|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2008 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 #include <linux/netdevice.h> |
|
30 #include <linux/ethtool.h> |
|
31 #include <linux/delay.h> |
|
32 #include <linux/pci.h> |
|
33 |
|
34 #include "e1000.h" |
|
35 |
|
36 enum e1000_mng_mode { |
|
37 e1000_mng_mode_none = 0, |
|
38 e1000_mng_mode_asf, |
|
39 e1000_mng_mode_pt, |
|
40 e1000_mng_mode_ipmi, |
|
41 e1000_mng_mode_host_if_only |
|
42 }; |
|
43 |
|
44 #define E1000_FACTPS_MNGCG 0x20000000 |
|
45 |
|
46 /* Intel(R) Active Management Technology signature */ |
|
47 #define E1000_IAMT_SIGNATURE 0x544D4149 |
|
48 |
|
49 /** |
|
50 * e1000e_get_bus_info_pcie - Get PCIe bus information |
|
51 * @hw: pointer to the HW structure |
|
52 * |
|
53 * Determines and stores the system bus information for a particular |
|
54 * network interface. The following bus information is determined and stored: |
|
55 * bus speed, bus width, type (PCIe), and PCIe function. |
|
56 **/ |
|
57 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) |
|
58 { |
|
59 struct e1000_bus_info *bus = &hw->bus; |
|
60 struct e1000_adapter *adapter = hw->adapter; |
|
61 u32 status; |
|
62 u16 pcie_link_status, pci_header_type, cap_offset; |
|
63 |
|
64 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); |
|
65 if (!cap_offset) { |
|
66 bus->width = e1000_bus_width_unknown; |
|
67 } else { |
|
68 pci_read_config_word(adapter->pdev, |
|
69 cap_offset + PCIE_LINK_STATUS, |
|
70 &pcie_link_status); |
|
71 bus->width = (enum e1000_bus_width)((pcie_link_status & |
|
72 PCIE_LINK_WIDTH_MASK) >> |
|
73 PCIE_LINK_WIDTH_SHIFT); |
|
74 } |
|
75 |
|
76 pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER, |
|
77 &pci_header_type); |
|
78 if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { |
|
79 status = er32(STATUS); |
|
80 bus->func = (status & E1000_STATUS_FUNC_MASK) |
|
81 >> E1000_STATUS_FUNC_SHIFT; |
|
82 } else { |
|
83 bus->func = 0; |
|
84 } |
|
85 |
|
86 return 0; |
|
87 } |
|
88 |
|
89 /** |
|
90 * e1000e_write_vfta - Write value to VLAN filter table |
|
91 * @hw: pointer to the HW structure |
|
92 * @offset: register offset in VLAN filter table |
|
93 * @value: register value written to VLAN filter table |
|
94 * |
|
95 * Writes value at the given offset in the register array which stores |
|
96 * the VLAN filter table. |
|
97 **/ |
|
98 void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) |
|
99 { |
|
100 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); |
|
101 e1e_flush(); |
|
102 } |
|
103 |
|
104 /** |
|
105 * e1000e_init_rx_addrs - Initialize receive address's |
|
106 * @hw: pointer to the HW structure |
|
107 * @rar_count: receive address registers |
|
108 * |
|
109 * Setups the receive address registers by setting the base receive address |
|
110 * register to the devices MAC address and clearing all the other receive |
|
111 * address registers to 0. |
|
112 **/ |
|
113 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) |
|
114 { |
|
115 u32 i; |
|
116 |
|
117 /* Setup the receive address */ |
|
118 hw_dbg(hw, "Programming MAC Address into RAR[0]\n"); |
|
119 |
|
120 e1000e_rar_set(hw, hw->mac.addr, 0); |
|
121 |
|
122 /* Zero out the other (rar_entry_count - 1) receive addresses */ |
|
123 hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1); |
|
124 for (i = 1; i < rar_count; i++) { |
|
125 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0); |
|
126 e1e_flush(); |
|
127 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0); |
|
128 e1e_flush(); |
|
129 } |
|
130 } |
|
131 |
|
132 /** |
|
133 * e1000e_rar_set - Set receive address register |
|
134 * @hw: pointer to the HW structure |
|
135 * @addr: pointer to the receive address |
|
136 * @index: receive address array register |
|
137 * |
|
138 * Sets the receive address array register at index to the address passed |
|
139 * in by addr. |
|
140 **/ |
|
141 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) |
|
142 { |
|
143 u32 rar_low, rar_high; |
|
144 |
|
145 /* |
|
146 * HW expects these in little endian so we reverse the byte order |
|
147 * from network order (big endian) to little endian |
|
148 */ |
|
149 rar_low = ((u32) addr[0] | |
|
150 ((u32) addr[1] << 8) | |
|
151 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); |
|
152 |
|
153 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); |
|
154 |
|
155 rar_high |= E1000_RAH_AV; |
|
156 |
|
157 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); |
|
158 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); |
|
159 } |
|
160 |
|
161 /** |
|
162 * e1000_hash_mc_addr - Generate a multicast hash value |
|
163 * @hw: pointer to the HW structure |
|
164 * @mc_addr: pointer to a multicast address |
|
165 * |
|
166 * Generates a multicast address hash value which is used to determine |
|
167 * the multicast filter table array address and new table value. See |
|
168 * e1000_mta_set_generic() |
|
169 **/ |
|
170 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) |
|
171 { |
|
172 u32 hash_value, hash_mask; |
|
173 u8 bit_shift = 0; |
|
174 |
|
175 /* Register count multiplied by bits per register */ |
|
176 hash_mask = (hw->mac.mta_reg_count * 32) - 1; |
|
177 |
|
178 /* |
|
179 * For a mc_filter_type of 0, bit_shift is the number of left-shifts |
|
180 * where 0xFF would still fall within the hash mask. |
|
181 */ |
|
182 while (hash_mask >> bit_shift != 0xFF) |
|
183 bit_shift++; |
|
184 |
|
185 /* |
|
186 * The portion of the address that is used for the hash table |
|
187 * is determined by the mc_filter_type setting. |
|
188 * The algorithm is such that there is a total of 8 bits of shifting. |
|
189 * The bit_shift for a mc_filter_type of 0 represents the number of |
|
190 * left-shifts where the MSB of mc_addr[5] would still fall within |
|
191 * the hash_mask. Case 0 does this exactly. Since there are a total |
|
192 * of 8 bits of shifting, then mc_addr[4] will shift right the |
|
193 * remaining number of bits. Thus 8 - bit_shift. The rest of the |
|
194 * cases are a variation of this algorithm...essentially raising the |
|
195 * number of bits to shift mc_addr[5] left, while still keeping the |
|
196 * 8-bit shifting total. |
|
197 * |
|
198 * For example, given the following Destination MAC Address and an |
|
199 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), |
|
200 * we can see that the bit_shift for case 0 is 4. These are the hash |
|
201 * values resulting from each mc_filter_type... |
|
202 * [0] [1] [2] [3] [4] [5] |
|
203 * 01 AA 00 12 34 56 |
|
204 * LSB MSB |
|
205 * |
|
206 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 |
|
207 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 |
|
208 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 |
|
209 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 |
|
210 */ |
|
211 switch (hw->mac.mc_filter_type) { |
|
212 default: |
|
213 case 0: |
|
214 break; |
|
215 case 1: |
|
216 bit_shift += 1; |
|
217 break; |
|
218 case 2: |
|
219 bit_shift += 2; |
|
220 break; |
|
221 case 3: |
|
222 bit_shift += 4; |
|
223 break; |
|
224 } |
|
225 |
|
226 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | |
|
227 (((u16) mc_addr[5]) << bit_shift))); |
|
228 |
|
229 return hash_value; |
|
230 } |
|
231 |
|
232 /** |
|
233 * e1000e_update_mc_addr_list_generic - Update Multicast addresses |
|
234 * @hw: pointer to the HW structure |
|
235 * @mc_addr_list: array of multicast addresses to program |
|
236 * @mc_addr_count: number of multicast addresses to program |
|
237 * @rar_used_count: the first RAR register free to program |
|
238 * @rar_count: total number of supported Receive Address Registers |
|
239 * |
|
240 * Updates the Receive Address Registers and Multicast Table Array. |
|
241 * The caller must have a packed mc_addr_list of multicast addresses. |
|
242 * The parameter rar_count will usually be hw->mac.rar_entry_count |
|
243 * unless there are workarounds that change this. |
|
244 **/ |
|
245 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, |
|
246 u8 *mc_addr_list, u32 mc_addr_count, |
|
247 u32 rar_used_count, u32 rar_count) |
|
248 { |
|
249 u32 i; |
|
250 u32 *mcarray = kzalloc(hw->mac.mta_reg_count * sizeof(u32), GFP_ATOMIC); |
|
251 |
|
252 if (!mcarray) { |
|
253 printk(KERN_ERR "multicast array memory allocation failed\n"); |
|
254 return; |
|
255 } |
|
256 |
|
257 /* |
|
258 * Load the first set of multicast addresses into the exact |
|
259 * filters (RAR). If there are not enough to fill the RAR |
|
260 * array, clear the filters. |
|
261 */ |
|
262 for (i = rar_used_count; i < rar_count; i++) { |
|
263 if (mc_addr_count) { |
|
264 e1000e_rar_set(hw, mc_addr_list, i); |
|
265 mc_addr_count--; |
|
266 mc_addr_list += ETH_ALEN; |
|
267 } else { |
|
268 E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0); |
|
269 e1e_flush(); |
|
270 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0); |
|
271 e1e_flush(); |
|
272 } |
|
273 } |
|
274 |
|
275 /* Load any remaining multicast addresses into the hash table. */ |
|
276 for (; mc_addr_count > 0; mc_addr_count--) { |
|
277 u32 hash_value, hash_reg, hash_bit, mta; |
|
278 hash_value = e1000_hash_mc_addr(hw, mc_addr_list); |
|
279 hw_dbg(hw, "Hash value = 0x%03X\n", hash_value); |
|
280 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); |
|
281 hash_bit = hash_value & 0x1F; |
|
282 mta = (1 << hash_bit); |
|
283 mcarray[hash_reg] |= mta; |
|
284 mc_addr_list += ETH_ALEN; |
|
285 } |
|
286 |
|
287 /* write the hash table completely */ |
|
288 for (i = 0; i < hw->mac.mta_reg_count; i++) |
|
289 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, mcarray[i]); |
|
290 |
|
291 e1e_flush(); |
|
292 kfree(mcarray); |
|
293 } |
|
294 |
|
295 /** |
|
296 * e1000e_clear_hw_cntrs_base - Clear base hardware counters |
|
297 * @hw: pointer to the HW structure |
|
298 * |
|
299 * Clears the base hardware counters by reading the counter registers. |
|
300 **/ |
|
301 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) |
|
302 { |
|
303 u32 temp; |
|
304 |
|
305 temp = er32(CRCERRS); |
|
306 temp = er32(SYMERRS); |
|
307 temp = er32(MPC); |
|
308 temp = er32(SCC); |
|
309 temp = er32(ECOL); |
|
310 temp = er32(MCC); |
|
311 temp = er32(LATECOL); |
|
312 temp = er32(COLC); |
|
313 temp = er32(DC); |
|
314 temp = er32(SEC); |
|
315 temp = er32(RLEC); |
|
316 temp = er32(XONRXC); |
|
317 temp = er32(XONTXC); |
|
318 temp = er32(XOFFRXC); |
|
319 temp = er32(XOFFTXC); |
|
