devices/e1000e/lib-2.6.32-orig.c
branchredundancy
changeset 2136 729df853b3fb
equal deleted inserted replaced
2135:f99b2249704c 2136:729df853b3fb
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2008 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include <linux/netdevice.h>
       
    30 #include <linux/ethtool.h>
       
    31 #include <linux/delay.h>
       
    32 #include <linux/pci.h>
       
    33 
       
    34 #include "e1000.h"
       
    35 
       
    36 enum e1000_mng_mode {
       
    37 	e1000_mng_mode_none = 0,
       
    38 	e1000_mng_mode_asf,
       
    39 	e1000_mng_mode_pt,
       
    40 	e1000_mng_mode_ipmi,
       
    41 	e1000_mng_mode_host_if_only
       
    42 };
       
    43 
       
    44 #define E1000_FACTPS_MNGCG		0x20000000
       
    45 
       
    46 /* Intel(R) Active Management Technology signature */
       
    47 #define E1000_IAMT_SIGNATURE		0x544D4149
       
    48 
       
    49 /**
       
    50  *  e1000e_get_bus_info_pcie - Get PCIe bus information
       
    51  *  @hw: pointer to the HW structure
       
    52  *
       
    53  *  Determines and stores the system bus information for a particular
       
    54  *  network interface.  The following bus information is determined and stored:
       
    55  *  bus speed, bus width, type (PCIe), and PCIe function.
       
    56  **/
       
    57 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
       
    58 {
       
    59 	struct e1000_bus_info *bus = &hw->bus;
       
    60 	struct e1000_adapter *adapter = hw->adapter;
       
    61 	u32 status;
       
    62 	u16 pcie_link_status, pci_header_type, cap_offset;
       
    63 
       
    64 	cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
       
    65 	if (!cap_offset) {
       
    66 		bus->width = e1000_bus_width_unknown;
       
    67 	} else {
       
    68 		pci_read_config_word(adapter->pdev,
       
    69 				     cap_offset + PCIE_LINK_STATUS,
       
    70 				     &pcie_link_status);
       
    71 		bus->width = (enum e1000_bus_width)((pcie_link_status &
       
    72 						     PCIE_LINK_WIDTH_MASK) >>
       
    73 						    PCIE_LINK_WIDTH_SHIFT);
       
    74 	}
       
    75 
       
    76 	pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
       
    77 			     &pci_header_type);
       
    78 	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
       
    79 		status = er32(STATUS);
       
    80 		bus->func = (status & E1000_STATUS_FUNC_MASK)
       
    81 			    >> E1000_STATUS_FUNC_SHIFT;
       
    82 	} else {
       
    83 		bus->func = 0;
       
    84 	}
       
    85 
       
    86 	return 0;
       
    87 }
       
    88 
       
    89 /**
       
    90  *  e1000e_write_vfta - Write value to VLAN filter table
       
    91  *  @hw: pointer to the HW structure
       
    92  *  @offset: register offset in VLAN filter table
       
    93  *  @value: register value written to VLAN filter table
       
    94  *
       
    95  *  Writes value at the given offset in the register array which stores
       
    96  *  the VLAN filter table.
       
    97  **/
       
    98 void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
       
    99 {
       
   100 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
       
   101 	e1e_flush();
       
   102 }
       
   103 
       
   104 /**
       
   105  *  e1000e_init_rx_addrs - Initialize receive address's
       
   106  *  @hw: pointer to the HW structure
       
   107  *  @rar_count: receive address registers
       
   108  *
       
   109  *  Setups the receive address registers by setting the base receive address
       
   110  *  register to the devices MAC address and clearing all the other receive
       
   111  *  address registers to 0.
       
   112  **/
       
   113 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
       
   114 {
       
   115 	u32 i;
       
   116 
       
   117 	/* Setup the receive address */
       
   118 	hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
       
   119 
       
   120 	e1000e_rar_set(hw, hw->mac.addr, 0);
       
   121 
       
   122 	/* Zero out the other (rar_entry_count - 1) receive addresses */
       
   123 	hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
       
   124 	for (i = 1; i < rar_count; i++) {
       
   125 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
       
   126 		e1e_flush();
       
   127 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
       
   128 		e1e_flush();
       
   129 	}
       
   130 }
       
   131 
       
   132 /**
       
   133  *  e1000e_rar_set - Set receive address register
       
   134  *  @hw: pointer to the HW structure
       
   135  *  @addr: pointer to the receive address
       
   136  *  @index: receive address array register
       
   137  *
       
   138  *  Sets the receive address array register at index to the address passed
       
   139  *  in by addr.
       
   140  **/
       
   141 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
       
   142 {
       
   143 	u32 rar_low, rar_high;
       
   144 
       
   145 	/*
       
   146 	 * HW expects these in little endian so we reverse the byte order
       
   147 	 * from network order (big endian) to little endian
       
   148 	 */
       
   149 	rar_low = ((u32) addr[0] |
       
   150 		   ((u32) addr[1] << 8) |
       
   151 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
       
   152 
       
   153 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
       
   154 
       
   155 	rar_high |= E1000_RAH_AV;
       
   156 
       
   157 	E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
       
   158 	E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
       
   159 }
       
   160 
       
   161 /**
       
   162  *  e1000_hash_mc_addr - Generate a multicast hash value
       
   163  *  @hw: pointer to the HW structure
       
   164  *  @mc_addr: pointer to a multicast address
       
   165  *
       
   166  *  Generates a multicast address hash value which is used to determine
       
   167  *  the multicast filter table array address and new table value.  See
       
   168  *  e1000_mta_set_generic()
       
   169  **/
       
   170 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
       
   171 {
       
   172 	u32 hash_value, hash_mask;
       
   173 	u8 bit_shift = 0;
       
   174 
       
   175 	/* Register count multiplied by bits per register */
       
   176 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
       
   177 
       
   178 	/*
       
   179 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
       
   180 	 * where 0xFF would still fall within the hash mask.
       
   181 	 */
       
   182 	while (hash_mask >> bit_shift != 0xFF)
       
   183 		bit_shift++;
       
   184 
       
   185 	/*
       
   186 	 * The portion of the address that is used for the hash table
       
   187 	 * is determined by the mc_filter_type setting.
       
   188 	 * The algorithm is such that there is a total of 8 bits of shifting.
       
   189 	 * The bit_shift for a mc_filter_type of 0 represents the number of
       
   190 	 * left-shifts where the MSB of mc_addr[5] would still fall within
       
   191 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
       
   192 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
       
   193 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
       
   194 	 * cases are a variation of this algorithm...essentially raising the
       
   195 	 * number of bits to shift mc_addr[5] left, while still keeping the
       
   196 	 * 8-bit shifting total.
       
   197 	 *
       
   198 	 * For example, given the following Destination MAC Address and an
       
   199 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
       
   200 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
       
   201 	 * values resulting from each mc_filter_type...
       
   202 	 * [0] [1] [2] [3] [4] [5]
       
   203 	 * 01  AA  00  12  34  56
       
   204 	 * LSB		 MSB
       
   205 	 *
       
   206 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
       
   207 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
       
   208 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
       
   209 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
       
   210 	 */
       
   211 	switch (hw->mac.mc_filter_type) {
       
   212 	default:
       
   213 	case 0:
       
   214 		break;
       
   215 	case 1:
       
   216 		bit_shift += 1;
       
   217 		break;
       
   218 	case 2:
       
   219 		bit_shift += 2;
       
   220 		break;
       
   221 	case 3:
       
   222 		bit_shift += 4;
       
   223 		break;
       
   224 	}
       
   225 
       
   226 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
       
   227 				  (((u16) mc_addr[5]) << bit_shift)));
       
   228 
       
   229 	return hash_value;
       
   230 }
       
   231 
       
   232 /**
       
   233  *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
       
   234  *  @hw: pointer to the HW structure
       
   235  *  @mc_addr_list: array of multicast addresses to program
       
   236  *  @mc_addr_count: number of multicast addresses to program
       
   237  *  @rar_used_count: the first RAR register free to program
       
   238  *  @rar_count: total number of supported Receive Address Registers
       
   239  *
       
   240  *  Updates the Receive Address Registers and Multicast Table Array.
       
   241  *  The caller must have a packed mc_addr_list of multicast addresses.
       
   242  *  The parameter rar_count will usually be hw->mac.rar_entry_count
       
   243  *  unless there are workarounds that change this.
       
   244  **/
       
   245 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
       
   246 					u8 *mc_addr_list, u32 mc_addr_count,
       
   247 					u32 rar_used_count, u32 rar_count)
       
   248 {
       
   249 	u32 i;
       
   250 	u32 *mcarray = kzalloc(hw->mac.mta_reg_count * sizeof(u32), GFP_ATOMIC);
       
   251 
       
   252 	if (!mcarray) {
       
   253 		printk(KERN_ERR "multicast array memory allocation failed\n");
       
   254 		return;
       
   255 	}
       
   256 
       
   257 	/*
       
   258 	 * Load the first set of multicast addresses into the exact
       
   259 	 * filters (RAR).  If there are not enough to fill the RAR
       
   260 	 * array, clear the filters.
       
   261 	 */
       
   262 	for (i = rar_used_count; i < rar_count; i++) {
       
   263 		if (mc_addr_count) {
       
   264 			e1000e_rar_set(hw, mc_addr_list, i);
       
   265 			mc_addr_count--;
       
   266 			mc_addr_list += ETH_ALEN;
       
   267 		} else {
       
   268 			E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
       
   269 			e1e_flush();
       
   270 			E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
       
   271 			e1e_flush();
       
   272 		}
       
   273 	}
       
   274 
       
   275 	/* Load any remaining multicast addresses into the hash table. */
       
   276 	for (; mc_addr_count > 0; mc_addr_count--) {
       
   277 		u32 hash_value, hash_reg, hash_bit, mta;
       
   278 		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
       
   279 		hw_dbg(hw, "Hash value = 0x%03X\n", hash_value);
       
   280 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
       
   281 		hash_bit = hash_value & 0x1F;
       
   282 		mta = (1 << hash_bit);
       
   283 		mcarray[hash_reg] |= mta;
       
   284 		mc_addr_list += ETH_ALEN;
       
   285 	}
       
   286 
       
   287 	/* write the hash table completely */
       
   288 	for (i = 0; i < hw->mac.mta_reg_count; i++)
       
   289 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, mcarray[i]);
       
   290 
       
   291 	e1e_flush();
       
   292 	kfree(mcarray);
       
   293 }
       
   294 
       
   295 /**
       
   296  *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
       
   297  *  @hw: pointer to the HW structure
       
   298  *
       
   299  *  Clears the base hardware counters by reading the counter registers.
       
   300  **/
       
   301 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
       
   302 {
       
   303 	u32 temp;
       
   304 
       
   305 	temp = er32(CRCERRS);
       
   306 	temp = er32(SYMERRS);
       
   307 	temp = er32(MPC);
       
   308 	temp = er32(SCC);
       
   309 	temp = er32(ECOL);
       
   310 	temp = er32(MCC);
       
   311 	temp = er32(LATECOL);
       
   312 	temp = er32(COLC);
       
   313 	temp = er32(DC);
       
   314 	temp = er32(SEC);
       
   315 	temp = er32(RLEC);
       
   316 	temp = er32(XONRXC);
       
   317 	temp = er32(XONTXC);
       
   318 	temp = er32(XOFFRXC);
       
   319 	temp = er32(XOFFTXC);
       
   320 	temp = er32(FCRUC);
       
   321 	temp = er32(GPRC);
       
   322 	temp = er32(BPRC);
       
   323 	temp = er32(MPRC);
       
   324 	temp = er32(GPTC);
       
   325 	temp = er32(GORCL);
       
   326 	temp = er32(GORCH);
       
   327 	temp = er32(GOTCL);
       
   328 	temp = er32(GOTCH);
       
   329 	temp = er32(RNBC);
       
   330 	temp = er32(RUC);
       
   331 	temp = er32(RFC);
       
   332 	temp = er32(ROC);
       
   333 	temp = er32(RJC);
       
   334 	temp = er32(TORL);
       
   335 	temp = er32(TORH);
       
   336 	temp = er32(TOTL);
       
   337 	temp = er32(TOTH);
       
   338 	temp = er32(TPR);
       
   339 	temp = er32(TPT);
       
   340 	temp = er32(MPTC);
       
   341 	temp = er32(BPTC);
       
   342 }
       
   343 
       
   344 /**
       
   345  *  e1000e_check_for_copper_link - Check for link (Copper)
       
   346  *  @hw: pointer to the HW structure
       
   347  *
       
   348  *  Checks to see of the link status of the hardware has changed.  If a
       
   349  *  change in link status has been detected, then we read the PHY registers
       
   350  *  to get the current speed/duplex if link exists.
       
