devices/e1000e/ethtool-2.6.32-orig.c
branchredundancy
changeset 2136 729df853b3fb
equal deleted inserted replaced
2135:f99b2249704c 2136:729df853b3fb
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2008 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* ethtool support for e1000 */
       
    30 
       
    31 #include <linux/netdevice.h>
       
    32 #include <linux/ethtool.h>
       
    33 #include <linux/pci.h>
       
    34 #include <linux/delay.h>
       
    35 
       
    36 #include "e1000.h"
       
    37 
       
    38 struct e1000_stats {
       
    39 	char stat_string[ETH_GSTRING_LEN];
       
    40 	int sizeof_stat;
       
    41 	int stat_offset;
       
    42 };
       
    43 
       
    44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
       
    45 		      offsetof(struct e1000_adapter, m)
       
    46 static const struct e1000_stats e1000_gstrings_stats[] = {
       
    47 	{ "rx_packets", E1000_STAT(stats.gprc) },
       
    48 	{ "tx_packets", E1000_STAT(stats.gptc) },
       
    49 	{ "rx_bytes", E1000_STAT(stats.gorc) },
       
    50 	{ "tx_bytes", E1000_STAT(stats.gotc) },
       
    51 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
       
    52 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
       
    53 	{ "rx_multicast", E1000_STAT(stats.mprc) },
       
    54 	{ "tx_multicast", E1000_STAT(stats.mptc) },
       
    55 	{ "rx_errors", E1000_STAT(net_stats.rx_errors) },
       
    56 	{ "tx_errors", E1000_STAT(net_stats.tx_errors) },
       
    57 	{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
       
    58 	{ "multicast", E1000_STAT(stats.mprc) },
       
    59 	{ "collisions", E1000_STAT(stats.colc) },
       
    60 	{ "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
       
    61 	{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
       
    62 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
       
    63 	{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
       
    64 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
       
    65 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
       
    66 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
       
    67 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
       
    68 	{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
       
    69 	{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
       
    70 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
       
    71 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
       
    72 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
       
    73 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
       
    74 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
       
    75 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
       
    76 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
       
    77 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
       
    78 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
       
    79 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
       
    80 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
       
    81 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
       
    82 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
       
    83 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
       
    84 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
       
    85 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
       
    86 	{ "rx_long_byte_count", E1000_STAT(stats.gorc) },
       
    87 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
       
    88 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
       
    89 	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
       
    90 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
       
    91 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
       
    92 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
       
    93 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
       
    94 	{ "rx_dma_failed", E1000_STAT(rx_dma_failed) },
       
    95 	{ "tx_dma_failed", E1000_STAT(tx_dma_failed) },
       
    96 };
       
    97 
       
    98 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
       
    99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
       
   100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
       
   101 	"Register test  (offline)", "Eeprom test    (offline)",
       
   102 	"Interrupt test (offline)", "Loopback test  (offline)",
       
   103 	"Link test   (on/offline)"
       
   104 };
       
   105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
       
   106 
       
   107 static int e1000_get_settings(struct net_device *netdev,
       
   108 			      struct ethtool_cmd *ecmd)
       
   109 {
       
   110 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   111 	struct e1000_hw *hw = &adapter->hw;
       
   112 	u32 status;
       
   113 
       
   114 	if (hw->phy.media_type == e1000_media_type_copper) {
       
   115 
       
   116 		ecmd->supported = (SUPPORTED_10baseT_Half |
       
   117 				   SUPPORTED_10baseT_Full |
       
   118 				   SUPPORTED_100baseT_Half |
       
   119 				   SUPPORTED_100baseT_Full |
       
   120 				   SUPPORTED_1000baseT_Full |
       
   121 				   SUPPORTED_Autoneg |
       
   122 				   SUPPORTED_TP);
       
   123 		if (hw->phy.type == e1000_phy_ife)
       
   124 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
       
   125 		ecmd->advertising = ADVERTISED_TP;
       