320 temp = er32(FCRUC); |
|
321 temp = er32(GPRC); |
|
322 temp = er32(BPRC); |
|
323 temp = er32(MPRC); |
|
324 temp = er32(GPTC); |
|
325 temp = er32(GORCL); |
|
326 temp = er32(GORCH); |
|
327 temp = er32(GOTCL); |
|
328 temp = er32(GOTCH); |
|
329 temp = er32(RNBC); |
|
330 temp = er32(RUC); |
|
331 temp = er32(RFC); |
|
332 temp = er32(ROC); |
|
333 temp = er32(RJC); |
|
334 temp = er32(TORL); |
|
335 temp = er32(TORH); |
|
336 temp = er32(TOTL); |
|
337 temp = er32(TOTH); |
|
338 temp = er32(TPR); |
|
339 temp = er32(TPT); |
|
340 temp = er32(MPTC); |
|
341 temp = er32(BPTC); |
|
342 } |
|
343 |
|
344 /** |
|
345 * e1000e_check_for_copper_link - Check for link (Copper) |
|
346 * @hw: pointer to the HW structure |
|
347 * |
|
348 * Checks to see of the link status of the hardware has changed. If a |
|
349 * change in link status has been detected, then we read the PHY registers |
|
350 * to get the current speed/duplex if link exists. |
|
351 **/ |
|
352 s32 e1000e_check_for_copper_link(struct e1000_hw *hw) |
|
353 { |
|
354 struct e1000_mac_info *mac = &hw->mac; |
|
355 s32 ret_val; |
|
356 bool link; |
|
357 |
|
358 /* |
|
359 * We only want to go out to the PHY registers to see if Auto-Neg |
|
360 * has completed and/or if our link status has changed. The |
|
361 * get_link_status flag is set upon receiving a Link Status |
|
362 * Change or Rx Sequence Error interrupt. |
|
363 */ |
|
364 if (!mac->get_link_status) |
|
365 return 0; |
|
366 |
|
367 /* |
|
368 * First we want to see if the MII Status Register reports |
|
369 * link. If so, then we want to get the current speed/duplex |
|
370 * of the PHY. |
|
371 */ |
|
372 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
|
373 if (ret_val) |
|
374 return ret_val; |
|
375 |
|
376 if (!link) |
|
377 return ret_val; /* No link detected */ |
|
378 |
|
379 mac->get_link_status = 0; |
|
380 |
|
381 /* |
|
382 * Check if there was DownShift, must be checked |
|
383 * immediately after link-up |
|
384 */ |
|
385 e1000e_check_downshift(hw); |
|
386 |
|
387 /* |
|
388 * If we are forcing speed/duplex, then we simply return since |
|
389 * we have already determined whether we have link or not. |
|
390 */ |
|
391 if (!mac->autoneg) { |
|
392 ret_val = -E1000_ERR_CONFIG; |
|
393 return ret_val; |
|
394 } |
|
395 |
|
396 /* |
|
397 * Auto-Neg is enabled. Auto Speed Detection takes care |
|
398 * of MAC speed/duplex configuration. So we only need to |
|
399 * configure Collision Distance in the MAC. |
|
400 */ |
|
401 e1000e_config_collision_dist(hw); |
|
402 |
|
403 /* |
|
404 * Configure Flow Control now that Auto-Neg has completed. |
|
405 * First, we need to restore the desired flow control |
|
406 * settings because we may have had to re-autoneg with a |
|
407 * different link partner. |
|
408 */ |
|
409 ret_val = e1000e_config_fc_after_link_up(hw); |
|
410 if (ret_val) { |
|
411 hw_dbg(hw, "Error configuring flow control\n"); |
|
412 } |
|
413 |
|
414 return ret_val; |
|
415 } |
|
416 |
|
417 /** |
|
418 * e1000e_check_for_fiber_link - Check for link (Fiber) |
|
419 * @hw: pointer to the HW structure |
|
420 * |
|
421 * Checks for link up on the hardware. If link is not up and we have |
|
422 * a signal, then we need to force link up. |
|
423 **/ |
|
424 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) |
|
425 { |
|
426 struct e1000_mac_info *mac = &hw->mac; |
|
427 u32 rxcw; |
|
428 u32 ctrl; |
|
429 u32 status; |
|
430 s32 ret_val; |
|
431 |
|
432 ctrl = er32(CTRL); |
|
433 status = er32(STATUS); |
|
434 rxcw = er32(RXCW); |
|
435 |
|
436 /* |
|
437 * If we don't have link (auto-negotiation failed or link partner |
|
438 * cannot auto-negotiate), the cable is plugged in (we have signal), |
|
439 * and our link partner is not trying to auto-negotiate with us (we |
|
440 * are receiving idles or data), we need to force link up. We also |
|
441 * need to give auto-negotiation time to complete, in case the cable |
|
442 * was just plugged in. The autoneg_failed flag does this. |
|
443 */ |
|
444 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ |
|
445 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && |
|
446 (!(rxcw & E1000_RXCW_C))) { |
|
447 if (mac->autoneg_failed == 0) { |
|
448 mac->autoneg_failed = 1; |
|
449 return 0; |
|
450 } |
|
451 hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); |
|
452 |
|
453 /* Disable auto-negotiation in the TXCW register */ |
|
454 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); |
|
455 |
|
456 /* Force link-up and also force full-duplex. */ |
|
457 ctrl = er32(CTRL); |
|
458 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
|
459 ew32(CTRL, ctrl); |
|
460 |
|
461 /* Configure Flow Control after forcing link up. */ |
|
462 ret_val = e1000e_config_fc_after_link_up(hw); |
|
463 if (ret_val) { |
|
464 hw_dbg(hw, "Error configuring flow control\n"); |
|
465 return ret_val; |
|
466 } |
|
467 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
|
468 /* |
|
469 * If we are forcing link and we are receiving /C/ ordered |
|
470 * sets, re-enable auto-negotiation in the TXCW register |
|
471 * and disable forced link in the Device Control register |
|
472 * in an attempt to auto-negotiate with our link partner. |
|
473 */ |
|
474 hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); |
|
475 ew32(TXCW, mac->txcw); |
|
476 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
|
477 |
|
478 mac->serdes_has_link = true; |
|
479 } |
|
480 |
|
481 return 0; |
|
482 } |
|
483 |
|
484 /** |
|
485 * e1000e_check_for_serdes_link - Check for link (Serdes) |
|
486 * @hw: pointer to the HW structure |
|
487 * |
|
488 * Checks for link up on the hardware. If link is not up and we have |
|
489 * a signal, then we need to force link up. |
|
490 **/ |
|
491 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) |
|
492 { |
|
493 struct e1000_mac_info *mac = &hw->mac; |
|
494 u32 rxcw; |
|
495 u32 ctrl; |
|
496 u32 status; |
|
497 s32 ret_val; |
|
498 |
|
499 ctrl = er32(CTRL); |
|
500 status = er32(STATUS); |
|
501 rxcw = er32(RXCW); |
|
502 |
|
503 /* |
|
504 * If we don't have link (auto-negotiation failed or link partner |
|
505 * cannot auto-negotiate), and our link partner is not trying to |
|
506 * auto-negotiate with us (we are receiving idles or data), |
|
507 * we need to force link up. We also need to give auto-negotiation |
|
508 * time to complete. |
|
509 */ |
|
510 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ |
|
511 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { |
|
512 if (mac->autoneg_failed == 0) { |
|
513 mac->autoneg_failed = 1; |
|
514 return 0; |
|
515 } |
|
516 hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); |
|
517 |
|
518 /* Disable auto-negotiation in the TXCW register */ |
|
519 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); |
|
520 |
|
521 /* Force link-up and also force full-duplex. */ |
|
522 ctrl = er32(CTRL); |
|
523 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
|
524 ew32(CTRL, ctrl); |
|
525 |
|
526 /* Configure Flow Control after forcing link up. */ |
|
527 ret_val = e1000e_config_fc_after_link_up(hw); |
|
528 if (ret_val) { |
|
529 hw_dbg(hw, "Error configuring flow control\n"); |
|
530 return ret_val; |
|
531 } |
|
532 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
|
533 /* |
|
534 * If we are forcing link and we are receiving /C/ ordered |
|
535 * sets, re-enable auto-negotiation in the TXCW register |
|
536 * and disable forced link in the Device Control register |
|
537 * in an attempt to auto-negotiate with our link partner. |
|
538 */ |
|
539 hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); |
|
540 ew32(TXCW, mac->txcw); |
|
541 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
|
542 |
|
543 mac->serdes_has_link = true; |
|
544 } else if (!(E1000_TXCW_ANE & er32(TXCW))) { |
|
545 /* |
|
546 * If we force link for non-auto-negotiation switch, check |
|
547 * link status based on MAC synchronization for internal |
|
548 * serdes media type. |
|
549 */ |
|
550 /* SYNCH bit and IV bit are sticky. */ |
|
551 udelay(10); |
|
552 rxcw = er32(RXCW); |
|
553 if (rxcw & E1000_RXCW_SYNCH) { |
|
554 if (!(rxcw & E1000_RXCW_IV)) { |
|
555 mac->serdes_has_link = true; |
|
556 hw_dbg(hw, "SERDES: Link up - forced.\n"); |
|
557 } |
|
558 } else { |
|
559 mac->serdes_has_link = false; |
|
560 hw_dbg(hw, "SERDES: Link down - force failed.\n"); |
|
561 } |
|
562 } |
|
563 |
|
564 if (E1000_TXCW_ANE & er32(TXCW)) { |
|
565 status = er32(STATUS); |
|
566 if (status & E1000_STATUS_LU) { |
|
567 /* SYNCH bit and IV bit are sticky, so reread rxcw. */ |
|
568 udelay(10); |
|
569 rxcw = er32(RXCW); |
|
570 if (rxcw & E1000_RXCW_SYNCH) { |
|
571 if (!(rxcw & E1000_RXCW_IV)) { |
|
572 mac->serdes_has_link = true; |
|
573 hw_dbg(hw, "SERDES: Link up - autoneg " |
|
574 "completed sucessfully.\n"); |
|
575 } else { |
|
576 mac->serdes_has_link = false; |
|
577 hw_dbg(hw, "SERDES: Link down - invalid" |
|
578 "codewords detected in autoneg.\n"); |
|
579 } |
|
580 } else { |
|
581 mac->serdes_has_link = false; |
|
582 hw_dbg(hw, "SERDES: Link down - no sync.\n"); |
|
583 } |
|
584 } else { |
|
585 mac->serdes_has_link = false; |
|
586 hw_dbg(hw, "SERDES: Link down - autoneg failed\n"); |
|
587 } |
|
588 } |
|
589 |
|
590 return 0; |
|
591 } |
|
592 |
|
593 /** |
|
594 * e1000_set_default_fc_generic - Set flow control default values |
|
595 * @hw: pointer to the HW structure |
|
596 * |
|
597 * Read the EEPROM for the default values for flow control and store the |
|
598 * values. |
|
599 **/ |
|
600 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) |
|
601 { |
|
602 s32 ret_val; |
|
603 u16 nvm_data; |
|
604 |
|
605 /* |
|
606 * Read and store word 0x0F of the EEPROM. This word contains bits |
|
607 * that determine the hardware's default PAUSE (flow control) mode, |
|
608 * a bit that determines whether the HW defaults to enabling or |
|
609 * disabling auto-negotiation, and the direction of the |
|
610 * SW defined pins. If there is no SW over-ride of the flow |
|
611 * control setting, then the variable hw->fc will |
|
612 * be initialized based on a value in the EEPROM. |
|
613 */ |
|
614 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); |
|
615 |
|
616 if (ret_val) { |
|
617 hw_dbg(hw, "NVM Read Error\n"); |
|
618 return ret_val; |
|
619 } |
|
620 |
|
621 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) |
|
622 hw->fc.requested_mode = e1000_fc_none; |
|
