f] + offset; |
|
3973 |
|
3974 len -= size; |
|
3975 offset += size; |
|
3976 count++; |
|
3977 } |
|
3978 } |
|
3979 |
|
3980 tx_ring->buffer_info[i].skb = skb; |
|
3981 tx_ring->buffer_info[first].next_to_watch = i; |
|
3982 |
|
3983 return count; |
|
3984 } |
|
3985 |
|
3986 static void e1000_tx_queue(struct e1000_adapter *adapter, |
|
3987 int tx_flags, int count) |
|
3988 { |
|
3989 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
3990 struct e1000_tx_desc *tx_desc = NULL; |
|
3991 struct e1000_buffer *buffer_info; |
|
3992 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
|
3993 unsigned int i; |
|
3994 |
|
3995 if (tx_flags & E1000_TX_FLAGS_TSO) { |
|
3996 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
|
3997 E1000_TXD_CMD_TSE; |
|
3998 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
3999 |
|
4000 if (tx_flags & E1000_TX_FLAGS_IPV4) |
|
4001 txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
|
4002 } |
|
4003 |
|
4004 if (tx_flags & E1000_TX_FLAGS_CSUM) { |
|
4005 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
|
4006 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
4007 } |
|
4008 |
|
4009 if (tx_flags & E1000_TX_FLAGS_VLAN) { |
|
4010 txd_lower |= E1000_TXD_CMD_VLE; |
|
4011 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
|
4012 } |
|
4013 |
|
4014 i = tx_ring->next_to_use; |
|
4015 |
|
4016 while (count--) { |
|
4017 buffer_info = &tx_ring->buffer_info[i]; |
|
4018 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
4019 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4020 tx_desc->lower.data = |
|
4021 cpu_to_le32(txd_lower | buffer_info->length); |
|
4022 tx_desc->upper.data = cpu_to_le32(txd_upper); |
|
4023 |
|
4024 i++; |
|
4025 if (i == tx_ring->count) |
|
4026 i = 0; |
|
4027 } |
|
4028 |
|
4029 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
|
4030 |
|
4031 /* |
|
4032 * Force memory writes to complete before letting h/w |
|
4033 * know there are new descriptors to fetch. (Only |
|
4034 * applicable for weak-ordered memory model archs, |
|
4035 * such as IA-64). |
|
4036 */ |
|
4037 wmb(); |
|
4038 |
|
4039 tx_ring->next_to_use = i; |
|
4040 writel(i, adapter->hw.hw_addr + tx_ring->tail); |
|
4041 /* |
|
4042 * we need this if more than one processor can write to our tail |
|
4043 * at a time, it synchronizes IO on IA64/Altix systems |
|
4044 */ |
|
4045 mmiowb(); |
|
4046 } |
|
4047 |
|
4048 #define MINIMUM_DHCP_PACKET_SIZE 282 |
|
4049 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, |
|
4050 struct sk_buff *skb) |
|
4051 { |
|
4052 struct e1000_hw *hw = &adapter->hw; |
|
4053 u16 length, offset; |
|
4054 |
|
4055 if (vlan_tx_tag_present(skb)) { |
|
4056 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) |
|
4057 && (adapter->hw.mng_cookie.status & |
|
4058 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) |
|
4059 return 0; |
|
4060 } |
|
4061 |
|
4062 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) |
|
4063 return 0; |
|
4064 |
|
4065 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) |
|
4066 return 0; |
|
4067 |
|
4068 { |
|
4069 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); |
|
4070 struct udphdr *udp; |
|
4071 |
|
4072 if (ip->protocol != IPPROTO_UDP) |
|
4073 return 0; |
|
4074 |
|
4075 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); |
|
4076 if (ntohs(udp->dest) != 67) |
|
4077 return 0; |
|
4078 |
|
4079 offset = (u8 *)udp + 8 - skb->data; |
|
4080 length = skb->len - offset; |
|
4081 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); |
|
4082 } |
|
4083 |
|
4084 return 0; |
|
4085 } |
|
4086 |
|
4087 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
4088 { |
|
4089 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4090 |
|
4091 netif_stop_queue(netdev); |
|
4092 /* |
|
4093 * Herbert's original patch had: |
|
4094 * smp_mb__after_netif_stop_queue(); |
|
4095 * but since that doesn't exist yet, just open code it. |
|
4096 */ |
|
4097 smp_mb(); |
|
4098 |
|
4099 /* |
|
4100 * We need to check again in a case another CPU has just |
|
4101 * made room available. |
|
4102 */ |
|
4103 if (e1000_desc_unused(adapter->tx_ring) < size) |
|
4104 return -EBUSY; |
|
4105 |
|
4106 /* A reprieve! */ |
|
4107 netif_start_queue(netdev); |
|
4108 ++adapter->restart_queue; |
|
4109 return 0; |
|
4110 } |
|
4111 |
|
4112 static int e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
4113 { |
|
4114 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4115 |
|
4116 if (e1000_desc_unused(adapter->tx_ring) >= size) |
|
4117 return 0; |
|
4118 return __e1000_maybe_stop_tx(netdev, size); |
|
4119 } |
|
4120 |
|
4121 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
|
4122 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
|
4123 struct net_device *netdev) |
|
4124 { |
|
4125 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4126 struct e1000_ring *tx_ring = adapter->tx_ring; |
|
4127 unsigned int first; |
|
4128 unsigned int max_per_txd = E1000_MAX_PER_TXD; |
|
4129 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
|
4130 unsigned int tx_flags = 0; |
|
4131 unsigned int len = skb->len - skb->data_len; |
|
4132 unsigned int nr_frags; |
|
4133 unsigned int mss; |
|
4134 int count = 0; |
|
4135 int tso; |
|
4136 unsigned int f; |
|
4137 |
|
4138 if (test_bit(__E1000_DOWN, &adapter->state)) { |
|
4139 dev_kfree_skb_any(skb); |
|
4140 return NETDEV_TX_OK; |
|
4141 } |
|
4142 |
|
4143 if (skb->len <= 0) { |
|
4144 dev_kfree_skb_any(skb); |
|
4145 return NETDEV_TX_OK; |
|
4146 } |
|
4147 |
|
4148 mss = skb_shinfo(skb)->gso_size; |
|
4149 /* |
|
4150 * The controller does a simple calculation to |
|
4151 * make sure there is enough room in the FIFO before |
|
4152 * initiating the DMA for each buffer. The calc is: |
|
4153 * 4 = ceil(buffer len/mss). To make sure we don't |
|
4154 * overrun the FIFO, adjust the max buffer len if mss |
|
4155 * drops. |
|
4156 */ |
|
4157 if (mss) { |
|
4158 u8 hdr_len; |
|
4159 max_per_txd = min(mss << 2, max_per_txd); |
|
4160 max_txd_pwr = fls(max_per_txd) - 1; |
|
4161 |
|
4162 /* |
|
4163 * TSO Workaround for 82571/2/3 Controllers -- if skb->data |
|
4164 * points to just header, pull a few bytes of payload from |
|
4165 * frags into skb->data |
|
4166 */ |
|
4167 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
4168 /* |
|
4169 * we do this workaround for ES2LAN, but it is un-necessary, |
|
4170 * avoiding it could save a lot of cycles |
|
4171 */ |
|
