devices/e1000e/netdev-2.6.32-orig.c
branchredundancy
changeset 2136 729df853b3fb
equal deleted inserted replaced
2135:f99b2249704c 2136:729df853b3fb
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2008 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include <linux/module.h>
       
    30 #include <linux/types.h>
       
    31 #include <linux/init.h>
       
    32 #include <linux/pci.h>
       
    33 #include <linux/vmalloc.h>
       
    34 #include <linux/pagemap.h>
       
    35 #include <linux/delay.h>
       
    36 #include <linux/netdevice.h>
       
    37 #include <linux/tcp.h>
       
    38 #include <linux/ipv6.h>
       
    39 #include <net/checksum.h>
       
    40 #include <net/ip6_checksum.h>
       
    41 #include <linux/mii.h>
       
    42 #include <linux/ethtool.h>
       
    43 #include <linux/if_vlan.h>
       
    44 #include <linux/cpu.h>
       
    45 #include <linux/smp.h>
       
    46 #include <linux/pm_qos_params.h>
       
    47 #include <linux/aer.h>
       
    48 
       
    49 #include "e1000.h"
       
    50 
       
    51 #define DRV_VERSION "1.0.2-k2"
       
    52 char e1000e_driver_name[] = "e1000e";
       
    53 const char e1000e_driver_version[] = DRV_VERSION;
       
    54 
       
    55 static const struct e1000_info *e1000_info_tbl[] = {
       
    56 	[board_82571]		= &e1000_82571_info,
       
    57 	[board_82572]		= &e1000_82572_info,
       
    58 	[board_82573]		= &e1000_82573_info,
       
    59 	[board_82574]		= &e1000_82574_info,
       
    60 	[board_82583]		= &e1000_82583_info,
       
    61 	[board_80003es2lan]	= &e1000_es2_info,
       
    62 	[board_ich8lan]		= &e1000_ich8_info,
       
    63 	[board_ich9lan]		= &e1000_ich9_info,
       
    64 	[board_ich10lan]	= &e1000_ich10_info,
       
    65 	[board_pchlan]		= &e1000_pch_info,
       
    66 };
       
    67 
       
    68 #ifdef DEBUG
       
    69 /**
       
    70  * e1000_get_hw_dev_name - return device name string
       
    71  * used by hardware layer to print debugging information
       
    72  **/
       
    73 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
       
    74 {
       
    75 	return hw->adapter->netdev->name;
       
    76 }
       
    77 #endif
       
    78 
       
    79 /**
       
    80  * e1000_desc_unused - calculate if we have unused descriptors
       
    81  **/
       
    82 static int e1000_desc_unused(struct e1000_ring *ring)
       
    83 {
       
    84 	if (ring->next_to_clean > ring->next_to_use)
       
    85 		return ring->next_to_clean - ring->next_to_use - 1;
       
    86 
       
    87 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
       
    88 }
       
    89 
       
    90 /**
       
    91  * e1000_receive_skb - helper function to handle Rx indications
       
    92  * @adapter: board private structure
       
    93  * @status: descriptor status field as written by hardware
       
    94  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
       
    95  * @skb: pointer to sk_buff to be indicated to stack
       
    96  **/
       
    97 static void e1000_receive_skb(struct e1000_adapter *adapter,
       
    98 			      struct net_device *netdev,
       
    99 			      struct sk_buff *skb,
       
   100 			      u8 status, __le16 vlan)
       
   101 {
       
   102 	skb->protocol = eth_type_trans(skb, netdev);
       
   103 
       
   104 	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
       
   105 		vlan_gro_receive(&adapter->napi, adapter->vlgrp,
       
   106 				 le16_to_cpu(vlan), skb);
       
   107 	else
       
   108 		napi_gro_receive(&adapter->napi, skb);
       
   109 }
       
   110 
       
   111 /**
       
   112  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
   113  * @adapter:     board private structure
       
   114  * @status_err:  receive descriptor status and error fields
       
   115  * @csum:	receive descriptor csum field
       
   116  * @sk_buff:     socket buffer with received data
       
   117  **/
       
   118 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
       
   119 			      u32 csum, struct sk_buff *skb)
       
   120 {
       
   121 	u16 status = (u16)status_err;
       
   122 	u8 errors = (u8)(status_err >> 24);
       
   123 	skb->ip_summed = CHECKSUM_NONE;
       
   124 
       
   125 	/* Ignore Checksum bit is set */
       
   126 	if (status & E1000_RXD_STAT_IXSM)
       
   127 		return;
       
   128 	/* TCP/UDP checksum error bit is set */
       
   129 	if (errors & E1000_RXD_ERR_TCPE) {
       
   130 		/* let the stack verify checksum errors */
       
   131 		adapter->hw_csum_err++;
       
   132 		return;
       
   133 	}
       
   134 
       
   135 	/* TCP/UDP Checksum has not been calculated */
       
   136 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
       
   137 		return;
       
   138 
       
   139 	/* It must be a TCP or UDP packet with a valid checksum */
       
   140 	if (status & E1000_RXD_STAT_TCPCS) {
       
   141 		/* TCP checksum is good */
       
   142 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
   143 	} else {
       
   144 		/*
       
   145 		 * IP fragment with UDP payload
       
   146 		 * Hardware complements the payload checksum, so we undo it
       
   147 		 * and then put the value in host order for further stack use.
       
   148 		 */
       
   149 		__sum16 sum = (__force __sum16)htons(csum);
       
   150 		skb->csum = csum_unfold(~sum);
       
   151 		skb->ip_summed = CHECKSUM_COMPLETE;
       
   152 	}
       
   153 	adapter->hw_csum_good++;
       
   154 }
       
   155 
       
   156 /**
       
   157  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
   158  * @adapter: address of board private structure
       
   159  **/
       
   160 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
   161 				   int cleaned_count)
       
   162 {
       
   163 	struct net_device *netdev = adapter->netdev;
       
   164 	struct pci_dev *pdev = adapter->pdev;
       
   165 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   166 	struct e1000_rx_desc *rx_desc;
       
   167 	struct e1000_buffer *buffer_info;
       
   168 	struct sk_buff *skb;
       
   169 	unsigned int i;
       
   170 	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
       
   171 
       
   172 	i = rx_ring->next_to_use;
       
   173 	buffer_info = &rx_ring->buffer_info[i];
       
   174 
       
   175 	while (cleaned_count--) {
       
   176 		skb = buffer_info->skb;
       
   177 		if (skb) {
       
   178 			skb_trim(skb, 0);
       
   179 			goto map_skb;
       
   180 		}
       
   181 
       
   182 		skb = netdev_alloc_skb(netdev, bufsz);
       
   183 		if (!skb) {
       
   184 			/* Better luck next round */
       
   185 			adapter->alloc_rx_buff_failed++;
       
   186 			break;
       
   187 		}
       
   188 
       
   189 		/*
       
   190 		 * Make buffer alignment 2 beyond a 16 byte boundary
       
   191 		 * this will result in a 16 byte aligned IP header after
       
   192 		 * the 14 byte MAC header is removed
       
   193 		 */
       
   194 		skb_reserve(skb, NET_IP_ALIGN);
       
   195 
       
   196 		buffer_info->skb = skb;
       
   197 map_skb:
       
   198 		buffer_info->dma = pci_map_single(pdev, skb->data,
       
   199 						  adapter->rx_buffer_len,
       
   200 						  PCI_DMA_FROMDEVICE);
       
   201 		if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
       
   202 			dev_err(&pdev->dev, "RX DMA map failed\n");
       
   203 			adapter->rx_dma_failed++;
       
   204 			break;
       
   205 		}
       
   206 
       
   207 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   208 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
   209 
       
   210 		i++;
       
   211 		if (i == rx_ring->count)
       
   212 			i = 0;
       
   213 		buffer_info = &rx_ring->buffer_info[i];
       
   214 	}
       
   215 
       
   216 	if (rx_ring->next_to_use != i) {
       
   217 		rx_ring->next_to_use = i;
       
   218 		if (i-- == 0)
       
   219 			i = (rx_ring->count - 1);
       
   220 
       
   221 		/*
       
   222 		 * Force memory writes to complete before letting h/w
       
   223 		 * know there are new descriptors to fetch.  (Only
       
   224 		 * applicable for weak-ordered memory model archs,
       
   225 		 * such as IA-64).
       
   226 		 */
       
   227 		wmb();
       
   228 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
       
   229 	}
       
   230 }
       
   231 
       
   232 /**
       
   233  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
       
   234  * @adapter: address of board private structure
       
   235  **/
       
   236 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
       
   237 				      int cleaned_count)
       
   238 {
       
   239 	struct net_device *netdev = adapter->netdev;
       
   240 	struct pci_dev *pdev = adapter->pdev;
       
   241 	union e1000_rx_desc_packet_split *rx_desc;
       
   242 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   243 	struct e1000_buffer *buffer_info;
       
   244 	struct e1000_ps_page *ps_page;
       
   245 	struct sk_buff *skb;
       
   246 	unsigned int i, j;
       
   247 
       
   248 	i = rx_ring->next_to_use;
       
   249 	buffer_info = &rx_ring->buffer_info[i];
       
   250 
       
   251 	while (cleaned_count--) {
       
   252 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
   253 
       
   254 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
   255 			ps_page = &buffer_info->ps_pages[j];
       
   256 			if (j >= adapter->rx_ps_pages) {
       
   257 				/* all unused desc entries get hw null ptr */
       
   258 				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
       
   259 				continue;
       
   260 			}
       
   261 			if (!ps_page->page) {
       
   262 				ps_page->page = alloc_page(GFP_ATOMIC);
       
   263 				if (!ps_page->page) {
       
   264 					adapter->alloc_rx_buff_failed++;
       
   265 					goto no_buffers;
       
   266 				}
       
   267 				ps_page->dma = pci_map_page(pdev,
       
   268 						   ps_page->page,
       
   269 						   0, PAGE_SIZE,
       
   270 						   PCI_DMA_FROMDEVICE);
       
   271 				if (pci_dma_mapping_error(pdev, ps_page->dma)) {
       
   272 					dev_err(&adapter->pdev->dev,
       
   273 					  "RX DMA page map failed\n");
       
   274 					adapter->rx_dma_failed++;
       
   275 					goto no_buffers;
       
   276 				}
       
   277 			}
       
   278 			/*
       
   279 			 * Refresh the desc even if buffer_addrs
       
   280 			 * didn't change because each write-back
       
   281 			 * erases this info.
       
   282 			 */
       
   283 			rx_desc->read.buffer_addr[j+1] =
       
   284 			     cpu_to_le64(ps_page->dma);
       
   285 		}
       
   286 
       
   287 		skb = netdev_alloc_skb(netdev,
       
   288 				       adapter->rx_ps_bsize0 + NET_IP_ALIGN);
       
   289 
       
   290 		if (!skb) {
       
   291 			adapter->alloc_rx_buff_failed++;
       
   292 			break;
       
   293 		}
       
   294 
       
   295 		/*
       
   296 		 * Make buffer alignment 2 beyond a 16 byte boundary
       
   297 		 * this will result in a 16 byte aligned IP header after
       
   298 		 * the 14 byte MAC header is removed
       
   299 		 */
       
   300 		skb_reserve(skb, NET_IP_ALIGN);
       
   301 
       
   302 		buffer_info->skb = skb;
       
   303 		buffer_info->dma = pci_map_single(pdev, skb->data,
       
   304 						  adapter->rx_ps_bsize0,
       
   305 						  PCI_DMA_FROMDEVICE);
       
   306 		if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
       
   307 			dev_err(&pdev->dev, "RX DMA map failed\n");
       
   308 			adapter->rx_dma_failed++;
       
   309 			/* cleanup skb */
       
   310 			dev_kfree_skb_any(skb);
       
   311 			buffer_info->skb = NULL;
       
   312 			break;
       
   313 		}
       
   314 
       
   315 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
       
   316 
       
   317 		i++;
       
   318 		if (i == rx_ring->count)
       
   319 			i = 0;
       
   320 		buffer_info = &rx_ring->buffer_info[i];
       
   321 	}
       
   322 
       
   323 no_buffers:
       
   324 	if (rx_ring->next_to_use != i) {
       
   325 		rx_ring->next_to_use = i;
       
   326 
       
   327 		if (!(i--))
       
   328 			i = (rx_ring->count - 1);
       
   329 
       
   330 		/*
       
   331 		 * Force memory writes to complete before letting h/w
       
   332 		 * know there are new descriptors to fetch.  (Only
       
   333 		 * applicable for weak-ordered memory model archs,
       
   334 		 * such as IA-64).
       
   335 		 */
       
   336 		wmb();
       
   337 		/*
       
   338 		 * Hardware increments by 16 bytes, but packet split
       
   339 		 * descriptors are 32 bytes...so we increment tail
       
   340 		 * twice as much.
       
   341 		 */
       
   342 		writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
       
   343 	}
       
   344 }
       
   345 
       
   346 /**
       
   347  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
       
   348  * @adapter: address of board private structure
       
   349  * @cleaned_count: number of buffers to allocate this pass
       
   350  **/
       
   351 
       
   352 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
       
   353                                          int cleaned_count)
       
   354 {
       
   355 	struct net_device *netdev = adapter->netdev;
       
   356 	struct pci_dev *pdev = adapter->pdev;
       
   357 	struct e1000_rx_desc *rx_desc;
       
   358 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   359 	struct e1000_buffer *buffer_info;
       
   360 	struct sk_buff *skb;
       
   361 	unsigned int i;
       
   362 	unsigned int bufsz = 256 -
       
   363 	                     16 /* for skb_reserve */ -
       
   364 	                     NET_IP_ALIGN;
       
   365 
       
   366 	i = rx_ring->next_to_use;
       
   367 	buffer_info = &rx_ring->buffer_info[i];
       
   368 
       
   369 	while (cleaned_count--) {
       
   370 		skb = buffer_info->skb;
       
   371 		if (skb) {
       
   372 			skb_trim(skb, 0);
       
   373 			goto check_page;
       
   374 		}
       
   375 
       
   376 		skb = netdev_alloc_skb(netdev, bufsz);
       
   377 		if (unlikely(!skb)) {
       
   378 			/* Better luck next round */
       
   379 			adapter->alloc_rx_buff_failed++;
       
   380 			break;
       
   381 		}
       
   382 
       
   383 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
   384 		 * this will result in a 16 byte aligned IP header after
       
   385 		 * the 14 byte MAC header is removed
       
   386 		 */
       
   387 		skb_reserve(skb, NET_IP_ALIGN);
       
   388 
       
   389 		buffer_info->skb = skb;
       
   390 check_page:
       
   391 		/* allocate a new page if necessary */
       
   392 		if (!buffer_info->page) {
       
   393 			buffer_info->page = alloc_page(GFP_ATOMIC);
       
   394 			if (unlikely(!buffer_info->page)) {
       
   395 				adapter->alloc_rx_buff_failed++;
       
   396 				break;
       
   397 			}
       
   398 		}
       
   399 
       
   400 		if (!buffer_info->dma)
       
   401 			buffer_info->dma = pci_map_page(pdev,
       
   402 			                                buffer_info->page, 0,
       
   403 			                                PAGE_SIZE,
       
   404 			                                PCI_DMA_FROMDEVICE);
       
   405 
       
   406 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   407 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
   408 
       
   409 		if (unlikely(++i == rx_ring->count))
       
   410 			i = 0;
       
   411 		buffer_info = &rx_ring->buffer_info[i];
       
   412 	}
       
   413 
       
   414 	if (likely(rx_ring->next_to_use != i)) {
       
   415 		rx_ring->next_to_use = i;
       
   416 		if (unlikely(i-- == 0))
       
   417 			i = (rx_ring->count - 1);
       
   418 
       
   419 		/* Force memory writes to complete before letting h/w
       
   420 		 * know there are new descriptors to fetch.  (Only
       
   421 		 * applicable for weak-ordered memory model archs,
       
   422 		 * such as IA-64). */
       
   423 		wmb();
       
   424 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
       
   425 	}
       
   426 }
       
   427 
       
   428 /**
       
   429  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
   430  * @adapter: board private structure
       
   431  *
       
   432  * the return value indicates whether actual cleaning was done, there
       
   433  * is no guarantee that everything was cleaned
       
   434  **/
       
   435 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   436 			       int *work_done, int work_to_do)
       
   437 {
       
   438 	struct net_device *netdev = adapter->netdev;
       
   439 	struct pci_dev *pdev = adapter->pdev;
       
   440 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   441 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
   442 	struct e1000_buffer *buffer_info, *next_buffer;
       
   443 	u32 length;
       
   444 	unsigned int i;
       
   445 	int cleaned_count = 0;
       
   446 	bool cleaned = 0;
       
   447 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
       
   448 
       
   449 	i = rx_ring->next_to_clean;
       
   450 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   451 	buffer_info = &rx_ring->buffer_info[i];
       
   452 
       
   453 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
   454 		struct sk_buff *skb;
       
   455 		u8 status;
       
   456 
       
   457 		if (*work_done >= work_to_do)
       
   458 			break;
       
   459 		(*work_done)++;
       
   460 
       
   461 		status = rx_desc->status;
       
   462 		skb = buffer_info->skb;
       
   463 		buffer_info->skb = NULL;
       
   464 
       
   465 		prefetch(skb->data - NET_IP_ALIGN);
       
   466 
       
   467 		i++;
       
   468 		if (i == rx_ring->count)
       
   469 			i = 0;
       
   470 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
   471 		prefetch(next_rxd);
       
   472 
       
   473 		next_buffer = &rx_ring->buffer_info[i];
       
   474 
       
   475 		cleaned = 1;
       
   476 		cleaned_count++;
       
   477 		pci_unmap_single(pdev,
       
   478 				 buffer_info->dma,
       
   479 				 adapter->rx_buffer_len,
       
   480 				 PCI_DMA_FROMDEVICE);
       
   481 		buffer_info->dma = 0;
       
   482 
       
   483 		length = le16_to_cpu(rx_desc->length);
       
   484 
       
   485 		/*
       
   486 		 * !EOP means multiple descriptors were used to store a single
       
   487 		 * packet, if that's the case we need to toss it.  In fact, we
       
   488 		 * need to toss every packet with the EOP bit clear and the
       
   489 		 * next frame that _does_ have the EOP bit set, as it is by
       
   490 		 * definition only a frame fragment
       
   491 		 */
       
   492 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
       
   493 			adapter->flags2 |= FLAG2_IS_DISCARDING;
       
   494 
       
   495 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
       
   496 			/* All receives must fit into a single buffer */
       
   497 			e_dbg("%s: Receive packet consumed multiple buffers\n",
       
   498 			      netdev->name);
       
   499 			/* recycle */
       
   500 			buffer_info->skb = skb;
       
   501 			if (status & E1000_RXD_STAT_EOP)
       
   502 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
   503 			goto next_desc;
       
   504 		}
       
   505 
       
   506 		if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
       
   507 			/* recycle */
       
   508 			buffer_info->skb = skb;
       
   509 			goto next_desc;
       
   510 		}
       
   511 
       
   512 		/* adjust length to remove Ethernet CRC */
       
   513 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
       
   514 			length -= 4;
       
   515 
       
   516 		total_rx_bytes += length;
       
   517 		total_rx_packets++;
       
   518 
       
   519 		/*
       
   520 		 * code added for copybreak, this should improve
       
   521 		 * performance for small packets with large amounts
       
   522 		 * of reassembly being done in the stack
       
   523 		 */
       
   524 		if (length < copybreak) {
       
   525 			struct sk_buff *new_skb =
       
   526 			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
       
   527 			if (new_skb) {
       
   528 				skb_reserve(new_skb, NET_IP_ALIGN);
       
   529 				skb_copy_to_linear_data_offset(new_skb,
       
   530 							       -NET_IP_ALIGN,
       
   531 							       (skb->data -
       
   532 								NET_IP_ALIGN),
       
   533 							       (length +
       
   534 								NET_IP_ALIGN));
       
   535 				/* save the skb in buffer_info as good */
       
   536 				buffer_info->skb = skb;
       
   537 				skb = new_skb;
       
   538 			}
       
   539 			/* else just continue with the old one */
       
   540 		}
       
   541 		/* end copybreak code */
       
   542 		skb_put(skb, length);
       
   543 
       
   544 		/* Receive Checksum Offload */
       
   545 		e1000_rx_checksum(adapter,
       
   546 				  (u32)(status) |
       
   547 				  ((u32)(rx_desc->errors) << 24),
       
   548 				  le16_to_cpu(rx_desc->csum), skb);
       
   549 
       
   550 		e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
       
   551 
       
   552 next_desc:
       
   553 		rx_desc->status = 0;
       
   554 
       
   555 		/* return some buffers to hardware, one at a time is too slow */
       
   556 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
       
   557 			adapter->alloc_rx_buf(adapter, cleaned_count);
       
   558 			cleaned_count = 0;
       
   559 		}
       
   560 
       
   561 		/* use prefetched values */
       
   562 		rx_desc = next_rxd;
       
   563 		buffer_info = next_buffer;
       
   564 	}
       
   565 	rx_ring->next_to_clean = i;
       
   566 
       
   567 	cleaned_count = e1000_desc_unused(rx_ring);
       
   568 	if (cleaned_count)
       
   569 		adapter->alloc_rx_buf(adapter, cleaned_count);
       
   570 
       
   571 	adapter->total_rx_bytes += total_rx_bytes;
       
   572 	adapter->total_rx_packets += total_rx_packets;
       
   573 	adapter->net_stats.rx_bytes += total_rx_bytes;
       
   574 	adapter->net_stats.rx_packets += total_rx_packets;
       
   575 	return cleaned;
       
   576 }
       
   577 
       
   578 static void e1000_put_txbuf(struct e1000_adapter *adapter,
       
   579 			     struct e1000_buffer *buffer_info)
       
   580 {
       
   581 	buffer_info->dma = 0;
       
   582 	if (buffer_info->skb) {
       
   583 		skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
       
   584 		              DMA_TO_DEVICE);
       
   585 		dev_kfree_skb_any(buffer_info->skb);
       
   586 		buffer_info->skb = NULL;
       
   587 	}
       
   588 	buffer_info->time_stamp = 0;
       
   589 }
       
   590 
       
   591 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
       
   592 {
       
   593 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
   594 	unsigned int i = tx_ring->next_to_clean;
       
   595 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
       
   596 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
   597 
       
   598 	/* detected Tx unit hang */
       
   599 	e_err("Detected Tx Unit Hang:\n"
       
   600 	      "  TDH                  <%x>\n"
       
   601 	      "  TDT                  <%x>\n"
       
   602 	      "  next_to_use          <%x>\n"
       
   603 	      "  next_to_clean        <%x>\n"
       
   604 	      "buffer_info[next_to_clean]:\n"
       
   605 	      "  time_stamp           <%lx>\n"
       
   606 	      "  next_to_watch        <%x>\n"
       
   607 	      "  jiffies              <%lx>\n"
       
   608 	      "  next_to_watch.status <%x>\n",
       
   609 	      readl(adapter->hw.hw_addr + tx_ring->head),
       
   610 	      readl(adapter->hw.hw_addr + tx_ring->tail),
       
   611 	      tx_ring->next_to_use,
       
   612 	      tx_ring->next_to_clean,
       
   613 	      tx_ring->buffer_info[eop].time_stamp,
       
   614 	      eop,
       
   615 	      jiffies,
       
   616 	      eop_desc->upper.fields.status);
       
   617 }
       
   618 
       
   619 /**
       
   620  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
   621  * @adapter: board private structure
       
   622  *
       
   623  * the return value indicates whether actual cleaning was done, there
       
   624  * is no guarantee that everything was cleaned
       
   625  **/
       
   626 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
       
   627 {
       
   628 	struct net_device *netdev = adapter->netdev;
       
   629 	struct e1000_hw *hw = &adapter->hw;
       
   630 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
   631 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
   632 	struct e1000_buffer *buffer_info;
       
   633 	unsigned int i, eop;
       
   634 	unsigned int count = 0;
       
   635 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
       
   636 
       
   637 	i = tx_ring->next_to_clean;
       
   638 	eop = tx_ring->buffer_info[i].next_to_watch;
       
   639 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
   640 
       
   641 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
       
   642 	       (count < tx_ring->count)) {
       
   643 		bool cleaned = false;
       
   644 		for (; !cleaned; count++) {
       
   645 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
   646 			buffer_info = &tx_ring->buffer_info[i];
       
   647 			cleaned = (i == eop);
       
   648 
       
   649 			if (cleaned) {
       
   650 				struct sk_buff *skb = buffer_info->skb;
       
   651 				unsigned int segs, bytecount;
       
   652 				segs = skb_shinfo(skb)->gso_segs ?: 1;
       
   653 				/* multiply data chunks by size of headers */
       
   654 				bytecount = ((segs - 1) * skb_headlen(skb)) +
       
   655 					    skb->len;
       
   656 				total_tx_packets += segs;
       
   657 				total_tx_bytes += bytecount;
       
   658 			}
       
   659 
       
   660 			e1000_put_txbuf(adapter, buffer_info);
       
   661 			tx_desc->upper.data = 0;
       
   662 
       
   663 			i++;
       
   664 			if (i == tx_ring->count)
       
   665 				i = 0;
       
   666 		}
       
   667 
       
   668 		eop = tx_ring->buffer_info[i].next_to_watch;
       
   669 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
   670 	}
       
   671 
       
   672 	tx_ring->next_to_clean = i;
       
   673 
       
   674 #define TX_WAKE_THRESHOLD 32
       
   675 	if (count && netif_carrier_ok(netdev) &&
       
   676 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
       
   677 		/* Make sure that anybody stopping the queue after this
       
   678 		 * sees the new next_to_clean.
       