   126 
       
   127 		if (hw->mac.autoneg == 1) {
       
   128 			ecmd->advertising |= ADVERTISED_Autoneg;
       
   129 			/* the e1000 autoneg seems to match ethtool nicely */
       
   130 			ecmd->advertising |= hw->phy.autoneg_advertised;
       
   131 		}
       
   132 
       
   133 		ecmd->port = PORT_TP;
       
   134 		ecmd->phy_address = hw->phy.addr;
       
   135 		ecmd->transceiver = XCVR_INTERNAL;
       
   136 
       
   137 	} else {
       
   138 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
       
   139 				     SUPPORTED_FIBRE |
       
   140 				     SUPPORTED_Autoneg);
       
   141 
       
   142 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
       
   143 				     ADVERTISED_FIBRE |
       
   144 				     ADVERTISED_Autoneg);
       
   145 
       
   146 		ecmd->port = PORT_FIBRE;
       
   147 		ecmd->transceiver = XCVR_EXTERNAL;
       
   148 	}
       
   149 
       
   150 	status = er32(STATUS);
       
   151 	if (status & E1000_STATUS_LU) {
       
   152 		if (status & E1000_STATUS_SPEED_1000)
       
   153 			ecmd->speed = 1000;
       
   154 		else if (status & E1000_STATUS_SPEED_100)
       
   155 			ecmd->speed = 100;
       
   156 		else
       
   157 			ecmd->speed = 10;
       
   158 
       
   159 		if (status & E1000_STATUS_FD)
       
   160 			ecmd->duplex = DUPLEX_FULL;
       
   161 		else
       
   162 			ecmd->duplex = DUPLEX_HALF;
       
   163 	} else {
       
   164 		ecmd->speed = -1;
       
   165 		ecmd->duplex = -1;
       
   166 	}
       
   167 
       
   168 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
       
   169 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
       
   170 
       
   171 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
       
   172 	if ((hw->phy.media_type == e1000_media_type_copper) &&
       
   173 	    !hw->mac.get_link_status)
       
   174 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
       
   175 		                                      ETH_TP_MDI;
       
   176 	else
       
   177 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
       
   178 
       
   179 	return 0;
       
   180 }
       
   181 
       
   182 static u32 e1000_get_link(struct net_device *netdev)
       
   183 {
       
   184 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   185 
       
   186 	return e1000_has_link(adapter);
       
   187 }
       
   188 
       
   189 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
       
   190 {
       
   191 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
   192 
       
   193 	mac->autoneg = 0;
       
   194 
       
   195 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
   196 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
       
   197 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
       
   198 		e_err("Unsupported Speed/Duplex configuration\n");
       
   199 		return -EINVAL;
       
   200 	}
       
   201 
       
   202 	switch (spddplx) {
       
   203 	case SPEED_10 + DUPLEX_HALF:
       
   204 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
       
   205 		break;
       
   206 	case SPEED_10 + DUPLEX_FULL:
       
   207 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
       
   208 		break;
       
   209 	case SPEED_100 + DUPLEX_HALF:
       
   210 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
       
   211 		break;
       
   212 	case SPEED_100 + DUPLEX_FULL:
       
   213 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
       
   214 		break;
       
   215 	case SPEED_1000 + DUPLEX_FULL:
       
   216 		mac->autoneg = 1;
       
   217 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
       
   218 		break;
       
   219 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
   220 	default:
       
   221 		e_err("Unsupported Speed/Duplex configuration\n");
       
   222 		return -EINVAL;
       
   223 	}
       
   224 	return 0;
       
   225 }
       
   226 
       
   227 static int e1000_set_settings(struct net_device *netdev,
       
   228 			      struct ethtool_cmd *ecmd)
       
   229 {
       
   230 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   231 	struct e1000_hw *hw = &adapter->hw;
       