4172 if (skb->data_len && (hdr_len == len)) { |
|
4173 unsigned int pull_size; |
|
4174 |
|
4175 pull_size = min((unsigned int)4, skb->data_len); |
|
4176 if (!__pskb_pull_tail(skb, pull_size)) { |
|
4177 e_err("__pskb_pull_tail failed.\n"); |
|
4178 dev_kfree_skb_any(skb); |
|
4179 return NETDEV_TX_OK; |
|
4180 } |
|
4181 len = skb->len - skb->data_len; |
|
4182 } |
|
4183 } |
|
4184 |
|
4185 /* reserve a descriptor for the offload context */ |
|
4186 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
|
4187 count++; |
|
4188 count++; |
|
4189 |
|
4190 count += TXD_USE_COUNT(len, max_txd_pwr); |
|
4191 |
|
4192 nr_frags = skb_shinfo(skb)->nr_frags; |
|
4193 for (f = 0; f < nr_frags; f++) |
|
4194 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
|
4195 max_txd_pwr); |
|
4196 |
|
4197 if (adapter->hw.mac.tx_pkt_filtering) |
|
4198 e1000_transfer_dhcp_info(adapter, skb); |
|
4199 |
|
4200 /* |
|
4201 * need: count + 2 desc gap to keep tail from touching |
|
4202 * head, otherwise try next time |
|
4203 */ |
|
4204 if (e1000_maybe_stop_tx(netdev, count + 2)) |
|
4205 return NETDEV_TX_BUSY; |
|
4206 |
|
4207 if (adapter->vlgrp && vlan_tx_tag_present(skb)) { |
|
4208 tx_flags |= E1000_TX_FLAGS_VLAN; |
|
4209 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
|
4210 } |
|
4211 |
|
4212 first = tx_ring->next_to_use; |
|
4213 |
|
4214 tso = e1000_tso(adapter, skb); |
|
4215 if (tso < 0) { |
|
4216 dev_kfree_skb_any(skb); |
|
4217 return NETDEV_TX_OK; |
|
4218 } |
|
4219 |
|
4220 if (tso) |
|
4221 tx_flags |= E1000_TX_FLAGS_TSO; |
|
4222 else if (e1000_tx_csum(adapter, skb)) |
|
4223 tx_flags |= E1000_TX_FLAGS_CSUM; |
|
4224 |
|
4225 /* |
|
4226 * Old method was to assume IPv4 packet by default if TSO was enabled. |
|
4227 * 82571 hardware supports TSO capabilities for IPv6 as well... |
|
4228 * no longer assume, we must. |
|
4229 */ |
|
4230 if (skb->protocol == htons(ETH_P_IP)) |
|
4231 tx_flags |= E1000_TX_FLAGS_IPV4; |
|
4232 |
|
4233 /* if count is 0 then mapping error has occured */ |
|
4234 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); |
|
4235 if (count) { |
|
4236 e1000_tx_queue(adapter, tx_flags, count); |
|
4237 /* Make sure there is space in the ring for the next send. */ |
|
4238 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); |
|
4239 |
|
4240 } else { |
|
4241 dev_kfree_skb_any(skb); |
|
4242 tx_ring->buffer_info[first].time_stamp = 0; |
|
4243 tx_ring->next_to_use = first; |
|
4244 } |
|
4245 |
|
4246 return NETDEV_TX_OK; |
|
4247 } |
|
4248 |
|
4249 /** |
|
4250 * e1000_tx_timeout - Respond to a Tx Hang |
|
4251 * @netdev: network interface device structure |
|
4252 **/ |
|
4253 static void e1000_tx_timeout(struct net_device *netdev) |
|
4254 { |
|
4255 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4256 |
|
4257 /* Do the reset outside of interrupt context */ |
|
4258 adapter->tx_timeout_count++; |
|
4259 schedule_work(&adapter->reset_task); |
|
4260 } |
|
4261 |
|
4262 static void e1000_reset_task(struct work_struct *work) |
|
4263 { |
|
4264 struct e1000_adapter *adapter; |
|
4265 adapter = container_of(work, struct e1000_adapter, reset_task); |
|
4266 |
|
4267 e1000e_reinit_locked(adapter); |
|
4268 } |
|
4269 |
|
4270 /** |
|
4271 * e1000_get_stats - Get System Network Statistics |
|
4272 * @netdev: network interface device structure |
|
4273 * |
|
4274 * Returns the address of the device statistics structure. |
|
4275 * The statistics are actually updated from the timer callback. |
|
4276 **/ |
|
4277 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
|
4278 { |
|
4279 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4280 |
|
4281 /* only return the current stats */ |
|
4282 return &adapter->net_stats; |
|
4283 } |
|
4284 |
|
4285 /** |
|
4286 * e1000_change_mtu - Change the Maximum Transfer Unit |
|
4287 * @netdev: network interface device structure |
|
4288 * @new_mtu: new value for maximum frame size |
|
4289 * |
|
4290 * Returns 0 on success, negative on failure |
|
4291 **/ |
|
4292 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
|
4293 { |
|
4294 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4295 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; |
|
4296 |
|
4297 /* Jumbo frame support */ |
|
4298 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && |
|
4299 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { |
|
4300 e_err("Jumbo Frames not supported.\n"); |
|
4301 return -EINVAL; |
|
4302 } |
|
4303 |
|
4304 /* Supported frame sizes */ |
|
4305 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || |
|
4306 (max_frame > adapter->max_hw_frame_size)) { |
|
4307 e_err("Unsupported MTU setting\n"); |
|
4308 return -EINVAL; |
|
4309 } |
|
4310 |
|
4311 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
|
4312 msleep(1); |
|
4313 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ |
|
4314 adapter->max_frame_size = max_frame; |
|
4315 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); |
|
4316 netdev->mtu = new_mtu; |
|
4317 if (netif_running(netdev)) |
|
4318 e1000e_down(adapter); |
|
4319 |
|
4320 /* |
|
4321 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
|
4322 * means we reserve 2 more, this pushes us to allocate from the next |
|
4323 * larger slab size. |
|
4324 * i.e. RXBUFFER_2048 --> size-4096 slab |
|
4325 * However with the new *_jumbo_rx* routines, jumbo receives will use |
|
4326 * fragmented skbs |
|
4327 */ |
|
4328 |
|
4329 if (max_frame <= 2048) |
|
4330 adapter->rx_buffer_len = 2048; |
|
4331 else |
|
4332 adapter->rx_buffer_len = 4096; |
|
4333 |
|
4334 /* adjust allocation if LPE protects us, and we aren't using SBP */ |
|
4335 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || |
|
4336 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) |
|
4337 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN |
|
4338 + ETH_FCS_LEN; |
|
4339 |
|
4340 if (netif_running(netdev)) |
|
4341 e1000e_up(adapter); |
|
4342 else |
|
4343 e1000e_reset(adapter); |
|
4344 |
|
4345 clear_bit(__E1000_RESETTING, &adapter->state); |
|
4346 |
|
4347 return 0; |
|
4348 } |
|
4349 |
|
4350 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
4351 int cmd) |
|
4352 { |
|
4353 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4354 struct mii_ioctl_data *data = if_mii(ifr); |
|
4355 |
|
4356 if (adapter->hw.phy.media_type != e1000_media_type_copper) |
|
4357 return -EOPNOTSUPP; |
|
4358 |
|
4359 switch (cmd) { |
|
4360 case SIOCGMIIPHY: |
|