623 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == |
|
624 NVM_WORD0F_ASM_DIR) |
|
625 hw->fc.requested_mode = e1000_fc_tx_pause; |
|
626 else |
|
627 hw->fc.requested_mode = e1000_fc_full; |
|
628 |
|
629 return 0; |
|
630 } |
|
631 |
|
632 /** |
|
633 * e1000e_setup_link - Setup flow control and link settings |
|
634 * @hw: pointer to the HW structure |
|
635 * |
|
636 * Determines which flow control settings to use, then configures flow |
|
637 * control. Calls the appropriate media-specific link configuration |
|
638 * function. Assuming the adapter has a valid link partner, a valid link |
|
639 * should be established. Assumes the hardware has previously been reset |
|
640 * and the transmitter and receiver are not enabled. |
|
641 **/ |
|
642 s32 e1000e_setup_link(struct e1000_hw *hw) |
|
643 { |
|
644 struct e1000_mac_info *mac = &hw->mac; |
|
645 s32 ret_val; |
|
646 |
|
647 /* |
|
648 * In the case of the phy reset being blocked, we already have a link. |
|
649 * We do not need to set it up again. |
|
650 */ |
|
651 if (e1000_check_reset_block(hw)) |
|
652 return 0; |
|
653 |
|
654 /* |
|
655 * If requested flow control is set to default, set flow control |
|
656 * based on the EEPROM flow control settings. |
|
657 */ |
|
658 if (hw->fc.requested_mode == e1000_fc_default) { |
|
659 ret_val = e1000_set_default_fc_generic(hw); |
|
660 if (ret_val) |
|
661 return ret_val; |
|
662 } |
|
663 |
|
664 /* |
|
665 * Save off the requested flow control mode for use later. Depending |
|
666 * on the link partner's capabilities, we may or may not use this mode. |
|
667 */ |
|
668 hw->fc.current_mode = hw->fc.requested_mode; |
|
669 |
|
670 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", |
|
671 hw->fc.current_mode); |
|
672 |
|
673 /* Call the necessary media_type subroutine to configure the link. */ |
|
674 ret_val = mac->ops.setup_physical_interface(hw); |
|
675 if (ret_val) |
|
676 return ret_val; |
|
677 |
|
678 /* |
|
679 * Initialize the flow control address, type, and PAUSE timer |
|
680 * registers to their default values. This is done even if flow |
|
681 * control is disabled, because it does not hurt anything to |
|
682 * initialize these registers. |
|
683 */ |
|
684 hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n"); |
|
685 ew32(FCT, FLOW_CONTROL_TYPE); |
|
686 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
|
687 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); |
|
688 |
|
689 ew32(FCTTV, hw->fc.pause_time); |
|
690 |
|
691 return e1000e_set_fc_watermarks(hw); |
|
692 } |
|
693 |
|
694 /** |
|
695 * e1000_commit_fc_settings_generic - Configure flow control |
|
696 * @hw: pointer to the HW structure |
|
697 * |
|
698 * Write the flow control settings to the Transmit Config Word Register (TXCW) |
|
699 * base on the flow control settings in e1000_mac_info. |
|
700 **/ |
|
701 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) |
|
702 { |
|
703 struct e1000_mac_info *mac = &hw->mac; |
|
704 u32 txcw; |
|
705 |
|
706 /* |
|
707 * Check for a software override of the flow control settings, and |
|
708 * setup the device accordingly. If auto-negotiation is enabled, then |
|
709 * software will have to set the "PAUSE" bits to the correct value in |
|
710 * the Transmit Config Word Register (TXCW) and re-start auto- |
|
711 * negotiation. However, if auto-negotiation is disabled, then |
|
712 * software will have to manually configure the two flow control enable |
|
713 * bits in the CTRL register. |
|
714 * |
|
715 * The possible values of the "fc" parameter are: |
|
716 * 0: Flow control is completely disabled |
|
717 * 1: Rx flow control is enabled (we can receive pause frames, |
|
718 * but not send pause frames). |
|
719 * 2: Tx flow control is enabled (we can send pause frames but we |
|
720 * do not support receiving pause frames). |
|
721 * 3: Both Rx and Tx flow control (symmetric) are enabled. |
|
722 */ |
|
723 switch (hw->fc.current_mode) { |
|
724 case e1000_fc_none: |
|
725 /* Flow control completely disabled by a software over-ride. */ |
|
726 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
|
727 break; |
|
728 case e1000_fc_rx_pause: |
|
729 /* |
|
730 * Rx Flow control is enabled and Tx Flow control is disabled |
|
731 * by a software over-ride. Since there really isn't a way to |
|
732 * advertise that we are capable of Rx Pause ONLY, we will |
|
733 * advertise that we support both symmetric and asymmetric Rx |
|
734 * PAUSE. Later, we will disable the adapter's ability to send |
|
735 * PAUSE frames. |
|
736 */ |
|
737 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
|
738 break; |
|
739 case e1000_fc_tx_pause: |
|
740 /* |
|
741 * Tx Flow control is enabled, and Rx Flow control is disabled, |
|
742 * by a software over-ride. |
|
743 */ |
|
744 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
|
745 break; |
|
746 case e1000_fc_full: |
|
747 /* |
|
748 * Flow control (both Rx and Tx) is enabled by a software |
|
749 * over-ride. |
|
750 */ |
|
751 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
|
752 break; |
|
753 default: |
|
754 hw_dbg(hw, "Flow control param set incorrectly\n"); |
|
755 return -E1000_ERR_CONFIG; |
|
756 break; |
|
757 } |
|
758 |
|
759 ew32(TXCW, txcw); |
|
760 mac->txcw = txcw; |
|
761 |
|
762 return 0; |
|
763 } |
|
764 |
|
765 /** |
|
766 * e1000_poll_fiber_serdes_link_generic - Poll for link up |
|
767 * @hw: pointer to the HW structure |
|
768 * |
|
769 * Polls for link up by reading the status register, if link fails to come |
|
770 * up with auto-negotiation, then the link is forced if a signal is detected. |
|
771 **/ |
|
772 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) |
|
773 { |
|
774 struct e1000_mac_info *mac = &hw->mac; |
|
775 u32 i, status; |
|
776 s32 ret_val; |
|
777 |
|
778 /* |
|
779 * If we have a signal (the cable is plugged in, or assumed true for |
|
780 * serdes media) then poll for a "Link-Up" indication in the Device |
|
781 * Status Register. Time-out if a link isn't seen in 500 milliseconds |
|
782 * seconds (Auto-negotiation should complete in less than 500 |
|
783 * milliseconds even if the other end is doing it in SW). |
|
784 */ |
|
785 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { |
|
786 msleep(10); |
|
787 status = er32(STATUS); |
|
788 if (status & E1000_STATUS_LU) |
|
789 break; |
|
790 } |
|
791 if (i == FIBER_LINK_UP_LIMIT) { |
|
792 hw_dbg(hw, "Never got a valid link from auto-neg!!!\n"); |
|
793 mac->autoneg_failed = 1; |
|
794 /* |
|
795 * AutoNeg failed to achieve a link, so we'll call |
|
796 * mac->check_for_link. This routine will force the |
|
797 * link up if we detect a signal. This will allow us to |
|
798 * communicate with non-autonegotiating link partners. |
|
799 */ |
|
800 ret_val = mac->ops.check_for_link(hw); |
|
801 if (ret_val) { |
|
802 hw_dbg(hw, "Error while checking for link\n"); |
|
803 return ret_val; |
|
804 } |
|
805 mac->autoneg_failed = 0; |
|
806 } else { |
|
807 mac->autoneg_failed = 0; |
|
808 hw_dbg(hw, "Valid Link Found\n"); |
|
809 } |
|
810 |
|
811 return 0; |
|
812 } |
|
813 |
|
814 /** |
|
815 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes |
|
816 * @hw: pointer to the HW structure |
|
817 * |
|
818 * Configures collision distance and flow control for fiber and serdes |
|
819 * links. Upon successful setup, poll for link. |
|
820 **/ |
|
821 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) |
|
822 { |
|
823 u32 ctrl; |
|
824 s32 ret_val; |
|
825 |
|
826 ctrl = er32(CTRL); |
|
827 |
|
828 /* Take the link out of reset */ |
|
829 ctrl &= ~E1000_CTRL_LRST; |
|
830 |
|
831 e1000e_config_collision_dist(hw); |
|
832 |
|
833 ret_val = e1000_commit_fc_settings_generic(hw); |
|
834 if (ret_val) |
|
835 return ret_val; |
|
836 |
|
837 /* |
|
838 * Since auto-negotiation is enabled, take the link out of reset (the |
|
839 * link will be in reset, because we previously reset the chip). This |
|
840 * will restart auto-negotiation. If auto-negotiation is successful |
|
841 * then the link-up status bit will be set and the flow control enable |
|
842 * bits (RFCE and TFCE) will be set according to their negotiated value. |
|
843 */ |
|
844 hw_dbg(hw, "Auto-negotiation enabled\n"); |
|
845 |
|
846 ew32(CTRL, ctrl); |
|
847 e1e_flush(); |
|
848 msleep(1); |
|
849 |
|
850 /* |
|
851 * For these adapters, the SW definable pin 1 is set when the optics |
|
852 * detect a signal. If we have a signal, then poll for a "Link-Up" |
|
853 * indication. |
|
854 */ |
|
855 if (hw->phy.media_type == e1000_media_type_internal_serdes || |
|
856 (er32(CTRL) & E1000_CTRL_SWDPIN1)) { |
|
857 ret_val = e1000_poll_fiber_serdes_link_generic(hw); |
|
858 } else { |
|
859 hw_dbg(hw, "No signal detected\n"); |
|
860 } |
|
861 |
|
862 return 0; |
|
863 } |
|
864 |
|
865 /** |
|
866 * e1000e_config_collision_dist - Configure collision distance |
|
867 * @hw: pointer to the HW structure |
|
868 * |
|
869 * Configures the collision distance to the default value and is used |
|
870 * during link setup. Currently no func pointer exists and all |
|
871 * implementations are handled in the generic version of this function. |
|
872 **/ |
|
873 void e1000e_config_collision_dist(struct e1000_hw *hw) |
|
874 { |
|
875 u32 tctl; |
|
876 |
|
877 tctl = er32(TCTL); |
|
878 |
|
879 tctl &= ~E1000_TCTL_COLD; |
|
880 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; |
|
881 |
|
882 ew32(TCTL, tctl); |
|
883 e1e_flush(); |
|
884 } |
|
885 |
|
886 /** |
|
887 * e1000e_set_fc_watermarks - Set flow control high/low watermarks |
|
888 * @hw: pointer to the HW structure |
|
889 * |
|
890 * Sets the flow control high/low threshold (watermark) registers. If |
|
891 * flow control XON frame transmission is enabled, then set XON frame |
|
892 * transmission as well. |
|
893 **/ |
|
894 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) |
|
895 { |
|
896 u32 fcrtl = 0, fcrth = 0; |
|
897 |
|
898 /* |
|
899 * Set the flow control receive threshold registers. Normally, |
|
900 * these registers will be set to a default threshold that may be |
|
901 * adjusted later by the driver's runtime code. However, if the |
|
902 * ability to transmit pause frames is not enabled, then these |
|
903 * registers will be set to 0. |
|
904 */ |
|
905 if (hw->fc.current_mode & e1000_fc_tx_pause) { |
|
906 /* |
|
907 * We need to set up the Receive Threshold high and low water |
|
908 * marks as well as (optionally) enabling the transmission of |
|