   679 		 */
       
   680 		smp_mb();
       
   681 
       
   682 		if (netif_queue_stopped(netdev) &&
       
   683 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
       
   684 			netif_wake_queue(netdev);
       
   685 			++adapter->restart_queue;
       
   686 		}
       
   687 	}
       
   688 
       
   689 	if (adapter->detect_tx_hung) {
       
   690 		/* Detect a transmit hang in hardware, this serializes the
       
   691 		 * check with the clearing of time_stamp and movement of i */
       
   692 		adapter->detect_tx_hung = 0;
       
   693 		if (tx_ring->buffer_info[i].time_stamp &&
       
   694 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
       
   695 			       + (adapter->tx_timeout_factor * HZ))
       
   696 		    && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
       
   697 			e1000_print_tx_hang(adapter);
       
   698 			netif_stop_queue(netdev);
       
   699 		}
       
   700 	}
       
   701 	adapter->total_tx_bytes += total_tx_bytes;
       
   702 	adapter->total_tx_packets += total_tx_packets;
       
   703 	adapter->net_stats.tx_bytes += total_tx_bytes;
       
   704 	adapter->net_stats.tx_packets += total_tx_packets;
       
   705 	return (count < tx_ring->count);
       
   706 }
       
   707 
       
   708 /**
       
   709  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
       
   710  * @adapter: board private structure
       
   711  *
       
   712  * the return value indicates whether actual cleaning was done, there
       
   713  * is no guarantee that everything was cleaned
       
   714  **/
       
   715 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
       
   716 				  int *work_done, int work_to_do)
       
   717 {
       
   718 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
       
   719 	struct net_device *netdev = adapter->netdev;
       
   720 	struct pci_dev *pdev = adapter->pdev;
       
   721 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   722 	struct e1000_buffer *buffer_info, *next_buffer;
       
   723 	struct e1000_ps_page *ps_page;
       
   724 	struct sk_buff *skb;
       
   725 	unsigned int i, j;
       
   726 	u32 length, staterr;
       
   727 	int cleaned_count = 0;
       
   728 	bool cleaned = 0;
       
   729 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
       
   730 
       
   731 	i = rx_ring->next_to_clean;
       
   732 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
   733 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
   734 	buffer_info = &rx_ring->buffer_info[i];
       
   735 
       
   736 	while (staterr & E1000_RXD_STAT_DD) {
       
   737 		if (*work_done >= work_to_do)
       
   738 			break;
       
   739 		(*work_done)++;
       
   740 		skb = buffer_info->skb;
       
   741 
       
   742 		/* in the packet split case this is header only */
       
   743 		prefetch(skb->data - NET_IP_ALIGN);
       
   744 
       
   745 		i++;
       
   746 		if (i == rx_ring->count)
       
   747 			i = 0;
       
   748 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
       
   749 		prefetch(next_rxd);
       
   750 
       
   751 		next_buffer = &rx_ring->buffer_info[i];
       
   752 
       
   753 		cleaned = 1;
       
   754 		cleaned_count++;
       
   755 		pci_unmap_single(pdev, buffer_info->dma,
       
   756 				 adapter->rx_ps_bsize0,
       
   757 				 PCI_DMA_FROMDEVICE);
       
   758 		buffer_info->dma = 0;
       
   759 
       
   760 		/* see !EOP comment in other rx routine */
       
   761 		if (!(staterr & E1000_RXD_STAT_EOP))
       
   762 			adapter->flags2 |= FLAG2_IS_DISCARDING;
       
   763 
       
   764 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
       
   765 			e_dbg("%s: Packet Split buffers didn't pick up the "
       
   766 			      "full packet\n", netdev->name);
       
   767 			dev_kfree_skb_irq(skb);
       
   768 			if (staterr & E1000_RXD_STAT_EOP)
       
   769 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
   770 			goto next_desc;
       
   771 		}
       
   772 
       
   773 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
       
   774 			dev_kfree_skb_irq(skb);
       
   775 			goto next_desc;
       
   776 		}
       
   777 
       
   778 		length = le16_to_cpu(rx_desc->wb.middle.length0);
       
   779 
       
   780 		if (!length) {
       
   781 			e_dbg("%s: Last part of the packet spanning multiple "
       
   782 			      "descriptors\n", netdev->name);
       
   783 			dev_kfree_skb_irq(skb);
       
   784 			goto next_desc;
       
   785 		}
       
   786 
       
   787 		/* Good Receive */
       
   788 		skb_put(skb, length);
       
   789 
       
   790 		{
       
   791 		/*
       
   792 		 * this looks ugly, but it seems compiler issues make it
       
   793 		 * more efficient than reusing j
       
   794 		 */
       
   795 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
       
   796 
       
   797 		/*
       
   798 		 * page alloc/put takes too long and effects small packet
       
   799 		 * throughput, so unsplit small packets and save the alloc/put
       
   800 		 * only valid in softirq (napi) context to call kmap_*
       
   801 		 */
       
   802 		if (l1 && (l1 <= copybreak) &&
       
   803 		    ((length + l1) <= adapter->rx_ps_bsize0)) {
       
   804 			u8 *vaddr;
       
   805 
       
   806 			ps_page = &buffer_info->ps_pages[0];
       
   807 
       
   808 			/*
       
   809 			 * there is no documentation about how to call
       
   810 			 * kmap_atomic, so we can't hold the mapping
       
   811 			 * very long
       
   812 			 */
       
   813 			pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
       
   814 				PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
   815 			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
       
   816 			memcpy(skb_tail_pointer(skb), vaddr, l1);
       
   817 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
       
   818 			pci_dma_sync_single_for_device(pdev, ps_page->dma,
       
   819 				PAGE_SIZE, PCI_DMA_FROMDEVICE);
       
   820 
       
   821 			/* remove the CRC */
       
   822 			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
       
   823 				l1 -= 4;
       
   824 
       
   825 			skb_put(skb, l1);
       
   826 			goto copydone;
       
   827 		} /* if */
       
   828 		}
       
   829 
       
   830 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
   831 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
       
   832 			if (!length)
       
   833 				break;
       
   834 
       
   835 			ps_page = &buffer_info->ps_pages[j];
       
   836 			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
       
   837 				       PCI_DMA_FROMDEVICE);
       
   838 			ps_page->dma = 0;
       
   839 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
       
   840 			ps_page->page = NULL;
       
   841 			skb->len += length;
       
   842 			skb->data_len += length;
       
   843 			skb->truesize += length;
       
   844 		}
       
   845 
       
   846 		/* strip the ethernet crc, problem is we're using pages now so
       
   847 		 * this whole operation can get a little cpu intensive
       
   848 		 */
       
   849 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
       
   850 			pskb_trim(skb, skb->len - 4);
       
   851 
       
   852 copydone:
       
   853 		total_rx_bytes += skb->len;
       
   854 		total_rx_packets++;
       
   855 
       
   856 		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
       
   857 			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
       
   858 
       
   859 		if (rx_desc->wb.upper.header_status &
       
   860 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
       
   861 			adapter->rx_hdr_split++;
       
   862 
       
   863 		e1000_receive_skb(adapter, netdev, skb,
       
   864 				  staterr, rx_desc->wb.middle.vlan);
       
   865 
       
   866 next_desc:
       
   867 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
       
   868 		buffer_info->skb = NULL;
       
   869 
       
   870 		/* return some buffers to hardware, one at a time is too slow */
       
   871 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
       
   872 			adapter->alloc_rx_buf(adapter, cleaned_count);
       
   873 			cleaned_count = 0;
       
   874 		}
       
   875 
       
   876 		/* use prefetched values */
       
   877 		rx_desc = next_rxd;
       
   878 		buffer_info = next_buffer;
       
   879 
       
   880 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
   881 	}
       
   882 	rx_ring->next_to_clean = i;
       
   883 
       
   884 	cleaned_count = e1000_desc_unused(rx_ring);
       
   885 	if (cleaned_count)
       
   886 		adapter->alloc_rx_buf(adapter, cleaned_count);
       
   887 
       
   888 	adapter->total_rx_bytes += total_rx_bytes;
       
   889 	adapter->total_rx_packets += total_rx_packets;
       
   890 	adapter->net_stats.rx_bytes += total_rx_bytes;
       
   891 	adapter->net_stats.rx_packets += total_rx_packets;
       
   892 	return cleaned;
       
   893 }
       
   894 
       
   895 /**
       
   896  * e1000_consume_page - helper function
       
   897  **/
       
   898 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
       
   899                                u16 length)
       
   900 {
       
   901 	bi->page = NULL;
       
   902 	skb->len += length;
       
   903 	skb->data_len += length;
       
   904 	skb->truesize += length;
       
   905 }
       
   906 
       
   907 /**
       
   908  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
       
   909  * @adapter: board private structure
       
   910  *
       
   911  * the return value indicates whether actual cleaning was done, there
       
   912  * is no guarantee that everything was cleaned
       
   913  **/
       
   914 
       
   915 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
       
   916                                      int *work_done, int work_to_do)
       
   917 {
       
   918 	struct net_device *netdev = adapter->netdev;
       
   919 	struct pci_dev *pdev = adapter->pdev;
       
   920 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   921 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
   922 	struct e1000_buffer *buffer_info, *next_buffer;
       
   923 	u32 length;
       
   924 	unsigned int i;
       
   925 	int cleaned_count = 0;
       
   926 	bool cleaned = false;
       
   927 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
   928 
       
   929 	i = rx_ring->next_to_clean;
       
   930 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
   931 	buffer_info = &rx_ring->buffer_info[i];
       
   932 
       
   933 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
   934 		struct sk_buff *skb;
       
   935 		u8 status;
       
   936 
       
   937 		if (*work_done >= work_to_do)
       
   938 			break;
       
   939 		(*work_done)++;
       
   940 
       
   941 		status = rx_desc->status;
       
   942 		skb = buffer_info->skb;
       
   943 		buffer_info->skb = NULL;
       
   944 
       
   945 		++i;
       
   946 		if (i == rx_ring->count)
       
   947 			i = 0;
       
   948 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
   949 		prefetch(next_rxd);
       
   950 
       
   951 		next_buffer = &rx_ring->buffer_info[i];
       
   952 
       
   953 		cleaned = true;
       
   954 		cleaned_count++;
       
   955 		pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
       
   956 		               PCI_DMA_FROMDEVICE);
       
   957 		buffer_info->dma = 0;
       
   958 
       
   959 		length = le16_to_cpu(rx_desc->length);
       
   960 
       
   961 		/* errors is only valid for DD + EOP descriptors */
       
   962 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
       
   963 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
       
   964 				/* recycle both page and skb */
       
   965 				buffer_info->skb = skb;
       
   966 				/* an error means any chain goes out the window
       
   967 				 * too */
       
   968 				if (rx_ring->rx_skb_top)
       
   969 					dev_kfree_skb(rx_ring->rx_skb_top);
       
   970 				rx_ring->rx_skb_top = NULL;
       
   971 				goto next_desc;
       
   972 		}
       
   973 
       
   974 #define rxtop rx_ring->rx_skb_top
       
   975 		if (!(status & E1000_RXD_STAT_EOP)) {
       
   976 			/* this descriptor is only the beginning (or middle) */
       
   977 			if (!rxtop) {
       
   978 				/* this is the beginning of a chain */
       
   979 				rxtop = skb;
       
   980 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
       
   981 				                   0, length);
       
   982 			} else {
       
   983 				/* this is the middle of a chain */
       
   984 				skb_fill_page_desc(rxtop,
       
   985 				    skb_shinfo(rxtop)->nr_frags,
       
   986 				    buffer_info->page, 0, length);
       
   987 				/* re-use the skb, only consumed the page */
       
   988 				buffer_info->skb = skb;
       
   989 			}
       
   990 			e1000_consume_page(buffer_info, rxtop, length);
       
   991 			goto next_desc;
       
   992 		} else {
       
   993 			if (rxtop) {
       
   994 				/* end of the chain */
       
   995 				skb_fill_page_desc(rxtop,
       
   996 				    skb_shinfo(rxtop)->nr_frags,
       
   997 				    buffer_info->page, 0, length);
       
   998 				/* re-use the current skb, we only consumed the
       
   999 				 * page */
       
  1000 				buffer_info->skb = skb;
       
  1001 				skb = rxtop;
       
  1002 				rxtop = NULL;
       
  1003 				e1000_consume_page(buffer_info, skb, length);
       
  1004 			} else {
       
  1005 				/* no chain, got EOP, this buf is the packet
       
  1006 				 * copybreak to save the put_page/alloc_page */
       
  1007 				if (length <= copybreak &&
       
  1008 				    skb_tailroom(skb) >= length) {
       
  1009 					u8 *vaddr;
       
  1010 					vaddr = kmap_atomic(buffer_info->page,
       
  1011 					                   KM_SKB_DATA_SOFTIRQ);
       
  1012 					memcpy(skb_tail_pointer(skb), vaddr,
       
  1013 					       length);
       
  1014 					kunmap_atomic(vaddr,
       
  1015 					              KM_SKB_DATA_SOFTIRQ);
       
  1016 					/* re-use the page, so don't erase
       
  1017 					 * buffer_info->page */
       
  1018 					skb_put(skb, length);
       
  1019 				} else {
       
  1020 					skb_fill_page_desc(skb, 0,
       
  1021 					                   buffer_info->page, 0,
       
  1022 				                           length);
       
  1023 					e1000_consume_page(buffer_info, skb,
       
  1024 					                   length);
       
  1025 				}
       
  1026 			}
       
  1027 		}
       
  1028 
       
  1029 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
       
  1030 		e1000_rx_checksum(adapter,
       
  1031 		                  (u32)(status) |
       
  1032 		                  ((u32)(rx_desc->errors) << 24),
       
  1033 		                  le16_to_cpu(rx_desc->csum), skb);
       
  1034 
       
  1035 		/* probably a little skewed due to removing CRC */
       
  1036 		total_rx_bytes += skb->len;
       
  1037 		total_rx_packets++;
       
  1038 
       
  1039 		/* eth type trans needs skb->data to point to something */
       
  1040 		if (!pskb_may_pull(skb, ETH_HLEN)) {
       
  1041 			e_err("pskb_may_pull failed.\n");
       
  1042 			dev_kfree_skb(skb);
       
  1043 			goto next_desc;
       
  1044 		}
       
  1045 
       
  1046 		e1000_receive_skb(adapter, netdev, skb, status,
       
  1047 		                  rx_desc->special);
       
  1048 
       
  1049 next_desc:
       
  1050 		rx_desc->status = 0;
       
  1051 
       
  1052 		/* return some buffers to hardware, one at a time is too slow */
       
  1053 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  1054 			adapter->alloc_rx_buf(adapter, cleaned_count);
       
  1055 			cleaned_count = 0;
       
  1056 		}
       
  1057 
       
  1058 		/* use prefetched values */
       
  1059 		rx_desc = next_rxd;
       
  1060 		buffer_info = next_buffer;
       
  1061 	}
       
  1062 	rx_ring->next_to_clean = i;
       
  1063 
       
  1064 	cleaned_count = e1000_desc_unused(rx_ring);
       
  1065 	if (cleaned_count)
       
  1066 		adapter->alloc_rx_buf(adapter, cleaned_count);
       
  1067 
       
  1068 	adapter->total_rx_bytes += total_rx_bytes;
       
  1069 	adapter->total_rx_packets += total_rx_packets;
       
  1070 	adapter->net_stats.rx_bytes += total_rx_bytes;
       
  1071 	adapter->net_stats.rx_packets += total_rx_packets;
       
  1072 	return cleaned;
       
  1073 }
       
  1074 
       
  1075 /**
       
  1076  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  1077  * @adapter: board private structure
       
  1078  **/
       
  1079 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
       
  1080 {
       
  1081 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1082 	struct e1000_buffer *buffer_info;
       
  1083 	struct e1000_ps_page *ps_page;
       
  1084 	struct pci_dev *pdev = adapter->pdev;
       
  1085 	unsigned int i, j;
       
  1086 
       
  1087 	/* Free all the Rx ring sk_buffs */
       
  1088 	for (i = 0; i < rx_ring->count; i++) {
       
  1089 		buffer_info = &rx_ring->buffer_info[i];
       
  1090 		if (buffer_info->dma) {
       
  1091 			if (adapter->clean_rx == e1000_clean_rx_irq)
       
  1092 				pci_unmap_single(pdev, buffer_info->dma,
       
  1093 						 adapter->rx_buffer_len,
       
  1094 						 PCI_DMA_FROMDEVICE);
       
  1095 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
       
  1096 				pci_unmap_page(pdev, buffer_info->dma,
       
  1097 				               PAGE_SIZE,
       
  1098 				               PCI_DMA_FROMDEVICE);
       
  1099 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
       
  1100 				pci_unmap_single(pdev, buffer_info->dma,
       
  1101 						 adapter->rx_ps_bsize0,
       
  1102 						 PCI_DMA_FROMDEVICE);
       
  1103 			buffer_info->dma = 0;
       
  1104 		}
       
  1105 
       
  1106 		if (buffer_info->page) {
       
  1107 			put_page(buffer_info->page);
       
  1108 			buffer_info->page = NULL;
       
  1109 		}
       
  1110 
       
  1111 		if (buffer_info->skb) {
       
  1112 			dev_kfree_skb(buffer_info->skb);
       
  1113 			buffer_info->skb = NULL;
       
  1114 		}
       
  1115 
       
  1116 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  1117 			ps_page = &buffer_info->ps_pages[j];
       
  1118 			if (!ps_page->page)
       
  1119 				break;
       
  1120 			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
       
  1121 				       PCI_DMA_FROMDEVICE);
       
  1122 			ps_page->dma = 0;
       
  1123 			put_page(ps_page->page);
       
  1124 			ps_page->page = NULL;
       
  1125 		}
       
  1126 	}
       
  1127 
       
  1128 	/* there also may be some cached data from a chained receive */
       
  1129 	if (rx_ring->rx_skb_top) {
       
  1130 		dev_kfree_skb(rx_ring->rx_skb_top);
       
  1131 		rx_ring->rx_skb_top = NULL;
       
  1132 	}
       
  1133 
       
  1134 	/* Zero out the descriptor ring */
       
  1135 	memset(rx_ring->desc, 0, rx_ring->size);
       
  1136 
       
  1137 	rx_ring->next_to_clean = 0;
       
  1138 	rx_ring->next_to_use = 0;
       
  1139 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
  1140 
       
  1141 	writel(0, adapter->hw.hw_addr + rx_ring->head);
       
  1142 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
       
  1143 }
       
  1144 
       
  1145 static void e1000e_downshift_workaround(struct work_struct *work)
       
  1146 {
       
  1147 	struct e1000_adapter *adapter = container_of(work,
       
  1148 					struct e1000_adapter, downshift_task);
       
  1149 
       
  1150 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
       
  1151 }
       
  1152 
       
  1153 /**
       
  1154  * e1000_intr_msi - Interrupt Handler
       
  1155  * @irq: interrupt number
       
  1156  * @data: pointer to a network interface device structure
       
  1157  **/
       
  1158 static irqreturn_t e1000_intr_msi(int irq, void *data)
       
  1159 {
       
  1160 	struct net_device *netdev = data;
       
  1161 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1162 	struct e1000_hw *hw = &adapter->hw;
       
  1163 	u32 icr = er32(ICR);
       
  1164 
       
  1165 	/*
       
  1166 	 * read ICR disables interrupts using IAM
       
  1167 	 */
       
  1168 
       
  1169 	if (icr & E1000_ICR_LSC) {
       
  1170 		hw->mac.get_link_status = 1;
       
  1171 		/*
       
  1172 		 * ICH8 workaround-- Call gig speed drop workaround on cable
       
  1173 		 * disconnect (LSC) before accessing any PHY registers
       
  1174 		 */
       
  1175 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
       
  1176 		    (!(er32(STATUS) & E1000_STATUS_LU)))
       
  1177 			schedule_work(&adapter->downshift_task);
       
  1178 
       
  1179 		/*
       
  1180 		 * 80003ES2LAN workaround-- For packet buffer work-around on
       
  1181 		 * link down event; disable receives here in the ISR and reset
       
  1182 		 * adapter in watchdog
       
  1183 		 */
       
  1184 		if (netif_carrier_ok(netdev) &&
       
  1185 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
       
  1186 			/* disable receives */
       
  1187 			u32 rctl = er32(RCTL);
       
  1188 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1189 			adapter->flags |= FLAG_RX_RESTART_NOW;
       
  1190 		}
       
  1191 		/* guard against interrupt when we're going down */
       
  1192 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1193 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1194 	}
       
  1195 
       
  1196 	if (napi_schedule_prep(&adapter->napi)) {
       
  1197 		adapter->total_tx_bytes = 0;
       
  1198 		adapter->total_tx_packets = 0;
       
  1199 		adapter->total_rx_bytes = 0;
       
  1200 		adapter->total_rx_packets = 0;
       
  1201 		__napi_schedule(&adapter->napi);
       
  1202 	}
       
  1203 
       
  1204 	return IRQ_HANDLED;
       
  1205 }
       
  1206 
       
  1207 /**
       
  1208  * e1000_intr - Interrupt Handler
       
  1209  * @irq: interrupt number
       
  1210  * @data: pointer to a network interface device structure
       
  1211  **/
       
  1212 static irqreturn_t e1000_intr(int irq, void *data)
       
  1213 {
       
  1214 	struct net_device *netdev = data;
       
  1215 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1216 	struct e1000_hw *hw = &adapter->hw;
       
  1217 	u32 rctl, icr = er32(ICR);
       
  1218 
       
  1219 	if (!icr)
       
  1220 		return IRQ_NONE;  /* Not our interrupt */
       
  1221 
       
  1222 	/*
       
  1223 	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
       
  1224 	 * not set, then the adapter didn't send an interrupt
       
  1225 	 */
       
  1226 	if (!(icr & E1000_ICR_INT_ASSERTED))
       
  1227 		return IRQ_NONE;
       
  1228 
       
  1229 	/*
       
  1230 	 * Interrupt Auto-Mask...upon reading ICR,
       
  1231 	 * interrupts are masked.  No need for the
       
  1232 	 * IMC write
       
  1233 	 */
       
  1234 
       
  1235 	if (icr & E1000_ICR_LSC) {
       
  1236 		hw->mac.get_link_status = 1;
       
  1237 		/*
       
  1238 		 * ICH8 workaround-- Call gig speed drop workaround on cable
       
  1239 		 * disconnect (LSC) before accessing any PHY registers
       
  1240 		 */
       
  1241 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
       
  1242 		    (!(er32(STATUS) & E1000_STATUS_LU)))
       
  1243 			schedule_work(&adapter->downshift_task);
       
  1244 
       
  1245 		/*
       
  1246 		 * 80003ES2LAN workaround--
       
  1247 		 * For packet buffer work-around on link down event;
       
  1248 		 * disable receives here in the ISR and
       
  1249 		 * reset adapter in watchdog
       
  1250 		 */
       
  1251 		if (netif_carrier_ok(netdev) &&
       
  1252 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
       
  1253 			/* disable receives */
       
  1254 			rctl = er32(RCTL);
       
  1255 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1256 			adapter->flags |= FLAG_RX_RESTART_NOW;
       
  1257 		}
       
  1258 		/* guard against interrupt when we're going down */
       
  1259 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1260 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1261 	}
       
  1262 
       
  1263 	if (napi_schedule_prep(&adapter->napi)) {
       
  1264 		adapter->total_tx_bytes = 0;
       
  1265 		adapter->total_tx_packets = 0;
       
  1266 		adapter->total_rx_bytes = 0;
       
  1267 		adapter->total_rx_packets = 0;
       
  1268 		__napi_schedule(&adapter->napi);
       
  1269 	}
       
  1270 
       
  1271 	return IRQ_HANDLED;
       
  1272 }
       
  1273 
       
  1274 static irqreturn_t e1000_msix_other(int irq, void *data)
       
  1275 {
       
  1276 	struct net_device *netdev = data;
       
  1277 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1278 	struct e1000_hw *hw = &adapter->hw;
       
  1279 	u32 icr = er32(ICR);
       
  1280 
       
  1281 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
       
  1282 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1283 			ew32(IMS, E1000_IMS_OTHER);
       
  1284 		return IRQ_NONE;
       
  1285 	}
       
  1286 
       
  1287 	if (icr & adapter->eiac_mask)
       
  1288 		ew32(ICS, (icr & adapter->eiac_mask));
       
  1289 
       
  1290 	if (icr & E1000_ICR_OTHER) {
       
  1291 		if (!(icr & E1000_ICR_LSC))
       
  1292 			goto no_link_interrupt;
       
  1293 		hw->mac.get_link_status = 1;
       
  1294 		/* guard against interrupt when we're going down */
       
  1295 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1296 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1297 	}
       
  1298 
       
  1299 no_link_interrupt:
       
  1300 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1301 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
       
  1302 
       
  1303 	return IRQ_HANDLED;
       
  1304 }
       
  1305 
       
  1306 
       
  1307 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
       
  1308 {
       
  1309 	struct net_device *netdev = data;
       
  1310 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1311 	struct e1000_hw *hw = &adapter->hw;
       
  1312 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1313 
       
  1314 
       
  1315 	adapter->total_tx_bytes = 0;
       
  1316 	adapter->total_tx_packets = 0;
       
  1317 
       
  1318 	if (!e1000_clean_tx_irq(adapter))
       
  1319 		/* Ring was not completely cleaned, so fire another interrupt */
       
  1320 		ew32(ICS, tx_ring->ims_val);
       
  1321 
       
  1322 	return IRQ_HANDLED;
       
  1323 }
       
  1324 
       
  1325 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
       
  1326 {
       
  1327 	struct net_device *netdev = data;
       
  1328 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1329 
       
  1330 	/* Write the ITR value calculated at the end of the
       
  1331 	 * previous interrupt.
       
  1332 	 */
       
  1333 	if (adapter->rx_ring->set_itr) {
       
  1334 		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
       
  1335 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
       
  1336 		adapter->rx_ring->set_itr = 0;
       
  1337 	}
       
  1338 
       
  1339 	if (napi_schedule_prep(&adapter->napi)) {
       
  1340 		adapter->total_rx_bytes = 0;
       
  1341 		adapter->total_rx_packets = 0;
       
  1342 		__napi_schedule(&adapter->napi);
       
  1343 	}
       
  1344 	return IRQ_HANDLED;
       
  1345 }
       
  1346 
       
  1347 /**
       
  1348  * e1000_configure_msix - Configure MSI-X hardware
       
  1349  *
       
  1350  * e1000_configure_msix sets up the hardware to properly
       
  1351  * generate MSI-X interrupts.
       