   232 
       
   233 	/*
       
   234 	 * When SoL/IDER sessions are active, autoneg/speed/duplex
       
   235 	 * cannot be changed
       
   236 	 */
       
   237 	if (e1000_check_reset_block(hw)) {
       
   238 		e_err("Cannot change link characteristics when SoL/IDER is "
       
   239 		      "active.\n");
       
   240 		return -EINVAL;
       
   241 	}
       
   242 
       
   243 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   244 		msleep(1);
       
   245 
       
   246 	if (ecmd->autoneg == AUTONEG_ENABLE) {
       
   247 		hw->mac.autoneg = 1;
       
   248 		if (hw->phy.media_type == e1000_media_type_fiber)
       
   249 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
       
   250 						     ADVERTISED_FIBRE |
       
   251 						     ADVERTISED_Autoneg;
       
   252 		else
       
   253 			hw->phy.autoneg_advertised = ecmd->advertising |
       
   254 						     ADVERTISED_TP |
       
   255 						     ADVERTISED_Autoneg;
       
   256 		ecmd->advertising = hw->phy.autoneg_advertised;
       
   257 		if (adapter->fc_autoneg)
       
   258 			hw->fc.requested_mode = e1000_fc_default;
       
   259 	} else {
       
   260 		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
       
   261 			clear_bit(__E1000_RESETTING, &adapter->state);
       
   262 			return -EINVAL;
       
   263 		}
       
   264 	}
       
   265 
       
   266 	/* reset the link */
       
   267 
       
   268 	if (netif_running(adapter->netdev)) {
       
   269 		e1000e_down(adapter);
       
   270 		e1000e_up(adapter);
       
   271 	} else {
       
   272 		e1000e_reset(adapter);
       
   273 	}
       
   274 
       
   275 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   276 	return 0;
       
   277 }
       
   278 
       
   279 static void e1000_get_pauseparam(struct net_device *netdev,
       
   280 				 struct ethtool_pauseparam *pause)
       
   281 {
       
   282 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   283 	struct e1000_hw *hw = &adapter->hw;
       
   284 
       
   285 	pause->autoneg =
       
   286 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
       
   287 
       
   288 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
       
   289 		pause->rx_pause = 1;
       
   290 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
       
   291 		pause->tx_pause = 1;
       
   292 	} else if (hw->fc.current_mode == e1000_fc_full) {
       
   293 		pause->rx_pause = 1;
       
   294 		pause->tx_pause = 1;
       
   295 	}
       
   296 }
       
   297 
       
   298 static int e1000_set_pauseparam(struct net_device *netdev,
       
   299 				struct ethtool_pauseparam *pause)
       
   300 {
       
   301 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   302 	struct e1000_hw *hw = &adapter->hw;
       
   303 	int retval = 0;
       
   304 
       
   305 	adapter->fc_autoneg = pause->autoneg;
       
   306 
       
   307 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   308 		msleep(1);
       
   309 
       
   310 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
       
   311 		hw->fc.requested_mode = e1000_fc_default;
       
   312 		if (netif_running(adapter->netdev)) {
       
   313 			e1000e_down(adapter);
       
   314 			e1000e_up(adapter);
       
   315 		} else {
       
   316 			e1000e_reset(adapter);
       
   317 		}
       
   318 	} else {
       
   319 		if (pause->rx_pause && pause->tx_pause)
       
   320 			hw->fc.requested_mode = e1000_fc_full;
       
   321 		else if (pause->rx_pause && !pause->tx_pause)
       
   322 			hw->fc.requested_mode = e1000_fc_rx_pause;
       
   323 		else if (!pause->rx_pause && pause->tx_pause)
       
   324 			hw->fc.requested_mode = e1000_fc_tx_pause;
       
   325 		else if (!pause->rx_pause && !pause->tx_pause)
       
   326 			hw->fc.requested_mode = e1000_fc_none;
       
   327 
       
   328 		hw->fc.current_mode = hw->fc.requested_mode;
       
   329 
       
   330 		if (hw->phy.media_type == e1000_media_type_fiber) {
       
   331 			retval = hw->mac.ops.setup_link(hw);
       