909 * XON frames. |
|
910 */ |
|
911 fcrtl = hw->fc.low_water; |
|
912 fcrtl |= E1000_FCRTL_XONE; |
|
913 fcrth = hw->fc.high_water; |
|
914 } |
|
915 ew32(FCRTL, fcrtl); |
|
916 ew32(FCRTH, fcrth); |
|
917 |
|
918 return 0; |
|
919 } |
|
920 |
|
921 /** |
|
922 * e1000e_force_mac_fc - Force the MAC's flow control settings |
|
923 * @hw: pointer to the HW structure |
|
924 * |
|
925 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the |
|
926 * device control register to reflect the adapter settings. TFCE and RFCE |
|
927 * need to be explicitly set by software when a copper PHY is used because |
|
928 * autonegotiation is managed by the PHY rather than the MAC. Software must |
|
929 * also configure these bits when link is forced on a fiber connection. |
|
930 **/ |
|
931 s32 e1000e_force_mac_fc(struct e1000_hw *hw) |
|
932 { |
|
933 u32 ctrl; |
|
934 |
|
935 ctrl = er32(CTRL); |
|
936 |
|
937 /* |
|
938 * Because we didn't get link via the internal auto-negotiation |
|
939 * mechanism (we either forced link or we got link via PHY |
|
940 * auto-neg), we have to manually enable/disable transmit an |
|
941 * receive flow control. |
|
942 * |
|
943 * The "Case" statement below enables/disable flow control |
|
944 * according to the "hw->fc.current_mode" parameter. |
|
945 * |
|
946 * The possible values of the "fc" parameter are: |
|
947 * 0: Flow control is completely disabled |
|
948 * 1: Rx flow control is enabled (we can receive pause |
|
949 * frames but not send pause frames). |
|
950 * 2: Tx flow control is enabled (we can send pause frames |
|
951 * frames but we do not receive pause frames). |
|
952 * 3: Both Rx and Tx flow control (symmetric) is enabled. |
|
953 * other: No other values should be possible at this point. |
|
954 */ |
|
955 hw_dbg(hw, "hw->fc.current_mode = %u\n", hw->fc.current_mode); |
|
956 |
|
957 switch (hw->fc.current_mode) { |
|
958 case e1000_fc_none: |
|
959 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
|
960 break; |
|
961 case e1000_fc_rx_pause: |
|
962 ctrl &= (~E1000_CTRL_TFCE); |
|
963 ctrl |= E1000_CTRL_RFCE; |
|
964 break; |
|
965 case e1000_fc_tx_pause: |
|
966 ctrl &= (~E1000_CTRL_RFCE); |
|
967 ctrl |= E1000_CTRL_TFCE; |
|
968 break; |
|
969 case e1000_fc_full: |
|
970 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
|
971 break; |
|
972 default: |
|
973 hw_dbg(hw, "Flow control param set incorrectly\n"); |
|
974 return -E1000_ERR_CONFIG; |
|
975 } |
|
976 |
|
977 ew32(CTRL, ctrl); |
|
978 |
|
979 return 0; |
|
980 } |
|
981 |
|
982 /** |
|
983 * e1000e_config_fc_after_link_up - Configures flow control after link |
|
984 * @hw: pointer to the HW structure |
|
985 * |
|
986 * Checks the status of auto-negotiation after link up to ensure that the |
|
987 * speed and duplex were not forced. If the link needed to be forced, then |
|
988 * flow control needs to be forced also. If auto-negotiation is enabled |
|
989 * and did not fail, then we configure flow control based on our link |
|
990 * partner. |
|
991 **/ |
|
992 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) |
|
993 { |
|
994 struct e1000_mac_info *mac = &hw->mac; |
|
995 s32 ret_val = 0; |
|
996 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; |
|
997 u16 speed, duplex; |
|
998 |
|
999 /* |
|
1000 * Check for the case where we have fiber media and auto-neg failed |
|
1001 * so we had to force link. In this case, we need to force the |
|
1002 * configuration of the MAC to match the "fc" parameter. |
|
1003 */ |
|
1004 if (mac->autoneg_failed) { |
|
1005 if (hw->phy.media_type == e1000_media_type_fiber || |
|
1006 hw->phy.media_type == e1000_media_type_internal_serdes) |
|
1007 ret_val = e1000e_force_mac_fc(hw); |
|
1008 } else { |
|
1009 if (hw->phy.media_type == e1000_media_type_copper) |
|
1010 ret_val = e1000e_force_mac_fc(hw); |
|
1011 } |
|
1012 |
|
1013 if (ret_val) { |
|
1014 hw_dbg(hw, "Error forcing flow control settings\n"); |
|
1015 return ret_val; |
|
1016 } |
|
1017 |
|
1018 /* |
|
1019 * Check for the case where we have copper media and auto-neg is |
|
1020 * enabled. In this case, we need to check and see if Auto-Neg |
|
1021 * has completed, and if so, how the PHY and link partner has |
|
1022 * flow control configured. |
|
1023 */ |
|
1024 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { |
|
1025 /* |
|
1026 * Read the MII Status Register and check to see if AutoNeg |
|
1027 * has completed. We read this twice because this reg has |
|
1028 * some "sticky" (latched) bits. |
|
1029 */ |
|
1030 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); |
|
1031 if (ret_val) |
|
1032 return ret_val; |
|
1033 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); |
|
1034 if (ret_val) |
|
1035 return ret_val; |
|
1036 |
|
1037 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { |
|
1038 hw_dbg(hw, "Copper PHY and Auto Neg " |
|
1039 "has not completed.\n"); |
|
1040 return ret_val; |
|
1041 } |
|
1042 |
|
1043 /* |
|
1044 * The AutoNeg process has completed, so we now need to |
|
1045 * read both the Auto Negotiation Advertisement |
|
1046 * Register (Address 4) and the Auto_Negotiation Base |
|
1047 * Page Ability Register (Address 5) to determine how |
|
1048 * flow control was negotiated. |
|
1049 */ |
|
1050 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); |
|
1051 if (ret_val) |
|
1052 return ret_val; |
|
1053 ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); |
|
1054 if (ret_val) |
|
1055 return ret_val; |
|
1056 |
|
1057 /* |
|
1058 * Two bits in the Auto Negotiation Advertisement Register |
|
1059 * (Address 4) and two bits in the Auto Negotiation Base |
|
1060 * Page Ability Register (Address 5) determine flow control |
|
1061 * for both the PHY and the link partner. The following |
|
1062 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
|
1063 * 1999, describes these PAUSE resolution bits and how flow |
|
1064 * control is determined based upon these settings. |
|
1065 * NOTE: DC = Don't Care |
|
1066 * |
|
1067 * LOCAL DEVICE | LINK PARTNER |
|
1068 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
|
1069 *-------|---------|-------|---------|-------------------- |
|
1070 * 0 | 0 | DC | DC | e1000_fc_none |
|
1071 * 0 | 1 | 0 | DC | e1000_fc_none |
|
1072 * 0 | 1 | 1 | 0 | e1000_fc_none |
|
1073 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
|
1074 * 1 | 0 | 0 | DC | e1000_fc_none |
|
1075 * 1 | DC | 1 | DC | e1000_fc_full |
|
1076 * 1 | 1 | 0 | 0 | e1000_fc_none |
|
1077 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
|
1078 * |
|
1079 * |
|
1080 * Are both PAUSE bits set to 1? If so, this implies |
|
1081 * Symmetric Flow Control is enabled at both ends. The |
|
1082 * ASM_DIR bits are irrelevant per the spec. |
|
1083 * |
|
1084 * For Symmetric Flow Control: |
|
1085 * |
|
1086 * LOCAL DEVICE | LINK PARTNER |
|
1087 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
1088 *-------|---------|-------|---------|-------------------- |
|
1089 * 1 | DC | 1 | DC | E1000_fc_full |
|
1090 * |
|
1091 */ |
|
1092 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
1093 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
|
1094 /* |
|
1095 * Now we need to check if the user selected Rx ONLY |
|
1096 * of pause frames. In this case, we had to advertise |
|
1097 * FULL flow control because we could not advertise Rx |
|
1098 * ONLY. Hence, we must now check to see if we need to |
|
1099 * turn OFF the TRANSMISSION of PAUSE frames. |
|
1100 */ |
|
1101 if (hw->fc.requested_mode == e1000_fc_full) { |
|
1102 hw->fc.current_mode = e1000_fc_full; |
|
1103 hw_dbg(hw, "Flow Control = FULL.\r\n"); |
|
1104 } else { |
|
1105 hw->fc.current_mode = e1000_fc_rx_pause; |
|
1106 hw_dbg(hw, "Flow Control = " |
|
1107 "RX PAUSE frames only.\r\n"); |
|
1108 } |
|
1109 } |
|
1110 /* |
|
1111 * For receiving PAUSE frames ONLY. |
|
1112 * |
|
1113 * LOCAL DEVICE | LINK PARTNER |
|
1114 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
1115 *-------|---------|-------|---------|-------------------- |
|
1116 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
|
1117 * |
|
1118 */ |
|
1119 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
1120 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
|
1121 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
|
1122 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
|
1123 hw->fc.current_mode = e1000_fc_tx_pause; |
|
1124 hw_dbg(hw, "Flow Control = Tx PAUSE frames only.\r\n"); |
|
1125 } |
|
1126 /* |
|
1127 * For transmitting PAUSE frames ONLY. |
|
1128 * |
|
1129 * LOCAL DEVICE | LINK PARTNER |
|
1130 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
1131 *-------|---------|-------|---------|-------------------- |
|
1132 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
|
1133 * |
|
1134 */ |
|
1135 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
1136 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
|
1137 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
|
1138 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { |
|
1139 hw->fc.current_mode = e1000_fc_rx_pause; |
|
1140 hw_dbg(hw, "Flow Control = Rx PAUSE frames only.\r\n"); |
|
1141 } else { |
|
1142 /* |
|
1143 * Per the IEEE spec, at this point flow control |
|
1144 * should be disabled. |
|
1145 */ |
|
1146 hw->fc.current_mode = e1000_fc_none; |
|
1147 hw_dbg(hw, "Flow Control = NONE.\r\n"); |
|
1148 } |
|
1149 |
|
1150 /* |
|
1151 * Now we need to do one last check... If we auto- |
|
1152 * negotiated to HALF DUPLEX, flow control should not be |
|
1153 * enabled per IEEE 802.3 spec. |
|
1154 */ |
|
1155 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); |
|
1156 if (ret_val) { |
|
1157 hw_dbg(hw, "Error getting link speed and duplex\n"); |
|
1158 return ret_val; |
|
1159 } |
|
1160 |
|
1161 if (duplex == HALF_DUPLEX) |
|
1162 hw->fc.current_mode = e1000_fc_none; |
|
1163 |
|
1164 /* |
|
1165 * Now we call a subroutine to actually force the MAC |
|
1166 * controller to use the correct flow control settings. |
|
1167 */ |
|
1168 ret_val = e1000e_force_mac_fc(hw); |
|
1169 if (ret_val) { |
|
1170 hw_dbg(hw, "Error forcing flow control settings\n"); |
|
1171 return ret_val; |
|
1172 } |
|
1173 } |
|
1174 |
|
1175 return 0; |
|
1176 } |
|
1177 |
|
1178 /** |
|
1179 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex |
|
1180 * @hw: pointer to the HW structure |
|
1181 * @speed: stores the current speed |
|
1182 * @duplex: stores the current duplex |
|
1183 * |
|