   351  **/
       
   352 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
       
   353 {
       
   354 	struct e1000_mac_info *mac = &hw->mac;
       
   355 	s32 ret_val;
       
   356 	bool link;
       
   357 
       
   358 	/*
       
   359 	 * We only want to go out to the PHY registers to see if Auto-Neg
       
   360 	 * has completed and/or if our link status has changed.  The
       
   361 	 * get_link_status flag is set upon receiving a Link Status
       
   362 	 * Change or Rx Sequence Error interrupt.
       
   363 	 */
       
   364 	if (!mac->get_link_status)
       
   365 		return 0;
       
   366 
       
   367 	/*
       
   368 	 * First we want to see if the MII Status Register reports
       
   369 	 * link.  If so, then we want to get the current speed/duplex
       
   370 	 * of the PHY.
       
   371 	 */
       
   372 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
   373 	if (ret_val)
       
   374 		return ret_val;
       
   375 
       
   376 	if (!link)
       
   377 		return ret_val; /* No link detected */
       
   378 
       
   379 	mac->get_link_status = 0;
       
   380 
       
   381 	/*
       
   382 	 * Check if there was DownShift, must be checked
       
   383 	 * immediately after link-up
       
   384 	 */
       
   385 	e1000e_check_downshift(hw);
       
   386 
       
   387 	/*
       
   388 	 * If we are forcing speed/duplex, then we simply return since
       
   389 	 * we have already determined whether we have link or not.
       
   390 	 */
       
   391 	if (!mac->autoneg) {
       
   392 		ret_val = -E1000_ERR_CONFIG;
       
   393 		return ret_val;
       
   394 	}
       
   395 
       
   396 	/*
       
   397 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
       
   398 	 * of MAC speed/duplex configuration.  So we only need to
       
   399 	 * configure Collision Distance in the MAC.
       
   400 	 */
       
   401 	e1000e_config_collision_dist(hw);
       
   402 
       
   403 	/*
       
   404 	 * Configure Flow Control now that Auto-Neg has completed.
       
   405 	 * First, we need to restore the desired flow control
       
   406 	 * settings because we may have had to re-autoneg with a
       
   407 	 * different link partner.
       
   408 	 */
       
   409 	ret_val = e1000e_config_fc_after_link_up(hw);
       
   410 	if (ret_val) {
       
   411 		hw_dbg(hw, "Error configuring flow control\n");
       
   412 	}
       
   413 
       
   414 	return ret_val;
       
   415 }
       
   416 
       
   417 /**
       
   418  *  e1000e_check_for_fiber_link - Check for link (Fiber)
       
   419  *  @hw: pointer to the HW structure
       
   420  *
       
   421  *  Checks for link up on the hardware.  If link is not up and we have
       
   422  *  a signal, then we need to force link up.
       
   423  **/
       
   424 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
       
   425 {
       
   426 	struct e1000_mac_info *mac = &hw->mac;
       
   427 	u32 rxcw;
       
   428 	u32 ctrl;
       
   429 	u32 status;
       
   430 	s32 ret_val;
       
   431 
       
   432 	ctrl = er32(CTRL);
       
   433 	status = er32(STATUS);
       
   434 	rxcw = er32(RXCW);
       
   435 
       
   436 	/*
       
   437 	 * If we don't have link (auto-negotiation failed or link partner
       
   438 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
       
   439 	 * and our link partner is not trying to auto-negotiate with us (we
       
   440 	 * are receiving idles or data), we need to force link up. We also
       
   441 	 * need to give auto-negotiation time to complete, in case the cable
       
   442 	 * was just plugged in. The autoneg_failed flag does this.
       
   443 	 */
       
   444 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   445 	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
       
   446 	    (!(rxcw & E1000_RXCW_C))) {
       
   447 		if (mac->autoneg_failed == 0) {
       
   448 			mac->autoneg_failed = 1;
       
   449 			return 0;
       
   450 		}
       
   451 		hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
       
   452 
       
   453 		/* Disable auto-negotiation in the TXCW register */
       
   454 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   455 
       
   456 		/* Force link-up and also force full-duplex. */
       
   457 		ctrl = er32(CTRL);
       
   458 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   459 		ew32(CTRL, ctrl);
       
   460 
       
   461 		/* Configure Flow Control after forcing link up. */
       
   462 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   463 		if (ret_val) {
       
   464 			hw_dbg(hw, "Error configuring flow control\n");
       
   465 			return ret_val;
       
   466 		}
       
   467 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   468 		/*
       
   469 		 * If we are forcing link and we are receiving /C/ ordered
       
   470 		 * sets, re-enable auto-negotiation in the TXCW register
       
   471 		 * and disable forced link in the Device Control register
       
   472 		 * in an attempt to auto-negotiate with our link partner.
       
   473 		 */
       
   474 		hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
       
   475 		ew32(TXCW, mac->txcw);
       
   476 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   477 
       
   478 		mac->serdes_has_link = true;
       
   479 	}
       
   480 
       
   481 	return 0;
       
   482 }
       
   483 
       
   484 /**
       
   485  *  e1000e_check_for_serdes_link - Check for link (Serdes)
       
   486  *  @hw: pointer to the HW structure
       
   487  *
       
   488  *  Checks for link up on the hardware.  If link is not up and we have
       
   489  *  a signal, then we need to force link up.
       
   490  **/
       
   491 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
       
   492 {
       
   493 	struct e1000_mac_info *mac = &hw->mac;
       
   494 	u32 rxcw;
       
   495 	u32 ctrl;
       
   496 	u32 status;
       
   497 	s32 ret_val;
       
   498 
       
   499 	ctrl = er32(CTRL);
       
   500 	status = er32(STATUS);
       
   501 	rxcw = er32(RXCW);
       
   502 
       
   503 	/*
       
   504 	 * If we don't have link (auto-negotiation failed or link partner
       
   505 	 * cannot auto-negotiate), and our link partner is not trying to
       
   506 	 * auto-negotiate with us (we are receiving idles or data),
       
   507 	 * we need to force link up. We also need to give auto-negotiation
       
   508 	 * time to complete.
       
   509 	 */
       
   510 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   511 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
       
   512 		if (mac->autoneg_failed == 0) {
       
   513 			mac->autoneg_failed = 1;
       
   514 			return 0;
       
   515 		}
       
   516 		hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
       
   517 
       
   518 		/* Disable auto-negotiation in the TXCW register */
       
   519 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   520 
       
   521 		/* Force link-up and also force full-duplex. */
       
   522 		ctrl = er32(CTRL);
       
   523 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   524 		ew32(CTRL, ctrl);
       
   525 
       
   526 		/* Configure Flow Control after forcing link up. */
       
   527 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   528 		if (ret_val) {
       
   529 			hw_dbg(hw, "Error configuring flow control\n");
       
   530 			return ret_val;
       
   531 		}
       
   532 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   533 		/*
       
   534 		 * If we are forcing link and we are receiving /C/ ordered
       
   535 		 * sets, re-enable auto-negotiation in the TXCW register
       
   536 		 * and disable forced link in the Device Control register
       
   537 		 * in an attempt to auto-negotiate with our link partner.
       
   538 		 */
       
   539 		hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
       
   540 		ew32(TXCW, mac->txcw);
       
   541 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   542 
       
   543 		mac->serdes_has_link = true;
       
   544 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
       
   545 		/*
       
   546 		 * If we force link for non-auto-negotiation switch, check
       
   547 		 * link status based on MAC synchronization for internal
       
   548 		 * serdes media type.
       
   549 		 */
       
   550 		/* SYNCH bit and IV bit are sticky. */
       
   551 		udelay(10);
       
   552 		rxcw = er32(RXCW);
       
   553 		if (rxcw & E1000_RXCW_SYNCH) {
       
   554 			if (!(rxcw & E1000_RXCW_IV)) {
       
   555 				mac->serdes_has_link = true;
       
   556 				hw_dbg(hw, "SERDES: Link up - forced.\n");
       
   557 			}
       
   558 		} else {
       
   559 			mac->serdes_has_link = false;
       
   560 			hw_dbg(hw, "SERDES: Link down - force failed.\n");
       
   561 		}
       
   562 	}
       
   563 
       
   564 	if (E1000_TXCW_ANE & er32(TXCW)) {
       
   565 		status = er32(STATUS);
       
   566 		if (status & E1000_STATUS_LU) {
       
   567 			/* SYNCH bit and IV bit are sticky, so reread rxcw.  */
       
   568 			udelay(10);
       
   569 			rxcw = er32(RXCW);
       
   570 			if (rxcw & E1000_RXCW_SYNCH) {
       
   571 				if (!(rxcw & E1000_RXCW_IV)) {
       
   572 					mac->serdes_has_link = true;
       
   573 					hw_dbg(hw, "SERDES: Link up - autoneg "
       
   574 					   "completed sucessfully.\n");
       
   575 				} else {
       
   576 					mac->serdes_has_link = false;
       
   577 					hw_dbg(hw, "SERDES: Link down - invalid"
       
   578 					   "codewords detected in autoneg.\n");
       
   579 				}
       
   580 			} else {
       
   581 				mac->serdes_has_link = false;
       
   582 				hw_dbg(hw, "SERDES: Link down - no sync.\n");
       
   583 			}
       
   584 		} else {
       
   585 			mac->serdes_has_link = false;
       
   586 			hw_dbg(hw, "SERDES: Link down - autoneg failed\n");
       
   587 		}
       
   588 	}
       
   589 
       
   590 	return 0;
       
   591 }
       
   592 
       
   593 /**
       
   594  *  e1000_set_default_fc_generic - Set flow control default values
       
   595  *  @hw: pointer to the HW structure
       
   596  *
       
   597  *  Read the EEPROM for the default values for flow control and store the
       
   598  *  values.
       
   599  **/
       
   600 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
       
   601 {
       
   602 	s32 ret_val;
       
   603 	u16 nvm_data;
       
   604 
       
   605 	/*
       
   606 	 * Read and store word 0x0F of the EEPROM. This word contains bits
       
   607 	 * that determine the hardware's default PAUSE (flow control) mode,
       
   608 	 * a bit that determines whether the HW defaults to enabling or
       
   609 	 * disabling auto-negotiation, and the direction of the
       
   610 	 * SW defined pins. If there is no SW over-ride of the flow
       
   611 	 * control setting, then the variable hw->fc will
       
   612 	 * be initialized based on a value in the EEPROM.
       
   613 	 */
       
   614 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
       
   615 
       
   616 	if (ret_val) {
       
   617 		hw_dbg(hw, "NVM Read Error\n");
       
   618 		return ret_val;
       
   619 	}
       
   620 
       
   621 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
       
   622 		hw->fc.requested_mode = e1000_fc_none;
       
   623 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
       
   624 		 NVM_WORD0F_ASM_DIR)
       
   625 		hw->fc.requested_mode = e1000_fc_tx_pause;
       
   626 	else
       
   627 		hw->fc.requested_mode = e1000_fc_full;
       
   628 
       
   629 	return 0;
       
   630 }
       
   631 
       
   632 /**
       
   633  *  e1000e_setup_link - Setup flow control and link settings
       
   634  *  @hw: pointer to the HW structure
       
   635  *
       
   636  *  Determines which flow control settings to use, then configures flow
       
   637  *  control.  Calls the appropriate media-specific link configuration
       
   638  *  function.  Assuming the adapter has a valid link partner, a valid link
       
   639  *  should be established.  Assumes the hardware has previously been reset
       
   640  *  and the transmitter and receiver are not enabled.
       
   641  **/
       
   642 s32 e1000e_setup_link(struct e1000_hw *hw)
       
   643 {
       
   644 	struct e1000_mac_info *mac = &hw->mac;
       
   645 	s32 ret_val;
       
   646 
       
   647 	/*
       
   648 	 * In the case of the phy reset being blocked, we already have a link.
       