4361 data->phy_id = adapter->hw.phy.addr; |
|
4362 break; |
|
4363 case SIOCGMIIREG: |
|
4364 switch (data->reg_num & 0x1F) { |
|
4365 case MII_BMCR: |
|
4366 data->val_out = adapter->phy_regs.bmcr; |
|
4367 break; |
|
4368 case MII_BMSR: |
|
4369 data->val_out = adapter->phy_regs.bmsr; |
|
4370 break; |
|
4371 case MII_PHYSID1: |
|
4372 data->val_out = (adapter->hw.phy.id >> 16); |
|
4373 break; |
|
4374 case MII_PHYSID2: |
|
4375 data->val_out = (adapter->hw.phy.id & 0xFFFF); |
|
4376 break; |
|
4377 case MII_ADVERTISE: |
|
4378 data->val_out = adapter->phy_regs.advertise; |
|
4379 break; |
|
4380 case MII_LPA: |
|
4381 data->val_out = adapter->phy_regs.lpa; |
|
4382 break; |
|
4383 case MII_EXPANSION: |
|
4384 data->val_out = adapter->phy_regs.expansion; |
|
4385 break; |
|
4386 case MII_CTRL1000: |
|
4387 data->val_out = adapter->phy_regs.ctrl1000; |
|
4388 break; |
|
4389 case MII_STAT1000: |
|
4390 data->val_out = adapter->phy_regs.stat1000; |
|
4391 break; |
|
4392 case MII_ESTATUS: |
|
4393 data->val_out = adapter->phy_regs.estatus; |
|
4394 break; |
|
4395 default: |
|
4396 return -EIO; |
|
4397 } |
|
4398 break; |
|
4399 case SIOCSMIIREG: |
|
4400 default: |
|
4401 return -EOPNOTSUPP; |
|
4402 } |
|
4403 return 0; |
|
4404 } |
|
4405 |
|
4406 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
4407 { |
|
4408 switch (cmd) { |
|
4409 case SIOCGMIIPHY: |
|
4410 case SIOCGMIIREG: |
|
4411 case SIOCSMIIREG: |
|
4412 return e1000_mii_ioctl(netdev, ifr, cmd); |
|
4413 default: |
|
4414 return -EOPNOTSUPP; |
|
4415 } |
|
4416 } |
|
4417 |
|
4418 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) |
|
4419 { |
|
4420 struct e1000_hw *hw = &adapter->hw; |
|
4421 u32 i, mac_reg; |
|
4422 u16 phy_reg; |
|
4423 int retval = 0; |
|
4424 |
|
4425 /* copy MAC RARs to PHY RARs */ |
|
4426 for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) { |
|
4427 mac_reg = er32(RAL(i)); |
|
4428 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF)); |
|
4429 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF)); |
|
4430 mac_reg = er32(RAH(i)); |
|
4431 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF)); |
|
4432 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF)); |
|
4433 } |
|
4434 |
|
4435 /* copy MAC MTA to PHY MTA */ |
|
4436 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { |
|
4437 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); |
|
4438 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF)); |
|
4439 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF)); |
|
4440 } |
|
4441 |
|
4442 /* configure PHY Rx Control register */ |
|
4443 e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg); |
|
4444 mac_reg = er32(RCTL); |
|
4445 if (mac_reg & E1000_RCTL_UPE) |
|
4446 phy_reg |= BM_RCTL_UPE; |
|
4447 if (mac_reg & E1000_RCTL_MPE) |
|
4448 phy_reg |= BM_RCTL_MPE; |
|
4449 phy_reg &= ~(BM_RCTL_MO_MASK); |
|
4450 if (mac_reg & E1000_RCTL_MO_3) |
|
4451 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) |
|
4452 << BM_RCTL_MO_SHIFT); |
|
4453 if (mac_reg & E1000_RCTL_BAM) |
|
4454 phy_reg |= BM_RCTL_BAM; |
|
4455 if (mac_reg & E1000_RCTL_PMCF) |
|
4456 phy_reg |= BM_RCTL_PMCF; |
|
4457 mac_reg = er32(CTRL); |
|
4458 if (mac_reg & E1000_CTRL_RFCE) |
|
4459 phy_reg |= BM_RCTL_RFCE; |
|
4460 e1e_wphy(&adapter->hw, BM_RCTL, phy_reg); |
|
4461 |
|
4462 /* enable PHY wakeup in MAC register */ |
|
4463 ew32(WUFC, wufc); |
|
4464 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN); |
|
4465 |
|
4466 /* configure and enable PHY wakeup in PHY registers */ |
|
4467 e1e_wphy(&adapter->hw, BM_WUFC, wufc); |
|
4468 e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); |
|
4469 |
|
4470 /* activate PHY wakeup */ |
|
4471 retval = hw->phy.ops.acquire_phy(hw); |
|
4472 if (retval) { |
|
4473 e_err("Could not acquire PHY\n"); |
|
4474 return retval; |
|
4475 } |
|
4476 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
4477 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); |
|
4478 retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg); |
|
4479 if (retval) { |
|
4480 e_err("Could not read PHY page 769\n"); |
|
4481 goto out; |
|
4482 } |
|
4483 phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; |
|
4484 retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); |
|
4485 if (retval) |
|
4486 e_err("Could not set PHY Host Wakeup bit\n"); |
|
4487 out: |
|
4488 hw->phy.ops.release_phy(hw); |
|
4489 |
|
4490 return retval; |
|
4491 } |
|
4492 |
|
4493 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) |
|
4494 { |
|
4495 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4496 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4497 struct e1000_hw *hw = &adapter->hw; |
|
4498 u32 ctrl, ctrl_ext, rctl, status; |
|
4499 u32 wufc = adapter->wol; |
|
4500 int retval = 0; |
|
4501 |
|
4502 netif_device_detach(netdev); |
|
4503 |
|
4504 if (netif_running(netdev)) { |
|
4505 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
|
4506 e1000e_down(adapter); |
|
4507 e1000_free_irq(adapter); |
|
4508 } |
|
4509 e1000e_reset_interrupt_capability(adapter); |
|
4510 |
|
4511 retval = pci_save_state(pdev); |
|
4512 if (retval) |
|
4513 return retval; |
|
4514 |
|
4515 status = er32(STATUS); |
|
4516 if (status & E1000_STATUS_LU) |
|
4517 wufc &= ~E1000_WUFC_LNKC; |
|
4518 |
|
4519 if (wufc) { |
|
4520 e1000_setup_rctl(adapter); |
|
4521 e1000_set_multi(netdev); |
|
4522 |
|
4523 /* turn on all-multi mode if wake on multicast is enabled */ |
|
4524 if (wufc & E1000_WUFC_MC) { |
|
4525 rctl = er32(RCTL); |
|
4526 rctl |= E1000_RCTL_MPE; |
|
4527 ew32(RCTL, rctl); |
|
4528 } |
|
4529 |
|
4530 ctrl = er32(CTRL); |
|
4531 /* advertise wake from D3Cold */ |
|
4532 #define E1000_CTRL_ADVD3WUC 0x00100000 |
|
4533 /* phy power management enable */ |
|
4534 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
|
4535 ctrl |= E1000_CTRL_ADVD3WUC; |
|
4536 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) |
|
4537 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; |
|
4538 ew32(CTRL, ctrl); |
|
4539 |
|
4540 if (adapter->hw.phy.media_type == e1000_media_type_fiber || |
|
4541 adapter->hw.phy.media_type == |
|
4542 e1000_media_type_internal_serdes) { |
|
4543 /* keep the laser running in D3 */ |
|
4544 ctrl_ext = er32(CTRL_EXT); |
|
4545 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; |
|
4546 ew32(CTRL_EXT, ctrl_ext); |
|
4547 } |
|
4548 |
|
4549 if (adapter->flags & FLAG_IS_ICH) |
|