  1352  **/
       
  1353 static void e1000_configure_msix(struct e1000_adapter *adapter)
       
  1354 {
       
  1355 	struct e1000_hw *hw = &adapter->hw;
       
  1356 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1357 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1358 	int vector = 0;
       
  1359 	u32 ctrl_ext, ivar = 0;
       
  1360 
       
  1361 	adapter->eiac_mask = 0;
       
  1362 
       
  1363 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
       
  1364 	if (hw->mac.type == e1000_82574) {
       
  1365 		u32 rfctl = er32(RFCTL);
       
  1366 		rfctl |= E1000_RFCTL_ACK_DIS;
       
  1367 		ew32(RFCTL, rfctl);
       
  1368 	}
       
  1369 
       
  1370 #define E1000_IVAR_INT_ALLOC_VALID	0x8
       
  1371 	/* Configure Rx vector */
       
  1372 	rx_ring->ims_val = E1000_IMS_RXQ0;
       
  1373 	adapter->eiac_mask |= rx_ring->ims_val;
       
  1374 	if (rx_ring->itr_val)
       
  1375 		writel(1000000000 / (rx_ring->itr_val * 256),
       
  1376 		       hw->hw_addr + rx_ring->itr_register);
       
  1377 	else
       
  1378 		writel(1, hw->hw_addr + rx_ring->itr_register);
       
  1379 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
       
  1380 
       
  1381 	/* Configure Tx vector */
       
  1382 	tx_ring->ims_val = E1000_IMS_TXQ0;
       
  1383 	vector++;
       
  1384 	if (tx_ring->itr_val)
       
  1385 		writel(1000000000 / (tx_ring->itr_val * 256),
       
  1386 		       hw->hw_addr + tx_ring->itr_register);
       
  1387 	else
       
  1388 		writel(1, hw->hw_addr + tx_ring->itr_register);
       
  1389 	adapter->eiac_mask |= tx_ring->ims_val;
       
  1390 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
       
  1391 
       
  1392 	/* set vector for Other Causes, e.g. link changes */
       
  1393 	vector++;
       
  1394 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
       
  1395 	if (rx_ring->itr_val)
       
  1396 		writel(1000000000 / (rx_ring->itr_val * 256),
       
  1397 		       hw->hw_addr + E1000_EITR_82574(vector));
       
  1398 	else
       
  1399 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
       
  1400 
       
  1401 	/* Cause Tx interrupts on every write back */
       
  1402 	ivar |= (1 << 31);
       
  1403 
       
  1404 	ew32(IVAR, ivar);
       
  1405 
       
  1406 	/* enable MSI-X PBA support */
       
  1407 	ctrl_ext = er32(CTRL_EXT);
       
  1408 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
       
  1409 
       
  1410 	/* Auto-Mask Other interrupts upon ICR read */
       
  1411 #define E1000_EIAC_MASK_82574   0x01F00000
       
  1412 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
       
  1413 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
       
  1414 	ew32(CTRL_EXT, ctrl_ext);
       
  1415 	e1e_flush();
       
  1416 }
       
  1417 
       
  1418 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
       
  1419 {
       
  1420 	if (adapter->msix_entries) {
       
  1421 		pci_disable_msix(adapter->pdev);
       
  1422 		kfree(adapter->msix_entries);
       
  1423 		adapter->msix_entries = NULL;
       
  1424 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
       
  1425 		pci_disable_msi(adapter->pdev);
       
  1426 		adapter->flags &= ~FLAG_MSI_ENABLED;
       
  1427 	}
       
  1428 
       
  1429 	return;
       
  1430 }
       
  1431 
       
  1432 /**
       
  1433  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
       
  1434  *
       
  1435  * Attempt to configure interrupts using the best available
       
  1436  * capabilities of the hardware and kernel.
       
  1437  **/
       
  1438 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
       
  1439 {
       
  1440 	int err;
       
  1441 	int numvecs, i;
       
  1442 
       
  1443 
       
  1444 	switch (adapter->int_mode) {
       
  1445 	case E1000E_INT_MODE_MSIX:
       
  1446 		if (adapter->flags & FLAG_HAS_MSIX) {
       
  1447 			numvecs = 3; /* RxQ0, TxQ0 and other */
       
  1448 			adapter->msix_entries = kcalloc(numvecs,
       
  1449 						      sizeof(struct msix_entry),
       
  1450 						      GFP_KERNEL);
       
  1451 			if (adapter->msix_entries) {
       
  1452 				for (i = 0; i < numvecs; i++)
       
  1453 					adapter->msix_entries[i].entry = i;
       
  1454 
       
  1455 				err = pci_enable_msix(adapter->pdev,
       
  1456 						      adapter->msix_entries,
       
  1457 						      numvecs);
       
  1458 				if (err == 0)
       
  1459 					return;
       
  1460 			}
       
  1461 			/* MSI-X failed, so fall through and try MSI */
       
  1462 			e_err("Failed to initialize MSI-X interrupts.  "
       
  1463 			      "Falling back to MSI interrupts.\n");
       
  1464 			e1000e_reset_interrupt_capability(adapter);
       
  1465 		}
       
  1466 		adapter->int_mode = E1000E_INT_MODE_MSI;
       
  1467 		/* Fall through */
       
  1468 	case E1000E_INT_MODE_MSI:
       
  1469 		if (!pci_enable_msi(adapter->pdev)) {
       
  1470 			adapter->flags |= FLAG_MSI_ENABLED;
       
  1471 		} else {
       
  1472 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  1473 			e_err("Failed to initialize MSI interrupts.  Falling "
       
  1474 			      "back to legacy interrupts.\n");
       
  1475 		}
       
  1476 		/* Fall through */
       
  1477 	case E1000E_INT_MODE_LEGACY:
       
  1478 		/* Don't do anything; this is the system default */
       
  1479 		break;
       
  1480 	}
       
  1481 
       
  1482 	return;
       
  1483 }
       
  1484 
       
  1485 /**
       
  1486  * e1000_request_msix - Initialize MSI-X interrupts
       
  1487  *
       
  1488  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
       
  1489  * kernel.
       
  1490  **/
       
  1491 static int e1000_request_msix(struct e1000_adapter *adapter)
       
  1492 {
       
  1493 	struct net_device *netdev = adapter->netdev;
       
  1494 	int err = 0, vector = 0;
       
  1495 
       
  1496 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
       
  1497 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
       
  1498 	else
       
  1499 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
       
  1500 	err = request_irq(adapter->msix_entries[vector].vector,
       
  1501 			  &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
       
  1502 			  netdev);
       
  1503 	if (err)
       
  1504 		goto out;
       
  1505 	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
       
  1506 	adapter->rx_ring->itr_val = adapter->itr;
       
  1507 	vector++;
       
  1508 
       
  1509 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
       
  1510 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
       
  1511 	else
       
  1512 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
       
  1513 	err = request_irq(adapter->msix_entries[vector].vector,
       
  1514 			  &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
       
  1515 			  netdev);
       
  1516 	if (err)
       
  1517 		goto out;
       
  1518 	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
       
  1519 	adapter->tx_ring->itr_val = adapter->itr;
       
  1520 	vector++;
       
  1521 
       
  1522 	err = request_irq(adapter->msix_entries[vector].vector,
       
  1523 			  &e1000_msix_other, 0, netdev->name, netdev);
       
  1524 	if (err)
       
  1525 		goto out;
       
  1526 
       
  1527 	e1000_configure_msix(adapter);
       
  1528 	return 0;
       
  1529 out:
       
  1530 	return err;
       
  1531 }
       
  1532 
       
  1533 /**
       
  1534  * e1000_request_irq - initialize interrupts
       
  1535  *
       
  1536  * Attempts to configure interrupts using the best available
       
  1537  * capabilities of the hardware and kernel.
       
  1538  **/
       
  1539 static int e1000_request_irq(struct e1000_adapter *adapter)
       
  1540 {
       
  1541 	struct net_device *netdev = adapter->netdev;
       
  1542 	int err;
       
  1543 
       
  1544 	if (adapter->msix_entries) {
       
  1545 		err = e1000_request_msix(adapter);
       
  1546 		if (!err)
       
  1547 			return err;
       
  1548 		/* fall back to MSI */
       
  1549 		e1000e_reset_interrupt_capability(adapter);
       
  1550 		adapter->int_mode = E1000E_INT_MODE_MSI;
       
  1551 		e1000e_set_interrupt_capability(adapter);
       
  1552 	}
       
  1553 	if (adapter->flags & FLAG_MSI_ENABLED) {
       
  1554 		err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
       
  1555 				  netdev->name, netdev);
       
  1556 		if (!err)
       
  1557 			return err;
       
  1558 
       
  1559 		/* fall back to legacy interrupt */
       
  1560 		e1000e_reset_interrupt_capability(adapter);
       
  1561 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  1562 	}
       
  1563 
       
  1564 	err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
       
  1565 			  netdev->name, netdev);
       
  1566 	if (err)
       
  1567 		e_err("Unable to allocate interrupt, Error: %d\n", err);
       
  1568 
       
  1569 	return err;
       
  1570 }
       
  1571 
       
  1572 static void e1000_free_irq(struct e1000_adapter *adapter)
       
  1573 {
       
  1574 	struct net_device *netdev = adapter->netdev;
       
  1575 
       
  1576 	if (adapter->msix_entries) {
       
  1577 		int vector = 0;
       
  1578 
       
  1579 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  1580 		vector++;
       
  1581 
       
  1582 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  1583 		vector++;
       
  1584 
       
  1585 		/* Other Causes interrupt vector */
       
  1586 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  1587 		return;
       
  1588 	}
       
  1589 
       
  1590 	free_irq(adapter->pdev->irq, netdev);
       
  1591 }
       
  1592 
       
  1593 /**
       
  1594  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
  1595  **/
       
  1596 static void e1000_irq_disable(struct e1000_adapter *adapter)
       
  1597 {
       
  1598 	struct e1000_hw *hw = &adapter->hw;
       
  1599 
       
  1600 	ew32(IMC, ~0);
       
  1601 	if (adapter->msix_entries)
       
  1602 		ew32(EIAC_82574, 0);
       
  1603 	e1e_flush();
       
  1604 	synchronize_irq(adapter->pdev->irq);
       
  1605 }
       
  1606 
       
  1607 /**
       
  1608  * e1000_irq_enable - Enable default interrupt generation settings
       
  1609  **/
       
  1610 static void e1000_irq_enable(struct e1000_adapter *adapter)
       
  1611 {
       
  1612 	struct e1000_hw *hw = &adapter->hw;
       
  1613 
       
  1614 	if (adapter->msix_entries) {
       
  1615 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
       
  1616 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
       
  1617 	} else {
       
  1618 		ew32(IMS, IMS_ENABLE_MASK);
       
  1619 	}
       
  1620 	e1e_flush();
       
  1621 }
       
  1622 
       
  1623 /**
       
  1624  * e1000_get_hw_control - get control of the h/w from f/w
       
  1625  * @adapter: address of board private structure
       
  1626  *
       
  1627  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
       
  1628  * For ASF and Pass Through versions of f/w this means that
       
  1629  * the driver is loaded. For AMT version (only with 82573)
       
  1630  * of the f/w this means that the network i/f is open.
       
  1631  **/
       
  1632 static void e1000_get_hw_control(struct e1000_adapter *adapter)
       
  1633 {
       
  1634 	struct e1000_hw *hw = &adapter->hw;
       
  1635 	u32 ctrl_ext;
       
  1636 	u32 swsm;
       
  1637 
       
  1638 	/* Let firmware know the driver has taken over */
       
  1639 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
       
  1640 		swsm = er32(SWSM);
       
  1641 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
       
  1642 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
       
  1643 		ctrl_ext = er32(CTRL_EXT);
       
  1644 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
       
  1645 	}
       
  1646 }
       
  1647 
       
  1648 /**
       
  1649  * e1000_release_hw_control - release control of the h/w to f/w
       
  1650  * @adapter: address of board private structure
       
  1651  *
       
  1652  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
       
  1653  * For ASF and Pass Through versions of f/w this means that the
       
  1654  * driver is no longer loaded. For AMT version (only with 82573) i
       
  1655  * of the f/w this means that the network i/f is closed.
       
  1656  *
       
  1657  **/
       
  1658 static void e1000_release_hw_control(struct e1000_adapter *adapter)
       
  1659 {
       
  1660 	struct e1000_hw *hw = &adapter->hw;
       
  1661 	u32 ctrl_ext;
       
  1662 	u32 swsm;
       
  1663 
       
  1664 	/* Let firmware taken over control of h/w */
       
  1665 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
       
  1666 		swsm = er32(SWSM);
       
  1667 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
       
  1668 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
       
  1669 		ctrl_ext = er32(CTRL_EXT);
       
  1670 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
       
  1671 	}
       
  1672 }
       
  1673 
       
  1674 /**
       
  1675  * @e1000_alloc_ring - allocate memory for a ring structure
       
  1676  **/
       
  1677 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
       
  1678 				struct e1000_ring *ring)
       
  1679 {
       
  1680 	struct pci_dev *pdev = adapter->pdev;
       
  1681 
       
  1682 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
       
  1683 					GFP_KERNEL);
       
  1684 	if (!ring->desc)
       
  1685 		return -ENOMEM;
       
  1686 
       
  1687 	return 0;
       
  1688 }
       
  1689 
       
  1690 /**
       
  1691  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
       
  1692  * @adapter: board private structure
       
  1693  *
       
  1694  * Return 0 on success, negative on failure
       
  1695  **/
       
  1696 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
       
  1697 {
       
  1698 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1699 	int err = -ENOMEM, size;
       
  1700 
       
  1701 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  1702 	tx_ring->buffer_info = vmalloc(size);
       
  1703 	if (!tx_ring->buffer_info)
       
  1704 		goto err;
       
  1705 	memset(tx_ring->buffer_info, 0, size);
       
  1706 
       
  1707 	/* round up to nearest 4K */
       
  1708 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  1709 	tx_ring->size = ALIGN(tx_ring->size, 4096);
       
  1710 
       
  1711 	err = e1000_alloc_ring_dma(adapter, tx_ring);
       
  1712 	if (err)
       
  1713 		goto err;
       
  1714 
       
  1715 	tx_ring->next_to_use = 0;
       
  1716 	tx_ring->next_to_clean = 0;
       
  1717 
       
  1718 	return 0;
       
  1719 err:
       
  1720 	vfree(tx_ring->buffer_info);
       
  1721 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
       
  1722 	return err;
       
  1723 }
       
  1724 
       
  1725 /**
       
  1726  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
       
  1727  * @adapter: board private structure
       
  1728  *
       
  1729  * Returns 0 on success, negative on failure
       
  1730  **/
       
  1731 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
       
  1732 {
       
  1733 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1734 	struct e1000_buffer *buffer_info;
       
  1735 	int i, size, desc_len, err = -ENOMEM;
       
  1736 
       
  1737 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  1738 	rx_ring->buffer_info = vmalloc(size);
       
  1739 	if (!rx_ring->buffer_info)
       
  1740 		goto err;
       
  1741 	memset(rx_ring->buffer_info, 0, size);
       
  1742 
       
  1743 	for (i = 0; i < rx_ring->count; i++) {
       
  1744 		buffer_info = &rx_ring->buffer_info[i];
       
  1745 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
       
  1746 						sizeof(struct e1000_ps_page),
       
  1747 						GFP_KERNEL);
       
  1748 		if (!buffer_info->ps_pages)
       
  1749 			goto err_pages;
       
  1750 	}
       
  1751 
       
  1752 	desc_len = sizeof(union e1000_rx_desc_packet_split);
       
  1753 
       
  1754 	/* Round up to nearest 4K */
       
  1755 	rx_ring->size = rx_ring->count * desc_len;
       
  1756 	rx_ring->size = ALIGN(rx_ring->size, 4096);
       
  1757 
       
  1758 	err = e1000_alloc_ring_dma(adapter, rx_ring);
       
  1759 	if (err)
       
  1760 		goto err_pages;
       
  1761 
       
  1762 	rx_ring->next_to_clean = 0;
       
  1763 	rx_ring->next_to_use = 0;
       
  1764 	rx_ring->rx_skb_top = NULL;
       
  1765 
       
  1766 	return 0;
       
  1767 
       
  1768 err_pages:
       
  1769 	for (i = 0; i < rx_ring->count; i++) {
       
  1770 		buffer_info = &rx_ring->buffer_info[i];
       
  1771 		kfree(buffer_info->ps_pages);
       
  1772 	}
       
  1773 err:
       
  1774 	vfree(rx_ring->buffer_info);
       
  1775 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
       
  1776 	return err;
       
  1777 }
       
  1778 
       
  1779 /**
       
  1780  * e1000_clean_tx_ring - Free Tx Buffers
       
  1781  * @adapter: board private structure
       
  1782  **/
       
  1783 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
       
  1784 {
       
  1785 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1786 	struct e1000_buffer *buffer_info;
       
  1787 	unsigned long size;
       
  1788 	unsigned int i;
       
  1789 
       
  1790 	for (i = 0; i < tx_ring->count; i++) {
       
  1791 		buffer_info = &tx_ring->buffer_info[i];
       
  1792 		e1000_put_txbuf(adapter, buffer_info);
       
  1793 	}
       
  1794 
       
  1795 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  1796 	memset(tx_ring->buffer_info, 0, size);
       
  1797 
       
  1798 	memset(tx_ring->desc, 0, tx_ring->size);
       
  1799 
       
  1800 	tx_ring->next_to_use = 0;
       
  1801 	tx_ring->next_to_clean = 0;
       
  1802 
       
  1803 	writel(0, adapter->hw.hw_addr + tx_ring->head);
       
  1804 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
       
  1805 }
       
  1806 
       
  1807 /**
       
  1808  * e1000e_free_tx_resources - Free Tx Resources per Queue
       
  1809  * @adapter: board private structure
       
  1810  *
       
  1811  * Free all transmit software resources
       
  1812  **/
       
  1813 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
       
  1814 {
       
  1815 	struct pci_dev *pdev = adapter->pdev;
       
  1816 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1817 
       
  1818 	e1000_clean_tx_ring(adapter);
       
  1819 
       
  1820 	vfree(tx_ring->buffer_info);
       
  1821 	tx_ring->buffer_info = NULL;
       
  1822 
       
  1823 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
       
  1824 			  tx_ring->dma);
       
  1825 	tx_ring->desc = NULL;
       
  1826 }
       
  1827 
       
  1828 /**
       
  1829  * e1000e_free_rx_resources - Free Rx Resources
       
  1830  * @adapter: board private structure
       
  1831  *
       
  1832  * Free all receive software resources
       
  1833  **/
       
  1834 
       
  1835 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
       
  1836 {
       
  1837 	struct pci_dev *pdev = adapter->pdev;
       
  1838 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1839 	int i;
       
  1840 
       
  1841 	e1000_clean_rx_ring(adapter);
       
  1842 
       
  1843 	for (i = 0; i < rx_ring->count; i++) {
       
  1844 		kfree(rx_ring->buffer_info[i].ps_pages);
       
  1845 	}
       
  1846 
       
  1847 	vfree(rx_ring->buffer_info);
       
  1848 	rx_ring->buffer_info = NULL;
       
  1849 
       
  1850 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
       
  1851 			  rx_ring->dma);
       
  1852 	rx_ring->desc = NULL;
       
  1853 }
       
  1854 
       
  1855 /**
       
  1856  * e1000_update_itr - update the dynamic ITR value based on statistics
       
  1857  * @adapter: pointer to adapter
       
  1858  * @itr_setting: current adapter->itr
       
  1859  * @packets: the number of packets during this measurement interval
       
  1860  * @bytes: the number of bytes during this measurement interval
       
  1861  *
       
  1862  *      Stores a new ITR value based on packets and byte
       
  1863  *      counts during the last interrupt.  The advantage of per interrupt
       
  1864  *      computation is faster updates and more accurate ITR for the current
       
  1865  *      traffic pattern.  Constants in this function were computed
       
  1866  *      based on theoretical maximum wire speed and thresholds were set based
       
  1867  *      on testing data as well as attempting to minimize response time
       
  1868  *      while increasing bulk throughput.  This functionality is controlled
       
  1869  *      by the InterruptThrottleRate module parameter.
       
  1870  **/
       
  1871 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
       
  1872 				     u16 itr_setting, int packets,
       
  1873 				     int bytes)
       
  1874 {
       
  1875 	unsigned int retval = itr_setting;
       
  1876 
       
  1877 	if (packets == 0)
       
  1878 		goto update_itr_done;
       
  1879 
       
  1880 	switch (itr_setting) {
       
  1881 	case lowest_latency:
       
  1882 		/* handle TSO and jumbo frames */
       
  1883 		if (bytes/packets > 8000)
       
  1884 			retval = bulk_latency;
       
  1885 		else if ((packets < 5) && (bytes > 512)) {
       
  1886 			retval = low_latency;
       
  1887 		}
       
  1888 		break;
       
  1889 	case low_latency:  /* 50 usec aka 20000 ints/s */
       
  1890 		if (bytes > 10000) {
       
  1891 			/* this if handles the TSO accounting */
       
  1892 			if (bytes/packets > 8000) {
       
  1893 				retval = bulk_latency;
       
  1894 			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
       
  1895 				retval = bulk_latency;
       
  1896 			} else if ((packets > 35)) {
       
  1897 				retval = lowest_latency;
       
  1898 			}
       
  1899 		} else if (bytes/packets > 2000) {
       
  1900 			retval = bulk_latency;
       
  1901 		} else if (packets <= 2 && bytes < 512) {
       
  1902 			retval = lowest_latency;
       
  1903 		}
       
  1904 		break;
       
  1905 	case bulk_latency: /* 250 usec aka 4000 ints/s */
       
  1906 		if (bytes > 25000) {
       
  1907 			if (packets > 35) {
       
  1908 				retval = low_latency;
       
  1909 			}
       
  1910 		} else if (bytes < 6000) {
       
  1911 			retval = low_latency;
       
  1912 		}
       
  1913 		break;
       
  1914 	}
       
  1915 
       
  1916 update_itr_done:
       
  1917 	return retval;
       
  1918 }
       
  1919 
       
  1920 static void e1000_set_itr(struct e1000_adapter *adapter)
       
  1921 {
       
  1922 	struct e1000_hw *hw = &adapter->hw;
       
  1923 	u16 current_itr;
       
  1924 	u32 new_itr = adapter->itr;
       
  1925 
       
  1926 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
       
  1927 	if (adapter->link_speed != SPEED_1000) {
       
  1928 		current_itr = 0;
       
  1929 		new_itr = 4000;
       
  1930 		goto set_itr_now;
       
  1931 	}
       
  1932 
       
  1933 	adapter->tx_itr = e1000_update_itr(adapter,
       
  1934 				    adapter->tx_itr,
       
  1935 				    adapter->total_tx_packets,
       
  1936 				    adapter->total_tx_bytes);
       
  1937 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  1938 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
       
  1939 		adapter->tx_itr = low_latency;
       
  1940 
       
  1941 	adapter->rx_itr = e1000_update_itr(adapter,
       
  1942 				    adapter->rx_itr,
       
  1943 				    adapter->total_rx_packets,
       
  1944 				    adapter->total_rx_bytes);
       
  1945 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  1946 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
       
  1947 		adapter->rx_itr = low_latency;
       
  1948 
       
  1949 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
       
  1950 
       
  1951 	switch (current_itr) {
       
  1952 	/* counts and packets in update_itr are dependent on these numbers */
       
  1953 	case lowest_latency:
       
  1954 		new_itr = 70000;
       
  1955 		break;
       
  1956 	case low_latency:
       
  1957 		new_itr = 20000; /* aka hwitr = ~200 */
       
  1958 		break;
       
  1959 	case bulk_latency:
       
  1960 		new_itr = 4000;
       
  1961 		break;
       
  1962 	default:
       
  1963 		break;
       
  1964 	}
       
  1965 
       
  1966 set_itr_now:
       
  1967 	if (new_itr != adapter->itr) {
       
  1968 		/*
       
  1969 		 * this attempts to bias the interrupt rate towards Bulk
       
  1970 		 * by adding intermediate steps when interrupt rate is
       
  1971 		 * increasing
       
  1972 		 */
       
  1973 		new_itr = new_itr > adapter->itr ?
       