   649 	 * We do not need to set it up again.
       
   650 	 */
       
   651 	if (e1000_check_reset_block(hw))
       
   652 		return 0;
       
   653 
       
   654 	/*
       
   655 	 * If requested flow control is set to default, set flow control
       
   656 	 * based on the EEPROM flow control settings.
       
   657 	 */
       
   658 	if (hw->fc.requested_mode == e1000_fc_default) {
       
   659 		ret_val = e1000_set_default_fc_generic(hw);
       
   660 		if (ret_val)
       
   661 			return ret_val;
       
   662 	}
       
   663 
       
   664 	/*
       
   665 	 * Save off the requested flow control mode for use later.  Depending
       
   666 	 * on the link partner's capabilities, we may or may not use this mode.
       
   667 	 */
       
   668 	hw->fc.current_mode = hw->fc.requested_mode;
       
   669 
       
   670 	hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
       
   671 		hw->fc.current_mode);
       
   672 
       
   673 	/* Call the necessary media_type subroutine to configure the link. */
       
   674 	ret_val = mac->ops.setup_physical_interface(hw);
       
   675 	if (ret_val)
       
   676 		return ret_val;
       
   677 
       
   678 	/*
       
   679 	 * Initialize the flow control address, type, and PAUSE timer
       
   680 	 * registers to their default values.  This is done even if flow
       
   681 	 * control is disabled, because it does not hurt anything to
       
   682 	 * initialize these registers.
       
   683 	 */
       
   684 	hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n");
       
   685 	ew32(FCT, FLOW_CONTROL_TYPE);
       
   686 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
       
   687 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
       
   688 
       
   689 	ew32(FCTTV, hw->fc.pause_time);
       
   690 
       
   691 	return e1000e_set_fc_watermarks(hw);
       
   692 }
       
   693 
       
   694 /**
       
   695  *  e1000_commit_fc_settings_generic - Configure flow control
       
   696  *  @hw: pointer to the HW structure
       
   697  *
       
   698  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
       
   699  *  base on the flow control settings in e1000_mac_info.
       
   700  **/
       
   701 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
       
   702 {
       
   703 	struct e1000_mac_info *mac = &hw->mac;
       
   704 	u32 txcw;
       
   705 
       
   706 	/*
       
   707 	 * Check for a software override of the flow control settings, and
       
   708 	 * setup the device accordingly.  If auto-negotiation is enabled, then
       
   709 	 * software will have to set the "PAUSE" bits to the correct value in
       
   710 	 * the Transmit Config Word Register (TXCW) and re-start auto-
       
   711 	 * negotiation.  However, if auto-negotiation is disabled, then
       
   712 	 * software will have to manually configure the two flow control enable
       
   713 	 * bits in the CTRL register.
       
   714 	 *
       
   715 	 * The possible values of the "fc" parameter are:
       
   716 	 *      0:  Flow control is completely disabled
       
   717 	 *      1:  Rx flow control is enabled (we can receive pause frames,
       
   718 	 *	  but not send pause frames).
       
   719 	 *      2:  Tx flow control is enabled (we can send pause frames but we
       
   720 	 *	  do not support receiving pause frames).
       
   721 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
       
   722 	 */
       
   723 	switch (hw->fc.current_mode) {
       
   724 	case e1000_fc_none:
       
   725 		/* Flow control completely disabled by a software over-ride. */
       
   726 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
       
   727 		break;
       
   728 	case e1000_fc_rx_pause:
       
   729 		/*
       
   730 		 * Rx Flow control is enabled and Tx Flow control is disabled
       
   731 		 * by a software over-ride. Since there really isn't a way to
       
   732 		 * advertise that we are capable of Rx Pause ONLY, we will
       
   733 		 * advertise that we support both symmetric and asymmetric Rx
       
   734 		 * PAUSE.  Later, we will disable the adapter's ability to send
       
   735 		 * PAUSE frames.
       
   736 		 */
       
   737 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   738 		break;
       
   739 	case e1000_fc_tx_pause:
       
   740 		/*
       
   741 		 * Tx Flow control is enabled, and Rx Flow control is disabled,
       
   742 		 * by a software over-ride.
       
   743 		 */
       
   744 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
       
   745 		break;
       
   746 	case e1000_fc_full:
       
   747 		/*
       
   748 		 * Flow control (both Rx and Tx) is enabled by a software
       
   749 		 * over-ride.
       
   750 		 */
       
   751 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   752 		break;
       
   753 	default:
       
   754 		hw_dbg(hw, "Flow control param set incorrectly\n");
       
   755 		return -E1000_ERR_CONFIG;
       
   756 		break;
       
   757 	}
       
   758 
       
   759 	ew32(TXCW, txcw);
       
   760 	mac->txcw = txcw;
       
   761 
       
   762 	return 0;
       
   763 }
       
   764 
       
   765 /**
       
   766  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
       
   767  *  @hw: pointer to the HW structure
       
   768  *
       
   769  *  Polls for link up by reading the status register, if link fails to come
       
   770  *  up with auto-negotiation, then the link is forced if a signal is detected.
       
   771  **/
       
   772 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
       
   773 {
       
   774 	struct e1000_mac_info *mac = &hw->mac;
       
   775 	u32 i, status;
       
   776 	s32 ret_val;
       
   777 
       
   778 	/*
       
   779 	 * If we have a signal (the cable is plugged in, or assumed true for
       
   780 	 * serdes media) then poll for a "Link-Up" indication in the Device
       
   781 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
       
   782 	 * seconds (Auto-negotiation should complete in less than 500
       
   783 	 * milliseconds even if the other end is doing it in SW).
       
   784 	 */
       
   785 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
       
   786 		msleep(10);
       
   787 		status = er32(STATUS);
       
   788 		if (status & E1000_STATUS_LU)
       
   789 			break;
       
   790 	}
       
   791 	if (i == FIBER_LINK_UP_LIMIT) {
       
   792 		hw_dbg(hw, "Never got a valid link from auto-neg!!!\n");
       
   793 		mac->autoneg_failed = 1;
       
   794 		/*
       
   795 		 * AutoNeg failed to achieve a link, so we'll call
       
   796 		 * mac->check_for_link. This routine will force the
       
   797 		 * link up if we detect a signal. This will allow us to
       
   798 		 * communicate with non-autonegotiating link partners.
       
   799 		 */
       
   800 		ret_val = mac->ops.check_for_link(hw);
       
   801 		if (ret_val) {
       
   802 			hw_dbg(hw, "Error while checking for link\n");
       
   803 			return ret_val;
       
   804 		}
       
   805 		mac->autoneg_failed = 0;
       
   806 	} else {
       
   807 		mac->autoneg_failed = 0;
       
   808 		hw_dbg(hw, "Valid Link Found\n");
       
   809 	}
       
   810 
       
   811 	return 0;
       
   812 }
       
   813 
       
   814 /**
       
   815  *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
       
   816  *  @hw: pointer to the HW structure
       
   817  *
       
   818  *  Configures collision distance and flow control for fiber and serdes
       
   819  *  links.  Upon successful setup, poll for link.
       
   820  **/
       
   821 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
       
   822 {
       
   823 	u32 ctrl;
       
   824 	s32 ret_val;
       
   825 
       
   826 	ctrl = er32(CTRL);
       
   827 
       
   828 	/* Take the link out of reset */
       
   829 	ctrl &= ~E1000_CTRL_LRST;
       
   830 
       
   831 	e1000e_config_collision_dist(hw);
       
   832 
       
   833 	ret_val = e1000_commit_fc_settings_generic(hw);
       
   834 	if (ret_val)
       
   835 		return ret_val;
       
   836 
       
   837 	/*
       
   838 	 * Since auto-negotiation is enabled, take the link out of reset (the
       
   839 	 * link will be in reset, because we previously reset the chip). This
       
   840 	 * will restart auto-negotiation.  If auto-negotiation is successful
       
   841 	 * then the link-up status bit will be set and the flow control enable
       
   842 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
       
   843 	 */
       
   844 	hw_dbg(hw, "Auto-negotiation enabled\n");
       
   845 
       
   846 	ew32(CTRL, ctrl);
       
   847 	e1e_flush();
       
   848 	msleep(1);
       
   849 
       
   850 	/*
       
   851 	 * For these adapters, the SW definable pin 1 is set when the optics
       
   852 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
       
   853 	 * indication.
       
   854 	 */
       
   855 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
       
   856 	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
       
   857 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
       
   858 	} else {
       
   859 		hw_dbg(hw, "No signal detected\n");
       
   860 	}
       
   861 
       
   862 	return 0;
       
   863 }
       
   864 
       
   865 /**
       
   866  *  e1000e_config_collision_dist - Configure collision distance
       
   867  *  @hw: pointer to the HW structure
       
   868  *
       
   869  *  Configures the collision distance to the default value and is used
       
   870  *  during link setup. Currently no func pointer exists and all
       
   871  *  implementations are handled in the generic version of this function.
       
   872  **/
       
   873 void e1000e_config_collision_dist(struct e1000_hw *hw)
       
   874 {
       
   875 	u32 tctl;
       
   876 
       
   877 	tctl = er32(TCTL);
       
   878 
       
   879 	tctl &= ~E1000_TCTL_COLD;
       
   880 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
       
   881 
       
   882 	ew32(TCTL, tctl);
       
   883 	e1e_flush();
       
   884 }
       
   885 
       
   886 /**
       
   887  *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
       
   888  *  @hw: pointer to the HW structure
       
   889  *
       
   890  *  Sets the flow control high/low threshold (watermark) registers.  If
       
   891  *  flow control XON frame transmission is enabled, then set XON frame
       
   892  *  transmission as well.
       
   893  **/
       
   894 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
       
   895 {
       
   896 	u32 fcrtl = 0, fcrth = 0;
       
   897 
       
   898 	/*
       
   899 	 * Set the flow control receive threshold registers.  Normally,
       
   900 	 * these registers will be set to a default threshold that may be
       
   901 	 * adjusted later by the driver's runtime code.  However, if the
       
   902 	 * ability to transmit pause frames is not enabled, then these
       
   903 	 * registers will be set to 0.
       
   904 	 */
       
   905 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
       
   906 		/*
       
   907 		 * We need to set up the Receive Threshold high and low water
       
   908 		 * marks as well as (optionally) enabling the transmission of
       
   909 		 * XON frames.
       
   910 		 */
       
   911 		fcrtl = hw->fc.low_water;
       
   912 		fcrtl |= E1000_FCRTL_XONE;
       
   913 		fcrth = hw->fc.high_water;
       
   914 	}
       
   915 	ew32(FCRTL, fcrtl);
       
   916 	ew32(FCRTH, fcrth);
       
   917 
       
   918 	return 0;
       
   919 }
       
   920 
       
   921 /**
       
   922  *  e1000e_force_mac_fc - Force the MAC's flow control settings
       
   923  *  @hw: pointer to the HW structure
       
   924  *
       
   925  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
       
   926  *  device control register to reflect the adapter settings.  TFCE and RFCE
       
   927  *  need to be explicitly set by software when a copper PHY is used because
       
   928  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
       
   929  *  also configure these bits when link is forced on a fiber connection.
       
   930  **/
       
   931 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
       
   932 {
       
   933 	u32 ctrl;
       
   934 
       
   935 	ctrl = er32(CTRL);
       
   936 
       
   937 	/*
       
   938 	 * Because we didn't get link via the internal auto-negotiation
       
   939 	 * mechanism (we either forced link or we got link via PHY
       
   940 	 * auto-neg), we have to manually enable/disable transmit an
       
   941 	 * receive flow control.
       
   942 	 *
       
   943 	 * The "Case" statement below enables/disable flow control
       
   944 	 * according to the "hw->fc.current_mode" parameter.
       
   945 	 *
       
   946 	 * The possible values of the "fc" parameter are:
       
   947 	 *      0:  Flow control is completely disabled
       
   948 	 *      1:  Rx flow control is enabled (we can receive pause
       
   949 	 *	  frames but not send pause frames).
       
   950 	 *      2:  Tx flow control is enabled (we can send pause frames
       
   951 	 *	  frames but we do not receive pause frames).
       