1184 * Read the status register for the current speed/duplex and store the current |
|
1185 * speed and duplex for copper connections. |
|
1186 **/ |
|
1187 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) |
|
1188 { |
|
1189 u32 status; |
|
1190 |
|
1191 status = er32(STATUS); |
|
1192 if (status & E1000_STATUS_SPEED_1000) { |
|
1193 *speed = SPEED_1000; |
|
1194 hw_dbg(hw, "1000 Mbs, "); |
|
1195 } else if (status & E1000_STATUS_SPEED_100) { |
|
1196 *speed = SPEED_100; |
|
1197 hw_dbg(hw, "100 Mbs, "); |
|
1198 } else { |
|
1199 *speed = SPEED_10; |
|
1200 hw_dbg(hw, "10 Mbs, "); |
|
1201 } |
|
1202 |
|
1203 if (status & E1000_STATUS_FD) { |
|
1204 *duplex = FULL_DUPLEX; |
|
1205 hw_dbg(hw, "Full Duplex\n"); |
|
1206 } else { |
|
1207 *duplex = HALF_DUPLEX; |
|
1208 hw_dbg(hw, "Half Duplex\n"); |
|
1209 } |
|
1210 |
|
1211 return 0; |
|
1212 } |
|
1213 |
|
1214 /** |
|
1215 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex |
|
1216 * @hw: pointer to the HW structure |
|
1217 * @speed: stores the current speed |
|
1218 * @duplex: stores the current duplex |
|
1219 * |
|
1220 * Sets the speed and duplex to gigabit full duplex (the only possible option) |
|
1221 * for fiber/serdes links. |
|
1222 **/ |
|
1223 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) |
|
1224 { |
|
1225 *speed = SPEED_1000; |
|
1226 *duplex = FULL_DUPLEX; |
|
1227 |
|
1228 return 0; |
|
1229 } |
|
1230 |
|
1231 /** |
|
1232 * e1000e_get_hw_semaphore - Acquire hardware semaphore |
|
1233 * @hw: pointer to the HW structure |
|
1234 * |
|
1235 * Acquire the HW semaphore to access the PHY or NVM |
|
1236 **/ |
|
1237 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) |
|
1238 { |
|
1239 u32 swsm; |
|
1240 s32 timeout = hw->nvm.word_size + 1; |
|
1241 s32 i = 0; |
|
1242 |
|
1243 /* Get the SW semaphore */ |
|
1244 while (i < timeout) { |
|
1245 swsm = er32(SWSM); |
|
1246 if (!(swsm & E1000_SWSM_SMBI)) |
|
1247 break; |
|
1248 |
|
1249 udelay(50); |
|
1250 i++; |
|
1251 } |
|
1252 |
|
1253 if (i == timeout) { |
|
1254 hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n"); |
|
1255 return -E1000_ERR_NVM; |
|
1256 } |
|
1257 |
|
1258 /* Get the FW semaphore. */ |
|
1259 for (i = 0; i < timeout; i++) { |
|
1260 swsm = er32(SWSM); |
|
1261 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); |
|
1262 |
|
1263 /* Semaphore acquired if bit latched */ |
|
1264 if (er32(SWSM) & E1000_SWSM_SWESMBI) |
|
1265 break; |
|
1266 |
|
1267 udelay(50); |
|
1268 } |
|
1269 |
|
1270 if (i == timeout) { |
|
1271 /* Release semaphores */ |
|
1272 e1000e_put_hw_semaphore(hw); |
|
1273 hw_dbg(hw, "Driver can't access the NVM\n"); |
|
1274 return -E1000_ERR_NVM; |
|
1275 } |
|
1276 |
|
1277 return 0; |
|
1278 } |
|
1279 |
|
1280 /** |
|
1281 * e1000e_put_hw_semaphore - Release hardware semaphore |
|
1282 * @hw: pointer to the HW structure |
|
1283 * |
|
1284 * Release hardware semaphore used to access the PHY or NVM |
|
1285 **/ |
|
1286 void e1000e_put_hw_semaphore(struct e1000_hw *hw) |
|
1287 { |
|
1288 u32 swsm; |
|
1289 |
|
1290 swsm = er32(SWSM); |
|
1291 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); |
|
1292 ew32(SWSM, swsm); |
|
1293 } |
|
1294 |
|
1295 /** |
|
1296 * e1000e_get_auto_rd_done - Check for auto read completion |
|
1297 * @hw: pointer to the HW structure |
|
1298 * |
|
1299 * Check EEPROM for Auto Read done bit. |
|
1300 **/ |
|
1301 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) |
|
1302 { |
|
1303 s32 i = 0; |
|
1304 |
|
1305 while (i < AUTO_READ_DONE_TIMEOUT) { |
|
1306 if (er32(EECD) & E1000_EECD_AUTO_RD) |
|
1307 break; |
|
1308 msleep(1); |
|
1309 i++; |
|
1310 } |
|
1311 |
|
1312 if (i == AUTO_READ_DONE_TIMEOUT) { |
|
1313 hw_dbg(hw, "Auto read by HW from NVM has not completed.\n"); |
|
1314 return -E1000_ERR_RESET; |
|
1315 } |
|
1316 |
|
1317 return 0; |
|
1318 } |
|
1319 |
|
1320 /** |
|
1321 * e1000e_valid_led_default - Verify a valid default LED config |
|
1322 * @hw: pointer to the HW structure |
|
1323 * @data: pointer to the NVM (EEPROM) |
|
1324 * |
|
1325 * Read the EEPROM for the current default LED configuration. If the |
|
1326 * LED configuration is not valid, set to a valid LED configuration. |
|
1327 **/ |
|
1328 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) |
|
1329 { |
|
1330 s32 ret_val; |
|
1331 |
|
1332 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
|
1333 if (ret_val) { |
|
1334 hw_dbg(hw, "NVM Read Error\n"); |
|
1335 return ret_val; |
|
1336 } |
|
1337 |
|
1338 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) |
|
1339 *data = ID_LED_DEFAULT; |
|
1340 |
|
1341 return 0; |
|
1342 } |
|
1343 |
|
1344 /** |
|
1345 * e1000e_id_led_init - |
|
1346 * @hw: pointer to the HW structure |
|
1347 * |
|
1348 **/ |
|
1349 s32 e1000e_id_led_init(struct e1000_hw *hw) |
|
1350 { |
|
1351 struct e1000_mac_info *mac = &hw->mac; |
|
1352 s32 ret_val; |
|
1353 const u32 ledctl_mask = 0x000000FF; |
|
1354 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
|
1355 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
|
1356 u16 data, i, temp; |
|
1357 const u16 led_mask = 0x0F; |
|
1358 |
|
1359 ret_val = hw->nvm.ops.valid_led_default(hw, &data); |
|
1360 if (ret_val) |
|
1361 return ret_val; |
|
1362 |
|
1363 mac->ledctl_default = er32(LEDCTL); |
|
1364 mac->ledctl_mode1 = mac->ledctl_default; |
|
1365 mac->ledctl_mode2 = mac->ledctl_default; |
|
1366 |
|
1367 for (i = 0; i < 4; i++) { |
|
1368 temp = (data >> (i << 2)) & led_mask; |
|
1369 switch (temp) { |
|
1370 case ID_LED_ON1_DEF2: |
|
1371 case ID_LED_ON1_ON2: |
|
1372 case ID_LED_ON1_OFF2: |
|
1373 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
|
1374 mac->ledctl_mode1 |= ledctl_on << (i << 3); |
|
1375 break; |
|
1376 case ID_LED_OFF1_DEF2: |
|
1377 case ID_LED_OFF1_ON2: |
|
1378 case ID_LED_OFF1_OFF2: |
|
1379 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
|
1380 mac->ledctl_mode1 |= ledctl_off << (i << 3); |
|
1381 break; |
|
1382 default: |
|
1383 /* Do nothing */ |
|
1384 break; |
|
1385 } |
|
1386 switch (temp) { |
|
1387 case ID_LED_DEF1_ON2: |
|
1388 case ID_LED_ON1_ON2: |
|
1389 case ID_LED_OFF1_ON2: |
|
1390 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
|
1391 mac->ledctl_mode2 |= ledctl_on << (i << 3); |
|
1392 break; |
|
1393 case ID_LED_DEF1_OFF2: |
|
1394 case ID_LED_ON1_OFF2: |
|
1395 case ID_LED_OFF1_OFF2: |
|
1396 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
|
1397 mac->ledctl_mode2 |= ledctl_off << (i << 3); |
|
1398 break; |
|
1399 default: |
|
1400 /* Do nothing */ |
|
1401 break; |
|
1402 } |
|
1403 } |
|
1404 |
|
1405 return 0; |
|
1406 } |
|
1407 |
|
1408 /** |
|
1409 * e1000e_setup_led_generic - Configures SW controllable LED |
|
1410 * @hw: pointer to the HW structure |
|
1411 * |
|
1412 * This prepares the SW controllable LED for use and saves the current state |
|
1413 * of the LED so it can be later restored. |
|
1414 **/ |
|
1415 s32 e1000e_setup_led_generic(struct e1000_hw *hw) |
|
1416 { |
|
1417 u32 ledctl; |
|
1418 |
|
1419 if (hw->mac.ops.setup_led != e1000e_setup_led_generic) { |
|
1420 return -E1000_ERR_CONFIG; |
|
1421 } |
|
1422 |
|
1423 if (hw->phy.media_type == e1000_media_type_fiber) { |
|
1424 ledctl = er32(LEDCTL); |
|
1425 hw->mac.ledctl_default = ledctl; |
|
1426 /* Turn off LED0 */ |
|
1427 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | |
|
1428 E1000_LEDCTL_LED0_BLINK | |
|
1429 E1000_LEDCTL_LED0_MODE_MASK); |
|
1430 ledctl |= (E1000_LEDCTL_MODE_LED_OFF << |
|
1431 E1000_LEDCTL_LED0_MODE_SHIFT); |
|
1432 ew32(LEDCTL, ledctl); |
|
1433 } else if (hw->phy.media_type == e1000_media_type_copper) { |
|
1434 ew32(LEDCTL, hw->mac.ledctl_mode1); |
|
1435 } |
|
1436 |
|
1437 return 0; |
|
1438 } |
|
1439 |
|
1440 /** |
|
1441 * e1000e_cleanup_led_generic - Set LED config to default operation |
|
1442 * @hw: pointer to the HW structure |
|
1443 * |
|
1444 * Remove the current LED configuration and set the LED configuration |
|
1445 * to the default value, saved from the EEPROM. |
|
1446 **/ |
|
1447 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) |
|
1448 { |
|
1449 ew32(LEDCTL, hw->mac.ledctl_default); |
|
1450 return 0; |
|
1451 } |
|
1452 |
|
1453 /** |
|
1454 * e1000e_blink_led - Blink LED |
|
1455 * @hw: pointer to the HW structure |
|
1456 * |
|
1457 * Blink the LEDs which are set to be on. |
|
1458 **/ |
|
1459 s32 e1000e_blink_led(struct e1000_hw *hw) |
|
1460 { |
|
1461 u32 ledctl_blink = 0; |
|
1462 u32 i; |
|
1463 |
|
1464 if (hw->phy.media_type == e1000_media_type_fiber) { |
|
1465 /* always blink LED0 for PCI-E fiber */ |
|
1466 ledctl_blink = E1000_LEDCTL_LED0_BLINK | |
|
1467 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); |
|
1468 } else { |
|
1469 /* |
|
1470 * set the blink bit for each LED that's "on" (0x0E) |
|
1471 * in ledctl_mode2 |
|
1472 */ |
|
1473 ledctl_blink = hw->mac.ledctl_mode2; |
|
1474 for (i = 0; i < 4; i++) |
|
1475 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == |
|
1476 E1000_LEDCTL_MODE_LED_ON) |
|
1477 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << |
|
1478 (i * 8)); |
|
1479 } |
|
1480 |
|
1481 ew32(LEDCTL, ledctl_blink); |
|
1482 |
|
1483 return 0; |
|
1484 } |
|
1485 |
|
1486 /** |
|
1487 * e1000e_led_on_generic - Turn LED on |
|
1488 * @hw: pointer to the HW structure |
|
1489 * |
|
1490 * Turn LED on. |
|
1491 **/ |
|
1492 s32 e1000e_led_on_generic(struct e1000_hw *hw) |
|
1493 { |
|
1494 u32 ctrl; |
|
1495 |
|
1496 switch (hw->phy.media_type) { |
|
1497 case e1000_media_type_fiber: |
|
1498 ctrl = er32(CTRL); |
|
1499 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
1500 ctrl |= E1000_CTRL_SWDPIO0; |
|
1501 ew32(CTRL, ctrl); |
|
1502 break; |
|
1503 case e1000_media_type_copper: |
|
1504 ew32(LEDCTL, hw->mac.ledctl_mode2); |
|
1505 break; |
|
1506 default: |
|
1507 break; |
|
1508 } |
|
1509 |
|
1510 return 0; |
|
1511 } |
|
1512 |
|
1513 /** |
|
1514 * e1000e_led_off_generic - Turn LED off |
|
1515 * @hw: pointer to the HW structure |
|
1516 * |
|
1517 * Turn LED off. |
|
1518 **/ |
|
1519 s32 e1000e_led_off_generic(struct e1000_hw *hw) |
|
1520 { |
|
1521 u32 ctrl; |
|
1522 |
|
1523 switch (hw->phy.media_type) { |
|
1524 case e1000_media_type_fiber: |
|
1525 ctrl = er32(CTRL); |
|
1526 ctrl |= E1000_CTRL_SWDPIN0; |
|
1527 ctrl |= E1000_CTRL_SWDPIO0; |
|
1528 ew32(CTRL, ctrl); |
|
1529 break; |
|
1530 case e1000_media_type_copper: |
|
1531 ew32(LEDCTL, hw->mac.ledctl_mode1); |
|
1532 break; |
|
1533 default: |
|