  1974 			     min(adapter->itr + (new_itr >> 2), new_itr) :
       
  1975 			     new_itr;
       
  1976 		adapter->itr = new_itr;
       
  1977 		adapter->rx_ring->itr_val = new_itr;
       
  1978 		if (adapter->msix_entries)
       
  1979 			adapter->rx_ring->set_itr = 1;
       
  1980 		else
       
  1981 			ew32(ITR, 1000000000 / (new_itr * 256));
       
  1982 	}
       
  1983 }
       
  1984 
       
  1985 /**
       
  1986  * e1000_alloc_queues - Allocate memory for all rings
       
  1987  * @adapter: board private structure to initialize
       
  1988  **/
       
  1989 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
       
  1990 {
       
  1991 	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
       
  1992 	if (!adapter->tx_ring)
       
  1993 		goto err;
       
  1994 
       
  1995 	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
       
  1996 	if (!adapter->rx_ring)
       
  1997 		goto err;
       
  1998 
       
  1999 	return 0;
       
  2000 err:
       
  2001 	e_err("Unable to allocate memory for queues\n");
       
  2002 	kfree(adapter->rx_ring);
       
  2003 	kfree(adapter->tx_ring);
       
  2004 	return -ENOMEM;
       
  2005 }
       
  2006 
       
  2007 /**
       
  2008  * e1000_clean - NAPI Rx polling callback
       
  2009  * @napi: struct associated with this polling callback
       
  2010  * @budget: amount of packets driver is allowed to process this poll
       
  2011  **/
       
  2012 static int e1000_clean(struct napi_struct *napi, int budget)
       
  2013 {
       
  2014 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
       
  2015 	struct e1000_hw *hw = &adapter->hw;
       
  2016 	struct net_device *poll_dev = adapter->netdev;
       
  2017 	int tx_cleaned = 1, work_done = 0;
       
  2018 
       
  2019 	adapter = netdev_priv(poll_dev);
       
  2020 
       
  2021 	if (adapter->msix_entries &&
       
  2022 	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
       
  2023 		goto clean_rx;
       
  2024 
       
  2025 	tx_cleaned = e1000_clean_tx_irq(adapter);
       
  2026 
       
  2027 clean_rx:
       
  2028 	adapter->clean_rx(adapter, &work_done, budget);
       
  2029 
       
  2030 	if (!tx_cleaned)
       
  2031 		work_done = budget;
       
  2032 
       
  2033 	/* If budget not fully consumed, exit the polling mode */
       
  2034 	if (work_done < budget) {
       
  2035 		if (adapter->itr_setting & 3)
       
  2036 			e1000_set_itr(adapter);
       
  2037 		napi_complete(napi);
       
  2038 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
       
  2039 			if (adapter->msix_entries)
       
  2040 				ew32(IMS, adapter->rx_ring->ims_val);
       
  2041 			else
       
  2042 				e1000_irq_enable(adapter);
       
  2043 		}
       
  2044 	}
       
  2045 
       
  2046 	return work_done;
       
  2047 }
       
  2048 
       
  2049 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
       
  2050 {
       
  2051 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2052 	struct e1000_hw *hw = &adapter->hw;
       
  2053 	u32 vfta, index;
       
  2054 
       
  2055 	/* don't update vlan cookie if already programmed */
       
  2056 	if ((adapter->hw.mng_cookie.status &
       
  2057 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
       
  2058 	    (vid == adapter->mng_vlan_id))
       
  2059 		return;
       
  2060 	/* add VID to filter table */
       
  2061 	index = (vid >> 5) & 0x7F;
       
  2062 	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
       
  2063 	vfta |= (1 << (vid & 0x1F));
       
  2064 	e1000e_write_vfta(hw, index, vfta);
       
  2065 }
       
  2066 
       
  2067 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
       
  2068 {
       
  2069 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2070 	struct e1000_hw *hw = &adapter->hw;
       
  2071 	u32 vfta, index;
       
  2072 
       
  2073 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2074 		e1000_irq_disable(adapter);
       
  2075 	vlan_group_set_device(adapter->vlgrp, vid, NULL);
       
  2076 
       
  2077 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2078 		e1000_irq_enable(adapter);
       
  2079 
       
  2080 	if ((adapter->hw.mng_cookie.status &
       
  2081 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
       
  2082 	    (vid == adapter->mng_vlan_id)) {
       
  2083 		/* release control to f/w */
       
  2084 		e1000_release_hw_control(adapter);
       
  2085 		return;
       
  2086 	}
       
  2087 
       
  2088 	/* remove VID from filter table */
       
  2089 	index = (vid >> 5) & 0x7F;
       
  2090 	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
       
  2091 	vfta &= ~(1 << (vid & 0x1F));
       
  2092 	e1000e_write_vfta(hw, index, vfta);
       
  2093 }
       
  2094 
       
  2095 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
  2096 {
       
  2097 	struct net_device *netdev = adapter->netdev;
       
  2098 	u16 vid = adapter->hw.mng_cookie.vlan_id;
       
  2099 	u16 old_vid = adapter->mng_vlan_id;
       
  2100 
       
  2101 	if (!adapter->vlgrp)
       
  2102 		return;
       
  2103 
       
  2104 	if (!vlan_group_get_device(adapter->vlgrp, vid)) {
       
  2105 		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  2106 		if (adapter->hw.mng_cookie.status &
       
  2107 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
       
  2108 			e1000_vlan_rx_add_vid(netdev, vid);
       
  2109 			adapter->mng_vlan_id = vid;
       
  2110 		}
       
  2111 
       
  2112 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
       
  2113 				(vid != old_vid) &&
       
  2114 		    !vlan_group_get_device(adapter->vlgrp, old_vid))
       
  2115 			e1000_vlan_rx_kill_vid(netdev, old_vid);
       
  2116 	} else {
       
  2117 		adapter->mng_vlan_id = vid;
       
  2118 	}
       
  2119 }
       
  2120 
       
  2121 
       
  2122 static void e1000_vlan_rx_register(struct net_device *netdev,
       
  2123 				   struct vlan_group *grp)
       
  2124 {
       
  2125 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2126 	struct e1000_hw *hw = &adapter->hw;
       
  2127 	u32 ctrl, rctl;
       
  2128 
       
  2129 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2130 		e1000_irq_disable(adapter);
       
  2131 	adapter->vlgrp = grp;
       
  2132 
       
  2133 	if (grp) {
       
  2134 		/* enable VLAN tag insert/strip */
       
  2135 		ctrl = er32(CTRL);
       
  2136 		ctrl |= E1000_CTRL_VME;
       
  2137 		ew32(CTRL, ctrl);
       
  2138 
       
  2139 		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2140 			/* enable VLAN receive filtering */
       
  2141 			rctl = er32(RCTL);
       
  2142 			rctl &= ~E1000_RCTL_CFIEN;
       
  2143 			ew32(RCTL, rctl);
       
  2144 			e1000_update_mng_vlan(adapter);
       
  2145 		}
       
  2146 	} else {
       
  2147 		/* disable VLAN tag insert/strip */
       
  2148 		ctrl = er32(CTRL);
       
  2149 		ctrl &= ~E1000_CTRL_VME;
       
  2150 		ew32(CTRL, ctrl);
       
  2151 
       
  2152 		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2153 			if (adapter->mng_vlan_id !=
       
  2154 			    (u16)E1000_MNG_VLAN_NONE) {
       
  2155 				e1000_vlan_rx_kill_vid(netdev,
       
  2156 						       adapter->mng_vlan_id);
       
  2157 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  2158 			}
       
  2159 		}
       
  2160 	}
       
  2161 
       
  2162 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  2163 		e1000_irq_enable(adapter);
       
  2164 }
       
  2165 
       
  2166 static void e1000_restore_vlan(struct e1000_adapter *adapter)
       
  2167 {
       
  2168 	u16 vid;
       
  2169 
       
  2170 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
       
  2171 
       
  2172 	if (!adapter->vlgrp)
       
  2173 		return;
       
  2174 
       
  2175 	for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
       
  2176 		if (!vlan_group_get_device(adapter->vlgrp, vid))
       
  2177 			continue;
       
  2178 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  2179 	}
       
  2180 }
       
  2181 
       
  2182 static void e1000_init_manageability(struct e1000_adapter *adapter)
       
  2183 {
       
  2184 	struct e1000_hw *hw = &adapter->hw;
       
  2185 	u32 manc, manc2h;
       
  2186 
       
  2187 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
       
  2188 		return;
       
  2189 
       
  2190 	manc = er32(MANC);
       
  2191 
       
  2192 	/*
       
  2193 	 * enable receiving management packets to the host. this will probably
       
  2194 	 * generate destination unreachable messages from the host OS, but
       
  2195 	 * the packets will be handled on SMBUS
       
  2196 	 */
       
  2197 	manc |= E1000_MANC_EN_MNG2HOST;
       
  2198 	manc2h = er32(MANC2H);
       
  2199 #define E1000_MNG2HOST_PORT_623 (1 << 5)
       
  2200 #define E1000_MNG2HOST_PORT_664 (1 << 6)
       
  2201 	manc2h |= E1000_MNG2HOST_PORT_623;
       
  2202 	manc2h |= E1000_MNG2HOST_PORT_664;
       
  2203 	ew32(MANC2H, manc2h);
       
  2204 	ew32(MANC, manc);
       
  2205 }
       
  2206 
       
  2207 /**
       
  2208  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  2209  * @adapter: board private structure
       
  2210  *
       
  2211  * Configure the Tx unit of the MAC after a reset.
       
  2212  **/
       
  2213 static void e1000_configure_tx(struct e1000_adapter *adapter)
       
  2214 {
       
  2215 	struct e1000_hw *hw = &adapter->hw;
       
  2216 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  2217 	u64 tdba;
       
  2218 	u32 tdlen, tctl, tipg, tarc;
       
  2219 	u32 ipgr1, ipgr2;
       
  2220 
       
  2221 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  2222 	tdba = tx_ring->dma;
       
  2223 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  2224 	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
       
  2225 	ew32(TDBAH, (tdba >> 32));
       
  2226 	ew32(TDLEN, tdlen);
       
  2227 	ew32(TDH, 0);
       
  2228 	ew32(TDT, 0);
       
  2229 	tx_ring->head = E1000_TDH;
       
  2230 	tx_ring->tail = E1000_TDT;
       
  2231 
       
  2232 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  2233 	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
       
  2234 	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
       
  2235 	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
       
  2236 
       
  2237 	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
       
  2238 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
       
  2239 
       
  2240 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
       
  2241 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
       
  2242 	ew32(TIPG, tipg);
       
  2243 
       
  2244 	/* Set the Tx Interrupt Delay register */
       
  2245 	ew32(TIDV, adapter->tx_int_delay);
       
  2246 	/* Tx irq moderation */
       
  2247 	ew32(TADV, adapter->tx_abs_int_delay);
       
  2248 
       
  2249 	/* Program the Transmit Control Register */
       
  2250 	tctl = er32(TCTL);
       
  2251 	tctl &= ~E1000_TCTL_CT;
       
  2252 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  2253 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  2254 
       
  2255 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
       
  2256 		tarc = er32(TARC(0));
       
  2257 		/*
       
  2258 		 * set the speed mode bit, we'll clear it if we're not at
       
  2259 		 * gigabit link later
       
  2260 		 */
       
  2261 #define SPEED_MODE_BIT (1 << 21)
       
  2262 		tarc |= SPEED_MODE_BIT;
       
  2263 		ew32(TARC(0), tarc);
       
  2264 	}
       
  2265 
       
  2266 	/* errata: program both queues to unweighted RR */
       
  2267 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
       
  2268 		tarc = er32(TARC(0));
       
  2269 		tarc |= 1;
       
  2270 		ew32(TARC(0), tarc);
       
  2271 		tarc = er32(TARC(1));
       
  2272 		tarc |= 1;
       
  2273 		ew32(TARC(1), tarc);
       
  2274 	}
       
  2275 
       
  2276 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  2277 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
       
  2278 
       
  2279 	/* only set IDE if we are delaying interrupts using the timers */
       
  2280 	if (adapter->tx_int_delay)
       
  2281 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
       
  2282 
       
  2283 	/* enable Report Status bit */
       
  2284 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  2285 
       
  2286 	ew32(TCTL, tctl);
       
  2287 
       
  2288 	e1000e_config_collision_dist(hw);
       
  2289 
       
  2290 	adapter->tx_queue_len = adapter->netdev->tx_queue_len;
       
  2291 }
       
  2292 
       
  2293 /**
       
  2294  * e1000_setup_rctl - configure the receive control registers
       
  2295  * @adapter: Board private structure
       
  2296  **/
       
  2297 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
       
  2298 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
       
  2299 static void e1000_setup_rctl(struct e1000_adapter *adapter)
       
  2300 {
       
  2301 	struct e1000_hw *hw = &adapter->hw;
       
  2302 	u32 rctl, rfctl;
       
  2303 	u32 psrctl = 0;
       
  2304 	u32 pages = 0;
       
  2305 
       
  2306 	/* Program MC offset vector base */
       
  2307 	rctl = er32(RCTL);
       
  2308 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  2309 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  2310 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  2311 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  2312 
       
  2313 	/* Do not Store bad packets */
       
  2314 	rctl &= ~E1000_RCTL_SBP;
       
  2315 
       
  2316 	/* Enable Long Packet receive */
       
  2317 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  2318 		rctl &= ~E1000_RCTL_LPE;
       
  2319 	else
       
  2320 		rctl |= E1000_RCTL_LPE;
       
  2321 
       
  2322 	/* Some systems expect that the CRC is included in SMBUS traffic. The
       
  2323 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
       
  2324 	 * host memory when this is enabled
       
  2325 	 */
       
  2326 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
       
  2327 		rctl |= E1000_RCTL_SECRC;
       
  2328 
       
  2329 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
       
  2330 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
       
  2331 		u16 phy_data;
       
  2332 
       
  2333 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
       
  2334 		phy_data &= 0xfff8;
       
  2335 		phy_data |= (1 << 2);
       
  2336 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
       
  2337 
       
  2338 		e1e_rphy(hw, 22, &phy_data);
       
  2339 		phy_data &= 0x0fff;
       
  2340 		phy_data |= (1 << 14);
       
  2341 		e1e_wphy(hw, 0x10, 0x2823);
       
  2342 		e1e_wphy(hw, 0x11, 0x0003);
       
  2343 		e1e_wphy(hw, 22, phy_data);
       
  2344 	}
       
  2345 
       
  2346 	/* Setup buffer sizes */
       
  2347 	rctl &= ~E1000_RCTL_SZ_4096;
       
  2348 	rctl |= E1000_RCTL_BSEX;
       
  2349 	switch (adapter->rx_buffer_len) {
       
  2350 	case 2048:
       
  2351 	default:
       
  2352 		rctl |= E1000_RCTL_SZ_2048;
       
  2353 		rctl &= ~E1000_RCTL_BSEX;
       
  2354 		break;
       
  2355 	case 4096:
       
  2356 		rctl |= E1000_RCTL_SZ_4096;
       
  2357 		break;
       
  2358 	case 8192:
       
  2359 		rctl |= E1000_RCTL_SZ_8192;
       
  2360 		break;
       
  2361 	case 16384:
       
  2362 		rctl |= E1000_RCTL_SZ_16384;
       
  2363 		break;
       
  2364 	}
       
  2365 
       
  2366 	/*
       
  2367 	 * 82571 and greater support packet-split where the protocol
       
  2368 	 * header is placed in skb->data and the packet data is
       
  2369 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
       
  2370 	 * In the case of a non-split, skb->data is linearly filled,
       
  2371 	 * followed by the page buffers.  Therefore, skb->data is
       
  2372 	 * sized to hold the largest protocol header.
       
  2373 	 *
       
  2374 	 * allocations using alloc_page take too long for regular MTU
       
  2375 	 * so only enable packet split for jumbo frames
       
  2376 	 *
       
  2377 	 * Using pages when the page size is greater than 16k wastes
       
  2378 	 * a lot of memory, since we allocate 3 pages at all times
       
  2379 	 * per packet.
       
  2380 	 */
       
  2381 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
       
  2382 	if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
       
  2383 	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
       
  2384 		adapter->rx_ps_pages = pages;
       
  2385 	else
       
  2386 		adapter->rx_ps_pages = 0;
       
  2387 
       
  2388 	if (adapter->rx_ps_pages) {
       
  2389 		/* Configure extra packet-split registers */
       
  2390 		rfctl = er32(RFCTL);
       
  2391 		rfctl |= E1000_RFCTL_EXTEN;
       
  2392 		/*
       
  2393 		 * disable packet split support for IPv6 extension headers,
       
  2394 		 * because some malformed IPv6 headers can hang the Rx
       
  2395 		 */
       
  2396 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
       
  2397 			  E1000_RFCTL_NEW_IPV6_EXT_DIS);
       
  2398 
       
  2399 		ew32(RFCTL, rfctl);
       
  2400 
       
  2401 		/* Enable Packet split descriptors */
       
  2402 		rctl |= E1000_RCTL_DTYP_PS;
       
  2403 
       
  2404 		psrctl |= adapter->rx_ps_bsize0 >>
       
  2405 			E1000_PSRCTL_BSIZE0_SHIFT;
       
  2406 
       
  2407 		switch (adapter->rx_ps_pages) {
       
  2408 		case 3:
       
  2409 			psrctl |= PAGE_SIZE <<
       
  2410 				E1000_PSRCTL_BSIZE3_SHIFT;
       
  2411 		case 2:
       
  2412 			psrctl |= PAGE_SIZE <<
       
  2413 				E1000_PSRCTL_BSIZE2_SHIFT;
       
  2414 		case 1:
       
  2415 			psrctl |= PAGE_SIZE >>
       
  2416 				E1000_PSRCTL_BSIZE1_SHIFT;
       
  2417 			break;
       
  2418 		}
       
  2419 
       
  2420 		ew32(PSRCTL, psrctl);
       
  2421 	}
       
  2422 
       
  2423 	ew32(RCTL, rctl);
       
  2424 	/* just started the receive unit, no need to restart */
       
  2425 	adapter->flags &= ~FLAG_RX_RESTART_NOW;
       
  2426 }
       
  2427 
       
  2428 /**
       
  2429  * e1000_configure_rx - Configure Receive Unit after Reset
       
  2430  * @adapter: board private structure
       
  2431  *
       
  2432  * Configure the Rx unit of the MAC after a reset.
       
  2433  **/
       
  2434 static void e1000_configure_rx(struct e1000_adapter *adapter)
       
  2435 {
       
  2436 	struct e1000_hw *hw = &adapter->hw;
       
  2437 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  2438 	u64 rdba;
       
  2439 	u32 rdlen, rctl, rxcsum, ctrl_ext;
       
  2440 
       
  2441 	if (adapter->rx_ps_pages) {
       
  2442 		/* this is a 32 byte descriptor */
       
  2443 		rdlen = rx_ring->count *
       
  2444 			sizeof(union e1000_rx_desc_packet_split);
       
  2445 		adapter->clean_rx = e1000_clean_rx_irq_ps;
       
  2446 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
       
  2447 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
       
  2448 		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
       
  2449 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
       
  2450 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
       
  2451 	} else {
       
  2452 		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
       
  2453 		adapter->clean_rx = e1000_clean_rx_irq;
       
  2454 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  2455 	}
       
  2456 
       
  2457 	/* disable receives while setting up the descriptors */
       
  2458 	rctl = er32(RCTL);
       
  2459 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  2460 	e1e_flush();
       
  2461 	msleep(10);
       
  2462 
       
  2463 	/* set the Receive Delay Timer Register */
       
  2464 	ew32(RDTR, adapter->rx_int_delay);
       
  2465 
       
  2466 	/* irq moderation */
       
  2467 	ew32(RADV, adapter->rx_abs_int_delay);
       
  2468 	if (adapter->itr_setting != 0)
       
  2469 		ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  2470 
       
  2471 	ctrl_ext = er32(CTRL_EXT);
       
  2472 	/* Reset delay timers after every interrupt */
       
  2473 	ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
       
  2474 	/* Auto-Mask interrupts upon ICR access */
       
  2475 	ctrl_ext |= E1000_CTRL_EXT_IAME;
       
  2476 	ew32(IAM, 0xffffffff);
       
  2477 	ew32(CTRL_EXT, ctrl_ext);
       
  2478 	e1e_flush();
       
  2479 
       
  2480 	/*
       
  2481 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
       
  2482 	 * the Base and Length of the Rx Descriptor Ring
       
  2483 	 */
       
  2484 	rdba = rx_ring->dma;
       
  2485 	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
       
  2486 	ew32(RDBAH, (rdba >> 32));
       
  2487 	ew32(RDLEN, rdlen);
       
  2488 	ew32(RDH, 0);
       
  2489 	ew32(RDT, 0);
       
  2490 	rx_ring->head = E1000_RDH;
       
  2491 	rx_ring->tail = E1000_RDT;
       
  2492 
       
  2493 	/* Enable Receive Checksum Offload for TCP and UDP */
       
  2494 	rxcsum = er32(RXCSUM);
       
  2495 	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
       
  2496 		rxcsum |= E1000_RXCSUM_TUOFL;
       
  2497 
       
  2498 		/*
       
  2499 		 * IPv4 payload checksum for UDP fragments must be
       
  2500 		 * used in conjunction with packet-split.
       
  2501 		 */
       
  2502 		if (adapter->rx_ps_pages)
       
  2503 			rxcsum |= E1000_RXCSUM_IPPCSE;
       
  2504 	} else {
       
  2505 		rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  2506 		/* no need to clear IPPCSE as it defaults to 0 */
       
  2507 	}
       
  2508 	ew32(RXCSUM, rxcsum);
       
  2509 
       
  2510 	/*
       
  2511 	 * Enable early receives on supported devices, only takes effect when
       
  2512 	 * packet size is equal or larger than the specified value (in 8 byte
       
  2513 	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
       
  2514 	 */
       
  2515 	if ((adapter->flags & FLAG_HAS_ERT) &&
       
  2516 	    (adapter->netdev->mtu > ETH_DATA_LEN)) {
       
  2517 		u32 rxdctl = er32(RXDCTL(0));
       
  2518 		ew32(RXDCTL(0), rxdctl | 0x3);
       
  2519 		ew32(ERT, E1000_ERT_2048 | (1 << 13));
       
  2520 		/*
       
  2521 		 * With jumbo frames and early-receive enabled, excessive
       
  2522 		 * C4->C2 latencies result in dropped transactions.
       
  2523 		 */
       
  2524 		pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
       
  2525 					  e1000e_driver_name, 55);
       
  2526 	} else {
       
  2527 		pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
       
  2528 					  e1000e_driver_name,
       
  2529 					  PM_QOS_DEFAULT_VALUE);
       
  2530 	}
       
  2531 
       
  2532 	/* Enable Receives */
       
  2533 	ew32(RCTL, rctl);
       
  2534 }
       
  2535 
       
  2536 /**
       
  2537  *  e1000_update_mc_addr_list - Update Multicast addresses
       
  2538  *  @hw: pointer to the HW structure
       
  2539  *  @mc_addr_list: array of multicast addresses to program
       
  2540  *  @mc_addr_count: number of multicast addresses to program
       
  2541  *  @rar_used_count: the first RAR register free to program
       
  2542  *  @rar_count: total number of supported Receive Address Registers
       
  2543  *
       
  2544  *  Updates the Receive Address Registers and Multicast Table Array.
       
  2545  *  The caller must have a packed mc_addr_list of multicast addresses.
       
  2546  *  The parameter rar_count will usually be hw->mac.rar_entry_count
       
  2547  *  unless there are workarounds that change this.  Currently no func pointer
       
  2548  *  exists and all implementations are handled in the generic version of this
       
  2549  *  function.
       
  2550  **/
       
  2551 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
       
  2552 				      u32 mc_addr_count, u32 rar_used_count,
       
  2553 				      u32 rar_count)
       
  2554 {
       
  2555 	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
       
  2556 				        rar_used_count, rar_count);
       
  2557 }
       
  2558 
       
  2559 /**
       
  2560  * e1000_set_multi - Multicast and Promiscuous mode set
       
  2561  * @netdev: network interface device structure
       
  2562  *
       
  2563  * The set_multi entry point is called whenever the multicast address
       
  2564  * list or the network interface flags are updated.  This routine is
       
  2565  * responsible for configuring the hardware for proper multicast,
       
  2566  * promiscuous mode, and all-multi behavior.
       
  2567  **/
       
  2568 static void e1000_set_multi(struct net_device *netdev)
       
  2569 {
       
  2570 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2571 	struct e1000_hw *hw = &adapter->hw;
       
  2572 	struct e1000_mac_info *mac = &hw->mac;
       
  2573 	struct dev_mc_list *mc_ptr;
       
  2574 	u8  *mta_list;
       
  2575 	u32 rctl;
       
  2576 	int i;
       
  2577 
       
  2578 	/* Check for Promiscuous and All Multicast modes */
       
  2579 
       
  2580 	rctl = er32(RCTL);
       
  2581 
       
  2582 	if (netdev->flags & IFF_PROMISC) {
       
  2583 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2584 		rctl &= ~E1000_RCTL_VFE;
       
  2585 	} else {
       
  2586 		if (netdev->flags & IFF_ALLMULTI) {
       
  2587 			rctl |= E1000_RCTL_MPE;
       
  2588 			rctl &= ~E1000_RCTL_UPE;
       
  2589 		} else {
       
  2590 			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2591 		}
       
  2592 		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
       
  2593 			rctl |= E1000_RCTL_VFE;
       
  2594 	}
       
  2595 
       
  2596 	ew32(RCTL, rctl);
       
  2597 
       
  2598 	if (netdev->mc_count) {
       
  2599 		mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
       
  2600 		if (!mta_list)
       
  2601 			return;
       
  2602 
       
  2603 		/* prepare a packed array of only addresses. */
       
  2604 		mc_ptr = netdev->mc_list;
       
  2605 
       
  2606 		for (i = 0; i < netdev->mc_count; i++) {
       
  2607 			if (!mc_ptr)
       
  2608 				break;
       
  2609 			memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
       
  2610 			       ETH_ALEN);
       
  2611 			mc_ptr = mc_ptr->next;
       
  2612 		}
       
  2613 
       
  2614 		e1000_update_mc_addr_list(hw, mta_list, i, 1,
       
  2615 					  mac->rar_entry_count);
       
  2616 		kfree(mta_list);
       
  2617 	} else {
       
  2618 		/*
       
  2619 		 * if we're called from probe, we might not have
       
  2620 		 * anything to do here, so clear out the list
       
  2621 		 */
       
  2622 		e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
       
  2623 	}
       
  2624 }
       
  2625 
       
  2626 /**
       
  2627  * e1000_configure - configure the hardware for Rx and Tx
       
  2628  * @adapter: private board structure
       
  2629  **/
       
  2630 static void e1000_configure(struct e1000_adapter *adapter)
       
  2631 {
       
  2632 	e1000_set_multi(adapter->netdev);
       
  2633 
       
  2634 	e1000_restore_vlan(adapter);
       
  2635 	e1000_init_manageability(adapter);
       
  2636 
       
  2637 	e1000_configure_tx(adapter);
       
  2638 	e1000_setup_rctl(adapter);
       
  2639 	e1000_configure_rx(adapter);
       
  2640 	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
       
  2641 }
       
  2642 
       
  2643 /**
       
  2644  * e1000e_power_up_phy - restore link in case the phy was powered down
       
  2645  * @adapter: address of board private structure
       
  2646  *
       
  2647  * The phy may be powered down to save power and turn off link when the
       
  2648  * driver is unloaded and wake on lan is not enabled (among others)
       
  2649  * *** this routine MUST be followed by a call to e1000e_reset ***
       
  2650  **/
       
  2651 void e1000e_power_up_phy(struct e1000_adapter *adapter)
       
  2652 {
       
  2653 	u16 mii_reg = 0;
       
  2654 
       
  2655 	/* Just clear the power down bit to wake the phy back up */
       
  2656 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
       
  2657 		/*
       
  2658 		 * According to the manual, the phy will retain its
       
  2659 		 * settings across a power-down/up cycle
       
  2660 		 */
       
  2661 		e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
       
  2662 		mii_reg &= ~MII_CR_POWER_DOWN;
       
  2663 		e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
       
  2664 	}
       
  2665 
       
  2666 	adapter->hw.mac.ops.setup_link(&adapter->hw);
       
  2667 }
       
  2668 
       
  2669 /**
       
  2670  * e1000_power_down_phy - Power down the PHY
       
  2671  *
       
  2672  * Power down the PHY so no link is implied when interface is down
       
  2673  * The PHY cannot be powered down is management or WoL is active
       
  2674  */
       
  2675 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
  2676 {
       
  2677 	struct e1000_hw *hw = &adapter->hw;
       
  2678 	u16 mii_reg;
       
  2679 
       
  2680 	/* WoL is enabled */
       
  2681 	if (adapter->wol)
       
  2682 		return;
       
  2683 
       
  2684 	/* non-copper PHY? */
       
  2685 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
       
  2686 		return;
       
  2687 
       
  2688 	/* reset is blocked because of a SoL/IDER session */
       
  2689 	if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
       
  2690 		return;
       
  2691 
       
  2692 	/* manageability (AMT) is enabled */
       
  2693 	if (er32(MANC) & E1000_MANC_SMBUS_EN)
       
  2694 		return;
       
  2695 
       
  2696 	/* power down the PHY */
       
  2697 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
       
  2698 	mii_reg |= MII_CR_POWER_DOWN;
       
  2699 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
       
  2700 	mdelay(1);
       
  2701 }
       
  2702 
       
  2703 /**
       
  2704  * e1000e_reset - bring the hardware into a known good state
       
  2705  *
       
  2706  * This function boots the hardware and enables some settings that
       
  2707  * require a configuration cycle of the hardware - those cannot be
       
  2708  * set/changed during runtime. After reset the device needs to be
       
  2709  * properly configured for Rx, Tx etc.
       
  2710  */
       
  2711 void e1000e_reset(struct e1000_adapter *adapter)
       
  2712 {
       
  2713 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
  2714 	struct e1000_fc_info *fc = &adapter->hw.fc;
       
  2715 	struct e1000_hw *hw = &adapter->hw;
       
  2716 	u32 tx_space, min_tx_space, min_rx_space;
       
  2717 	u32 pba = adapter->pba;
       
  2718 	u16 hwm;
       
  2719 
       
  2720 	/* reset Packet Buffer Allocation to default */
       
  2721 	ew32(PBA, pba);
       
  2722 
       
  2723 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
       
  2724 		/*
       
  2725 		 * To maintain wire speed transmits, the Tx FIFO should be
       
  2726 		 * large enough to accommodate two full transmit packets,
       
  2727 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
       
  2728 		 * the Rx FIFO should be large enough to accommodate at least
       
  2729 		 * one full receive packet and is similarly rounded up and
       
  2730 		 * expressed in KB.
       