   952 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
       
   953 	 *  other:  No other values should be possible at this point.
       
   954 	 */
       
   955 	hw_dbg(hw, "hw->fc.current_mode = %u\n", hw->fc.current_mode);
       
   956 
       
   957 	switch (hw->fc.current_mode) {
       
   958 	case e1000_fc_none:
       
   959 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
       
   960 		break;
       
   961 	case e1000_fc_rx_pause:
       
   962 		ctrl &= (~E1000_CTRL_TFCE);
       
   963 		ctrl |= E1000_CTRL_RFCE;
       
   964 		break;
       
   965 	case e1000_fc_tx_pause:
       
   966 		ctrl &= (~E1000_CTRL_RFCE);
       
   967 		ctrl |= E1000_CTRL_TFCE;
       
   968 		break;
       
   969 	case e1000_fc_full:
       
   970 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
       
   971 		break;
       
   972 	default:
       
   973 		hw_dbg(hw, "Flow control param set incorrectly\n");
       
   974 		return -E1000_ERR_CONFIG;
       
   975 	}
       
   976 
       
   977 	ew32(CTRL, ctrl);
       
   978 
       
   979 	return 0;
       
   980 }
       
   981 
       
   982 /**
       
   983  *  e1000e_config_fc_after_link_up - Configures flow control after link
       
   984  *  @hw: pointer to the HW structure
       
   985  *
       
   986  *  Checks the status of auto-negotiation after link up to ensure that the
       
   987  *  speed and duplex were not forced.  If the link needed to be forced, then
       
   988  *  flow control needs to be forced also.  If auto-negotiation is enabled
       
   989  *  and did not fail, then we configure flow control based on our link
       
   990  *  partner.
       
   991  **/
       
   992 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
       
   993 {
       
   994 	struct e1000_mac_info *mac = &hw->mac;
       
   995 	s32 ret_val = 0;
       
   996 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
       
   997 	u16 speed, duplex;
       
   998 
       
   999 	/*
       
  1000 	 * Check for the case where we have fiber media and auto-neg failed
       
  1001 	 * so we had to force link.  In this case, we need to force the
       
  1002 	 * configuration of the MAC to match the "fc" parameter.
       
  1003 	 */
       
  1004 	if (mac->autoneg_failed) {
       
  1005 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1006 		    hw->phy.media_type == e1000_media_type_internal_serdes)
       
  1007 			ret_val = e1000e_force_mac_fc(hw);
       
  1008 	} else {
       
  1009 		if (hw->phy.media_type == e1000_media_type_copper)
       
  1010 			ret_val = e1000e_force_mac_fc(hw);
       
  1011 	}
       
  1012 
       
  1013 	if (ret_val) {
       
  1014 		hw_dbg(hw, "Error forcing flow control settings\n");
       
  1015 		return ret_val;
       
  1016 	}
       
  1017 
       
  1018 	/*
       
  1019 	 * Check for the case where we have copper media and auto-neg is
       
  1020 	 * enabled.  In this case, we need to check and see if Auto-Neg
       
  1021 	 * has completed, and if so, how the PHY and link partner has
       
  1022 	 * flow control configured.
       
  1023 	 */
       
  1024 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
       
  1025 		/*
       
  1026 		 * Read the MII Status Register and check to see if AutoNeg
       
  1027 		 * has completed.  We read this twice because this reg has
       
  1028 		 * some "sticky" (latched) bits.
       
  1029 		 */
       
  1030 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
       
  1031 		if (ret_val)
       
  1032 			return ret_val;
       
  1033 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
       
  1034 		if (ret_val)
       
  1035 			return ret_val;
       
  1036 
       
  1037 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
       
  1038 			hw_dbg(hw, "Copper PHY and Auto Neg "
       
  1039 				 "has not completed.\n");
       
  1040 			return ret_val;
       
  1041 		}
       
  1042 
       
  1043 		/*
       
  1044 		 * The AutoNeg process has completed, so we now need to
       
  1045 		 * read both the Auto Negotiation Advertisement
       
  1046 		 * Register (Address 4) and the Auto_Negotiation Base
       
  1047 		 * Page Ability Register (Address 5) to determine how
       
  1048 		 * flow control was negotiated.
       
  1049 		 */
       
  1050 		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
       
  1051 		if (ret_val)
       
  1052 			return ret_val;
       
  1053 		ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
       
  1054 		if (ret_val)
       
  1055 			return ret_val;
       
  1056 
       
  1057 		/*
       
  1058 		 * Two bits in the Auto Negotiation Advertisement Register
       
  1059 		 * (Address 4) and two bits in the Auto Negotiation Base
       
  1060 		 * Page Ability Register (Address 5) determine flow control
       
  1061 		 * for both the PHY and the link partner.  The following
       
  1062 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
       
  1063 		 * 1999, describes these PAUSE resolution bits and how flow
       
  1064 		 * control is determined based upon these settings.
       
  1065 		 * NOTE:  DC = Don't Care
       
  1066 		 *
       
  1067 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1068 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
       
  1069 		 *-------|---------|-------|---------|--------------------
       
  1070 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
       
  1071 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
       
  1072 		 *   0   |    1    |   1   |    0    | e1000_fc_none
       
  1073 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1074 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
       
  1075 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
       
  1076 		 *   1   |    1    |   0   |    0    | e1000_fc_none
       
  1077 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1078 		 *
       
  1079 		 *
       
  1080 		 * Are both PAUSE bits set to 1?  If so, this implies
       
  1081 		 * Symmetric Flow Control is enabled at both ends.  The
       
  1082 		 * ASM_DIR bits are irrelevant per the spec.
       
  1083 		 *
       
  1084 		 * For Symmetric Flow Control:
       
  1085 		 *
       
  1086 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1087 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1088 		 *-------|---------|-------|---------|--------------------
       
  1089 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
       
  1090 		 *
       
  1091 		 */
       
  1092 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1093 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
       
  1094 			/*
       
  1095 			 * Now we need to check if the user selected Rx ONLY
       
  1096 			 * of pause frames.  In this case, we had to advertise
       
  1097 			 * FULL flow control because we could not advertise Rx
       
  1098 			 * ONLY. Hence, we must now check to see if we need to
       
  1099 			 * turn OFF  the TRANSMISSION of PAUSE frames.
       
  1100 			 */
       
  1101 			if (hw->fc.requested_mode == e1000_fc_full) {
       
  1102 				hw->fc.current_mode = e1000_fc_full;
       
  1103 				hw_dbg(hw, "Flow Control = FULL.\r\n");
       
  1104 			} else {
       
  1105 				hw->fc.current_mode = e1000_fc_rx_pause;
       
  1106 				hw_dbg(hw, "Flow Control = "
       
  1107 					 "RX PAUSE frames only.\r\n");
       
  1108 			}
       
  1109 		}
       
  1110 		/*
       
  1111 		 * For receiving PAUSE frames ONLY.
       
  1112 		 *
       
  1113 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1114 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1115 		 *-------|---------|-------|---------|--------------------
       
  1116 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1117 		 *
       
  1118 		 */
       
  1119 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1120 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  1121 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  1122 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  1123 			hw->fc.current_mode = e1000_fc_tx_pause;
       
  1124 			hw_dbg(hw, "Flow Control = Tx PAUSE frames only.\r\n");
       
  1125 		}
       
  1126 		/*
       
  1127 		 * For transmitting PAUSE frames ONLY.
       
  1128 		 *
       
  1129 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1130 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1131 		 *-------|---------|-------|---------|--------------------
       
  1132 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1133 		 *
       
  1134 		 */
       
  1135 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1136 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  1137 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  1138 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  1139 			hw->fc.current_mode = e1000_fc_rx_pause;
       
  1140 			hw_dbg(hw, "Flow Control = Rx PAUSE frames only.\r\n");
       
  1141 		} else {
       
  1142 			/*
       
  1143 			 * Per the IEEE spec, at this point flow control
       
  1144 			 * should be disabled.
       
  1145 			 */
       
  1146 			hw->fc.current_mode = e1000_fc_none;
       
  1147 			hw_dbg(hw, "Flow Control = NONE.\r\n");
       
  1148 		}
       
  1149 
       
  1150 		/*
       
  1151 		 * Now we need to do one last check...  If we auto-
       
  1152 		 * negotiated to HALF DUPLEX, flow control should not be
       
  1153 		 * enabled per IEEE 802.3 spec.
       
  1154 		 */
       
  1155 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
       
  1156 		if (ret_val) {
       
  1157 			hw_dbg(hw, "Error getting link speed and duplex\n");
       
  1158 			return ret_val;
       
  1159 		}
       
  1160 
       
  1161 		if (duplex == HALF_DUPLEX)
       
  1162 			hw->fc.current_mode = e1000_fc_none;
       
  1163 
       
  1164 		/*
       
  1165 		 * Now we call a subroutine to actually force the MAC
       
  1166 		 * controller to use the correct flow control settings.
       
  1167 		 */
       
  1168 		ret_val = e1000e_force_mac_fc(hw);
       
  1169 		if (ret_val) {
       
  1170 			hw_dbg(hw, "Error forcing flow control settings\n");
       
  1171 			return ret_val;
       
  1172 		}
       
  1173 	}
       
  1174 
       
  1175 	return 0;
       
  1176 }
       
  1177 
       
  1178 /**
       
  1179  *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
       
  1180  *  @hw: pointer to the HW structure
       
  1181  *  @speed: stores the current speed
       
  1182  *  @duplex: stores the current duplex
       
  1183  *
       
  1184  *  Read the status register for the current speed/duplex and store the current
       
  1185  *  speed and duplex for copper connections.
       
  1186  **/
       
  1187 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
       
  1188 {
       
  1189 	u32 status;
       
  1190 
       
  1191 	status = er32(STATUS);
       
  1192 	if (status & E1000_STATUS_SPEED_1000) {
       
  1193 		*speed = SPEED_1000;
       
  1194 		hw_dbg(hw, "1000 Mbs, ");
       
  1195 	} else if (status & E1000_STATUS_SPEED_100) {
       
  1196 		*speed = SPEED_100;
       
  1197 		hw_dbg(hw, "100 Mbs, ");
       
  1198 	} else {
       
  1199 		*speed = SPEED_10;
       
  1200 		hw_dbg(hw, "10 Mbs, ");
       
  1201 	}
       
  1202 
       
  1203 	if (status & E1000_STATUS_FD) {
       
  1204 		*duplex = FULL_DUPLEX;
       
  1205 		hw_dbg(hw, "Full Duplex\n");
       
  1206 	} else {
       
  1207 		*duplex = HALF_DUPLEX;
       
  1208 		hw_dbg(hw, "Half Duplex\n");
       
  1209 	}
       
  1210 
       
  1211 	return 0;
       
  1212 }
       
  1213 
       
  1214 /**
       
  1215  *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
       
  1216  *  @hw: pointer to the HW structure
       
  1217  *  @speed: stores the current speed
       
  1218  *  @duplex: stores the current duplex
       
  1219  *
       
  1220  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
       
  1221  *  for fiber/serdes links.
       