   332 			/* implicit goto out */
       
   333 		} else {
       
   334 			retval = e1000e_force_mac_fc(hw);
       
   335 			if (retval)
       
   336 				goto out;
       
   337 			e1000e_set_fc_watermarks(hw);
       
   338 		}
       
   339 	}
       
   340 
       
   341 out:
       
   342 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   343 	return retval;
       
   344 }
       
   345 
       
   346 static u32 e1000_get_rx_csum(struct net_device *netdev)
       
   347 {
       
   348 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   349 	return (adapter->flags & FLAG_RX_CSUM_ENABLED);
       
   350 }
       
   351 
       
   352 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
       
   353 {
       
   354 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   355 
       
   356 	if (data)
       
   357 		adapter->flags |= FLAG_RX_CSUM_ENABLED;
       
   358 	else
       
   359 		adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
       
   360 
       
   361 	if (netif_running(netdev))
       
   362 		e1000e_reinit_locked(adapter);
       
   363 	else
       
   364 		e1000e_reset(adapter);
       
   365 	return 0;
       
   366 }
       
   367 
       
   368 static u32 e1000_get_tx_csum(struct net_device *netdev)
       
   369 {
       
   370 	return ((netdev->features & NETIF_F_HW_CSUM) != 0);
       
   371 }
       
   372 
       
   373 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
       
   374 {
       
   375 	if (data)
       
   376 		netdev->features |= NETIF_F_HW_CSUM;
       
   377 	else
       
   378 		netdev->features &= ~NETIF_F_HW_CSUM;
       
   379 
       
   380 	return 0;
       
   381 }
       
   382 
       
   383 static int e1000_set_tso(struct net_device *netdev, u32 data)
       
   384 {
       
   385 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   386 
       
   387 	if (data) {
       
   388 		netdev->features |= NETIF_F_TSO;
       
   389 		netdev->features |= NETIF_F_TSO6;
       
   390 	} else {
       
   391 		netdev->features &= ~NETIF_F_TSO;
       
   392 		netdev->features &= ~NETIF_F_TSO6;
       
   393 	}
       
   394 
       
   395 	e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
       
   396 	adapter->flags |= FLAG_TSO_FORCE;
       
   397 	return 0;
       
   398 }
       
   399 
       
   400 static u32 e1000_get_msglevel(struct net_device *netdev)
       
   401 {
       
   402 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   403 	return adapter->msg_enable;
       
   404 }
       
   405 
       
   406 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
       
   407 {
       
   408 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   409 	adapter->msg_enable = data;
       
   410 }
       
   411 
       
   412 static int e1000_get_regs_len(struct net_device *netdev)
       
   413 {
       
   414 #define E1000_REGS_LEN 32 /* overestimate */
       
   415 	return E1000_REGS_LEN * sizeof(u32);
       
   416 }
       
   417 
       
   418 static void e1000_get_regs(struct net_device *netdev,
       
   419 			   struct ethtool_regs *regs, void *p)
       
   420 {
       
   421 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   422 	struct e1000_hw *hw = &adapter->hw;
       
   423 	u32 *regs_buff = p;
       
   424 	u16 phy_data;
       
   425 	u8 revision_id;
       
   426 
       
   427 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
       
   428 
       
   429 	pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
       
   430 
       
   431 	regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
       
   432 
       
   433 	regs_buff[0]  = er32(CTRL);
       
   434 	regs_buff[1]  = er32(STATUS);
       
   435 
       
   436 	regs_buff[2]  = er32(RCTL);
       
   437 	regs_buff[3]  = er32(RDLEN);
       
   438 	regs_buff[4]  = er32(RDH);
       
   439 	regs_buff[5]  = er32(RDT);
       
   440 	regs_buff[6]  = er32(RDTR);
       
   441 
       
   442 	regs_buff[7]  = er32(TCTL);
       
   443 	regs_buff[8]  = er32(TDLEN);
       