  2731 		 */
       
  2732 		pba = er32(PBA);
       
  2733 		/* upper 16 bits has Tx packet buffer allocation size in KB */
       
  2734 		tx_space = pba >> 16;
       
  2735 		/* lower 16 bits has Rx packet buffer allocation size in KB */
       
  2736 		pba &= 0xffff;
       
  2737 		/*
       
  2738 		 * the Tx fifo also stores 16 bytes of information about the tx
       
  2739 		 * but don't include ethernet FCS because hardware appends it
       
  2740 		 */
       
  2741 		min_tx_space = (adapter->max_frame_size +
       
  2742 				sizeof(struct e1000_tx_desc) -
       
  2743 				ETH_FCS_LEN) * 2;
       
  2744 		min_tx_space = ALIGN(min_tx_space, 1024);
       
  2745 		min_tx_space >>= 10;
       
  2746 		/* software strips receive CRC, so leave room for it */
       
  2747 		min_rx_space = adapter->max_frame_size;
       
  2748 		min_rx_space = ALIGN(min_rx_space, 1024);
       
  2749 		min_rx_space >>= 10;
       
  2750 
       
  2751 		/*
       
  2752 		 * If current Tx allocation is less than the min Tx FIFO size,
       
  2753 		 * and the min Tx FIFO size is less than the current Rx FIFO
       
  2754 		 * allocation, take space away from current Rx allocation
       
  2755 		 */
       
  2756 		if ((tx_space < min_tx_space) &&
       
  2757 		    ((min_tx_space - tx_space) < pba)) {
       
  2758 			pba -= min_tx_space - tx_space;
       
  2759 
       
  2760 			/*
       
  2761 			 * if short on Rx space, Rx wins and must trump tx
       
  2762 			 * adjustment or use Early Receive if available
       
  2763 			 */
       
  2764 			if ((pba < min_rx_space) &&
       
  2765 			    (!(adapter->flags & FLAG_HAS_ERT)))
       
  2766 				/* ERT enabled in e1000_configure_rx */
       
  2767 				pba = min_rx_space;
       
  2768 		}
       
  2769 
       
  2770 		ew32(PBA, pba);
       
  2771 	}
       
  2772 
       
  2773 
       
  2774 	/*
       
  2775 	 * flow control settings
       
  2776 	 *
       
  2777 	 * The high water mark must be low enough to fit one full frame
       
  2778 	 * (or the size used for early receive) above it in the Rx FIFO.
       
  2779 	 * Set it to the lower of:
       
  2780 	 * - 90% of the Rx FIFO size, and
       
  2781 	 * - the full Rx FIFO size minus the early receive size (for parts
       
  2782 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
       
  2783 	 * - the full Rx FIFO size minus one full frame
       
  2784 	 */
       
  2785 	if (hw->mac.type == e1000_pchlan) {
       
  2786 		/*
       
  2787 		 * Workaround PCH LOM adapter hangs with certain network
       
  2788 		 * loads.  If hangs persist, try disabling Tx flow control.
       
  2789 		 */
       
  2790 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  2791 			fc->high_water = 0x3500;
       
  2792 			fc->low_water  = 0x1500;
       
  2793 		} else {
       
  2794 			fc->high_water = 0x5000;
       
  2795 			fc->low_water  = 0x3000;
       
  2796 		}
       
  2797 	} else {
       
  2798 		if ((adapter->flags & FLAG_HAS_ERT) &&
       
  2799 		    (adapter->netdev->mtu > ETH_DATA_LEN))
       
  2800 			hwm = min(((pba << 10) * 9 / 10),
       
  2801 				  ((pba << 10) - (E1000_ERT_2048 << 3)));
       
  2802 		else
       
  2803 			hwm = min(((pba << 10) * 9 / 10),
       
  2804 				  ((pba << 10) - adapter->max_frame_size));
       
  2805 
       
  2806 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
       
  2807 		fc->low_water = fc->high_water - 8;
       
  2808 	}
       
  2809 
       
  2810 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
       
  2811 		fc->pause_time = 0xFFFF;
       
  2812 	else
       
  2813 		fc->pause_time = E1000_FC_PAUSE_TIME;
       
  2814 	fc->send_xon = 1;
       
  2815 	fc->current_mode = fc->requested_mode;
       
  2816 
       
  2817 	/* Allow time for pending master requests to run */
       
  2818 	mac->ops.reset_hw(hw);
       
  2819 
       
  2820 	/*
       
  2821 	 * For parts with AMT enabled, let the firmware know
       
  2822 	 * that the network interface is in control
       
  2823 	 */
       
  2824 	if (adapter->flags & FLAG_HAS_AMT)
       
  2825 		e1000_get_hw_control(adapter);
       
  2826 
       
  2827 	ew32(WUC, 0);
       
  2828 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
       
  2829 		e1e_wphy(&adapter->hw, BM_WUC, 0);
       
  2830 
       
  2831 	if (mac->ops.init_hw(hw))
       
  2832 		e_err("Hardware Error\n");
       
  2833 
       
  2834 	/* additional part of the flow-control workaround above */
       
  2835 	if (hw->mac.type == e1000_pchlan)
       
  2836 		ew32(FCRTV_PCH, 0x1000);
       
  2837 
       
  2838 	e1000_update_mng_vlan(adapter);
       
  2839 
       
  2840 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
  2841 	ew32(VET, ETH_P_8021Q);
       
  2842 
       
  2843 	e1000e_reset_adaptive(hw);
       
  2844 	e1000_get_phy_info(hw);
       
  2845 
       
  2846 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
       
  2847 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
       
  2848 		u16 phy_data = 0;
       
  2849 		/*
       
  2850 		 * speed up time to link by disabling smart power down, ignore
       
  2851 		 * the return value of this function because there is nothing
       
  2852 		 * different we would do if it failed
       
  2853 		 */
       
  2854 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
       
  2855 		phy_data &= ~IGP02E1000_PM_SPD;
       
  2856 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
       
  2857 	}
       
  2858 }
       
  2859 
       
  2860 int e1000e_up(struct e1000_adapter *adapter)
       
  2861 {
       
  2862 	struct e1000_hw *hw = &adapter->hw;
       
  2863 
       
  2864 	/* hardware has been reset, we need to reload some things */
       
  2865 	e1000_configure(adapter);
       
  2866 
       
  2867 	clear_bit(__E1000_DOWN, &adapter->state);
       
  2868 
       
  2869 	napi_enable(&adapter->napi);
       
  2870 	if (adapter->msix_entries)
       
  2871 		e1000_configure_msix(adapter);
       
  2872 	e1000_irq_enable(adapter);
       
  2873 
       
  2874 	netif_wake_queue(adapter->netdev);
       
  2875 
       
  2876 	/* fire a link change interrupt to start the watchdog */
       
  2877 	ew32(ICS, E1000_ICS_LSC);
       
  2878 	return 0;
       
  2879 }
       
  2880 
       
  2881 void e1000e_down(struct e1000_adapter *adapter)
       
  2882 {
       
  2883 	struct net_device *netdev = adapter->netdev;
       
  2884 	struct e1000_hw *hw = &adapter->hw;
       
  2885 	u32 tctl, rctl;
       
  2886 
       
  2887 	/*
       
  2888 	 * signal that we're down so the interrupt handler does not
       
  2889 	 * reschedule our watchdog timer
       
  2890 	 */
       
  2891 	set_bit(__E1000_DOWN, &adapter->state);
       
  2892 
       
  2893 	/* disable receives in the hardware */
       
  2894 	rctl = er32(RCTL);
       
  2895 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  2896 	/* flush and sleep below */
       
  2897 
       
  2898 	netif_stop_queue(netdev);
       
  2899 
       
  2900 	/* disable transmits in the hardware */
       
  2901 	tctl = er32(TCTL);
       
  2902 	tctl &= ~E1000_TCTL_EN;
       
  2903 	ew32(TCTL, tctl);
       
  2904 	/* flush both disables and wait for them to finish */
       
  2905 	e1e_flush();
       
  2906 	msleep(10);
       
  2907 
       
  2908 	napi_disable(&adapter->napi);
       
  2909 	e1000_irq_disable(adapter);
       
  2910 
       
  2911 	del_timer_sync(&adapter->watchdog_timer);
       
  2912 	del_timer_sync(&adapter->phy_info_timer);
       
  2913 
       
  2914 	netdev->tx_queue_len = adapter->tx_queue_len;
       
  2915 	netif_carrier_off(netdev);
       
  2916 	adapter->link_speed = 0;
       
  2917 	adapter->link_duplex = 0;
       
  2918 
       
  2919 	if (!pci_channel_offline(adapter->pdev))
       
  2920 		e1000e_reset(adapter);
       
  2921 	e1000_clean_tx_ring(adapter);
       
  2922 	e1000_clean_rx_ring(adapter);
       
  2923 
       
  2924 	/*
       
  2925 	 * TODO: for power management, we could drop the link and
       
  2926 	 * pci_disable_device here.
       
  2927 	 */
       
  2928 }
       
  2929 
       
  2930 void e1000e_reinit_locked(struct e1000_adapter *adapter)
       
  2931 {
       
  2932 	might_sleep();
       
  2933 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
  2934 		msleep(1);
       
  2935 	e1000e_down(adapter);
       
  2936 	e1000e_up(adapter);
       
  2937 	clear_bit(__E1000_RESETTING, &adapter->state);
       
  2938 }
       
  2939 
       
  2940 /**
       
  2941  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  2942  * @adapter: board private structure to initialize
       
  2943  *
       
  2944  * e1000_sw_init initializes the Adapter private data structure.
       
  2945  * Fields are initialized based on PCI device information and
       
  2946  * OS network device settings (MTU size).
       
  2947  **/
       
  2948 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
       
  2949 {
       
  2950 	struct net_device *netdev = adapter->netdev;
       
  2951 
       
  2952 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
       
  2953 	adapter->rx_ps_bsize0 = 128;
       
  2954 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
       
  2955 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
       
  2956 
       
  2957 	e1000e_set_interrupt_capability(adapter);
       
  2958 
       
  2959 	if (e1000_alloc_queues(adapter))
       
  2960 		return -ENOMEM;
       
  2961 
       
  2962 	/* Explicitly disable IRQ since the NIC can be in any state. */
       
  2963 	e1000_irq_disable(adapter);
       
  2964 
       
  2965 	set_bit(__E1000_DOWN, &adapter->state);
       
  2966 	return 0;
       
  2967 }
       
  2968 
       
  2969 /**
       
  2970  * e1000_intr_msi_test - Interrupt Handler
       
  2971  * @irq: interrupt number
       
  2972  * @data: pointer to a network interface device structure
       
  2973  **/
       
  2974 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
       
  2975 {
       
  2976 	struct net_device *netdev = data;
       
  2977 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2978 	struct e1000_hw *hw = &adapter->hw;
       
  2979 	u32 icr = er32(ICR);
       
  2980 
       
  2981 	e_dbg("%s: icr is %08X\n", netdev->name, icr);
       
  2982 	if (icr & E1000_ICR_RXSEQ) {
       
  2983 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
       
  2984 		wmb();
       
  2985 	}
       
  2986 
       
  2987 	return IRQ_HANDLED;
       
  2988 }
       
  2989 
       
  2990 /**
       
  2991  * e1000_test_msi_interrupt - Returns 0 for successful test
       
  2992  * @adapter: board private struct
       
  2993  *
       
  2994  * code flow taken from tg3.c
       
  2995  **/
       
  2996 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
       
  2997 {
       
  2998 	struct net_device *netdev = adapter->netdev;
       
  2999 	struct e1000_hw *hw = &adapter->hw;
       
  3000 	int err;
       
  3001 
       
  3002 	/* poll_enable hasn't been called yet, so don't need disable */
       
  3003 	/* clear any pending events */
       
  3004 	er32(ICR);
       
  3005 
       
  3006 	/* free the real vector and request a test handler */
       
  3007 	e1000_free_irq(adapter);
       
  3008 	e1000e_reset_interrupt_capability(adapter);
       
  3009 
       
  3010 	/* Assume that the test fails, if it succeeds then the test
       
  3011 	 * MSI irq handler will unset this flag */
       
  3012 	adapter->flags |= FLAG_MSI_TEST_FAILED;
       
  3013 
       
  3014 	err = pci_enable_msi(adapter->pdev);
       
  3015 	if (err)
       
  3016 		goto msi_test_failed;
       
  3017 
       
  3018 	err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
       
  3019 			  netdev->name, netdev);
       
  3020 	if (err) {
       
  3021 		pci_disable_msi(adapter->pdev);
       
  3022 		goto msi_test_failed;
       
  3023 	}
       
  3024 
       
  3025 	wmb();
       
  3026 
       
  3027 	e1000_irq_enable(adapter);
       
  3028 
       
  3029 	/* fire an unusual interrupt on the test handler */
       
  3030 	ew32(ICS, E1000_ICS_RXSEQ);
       
  3031 	e1e_flush();
       
  3032 	msleep(50);
       
  3033 
       
  3034 	e1000_irq_disable(adapter);
       
  3035 
       
  3036 	rmb();
       
  3037 
       
  3038 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
       
  3039 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  3040 		err = -EIO;
       
  3041 		e_info("MSI interrupt test failed!\n");
       
  3042 	}
       
  3043 
       
  3044 	free_irq(adapter->pdev->irq, netdev);
       
  3045 	pci_disable_msi(adapter->pdev);
       
  3046 
       
  3047 	if (err == -EIO)
       
  3048 		goto msi_test_failed;
       
  3049 
       
  3050 	/* okay so the test worked, restore settings */
       
  3051 	e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
       
  3052 msi_test_failed:
       
  3053 	e1000e_set_interrupt_capability(adapter);
       
  3054 	e1000_request_irq(adapter);
       
  3055 	return err;
       
  3056 }
       
  3057 
       
  3058 /**
       
  3059  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
       
  3060  * @adapter: board private struct
       
  3061  *
       
  3062  * code flow taken from tg3.c, called with e1000 interrupts disabled.
       
  3063  **/
       
  3064 static int e1000_test_msi(struct e1000_adapter *adapter)
       
  3065 {
       
  3066 	int err;
       
  3067 	u16 pci_cmd;
       
  3068 
       
  3069 	if (!(adapter->flags & FLAG_MSI_ENABLED))
       
  3070 		return 0;
       
  3071 
       
  3072 	/* disable SERR in case the MSI write causes a master abort */
       
  3073 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
       
  3074 	pci_write_config_word(adapter->pdev, PCI_COMMAND,
       
  3075 			      pci_cmd & ~PCI_COMMAND_SERR);
       
  3076 
       
  3077 	err = e1000_test_msi_interrupt(adapter);
       
  3078 
       
  3079 	/* restore previous setting of command word */
       
  3080 	pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
       
  3081 
       
  3082 	/* success ! */
       
  3083 	if (!err)
       
  3084 		return 0;
       
  3085 
       
  3086 	/* EIO means MSI test failed */
       
  3087 	if (err != -EIO)
       
  3088 		return err;
       
  3089 
       
  3090 	/* back to INTx mode */
       
  3091 	e_warn("MSI interrupt test failed, using legacy interrupt.\n");
       
  3092 
       
  3093 	e1000_free_irq(adapter);
       
  3094 
       
  3095 	err = e1000_request_irq(adapter);
       
  3096 
       
  3097 	return err;
       
  3098 }
       
  3099 
       
  3100 /**
       
  3101  * e1000_open - Called when a network interface is made active
       
  3102  * @netdev: network interface device structure
       
  3103  *
       
  3104  * Returns 0 on success, negative value on failure
       
  3105  *
       
  3106  * The open entry point is called when a network interface is made
       
  3107  * active by the system (IFF_UP).  At this point all resources needed
       
  3108  * for transmit and receive operations are allocated, the interrupt
       
  3109  * handler is registered with the OS, the watchdog timer is started,
       
  3110  * and the stack is notified that the interface is ready.
       
  3111  **/
       
  3112 static int e1000_open(struct net_device *netdev)
       
  3113 {
       
  3114 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3115 	struct e1000_hw *hw = &adapter->hw;
       
  3116 	int err;
       
  3117 
       
  3118 	/* disallow open during test */
       
  3119 	if (test_bit(__E1000_TESTING, &adapter->state))
       
  3120 		return -EBUSY;
       
  3121 
       
  3122 	netif_carrier_off(netdev);
       
  3123 
       
  3124 	/* allocate transmit descriptors */
       
  3125 	err = e1000e_setup_tx_resources(adapter);
       
  3126 	if (err)
       
  3127 		goto err_setup_tx;
       
  3128 
       
  3129 	/* allocate receive descriptors */
       
  3130 	err = e1000e_setup_rx_resources(adapter);
       
  3131 	if (err)
       
  3132 		goto err_setup_rx;
       
  3133 
       
  3134 	e1000e_power_up_phy(adapter);
       
  3135 
       
  3136 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  3137 	if ((adapter->hw.mng_cookie.status &
       
  3138 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
       
  3139 		e1000_update_mng_vlan(adapter);
       
  3140 
       
  3141 	/*
       
  3142 	 * If AMT is enabled, let the firmware know that the network
       
  3143 	 * interface is now open
       
  3144 	 */
       
  3145 	if (adapter->flags & FLAG_HAS_AMT)
       
  3146 		e1000_get_hw_control(adapter);
       
  3147 
       
  3148 	/*
       
  3149 	 * before we allocate an interrupt, we must be ready to handle it.
       
  3150 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
       
  3151 	 * as soon as we call pci_request_irq, so we have to setup our
       
  3152 	 * clean_rx handler before we do so.
       
  3153 	 */
       
  3154 	e1000_configure(adapter);
       
  3155 
       
  3156 	err = e1000_request_irq(adapter);
       
  3157 	if (err)
       
  3158 		goto err_req_irq;
       
  3159 
       
  3160 	/*
       
  3161 	 * Work around PCIe errata with MSI interrupts causing some chipsets to
       
  3162 	 * ignore e1000e MSI messages, which means we need to test our MSI
       
  3163 	 * interrupt now
       
  3164 	 */
       
  3165 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
       
  3166 		err = e1000_test_msi(adapter);
       
  3167 		if (err) {
       
  3168 			e_err("Interrupt allocation failed\n");
       
  3169 			goto err_req_irq;
       
  3170 		}
       
  3171 	}
       
  3172 
       
  3173 	/* From here on the code is the same as e1000e_up() */
       
  3174 	clear_bit(__E1000_DOWN, &adapter->state);
       
  3175 
       
  3176 	napi_enable(&adapter->napi);
       
  3177 
       
  3178 	e1000_irq_enable(adapter);
       
  3179 
       
  3180 	netif_start_queue(netdev);
       
  3181 
       
  3182 	/* fire a link status change interrupt to start the watchdog */
       
  3183 	ew32(ICS, E1000_ICS_LSC);
       
  3184 
       
  3185 	return 0;
       
  3186 
       
  3187 err_req_irq:
       
  3188 	e1000_release_hw_control(adapter);
       
  3189 	e1000_power_down_phy(adapter);
       
  3190 	e1000e_free_rx_resources(adapter);
       
  3191 err_setup_rx:
       
  3192 	e1000e_free_tx_resources(adapter);
       
  3193 err_setup_tx:
       
  3194 	e1000e_reset(adapter);
       
  3195 
       
  3196 	return err;
       
  3197 }
       
  3198 
       
  3199 /**
       
  3200  * e1000_close - Disables a network interface
       
  3201  * @netdev: network interface device structure
       
  3202  *
       
  3203  * Returns 0, this is not allowed to fail
       
  3204  *
       
  3205  * The close entry point is called when an interface is de-activated
       
  3206  * by the OS.  The hardware is still under the drivers control, but
       
  3207  * needs to be disabled.  A global MAC reset is issued to stop the
       
  3208  * hardware, and all transmit and receive resources are freed.
       
  3209  **/
       
  3210 static int e1000_close(struct net_device *netdev)
       
  3211 {
       
  3212 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3213 
       
  3214 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
       
  3215 	e1000e_down(adapter);
       
  3216 	e1000_power_down_phy(adapter);
       
  3217 	e1000_free_irq(adapter);
       
  3218 
       
  3219 	e1000e_free_tx_resources(adapter);
       
  3220 	e1000e_free_rx_resources(adapter);
       
  3221 
       
  3222 	/*
       
  3223 	 * kill manageability vlan ID if supported, but not if a vlan with
       
  3224 	 * the same ID is registered on the host OS (let 8021q kill it)
       
  3225 	 */
       
  3226 	if ((adapter->hw.mng_cookie.status &
       
  3227 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
       
  3228 	     !(adapter->vlgrp &&
       
  3229 	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
       
  3230 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  3231 
       
  3232 	/*
       
  3233 	 * If AMT is enabled, let the firmware know that the network
       
  3234 	 * interface is now closed
       
  3235 	 */
       
  3236 	if (adapter->flags & FLAG_HAS_AMT)
       
  3237 		e1000_release_hw_control(adapter);
       
  3238 
       
  3239 	return 0;
       
  3240 }
       
  3241 /**
       
  3242  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  3243  * @netdev: network interface device structure
       
  3244  * @p: pointer to an address structure
       
  3245  *
       
  3246  * Returns 0 on success, negative on failure
       
  3247  **/
       
  3248 static int e1000_set_mac(struct net_device *netdev, void *p)
       
  3249 {
       
  3250 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3251 	struct sockaddr *addr = p;
       
  3252 
       
  3253 	if (!is_valid_ether_addr(addr->sa_data))
       
  3254 		return -EADDRNOTAVAIL;
       
  3255 
       
  3256 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  3257 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
       
  3258 
       
  3259 	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
       
  3260 
       
  3261 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
       
  3262 		/* activate the work around */
       
  3263 		e1000e_set_laa_state_82571(&adapter->hw, 1);
       
  3264 
       
  3265 		/*
       
  3266 		 * Hold a copy of the LAA in RAR[14] This is done so that
       
  3267 		 * between the time RAR[0] gets clobbered  and the time it
       
  3268 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
       
  3269 		 * of the RARs and no incoming packets directed to this port
       
  3270 		 * are dropped. Eventually the LAA will be in RAR[0] and
       
  3271 		 * RAR[14]
       
  3272 		 */
       
  3273 		e1000e_rar_set(&adapter->hw,
       
  3274 			      adapter->hw.mac.addr,
       
  3275 			      adapter->hw.mac.rar_entry_count - 1);
       
  3276 	}
       
  3277 
       
  3278 	return 0;
       
  3279 }
       
  3280 
       
  3281 /**
       
  3282  * e1000e_update_phy_task - work thread to update phy
       
  3283  * @work: pointer to our work struct
       
  3284  *
       
  3285  * this worker thread exists because we must acquire a
       
  3286  * semaphore to read the phy, which we could msleep while
       
  3287  * waiting for it, and we can't msleep in a timer.
       
  3288  **/
       
  3289 static void e1000e_update_phy_task(struct work_struct *work)
       
  3290 {
       
  3291 	struct e1000_adapter *adapter = container_of(work,
       
  3292 					struct e1000_adapter, update_phy_task);
       
  3293 	e1000_get_phy_info(&adapter->hw);
       
  3294 }
       
  3295 
       
  3296 /*
       
  3297  * Need to wait a few seconds after link up to get diagnostic information from
       
  3298  * the phy
       
  3299  */
       
  3300 static void e1000_update_phy_info(unsigned long data)
       
  3301 {
       
  3302 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  3303 	schedule_work(&adapter->update_phy_task);
       
  3304 }
       
  3305 
       
  3306 /**
       
  3307  * e1000e_update_stats - Update the board statistics counters
       
  3308  * @adapter: board private structure
       
  3309  **/
       
  3310 void e1000e_update_stats(struct e1000_adapter *adapter)
       
  3311 {
       
  3312 	struct e1000_hw *hw = &adapter->hw;
       
  3313 	struct pci_dev *pdev = adapter->pdev;
       
  3314 	u16 phy_data;
       
  3315 
       
  3316 	/*
       
  3317 	 * Prevent stats update while adapter is being reset, or if the pci
       
  3318 	 * connection is down.
       