4550 e1000e_disable_gig_wol_ich8lan(&adapter->hw); |
|
4551 |
|
4552 /* Allow time for pending master requests to run */ |
|
4553 e1000e_disable_pcie_master(&adapter->hw); |
|
4554 |
|
4555 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
|
4556 /* enable wakeup by the PHY */ |
|
4557 retval = e1000_init_phy_wakeup(adapter, wufc); |
|
4558 if (retval) |
|
4559 return retval; |
|
4560 } else { |
|
4561 /* enable wakeup by the MAC */ |
|
4562 ew32(WUFC, wufc); |
|
4563 ew32(WUC, E1000_WUC_PME_EN); |
|
4564 } |
|
4565 } else { |
|
4566 ew32(WUC, 0); |
|
4567 ew32(WUFC, 0); |
|
4568 } |
|
4569 |
|
4570 *enable_wake = !!wufc; |
|
4571 |
|
4572 /* make sure adapter isn't asleep if manageability is enabled */ |
|
4573 if ((adapter->flags & FLAG_MNG_PT_ENABLED) || |
|
4574 (hw->mac.ops.check_mng_mode(hw))) |
|
4575 *enable_wake = true; |
|
4576 |
|
4577 if (adapter->hw.phy.type == e1000_phy_igp_3) |
|
4578 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); |
|
4579 |
|
4580 /* |
|
4581 * Release control of h/w to f/w. If f/w is AMT enabled, this |
|
4582 * would have already happened in close and is redundant. |
|
4583 */ |
|
4584 e1000_release_hw_control(adapter); |
|
4585 |
|
4586 pci_disable_device(pdev); |
|
4587 |
|
4588 return 0; |
|
4589 } |
|
4590 |
|
4591 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake) |
|
4592 { |
|
4593 if (sleep && wake) { |
|
4594 pci_prepare_to_sleep(pdev); |
|
4595 return; |
|
4596 } |
|
4597 |
|
4598 pci_wake_from_d3(pdev, wake); |
|
4599 pci_set_power_state(pdev, PCI_D3hot); |
|
4600 } |
|
4601 |
|
4602 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep, |
|
4603 bool wake) |
|
4604 { |
|
4605 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4606 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4607 |
|
4608 /* |
|
4609 * The pci-e switch on some quad port adapters will report a |
|
4610 * correctable error when the MAC transitions from D0 to D3. To |
|
4611 * prevent this we need to mask off the correctable errors on the |
|
4612 * downstream port of the pci-e switch. |
|
4613 */ |
|
4614 if (adapter->flags & FLAG_IS_QUAD_PORT) { |
|
4615 struct pci_dev *us_dev = pdev->bus->self; |
|
4616 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP); |
|
4617 u16 devctl; |
|
4618 |
|
4619 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl); |
|
4620 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, |
|
4621 (devctl & ~PCI_EXP_DEVCTL_CERE)); |
|
4622 |
|
4623 e1000_power_off(pdev, sleep, wake); |
|
4624 |
|
4625 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl); |
|
4626 } else { |
|
4627 e1000_power_off(pdev, sleep, wake); |
|
4628 } |
|
4629 } |
|
4630 |
|
4631 static void e1000e_disable_l1aspm(struct pci_dev *pdev) |
|
4632 { |
|
4633 int pos; |
|
4634 u16 val; |
|
4635 |
|
4636 /* |
|
4637 * 82573 workaround - disable L1 ASPM on mobile chipsets |
|
4638 * |
|
4639 * L1 ASPM on various mobile (ich7) chipsets do not behave properly |
|
4640 * resulting in lost data or garbage information on the pci-e link |
|
4641 * level. This could result in (false) bad EEPROM checksum errors, |
|
4642 * long ping times (up to 2s) or even a system freeze/hang. |
|
4643 * |
|
4644 * Unfortunately this feature saves about 1W power consumption when |
|
4645 * active. |
|
4646 */ |
|
4647 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); |
|
4648 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val); |
|
4649 if (val & 0x2) { |
|
4650 dev_warn(&pdev->dev, "Disabling L1 ASPM\n"); |
|
4651 val &= ~0x2; |
|
4652 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val); |
|
4653 } |
|
4654 } |
|
4655 |
|
4656 #ifdef CONFIG_PM |
|
4657 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
|
4658 { |
|
4659 int retval; |
|
4660 bool wake; |
|
4661 |
|
4662 retval = __e1000_shutdown(pdev, &wake); |
|
4663 if (!retval) |
|
4664 e1000_complete_shutdown(pdev, true, wake); |
|
4665 |
|
4666 return retval; |
|
4667 } |
|
4668 |
|
4669 static int e1000_resume(struct pci_dev *pdev) |
|
4670 { |
|
4671 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4672 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4673 struct e1000_hw *hw = &adapter->hw; |
|
4674 u32 err; |
|
4675 |
|
4676 pci_set_power_state(pdev, PCI_D0); |
|
4677 pci_restore_state(pdev); |
|
4678 e1000e_disable_l1aspm(pdev); |
|
4679 |
|
4680 err = pci_enable_device_mem(pdev); |
|
4681 if (err) { |
|
4682 dev_err(&pdev->dev, |
|
4683 "Cannot enable PCI device from suspend\n"); |
|
4684 return err; |
|
4685 } |
|
4686 |
|
4687 pci_set_master(pdev); |
|
4688 |
|
4689 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4690 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4691 |
|
4692 e1000e_set_interrupt_capability(adapter); |
|
4693 if (netif_running(netdev)) { |
|
4694 err = e1000_request_irq(adapter); |
|
4695 if (err) |
|
4696 return err; |
|
4697 } |
|
4698 |
|
4699 e1000e_power_up_phy(adapter); |
|
4700 |
|
4701 /* report the system wakeup cause from S3/S4 */ |
|
4702 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
|
4703 u16 phy_data; |
|
4704 |
|
4705 e1e_rphy(&adapter->hw, BM_WUS, &phy_data); |
|
4706 if (phy_data) { |
|
4707 e_info("PHY Wakeup cause - %s\n", |
|
4708 phy_data & E1000_WUS_EX ? "Unicast Packet" : |
|
4709 phy_data & E1000_WUS_MC ? "Multicast Packet" : |
|
4710 phy_data & E1000_WUS_BC ? "Broadcast Packet" : |
|
4711 phy_data & E1000_WUS_MAG ? "Magic Packet" : |
|
4712 phy_data & E1000_WUS_LNKC ? "Link Status " |
|
4713 " Change" : "other"); |
|
4714 } |
|
4715 e1e_wphy(&adapter->hw, BM_WUS, ~0); |
|
4716 } else { |
|
4717 u32 wus = er32(WUS); |
|
4718 if (wus) { |
|
4719 e_info("MAC Wakeup cause - %s\n", |
|
4720 wus & E1000_WUS_EX ? "Unicast Packet" : |
|
4721 wus & E1000_WUS_MC ? "Multicast Packet" : |
|
4722 wus & E1000_WUS_BC ? "Broadcast Packet" : |
|
4723 wus & E1000_WUS_MAG ? "Magic Packet" : |
|
4724 wus & E1000_WUS_LNKC ? "Link Status Change" : |
|
4725 "other"); |
|
4726 } |
|
4727 ew32(WUS, ~0); |
|
4728 } |
|
4729 |
|
4730 e1000e_reset(adapter); |
|
4731 |
|
4732 e1000_init_manageability(adapter); |
|
4733 |
|
4734 if (netif_running(netdev)) |
|
4735 e1000e_up(adapter); |
|
4736 |
|
4737 netif_device_attach(netdev); |
|
4738 |
|
4739 /* |
|
4740 * If the controller has AMT, do not set DRV_LOAD until the interface |
|
4741 * is up. For all other cases, let the f/w know that the h/w is now |
|
4742 * under the control of the driver. |
|
4743 */ |
|
4744 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