   444 	regs_buff[9]  = er32(TDH);
       
   445 	regs_buff[10] = er32(TDT);
       
   446 	regs_buff[11] = er32(TIDV);
       
   447 
       
   448 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
       
   449 
       
   450 	/* ethtool doesn't use anything past this point, so all this
       
   451 	 * code is likely legacy junk for apps that may or may not
       
   452 	 * exist */
       
   453 	if (hw->phy.type == e1000_phy_m88) {
       
   454 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
   455 		regs_buff[13] = (u32)phy_data; /* cable length */
       
   456 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   457 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   458 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   459 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   460 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
       
   461 		regs_buff[18] = regs_buff[13]; /* cable polarity */
       
   462 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   463 		regs_buff[20] = regs_buff[17]; /* polarity correction */
       
   464 		/* phy receive errors */
       
   465 		regs_buff[22] = adapter->phy_stats.receive_errors;
       
   466 		regs_buff[23] = regs_buff[13]; /* mdix mode */
       
   467 	}
       
   468 	regs_buff[21] = 0; /* was idle_errors */
       
   469 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
       
   470 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
       
   471 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
       
   472 }
       
   473 
       
   474 static int e1000_get_eeprom_len(struct net_device *netdev)
       
   475 {
       
   476 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   477 	return adapter->hw.nvm.word_size * 2;
       
   478 }
       
   479 
       
   480 static int e1000_get_eeprom(struct net_device *netdev,
       
   481 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   482 {
       
   483 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   484 	struct e1000_hw *hw = &adapter->hw;
       
   485 	u16 *eeprom_buff;
       
   486 	int first_word;
       
   487 	int last_word;
       
   488 	int ret_val = 0;
       
   489 	u16 i;
       
   490 
       
   491 	if (eeprom->len == 0)
       
   492 		return -EINVAL;
       
   493 
       
   494 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
       
   495 
       
   496 	first_word = eeprom->offset >> 1;
       
   497 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   498 
       
   499 	eeprom_buff = kmalloc(sizeof(u16) *
       
   500 			(last_word - first_word + 1), GFP_KERNEL);
       
   501 	if (!eeprom_buff)
       
   502 		return -ENOMEM;
       
   503 
       
   504 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
       
   505 		ret_val = e1000_read_nvm(hw, first_word,
       
   506 					 last_word - first_word + 1,
       
   507 					 eeprom_buff);
       
   508 	} else {
       
   509 		for (i = 0; i < last_word - first_word + 1; i++) {
       
   510 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
       
   511 						      &eeprom_buff[i]);
       
   512 			if (ret_val)
       
   513 				break;
       
   514 		}
       
   515 	}
       
   516 
       
   517 	if (ret_val) {
       
   518 		/* a read error occurred, throw away the result */
       
   519 		memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
       
   520 	} else {
       
   521 		/* Device's eeprom is always little-endian, word addressable */
       
   522 		for (i = 0; i < last_word - first_word + 1; i++)
       
   523 			le16_to_cpus(&eeprom_buff[i]);
       
   524 	}
       
   525 
       
   526 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
       
   527 	kfree(eeprom_buff);
       
   528 
       
   529 	return ret_val;
       
   530 }
       
   531 
       
   532 static int e1000_set_eeprom(struct net_device *netdev,
       
   533 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   534 {
       
   535 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   536 	struct e1000_hw *hw = &adapter->hw;
       
   537 	u16 *eeprom_buff;
       
   538 	void *ptr;
       
   539 	int max_len;
       
   540 	int first_word;
       
   541 	int last_word;
       
   542 	int ret_val = 0;
       
   543 	u16 i;
       
   544 
       
   545 	if (eeprom->len == 0)
       
   546 		return -EOPNOTSUPP;
       
   547 
       
   548 	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
       
   549 		return -EFAULT;
       
   550 
       
   551 	if (adapter->flags & FLAG_READ_ONLY_NVM)
       
   552 		return -EINVAL;
       