1534 break; |
|
1535 } |
|
1536 |
|
1537 return 0; |
|
1538 } |
|
1539 |
|
1540 /** |
|
1541 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities |
|
1542 * @hw: pointer to the HW structure |
|
1543 * @no_snoop: bitmap of snoop events |
|
1544 * |
|
1545 * Set the PCI-express register to snoop for events enabled in 'no_snoop'. |
|
1546 **/ |
|
1547 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) |
|
1548 { |
|
1549 u32 gcr; |
|
1550 |
|
1551 if (no_snoop) { |
|
1552 gcr = er32(GCR); |
|
1553 gcr &= ~(PCIE_NO_SNOOP_ALL); |
|
1554 gcr |= no_snoop; |
|
1555 ew32(GCR, gcr); |
|
1556 } |
|
1557 } |
|
1558 |
|
1559 /** |
|
1560 * e1000e_disable_pcie_master - Disables PCI-express master access |
|
1561 * @hw: pointer to the HW structure |
|
1562 * |
|
1563 * Returns 0 if successful, else returns -10 |
|
1564 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused |
|
1565 * the master requests to be disabled. |
|
1566 * |
|
1567 * Disables PCI-Express master access and verifies there are no pending |
|
1568 * requests. |
|
1569 **/ |
|
1570 s32 e1000e_disable_pcie_master(struct e1000_hw *hw) |
|
1571 { |
|
1572 u32 ctrl; |
|
1573 s32 timeout = MASTER_DISABLE_TIMEOUT; |
|
1574 |
|
1575 ctrl = er32(CTRL); |
|
1576 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; |
|
1577 ew32(CTRL, ctrl); |
|
1578 |
|
1579 while (timeout) { |
|
1580 if (!(er32(STATUS) & |
|
1581 E1000_STATUS_GIO_MASTER_ENABLE)) |
|
1582 break; |
|
1583 udelay(100); |
|
1584 timeout--; |
|
1585 } |
|
1586 |
|
1587 if (!timeout) { |
|
1588 hw_dbg(hw, "Master requests are pending.\n"); |
|
1589 return -E1000_ERR_MASTER_REQUESTS_PENDING; |
|
1590 } |
|
1591 |
|
1592 return 0; |
|
1593 } |
|
1594 |
|
1595 /** |
|
1596 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing |
|
1597 * @hw: pointer to the HW structure |
|
1598 * |
|
1599 * Reset the Adaptive Interframe Spacing throttle to default values. |
|
1600 **/ |
|
1601 void e1000e_reset_adaptive(struct e1000_hw *hw) |
|
1602 { |
|
1603 struct e1000_mac_info *mac = &hw->mac; |
|
1604 |
|
1605 mac->current_ifs_val = 0; |
|
1606 mac->ifs_min_val = IFS_MIN; |
|
1607 mac->ifs_max_val = IFS_MAX; |
|
1608 mac->ifs_step_size = IFS_STEP; |
|
1609 mac->ifs_ratio = IFS_RATIO; |
|
1610 |
|
1611 mac->in_ifs_mode = 0; |
|
1612 ew32(AIT, 0); |
|
1613 } |
|
1614 |
|
1615 /** |
|
1616 * e1000e_update_adaptive - Update Adaptive Interframe Spacing |
|
1617 * @hw: pointer to the HW structure |
|
1618 * |
|
1619 * Update the Adaptive Interframe Spacing Throttle value based on the |
|
1620 * time between transmitted packets and time between collisions. |
|
1621 **/ |
|
1622 void e1000e_update_adaptive(struct e1000_hw *hw) |
|
1623 { |
|
1624 struct e1000_mac_info *mac = &hw->mac; |
|
1625 |
|
1626 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { |
|
1627 if (mac->tx_packet_delta > MIN_NUM_XMITS) { |
|
1628 mac->in_ifs_mode = 1; |
|
1629 if (mac->current_ifs_val < mac->ifs_max_val) { |
|
1630 if (!mac->current_ifs_val) |
|
1631 mac->current_ifs_val = mac->ifs_min_val; |
|
1632 else |
|
1633 mac->current_ifs_val += |
|
1634 mac->ifs_step_size; |
|
1635 ew32(AIT, mac->current_ifs_val); |
|
1636 } |
|
1637 } |
|
1638 } else { |
|
1639 if (mac->in_ifs_mode && |
|
1640 (mac->tx_packet_delta <= MIN_NUM_XMITS)) { |
|
1641 mac->current_ifs_val = 0; |
|
1642 mac->in_ifs_mode = 0; |
|
1643 ew32(AIT, 0); |
|
1644 } |
|
1645 } |
|
1646 } |
|
1647 |
|
1648 /** |
|
1649 * e1000_raise_eec_clk - Raise EEPROM clock |
|
1650 * @hw: pointer to the HW structure |
|
1651 * @eecd: pointer to the EEPROM |
|
1652 * |
|
1653 * Enable/Raise the EEPROM clock bit. |
|
1654 **/ |
|
1655 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) |
|
1656 { |
|
1657 *eecd = *eecd | E1000_EECD_SK; |
|
1658 ew32(EECD, *eecd); |
|
1659 e1e_flush(); |
|
1660 udelay(hw->nvm.delay_usec); |
|
1661 } |
|
1662 |
|
1663 /** |
|
1664 * e1000_lower_eec_clk - Lower EEPROM clock |
|
1665 * @hw: pointer to the HW structure |
|
1666 * @eecd: pointer to the EEPROM |
|
1667 * |
|
1668 * Clear/Lower the EEPROM clock bit. |
|
1669 **/ |
|
1670 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) |
|
1671 { |
|
1672 *eecd = *eecd & ~E1000_EECD_SK; |
|
1673 ew32(EECD, *eecd); |
|
1674 e1e_flush(); |
|
1675 udelay(hw->nvm.delay_usec); |
|
1676 } |
|
1677 |
|
1678 /** |
|
1679 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM |
|
1680 * @hw: pointer to the HW structure |
|
1681 * @data: data to send to the EEPROM |
|
1682 * @count: number of bits to shift out |
|
1683 * |
|
1684 * We need to shift 'count' bits out to the EEPROM. So, the value in the |
|
1685 * "data" parameter will be shifted out to the EEPROM one bit at a time. |
|
1686 * In order to do this, "data" must be broken down into bits. |
|
1687 **/ |
|
1688 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) |
|
1689 { |
|
1690 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1691 u32 eecd = er32(EECD); |
|
1692 u32 mask; |
|
1693 |
|
1694 mask = 0x01 << (count - 1); |
|
1695 if (nvm->type == e1000_nvm_eeprom_spi) |
|
1696 eecd |= E1000_EECD_DO; |
|
1697 |
|
1698 do { |
|
1699 eecd &= ~E1000_EECD_DI; |
|
1700 |
|
1701 if (data & mask) |
|
1702 eecd |= E1000_EECD_DI; |
|
1703 |
|
1704 ew32(EECD, eecd); |
|
1705 e1e_flush(); |
|
1706 |
|
1707 udelay(nvm->delay_usec); |
|
1708 |
|
1709 e1000_raise_eec_clk(hw, &eecd); |
|
1710 e1000_lower_eec_clk(hw, &eecd); |
|
1711 |
|
1712 mask >>= 1; |
|
1713 } while (mask); |
|
1714 |
|
1715 eecd &= ~E1000_EECD_DI; |
|
1716 ew32(EECD, eecd); |
|
1717 } |
|
1718 |
|
1719 /** |
|
1720 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM |
|
1721 * @hw: pointer to the HW structure |
|
1722 * @count: number of bits to shift in |
|
1723 * |
|
1724 * In order to read a register from the EEPROM, we need to shift 'count' bits |
|
1725 * in from the EEPROM. Bits are "shifted in" by raising the clock input to |
|
1726 * the EEPROM (setting the SK bit), and then reading the value of the data out |
|
1727 * "DO" bit. During this "shifting in" process the data in "DI" bit should |
|
1728 * always be clear. |
|
1729 **/ |
|
1730 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) |
|
1731 { |
|
1732 u32 eecd; |
|
1733 u32 i; |
|
1734 u16 data; |
|
1735 |
|
1736 eecd = er32(EECD); |
|
1737 |
|
1738 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
|
1739 data = 0; |
|
1740 |
|
1741 for (i = 0; i < count; i++) { |
|
1742 data <<= 1; |
|
1743 e1000_raise_eec_clk(hw, &eecd); |
|
1744 |
|
1745 eecd = er32(EECD); |
|
1746 |
|
1747 eecd &= ~E1000_EECD_DI; |
|
1748 if (eecd & E1000_EECD_DO) |
|
1749 data |= 1; |
|
1750 |
|
1751 e1000_lower_eec_clk(hw, &eecd); |
|
1752 } |
|
1753 |
|
1754 return data; |
|
1755 } |
|
1756 |
|
1757 /** |
|
1758 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion |
|
1759 * @hw: pointer to the HW structure |
|
1760 * @ee_reg: EEPROM flag for polling |
|
1761 * |
|
1762 * Polls the EEPROM status bit for either read or write completion based |
|
1763 * upon the value of 'ee_reg'. |
|
1764 **/ |
|
1765 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) |
|
1766 { |
|
1767 u32 attempts = 100000; |
|
1768 u32 i, reg = 0; |
|
1769 |
|
1770 for (i = 0; i < attempts; i++) { |
|
1771 if (ee_reg == E1000_NVM_POLL_READ) |
|
1772 reg = er32(EERD); |
|
1773 else |
|
1774 reg = er32(EEWR); |
|
1775 |
|
1776 if (reg & E1000_NVM_RW_REG_DONE) |
|
1777 return 0; |
|
1778 |
|
1779 udelay(5); |
|
1780 } |
|
1781 |
|
1782 return -E1000_ERR_NVM; |
|
1783 } |
|
1784 |
|
1785 /** |
|
1786 * e1000e_acquire_nvm - Generic request for access to EEPROM |
|
1787 * @hw: pointer to the HW structure |
|
1788 * |
|
1789 * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
|
1790 * Return successful if access grant bit set, else clear the request for |
|
1791 * EEPROM access and return -E1000_ERR_NVM (-1). |
|
1792 **/ |
|
1793 s32 e1000e_acquire_nvm(struct e1000_hw *hw) |
|
1794 { |
|
1795 u32 eecd = er32(EECD); |
|
1796 s32 timeout = E1000_NVM_GRANT_ATTEMPTS; |
|
1797 |
|
1798 ew32(EECD, eecd | E1000_EECD_REQ); |
|
1799 eecd = er32(EECD); |
|
1800 |
|
1801 while (timeout) { |
|
1802 if (eecd & E1000_EECD_GNT) |
|
1803 break; |
|
1804 udelay(5); |
|
1805 eecd = er32(EECD); |
|
1806 timeout--; |
|
1807 } |
|
1808 |
|
1809 if (!timeout) { |
|
1810 eecd &= ~E1000_EECD_REQ; |
|
1811 ew32(EECD, eecd); |
|
1812 hw_dbg(hw, "Could not acquire NVM grant\n"); |
|
1813 return -E1000_ERR_NVM; |
|
1814 } |
|
1815 |
|
1816 return 0; |
|
1817 } |
|
1818 |
|
1819 /** |
|
1820 * e1000_standby_nvm - Return EEPROM to standby state |
|
1821 * @hw: pointer to the HW structure |
|
1822 * |
|
1823 * Return the EEPROM to a standby state. |
|
1824 **/ |
|
1825 static void e1000_standby_nvm(struct e1000_hw *hw) |
|
1826 { |
|
1827 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1828 u32 eecd = er32(EECD); |
|
1829 |
|
1830 if (nvm->type == e1000_nvm_eeprom_spi) { |
|
1831 /* Toggle CS to flush commands */ |
|
1832 eecd |= E1000_EECD_CS; |
|
1833 ew32(EECD, eecd); |
|
1834 e1e_flush(); |
|
1835 udelay(nvm->delay_usec); |
|
1836 eecd &= ~E1000_EECD_CS; |
|
1837 ew32(EECD, eecd); |
|
1838 e1e_flush(); |
|
1839 udelay(nvm->delay_usec); |
|
1840 } |
|
1841 } |
|
1842 |
|
1843 /** |
|
1844 * e1000_stop_nvm - Terminate EEPROM command |
|
1845 * @hw: pointer to the HW structure |
|
1846 * |
|
1847 * Terminates the current command by inverting the EEPROM's chip select pin. |
|
1848 **/ |
|
1849 static void e1000_stop_nvm(struct e1000_hw *hw) |
|
1850 { |
|
1851 u32 eecd; |
|
1852 |
|
1853 eecd = er32(EECD); |
|
1854 if (hw->nvm.type == e1000_nvm_eeprom_spi) { |
|
1855 /* Pull CS high */ |
|
1856 eecd |= E1000_EECD_CS; |
|
1857 e1000_lower_eec_clk(hw, &eecd); |
|
1858 } |
|
1859 } |
|
1860 |
|
1861 /** |
|
1862 * e1000e_release_nvm - Release exclusive access to EEPROM |
|
1863 * @hw: pointer to the HW structure |
|
1864 * |
|
1865 * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
|
1866 **/ |
|
1867 void e1000e_release_nvm(struct e1000_hw *hw) |
|
1868 { |
|
1869 u32 eecd; |
|
1870 |
|
1871 e1000_stop_nvm(hw); |
|
1872 |
|
1873 eecd = er32(EECD); |
|
1874 eecd &= ~E1000_EECD_REQ; |
|
1875 ew32(EECD, eecd); |
|
1876 } |
|
1877 |
|
1878 /** |
|
1879 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write |
|
1880 * @hw: pointer to the HW structure |
|
1881 * |
|
1882 * Setups the EEPROM for reading and writing. |
|
1883 **/ |
|
1884 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) |
|
1885 { |
|