  1222  **/
       
  1223 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
       
  1224 {
       
  1225 	*speed = SPEED_1000;
       
  1226 	*duplex = FULL_DUPLEX;
       
  1227 
       
  1228 	return 0;
       
  1229 }
       
  1230 
       
  1231 /**
       
  1232  *  e1000e_get_hw_semaphore - Acquire hardware semaphore
       
  1233  *  @hw: pointer to the HW structure
       
  1234  *
       
  1235  *  Acquire the HW semaphore to access the PHY or NVM
       
  1236  **/
       
  1237 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
       
  1238 {
       
  1239 	u32 swsm;
       
  1240 	s32 timeout = hw->nvm.word_size + 1;
       
  1241 	s32 i = 0;
       
  1242 
       
  1243 	/* Get the SW semaphore */
       
  1244 	while (i < timeout) {
       
  1245 		swsm = er32(SWSM);
       
  1246 		if (!(swsm & E1000_SWSM_SMBI))
       
  1247 			break;
       
  1248 
       
  1249 		udelay(50);
       
  1250 		i++;
       
  1251 	}
       
  1252 
       
  1253 	if (i == timeout) {
       
  1254 		hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
       
  1255 		return -E1000_ERR_NVM;
       
  1256 	}
       
  1257 
       
  1258 	/* Get the FW semaphore. */
       
  1259 	for (i = 0; i < timeout; i++) {
       
  1260 		swsm = er32(SWSM);
       
  1261 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
       
  1262 
       
  1263 		/* Semaphore acquired if bit latched */
       
  1264 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
       
  1265 			break;
       
  1266 
       
  1267 		udelay(50);
       
  1268 	}
       
  1269 
       
  1270 	if (i == timeout) {
       
  1271 		/* Release semaphores */
       
  1272 		e1000e_put_hw_semaphore(hw);
       
  1273 		hw_dbg(hw, "Driver can't access the NVM\n");
       
  1274 		return -E1000_ERR_NVM;
       
  1275 	}
       
  1276 
       
  1277 	return 0;
       
  1278 }
       
  1279 
       
  1280 /**
       
  1281  *  e1000e_put_hw_semaphore - Release hardware semaphore
       
  1282  *  @hw: pointer to the HW structure
       
  1283  *
       
  1284  *  Release hardware semaphore used to access the PHY or NVM
       
  1285  **/
       
  1286 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
       
  1287 {
       
  1288 	u32 swsm;
       
  1289 
       
  1290 	swsm = er32(SWSM);
       
  1291 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
  1292 	ew32(SWSM, swsm);
       
  1293 }
       
  1294 
       
  1295 /**
       
  1296  *  e1000e_get_auto_rd_done - Check for auto read completion
       
  1297  *  @hw: pointer to the HW structure
       
  1298  *
       
  1299  *  Check EEPROM for Auto Read done bit.
       
  1300  **/
       
  1301 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
       
  1302 {
       
  1303 	s32 i = 0;
       
  1304 
       
  1305 	while (i < AUTO_READ_DONE_TIMEOUT) {
       
  1306 		if (er32(EECD) & E1000_EECD_AUTO_RD)
       
  1307 			break;
       
  1308 		msleep(1);
       
  1309 		i++;
       
  1310 	}
       
  1311 
       
  1312 	if (i == AUTO_READ_DONE_TIMEOUT) {
       
  1313 		hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
       
  1314 		return -E1000_ERR_RESET;
       
  1315 	}
       
  1316 
       
  1317 	return 0;
       
  1318 }
       
  1319 
       
  1320 /**
       
  1321  *  e1000e_valid_led_default - Verify a valid default LED config
       
  1322  *  @hw: pointer to the HW structure
       
  1323  *  @data: pointer to the NVM (EEPROM)
       
  1324  *
       
  1325  *  Read the EEPROM for the current default LED configuration.  If the
       
  1326  *  LED configuration is not valid, set to a valid LED configuration.
       
  1327  **/
       
  1328 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
       
  1329 {
       
  1330 	s32 ret_val;
       
  1331 
       
  1332 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  1333 	if (ret_val) {
       
  1334 		hw_dbg(hw, "NVM Read Error\n");
       
  1335 		return ret_val;
       
  1336 	}
       
  1337 
       
  1338 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
       
  1339 		*data = ID_LED_DEFAULT;
       
  1340 
       
  1341 	return 0;
       
  1342 }
       
  1343 
       
  1344 /**
       
  1345  *  e1000e_id_led_init -
       
  1346  *  @hw: pointer to the HW structure
       
  1347  *
       
  1348  **/
       
  1349 s32 e1000e_id_led_init(struct e1000_hw *hw)
       
  1350 {
       
  1351 	struct e1000_mac_info *mac = &hw->mac;
       
  1352 	s32 ret_val;
       
  1353 	const u32 ledctl_mask = 0x000000FF;
       
  1354 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
       
  1355 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
       
  1356 	u16 data, i, temp;
       
  1357 	const u16 led_mask = 0x0F;
       
  1358 
       
  1359 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
       
  1360 	if (ret_val)
       
  1361 		return ret_val;
       
  1362 
       
  1363 	mac->ledctl_default = er32(LEDCTL);
       
  1364 	mac->ledctl_mode1 = mac->ledctl_default;
       
  1365 	mac->ledctl_mode2 = mac->ledctl_default;
       
  1366 
       
  1367 	for (i = 0; i < 4; i++) {
       
  1368 		temp = (data >> (i << 2)) & led_mask;
       
  1369 		switch (temp) {
       
  1370 		case ID_LED_ON1_DEF2:
       
  1371 		case ID_LED_ON1_ON2:
       
  1372 		case ID_LED_ON1_OFF2:
       
  1373 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1374 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
       
  1375 			break;
       
  1376 		case ID_LED_OFF1_DEF2:
       
  1377 		case ID_LED_OFF1_ON2:
       
  1378 		case ID_LED_OFF1_OFF2:
       
  1379 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1380 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
       
  1381 			break;
       
  1382 		default:
       
  1383 			/* Do nothing */
       
  1384 			break;
       
  1385 		}
       
  1386 		switch (temp) {
       
  1387 		case ID_LED_DEF1_ON2:
       
  1388 		case ID_LED_ON1_ON2:
       
  1389 		case ID_LED_OFF1_ON2:
       
  1390 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1391 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
       
  1392 			break;
       
  1393 		case ID_LED_DEF1_OFF2:
       
  1394 		case ID_LED_ON1_OFF2:
       
  1395 		case ID_LED_OFF1_OFF2:
       
  1396 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1397 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
       
  1398 			break;
       
  1399 		default:
       
  1400 			/* Do nothing */
       
  1401 			break;
       
  1402 		}
       
  1403 	}
       
  1404 
       
  1405 	return 0;
       
  1406 }
       
  1407 
       
  1408 /**
       
  1409  *  e1000e_setup_led_generic - Configures SW controllable LED
       
  1410  *  @hw: pointer to the HW structure
       
  1411  *
       
  1412  *  This prepares the SW controllable LED for use and saves the current state
       
  1413  *  of the LED so it can be later restored.
       
  1414  **/
       
  1415 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
       
  1416 {
       
  1417 	u32 ledctl;
       
  1418 
       
  1419 	if (hw->mac.ops.setup_led != e1000e_setup_led_generic) {
       
  1420 		return -E1000_ERR_CONFIG;
       
  1421 	}
       
  1422 
       
  1423 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1424 		ledctl = er32(LEDCTL);
       
  1425 		hw->mac.ledctl_default = ledctl;
       
  1426 		/* Turn off LED0 */
       
  1427 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
       
  1428 		            E1000_LEDCTL_LED0_BLINK |
       
  1429 		            E1000_LEDCTL_LED0_MODE_MASK);
       
  1430 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
       
  1431 		           E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1432 		ew32(LEDCTL, ledctl);
       
  1433 	} else if (hw->phy.media_type == e1000_media_type_copper) {
       
  1434 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1435 	}
       
  1436 
       
  1437 	return 0;
       
  1438 }
       
  1439 
       
  1440 /**
       
  1441  *  e1000e_cleanup_led_generic - Set LED config to default operation
       
  1442  *  @hw: pointer to the HW structure
       
  1443  *
       
  1444  *  Remove the current LED configuration and set the LED configuration
       
  1445  *  to the default value, saved from the EEPROM.
       
  1446  **/
       
  1447 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
       
  1448 {
       
  1449 	ew32(LEDCTL, hw->mac.ledctl_default);
       
  1450 	return 0;
       
  1451 }
       
  1452 
       
  1453 /**
       
  1454  *  e1000e_blink_led - Blink LED
       
  1455  *  @hw: pointer to the HW structure
       
  1456  *
       
  1457  *  Blink the LEDs which are set to be on.
       
  1458  **/
       
  1459 s32 e1000e_blink_led(struct e1000_hw *hw)
       
  1460 {
       
  1461 	u32 ledctl_blink = 0;
       
  1462 	u32 i;
       
  1463 
       
  1464 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1465 		/* always blink LED0 for PCI-E fiber */
       
  1466 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
       
  1467 		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1468 	} else {
       
  1469 		/*
       
  1470 		 * set the blink bit for each LED that's "on" (0x0E)
       
  1471 		 * in ledctl_mode2
       
  1472 		 */
       
  1473 		ledctl_blink = hw->mac.ledctl_mode2;
       
  1474 		for (i = 0; i < 4; i++)
       
  1475 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
       
  1476 			    E1000_LEDCTL_MODE_LED_ON)
       
  1477 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
       
  1478 						 (i * 8));
       
  1479 	}
       
  1480 
       
  1481 	ew32(LEDCTL, ledctl_blink);
       
  1482 
       
  1483 	return 0;
       
  1484 }
       
  1485 
       
  1486 /**
       
  1487  *  e1000e_led_on_generic - Turn LED on
       
  1488  *  @hw: pointer to the HW structure
       
  1489  *
       
  1490  *  Turn LED on.
       
  1491  **/
       
  1492 s32 e1000e_led_on_generic(struct e1000_hw *hw)
       
  1493 {
       
  1494 	u32 ctrl;
       
  1495 
       
  1496 	switch (hw->phy.media_type) {
       
  1497 	case e1000_media_type_fiber:
       
  1498 		ctrl = er32(CTRL);
       
  1499 		ctrl &= ~E1000_CTRL_SWDPIN0;
       
  1500 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1501 		ew32(CTRL, ctrl);
       
  1502 		break;
       
  1503 	case e1000_media_type_copper:
       
  1504 		ew32(LEDCTL, hw->mac.ledctl_mode2);
       
  1505 		break;
       
  1506 	default:
       
  1507 		break;
       
  1508 	}
       
  1509 
       
  1510 	return 0;
       
  1511 }
       
  1512 
       
  1513 /**
       
  1514  *  e1000e_led_off_generic - Turn LED off
       
  1515  *  @hw: pointer to the HW structure
       
  1516  *
       
  1517  *  Turn LED off.
       
  1518  **/
       
  1519 s32 e1000e_led_off_generic(struct e1000_hw *hw)
       
  1520 {
       
  1521 	u32 ctrl;
       
  1522 
       
  1523 	switch (hw->phy.media_type) {
       
  1524 	case e1000_media_type_fiber:
       
  1525 		ctrl = er32(CTRL);
       
  1526 		ctrl |= E1000_CTRL_SWDPIN0;
       
  1527 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1528 		ew32(CTRL, ctrl);
       
  1529 		break;
       
  1530 	case e1000_media_type_copper:
       
  1531 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1532 		break;
       
  1533 	default:
       
  1534 		break;
       
  1535 	}
       
  1536 
       
  1537 	return 0;
       
  1538 }
       
  1539 
       
  1540 /**
       
  1541  *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
       
  1542  *  @hw: pointer to the HW structure
       
  1543  *  @no_snoop: bitmap of snoop events
       
  1544  *
       
  1545  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
       
  1546  **/
       
  1547 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
       
  1548 {
       
  1549 	u32 gcr;
       
  1550 
       
  1551 	if (no_snoop) {
       
  1552 		gcr = er32(GCR);
       
  1553 		gcr &= ~(PCIE_NO_SNOOP_ALL);
       
  1554 		gcr |= no_snoop;
       
  1555 		ew32(GCR, gcr);
       
  1556 	}
       
  1557 }
       
  1558 
       
  1559 /**
       
  1560  *  e1000e_disable_pcie_master - Disables PCI-express master access
       
  1561  *  @hw: pointer to the HW structure
       
  1562  *
       
  1563  *  Returns 0 if successful, else returns -10
       
  1564  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
       
  1565  *  the master requests to be disabled.
       
  1566  *
       
  1567  *  Disables PCI-Express master access and verifies there are no pending
       
  1568  *  requests.
       
  1569  **/
       
  1570 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
       
  1571 {
       
  1572 	u32 ctrl;
       
  1573 	s32 timeout = MASTER_DISABLE_TIMEOUT;
       
  1574 
       
  1575 	ctrl = er32(CTRL);
       
  1576 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
       
  1577 	ew32(CTRL, ctrl);
       
  1578 
       
  1579 	while (timeout) {
       
  1580 		if (!(er32(STATUS) &
       
  1581 		      E1000_STATUS_GIO_MASTER_ENABLE))
       
  1582 			break;
       
  1583 		udelay(100);
       
  1584 		timeout--;
       
  1585 	}
       
  1586 
       
  1587 	if (!timeout) {
       
  1588 		hw_dbg(hw, "Master requests are pending.\n");
       
  1589 		return -E1000_ERR_MASTER_REQUESTS_PENDING;
       
  1590 	}
       
  1591 
       
  1592 	return 0;
       
  1593 }
       
  1594 
       
  1595 /**
       
  1596  *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
       
  1597  *  @hw: pointer to the HW structure
       
  1598  *
       
  1599  *  Reset the Adaptive Interframe Spacing throttle to default values.
       