   553 
       
   554 	max_len = hw->nvm.word_size * 2;
       
   555 
       
   556 	first_word = eeprom->offset >> 1;
       
   557 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   558 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
       
   559 	if (!eeprom_buff)
       
   560 		return -ENOMEM;
       
   561 
       
   562 	ptr = (void *)eeprom_buff;
       
   563 
       
   564 	if (eeprom->offset & 1) {
       
   565 		/* need read/modify/write of first changed EEPROM word */
       
   566 		/* only the second byte of the word is being modified */
       
   567 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
       
   568 		ptr++;
       
   569 	}
       
   570 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
       
   571 		/* need read/modify/write of last changed EEPROM word */
       
   572 		/* only the first byte of the word is being modified */
       
   573 		ret_val = e1000_read_nvm(hw, last_word, 1,
       
   574 				  &eeprom_buff[last_word - first_word]);
       
   575 
       
   576 	if (ret_val)
       
   577 		goto out;
       
   578 
       
   579 	/* Device's eeprom is always little-endian, word addressable */
       
   580 	for (i = 0; i < last_word - first_word + 1; i++)
       
   581 		le16_to_cpus(&eeprom_buff[i]);
       
   582 
       
   583 	memcpy(ptr, bytes, eeprom->len);
       
   584 
       
   585 	for (i = 0; i < last_word - first_word + 1; i++)
       
   586 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
       
   587 
       
   588 	ret_val = e1000_write_nvm(hw, first_word,
       
   589 				  last_word - first_word + 1, eeprom_buff);
       
   590 
       
   591 	if (ret_val)
       
   592 		goto out;
       
   593 
       
   594 	/*
       
   595 	 * Update the checksum over the first part of the EEPROM if needed
       
   596 	 * and flush shadow RAM for applicable controllers
       
   597 	 */
       
   598 	if ((first_word <= NVM_CHECKSUM_REG) ||
       
   599 	    (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573))
       
   600 		ret_val = e1000e_update_nvm_checksum(hw);
       
   601 
       
   602 out:
       
   603 	kfree(eeprom_buff);
       
   604 	return ret_val;
       
   605 }
       
   606 
       
   607 static void e1000_get_drvinfo(struct net_device *netdev,
       
   608 			      struct ethtool_drvinfo *drvinfo)
       
   609 {
       
   610 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   611 	char firmware_version[32];
       
   612 
       
   613 	strncpy(drvinfo->driver,  e1000e_driver_name, 32);
       
   614 	strncpy(drvinfo->version, e1000e_driver_version, 32);
       
   615 
       
   616 	/*
       
   617 	 * EEPROM image version # is reported as firmware version # for
       
   618 	 * PCI-E controllers
       
   619 	 */
       
   620 	sprintf(firmware_version, "%d.%d-%d",
       
   621 		(adapter->eeprom_vers & 0xF000) >> 12,
       
   622 		(adapter->eeprom_vers & 0x0FF0) >> 4,
       
   623 		(adapter->eeprom_vers & 0x000F));
       
   624 
       
   625 	strncpy(drvinfo->fw_version, firmware_version, 32);
       
   626 	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
       
   627 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
       
   628 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
       
   629 }
       
   630 
       
   631 static void e1000_get_ringparam(struct net_device *netdev,
       
   632 				struct ethtool_ringparam *ring)
       
   633 {
       
   634 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   635 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
   636 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   637 
       
   638 	ring->rx_max_pending = E1000_MAX_RXD;
       
   639 	ring->tx_max_pending = E1000_MAX_TXD;
       
   640 	ring->rx_mini_max_pending = 0;
       
   641 	ring->rx_jumbo_max_pending = 0;
       
   642 	ring->rx_pending = rx_ring->count;
       
   643 	ring->tx_pending = tx_ring->count;
       
   644 	ring->rx_mini_pending = 0;
       
   645 	ring->rx_jumbo_pending = 0;
       