1886 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1887 u32 eecd = er32(EECD); |
|
1888 u16 timeout = 0; |
|
1889 u8 spi_stat_reg; |
|
1890 |
|
1891 if (nvm->type == e1000_nvm_eeprom_spi) { |
|
1892 /* Clear SK and CS */ |
|
1893 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
|
1894 ew32(EECD, eecd); |
|
1895 udelay(1); |
|
1896 timeout = NVM_MAX_RETRY_SPI; |
|
1897 |
|
1898 /* |
|
1899 * Read "Status Register" repeatedly until the LSB is cleared. |
|
1900 * The EEPROM will signal that the command has been completed |
|
1901 * by clearing bit 0 of the internal status register. If it's |
|
1902 * not cleared within 'timeout', then error out. |
|
1903 */ |
|
1904 while (timeout) { |
|
1905 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, |
|
1906 hw->nvm.opcode_bits); |
|
1907 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); |
|
1908 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) |
|
1909 break; |
|
1910 |
|
1911 udelay(5); |
|
1912 e1000_standby_nvm(hw); |
|
1913 timeout--; |
|
1914 } |
|
1915 |
|
1916 if (!timeout) { |
|
1917 hw_dbg(hw, "SPI NVM Status error\n"); |
|
1918 return -E1000_ERR_NVM; |
|
1919 } |
|
1920 } |
|
1921 |
|
1922 return 0; |
|
1923 } |
|
1924 |
|
1925 /** |
|
1926 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register |
|
1927 * @hw: pointer to the HW structure |
|
1928 * @offset: offset of word in the EEPROM to read |
|
1929 * @words: number of words to read |
|
1930 * @data: word read from the EEPROM |
|
1931 * |
|
1932 * Reads a 16 bit word from the EEPROM using the EERD register. |
|
1933 **/ |
|
1934 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
1935 { |
|
1936 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1937 u32 i, eerd = 0; |
|
1938 s32 ret_val = 0; |
|
1939 |
|
1940 /* |
|
1941 * A check for invalid values: offset too large, too many words, |
|
1942 * too many words for the offset, and not enough words. |
|
1943 */ |
|
1944 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
|
1945 (words == 0)) { |
|
1946 hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
|
1947 return -E1000_ERR_NVM; |
|
1948 } |
|
1949 |
|
1950 for (i = 0; i < words; i++) { |
|
1951 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + |
|
1952 E1000_NVM_RW_REG_START; |
|
1953 |
|
1954 ew32(EERD, eerd); |
|
1955 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); |
|
1956 if (ret_val) |
|
1957 break; |
|
1958 |
|
1959 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); |
|
1960 } |
|
1961 |
|
1962 return ret_val; |
|
1963 } |
|
1964 |
|
1965 /** |
|
1966 * e1000e_write_nvm_spi - Write to EEPROM using SPI |
|
1967 * @hw: pointer to the HW structure |
|
1968 * @offset: offset within the EEPROM to be written to |
|
1969 * @words: number of words to write |
|
1970 * @data: 16 bit word(s) to be written to the EEPROM |
|
1971 * |
|
1972 * Writes data to EEPROM at offset using SPI interface. |
|
1973 * |
|
1974 * If e1000e_update_nvm_checksum is not called after this function , the |
|
1975 * EEPROM will most likely contain an invalid checksum. |
|
1976 **/ |
|
1977 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
1978 { |
|
1979 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1980 s32 ret_val; |
|
1981 u16 widx = 0; |
|
1982 |
|
1983 /* |
|
1984 * A check for invalid values: offset too large, too many words, |
|
1985 * and not enough words. |
|
1986 */ |
|
1987 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
|
1988 (words == 0)) { |
|
1989 hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
|
1990 return -E1000_ERR_NVM; |
|
1991 } |
|
1992 |
|
1993 ret_val = nvm->ops.acquire_nvm(hw); |
|
1994 if (ret_val) |
|
1995 return ret_val; |
|
1996 |
|
1997 msleep(10); |
|
1998 |
|
1999 while (widx < words) { |
|
2000 u8 write_opcode = NVM_WRITE_OPCODE_SPI; |
|
2001 |
|
2002 ret_val = e1000_ready_nvm_eeprom(hw); |
|
2003 if (ret_val) { |
|
2004 nvm->ops.release_nvm(hw); |
|
2005 return ret_val; |
|
2006 } |
|
2007 |
|
2008 e1000_standby_nvm(hw); |
|
2009 |
|
2010 /* Send the WRITE ENABLE command (8 bit opcode) */ |
|
2011 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, |
|
2012 nvm->opcode_bits); |
|
2013 |
|
2014 e1000_standby_nvm(hw); |
|
2015 |
|
2016 /* |
|
2017 * Some SPI eeproms use the 8th address bit embedded in the |
|
2018 * opcode |
|
2019 */ |
|
2020 if ((nvm->address_bits == 8) && (offset >= 128)) |
|
2021 write_opcode |= NVM_A8_OPCODE_SPI; |
|
2022 |
|
2023 /* Send the Write command (8-bit opcode + addr) */ |
|
2024 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); |
|
2025 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), |
|
2026 nvm->address_bits); |
|
2027 |
|
2028 /* Loop to allow for up to whole page write of eeprom */ |
|
2029 while (widx < words) { |
|
2030 u16 word_out = data[widx]; |
|
2031 word_out = (word_out >> 8) | (word_out << 8); |
|
2032 e1000_shift_out_eec_bits(hw, word_out, 16); |
|
2033 widx++; |
|
2034 |
|
2035 if ((((offset + widx) * 2) % nvm->page_size) == 0) { |
|
2036 e1000_standby_nvm(hw); |
|
2037 break; |
|
2038 } |
|
2039 } |
|
2040 } |
|
2041 |
|
2042 msleep(10); |
|
2043 nvm->ops.release_nvm(hw); |
|
2044 return 0; |
|
2045 } |
|
2046 |
|
2047 /** |
|
2048 * e1000e_read_mac_addr - Read device MAC address |
|
2049 * @hw: pointer to the HW structure |
|
2050 * |
|
2051 * Reads the device MAC address from the EEPROM and stores the value. |
|
2052 * Since devices with two ports use the same EEPROM, we increment the |
|
2053 * last bit in the MAC address for the second port. |
|
2054 **/ |
|
2055 s32 e1000e_read_mac_addr(struct e1000_hw *hw) |
|
2056 { |
|
2057 s32 ret_val; |
|
2058 u16 offset, nvm_data, i; |
|
2059 u16 mac_addr_offset = 0; |
|
2060 |
|
2061 if (hw->mac.type == e1000_82571) { |
|
2062 /* Check for an alternate MAC address. An alternate MAC |
|
2063 * address can be setup by pre-boot software and must be |
|
2064 * treated like a permanent address and must override the |
|
2065 * actual permanent MAC address.*/ |
|
2066 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, |
|
2067 &mac_addr_offset); |
|
2068 if (ret_val) { |
|
2069 hw_dbg(hw, "NVM Read Error\n"); |
|
2070 return ret_val; |
|
2071 } |
|
2072 if (mac_addr_offset == 0xFFFF) |
|
2073 mac_addr_offset = 0; |
|
2074 |
|
2075 if (mac_addr_offset) { |
|
2076 if (hw->bus.func == E1000_FUNC_1) |
|
2077 mac_addr_offset += ETH_ALEN/sizeof(u16); |
|
2078 |
|
2079 /* make sure we have a valid mac address here |
|
2080 * before using it */ |
|
2081 ret_val = e1000_read_nvm(hw, mac_addr_offset, 1, |
|
2082 &nvm_data); |
|
2083 if (ret_val) { |
|
2084 hw_dbg(hw, "NVM Read Error\n"); |
|
2085 return ret_val; |
|
2086 } |
|
2087 if (nvm_data & 0x0001) |
|
2088 mac_addr_offset = 0; |
|
2089 } |
|
2090 |
|
2091 if (mac_addr_offset) |
|
2092 hw->dev_spec.e82571.alt_mac_addr_is_present = 1; |
|
2093 } |
|
2094 |
|
2095 for (i = 0; i < ETH_ALEN; i += 2) { |
|
2096 offset = mac_addr_offset + (i >> 1); |
|
2097 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); |
|
2098 if (ret_val) { |
|
2099 hw_dbg(hw, "NVM Read Error\n"); |
|
2100 return ret_val; |
|
2101 } |
|
2102 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); |
|
2103 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); |
|
2104 } |
|
2105 |
|
2106 /* Flip last bit of mac address if we're on second port */ |
|
2107 if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1) |
|
2108 hw->mac.perm_addr[5] ^= 1; |
|
2109 |
|
2110 for (i = 0; i < ETH_ALEN; i++) |
|
2111 hw->mac.addr[i] = hw->mac.perm_addr[i]; |
|
2112 |
|
2113 return 0; |
|
2114 } |
|
2115 |
|
2116 /** |
|
2117 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum |
|
2118 * @hw: pointer to the HW structure |
|
2119 * |
|
2120 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
|
2121 * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
|
2122 **/ |
|
2123 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) |
|
2124 { |
|
2125 s32 ret_val; |
|
2126 u16 checksum = 0; |
|
2127 u16 i, nvm_data; |
|
2128 |
|
2129 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { |
|
2130 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); |
|
2131 if (ret_val) { |
|
2132 hw_dbg(hw, "NVM Read Error\n"); |
|
2133 return ret_val; |
|
2134 } |
|
2135 checksum += nvm_data; |
|
2136 } |
|
2137 |
|
2138 if (checksum != (u16) NVM_SUM) { |
|
2139 hw_dbg(hw, "NVM Checksum Invalid\n"); |
|
2140 return -E1000_ERR_NVM; |
|
2141 } |
|
2142 |
|
2143 return 0; |
|
2144 } |
|
2145 |
|
2146 /** |
|
2147 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum |
|
2148 * @hw: pointer to the HW structure |
|
2149 * |
|
2150 * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
|
2151 * up to the checksum. Then calculates the EEPROM checksum and writes the |
|
2152 * value to the EEPROM. |
|
2153 **/ |
|
2154 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) |
|
2155 { |
|
2156 s32 ret_val; |
|
2157 u16 checksum = 0; |
|
2158 u16 i, nvm_data; |
|
2159 |
|
2160 for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
|
2161 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); |
|
2162 if (ret_val) { |
|
2163 hw_dbg(hw, "NVM Read Error while updating checksum.\n"); |
|
2164 return ret_val; |
|
2165 } |
|
2166 checksum += nvm_data; |
|
2167 } |
|
2168 checksum = (u16) NVM_SUM - checksum; |
|
2169 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); |
|
2170 if (ret_val) |
|
2171 hw_dbg(hw, "NVM Write Error while updating checksum.\n"); |
|
2172 |
|
2173 return ret_val; |
|
2174 } |
|
2175 |
|
2176 /** |
|
2177 * e1000e_reload_nvm - Reloads EEPROM |
|
2178 * @hw: pointer to the HW structure |
|
2179 * |
|
2180 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the |
|
2181 * extended control register. |
|
2182 **/ |
|
2183 void e1000e_reload_nvm(struct e1000_hw *hw) |
|
2184 { |
|
2185 u32 ctrl_ext; |
|
2186 |
|
2187 udelay(10); |
|
2188 ctrl_ext = er32(CTRL_EXT); |
|
2189 ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
|
2190 ew32(CTRL_EXT, ctrl_ext); |
|
2191 e1e_flush(); |
|
2192 } |
|
2193 |
|
2194 /** |
|
2195 * e1000_calculate_checksum - Calculate checksum for buffer |
|
2196 * @buffer: pointer to EEPROM |
|
2197 * @length: size of EEPROM to calculate a checksum for |
|
2198 * |
|
2199 * Calculates the checksum for some buffer on a specified length. The |
|
2200 * checksum calculated is returned. |
|
2201 **/ |
|
2202 static u8 e1000_calculate_checksum(u8 *buffer, u32 length) |
|
2203 { |
|
2204 u32 i; |
|
2205 u8 sum = 0; |
|
2206 |
|
2207 if (!buffer) |
|
2208 return 0; |
|
2209 |