  1600  **/
       
  1601 void e1000e_reset_adaptive(struct e1000_hw *hw)
       
  1602 {
       
  1603 	struct e1000_mac_info *mac = &hw->mac;
       
  1604 
       
  1605 	mac->current_ifs_val = 0;
       
  1606 	mac->ifs_min_val = IFS_MIN;
       
  1607 	mac->ifs_max_val = IFS_MAX;
       
  1608 	mac->ifs_step_size = IFS_STEP;
       
  1609 	mac->ifs_ratio = IFS_RATIO;
       
  1610 
       
  1611 	mac->in_ifs_mode = 0;
       
  1612 	ew32(AIT, 0);
       
  1613 }
       
  1614 
       
  1615 /**
       
  1616  *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
       
  1617  *  @hw: pointer to the HW structure
       
  1618  *
       
  1619  *  Update the Adaptive Interframe Spacing Throttle value based on the
       
  1620  *  time between transmitted packets and time between collisions.
       
  1621  **/
       
  1622 void e1000e_update_adaptive(struct e1000_hw *hw)
       
  1623 {
       
  1624 	struct e1000_mac_info *mac = &hw->mac;
       
  1625 
       
  1626 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
       
  1627 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
       
  1628 			mac->in_ifs_mode = 1;
       
  1629 			if (mac->current_ifs_val < mac->ifs_max_val) {
       
  1630 				if (!mac->current_ifs_val)
       
  1631 					mac->current_ifs_val = mac->ifs_min_val;
       
  1632 				else
       
  1633 					mac->current_ifs_val +=
       
  1634 						mac->ifs_step_size;
       
  1635 				ew32(AIT, mac->current_ifs_val);
       
  1636 			}
       
  1637 		}
       
  1638 	} else {
       
  1639 		if (mac->in_ifs_mode &&
       
  1640 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
       
  1641 			mac->current_ifs_val = 0;
       
  1642 			mac->in_ifs_mode = 0;
       
  1643 			ew32(AIT, 0);
       
  1644 		}
       
  1645 	}
       
  1646 }
       
  1647 
       
  1648 /**
       
  1649  *  e1000_raise_eec_clk - Raise EEPROM clock
       
  1650  *  @hw: pointer to the HW structure
       
  1651  *  @eecd: pointer to the EEPROM
       
  1652  *
       
  1653  *  Enable/Raise the EEPROM clock bit.
       
  1654  **/
       
  1655 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
       
  1656 {
       
  1657 	*eecd = *eecd | E1000_EECD_SK;
       
  1658 	ew32(EECD, *eecd);
       
  1659 	e1e_flush();
       
  1660 	udelay(hw->nvm.delay_usec);
       
  1661 }
       
  1662 
       
  1663 /**
       
  1664  *  e1000_lower_eec_clk - Lower EEPROM clock
       
  1665  *  @hw: pointer to the HW structure
       
  1666  *  @eecd: pointer to the EEPROM
       
  1667  *
       
  1668  *  Clear/Lower the EEPROM clock bit.
       
  1669  **/
       
  1670 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
       
  1671 {
       
  1672 	*eecd = *eecd & ~E1000_EECD_SK;
       
  1673 	ew32(EECD, *eecd);
       
  1674 	e1e_flush();
       
  1675 	udelay(hw->nvm.delay_usec);
       
  1676 }
       
  1677 
       
  1678 /**
       
  1679  *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
       
  1680  *  @hw: pointer to the HW structure
       
  1681  *  @data: data to send to the EEPROM
       
  1682  *  @count: number of bits to shift out
       
  1683  *
       
  1684  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
       
  1685  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
       
  1686  *  In order to do this, "data" must be broken down into bits.
       
  1687  **/
       
  1688 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
       
  1689 {
       
  1690 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1691 	u32 eecd = er32(EECD);
       
  1692 	u32 mask;
       
  1693 
       
  1694 	mask = 0x01 << (count - 1);
       
  1695 	if (nvm->type == e1000_nvm_eeprom_spi)
       
  1696 		eecd |= E1000_EECD_DO;
       
  1697 
       
  1698 	do {
       
  1699 		eecd &= ~E1000_EECD_DI;
       
  1700 
       
  1701 		if (data & mask)
       
  1702 			eecd |= E1000_EECD_DI;
       
  1703 
       
  1704 		ew32(EECD, eecd);
       
  1705 		e1e_flush();
       
  1706 
       
  1707 		udelay(nvm->delay_usec);
       
  1708 
       
  1709 		e1000_raise_eec_clk(hw, &eecd);
       
  1710 		e1000_lower_eec_clk(hw, &eecd);
       
  1711 
       
  1712 		mask >>= 1;
       
  1713 	} while (mask);
       
  1714 
       
  1715 	eecd &= ~E1000_EECD_DI;
       
  1716 	ew32(EECD, eecd);
       
  1717 }
       
  1718 
       
  1719 /**
       
  1720  *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
       
  1721  *  @hw: pointer to the HW structure
       
  1722  *  @count: number of bits to shift in
       
  1723  *
       
  1724  *  In order to read a register from the EEPROM, we need to shift 'count' bits
       
  1725  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
       
  1726  *  the EEPROM (setting the SK bit), and then reading the value of the data out
       
  1727  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
       
  1728  *  always be clear.
       
  1729  **/
       
  1730 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
       
  1731 {
       
  1732 	u32 eecd;
       
  1733 	u32 i;
       
  1734 	u16 data;
       
  1735 
       
  1736 	eecd = er32(EECD);
       
  1737 
       
  1738 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
       
  1739 	data = 0;
       
  1740 
       
  1741 	for (i = 0; i < count; i++) {
       
  1742 		data <<= 1;
       
  1743 		e1000_raise_eec_clk(hw, &eecd);
       
  1744 
       
  1745 		eecd = er32(EECD);
       
  1746 
       
  1747 		eecd &= ~E1000_EECD_DI;
       
  1748 		if (eecd & E1000_EECD_DO)
       
  1749 			data |= 1;
       
  1750 
       
  1751 		e1000_lower_eec_clk(hw, &eecd);
       
  1752 	}
       
  1753 
       
  1754 	return data;
       
  1755 }
       
  1756 
       
  1757 /**
       
  1758  *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
       
  1759  *  @hw: pointer to the HW structure
       
  1760  *  @ee_reg: EEPROM flag for polling
       
  1761  *
       
  1762  *  Polls the EEPROM status bit for either read or write completion based
       
  1763  *  upon the value of 'ee_reg'.
       
  1764  **/
       
  1765 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
       
  1766 {
       
  1767 	u32 attempts = 100000;
       
  1768 	u32 i, reg = 0;
       
  1769 
       
  1770 	for (i = 0; i < attempts; i++) {
       
  1771 		if (ee_reg == E1000_NVM_POLL_READ)
       
  1772 			reg = er32(EERD);
       
  1773 		else
       
  1774 			reg = er32(EEWR);
       
  1775 
       
  1776 		if (reg & E1000_NVM_RW_REG_DONE)
       
  1777 			return 0;
       
  1778 
       
  1779 		udelay(5);
       
  1780 	}
       
  1781 
       
  1782 	return -E1000_ERR_NVM;
       
  1783 }
       
  1784 
       
  1785 /**
       
  1786  *  e1000e_acquire_nvm - Generic request for access to EEPROM
       
  1787  *  @hw: pointer to the HW structure
       
  1788  *
       
  1789  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
       
  1790  *  Return successful if access grant bit set, else clear the request for
       
  1791  *  EEPROM access and return -E1000_ERR_NVM (-1).
       
  1792  **/
       
  1793 s32 e1000e_acquire_nvm(struct e1000_hw *hw)
       
  1794 {
       
  1795 	u32 eecd = er32(EECD);
       
  1796 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
       
  1797 
       
  1798 	ew32(EECD, eecd | E1000_EECD_REQ);
       
  1799 	eecd = er32(EECD);
       
  1800 
       
  1801 	while (timeout) {
       
  1802 		if (eecd & E1000_EECD_GNT)
       
  1803 			break;
       
  1804 		udelay(5);
       
  1805 		eecd = er32(EECD);
       
  1806 		timeout--;
       
  1807 	}
       
  1808 
       
  1809 	if (!timeout) {
       
  1810 		eecd &= ~E1000_EECD_REQ;
       
  1811 		ew32(EECD, eecd);
       
  1812 		hw_dbg(hw, "Could not acquire NVM grant\n");
       
  1813 		return -E1000_ERR_NVM;
       
  1814 	}
       
  1815 
       
  1816 	return 0;
       
  1817 }
       
  1818 
       
  1819 /**
       
  1820  *  e1000_standby_nvm - Return EEPROM to standby state
       
  1821  *  @hw: pointer to the HW structure
       
  1822  *
       
  1823  *  Return the EEPROM to a standby state.
       
  1824  **/
       
  1825 static void e1000_standby_nvm(struct e1000_hw *hw)
       
  1826 {
       
  1827 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1828 	u32 eecd = er32(EECD);
       
  1829 
       
  1830 	if (nvm->type == e1000_nvm_eeprom_spi) {
       
  1831 		/* Toggle CS to flush commands */
       
  1832 		eecd |= E1000_EECD_CS;
       
  1833 		ew32(EECD, eecd);
       
  1834 		e1e_flush();
       
  1835 		udelay(nvm->delay_usec);
       
  1836 		eecd &= ~E1000_EECD_CS;
       
  1837 		ew32(EECD, eecd);
       
  1838 		e1e_flush();
       
  1839 		udelay(nvm->delay_usec);
       
  1840 	}
       
  1841 }
       
  1842 
       
  1843 /**
       
  1844  *  e1000_stop_nvm - Terminate EEPROM command
       
  1845  *  @hw: pointer to the HW structure
       
  1846  *
       
  1847  *  Terminates the current command by inverting the EEPROM's chip select pin.
       
  1848  **/
       
  1849 static void e1000_stop_nvm(struct e1000_hw *hw)
       
  1850 {
       
  1851 	u32 eecd;
       
  1852 
       
  1853 	eecd = er32(EECD);
       
  1854 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
       
  1855 		/* Pull CS high */
       
  1856 		eecd |= E1000_EECD_CS;
       
  1857 		e1000_lower_eec_clk(hw, &eecd);
       
  1858 	}
       
  1859 }
       
  1860 
       
  1861 /**
       
  1862  *  e1000e_release_nvm - Release exclusive access to EEPROM
       
  1863  *  @hw: pointer to the HW structure
       
  1864  *
       
  1865  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
       
  1866  **/
       
  1867 void e1000e_release_nvm(struct e1000_hw *hw)
       
  1868 {
       
  1869 	u32 eecd;
       
  1870 
       
  1871 	e1000_stop_nvm(hw);
       
  1872 
       
  1873 	eecd = er32(EECD);
       
  1874 	eecd &= ~E1000_EECD_REQ;
       
  1875 	ew32(EECD, eecd);
       
  1876 }
       
  1877 
       
  1878 /**
       
  1879  *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
       
  1880  *  @hw: pointer to the HW structure
       
  1881  *
       
  1882  *  Setups the EEPROM for reading and writing.
       
  1883  **/
       
  1884 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
       
  1885 {
       
  1886 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1887 	u32 eecd = er32(EECD);
       
  1888 	u16 timeout = 0;
       
  1889 	u8 spi_stat_reg;
       
  1890 
       
  1891 	if (nvm->type == e1000_nvm_eeprom_spi) {
       
  1892 		/* Clear SK and CS */
       
  1893 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
       
  1894 		ew32(EECD, eecd);
       
  1895 		udelay(1);
       
  1896 		timeout = NVM_MAX_RETRY_SPI;
       
  1897 
       
  1898 		/*
       
  1899 		 * Read "Status Register" repeatedly until the LSB is cleared.
       