  3319 	 */
       
  3320 	if (adapter->link_speed == 0)
       
  3321 		return;
       
  3322 	if (pci_channel_offline(pdev))
       
  3323 		return;
       
  3324 
       
  3325 	adapter->stats.crcerrs += er32(CRCERRS);
       
  3326 	adapter->stats.gprc += er32(GPRC);
       
  3327 	adapter->stats.gorc += er32(GORCL);
       
  3328 	er32(GORCH); /* Clear gorc */
       
  3329 	adapter->stats.bprc += er32(BPRC);
       
  3330 	adapter->stats.mprc += er32(MPRC);
       
  3331 	adapter->stats.roc += er32(ROC);
       
  3332 
       
  3333 	adapter->stats.mpc += er32(MPC);
       
  3334 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3335 	    (hw->phy.type == e1000_phy_82577)) {
       
  3336 		e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
       
  3337 		e1e_rphy(hw, HV_SCC_LOWER, &phy_data);
       
  3338 		adapter->stats.scc += phy_data;
       
  3339 
       
  3340 		e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
       
  3341 		e1e_rphy(hw, HV_ECOL_LOWER, &phy_data);
       
  3342 		adapter->stats.ecol += phy_data;
       
  3343 
       
  3344 		e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
       
  3345 		e1e_rphy(hw, HV_MCC_LOWER, &phy_data);
       
  3346 		adapter->stats.mcc += phy_data;
       
  3347 
       
  3348 		e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
       
  3349 		e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data);
       
  3350 		adapter->stats.latecol += phy_data;
       
  3351 
       
  3352 		e1e_rphy(hw, HV_DC_UPPER, &phy_data);
       
  3353 		e1e_rphy(hw, HV_DC_LOWER, &phy_data);
       
  3354 		adapter->stats.dc += phy_data;
       
  3355 	} else {
       
  3356 		adapter->stats.scc += er32(SCC);
       
  3357 		adapter->stats.ecol += er32(ECOL);
       
  3358 		adapter->stats.mcc += er32(MCC);
       
  3359 		adapter->stats.latecol += er32(LATECOL);
       
  3360 		adapter->stats.dc += er32(DC);
       
  3361 	}
       
  3362 	adapter->stats.xonrxc += er32(XONRXC);
       
  3363 	adapter->stats.xontxc += er32(XONTXC);
       
  3364 	adapter->stats.xoffrxc += er32(XOFFRXC);
       
  3365 	adapter->stats.xofftxc += er32(XOFFTXC);
       
  3366 	adapter->stats.gptc += er32(GPTC);
       
  3367 	adapter->stats.gotc += er32(GOTCL);
       
  3368 	er32(GOTCH); /* Clear gotc */
       
  3369 	adapter->stats.rnbc += er32(RNBC);
       
  3370 	adapter->stats.ruc += er32(RUC);
       
  3371 
       
  3372 	adapter->stats.mptc += er32(MPTC);
       
  3373 	adapter->stats.bptc += er32(BPTC);
       
  3374 
       
  3375 	/* used for adaptive IFS */
       
  3376 
       
  3377 	hw->mac.tx_packet_delta = er32(TPT);
       
  3378 	adapter->stats.tpt += hw->mac.tx_packet_delta;
       
  3379 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3380 	    (hw->phy.type == e1000_phy_82577)) {
       
  3381 		e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
       
  3382 		e1e_rphy(hw, HV_COLC_LOWER, &phy_data);
       
  3383 		hw->mac.collision_delta = phy_data;
       
  3384 	} else {
       
  3385 		hw->mac.collision_delta = er32(COLC);
       
  3386 	}
       
  3387 	adapter->stats.colc += hw->mac.collision_delta;
       
  3388 
       
  3389 	adapter->stats.algnerrc += er32(ALGNERRC);
       
  3390 	adapter->stats.rxerrc += er32(RXERRC);
       
  3391 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3392 	    (hw->phy.type == e1000_phy_82577)) {
       
  3393 		e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
       
  3394 		e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data);
       
  3395 		adapter->stats.tncrs += phy_data;
       
  3396 	} else {
       
  3397 		if ((hw->mac.type != e1000_82574) &&
       
  3398 		    (hw->mac.type != e1000_82583))
       
  3399 			adapter->stats.tncrs += er32(TNCRS);
       
  3400 	}
       
  3401 	adapter->stats.cexterr += er32(CEXTERR);
       
  3402 	adapter->stats.tsctc += er32(TSCTC);
       
  3403 	adapter->stats.tsctfc += er32(TSCTFC);
       
  3404 
       
  3405 	/* Fill out the OS statistics structure */
       
  3406 	adapter->net_stats.multicast = adapter->stats.mprc;
       
  3407 	adapter->net_stats.collisions = adapter->stats.colc;
       
  3408 
       
  3409 	/* Rx Errors */
       
  3410 
       
  3411 	/*
       
  3412 	 * RLEC on some newer hardware can be incorrect so build
       
  3413 	 * our own version based on RUC and ROC
       
  3414 	 */
       
  3415 	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
       
  3416 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  3417 		adapter->stats.ruc + adapter->stats.roc +
       
  3418 		adapter->stats.cexterr;
       
  3419 	adapter->net_stats.rx_length_errors = adapter->stats.ruc +
       
  3420 					      adapter->stats.roc;
       
  3421 	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
       
  3422 	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
       
  3423 	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
       
  3424 
       
  3425 	/* Tx Errors */
       
  3426 	adapter->net_stats.tx_errors = adapter->stats.ecol +
       
  3427 				       adapter->stats.latecol;
       
  3428 	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
       
  3429 	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
       
  3430 	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
       
  3431 
       
  3432 	/* Tx Dropped needs to be maintained elsewhere */
       
  3433 
       
  3434 	/* Management Stats */
       
  3435 	adapter->stats.mgptc += er32(MGTPTC);
       
  3436 	adapter->stats.mgprc += er32(MGTPRC);
       
  3437 	adapter->stats.mgpdc += er32(MGTPDC);
       
  3438 }
       
  3439 
       
  3440 /**
       
  3441  * e1000_phy_read_status - Update the PHY register status snapshot
       
  3442  * @adapter: board private structure
       
  3443  **/
       
  3444 static void e1000_phy_read_status(struct e1000_adapter *adapter)
       
  3445 {
       
  3446 	struct e1000_hw *hw = &adapter->hw;
       
  3447 	struct e1000_phy_regs *phy = &adapter->phy_regs;
       
  3448 	int ret_val;
       
  3449 
       
  3450 	if ((er32(STATUS) & E1000_STATUS_LU) &&
       
  3451 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
       
  3452 		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
       
  3453 		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
       
  3454 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
       
  3455 		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
       
  3456 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
       
  3457 		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
       
  3458 		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
       
  3459 		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
       
  3460 		if (ret_val)
       
  3461 			e_warn("Error reading PHY register\n");
       
  3462 	} else {
       
  3463 		/*
       
  3464 		 * Do not read PHY registers if link is not up
       
  3465 		 * Set values to typical power-on defaults
       
  3466 		 */
       
  3467 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
       
  3468 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
       
  3469 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
       
  3470 			     BMSR_ERCAP);
       
  3471 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
       
  3472 				  ADVERTISE_ALL | ADVERTISE_CSMA);
       
  3473 		phy->lpa = 0;
       
  3474 		phy->expansion = EXPANSION_ENABLENPAGE;
       
  3475 		phy->ctrl1000 = ADVERTISE_1000FULL;
       
  3476 		phy->stat1000 = 0;
       
  3477 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
       
  3478 	}
       
  3479 }
       
  3480 
       
  3481 static void e1000_print_link_info(struct e1000_adapter *adapter)
       
  3482 {
       
  3483 	struct e1000_hw *hw = &adapter->hw;
       
  3484 	u32 ctrl = er32(CTRL);
       
  3485 
       
  3486 	/* Link status message must follow this format for user tools */
       
  3487 	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
       
  3488 	       "Flow Control: %s\n",
       
  3489 	       adapter->netdev->name,
       
  3490 	       adapter->link_speed,
       
  3491 	       (adapter->link_duplex == FULL_DUPLEX) ?
       
  3492 	                        "Full Duplex" : "Half Duplex",
       
  3493 	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
       
  3494 	                        "RX/TX" :
       
  3495 	       ((ctrl & E1000_CTRL_RFCE) ? "RX" :
       
  3496 	       ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
       
  3497 }
       
  3498 
       
  3499 bool e1000_has_link(struct e1000_adapter *adapter)
       
  3500 {
       
  3501 	struct e1000_hw *hw = &adapter->hw;
       
  3502 	bool link_active = 0;
       
  3503 	s32 ret_val = 0;
       
  3504 
       
  3505 	/*
       
  3506 	 * get_link_status is set on LSC (link status) interrupt or
       
  3507 	 * Rx sequence error interrupt.  get_link_status will stay
       
  3508 	 * false until the check_for_link establishes link
       
  3509 	 * for copper adapters ONLY
       
  3510 	 */
       
  3511 	switch (hw->phy.media_type) {
       
  3512 	case e1000_media_type_copper:
       
  3513 		if (hw->mac.get_link_status) {
       
  3514 			ret_val = hw->mac.ops.check_for_link(hw);
       
  3515 			link_active = !hw->mac.get_link_status;
       
  3516 		} else {
       
  3517 			link_active = 1;
       
  3518 		}
       
  3519 		break;
       
  3520 	case e1000_media_type_fiber:
       
  3521 		ret_val = hw->mac.ops.check_for_link(hw);
       
  3522 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
       
  3523 		break;
       
  3524 	case e1000_media_type_internal_serdes:
       
  3525 		ret_val = hw->mac.ops.check_for_link(hw);
       
  3526 		link_active = adapter->hw.mac.serdes_has_link;
       
  3527 		break;
       
  3528 	default:
       
  3529 	case e1000_media_type_unknown:
       
  3530 		break;
       
  3531 	}
       
  3532 
       
  3533 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
       
  3534 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
       
  3535 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
       
  3536 		e_info("Gigabit has been disabled, downgrading speed\n");
       
  3537 	}
       
  3538 
       
  3539 	return link_active;
       
  3540 }
       
  3541 
       
  3542 static void e1000e_enable_receives(struct e1000_adapter *adapter)
       
  3543 {
       
  3544 	/* make sure the receive unit is started */
       
  3545 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
       
  3546 	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
       
  3547 		struct e1000_hw *hw = &adapter->hw;
       
  3548 		u32 rctl = er32(RCTL);
       
  3549 		ew32(RCTL, rctl | E1000_RCTL_EN);
       
  3550 		adapter->flags &= ~FLAG_RX_RESTART_NOW;
       
  3551 	}
       
  3552 }
       
  3553 
       
  3554 /**
       
  3555  * e1000_watchdog - Timer Call-back
       
  3556  * @data: pointer to adapter cast into an unsigned long
       
  3557  **/
       
  3558 static void e1000_watchdog(unsigned long data)
       
  3559 {
       
  3560 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  3561 
       
  3562 	/* Do the rest outside of interrupt context */
       
  3563 	schedule_work(&adapter->watchdog_task);
       
  3564 
       
  3565 	/* TODO: make this use queue_delayed_work() */
       
  3566 }
       
  3567 
       
  3568 static void e1000_watchdog_task(struct work_struct *work)
       
  3569 {
       
  3570 	struct e1000_adapter *adapter = container_of(work,
       
  3571 					struct e1000_adapter, watchdog_task);
       
  3572 	struct net_device *netdev = adapter->netdev;
       
  3573 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
  3574 	struct e1000_phy_info *phy = &adapter->hw.phy;
       
  3575 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  3576 	struct e1000_hw *hw = &adapter->hw;
       
  3577 	u32 link, tctl;
       
  3578 	int tx_pending = 0;
       
  3579 
       
  3580 	link = e1000_has_link(adapter);
       
  3581 	if ((netif_carrier_ok(netdev)) && link) {
       
  3582 		e1000e_enable_receives(adapter);
       
  3583 		goto link_up;
       
  3584 	}
       
  3585 
       
  3586 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
       
  3587 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
       
  3588 		e1000_update_mng_vlan(adapter);
       
  3589 
       
  3590 	if (link) {
       
  3591 		if (!netif_carrier_ok(netdev)) {
       
  3592 			bool txb2b = 1;
       
  3593 			/* update snapshot of PHY registers on LSC */
       
  3594 			e1000_phy_read_status(adapter);
       
  3595 			mac->ops.get_link_up_info(&adapter->hw,
       
  3596 						   &adapter->link_speed,
       
  3597 						   &adapter->link_duplex);
       
  3598 			e1000_print_link_info(adapter);
       
  3599 			/*
       
  3600 			 * On supported PHYs, check for duplex mismatch only
       
  3601 			 * if link has autonegotiated at 10/100 half
       
  3602 			 */
       
  3603 			if ((hw->phy.type == e1000_phy_igp_3 ||
       
  3604 			     hw->phy.type == e1000_phy_bm) &&
       
  3605 			    (hw->mac.autoneg == true) &&
       
  3606 			    (adapter->link_speed == SPEED_10 ||
       
  3607 			     adapter->link_speed == SPEED_100) &&
       
  3608 			    (adapter->link_duplex == HALF_DUPLEX)) {
       
  3609 				u16 autoneg_exp;
       
  3610 
       
  3611 				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
       
  3612 
       
  3613 				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
       
  3614 					e_info("Autonegotiated half duplex but"
       
  3615 					       " link partner cannot autoneg. "
       
  3616 					       " Try forcing full duplex if "
       
  3617 					       "link gets many collisions.\n");
       
  3618 			}
       
  3619 
       
  3620 			/*
       
  3621 			 * tweak tx_queue_len according to speed/duplex
       
  3622 			 * and adjust the timeout factor
       
  3623 			 */
       
  3624 			netdev->tx_queue_len = adapter->tx_queue_len;
       
  3625 			adapter->tx_timeout_factor = 1;
       
  3626 			switch (adapter->link_speed) {
       
  3627 			case SPEED_10:
       
  3628 				txb2b = 0;
       
  3629 				netdev->tx_queue_len = 10;
       
  3630 				adapter->tx_timeout_factor = 16;
       
  3631 				break;
       
  3632 			case SPEED_100:
       
  3633 				txb2b = 0;
       
  3634 				netdev->tx_queue_len = 100;
       
  3635 				adapter->tx_timeout_factor = 10;
       
  3636 				break;
       
  3637 			}
       
  3638 
       
  3639 			/*
       
  3640 			 * workaround: re-program speed mode bit after
       
  3641 			 * link-up event
       
  3642 			 */
       
  3643 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
       
  3644 			    !txb2b) {
       
  3645 				u32 tarc0;
       
  3646 				tarc0 = er32(TARC(0));
       
  3647 				tarc0 &= ~SPEED_MODE_BIT;
       
  3648 				ew32(TARC(0), tarc0);
       
  3649 			}
       
  3650 
       
  3651 			/*
       
  3652 			 * disable TSO for pcie and 10/100 speeds, to avoid
       
  3653 			 * some hardware issues
       
  3654 			 */
       
  3655 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
       
  3656 				switch (adapter->link_speed) {
       
  3657 				case SPEED_10:
       
  3658 				case SPEED_100:
       
  3659 					e_info("10/100 speed: disabling TSO\n");
       
  3660 					netdev->features &= ~NETIF_F_TSO;
       
  3661 					netdev->features &= ~NETIF_F_TSO6;
       
  3662 					break;
       
  3663 				case SPEED_1000:
       
  3664 					netdev->features |= NETIF_F_TSO;
       
  3665 					netdev->features |= NETIF_F_TSO6;
       
  3666 					break;
       
  3667 				default:
       
  3668 					/* oops */
       
  3669 					break;
       
  3670 				}
       
  3671 			}
       
  3672 
       
  3673 			/*
       
  3674 			 * enable transmits in the hardware, need to do this
       
  3675 			 * after setting TARC(0)
       
  3676 			 */
       
  3677 			tctl = er32(TCTL);
       
  3678 			tctl |= E1000_TCTL_EN;
       
  3679 			ew32(TCTL, tctl);
       
  3680 
       
  3681                         /*
       
  3682 			 * Perform any post-link-up configuration before
       
  3683 			 * reporting link up.
       
  3684 			 */
       
  3685 			if (phy->ops.cfg_on_link_up)
       
  3686 				phy->ops.cfg_on_link_up(hw);
       
  3687 
       
  3688 			netif_carrier_on(netdev);
       
  3689 
       
  3690 			if (!test_bit(__E1000_DOWN, &adapter->state))
       
  3691 				mod_timer(&adapter->phy_info_timer,
       
  3692 					  round_jiffies(jiffies + 2 * HZ));
       
  3693 		}
       
  3694 	} else {
       
  3695 		if (netif_carrier_ok(netdev)) {
       
  3696 			adapter->link_speed = 0;
       
  3697 			adapter->link_duplex = 0;
       
  3698 			/* Link status message must follow this format */
       
  3699 			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
       
  3700 			       adapter->netdev->name);
       
  3701 			netif_carrier_off(netdev);
       
  3702 			if (!test_bit(__E1000_DOWN, &adapter->state))
       
  3703 				mod_timer(&adapter->phy_info_timer,
       
  3704 					  round_jiffies(jiffies + 2 * HZ));
       
  3705 
       
  3706 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
       
  3707 				schedule_work(&adapter->reset_task);
       
  3708 		}
       
  3709 	}
       
  3710 
       
  3711 link_up:
       
  3712 	e1000e_update_stats(adapter);
       
  3713 
       
  3714 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  3715 	adapter->tpt_old = adapter->stats.tpt;
       
  3716 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
       
  3717 	adapter->colc_old = adapter->stats.colc;
       
  3718 
       
  3719 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
       
  3720 	adapter->gorc_old = adapter->stats.gorc;
       
  3721 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
       
  3722 	adapter->gotc_old = adapter->stats.gotc;
       
  3723 
       
  3724 	e1000e_update_adaptive(&adapter->hw);
       
  3725 
       
  3726 	if (!netif_carrier_ok(netdev)) {
       
  3727 		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
       
  3728 			       tx_ring->count);
       
  3729 		if (tx_pending) {
       
  3730 			/*
       
  3731 			 * We've lost link, so the controller stops DMA,
       
  3732 			 * but we've got queued Tx work that's never going
       
  3733 			 * to get done, so reset controller to flush Tx.
       
  3734 			 * (Do the reset outside of interrupt context).
       
  3735 			 */
       
  3736 			adapter->tx_timeout_count++;
       
  3737 			schedule_work(&adapter->reset_task);
       
  3738 			/* return immediately since reset is imminent */
       
  3739 			return;
       
  3740 		}
       
  3741 	}
       
  3742 
       
  3743 	/* Cause software interrupt to ensure Rx ring is cleaned */
       
  3744 	if (adapter->msix_entries)
       
  3745 		ew32(ICS, adapter->rx_ring->ims_val);
       
  3746 	else
       
  3747 		ew32(ICS, E1000_ICS_RXDMT0);
       
  3748 
       
  3749 	/* Force detection of hung controller every watchdog period */
       
  3750 	adapter->detect_tx_hung = 1;
       
  3751 
       
  3752 	/*
       
  3753 	 * With 82571 controllers, LAA may be overwritten due to controller
       
  3754 	 * reset from the other port. Set the appropriate LAA in RAR[0]
       
  3755 	 */
       
  3756 	if (e1000e_get_laa_state_82571(hw))
       
  3757 		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
       
  3758 
       
  3759 	/* Reset the timer */
       
  3760 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  3761 		mod_timer(&adapter->watchdog_timer,
       
  3762 			  round_jiffies(jiffies + 2 * HZ));
       
  3763 }
       
  3764 
       
  3765 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  3766 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  3767 #define E1000_TX_FLAGS_TSO		0x00000004
       
  3768 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  3769 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  3770 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  3771 
       
  3772 static int e1000_tso(struct e1000_adapter *adapter,
       
  3773 		     struct sk_buff *skb)
       
  3774 {
       
  3775 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  3776 	struct e1000_context_desc *context_desc;
       
  3777 	struct e1000_buffer *buffer_info;
       
  3778 	unsigned int i;
       
  3779 	u32 cmd_length = 0;
       
  3780 	u16 ipcse = 0, tucse, mss;
       
  3781 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
       
  3782 	int err;
       
  3783 
       
  3784 	if (skb_is_gso(skb)) {
       
  3785 		if (skb_header_cloned(skb)) {
       
  3786 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  3787 			if (err)
       
  3788 				return err;
       
  3789 		}
       
  3790 
       
  3791 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  3792 		mss = skb_shinfo(skb)->gso_size;
       
  3793 		if (skb->protocol == htons(ETH_P_IP)) {
       
  3794 			struct iphdr *iph = ip_hdr(skb);
       
  3795 			iph->tot_len = 0;
       
  3796 			iph->check = 0;
       
  3797 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
       
  3798 								 iph->daddr, 0,
       
  3799 								 IPPROTO_TCP,
       
  3800 								 0);
       
  3801 			cmd_length = E1000_TXD_CMD_IP;
       
  3802 			ipcse = skb_transport_offset(skb) - 1;
       
  3803 		} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
       
  3804 			ipv6_hdr(skb)->payload_len = 0;
       
  3805 			tcp_hdr(skb)->check =
       
  3806 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
       
  3807 						 &ipv6_hdr(skb)->daddr,
       
  3808 						 0, IPPROTO_TCP, 0);
       
  3809 			ipcse = 0;
       
  3810 		}
       
  3811 		ipcss = skb_network_offset(skb);
       
  3812 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
       
  3813 		tucss = skb_transport_offset(skb);
       
  3814 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
       
  3815 		tucse = 0;
       
  3816 
       
  3817 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  3818 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  3819 
       
  3820 		i = tx_ring->next_to_use;
       
  3821 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  3822 		buffer_info = &tx_ring->buffer_info[i];
       
  3823 
       
  3824 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  3825 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  3826 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  3827 		context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  3828 		context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  3829 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  3830 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  3831 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  3832 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  3833 
       
  3834 		buffer_info->time_stamp = jiffies;
       
  3835 		buffer_info->next_to_watch = i;
       
  3836 
       
  3837 		i++;
       
  3838 		if (i == tx_ring->count)
       
  3839 			i = 0;
       
  3840 		tx_ring->next_to_use = i;
       
  3841 
       
  3842 		return 1;
       
  3843 	}
       
  3844 
       
  3845 	return 0;
       
  3846 }
       
  3847 
       
  3848 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
       
  3849 {
       
  3850 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  3851 	struct e1000_context_desc *context_desc;
       
  3852 	struct e1000_buffer *buffer_info;
       
  3853 	unsigned int i;
       
  3854 	u8 css;
       
  3855 	u32 cmd_len = E1000_TXD_CMD_DEXT;
       
  3856 	__be16 protocol;
       
  3857 
       
  3858 	if (skb->ip_summed != CHECKSUM_PARTIAL)
       
  3859 		return 0;
       
  3860 
       
  3861 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
       
  3862 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
       
  3863 	else
       
  3864 		protocol = skb->protocol;
       
  3865 
       
  3866 	switch (protocol) {
       
  3867 	case cpu_to_be16(ETH_P_IP):
       
  3868 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
       
  3869 			cmd_len |= E1000_TXD_CMD_TCP;
       
  3870 		break;
       
  3871 	case cpu_to_be16(ETH_P_IPV6):
       
  3872 		/* XXX not handling all IPV6 headers */
       
  3873 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
       
  3874 			cmd_len |= E1000_TXD_CMD_TCP;
       
  3875 		break;
       
  3876 	default:
       
  3877 		if (unlikely(net_ratelimit()))
       
  3878 			e_warn("checksum_partial proto=%x!\n",
       
  3879 			       be16_to_cpu(protocol));
       
  3880 		break;
       
  3881 	}
       
  3882 
       
  3883 	css = skb_transport_offset(skb);
       
  3884 
       
  3885 	i = tx_ring->next_to_use;
       
  3886 	buffer_info = &tx_ring->buffer_info[i];
       
  3887 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  3888 
       
  3889 	context_desc->lower_setup.ip_config = 0;
       
  3890 	context_desc->upper_setup.tcp_fields.tucss = css;
       
  3891 	context_desc->upper_setup.tcp_fields.tucso =
       
  3892 				css + skb->csum_offset;
       
  3893 	context_desc->upper_setup.tcp_fields.tucse = 0;
       
  3894 	context_desc->tcp_seg_setup.data = 0;
       
  3895 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
       
  3896 
       
  3897 	buffer_info->time_stamp = jiffies;
       
  3898 	buffer_info->next_to_watch = i;
       
  3899 
       
  3900 	i++;
       
  3901 	if (i == tx_ring->count)
       
  3902 		i = 0;
       
  3903 	tx_ring->next_to_use = i;
       
  3904 
       
  3905 	return 1;
       
  3906 }
       
  3907 
       
  3908 #define E1000_MAX_PER_TXD	8192
       
  3909 #define E1000_MAX_TXD_PWR	12
       
  3910 
       
  3911 static int e1000_tx_map(struct e1000_adapter *adapter,
       
  3912 			struct sk_buff *skb, unsigned int first,
       
  3913 			unsigned int max_per_txd, unsigned int nr_frags,
       
  3914 			unsigned int mss)
       
  3915 {
       
  3916 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  3917 	struct e1000_buffer *buffer_info;
       
  3918 	unsigned int len = skb_headlen(skb);
       
  3919 	unsigned int offset, size, count = 0, i;
       
  3920 	unsigned int f;
       
  3921 	dma_addr_t *map;
       
  3922 
       
  3923 	i = tx_ring->next_to_use;
       
  3924 
       
  3925 	if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
       
  3926 		dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
       
  3927 		adapter->tx_dma_failed++;
       
  3928 		return 0;
       
  3929 	}
       
  3930 
       
  3931 	map = skb_shinfo(skb)->dma_maps;
       
  3932 	offset = 0;
       
  3933 
       
  3934 	while (len) {
       
  3935 		buffer_info = &tx_ring->buffer_info[i];
       
  3936 		size = min(len, max_per_txd);
       
  3937 
       
  3938 		buffer_info->length = size;
       
  3939 		buffer_info->time_stamp = jiffies;
       
  3940 		buffer_info->next_to_watch = i;
       
  3941 		buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
       
  3942 		count++;
       
  3943 
       
  3944 		len -= size;
       
  3945 		offset += size;
       
  3946 
       
  3947 		if (len) {
       
  3948 			i++;
       
  3949 			if (i == tx_ring->count)
       
  3950 				i = 0;
       
  3951 		}
       
  3952 	}
       
  3953 
       
  3954 	for (f = 0; f < nr_frags; f++) {
       
  3955 		struct skb_frag_struct *frag;
       
  3956 
       
  3957 		frag = &skb_shinfo(skb)->frags[f];
       
  3958 		len = frag->size;
       
  3959 		offset = 0;
       
  3960 
       
  3961 		while (len) {
       
  3962 			i++;
       
  3963 			if (i == tx_ring->count)
       
  3964 				i = 0;
       
  3965 
       
  3966 			buffer_info = &tx_ring->buffer_info[i];
       
  3967 			size = min(len, max_per_txd);
       
  3968 
       
  3969 			buffer_info->length = size;
       
  3970 			buffer_info->time_stamp = jiffies;
       
  3971 			buffer_info->next_to_watch = i;
       
  3972 			buffer_info->dma = map[f] + offset;
       
  3973 
       
  3974 			len -= size;
       
  3975 			offset += size;
       
  3976 			count++;
       
  3977 		}
       
  3978 	}
       
  3979 
       
  3980 	tx_ring->buffer_info[i].skb = skb;
       
  3981 	tx_ring->buffer_info[first].next_to_watch = i;
       
  3982 
       
  3983 	return count;
       
  3984 }
       
  3985 
       
  3986 static void e1000_tx_queue(struct e1000_adapter *adapter,
       
  3987 			   int tx_flags, int count)
       
  3988 {
       
  3989 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  3990 	struct e1000_tx_desc *tx_desc = NULL;
       
  3991 	struct e1000_buffer *buffer_info;
       
  3992 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  3993 	unsigned int i;
       
  3994 
       
  3995 	if (tx_flags & E1000_TX_FLAGS_TSO) {
       
  3996 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  3997 			     E1000_TXD_CMD_TSE;
       
  3998 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  3999 
       
  4000 		if (tx_flags & E1000_TX_FLAGS_IPV4)
       
  4001 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  4002 	}
       
  4003 
       
  4004 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
       
  4005 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  4006 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  4007 	}
       
  4008 
       
  4009 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
       
  4010 		txd_lower |= E1000_TXD_CMD_VLE;
       
  4011 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  4012 	}
       
  4013 
       
  4014 	i = tx_ring->next_to_use;
       
  4015 
       
  4016 	while (count--) {
       
  4017 		buffer_info = &tx_ring->buffer_info[i];
       
  4018 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  4019 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4020 		tx_desc->lower.data =
       
  4021 			cpu_to_le32(txd_lower | buffer_info->length);
       
  4022 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  4023 
       
  4024 		i++;
       
  4025 		if (i == tx_ring->count)
       
  4026 			i = 0;
       
  4027 	}
       
  4028 
       
  4029 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  4030 
       
  4031 	/*
       
  4032 	 * Force memory writes to complete before letting h/w
       
  4033 	 * know there are new descriptors to fetch.  (Only
       
  4034 	 * applicable for weak-ordered memory model archs,
       
  4035 	 * such as IA-64).
       