4745 e1000_get_hw_control(adapter); |
|
4746 |
|
4747 return 0; |
|
4748 } |
|
4749 #endif |
|
4750 |
|
4751 static void e1000_shutdown(struct pci_dev *pdev) |
|
4752 { |
|
4753 bool wake = false; |
|
4754 |
|
4755 __e1000_shutdown(pdev, &wake); |
|
4756 |
|
4757 if (system_state == SYSTEM_POWER_OFF) |
|
4758 e1000_complete_shutdown(pdev, false, wake); |
|
4759 } |
|
4760 |
|
4761 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
4762 /* |
|
4763 * Polling 'interrupt' - used by things like netconsole to send skbs |
|
4764 * without having to re-enable interrupts. It's not called while |
|
4765 * the interrupt routine is executing. |
|
4766 */ |
|
4767 static void e1000_netpoll(struct net_device *netdev) |
|
4768 { |
|
4769 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4770 |
|
4771 disable_irq(adapter->pdev->irq); |
|
4772 e1000_intr(adapter->pdev->irq, netdev); |
|
4773 |
|
4774 enable_irq(adapter->pdev->irq); |
|
4775 } |
|
4776 #endif |
|
4777 |
|
4778 /** |
|
4779 * e1000_io_error_detected - called when PCI error is detected |
|
4780 * @pdev: Pointer to PCI device |
|
4781 * @state: The current pci connection state |
|
4782 * |
|
4783 * This function is called after a PCI bus error affecting |
|
4784 * this device has been detected. |
|
4785 */ |
|
4786 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
4787 pci_channel_state_t state) |
|
4788 { |
|
4789 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4790 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4791 |
|
4792 netif_device_detach(netdev); |
|
4793 |
|
4794 if (state == pci_channel_io_perm_failure) |
|
4795 return PCI_ERS_RESULT_DISCONNECT; |
|
4796 |
|
4797 if (netif_running(netdev)) |
|
4798 e1000e_down(adapter); |
|
4799 pci_disable_device(pdev); |
|
4800 |
|
4801 /* Request a slot slot reset. */ |
|
4802 return PCI_ERS_RESULT_NEED_RESET; |
|
4803 } |
|
4804 |
|
4805 /** |
|
4806 * e1000_io_slot_reset - called after the pci bus has been reset. |
|
4807 * @pdev: Pointer to PCI device |
|
4808 * |
|
4809 * Restart the card from scratch, as if from a cold-boot. Implementation |
|
4810 * resembles the first-half of the e1000_resume routine. |
|
4811 */ |
|
4812 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
|
4813 { |
|
4814 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4815 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4816 struct e1000_hw *hw = &adapter->hw; |
|
4817 int err; |
|
4818 pci_ers_result_t result; |
|
4819 |
|
4820 e1000e_disable_l1aspm(pdev); |
|
4821 err = pci_enable_device_mem(pdev); |
|
4822 if (err) { |
|
4823 dev_err(&pdev->dev, |
|
4824 "Cannot re-enable PCI device after reset.\n"); |
|
4825 result = PCI_ERS_RESULT_DISCONNECT; |
|
4826 } else { |
|
4827 pci_set_master(pdev); |
|
4828 pci_restore_state(pdev); |
|
4829 |
|
4830 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
4831 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
4832 |
|
4833 e1000e_reset(adapter); |
|
4834 ew32(WUS, ~0); |
|
4835 result = PCI_ERS_RESULT_RECOVERED; |
|
4836 } |
|
4837 |
|
4838 pci_cleanup_aer_uncorrect_error_status(pdev); |
|
4839 |
|
4840 return result; |
|
4841 } |
|
4842 |
|
4843 /** |
|
4844 * e1000_io_resume - called when traffic can start flowing again. |
|
4845 * @pdev: Pointer to PCI device |
|
4846 * |
|
4847 * This callback is called when the error recovery driver tells us that |
|
4848 * its OK to resume normal operation. Implementation resembles the |
|
4849 * second-half of the e1000_resume routine. |
|
4850 */ |
|
4851 static void e1000_io_resume(struct pci_dev *pdev) |
|
4852 { |
|
4853 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4854 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4855 |
|
4856 e1000_init_manageability(adapter); |
|
4857 |
|
4858 if (netif_running(netdev)) { |
|
4859 if (e1000e_up(adapter)) { |
|
4860 dev_err(&pdev->dev, |
|
4861 "can't bring device back up after reset\n"); |
|
4862 return; |
|
4863 } |
|
4864 } |
|
4865 |
|
4866 netif_device_attach(netdev); |
|
4867 |
|
4868 /* |
|
4869 * If the controller has AMT, do not set DRV_LOAD until the interface |
|
4870 * is up. For all other cases, let the f/w know that the h/w is now |
|
4871 * under the control of the driver. |
|
4872 */ |
|
4873 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
4874 e1000_get_hw_control(adapter); |
|
4875 |
|
4876 } |
|
4877 |
|
4878 static void e1000_print_device_info(struct e1000_adapter *adapter) |
|
4879 { |
|
4880 struct e1000_hw *hw = &adapter->hw; |
|
4881 struct net_device *netdev = adapter->netdev; |
|
4882 u32 pba_num; |
|
4883 |
|
4884 /* print bus type/speed/width info */ |
|
4885 e_info("(PCI Express:2.5GB/s:%s) %pM\n", |
|
4886 /* bus width */ |
|
4887 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : |
|
4888 "Width x1"), |
|
4889 /* MAC address */ |
|
4890 netdev->dev_addr); |
|
4891 e_info("Intel(R) PRO/%s Network Connection\n", |
|
4892 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); |
|
4893 e1000e_read_pba_num(hw, &pba_num); |
|
4894 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n", |
|
4895 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff)); |
|
4896 } |
|
4897 |
|
4898 static void e1000_eeprom_checks(struct e1000_adapter *adapter) |
|
4899 { |
|
4900 struct e1000_hw *hw = &adapter->hw; |
|
4901 int ret_val; |
|
4902 u16 buf = 0; |
|
4903 |
|
4904 if (hw->mac.type != e1000_82573) |
|
4905 return; |
|
4906 |
|
4907 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); |
|
4908 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) { |
|
4909 /* Deep Smart Power Down (DSPD) */ |
|
4910 dev_warn(&adapter->pdev->dev, |
|
4911 "Warning: detected DSPD enabled in EEPROM\n"); |
|
4912 } |
|
4913 |
|
4914 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf); |
|
4915 if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) { |
|
4916 /* ASPM enable */ |
|
4917 dev_warn(&adapter->pdev->dev, |
|
4918 "Warning: detected ASPM enabled in EEPROM\n"); |
|
4919 } |
|
4920 } |
|
4921 |
|
4922 static const struct net_device_ops e1000e_netdev_ops = { |
|
4923 .ndo_open = e1000_open, |
|
4924 .ndo_stop = e1000_close, |
|
4925 .ndo_start_xmit = e1000_xmit_frame, |
|
4926 .ndo_get_stats = e1000_get_stats, |
|
4927 .ndo_set_multicast_list = e1000_set_multi, |
|
4928 .ndo_set_mac_address = e1000_set_mac, |
|
4929 .ndo_change_mtu = e1000_change_mtu, |
|
4930 .ndo_do_ioctl = e1000_ioctl, |
|
4931 .ndo_tx_timeout = e1000_tx_timeout, |