   646 }
       
   647 
       
   648 static int e1000_set_ringparam(struct net_device *netdev,
       
   649 			       struct ethtool_ringparam *ring)
       
   650 {
       
   651 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   652 	struct e1000_ring *tx_ring, *tx_old;
       
   653 	struct e1000_ring *rx_ring, *rx_old;
       
   654 	int err;
       
   655 
       
   656 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
   657 		return -EINVAL;
       
   658 
       
   659 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   660 		msleep(1);
       
   661 
       
   662 	if (netif_running(adapter->netdev))
       
   663 		e1000e_down(adapter);
       
   664 
       
   665 	tx_old = adapter->tx_ring;
       
   666 	rx_old = adapter->rx_ring;
       
   667 
       
   668 	err = -ENOMEM;
       
   669 	tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
       
   670 	if (!tx_ring)
       
   671 		goto err_alloc_tx;
       
   672 	/*
       
   673 	 * use a memcpy to save any previously configured
       
   674 	 * items like napi structs from having to be
       
   675 	 * reinitialized
       
   676 	 */
       
   677 	memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
       
   678 
       
   679 	rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
       
   680 	if (!rx_ring)
       
   681 		goto err_alloc_rx;
       
   682 	memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
       
   683 
       
   684 	adapter->tx_ring = tx_ring;
       
   685 	adapter->rx_ring = rx_ring;
       
   686 
       
   687 	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
       
   688 	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
       
   689 	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
       
   690 
       
   691 	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
       
   692 	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
       
   693 	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
       
   694 
       
   695 	if (netif_running(adapter->netdev)) {
       
   696 		/* Try to get new resources before deleting old */
       
   697 		err = e1000e_setup_rx_resources(adapter);
       
   698 		if (err)
       
   699 			goto err_setup_rx;
       
   700 		err = e1000e_setup_tx_resources(adapter);
       
   701 		if (err)
       
   702 			goto err_setup_tx;
       
   703 
       
   704 		/*
       
   705 		 * restore the old in order to free it,
       
   706 		 * then add in the new
       
   707 		 */
       
   708 		adapter->rx_ring = rx_old;
       
   709 		adapter->tx_ring = tx_old;
       
   710 		e1000e_free_rx_resources(adapter);
       
   711 		e1000e_free_tx_resources(adapter);
       
   712 		kfree(tx_old);
       
   713 		kfree(rx_old);
       
   714 		adapter->rx_ring = rx_ring;
       
   715 		adapter->tx_ring = tx_ring;
       
   716 		err = e1000e_up(adapter);
       
   717 		if (err)
       
   718 			goto err_setup;
       
   719 	}
       
   720 
       
   721 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   722 	return 0;
       
   723 err_setup_tx:
       
   724 	e1000e_free_rx_resources(adapter);
       
   725 err_setup_rx:
       
   726 	adapter->rx_ring = rx_old;
       
   727 	adapter->tx_ring = tx_old;
       
   728 	kfree(rx_ring);
       
   729 err_alloc_rx:
       
   730 	kfree(tx_ring);
       
   731 err_alloc_tx:
       
   732 	e1000e_up(adapter);
       
   733 err_setup:
       
   734 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   735 	return err;
       
   736 }
       
   737 
       
   738 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
       
   739 			     int reg, int offset, u32 mask, u32 write)
       
   740 {
       
   741 	u32 pat, val;
       
   742 	static const u32 test[] =
       
   743 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
       
   744 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
       
   745 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
       
   746 				      (test[pat] & write));
       
   747 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
       
   748 		if (val != (test[pat] & write & mask)) {
       
   749 			e_err("pattern test reg %04X failed: got 0x%08X "
       
   750 			      "expected 0x%08X\n", reg + offset, val,
       
   751 			      (test[pat] & write & mask));
       
   752 			*data = reg;
       
   753 			return 1;
       
   754 		}
       
   755 	}
       
   756 	return 0;
       
   757 }
       
   758 
       
   759 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
       
   760 			      int reg, u32 mask, u32 write)
       