  4036 	 */
       
  4037 	wmb();
       
  4038 
       
  4039 	tx_ring->next_to_use = i;
       
  4040 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
       
  4041 	/*
       
  4042 	 * we need this if more than one processor can write to our tail
       
  4043 	 * at a time, it synchronizes IO on IA64/Altix systems
       
  4044 	 */
       
  4045 	mmiowb();
       
  4046 }
       
  4047 
       
  4048 #define MINIMUM_DHCP_PACKET_SIZE 282
       
  4049 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
       
  4050 				    struct sk_buff *skb)
       
  4051 {
       
  4052 	struct e1000_hw *hw =  &adapter->hw;
       
  4053 	u16 length, offset;
       
  4054 
       
  4055 	if (vlan_tx_tag_present(skb)) {
       
  4056 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
       
  4057 		    && (adapter->hw.mng_cookie.status &
       
  4058 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
       
  4059 			return 0;
       
  4060 	}
       
  4061 
       
  4062 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
       
  4063 		return 0;
       
  4064 
       
  4065 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
       
  4066 		return 0;
       
  4067 
       
  4068 	{
       
  4069 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
       
  4070 		struct udphdr *udp;
       
  4071 
       
  4072 		if (ip->protocol != IPPROTO_UDP)
       
  4073 			return 0;
       
  4074 
       
  4075 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
       
  4076 		if (ntohs(udp->dest) != 67)
       
  4077 			return 0;
       
  4078 
       
  4079 		offset = (u8 *)udp + 8 - skb->data;
       
  4080 		length = skb->len - offset;
       
  4081 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
       
  4082 	}
       
  4083 
       
  4084 	return 0;
       
  4085 }
       
  4086 
       
  4087 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  4088 {
       
  4089 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4090 
       
  4091 	netif_stop_queue(netdev);
       
  4092 	/*
       
  4093 	 * Herbert's original patch had:
       
  4094 	 *  smp_mb__after_netif_stop_queue();
       
  4095 	 * but since that doesn't exist yet, just open code it.
       
  4096 	 */
       
  4097 	smp_mb();
       
  4098 
       
  4099 	/*
       
  4100 	 * We need to check again in a case another CPU has just
       
  4101 	 * made room available.
       
  4102 	 */
       
  4103 	if (e1000_desc_unused(adapter->tx_ring) < size)
       
  4104 		return -EBUSY;
       
  4105 
       
  4106 	/* A reprieve! */
       
  4107 	netif_start_queue(netdev);
       
  4108 	++adapter->restart_queue;
       
  4109 	return 0;
       
  4110 }
       
  4111 
       
  4112 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  4113 {
       
  4114 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4115 
       
  4116 	if (e1000_desc_unused(adapter->tx_ring) >= size)
       
  4117 		return 0;
       
  4118 	return __e1000_maybe_stop_tx(netdev, size);
       
  4119 }
       
  4120 
       
  4121 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  4122 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
       
  4123 				    struct net_device *netdev)
       
  4124 {
       
  4125 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4126 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  4127 	unsigned int first;
       
  4128 	unsigned int max_per_txd = E1000_MAX_PER_TXD;
       
  4129 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  4130 	unsigned int tx_flags = 0;
       
  4131 	unsigned int len = skb->len - skb->data_len;
       
  4132 	unsigned int nr_frags;
       
  4133 	unsigned int mss;
       
  4134 	int count = 0;
       
  4135 	int tso;
       
  4136 	unsigned int f;
       
  4137 
       
  4138 	if (test_bit(__E1000_DOWN, &adapter->state)) {
       
  4139 		dev_kfree_skb_any(skb);
       
  4140 		return NETDEV_TX_OK;
       
  4141 	}
       
  4142 
       
  4143 	if (skb->len <= 0) {
       
  4144 		dev_kfree_skb_any(skb);
       
  4145 		return NETDEV_TX_OK;
       
  4146 	}
       
  4147 
       
  4148 	mss = skb_shinfo(skb)->gso_size;
       
  4149 	/*
       
  4150 	 * The controller does a simple calculation to
       
  4151 	 * make sure there is enough room in the FIFO before
       
  4152 	 * initiating the DMA for each buffer.  The calc is:
       
  4153 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  4154 	 * overrun the FIFO, adjust the max buffer len if mss
       
  4155 	 * drops.
       
  4156 	 */
       
  4157 	if (mss) {
       
  4158 		u8 hdr_len;
       
  4159 		max_per_txd = min(mss << 2, max_per_txd);
       
  4160 		max_txd_pwr = fls(max_per_txd) - 1;
       
  4161 
       
  4162 		/*
       
  4163 		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
       
  4164 		 * points to just header, pull a few bytes of payload from
       
  4165 		 * frags into skb->data
       
  4166 		 */
       
  4167 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  4168 		/*
       
  4169 		 * we do this workaround for ES2LAN, but it is un-necessary,
       
  4170 		 * avoiding it could save a lot of cycles
       
  4171 		 */
       
  4172 		if (skb->data_len && (hdr_len == len)) {
       
  4173 			unsigned int pull_size;
       
  4174 
       
  4175 			pull_size = min((unsigned int)4, skb->data_len);
       
  4176 			if (!__pskb_pull_tail(skb, pull_size)) {
       
  4177 				e_err("__pskb_pull_tail failed.\n");
       
  4178 				dev_kfree_skb_any(skb);
       
  4179 				return NETDEV_TX_OK;
       
  4180 			}
       
  4181 			len = skb->len - skb->data_len;
       
  4182 		}
       
  4183 	}
       
  4184 
       
  4185 	/* reserve a descriptor for the offload context */
       
  4186 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
       
  4187 		count++;
       
  4188 	count++;
       
  4189 
       
  4190 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  4191 
       
  4192 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  4193 	for (f = 0; f < nr_frags; f++)
       
  4194 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
       
  4195 				       max_txd_pwr);
       
  4196 
       
  4197 	if (adapter->hw.mac.tx_pkt_filtering)
       
  4198 		e1000_transfer_dhcp_info(adapter, skb);
       
  4199 
       
  4200 	/*
       
  4201 	 * need: count + 2 desc gap to keep tail from touching
       
  4202 	 * head, otherwise try next time
       
  4203 	 */
       
  4204 	if (e1000_maybe_stop_tx(netdev, count + 2))
       
  4205 		return NETDEV_TX_BUSY;
       
  4206 
       
  4207 	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
       
  4208 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  4209 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  4210 	}
       
  4211 
       
  4212 	first = tx_ring->next_to_use;
       
  4213 
       
  4214 	tso = e1000_tso(adapter, skb);
       
  4215 	if (tso < 0) {
       
  4216 		dev_kfree_skb_any(skb);
       
  4217 		return NETDEV_TX_OK;
       
  4218 	}
       
  4219 
       
  4220 	if (tso)
       
  4221 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  4222 	else if (e1000_tx_csum(adapter, skb))
       
  4223 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  4224 
       
  4225 	/*
       
  4226 	 * Old method was to assume IPv4 packet by default if TSO was enabled.
       
  4227 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
       
  4228 	 * no longer assume, we must.
       
  4229 	 */
       
  4230 	if (skb->protocol == htons(ETH_P_IP))
       
  4231 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  4232 
       
  4233 	/* if count is 0 then mapping error has occured */
       
  4234 	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
       
  4235 	if (count) {
       
  4236 		e1000_tx_queue(adapter, tx_flags, count);
       
  4237 		/* Make sure there is space in the ring for the next send. */
       
  4238 		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
       
  4239 
       
  4240 	} else {
       
  4241 		dev_kfree_skb_any(skb);
       
  4242 		tx_ring->buffer_info[first].time_stamp = 0;
       
  4243 		tx_ring->next_to_use = first;
       
  4244 	}
       
  4245 
       
  4246 	return NETDEV_TX_OK;
       
  4247 }
       
  4248 
       
  4249 /**
       
  4250  * e1000_tx_timeout - Respond to a Tx Hang
       
  4251  * @netdev: network interface device structure
       
  4252  **/
       
  4253 static void e1000_tx_timeout(struct net_device *netdev)
       
  4254 {
       
  4255 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4256 
       
  4257 	/* Do the reset outside of interrupt context */
       
  4258 	adapter->tx_timeout_count++;
       
  4259 	schedule_work(&adapter->reset_task);
       
  4260 }
       
  4261 
       
  4262 static void e1000_reset_task(struct work_struct *work)
       
  4263 {
       
  4264 	struct e1000_adapter *adapter;
       
  4265 	adapter = container_of(work, struct e1000_adapter, reset_task);
       
  4266 
       
  4267 	e1000e_reinit_locked(adapter);
       
  4268 }
       
  4269 
       
  4270 /**
       
  4271  * e1000_get_stats - Get System Network Statistics
       
  4272  * @netdev: network interface device structure
       
  4273  *
       
  4274  * Returns the address of the device statistics structure.
       
  4275  * The statistics are actually updated from the timer callback.
       
  4276  **/
       
  4277 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
       
  4278 {
       
  4279 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4280 
       
  4281 	/* only return the current stats */
       
  4282 	return &adapter->net_stats;
       
  4283 }
       
  4284 
       
  4285 /**
       
  4286  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  4287  * @netdev: network interface device structure
       
  4288  * @new_mtu: new value for maximum frame size
       
  4289  *
       
  4290  * Returns 0 on success, negative on failure
       
  4291  **/
       
  4292 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  4293 {
       
  4294 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4295 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
       
  4296 
       
  4297 	/* Jumbo frame support */
       
  4298 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
       
  4299 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
       
  4300 		e_err("Jumbo Frames not supported.\n");
       
  4301 		return -EINVAL;
       
  4302 	}
       
  4303 
       
  4304 	/* Supported frame sizes */
       
  4305 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
       
  4306 	    (max_frame > adapter->max_hw_frame_size)) {
       
  4307 		e_err("Unsupported MTU setting\n");
       
  4308 		return -EINVAL;
       
  4309 	}
       
  4310 
       
  4311 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
  4312 		msleep(1);
       
  4313 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
       
  4314 	adapter->max_frame_size = max_frame;
       
  4315 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
       
  4316 	netdev->mtu = new_mtu;
       
  4317 	if (netif_running(netdev))
       
  4318 		e1000e_down(adapter);
       
  4319 
       
  4320 	/*
       
  4321 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  4322 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  4323 	 * larger slab size.
       
  4324 	 * i.e. RXBUFFER_2048 --> size-4096 slab
       
  4325 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
       
  4326 	 * fragmented skbs
       
  4327 	 */
       
  4328 
       
  4329 	if (max_frame <= 2048)
       
  4330 		adapter->rx_buffer_len = 2048;
       
  4331 	else
       
  4332 		adapter->rx_buffer_len = 4096;
       
  4333 
       
  4334 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  4335 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
       
  4336 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
       
  4337 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
       
  4338 					 + ETH_FCS_LEN;
       
  4339 
       
  4340 	if (netif_running(netdev))
       
  4341 		e1000e_up(adapter);
       
  4342 	else
       
  4343 		e1000e_reset(adapter);
       
  4344 
       
  4345 	clear_bit(__E1000_RESETTING, &adapter->state);
       
  4346 
       
  4347 	return 0;
       
  4348 }
       
  4349 
       
  4350 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
  4351 			   int cmd)
       
  4352 {
       
  4353 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4354 	struct mii_ioctl_data *data = if_mii(ifr);
       
  4355 
       
  4356 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
       
  4357 		return -EOPNOTSUPP;
       
  4358 
       
  4359 	switch (cmd) {
       
  4360 	case SIOCGMIIPHY:
       
  4361 		data->phy_id = adapter->hw.phy.addr;
       
  4362 		break;
       
  4363 	case SIOCGMIIREG:
       
  4364 		switch (data->reg_num & 0x1F) {
       
  4365 		case MII_BMCR:
       
  4366 			data->val_out = adapter->phy_regs.bmcr;
       
  4367 			break;
       
  4368 		case MII_BMSR:
       
  4369 			data->val_out = adapter->phy_regs.bmsr;
       
  4370 			break;
       
  4371 		case MII_PHYSID1:
       
  4372 			data->val_out = (adapter->hw.phy.id >> 16);
       
  4373 			break;
       
  4374 		case MII_PHYSID2:
       
  4375 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
       
  4376 			break;
       
  4377 		case MII_ADVERTISE:
       
  4378 			data->val_out = adapter->phy_regs.advertise;
       
  4379 			break;
       
  4380 		case MII_LPA:
       
  4381 			data->val_out = adapter->phy_regs.lpa;
       
  4382 			break;
       
  4383 		case MII_EXPANSION:
       
  4384 			data->val_out = adapter->phy_regs.expansion;
       
  4385 			break;
       
  4386 		case MII_CTRL1000:
       
  4387 			data->val_out = adapter->phy_regs.ctrl1000;
       
  4388 			break;
       
  4389 		case MII_STAT1000:
       
  4390 			data->val_out = adapter->phy_regs.stat1000;
       
  4391 			break;
       
  4392 		case MII_ESTATUS:
       
  4393 			data->val_out = adapter->phy_regs.estatus;
       
  4394 			break;
       
  4395 		default:
       
  4396 			return -EIO;
       
  4397 		}
       
  4398 		break;
       
  4399 	case SIOCSMIIREG:
       
  4400 	default:
       
  4401 		return -EOPNOTSUPP;
       
  4402 	}
       
  4403 	return 0;
       
  4404 }
       
  4405 
       
  4406 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4407 {
       
  4408 	switch (cmd) {
       
  4409 	case SIOCGMIIPHY:
       
  4410 	case SIOCGMIIREG:
       
  4411 	case SIOCSMIIREG:
       
  4412 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  4413 	default:
       
  4414 		return -EOPNOTSUPP;
       
  4415 	}
       
  4416 }
       
  4417 
       
  4418 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
       
  4419 {
       
  4420 	struct e1000_hw *hw = &adapter->hw;
       
  4421 	u32 i, mac_reg;
       
  4422 	u16 phy_reg;
       
  4423 	int retval = 0;
       
  4424 
       
  4425 	/* copy MAC RARs to PHY RARs */
       
  4426 	for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
       
  4427 		mac_reg = er32(RAL(i));
       
  4428 		e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
       
  4429 		e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
       
  4430 		mac_reg = er32(RAH(i));
       
  4431 		e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
       
  4432 		e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
       
  4433 	}
       
  4434 
       
  4435 	/* copy MAC MTA to PHY MTA */
       
  4436 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
       
  4437 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
       
  4438 		e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
       
  4439 		e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
       
  4440 	}
       
  4441 
       
  4442 	/* configure PHY Rx Control register */
       
  4443 	e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
       
  4444 	mac_reg = er32(RCTL);
       
  4445 	if (mac_reg & E1000_RCTL_UPE)
       
  4446 		phy_reg |= BM_RCTL_UPE;
       
  4447 	if (mac_reg & E1000_RCTL_MPE)
       
  4448 		phy_reg |= BM_RCTL_MPE;
       
  4449 	phy_reg &= ~(BM_RCTL_MO_MASK);
       
  4450 	if (mac_reg & E1000_RCTL_MO_3)
       
  4451 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
       
  4452 				<< BM_RCTL_MO_SHIFT);
       
  4453 	if (mac_reg & E1000_RCTL_BAM)
       
  4454 		phy_reg |= BM_RCTL_BAM;
       
  4455 	if (mac_reg & E1000_RCTL_PMCF)
       
  4456 		phy_reg |= BM_RCTL_PMCF;
       
  4457 	mac_reg = er32(CTRL);
       
  4458 	if (mac_reg & E1000_CTRL_RFCE)
       
  4459 		phy_reg |= BM_RCTL_RFCE;
       
  4460 	e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
       
  4461 
       
  4462 	/* enable PHY wakeup in MAC register */
       
  4463 	ew32(WUFC, wufc);
       
  4464 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
       
  4465 
       
  4466 	/* configure and enable PHY wakeup in PHY registers */
       
  4467 	e1e_wphy(&adapter->hw, BM_WUFC, wufc);
       
  4468 	e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
       
  4469 
       
  4470 	/* activate PHY wakeup */
       
  4471 	retval = hw->phy.ops.acquire_phy(hw);
       
  4472 	if (retval) {
       
  4473 		e_err("Could not acquire PHY\n");
       
  4474 		return retval;
       
  4475 	}
       
  4476 	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  4477 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
       
  4478 	retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
       
  4479 	if (retval) {
       
  4480 		e_err("Could not read PHY page 769\n");
       
  4481 		goto out;
       
  4482 	}
       
  4483 	phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
       
  4484 	retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
       
  4485 	if (retval)
       
  4486 		e_err("Could not set PHY Host Wakeup bit\n");
       
  4487 out:
       
  4488 	hw->phy.ops.release_phy(hw);
       
  4489 
       
  4490 	return retval;
       
  4491 }
       
  4492 
       
  4493 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
       
  4494 {
       
  4495 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4496 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4497 	struct e1000_hw *hw = &adapter->hw;
       
  4498 	u32 ctrl, ctrl_ext, rctl, status;
       
  4499 	u32 wufc = adapter->wol;
       
  4500 	int retval = 0;
       
  4501 
       
  4502 	netif_device_detach(netdev);
       
  4503 
       
  4504 	if (netif_running(netdev)) {
       
  4505 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
       
  4506 		e1000e_down(adapter);
       
  4507 		e1000_free_irq(adapter);
       
  4508 	}
       
  4509 	e1000e_reset_interrupt_capability(adapter);
       
  4510 
       
  4511 	retval = pci_save_state(pdev);
       
  4512 	if (retval)
       
  4513 		return retval;
       
  4514 
       
  4515 	status = er32(STATUS);
       
  4516 	if (status & E1000_STATUS_LU)
       
  4517 		wufc &= ~E1000_WUFC_LNKC;
       
  4518 
       
  4519 	if (wufc) {
       
  4520 		e1000_setup_rctl(adapter);
       
  4521 		e1000_set_multi(netdev);
       
  4522 
       
  4523 		/* turn on all-multi mode if wake on multicast is enabled */
       
  4524 		if (wufc & E1000_WUFC_MC) {
       
  4525 			rctl = er32(RCTL);
       
  4526 			rctl |= E1000_RCTL_MPE;
       
  4527 			ew32(RCTL, rctl);
       
  4528 		}
       
  4529 
       
  4530 		ctrl = er32(CTRL);
       
  4531 		/* advertise wake from D3Cold */
       
  4532 		#define E1000_CTRL_ADVD3WUC 0x00100000
       
  4533 		/* phy power management enable */
       
  4534 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  4535 		ctrl |= E1000_CTRL_ADVD3WUC;
       
  4536 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
       
  4537 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
       
  4538 		ew32(CTRL, ctrl);
       
  4539 
       
  4540 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
       
  4541 		    adapter->hw.phy.media_type ==
       
  4542 		    e1000_media_type_internal_serdes) {
       
  4543 			/* keep the laser running in D3 */
       
  4544 			ctrl_ext = er32(CTRL_EXT);
       
  4545 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
       
  4546 			ew32(CTRL_EXT, ctrl_ext);
       
  4547 		}
       
  4548 
       
  4549 		if (adapter->flags & FLAG_IS_ICH)
       
  4550 			e1000e_disable_gig_wol_ich8lan(&adapter->hw);
       
  4551 
       
  4552 		/* Allow time for pending master requests to run */
       
  4553 		e1000e_disable_pcie_master(&adapter->hw);
       
  4554 
       
  4555 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
       
  4556 			/* enable wakeup by the PHY */
       
  4557 			retval = e1000_init_phy_wakeup(adapter, wufc);
       
  4558 			if (retval)
       
  4559 				return retval;
       
  4560 		} else {
       
  4561 			/* enable wakeup by the MAC */
       
  4562 			ew32(WUFC, wufc);
       
  4563 			ew32(WUC, E1000_WUC_PME_EN);
       
  4564 		}
       
  4565 	} else {
       
  4566 		ew32(WUC, 0);
       
  4567 		ew32(WUFC, 0);
       
  4568 	}
       
  4569 
       
  4570 	*enable_wake = !!wufc;
       
  4571 
       
  4572 	/* make sure adapter isn't asleep if manageability is enabled */
       
  4573 	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
       
  4574 	    (hw->mac.ops.check_mng_mode(hw)))
       
  4575 		*enable_wake = true;
       
  4576 
       
  4577 	if (adapter->hw.phy.type == e1000_phy_igp_3)
       
  4578 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
       
  4579 
       
  4580 	/*
       
  4581 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  4582 	 * would have already happened in close and is redundant.
       
  4583 	 */
       
  4584 	e1000_release_hw_control(adapter);
       
  4585 
       
  4586 	pci_disable_device(pdev);
       
  4587 
       
  4588 	return 0;
       
  4589 }
       
  4590 
       
  4591 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
       
  4592 {
       
  4593 	if (sleep && wake) {
       
  4594 		pci_prepare_to_sleep(pdev);
       
  4595 		return;
       
  4596 	}
       
  4597 
       
  4598 	pci_wake_from_d3(pdev, wake);
       
  4599 	pci_set_power_state(pdev, PCI_D3hot);
       
  4600 }
       
  4601 
       
  4602 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
       
  4603                                     bool wake)
       
  4604 {
       
  4605 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4606 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4607 
       
  4608 	/*
       
  4609 	 * The pci-e switch on some quad port adapters will report a
       
  4610 	 * correctable error when the MAC transitions from D0 to D3.  To
       
  4611 	 * prevent this we need to mask off the correctable errors on the
       
  4612 	 * downstream port of the pci-e switch.
       
  4613 	 */
       
  4614 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
       
  4615 		struct pci_dev *us_dev = pdev->bus->self;
       
  4616 		int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
       
  4617 		u16 devctl;
       
  4618 
       
  4619 		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
       
  4620 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
       
  4621 		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
       
  4622 
       
  4623 		e1000_power_off(pdev, sleep, wake);
       
  4624 
       
  4625 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
       
  4626 	} else {
       
  4627 		e1000_power_off(pdev, sleep, wake);
       
  4628 	}
       
  4629 }
       
  4630 
       
  4631 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
       
  4632 {
       
  4633 	int pos;
       
  4634 	u16 val;
       
  4635 
       
  4636 	/*
       
  4637 	 * 82573 workaround - disable L1 ASPM on mobile chipsets
       
  4638 	 *
       
  4639 	 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
       
  4640 	 * resulting in lost data or garbage information on the pci-e link
       
  4641 	 * level. This could result in (false) bad EEPROM checksum errors,
       
  4642 	 * long ping times (up to 2s) or even a system freeze/hang.
       
  4643 	 *
       
  4644 	 * Unfortunately this feature saves about 1W power consumption when
       
  4645 	 * active.
       
  4646 	 */
       
  4647 	pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
       
  4648 	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
       
  4649 	if (val & 0x2) {
       
  4650 		dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
       
  4651 		val &= ~0x2;
       
  4652 		pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
       
  4653 	}
       
  4654 }
       
  4655 
       
  4656 #ifdef CONFIG_PM
       
  4657 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
       
  4658 {
       
  4659 	int retval;
       
  4660 	bool wake;
       
  4661 
       
  4662 	retval = __e1000_shutdown(pdev, &wake);
       
  4663 	if (!retval)
       
  4664 		e1000_complete_shutdown(pdev, true, wake);
       
  4665 
       
  4666 	return retval;
       
  4667 }
       
  4668 
       
  4669 static int e1000_resume(struct pci_dev *pdev)
       
  4670 {
       
  4671 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4672 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4673 	struct e1000_hw *hw = &adapter->hw;
       
  4674 	u32 err;
       
  4675 
       
  4676 	pci_set_power_state(pdev, PCI_D0);
       
  4677 	pci_restore_state(pdev);
       
  4678 	e1000e_disable_l1aspm(pdev);
       
  4679 
       
  4680 	err = pci_enable_device_mem(pdev);
       
  4681 	if (err) {
       
  4682 		dev_err(&pdev->dev,
       
  4683 			"Cannot enable PCI device from suspend\n");
       
  4684 		return err;
       
  4685 	}
       
  4686 
       
  4687 	pci_set_master(pdev);
       
  4688 
       
  4689 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4690 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4691 
       
  4692 	e1000e_set_interrupt_capability(adapter);
       
  4693 	if (netif_running(netdev)) {
       
  4694 		err = e1000_request_irq(adapter);
       
  4695 		if (err)
       
  4696 			return err;
       
  4697 	}
       
  4698 
       
  4699 	e1000e_power_up_phy(adapter);
       
  4700 
       
  4701 	/* report the system wakeup cause from S3/S4 */
       
  4702 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
       
  4703 		u16 phy_data;
       
  4704 
       
  4705 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
       
  4706 		if (phy_data) {
       
  4707 			e_info("PHY Wakeup cause - %s\n",
       
  4708 				phy_data & E1000_WUS_EX ? "Unicast Packet" :
       
  4709 				phy_data & E1000_WUS_MC ? "Multicast Packet" :
       
  4710 				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
       
  4711 				phy_data & E1000_WUS_MAG ? "Magic Packet" :
       
  4712 				phy_data & E1000_WUS_LNKC ? "Link Status "
       
  4713 				" Change" : "other");
       
  4714 		}
       
  4715 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
       
  4716 	} else {
       
  4717 		u32 wus = er32(WUS);
       
  4718 		if (wus) {
       
  4719 			e_info("MAC Wakeup cause - %s\n",
       
  4720 				wus & E1000_WUS_EX ? "Unicast Packet" :
       
  4721 				wus & E1000_WUS_MC ? "Multicast Packet" :
       
  4722 				wus & E1000_WUS_BC ? "Broadcast Packet" :
       
  4723 				wus & E1000_WUS_MAG ? "Magic Packet" :
       
  4724 				wus & E1000_WUS_LNKC ? "Link Status Change" :
       
  4725 				"other");
       
  4726 		}
       
  4727 		ew32(WUS, ~0);
       
  4728 	}
       
  4729 
       
  4730 	e1000e_reset(adapter);
       
  4731 
       
  4732 	e1000_init_manageability(adapter);
       
  4733 
       
  4734 	if (netif_running(netdev))
       
  4735 		e1000e_up(adapter);
       
  4736 
       
  4737 	netif_device_attach(netdev);
       
  4738 
       
  4739 	/*
       
  4740 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  4741 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  4742 	 * under the control of the driver.
       