|
2210 for (i = 0; i < length; i++) |
|
2211 sum += buffer[i]; |
|
2212 |
|
2213 return (u8) (0 - sum); |
|
2214 } |
|
2215 |
|
2216 /** |
|
2217 * e1000_mng_enable_host_if - Checks host interface is enabled |
|
2218 * @hw: pointer to the HW structure |
|
2219 * |
|
2220 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND |
|
2221 * |
|
2222 * This function checks whether the HOST IF is enabled for command operation |
|
2223 * and also checks whether the previous command is completed. It busy waits |
|
2224 * in case of previous command is not completed. |
|
2225 **/ |
|
2226 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) |
|
2227 { |
|
2228 u32 hicr; |
|
2229 u8 i; |
|
2230 |
|
2231 /* Check that the host interface is enabled. */ |
|
2232 hicr = er32(HICR); |
|
2233 if ((hicr & E1000_HICR_EN) == 0) { |
|
2234 hw_dbg(hw, "E1000_HOST_EN bit disabled.\n"); |
|
2235 return -E1000_ERR_HOST_INTERFACE_COMMAND; |
|
2236 } |
|
2237 /* check the previous command is completed */ |
|
2238 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { |
|
2239 hicr = er32(HICR); |
|
2240 if (!(hicr & E1000_HICR_C)) |
|
2241 break; |
|
2242 mdelay(1); |
|
2243 } |
|
2244 |
|
2245 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { |
|
2246 hw_dbg(hw, "Previous command timeout failed .\n"); |
|
2247 return -E1000_ERR_HOST_INTERFACE_COMMAND; |
|
2248 } |
|
2249 |
|
2250 return 0; |
|
2251 } |
|
2252 |
|
2253 /** |
|
2254 * e1000e_check_mng_mode_generic - check management mode |
|
2255 * @hw: pointer to the HW structure |
|
2256 * |
|
2257 * Reads the firmware semaphore register and returns true (>0) if |
|
2258 * manageability is enabled, else false (0). |
|
2259 **/ |
|
2260 bool e1000e_check_mng_mode_generic(struct e1000_hw *hw) |
|
2261 { |
|
2262 u32 fwsm = er32(FWSM); |
|
2263 |
|
2264 return (fwsm & E1000_FWSM_MODE_MASK) == |
|
2265 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); |
|
2266 } |
|
2267 |
|
2268 /** |
|
2269 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx |
|
2270 * @hw: pointer to the HW structure |
|
2271 * |
|
2272 * Enables packet filtering on transmit packets if manageability is enabled |
|
2273 * and host interface is enabled. |
|
2274 **/ |
|
2275 bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) |
|
2276 { |
|
2277 struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; |
|
2278 u32 *buffer = (u32 *)&hw->mng_cookie; |
|
2279 u32 offset; |
|
2280 s32 ret_val, hdr_csum, csum; |
|
2281 u8 i, len; |
|
2282 |
|
2283 /* No manageability, no filtering */ |
|
2284 if (!e1000e_check_mng_mode(hw)) { |
|
2285 hw->mac.tx_pkt_filtering = 0; |
|
2286 return 0; |
|
2287 } |
|
2288 |
|
2289 /* |
|
2290 * If we can't read from the host interface for whatever |
|
2291 * reason, disable filtering. |
|
2292 */ |
|
2293 ret_val = e1000_mng_enable_host_if(hw); |
|
2294 if (ret_val != 0) { |
|
2295 hw->mac.tx_pkt_filtering = 0; |
|
2296 return ret_val; |
|
2297 } |
|
2298 |
|
2299 /* Read in the header. Length and offset are in dwords. */ |
|
2300 len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; |
|
2301 offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; |
|
2302 for (i = 0; i < len; i++) |
|
2303 *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); |
|
2304 hdr_csum = hdr->checksum; |
|
2305 hdr->checksum = 0; |
|
2306 csum = e1000_calculate_checksum((u8 *)hdr, |
|
2307 E1000_MNG_DHCP_COOKIE_LENGTH); |
|
2308 /* |
|
2309 * If either the checksums or signature don't match, then |
|
2310 * the cookie area isn't considered valid, in which case we |
|
2311 * take the safe route of assuming Tx filtering is enabled. |
|
2312 */ |
|
2313 if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { |
|
2314 hw->mac.tx_pkt_filtering = 1; |
|
2315 return 1; |
|
2316 } |
|
2317 |
|
2318 /* Cookie area is valid, make the final check for filtering. */ |
|
2319 if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { |
|
2320 hw->mac.tx_pkt_filtering = 0; |
|
2321 return 0; |
|
2322 } |
|
2323 |
|
2324 hw->mac.tx_pkt_filtering = 1; |
|
2325 return 1; |
|
2326 } |
|
2327 |
|
2328 /** |
|
2329 * e1000_mng_write_cmd_header - Writes manageability command header |
|
2330 * @hw: pointer to the HW structure |
|
2331 * @hdr: pointer to the host interface command header |
|
2332 * |
|
2333 * Writes the command header after does the checksum calculation. |
|
2334 **/ |
|
2335 static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, |
|
2336 struct e1000_host_mng_command_header *hdr) |
|
2337 { |
|
2338 u16 i, length = sizeof(struct e1000_host_mng_command_header); |
|
2339 |
|
2340 /* Write the whole command header structure with new checksum. */ |
|
2341 |
|
2342 hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); |
|
2343 |
|
2344 length >>= 2; |
|
2345 /* Write the relevant command block into the ram area. */ |
|
2346 for (i = 0; i < length; i++) { |
|
2347 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, |
|
2348 *((u32 *) hdr + i)); |
|
2349 e1e_flush(); |
|
2350 } |
|
2351 |
|
2352 return 0; |
|
2353 } |
|
2354 |
|
2355 /** |
|
2356 * e1000_mng_host_if_write - Writes to the manageability host interface |
|
2357 * @hw: pointer to the HW structure |
|
2358 * @buffer: pointer to the host interface buffer |
|
2359 * @length: size of the buffer |
|
2360 * @offset: location in the buffer to write to |
|
2361 * @sum: sum of the data (not checksum) |
|
2362 * |
|
2363 * This function writes the buffer content at the offset given on the host if. |
|
2364 * It also does alignment considerations to do the writes in most efficient |
|
2365 * way. Also fills up the sum of the buffer in *buffer parameter. |
|
2366 **/ |
|
2367 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, |
|
2368 u16 length, u16 offset, u8 *sum) |
|
2369 { |
|
2370 u8 *tmp; |
|
2371 u8 *bufptr = buffer; |
|
2372 u32 data = 0; |
|
2373 u16 remaining, i, j, prev_bytes; |
|
2374 |
|
2375 /* sum = only sum of the data and it is not checksum */ |
|
2376 |
|
2377 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) |
|
2378 return -E1000_ERR_PARAM; |
|
2379 |
|
2380 tmp = (u8 *)&data; |
|
2381 prev_bytes = offset & 0x3; |
|
2382 offset >>= 2; |
|
2383 |
|
2384 if (prev_bytes) { |
|
2385 data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); |
|
2386 for (j = prev_bytes; j < sizeof(u32); j++) { |
|
2387 *(tmp + j) = *bufptr++; |
|
2388 *sum += *(tmp + j); |
|
2389 } |
|
2390 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); |
|
2391 length -= j - prev_bytes; |
|
2392 offset++; |
|
2393 } |
|
2394 |
|
2395 remaining = length & 0x3; |
|
2396 length -= remaining; |
|
2397 |
|
2398 /* Calculate length in DWORDs */ |
|
2399 length >>= 2; |
|
2400 |
|
2401 /* |
|
2402 * The device driver writes the relevant command block into the |
|
2403 * ram area. |
|
2404 */ |
|
2405 for (i = 0; i < length; i++) { |
|
2406 for (j = 0; j < sizeof(u32); j++) { |
|
2407 *(tmp + j) = *bufptr++; |
|
2408 *sum += *(tmp + j); |
|
2409 } |
|
2410 |
|
2411 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); |
|
2412 } |
|
2413 if (remaining) { |
|
2414 for (j = 0; j < sizeof(u32); j++) { |
|
2415 if (j < remaining) |
|
2416 *(tmp + j) = *bufptr++; |
|
2417 else |
|
2418 *(tmp + j) = 0; |
|
2419 |
|
2420 *sum += *(tmp + j); |
|
2421 } |
|
2422 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); |
|
2423 } |
|
2424 |
|
2425 return 0; |
|
2426 } |
|
2427 |
|
2428 /** |
|
2429 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface |
|
2430 * @hw: pointer to the HW structure |
|
2431 * @buffer: pointer to the host interface |
|
2432 * @length: size of the buffer |
|
2433 * |
|
2434 * Writes the DHCP information to the host interface. |
|
2435 **/ |
|
2436 s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) |
|
2437 { |
|
2438 struct e1000_host_mng_command_header hdr; |
|
2439 s32 ret_val; |
|
2440 u32 hicr; |
|
2441 |
|
2442 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; |
|
2443 hdr.command_length = length; |
|
2444 hdr.reserved1 = 0; |
|
2445 hdr.reserved2 = 0; |
|
2446 hdr.checksum = 0; |
|
2447 |
|
2448 /* Enable the host interface */ |
|
2449 ret_val = e1000_mng_enable_host_if(hw); |
|
2450 if (ret_val) |
|
2451 return ret_val; |
|
2452 |
|
2453 /* Populate the host interface with the contents of "buffer". */ |
|
2454 ret_val = e1000_mng_host_if_write(hw, buffer, length, |
|
2455 sizeof(hdr), &(hdr.checksum)); |
|
2456 if (ret_val) |
|
2457 return ret_val; |
|
2458 |
|
2459 /* Write the manageability command header */ |
|
2460 ret_val = e1000_mng_write_cmd_header(hw, &hdr); |
|
2461 if (ret_val) |
|
2462 return ret_val; |
|
2463 |
|
2464 /* Tell the ARC a new command is pending. */ |
|
2465 hicr = er32(HICR); |
|
2466 ew32(HICR, hicr | E1000_HICR_C); |
|
2467 |
|
2468 return 0; |
|
2469 } |
|
2470 |
|
2471 /** |
|
2472 * e1000e_enable_mng_pass_thru - Enable processing of ARP's |
|
2473 * @hw: pointer to the HW structure |
|
2474 * |
|
2475 * Verifies the hardware needs to allow ARPs to be processed by the host. |
|
2476 **/ |
|
2477 bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) |
|
2478 { |
|
2479 u32 manc; |
|
2480 u32 fwsm, factps; |
|
2481 bool ret_val = 0; |
|
2482 |
|
2483 manc = er32(MANC); |
|
2484 |
|
2485 if (!(manc & E1000_MANC_RCV_TCO_EN) || |
|
2486 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
|
2487 return ret_val; |
|
2488 |
|
2489 if (hw->mac.arc_subsystem_valid) { |
|
2490 fwsm = er32(FWSM); |
|
2491 factps = er32(FACTPS); |
|
2492 |
|
2493 if (!(factps & E1000_FACTPS_MNGCG) && |
|
2494 ((fwsm & E1000_FWSM_MODE_MASK) == |
|
2495 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { |
|
2496 ret_val = 1; |
|
2497 return ret_val; |
|
2498 } |
|
2499 } else { |
|
2500 if ((manc & E1000_MANC_SMBUS_EN) && |
|
2501 !(manc & E1000_MANC_ASF_EN)) { |
|
2502 ret_val = 1; |
|
2503 return ret_val; |
|
2504 } |
|
2505 } |
|
2506 |
|
2507 return ret_val; |
|
2508 } |
|
2509 |
|
2510 s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num) |
|
2511 { |
|
2512 s32 ret_val; |
|
2513 u16 nvm_data; |
|
2514 |
|
2515 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); |
|
2516 if (ret_val) { |
|
2517 hw_dbg(hw, "NVM Read Error\n"); |
|
2518 return ret_val; |
|
2519 } |
|
2520 *pba_num = (u32)(nvm_data << 16); |
|
2521 |
|
2522 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); |
|
2523 if (ret_val) { |
|
2524 hw_dbg(hw, "NVM Read Error\n"); |
|
2525 return ret_val; |
|
2526 } |
|
2527 *pba_num |= nvm_data; |
|
2528 |
|
2529 return 0; |
|
2530 } |