|
4932 .ndo_validate_addr = eth_validate_addr, |
|
4933 |
|
4934 .ndo_vlan_rx_register = e1000_vlan_rx_register, |
|
4935 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, |
|
4936 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, |
|
4937 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
4938 .ndo_poll_controller = e1000_netpoll, |
|
4939 #endif |
|
4940 }; |
|
4941 |
|
4942 /** |
|
4943 * e1000_probe - Device Initialization Routine |
|
4944 * @pdev: PCI device information struct |
|
4945 * @ent: entry in e1000_pci_tbl |
|
4946 * |
|
4947 * Returns 0 on success, negative on failure |
|
4948 * |
|
4949 * e1000_probe initializes an adapter identified by a pci_dev structure. |
|
4950 * The OS initialization, configuring of the adapter private structure, |
|
4951 * and a hardware reset occur. |
|
4952 **/ |
|
4953 static int __devinit e1000_probe(struct pci_dev *pdev, |
|
4954 const struct pci_device_id *ent) |
|
4955 { |
|
4956 struct net_device *netdev; |
|
4957 struct e1000_adapter *adapter; |
|
4958 struct e1000_hw *hw; |
|
4959 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; |
|
4960 resource_size_t mmio_start, mmio_len; |
|
4961 resource_size_t flash_start, flash_len; |
|
4962 |
|
4963 static int cards_found; |
|
4964 int i, err, pci_using_dac; |
|
4965 u16 eeprom_data = 0; |
|
4966 u16 eeprom_apme_mask = E1000_EEPROM_APME; |
|
4967 |
|
4968 e1000e_disable_l1aspm(pdev); |
|
4969 |
|
4970 err = pci_enable_device_mem(pdev); |
|
4971 if (err) |
|
4972 return err; |
|
4973 |
|
4974 pci_using_dac = 0; |
|
4975 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); |
|
4976 if (!err) { |
|
4977 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); |
|
4978 if (!err) |
|
4979 pci_using_dac = 1; |
|
4980 } else { |
|
4981 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); |
|
4982 if (err) { |
|
4983 err = pci_set_consistent_dma_mask(pdev, |
|
4984 DMA_BIT_MASK(32)); |
|
4985 if (err) { |
|
4986 dev_err(&pdev->dev, "No usable DMA " |
|
4987 "configuration, aborting\n"); |
|
4988 goto err_dma; |
|
4989 } |
|
4990 } |
|
4991 } |
|
4992 |
|
4993 err = pci_request_selected_regions_exclusive(pdev, |
|
4994 pci_select_bars(pdev, IORESOURCE_MEM), |
|
4995 e1000e_driver_name); |
|
4996 if (err) |
|
4997 goto err_pci_reg; |
|
4998 |
|
4999 /* AER (Advanced Error Reporting) hooks */ |
|
5000 pci_enable_pcie_error_reporting(pdev); |
|
5001 |
|
5002 pci_set_master(pdev); |
|
5003 /* PCI config space info */ |
|
5004 err = pci_save_state(pdev); |
|
5005 if (err) |
|
5006 goto err_alloc_etherdev; |
|
5007 |
|
5008 err = -ENOMEM; |
|
5009 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
|
5010 if (!netdev) |
|
5011 goto err_alloc_etherdev; |
|
5012 |
|
5013 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
5014 |
|
5015 pci_set_drvdata(pdev, netdev); |
|
5016 adapter = netdev_priv(netdev); |
|
5017 hw = &adapter->hw; |
|
5018 adapter->netdev = netdev; |
|
5019 adapter->pdev = pdev; |
|
5020 adapter->ei = ei; |
|
5021 adapter->pba = ei->pba; |
|
5022 adapter->flags = ei->flags; |
|
5023 adapter->flags2 = ei->flags2; |
|
5024 adapter->hw.adapter = adapter; |
|
5025 adapter->hw.mac.type = ei->mac; |
|
5026 adapter->max_hw_frame_size = ei->max_hw_frame_size; |
|
5027 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; |
|
5028 |
|
5029 mmio_start = pci_resource_start(pdev, 0); |
|
5030 mmio_len = pci_resource_len(pdev, 0); |
|
5031 |
|
5032 err = -EIO; |
|
5033 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); |
|
5034 if (!adapter->hw.hw_addr) |
|
5035 goto err_ioremap; |
|
5036 |
|
5037 if ((adapter->flags & FLAG_HAS_FLASH) && |
|
5038 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { |
|
5039 flash_start = pci_resource_start(pdev, 1); |
|
5040 flash_len = pci_resource_len(pdev, 1); |
|
5041 adapter->hw.flash_address = ioremap(flash_start, flash_len); |
|
5042 if (!adapter->hw.flash_address) |
|
5043 goto err_flashmap; |
|
5044 } |
|
5045 |
|
5046 /* construct the net_device struct */ |
|
5047 netdev->netdev_ops = &e1000e_netdev_ops; |
|
5048 e1000e_set_ethtool_ops(netdev); |
|
5049 netdev->watchdog_timeo = 5 * HZ; |
|
5050 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
|
5051 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
5052 |
|
5053 netdev->mem_start = mmio_start; |
|
5054 netdev->mem_end = mmio_start + mmio_len; |
|
5055 |
|
5056 adapter->bd_number = cards_found++; |
|
5057 |
|
5058 e1000e_check_options(adapter); |
|
5059 |
|
5060 /* setup adapter struct */ |
|
5061 err = e1000_sw_init(adapter); |
|
5062 if (err) |
|
5063 goto err_sw_init; |
|
5064 |
|
5065 err = -EIO; |
|
5066 |
|
5067 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); |
|
5068 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); |
|
5069 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); |
|
5070 |
|
5071 err = ei->get_variants(adapter); |
|
5072 if (err) |
|
5073 goto err_hw_init; |
|
5074 |
|
5075 if ((adapter->flags & FLAG_IS_ICH) && |
|
5076 (adapter->flags & FLAG_READ_ONLY_NVM)) |
|
5077 e1000e_write_protect_nvm_ich8lan(&adapter->hw); |
|
5078 |
|
5079 hw->mac.ops.get_bus_info(&adapter->hw); |
|
5080 |
|
5081 adapter->hw.phy.autoneg_wait_to_complete = 0; |
|
5082 |
|
5083 /* Copper options */ |
|
5084 if (adapter->hw.phy.media_type == e1000_media_type_copper) { |
|
5085 adapter->hw.phy.mdix = AUTO_ALL_MODES; |
|
5086 adapter->hw.phy.disable_polarity_correction = 0; |
|
5087 adapter->hw.phy.ms_type = e1000_ms_hw_default; |
|
5088 } |
|
5089 |
|
5090 if (e1000_check_reset_block(&adapter->hw)) |
|
5091 e_info("PHY reset is blocked due to SOL/IDER session.\n"); |
|
5092 |
|
5093 netdev->features = NETIF_F_SG | |
|
5094 NETIF_F_HW_CSUM | |
|
5095 NETIF_F_HW_VLAN_TX | |
|
5096 NETIF_F_HW_VLAN_RX; |
|
5097 |
|
5098 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
|
5099 netdev->features |= NETIF_F_HW_VLAN_FILTER; |
|
5100 |
|
5101 netdev->features |= NETIF_F_TSO; |
|
5102 netdev->features |= NETIF_F_TSO6; |
|
5103 |
|
5104 netdev->vlan_features |= NETIF_F_TSO; |
|
5105 netdev->vlan_features |= NETIF_F_TSO6; |
|
5106 netdev->vlan_features |= NETIF_F_HW_CSUM; |
|
5107 netdev->vlan_features |= NETIF_F_SG; |
|
5108 |
|
5109 if (pci_using_dac) |
|
5110 netdev->features |= NETIF_F_HIGHDMA; |
|
5111 |
|
5112 if (e1000e_enable_mng_pass_thru(&adapter->hw)) |
|
5113 adapter->flags |= FLAG_MNG_PT_ENABLED; |
|
5114 |
|
5115 /* |
|
5116 * before reading the NVM, reset the controller to |
|