  4743 	 */
       
  4744 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  4745 		e1000_get_hw_control(adapter);
       
  4746 
       
  4747 	return 0;
       
  4748 }
       
  4749 #endif
       
  4750 
       
  4751 static void e1000_shutdown(struct pci_dev *pdev)
       
  4752 {
       
  4753 	bool wake = false;
       
  4754 
       
  4755 	__e1000_shutdown(pdev, &wake);
       
  4756 
       
  4757 	if (system_state == SYSTEM_POWER_OFF)
       
  4758 		e1000_complete_shutdown(pdev, false, wake);
       
  4759 }
       
  4760 
       
  4761 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  4762 /*
       
  4763  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  4764  * without having to re-enable interrupts. It's not called while
       
  4765  * the interrupt routine is executing.
       
  4766  */
       
  4767 static void e1000_netpoll(struct net_device *netdev)
       
  4768 {
       
  4769 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4770 
       
  4771 	disable_irq(adapter->pdev->irq);
       
  4772 	e1000_intr(adapter->pdev->irq, netdev);
       
  4773 
       
  4774 	enable_irq(adapter->pdev->irq);
       
  4775 }
       
  4776 #endif
       
  4777 
       
  4778 /**
       
  4779  * e1000_io_error_detected - called when PCI error is detected
       
  4780  * @pdev: Pointer to PCI device
       
  4781  * @state: The current pci connection state
       
  4782  *
       
  4783  * This function is called after a PCI bus error affecting
       
  4784  * this device has been detected.
       
  4785  */
       
  4786 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
  4787 						pci_channel_state_t state)
       
  4788 {
       
  4789 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4790 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4791 
       
  4792 	netif_device_detach(netdev);
       
  4793 
       
  4794 	if (state == pci_channel_io_perm_failure)
       
  4795 		return PCI_ERS_RESULT_DISCONNECT;
       
  4796 
       
  4797 	if (netif_running(netdev))
       
  4798 		e1000e_down(adapter);
       
  4799 	pci_disable_device(pdev);
       
  4800 
       
  4801 	/* Request a slot slot reset. */
       
  4802 	return PCI_ERS_RESULT_NEED_RESET;
       
  4803 }
       
  4804 
       
  4805 /**
       
  4806  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  4807  * @pdev: Pointer to PCI device
       
  4808  *
       
  4809  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  4810  * resembles the first-half of the e1000_resume routine.
       
  4811  */
       
  4812 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  4813 {
       
  4814 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4815 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4816 	struct e1000_hw *hw = &adapter->hw;
       
  4817 	int err;
       
  4818 	pci_ers_result_t result;
       
  4819 
       
  4820 	e1000e_disable_l1aspm(pdev);
       
  4821 	err = pci_enable_device_mem(pdev);
       
  4822 	if (err) {
       
  4823 		dev_err(&pdev->dev,
       
  4824 			"Cannot re-enable PCI device after reset.\n");
       
  4825 		result = PCI_ERS_RESULT_DISCONNECT;
       
  4826 	} else {
       
  4827 		pci_set_master(pdev);
       
  4828 		pci_restore_state(pdev);
       
  4829 
       
  4830 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4831 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4832 
       
  4833 		e1000e_reset(adapter);
       
  4834 		ew32(WUS, ~0);
       
  4835 		result = PCI_ERS_RESULT_RECOVERED;
       
  4836 	}
       
  4837 
       
  4838 	pci_cleanup_aer_uncorrect_error_status(pdev);
       
  4839 
       
  4840 	return result;
       
  4841 }
       
  4842 
       
  4843 /**
       
  4844  * e1000_io_resume - called when traffic can start flowing again.
       
  4845  * @pdev: Pointer to PCI device
       
  4846  *
       
  4847  * This callback is called when the error recovery driver tells us that
       
  4848  * its OK to resume normal operation. Implementation resembles the
       
  4849  * second-half of the e1000_resume routine.
       
  4850  */
       
  4851 static void e1000_io_resume(struct pci_dev *pdev)
       
  4852 {
       
  4853 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4854 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4855 
       
  4856 	e1000_init_manageability(adapter);
       
  4857 
       
  4858 	if (netif_running(netdev)) {
       
  4859 		if (e1000e_up(adapter)) {
       
  4860 			dev_err(&pdev->dev,
       
  4861 				"can't bring device back up after reset\n");
       
  4862 			return;
       
  4863 		}
       
  4864 	}
       
  4865 
       
  4866 	netif_device_attach(netdev);
       
  4867 
       
  4868 	/*
       
  4869 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  4870 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  4871 	 * under the control of the driver.
       
  4872 	 */
       
  4873 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  4874 		e1000_get_hw_control(adapter);
       
  4875 
       
  4876 }
       
  4877 
       
  4878 static void e1000_print_device_info(struct e1000_adapter *adapter)
       
  4879 {
       
  4880 	struct e1000_hw *hw = &adapter->hw;
       
  4881 	struct net_device *netdev = adapter->netdev;
       
  4882 	u32 pba_num;
       
  4883 
       
  4884 	/* print bus type/speed/width info */
       
  4885 	e_info("(PCI Express:2.5GB/s:%s) %pM\n",
       
  4886 	       /* bus width */
       
  4887 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
       
  4888 	        "Width x1"),
       
  4889 	       /* MAC address */
       
  4890 	       netdev->dev_addr);
       
  4891 	e_info("Intel(R) PRO/%s Network Connection\n",
       
  4892 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
       
  4893 	e1000e_read_pba_num(hw, &pba_num);
       
  4894 	e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
       
  4895 	       hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
       
  4896 }
       
  4897 
       
  4898 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
       
  4899 {
       
  4900 	struct e1000_hw *hw = &adapter->hw;
       
  4901 	int ret_val;
       
  4902 	u16 buf = 0;
       
  4903 
       
  4904 	if (hw->mac.type != e1000_82573)
       
  4905 		return;
       
  4906 
       
  4907 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
       
  4908 	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
       
  4909 		/* Deep Smart Power Down (DSPD) */
       
  4910 		dev_warn(&adapter->pdev->dev,
       
  4911 			 "Warning: detected DSPD enabled in EEPROM\n");
       
  4912 	}
       
  4913 
       
  4914 	ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
       
  4915 	if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
       
  4916 		/* ASPM enable */
       
  4917 		dev_warn(&adapter->pdev->dev,
       
  4918 			 "Warning: detected ASPM enabled in EEPROM\n");
       
  4919 	}
       
  4920 }
       
  4921 
       
  4922 static const struct net_device_ops e1000e_netdev_ops = {
       
  4923 	.ndo_open		= e1000_open,
       
  4924 	.ndo_stop		= e1000_close,
       
  4925 	.ndo_start_xmit		= e1000_xmit_frame,
       
  4926 	.ndo_get_stats		= e1000_get_stats,
       
  4927 	.ndo_set_multicast_list	= e1000_set_multi,
       
  4928 	.ndo_set_mac_address	= e1000_set_mac,
       
  4929 	.ndo_change_mtu		= e1000_change_mtu,
       
  4930 	.ndo_do_ioctl		= e1000_ioctl,
       
  4931 	.ndo_tx_timeout		= e1000_tx_timeout,
       
  4932 	.ndo_validate_addr	= eth_validate_addr,
       
  4933 
       
  4934 	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
       
  4935 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
       
  4936 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
       
  4937 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  4938 	.ndo_poll_controller	= e1000_netpoll,
       
  4939 #endif
       
  4940 };
       
  4941 
       
  4942 /**
       
  4943  * e1000_probe - Device Initialization Routine
       
  4944  * @pdev: PCI device information struct
       
  4945  * @ent: entry in e1000_pci_tbl
       
  4946  *
       
  4947  * Returns 0 on success, negative on failure
       
  4948  *
       
  4949  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
  4950  * The OS initialization, configuring of the adapter private structure,
       
  4951  * and a hardware reset occur.
       
  4952  **/
       
  4953 static int __devinit e1000_probe(struct pci_dev *pdev,
       
  4954 				 const struct pci_device_id *ent)
       
  4955 {
       
  4956 	struct net_device *netdev;
       
  4957 	struct e1000_adapter *adapter;
       
  4958 	struct e1000_hw *hw;
       
  4959 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
       
  4960 	resource_size_t mmio_start, mmio_len;
       
  4961 	resource_size_t flash_start, flash_len;
       
  4962 
       
  4963 	static int cards_found;
       
  4964 	int i, err, pci_using_dac;
       
  4965 	u16 eeprom_data = 0;
       
  4966 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
       
  4967 
       
  4968 	e1000e_disable_l1aspm(pdev);
       
  4969 
       
  4970 	err = pci_enable_device_mem(pdev);
       
  4971 	if (err)
       
  4972 		return err;
       
  4973 
       
  4974 	pci_using_dac = 0;
       
  4975 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
       
  4976 	if (!err) {
       
  4977 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
       
  4978 		if (!err)
       
  4979 			pci_using_dac = 1;
       
  4980 	} else {
       
  4981 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
       
  4982 		if (err) {
       
  4983 			err = pci_set_consistent_dma_mask(pdev,
       
  4984 							  DMA_BIT_MASK(32));
       
  4985 			if (err) {
       
  4986 				dev_err(&pdev->dev, "No usable DMA "
       
  4987 					"configuration, aborting\n");
       
  4988 				goto err_dma;
       
  4989 			}
       
  4990 		}
       
  4991 	}
       
  4992 
       
  4993 	err = pci_request_selected_regions_exclusive(pdev,
       
  4994 	                                  pci_select_bars(pdev, IORESOURCE_MEM),
       
  4995 	                                  e1000e_driver_name);
       
  4996 	if (err)
       
  4997 		goto err_pci_reg;
       
  4998 
       
  4999 	/* AER (Advanced Error Reporting) hooks */
       
  5000 	pci_enable_pcie_error_reporting(pdev);
       
  5001 
       
  5002 	pci_set_master(pdev);
       
  5003 	/* PCI config space info */
       
  5004 	err = pci_save_state(pdev);
       
  5005 	if (err)
       
  5006 		goto err_alloc_etherdev;
       
  5007 
       
  5008 	err = -ENOMEM;
       
  5009 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
  5010 	if (!netdev)
       
  5011 		goto err_alloc_etherdev;
       
  5012 
       
  5013 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
  5014 
       
  5015 	pci_set_drvdata(pdev, netdev);
       
  5016 	adapter = netdev_priv(netdev);
       
  5017 	hw = &adapter->hw;
       
  5018 	adapter->netdev = netdev;
       
  5019 	adapter->pdev = pdev;
       
  5020 	adapter->ei = ei;
       
  5021 	adapter->pba = ei->pba;
       
  5022 	adapter->flags = ei->flags;
       
  5023 	adapter->flags2 = ei->flags2;
       
  5024 	adapter->hw.adapter = adapter;
       
  5025 	adapter->hw.mac.type = ei->mac;
       
  5026 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
       
  5027 	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
       
  5028 
       
  5029 	mmio_start = pci_resource_start(pdev, 0);
       
  5030 	mmio_len = pci_resource_len(pdev, 0);
       
  5031 
       
  5032 	err = -EIO;
       
  5033 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
       
  5034 	if (!adapter->hw.hw_addr)
       
  5035 		goto err_ioremap;
       
  5036 
       
  5037 	if ((adapter->flags & FLAG_HAS_FLASH) &&
       
  5038 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
       
  5039 		flash_start = pci_resource_start(pdev, 1);
       
  5040 		flash_len = pci_resource_len(pdev, 1);
       
  5041 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
       
  5042 		if (!adapter->hw.flash_address)
       
  5043 			goto err_flashmap;
       
  5044 	}
       
  5045 
       
  5046 	/* construct the net_device struct */
       
  5047 	netdev->netdev_ops		= &e1000e_netdev_ops;
       
  5048 	e1000e_set_ethtool_ops(netdev);
       
  5049 	netdev->watchdog_timeo		= 5 * HZ;
       
  5050 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
       
  5051 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
  5052 
       
  5053 	netdev->mem_start = mmio_start;
       
  5054 	netdev->mem_end = mmio_start + mmio_len;
       
  5055 
       
  5056 	adapter->bd_number = cards_found++;
       
  5057 
       
  5058 	e1000e_check_options(adapter);
       
  5059 
       
  5060 	/* setup adapter struct */
       
  5061 	err = e1000_sw_init(adapter);
       
  5062 	if (err)
       
  5063 		goto err_sw_init;
       
  5064 
       
  5065 	err = -EIO;
       
  5066 
       
  5067 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
       
  5068 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
       
  5069 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
       
  5070 
       
  5071 	err = ei->get_variants(adapter);
       
  5072 	if (err)
       
  5073 		goto err_hw_init;
       
  5074 
       
  5075 	if ((adapter->flags & FLAG_IS_ICH) &&
       
  5076 	    (adapter->flags & FLAG_READ_ONLY_NVM))
       
  5077 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
       
  5078 
       
  5079 	hw->mac.ops.get_bus_info(&adapter->hw);
       
  5080 
       
  5081 	adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  5082 
       
  5083 	/* Copper options */
       
  5084 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
       
  5085 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
       
  5086 		adapter->hw.phy.disable_polarity_correction = 0;
       
  5087 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
       
  5088 	}
       
  5089 
       
  5090 	if (e1000_check_reset_block(&adapter->hw))
       
  5091 		e_info("PHY reset is blocked due to SOL/IDER session.\n");
       
  5092 
       
  5093 	netdev->features = NETIF_F_SG |
       
  5094 			   NETIF_F_HW_CSUM |
       
  5095 			   NETIF_F_HW_VLAN_TX |
       
  5096 			   NETIF_F_HW_VLAN_RX;
       
  5097 
       
  5098 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
       
  5099 		netdev->features |= NETIF_F_HW_VLAN_FILTER;
       
  5100 
       
  5101 	netdev->features |= NETIF_F_TSO;
       
  5102 	netdev->features |= NETIF_F_TSO6;
       
  5103 
       
  5104 	netdev->vlan_features |= NETIF_F_TSO;
       
  5105 	netdev->vlan_features |= NETIF_F_TSO6;
       
  5106 	netdev->vlan_features |= NETIF_F_HW_CSUM;
       
  5107 	netdev->vlan_features |= NETIF_F_SG;
       
  5108 
       
  5109 	if (pci_using_dac)
       
  5110 		netdev->features |= NETIF_F_HIGHDMA;
       
  5111 
       
  5112 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
       
  5113 		adapter->flags |= FLAG_MNG_PT_ENABLED;
       
  5114 
       
  5115 	/*
       
  5116 	 * before reading the NVM, reset the controller to
       
  5117 	 * put the device in a known good starting state
       
  5118 	 */
       
  5119 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
       
  5120 
       
  5121 	/*
       
  5122 	 * systems with ASPM and others may see the checksum fail on the first
       
  5123 	 * attempt. Let's give it a few tries
       
  5124 	 */
       
  5125 	for (i = 0;; i++) {
       
  5126 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
       
  5127 			break;
       
  5128 		if (i == 2) {
       
  5129 			e_err("The NVM Checksum Is Not Valid\n");
       
  5130 			err = -EIO;
       
  5131 			goto err_eeprom;
       
  5132 		}
       
  5133 	}
       
  5134 
       
  5135 	e1000_eeprom_checks(adapter);
       
  5136 
       
  5137 	/* copy the MAC address out of the NVM */
       
  5138 	if (e1000e_read_mac_addr(&adapter->hw))
       
  5139 		e_err("NVM Read Error while reading MAC address\n");
       
  5140 
       
  5141 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
       
  5142 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
       
  5143 
       
  5144 	if (!is_valid_ether_addr(netdev->perm_addr)) {
       
  5145 		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
       
  5146 		err = -EIO;
       
  5147 		goto err_eeprom;
       
  5148 	}
       
  5149 
       
  5150 	init_timer(&adapter->watchdog_timer);
       
  5151 	adapter->watchdog_timer.function = &e1000_watchdog;
       
  5152 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
  5153 
       
  5154 	init_timer(&adapter->phy_info_timer);
       
  5155 	adapter->phy_info_timer.function = &e1000_update_phy_info;
       
  5156 	adapter->phy_info_timer.data = (unsigned long) adapter;
       
  5157 
       
  5158 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
       
  5159 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
       
  5160 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
       
  5161 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
       
  5162 
       
  5163 	/* Initialize link parameters. User can change them with ethtool */
       
  5164 	adapter->hw.mac.autoneg = 1;
       
  5165 	adapter->fc_autoneg = 1;
       
  5166 	adapter->hw.fc.requested_mode = e1000_fc_default;
       
  5167 	adapter->hw.fc.current_mode = e1000_fc_default;
       
  5168 	adapter->hw.phy.autoneg_advertised = 0x2f;
       
  5169 
       
  5170 	/* ring size defaults */
       
  5171 	adapter->rx_ring->count = 256;
       
  5172 	adapter->tx_ring->count = 256;
       
  5173 
       
  5174 	/*
       
  5175 	 * Initial Wake on LAN setting - If APM wake is enabled in
       
  5176 	 * the EEPROM, enable the ACPI Magic Packet filter
       
  5177 	 */
       
  5178 	if (adapter->flags & FLAG_APME_IN_WUC) {
       
  5179 		/* APME bit in EEPROM is mapped to WUC.APME */
       
  5180 		eeprom_data = er32(WUC);
       
  5181 		eeprom_apme_mask = E1000_WUC_APME;
       
  5182 		if (eeprom_data & E1000_WUC_PHY_WAKE)
       
  5183 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
       
  5184 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
       
  5185 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
       
  5186 		    (adapter->hw.bus.func == 1))
       
  5187 			e1000_read_nvm(&adapter->hw,
       
  5188 				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
  5189 		else
       
  5190 			e1000_read_nvm(&adapter->hw,
       
  5191 				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
  5192 	}
       
  5193 
       
  5194 	/* fetch WoL from EEPROM */
       
  5195 	if (eeprom_data & eeprom_apme_mask)
       
  5196 		adapter->eeprom_wol |= E1000_WUFC_MAG;
       
  5197 
       
  5198 	/*
       
  5199 	 * now that we have the eeprom settings, apply the special cases
       
  5200 	 * where the eeprom may be wrong or the board simply won't support
       
  5201 	 * wake on lan on a particular port
       
  5202 	 */
       
  5203 	if (!(adapter->flags & FLAG_HAS_WOL))
       
  5204 		adapter->eeprom_wol = 0;
       
  5205 
       
  5206 	/* initialize the wol settings based on the eeprom settings */
       
  5207 	adapter->wol = adapter->eeprom_wol;
       
  5208 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  5209 
       
  5210 	/* save off EEPROM version number */
       
  5211 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
       
  5212 
       
  5213 	/* reset the hardware with the new settings */
       
  5214 	e1000e_reset(adapter);
       
  5215 
       
  5216 	/*
       
  5217 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  5218 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  5219 	 * under the control of the driver.
       
  5220 	 */
       
  5221 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  5222 		e1000_get_hw_control(adapter);
       
  5223 
       
  5224 	strcpy(netdev->name, "eth%d");
       
  5225 	err = register_netdev(netdev);
       
  5226 	if (err)
       
  5227 		goto err_register;
       
  5228 
       
  5229 	/* carrier off reporting is important to ethtool even BEFORE open */
       
  5230 	netif_carrier_off(netdev);
       
  5231 
       
  5232 	e1000_print_device_info(adapter);
       
  5233 
       
  5234 	return 0;
       
  5235 
       
  5236 err_register:
       
  5237 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  5238 		e1000_release_hw_control(adapter);
       
  5239 err_eeprom:
       
  5240 	if (!e1000_check_reset_block(&adapter->hw))
       
  5241 		e1000_phy_hw_reset(&adapter->hw);
       
  5242 err_hw_init:
       
  5243 
       
  5244 	kfree(adapter->tx_ring);
       
  5245 	kfree(adapter->rx_ring);
       
  5246 err_sw_init:
       
  5247 	if (adapter->hw.flash_address)
       
  5248 		iounmap(adapter->hw.flash_address);
       
  5249 	e1000e_reset_interrupt_capability(adapter);
       
  5250 err_flashmap:
       
  5251 	iounmap(adapter->hw.hw_addr);
       
  5252 err_ioremap:
       
  5253 	free_netdev(netdev);
       
  5254 err_alloc_etherdev:
       
  5255 	pci_release_selected_regions(pdev,
       
  5256 	                             pci_select_bars(pdev, IORESOURCE_MEM));
       
  5257 err_pci_reg:
       
  5258 err_dma:
       
  5259 	pci_disable_device(pdev);
       
  5260 	return err;
       
  5261 }
       
  5262 
       
  5263 /**
       
  5264  * e1000_remove - Device Removal Routine
       
  5265  * @pdev: PCI device information struct
       
  5266  *
       
  5267  * e1000_remove is called by the PCI subsystem to alert the driver
       
  5268  * that it should release a PCI device.  The could be caused by a
       
  5269  * Hot-Plug event, or because the driver is going to be removed from
       
  5270  * memory.
       
  5271  **/
       
  5272 static void __devexit e1000_remove(struct pci_dev *pdev)
       
  5273 {
       
  5274 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5275 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5276 
       
  5277 	/*
       
  5278 	 * flush_scheduled work may reschedule our watchdog task, so
       
  5279 	 * explicitly disable watchdog tasks from being rescheduled
       
  5280 	 */
       
  5281 	set_bit(__E1000_DOWN, &adapter->state);
       
  5282 	del_timer_sync(&adapter->watchdog_timer);
       
  5283 	del_timer_sync(&adapter->phy_info_timer);
       
  5284 
       
  5285 	flush_scheduled_work();
       
  5286 
       
  5287 	/*
       
  5288 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  5289 	 * would have already happened in close and is redundant.
       
  5290 	 */
       
  5291 	e1000_release_hw_control(adapter);
       
  5292 
       
  5293 	unregister_netdev(netdev);
       
  5294 
       
  5295 	if (!e1000_check_reset_block(&adapter->hw))
       
  5296 		e1000_phy_hw_reset(&adapter->hw);
       
  5297 
       
  5298 	e1000e_reset_interrupt_capability(adapter);
       
  5299 	kfree(adapter->tx_ring);
       
  5300 	kfree(adapter->rx_ring);
       
  5301 
       
  5302 	iounmap(adapter->hw.hw_addr);
       
  5303 	if (adapter->hw.flash_address)
       
  5304 		iounmap(adapter->hw.flash_address);
       
  5305 	pci_release_selected_regions(pdev,
       
  5306 	                             pci_select_bars(pdev, IORESOURCE_MEM));
       
  5307 
       
  5308 	free_netdev(netdev);
       
  5309 
       
  5310 	/* AER disable */
       
  5311 	pci_disable_pcie_error_reporting(pdev);
       
  5312 
       
  5313 	pci_disable_device(pdev);
       
  5314 }
       
  5315 
       
  5316 /* PCI Error Recovery (ERS) */
       
  5317 static struct pci_error_handlers e1000_err_handler = {
       
  5318 	.error_detected = e1000_io_error_detected,
       
  5319 	.slot_reset = e1000_io_slot_reset,
       
  5320 	.resume = e1000_io_resume,
       
  5321 };
       
  5322 
       
  5323 static struct pci_device_id e1000_pci_tbl[] = {
       
  5324 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
       
  5325 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
       
  5326 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
       
  5327 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
       
  5328 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
       
  5329 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
       
  5330 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
       
  5331 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
       
  5332 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
       
  5333 
       
  5334 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
       
  5335 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
       
  5336 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
       
  5337 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
       
  5338 
       
  5339 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
       
  5340 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
       
  5341 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
       
  5342 
       
  5343 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
       
  5344 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
       
  5345 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
       
  5346 
       
  5347 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
       
  5348 	  board_80003es2lan },
       
  5349 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
       
  5350 	  board_80003es2lan },
       
  5351 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
       
  5352 	  board_80003es2lan },
       
  5353 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
       
  5354 	  board_80003es2lan },
       
  5355 
       
  5356 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
       
  5357 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
       
  5358 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
       
  5359 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
       
  5360 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
       
  5361 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
       
  5362 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
       
  5363 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
       
  5364 
       
  5365 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
       
  5366 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
       
  5367 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
       
  5368 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
       
  5369 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
       
  5370 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
       
  5371 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
       
  5372 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
       
  5373 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
       
  5374 
       
  5375 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
       
  5376 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
       
  5377 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
       
  5378 
       
  5379 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
       
  5380 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
       
  5381 
       
  5382 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
       
  5383 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
       
  5384 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
       
  5385 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
       
  5386 
       
  5387 	{ }	/* terminate list */
       
  5388 };
       
  5389 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
  5390 
       
  5391 /* PCI Device API Driver */
       
  5392 static struct pci_driver e1000_driver = {
       
  5393 	.name     = e1000e_driver_name,
       
  5394 	.id_table = e1000_pci_tbl,
       
  5395 	.probe    = e1000_probe,
       
  5396 	.remove   = __devexit_p(e1000_remove),
       
  5397 #ifdef CONFIG_PM
       
  5398 	/* Power Management Hooks */
       
  5399 	.suspend  = e1000_suspend,
       
  5400 	.resume   = e1000_resume,
       
  5401 #endif
       
  5402 	.shutdown = e1000_shutdown,
       
  5403 	.err_handler = &e1000_err_handler
       
  5404 };
       
  5405 
       
  5406 /**
       
  5407  * e1000_init_module - Driver Registration Routine
       
  5408  *
       
  5409  * e1000_init_module is the first routine called when the driver is
       
  5410  * loaded. All it does is register with the PCI subsystem.
       
  5411  **/
       
  5412 static int __init e1000_init_module(void)
       
  5413 {
       
  5414 	int ret;
       
  5415 	printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
       
  5416 	       e1000e_driver_name, e1000e_driver_version);
       
  5417 	printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
       
  5418 	       e1000e_driver_name);
       
  5419 	ret = pci_register_driver(&e1000_driver);
       
  5420 	pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
       
  5421 			       PM_QOS_DEFAULT_VALUE);
       
  5422 				
       
  5423 	return ret;
       
  5424 }
       
  5425 module_init(e1000_init_module);
       
  5426 
       
  5427 /**
       
  5428  * e1000_exit_module - Driver Exit Cleanup Routine
       
  5429  *
       
  5430  * e1000_exit_module is called just before the driver is removed
       
  5431  * from memory.
       
  5432  **/
       
  5433 static void __exit e1000_exit_module(void)
       
  5434 {
       
  5435 	pci_unregister_driver(&e1000_driver);
       
  5436 	pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
       
  5437 }
       
  5438 module_exit(e1000_exit_module);
       
  5439 
       
  5440 
       
  5441 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
       
  5442 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
       
  5443 MODULE_LICENSE("GPL");
       
  5444 MODULE_VERSION(DRV_VERSION);
       
  5445 
       
  5446 /* e1000_main.c */