  1900 		 * The EEPROM will signal that the command has been completed
       
  1901 		 * by clearing bit 0 of the internal status register.  If it's
       
  1902 		 * not cleared within 'timeout', then error out.
       
  1903 		 */
       
  1904 		while (timeout) {
       
  1905 			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
       
  1906 						 hw->nvm.opcode_bits);
       
  1907 			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
       
  1908 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
       
  1909 				break;
       
  1910 
       
  1911 			udelay(5);
       
  1912 			e1000_standby_nvm(hw);
       
  1913 			timeout--;
       
  1914 		}
       
  1915 
       
  1916 		if (!timeout) {
       
  1917 			hw_dbg(hw, "SPI NVM Status error\n");
       
  1918 			return -E1000_ERR_NVM;
       
  1919 		}
       
  1920 	}
       
  1921 
       
  1922 	return 0;
       
  1923 }
       
  1924 
       
  1925 /**
       
  1926  *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
       
  1927  *  @hw: pointer to the HW structure
       
  1928  *  @offset: offset of word in the EEPROM to read
       
  1929  *  @words: number of words to read
       
  1930  *  @data: word read from the EEPROM
       
  1931  *
       
  1932  *  Reads a 16 bit word from the EEPROM using the EERD register.
       
  1933  **/
       
  1934 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
       
  1935 {
       
  1936 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1937 	u32 i, eerd = 0;
       
  1938 	s32 ret_val = 0;
       
  1939 
       
  1940 	/*
       
  1941 	 * A check for invalid values:  offset too large, too many words,
       
  1942 	 * too many words for the offset, and not enough words.
       
  1943 	 */
       
  1944 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
  1945 	    (words == 0)) {
       
  1946 		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
       
  1947 		return -E1000_ERR_NVM;
       
  1948 	}
       
  1949 
       
  1950 	for (i = 0; i < words; i++) {
       
  1951 		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
       
  1952 		       E1000_NVM_RW_REG_START;
       
  1953 
       
  1954 		ew32(EERD, eerd);
       
  1955 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
       
  1956 		if (ret_val)
       
  1957 			break;
       
  1958 
       
  1959 		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
       
  1960 	}
       
  1961 
       
  1962 	return ret_val;
       
  1963 }
       
  1964 
       
  1965 /**
       
  1966  *  e1000e_write_nvm_spi - Write to EEPROM using SPI
       
  1967  *  @hw: pointer to the HW structure
       
  1968  *  @offset: offset within the EEPROM to be written to
       
  1969  *  @words: number of words to write
       
  1970  *  @data: 16 bit word(s) to be written to the EEPROM
       
  1971  *
       
  1972  *  Writes data to EEPROM at offset using SPI interface.
       
  1973  *
       
  1974  *  If e1000e_update_nvm_checksum is not called after this function , the
       
  1975  *  EEPROM will most likely contain an invalid checksum.
       
  1976  **/
       
  1977 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
       
  1978 {
       
  1979 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1980 	s32 ret_val;
       
  1981 	u16 widx = 0;
       
  1982 
       
  1983 	/*
       
  1984 	 * A check for invalid values:  offset too large, too many words,
       
  1985 	 * and not enough words.
       
  1986 	 */
       
  1987 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
  1988 	    (words == 0)) {
       
  1989 		hw_dbg(hw, "nvm parameter(s) out of bounds\n");
       
  1990 		return -E1000_ERR_NVM;
       
  1991 	}
       
  1992 
       
  1993 	ret_val = nvm->ops.acquire_nvm(hw);
       
  1994 	if (ret_val)
       
  1995 		return ret_val;
       
  1996 
       
  1997 	msleep(10);
       
  1998 
       
  1999 	while (widx < words) {
       
  2000 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
       
  2001 
       
  2002 		ret_val = e1000_ready_nvm_eeprom(hw);
       
  2003 		if (ret_val) {
       
  2004 			nvm->ops.release_nvm(hw);
       
  2005 			return ret_val;
       
  2006 		}
       
  2007 
       
  2008 		e1000_standby_nvm(hw);
       
  2009 
       
  2010 		/* Send the WRITE ENABLE command (8 bit opcode) */
       
  2011 		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
       
  2012 					 nvm->opcode_bits);
       
  2013 
       
  2014 		e1000_standby_nvm(hw);
       
  2015 
       
  2016 		/*
       
  2017 		 * Some SPI eeproms use the 8th address bit embedded in the
       
  2018 		 * opcode
       
  2019 		 */
       
  2020 		if ((nvm->address_bits == 8) && (offset >= 128))
       
  2021 			write_opcode |= NVM_A8_OPCODE_SPI;
       
  2022 
       
  2023 		/* Send the Write command (8-bit opcode + addr) */
       
  2024 		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
       
  2025 		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
       
  2026 					 nvm->address_bits);
       
  2027 
       
  2028 		/* Loop to allow for up to whole page write of eeprom */
       
  2029 		while (widx < words) {
       
  2030 			u16 word_out = data[widx];
       
  2031 			word_out = (word_out >> 8) | (word_out << 8);
       
  2032 			e1000_shift_out_eec_bits(hw, word_out, 16);
       
  2033 			widx++;
       
  2034 
       
  2035 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
       
  2036 				e1000_standby_nvm(hw);
       
  2037 				break;
       
  2038 			}
       
  2039 		}
       
  2040 	}
       
  2041 
       
  2042 	msleep(10);
       
  2043 	nvm->ops.release_nvm(hw);
       
  2044 	return 0;
       
  2045 }
       
  2046 
       
  2047 /**
       
  2048  *  e1000e_read_mac_addr - Read device MAC address
       
  2049  *  @hw: pointer to the HW structure
       
  2050  *
       
  2051  *  Reads the device MAC address from the EEPROM and stores the value.
       
  2052  *  Since devices with two ports use the same EEPROM, we increment the
       
  2053  *  last bit in the MAC address for the second port.
       
  2054  **/
       
  2055 s32 e1000e_read_mac_addr(struct e1000_hw *hw)
       
  2056 {
       
  2057 	s32 ret_val;
       
  2058 	u16 offset, nvm_data, i;
       
  2059 	u16 mac_addr_offset = 0;
       
  2060 
       
  2061 	if (hw->mac.type == e1000_82571) {
       
  2062 		/* Check for an alternate MAC address.  An alternate MAC
       
  2063 		 * address can be setup by pre-boot software and must be
       
  2064 		 * treated like a permanent address and must override the
       
  2065 		 * actual permanent MAC address.*/
       
  2066 		ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
       
  2067 					 &mac_addr_offset);
       
  2068 		if (ret_val) {
       
  2069 			hw_dbg(hw, "NVM Read Error\n");
       
  2070 			return ret_val;
       
  2071 		}
       
  2072 		if (mac_addr_offset == 0xFFFF)
       
  2073 			mac_addr_offset = 0;
       
  2074 
       
  2075 		if (mac_addr_offset) {
       
  2076 			if (hw->bus.func == E1000_FUNC_1)
       
  2077 				mac_addr_offset += ETH_ALEN/sizeof(u16);
       
  2078 
       
  2079 			/* make sure we have a valid mac address here
       
  2080 			* before using it */
       
  2081 			ret_val = e1000_read_nvm(hw, mac_addr_offset, 1,
       
  2082 						 &nvm_data);
       
  2083 			if (ret_val) {
       
  2084 				hw_dbg(hw, "NVM Read Error\n");
       
  2085 				return ret_val;
       
  2086 			}
       
  2087 			if (nvm_data & 0x0001)
       
  2088 				mac_addr_offset = 0;
       
  2089 		}
       
  2090 
       
  2091 		if (mac_addr_offset)
       
  2092 		hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
       
  2093 	}
       
  2094 
       
  2095 	for (i = 0; i < ETH_ALEN; i += 2) {
       
  2096 		offset = mac_addr_offset + (i >> 1);
       
  2097 		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
       
  2098 		if (ret_val) {
       
  2099 			hw_dbg(hw, "NVM Read Error\n");
       
  2100 			return ret_val;
       
  2101 		}
       
  2102 		hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
       
  2103 		hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
       
  2104 	}
       
  2105 
       
  2106 	/* Flip last bit of mac address if we're on second port */
       
  2107 	if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1)
       
  2108 		hw->mac.perm_addr[5] ^= 1;
       
  2109 
       
  2110 	for (i = 0; i < ETH_ALEN; i++)
       
  2111 		hw->mac.addr[i] = hw->mac.perm_addr[i];
       
  2112 
       
  2113 	return 0;
       
  2114 }
       
  2115 
       
  2116 /**
       
  2117  *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
       
  2118  *  @hw: pointer to the HW structure
       
  2119  *
       
  2120  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
       
  2121  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
       
  2122  **/
       
  2123 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
       
  2124 {
       
  2125 	s32 ret_val;
       
  2126 	u16 checksum = 0;
       
  2127 	u16 i, nvm_data;
       
  2128 
       
  2129 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
       
  2130 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
       
  2131 		if (ret_val) {
       
  2132 			hw_dbg(hw, "NVM Read Error\n");
       
  2133 			return ret_val;
       
  2134 		}
       
  2135 		checksum += nvm_data;
       
  2136 	}
       
  2137 
       
  2138 	if (checksum != (u16) NVM_SUM) {
       
  2139 		hw_dbg(hw, "NVM Checksum Invalid\n");
       
  2140 		return -E1000_ERR_NVM;
       
  2141 	}
       
  2142 
       
  2143 	return 0;
       
  2144 }
       
  2145 
       
  2146 /**
       
  2147  *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
       
  2148  *  @hw: pointer to the HW structure
       
  2149  *
       
  2150  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
       
  2151  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
       
  2152  *  value to the EEPROM.
       
  2153  **/
       
  2154 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
       
  2155 {
       
  2156 	s32 ret_val;
       
  2157 	u16 checksum = 0;
       
  2158 	u16 i, nvm_data;
       
  2159 
       
  2160 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
       
  2161 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
       
  2162 		if (ret_val) {
       
  2163 			hw_dbg(hw, "NVM Read Error while updating checksum.\n");
       
  2164 			return ret_val;
       
  2165 		}
       
  2166 		checksum += nvm_data;
       
  2167 	}
       
  2168 	checksum = (u16) NVM_SUM - checksum;
       
  2169 	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
       
  2170 	if (ret_val)
       
  2171 		hw_dbg(hw, "NVM Write Error while updating checksum.\n");
       
  2172 
       
  2173 	return ret_val;
       
  2174 }
       
  2175 
       
  2176 /**
       
  2177  *  e1000e_reload_nvm - Reloads EEPROM
       
  2178  *  @hw: pointer to the HW structure
       
  2179  *
       
  2180  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
       
  2181  *  extended control register.
       
  2182  **/
       
  2183 void e1000e_reload_nvm(struct e1000_hw *hw)
       
  2184 {
       
  2185 	u32 ctrl_ext;
       
  2186 
       
  2187 	udelay(10);
       
  2188 	ctrl_ext = er32(CTRL_EXT);
       
  2189 	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
  2190 	ew32(CTRL_EXT, ctrl_ext);
       
  2191 	e1e_flush();
       
  2192 }
       
  2193 
       
  2194 /**
       
  2195  *  e1000_calculate_checksum - Calculate checksum for buffer
       
  2196  *  @buffer: pointer to EEPROM
       
  2197  *  @length: size of EEPROM to calculate a checksum for
       
  2198  *
       
  2199  *  Calculates the checksum for some buffer on a specified length.  The
       
  2200  *  checksum calculated is returned.
       
  2201  **/
       
  2202 static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
       
  2203 {
       
  2204 	u32 i;
       
  2205 	u8  sum = 0;
       
  2206 
       
  2207 	if (!buffer)
       
  2208 		return 0;
       
  2209 
       
  2210 	for (i = 0; i < length; i++)
       
  2211 		sum += buffer[i];
       
  2212 
       
  2213 	return (u8) (0 - sum);
       
  2214 }
       
  2215 
       
  2216 /**
       
  2217  *  e1000_mng_enable_host_if - Checks host interface is enabled
       
  2218  *  @hw: pointer to the HW structure
       
  2219  *
       
  2220  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
       
  2221  *
       
  2222  *  This function checks whether the HOST IF is enabled for command operation
       
  2223  *  and also checks whether the previous command is completed.  It busy waits
       
  2224  *  in case of previous command is not completed.
       