5117 * put the device in a known good starting state |
|
5118 */ |
|
5119 adapter->hw.mac.ops.reset_hw(&adapter->hw); |
|
5120 |
|
5121 /* |
|
5122 * systems with ASPM and others may see the checksum fail on the first |
|
5123 * attempt. Let's give it a few tries |
|
5124 */ |
|
5125 for (i = 0;; i++) { |
|
5126 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) |
|
5127 break; |
|
5128 if (i == 2) { |
|
5129 e_err("The NVM Checksum Is Not Valid\n"); |
|
5130 err = -EIO; |
|
5131 goto err_eeprom; |
|
5132 } |
|
5133 } |
|
5134 |
|
5135 e1000_eeprom_checks(adapter); |
|
5136 |
|
5137 /* copy the MAC address out of the NVM */ |
|
5138 if (e1000e_read_mac_addr(&adapter->hw)) |
|
5139 e_err("NVM Read Error while reading MAC address\n"); |
|
5140 |
|
5141 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); |
|
5142 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); |
|
5143 |
|
5144 if (!is_valid_ether_addr(netdev->perm_addr)) { |
|
5145 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr); |
|
5146 err = -EIO; |
|
5147 goto err_eeprom; |
|
5148 } |
|
5149 |
|
5150 init_timer(&adapter->watchdog_timer); |
|
5151 adapter->watchdog_timer.function = &e1000_watchdog; |
|
5152 adapter->watchdog_timer.data = (unsigned long) adapter; |
|
5153 |
|
5154 init_timer(&adapter->phy_info_timer); |
|
5155 adapter->phy_info_timer.function = &e1000_update_phy_info; |
|
5156 adapter->phy_info_timer.data = (unsigned long) adapter; |
|
5157 |
|
5158 INIT_WORK(&adapter->reset_task, e1000_reset_task); |
|
5159 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); |
|
5160 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); |
|
5161 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); |
|
5162 |
|
5163 /* Initialize link parameters. User can change them with ethtool */ |
|
5164 adapter->hw.mac.autoneg = 1; |
|
5165 adapter->fc_autoneg = 1; |
|
5166 adapter->hw.fc.requested_mode = e1000_fc_default; |
|
5167 adapter->hw.fc.current_mode = e1000_fc_default; |
|
5168 adapter->hw.phy.autoneg_advertised = 0x2f; |
|
5169 |
|
5170 /* ring size defaults */ |
|
5171 adapter->rx_ring->count = 256; |
|
5172 adapter->tx_ring->count = 256; |
|
5173 |
|
5174 /* |
|
5175 * Initial Wake on LAN setting - If APM wake is enabled in |
|
5176 * the EEPROM, enable the ACPI Magic Packet filter |
|
5177 */ |
|
5178 if (adapter->flags & FLAG_APME_IN_WUC) { |
|
5179 /* APME bit in EEPROM is mapped to WUC.APME */ |
|
5180 eeprom_data = er32(WUC); |
|
5181 eeprom_apme_mask = E1000_WUC_APME; |
|
5182 if (eeprom_data & E1000_WUC_PHY_WAKE) |
|
5183 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; |
|
5184 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { |
|
5185 if (adapter->flags & FLAG_APME_CHECK_PORT_B && |
|
5186 (adapter->hw.bus.func == 1)) |
|
5187 e1000_read_nvm(&adapter->hw, |
|
5188 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
|
5189 else |
|
5190 e1000_read_nvm(&adapter->hw, |
|
5191 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
|
5192 } |
|
5193 |
|
5194 /* fetch WoL from EEPROM */ |
|
5195 if (eeprom_data & eeprom_apme_mask) |
|
5196 adapter->eeprom_wol |= E1000_WUFC_MAG; |
|
5197 |
|
5198 /* |
|
5199 * now that we have the eeprom settings, apply the special cases |
|
5200 * where the eeprom may be wrong or the board simply won't support |
|
5201 * wake on lan on a particular port |
|
5202 */ |
|
5203 if (!(adapter->flags & FLAG_HAS_WOL)) |
|
5204 adapter->eeprom_wol = 0; |
|
5205 |
|
5206 /* initialize the wol settings based on the eeprom settings */ |
|
5207 adapter->wol = adapter->eeprom_wol; |
|
5208 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
5209 |
|
5210 /* save off EEPROM version number */ |
|
5211 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); |
|
5212 |
|
5213 /* reset the hardware with the new settings */ |
|
5214 e1000e_reset(adapter); |
|
5215 |
|
5216 /* |
|
5217 * If the controller has AMT, do not set DRV_LOAD until the interface |
|
5218 * is up. For all other cases, let the f/w know that the h/w is now |
|
5219 * under the control of the driver. |
|
5220 */ |
|
5221 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
5222 e1000_get_hw_control(adapter); |
|
5223 |
|
5224 strcpy(netdev->name, "eth%d"); |
|
5225 err = register_netdev(netdev); |
|
5226 if (err) |
|
5227 goto err_register; |
|
5228 |
|
5229 /* carrier off reporting is important to ethtool even BEFORE open */ |
|
5230 netif_carrier_off(netdev); |
|
5231 |
|
5232 e1000_print_device_info(adapter); |
|
5233 |
|
5234 return 0; |
|
5235 |
|
5236 err_register: |
|
5237 if (!(adapter->flags & FLAG_HAS_AMT)) |
|
5238 e1000_release_hw_control(adapter); |
|
5239 err_eeprom: |
|
5240 if (!e1000_check_reset_block(&adapter->hw)) |
|
5241 e1000_phy_hw_reset(&adapter->hw); |
|
5242 err_hw_init: |
|
5243 |
|
5244 kfree(adapter->tx_ring); |
|
5245 kfree(adapter->rx_ring); |
|
5246 err_sw_init: |
|
5247 if (adapter->hw.flash_address) |
|
5248 iounmap(adapter->hw.flash_address); |
|
5249 e1000e_reset_interrupt_capability(adapter); |
|
5250 err_flashmap: |
|
5251 iounmap(adapter->hw.hw_addr); |
|
5252 err_ioremap: |
|
5253 free_netdev(netdev); |
|
5254 err_alloc_etherdev: |
|
5255 pci_release_selected_regions(pdev, |
|
5256 pci_select_bars(pdev, IORESOURCE_MEM)); |
|
5257 err_pci_reg: |
|
5258 err_dma: |
|
5259 pci_disable_device(pdev); |
|
5260 return err; |
|
5261 } |
|
5262 |
|
5263 /** |
|
5264 * e1000_remove - Device Removal Routine |
|
5265 * @pdev: PCI device information struct |
|
5266 * |
|
5267 * e1000_remove is called by the PCI subsystem to alert the driver |
|
5268 * that it should release a PCI device. The could be caused by a |
|
5269 * Hot-Plug event, or because the driver is going to be removed from |
|
5270 * memory. |
|
5271 **/ |
|
5272 static void __devexit e1000_remove(struct pci_dev *pdev) |
|
5273 { |
|
5274 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5275 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5276 |
|
5277 /* |
|
5278 * flush_scheduled work may reschedule our watchdog task, so |
|
5279 * explicitly disable watchdog tasks from being rescheduled |
|
5280 */ |
|
5281 set_bit(__E1000_DOWN, &adapter->state); |
|
5282 del_timer_sync(&adapter->watchdog_timer); |
|
5283 del_timer_sync(&adapter->phy_info_timer); |
|
5284 |
|
5285 flush_scheduled_work(); |
|
5286 |
|
5287 /* |
|
5288 * Release control of h/w to f/w. If f/w is AMT enabled, this |
|
5289 * would have already happened in close and is redundant. |
|
5290 */ |
|
5291 e1000_release_hw_control(adapter); |
|
5292 |
|
5293 unregister_netdev(netdev); |
|
5294 |
|
5295 if (!e1000_check_reset_block(&adapter->hw)) |
|
5296 e1000_phy_hw_reset(&adapter->hw); |
|
5297 |
|
5298 e1000e_reset_interrupt_capability(adapter); |
|
5299 kfree(adapter->tx_ring); |
|
5300 kfree(adapter->rx_ring); |
|
5301 |
|
5302 iounmap(adapter->hw.hw_addr); |
|
5303 if (adapter->hw.flash_address) |
|
5304 iounmap(adapter->hw.flash_address); |
|
5305 pci_release_selected_regions(pdev, |
|
5306 pci_select_bars(pdev, IORESOURCE_MEM)); |
|
5307 |
|
5308 free_netdev(netdev); |
|
5309 |
|
5310 /* AER disable */ |
|
5311 pci_disable_pcie_error_reporting(pdev); |
|
5312 |
|
5313 pci_disable_device(pdev); |
|
5314 } |
|
5315 |
|
5316 /* PCI Error Recovery (ERS) */ |
|
5317 static struct pci_error_handlers e1000_err_handler = { |
|
5318 .error_detected = e1000_io_error_detected, |
|
5319 .slot_reset = e1000_io_slot_reset, |
|
5320 .resume = e1000_io_resume, |
|
5321 }; |
|
5322 |
|
5323 static struct pci_device_id e1000_pci_tbl[] = { |
|
5324 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, |
|
5325 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, |
|
5326 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, |
|
5327 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, |
|
5328 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, |
|
5329 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, |
|
5330 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, |
|
5331 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, |
|
5332 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, |
|
5333 |
|
5334 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, |
|
5335 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, |
|
5336 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, |
|
5337 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, |
|
5338 |
|
5339 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, |
|
5340 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, |
|
5341 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, |
|
5342 |
|
5343 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, |
|
5344 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, |
|
5345 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, |
|
5346 |
|
5347 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), |
|
5348 board_80003es2lan }, |
|
5349 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), |
|
5350 board_80003es2lan }, |
|
5351 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), |
|
5352 board_80003es2lan }, |
|
5353 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), |
|
5354 board_80003es2lan }, |
|
5355 |
|
5356 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, |
|
5357 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, |
|
5358 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, |
|
5359 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, |
|
5360 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, |
|
5361 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, |
|
5362 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, |
|
5363 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, |
|
5364 |
|
5365 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, |
|
5366 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, |
|
5367 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, |
|
5368 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, |
|
5369 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, |
|
5370 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, |
|
5371 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, |
|
5372 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, |
|
5373 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, |
|
5374 |
|
5375 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, |
|
5376 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, |
|
5377 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, |
|
5378 |
|
5379 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, |
|
5380 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, |
|
5381 |
|
5382 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, |
|
5383 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, |
|
5384 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, |
|
5385 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, |
|
5386 |
|
5387 { } /* terminate list */ |
|
5388 }; |
|
5389 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
|
5390 |
|
5391 /* PCI Device API Driver */ |
|
5392 static struct pci_driver e1000_driver = { |
|
5393 .name = e1000e_driver_name, |
|
5394 .id_table = e1000_pci_tbl, |
|
5395 .probe = e1000_probe, |
|
5396 .remove = __devexit_p(e1000_remove), |
|
5397 #ifdef CONFIG_PM |
|
5398 /* Power Management Hooks */ |
|
5399 .suspend = e1000_suspend, |
|
5400 .resume = e1000_resume, |
|
5401 #endif |
|
5402 .shutdown = e1000_shutdown, |
|
5403 .err_handler = &e1000_err_handler |
|
5404 }; |
|
5405 |
|
5406 /** |
|
5407 * e1000_init_module - Driver Registration Routine |
|
5408 * |
|
5409 * e1000_init_module is the first routine called when the driver is |
|
5410 * loaded. All it does is register with the PCI subsystem. |
|
5411 **/ |
|
5412 static int __init e1000_init_module(void) |
|
5413 { |
|
5414 int ret; |
|
5415 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", |
|
5416 e1000e_driver_name, e1000e_driver_version); |
|
5417 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n", |
|
5418 e1000e_driver_name); |
|
5419 ret = pci_register_driver(&e1000_driver); |
|
5420 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name, |
|
5421 PM_QOS_DEFAULT_VALUE); |
|
5422 |
|
5423 return ret; |
|
5424 } |
|
5425 module_init(e1000_init_module); |
|
5426 |
|
5427 /** |
|
5428 * e1000_exit_module - Driver Exit Cleanup Routine |
|
5429 * |
|
5430 * e1000_exit_module is called just before the driver is removed |
|
5431 * from memory. |
|
5432 **/ |
|
5433 static void __exit e1000_exit_module(void) |
|
5434 { |
|
5435 pci_unregister_driver(&e1000_driver); |
|
5436 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name); |
|
5437 } |
|
5438 module_exit(e1000_exit_module); |
|
5439 |
|
5440 |
|
5441 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
|
5442 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); |
|
5443 MODULE_LICENSE("GPL"); |
|
5444 MODULE_VERSION(DRV_VERSION); |
|
5445 |
|
5446 /* e1000_main.c */ |