  2225  **/
       
  2226 static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
       
  2227 {
       
  2228 	u32 hicr;
       
  2229 	u8 i;
       
  2230 
       
  2231 	/* Check that the host interface is enabled. */
       
  2232 	hicr = er32(HICR);
       
  2233 	if ((hicr & E1000_HICR_EN) == 0) {
       
  2234 		hw_dbg(hw, "E1000_HOST_EN bit disabled.\n");
       
  2235 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
       
  2236 	}
       
  2237 	/* check the previous command is completed */
       
  2238 	for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
       
  2239 		hicr = er32(HICR);
       
  2240 		if (!(hicr & E1000_HICR_C))
       
  2241 			break;
       
  2242 		mdelay(1);
       
  2243 	}
       
  2244 
       
  2245 	if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
       
  2246 		hw_dbg(hw, "Previous command timeout failed .\n");
       
  2247 		return -E1000_ERR_HOST_INTERFACE_COMMAND;
       
  2248 	}
       
  2249 
       
  2250 	return 0;
       
  2251 }
       
  2252 
       
  2253 /**
       
  2254  *  e1000e_check_mng_mode_generic - check management mode
       
  2255  *  @hw: pointer to the HW structure
       
  2256  *
       
  2257  *  Reads the firmware semaphore register and returns true (>0) if
       
  2258  *  manageability is enabled, else false (0).
       
  2259  **/
       
  2260 bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
       
  2261 {
       
  2262 	u32 fwsm = er32(FWSM);
       
  2263 
       
  2264 	return (fwsm & E1000_FWSM_MODE_MASK) ==
       
  2265 		(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
       
  2266 }
       
  2267 
       
  2268 /**
       
  2269  *  e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
       
  2270  *  @hw: pointer to the HW structure
       
  2271  *
       
  2272  *  Enables packet filtering on transmit packets if manageability is enabled
       
  2273  *  and host interface is enabled.
       
  2274  **/
       
  2275 bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
       
  2276 {
       
  2277 	struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
       
  2278 	u32 *buffer = (u32 *)&hw->mng_cookie;
       
  2279 	u32 offset;
       
  2280 	s32 ret_val, hdr_csum, csum;
       
  2281 	u8 i, len;
       
  2282 
       
  2283 	/* No manageability, no filtering */
       
  2284 	if (!e1000e_check_mng_mode(hw)) {
       
  2285 		hw->mac.tx_pkt_filtering = 0;
       
  2286 		return 0;
       
  2287 	}
       
  2288 
       
  2289 	/*
       
  2290 	 * If we can't read from the host interface for whatever
       
  2291 	 * reason, disable filtering.
       
  2292 	 */
       
  2293 	ret_val = e1000_mng_enable_host_if(hw);
       
  2294 	if (ret_val != 0) {
       
  2295 		hw->mac.tx_pkt_filtering = 0;
       
  2296 		return ret_val;
       
  2297 	}
       
  2298 
       
  2299 	/* Read in the header.  Length and offset are in dwords. */
       
  2300 	len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
       
  2301 	offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
       
  2302 	for (i = 0; i < len; i++)
       
  2303 		*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
       
  2304 	hdr_csum = hdr->checksum;
       
  2305 	hdr->checksum = 0;
       
  2306 	csum = e1000_calculate_checksum((u8 *)hdr,
       
  2307 					E1000_MNG_DHCP_COOKIE_LENGTH);
       
  2308 	/*
       
  2309 	 * If either the checksums or signature don't match, then
       
  2310 	 * the cookie area isn't considered valid, in which case we
       
  2311 	 * take the safe route of assuming Tx filtering is enabled.
       
  2312 	 */
       
  2313 	if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
       
  2314 		hw->mac.tx_pkt_filtering = 1;
       
  2315 		return 1;
       
  2316 	}
       
  2317 
       
  2318 	/* Cookie area is valid, make the final check for filtering. */
       
  2319 	if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
       
  2320 		hw->mac.tx_pkt_filtering = 0;
       
  2321 		return 0;
       
  2322 	}
       
  2323 
       
  2324 	hw->mac.tx_pkt_filtering = 1;
       
  2325 	return 1;
       
  2326 }
       
  2327 
       
  2328 /**
       
  2329  *  e1000_mng_write_cmd_header - Writes manageability command header
       
  2330  *  @hw: pointer to the HW structure
       
  2331  *  @hdr: pointer to the host interface command header
       
  2332  *
       
  2333  *  Writes the command header after does the checksum calculation.
       
  2334  **/
       
  2335 static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
       
  2336 				  struct e1000_host_mng_command_header *hdr)
       
  2337 {
       
  2338 	u16 i, length = sizeof(struct e1000_host_mng_command_header);
       
  2339 
       
  2340 	/* Write the whole command header structure with new checksum. */
       
  2341 
       
  2342 	hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
       
  2343 
       
  2344 	length >>= 2;
       
  2345 	/* Write the relevant command block into the ram area. */
       
  2346 	for (i = 0; i < length; i++) {
       
  2347 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
       
  2348 					    *((u32 *) hdr + i));
       
  2349 		e1e_flush();
       
  2350 	}
       
  2351 
       
  2352 	return 0;
       
  2353 }
       
  2354 
       
  2355 /**
       
  2356  *  e1000_mng_host_if_write - Writes to the manageability host interface
       
  2357  *  @hw: pointer to the HW structure
       
  2358  *  @buffer: pointer to the host interface buffer
       
  2359  *  @length: size of the buffer
       
  2360  *  @offset: location in the buffer to write to
       
  2361  *  @sum: sum of the data (not checksum)
       
  2362  *
       
  2363  *  This function writes the buffer content at the offset given on the host if.
       
  2364  *  It also does alignment considerations to do the writes in most efficient
       
  2365  *  way.  Also fills up the sum of the buffer in *buffer parameter.
       
  2366  **/
       
  2367 static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
       
  2368 				   u16 length, u16 offset, u8 *sum)
       
  2369 {
       
  2370 	u8 *tmp;
       
  2371 	u8 *bufptr = buffer;
       
  2372 	u32 data = 0;
       
  2373 	u16 remaining, i, j, prev_bytes;
       
  2374 
       
  2375 	/* sum = only sum of the data and it is not checksum */
       
  2376 
       
  2377 	if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
       
  2378 		return -E1000_ERR_PARAM;
       
  2379 
       
  2380 	tmp = (u8 *)&data;
       
  2381 	prev_bytes = offset & 0x3;
       
  2382 	offset >>= 2;
       
  2383 
       
  2384 	if (prev_bytes) {
       
  2385 		data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
       
  2386 		for (j = prev_bytes; j < sizeof(u32); j++) {
       
  2387 			*(tmp + j) = *bufptr++;
       
  2388 			*sum += *(tmp + j);
       
  2389 		}
       
  2390 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
       
  2391 		length -= j - prev_bytes;
       
  2392 		offset++;
       
  2393 	}
       
  2394 
       
  2395 	remaining = length & 0x3;
       
  2396 	length -= remaining;
       
  2397 
       
  2398 	/* Calculate length in DWORDs */
       
  2399 	length >>= 2;
       
  2400 
       
  2401 	/*
       
  2402 	 * The device driver writes the relevant command block into the
       
  2403 	 * ram area.
       
  2404 	 */
       
  2405 	for (i = 0; i < length; i++) {
       
  2406 		for (j = 0; j < sizeof(u32); j++) {
       
  2407 			*(tmp + j) = *bufptr++;
       
  2408 			*sum += *(tmp + j);
       
  2409 		}
       
  2410 
       
  2411 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
       
  2412 	}
       
  2413 	if (remaining) {
       
  2414 		for (j = 0; j < sizeof(u32); j++) {
       
  2415 			if (j < remaining)
       
  2416 				*(tmp + j) = *bufptr++;
       
  2417 			else
       
  2418 				*(tmp + j) = 0;
       
  2419 
       
  2420 			*sum += *(tmp + j);
       
  2421 		}
       
  2422 		E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
       
  2423 	}
       
  2424 
       
  2425 	return 0;
       
  2426 }
       
  2427 
       
  2428 /**
       
  2429  *  e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
       
  2430  *  @hw: pointer to the HW structure
       
  2431  *  @buffer: pointer to the host interface
       
  2432  *  @length: size of the buffer
       
  2433  *
       
  2434  *  Writes the DHCP information to the host interface.
       
  2435  **/
       
  2436 s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
       
  2437 {
       
  2438 	struct e1000_host_mng_command_header hdr;
       
  2439 	s32 ret_val;
       
  2440 	u32 hicr;
       
  2441 
       
  2442 	hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
       
  2443 	hdr.command_length = length;
       
  2444 	hdr.reserved1 = 0;
       
  2445 	hdr.reserved2 = 0;
       
  2446 	hdr.checksum = 0;
       
  2447 
       
  2448 	/* Enable the host interface */
       
  2449 	ret_val = e1000_mng_enable_host_if(hw);
       
  2450 	if (ret_val)
       
  2451 		return ret_val;
       
  2452 
       
  2453 	/* Populate the host interface with the contents of "buffer". */
       
  2454 	ret_val = e1000_mng_host_if_write(hw, buffer, length,
       
  2455 					  sizeof(hdr), &(hdr.checksum));
       
  2456 	if (ret_val)
       
  2457 		return ret_val;
       
  2458 
       
  2459 	/* Write the manageability command header */
       
  2460 	ret_val = e1000_mng_write_cmd_header(hw, &hdr);
       
  2461 	if (ret_val)
       
  2462 		return ret_val;
       
  2463 
       
  2464 	/* Tell the ARC a new command is pending. */
       
  2465 	hicr = er32(HICR);
       
  2466 	ew32(HICR, hicr | E1000_HICR_C);
       
  2467 
       
  2468 	return 0;
       
  2469 }
       
  2470 
       
  2471 /**
       
  2472  *  e1000e_enable_mng_pass_thru - Enable processing of ARP's
       
  2473  *  @hw: pointer to the HW structure
       
  2474  *
       
  2475  *  Verifies the hardware needs to allow ARPs to be processed by the host.
       
  2476  **/
       
  2477 bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
       
  2478 {
       
  2479 	u32 manc;
       
  2480 	u32 fwsm, factps;
       
  2481 	bool ret_val = 0;
       
  2482 
       
  2483 	manc = er32(MANC);
       
  2484 
       
  2485 	if (!(manc & E1000_MANC_RCV_TCO_EN) ||
       
  2486 	    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
       
  2487 		return ret_val;
       
  2488 
       
  2489 	if (hw->mac.arc_subsystem_valid) {
       
  2490 		fwsm = er32(FWSM);
       
  2491 		factps = er32(FACTPS);
       
  2492 
       
  2493 		if (!(factps & E1000_FACTPS_MNGCG) &&
       
  2494 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
       
  2495 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
       
  2496 			ret_val = 1;
       
  2497 			return ret_val;
       
  2498 		}
       
  2499 	} else {
       
  2500 		if ((manc & E1000_MANC_SMBUS_EN) &&
       
  2501 		    !(manc & E1000_MANC_ASF_EN)) {
       
  2502 			ret_val = 1;
       
  2503 			return ret_val;
       
  2504 		}
       
  2505 	}
       
  2506 
       
  2507 	return ret_val;
       
  2508 }
       
  2509 
       
  2510 s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
       
  2511 {
       
  2512 	s32 ret_val;
       
  2513 	u16 nvm_data;
       
  2514 
       
  2515 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
       
  2516 	if (ret_val) {
       
  2517 		hw_dbg(hw, "NVM Read Error\n");
       
  2518 		return ret_val;
       
  2519 	}
       
  2520 	*pba_num = (u32)(nvm_data << 16);
       
  2521 
       
  2522 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
       
  2523 	if (ret_val) {
       
  2524 		hw_dbg(hw, "NVM Read Error\n");
       
  2525 		return ret_val;
       
  2526 	}
       
  2527 	*pba_num |= nvm_data;
       
  2528 
       
  2529 	return 0;
       
  2530 }