   761 {
       
   762 	u32 val;
       
   763 	__ew32(&adapter->hw, reg, write & mask);
       
   764 	val = __er32(&adapter->hw, reg);
       
   765 	if ((write & mask) != (val & mask)) {
       
   766 		e_err("set/check reg %04X test failed: got 0x%08X "
       
   767 		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
       
   768 		*data = reg;
       
   769 		return 1;
       
   770 	}
       
   771 	return 0;
       
   772 }
       
   773 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
       
   774 	do {                                                                   \
       
   775 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
       
   776 			return 1;                                              \
       
   777 	} while (0)
       
   778 #define REG_PATTERN_TEST(reg, mask, write)                                     \
       
   779 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
       
   780 
       
   781 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
       
   782 	do {                                                                   \
       
   783 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
       
   784 			return 1;                                              \
       
   785 	} while (0)
       
   786 
       
   787 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
       
   788 {
       
   789 	struct e1000_hw *hw = &adapter->hw;
       
   790 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
   791 	u32 value;
       
   792 	u32 before;
       
   793 	u32 after;
       
   794 	u32 i;
       
   795 	u32 toggle;
       
   796 	u32 mask;
       
   797 
       
   798 	/*
       
   799 	 * The status register is Read Only, so a write should fail.
       
   800 	 * Some bits that get toggled are ignored.
       
   801 	 */
       
   802 	switch (mac->type) {
       
   803 	/* there are several bits on newer hardware that are r/w */
       
   804 	case e1000_82571:
       
   805 	case e1000_82572:
       
   806 	case e1000_80003es2lan:
       
   807 		toggle = 0x7FFFF3FF;
       
   808 		break;
       
   809         default:
       
   810 		toggle = 0x7FFFF033;
       
   811 		break;
       
   812 	}
       
   813 
       
   814 	before = er32(STATUS);
       
   815 	value = (er32(STATUS) & toggle);
       
   816 	ew32(STATUS, toggle);
       
   817 	after = er32(STATUS) & toggle;
       
   818 	if (value != after) {
       
   819 		e_err("failed STATUS register test got: 0x%08X expected: "
       
   820 		      "0x%08X\n", after, value);
       
   821 		*data = 1;
       
   822 		return 1;
       
   823 	}
       
   824 	/* restore previous status */
       
   825 	ew32(STATUS, before);
       
   826 
       
   827 	if (!(adapter->flags & FLAG_IS_ICH)) {
       
   828 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
       
   829 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
       
   830 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
       
   831 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
       
   832 	}
       
   833 
       
   834 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
       
   835 	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   836 	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
       
   837 	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
       
   838 	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
       
   839 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
       
   840 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
       
   841 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
       
   842 	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   843 	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
       
   844 
       
   845 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
       
   846 
       
   847 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
       
   848 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
       
   849 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
       
   850 
       
   851 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
       
   852 	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   853 	if (!(adapter->flags & FLAG_IS_ICH))
       
   854 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
       
   855 	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   856 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
       
   857 	mask = 0x8003FFFF;
       
   858 	switch (mac->type) {
       
   859 	case e1000_ich10lan:
       
   860 	case e1000_pchlan:
       
   861 		mask |= (1 << 18);
       
   862 		break;
       
   863 	default:
       
   864 		break;
       
   865 	}
       
   866 	for (i = 0; i < mac->rar_entry_count; i++)
       
   867 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
       
   868 		                       mask, 0xFFFFFFFF);
       
   869 
       
   870 	for (i = 0; i < mac->mta_reg_count; i++)
       
   871 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
       
   872 
       
   873 	*data = 0;
       
   874 	return 0;
       
   875 }
       
   876 
       
   877 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
       
   878 {
       
   879 	u16 temp;
       
   880 	u16 checksum = 0;
       
   881 	u16 i;
       
   882 
       
   883 	*data = 0;
       
   884 	/* Read and add up the contents of the EEPROM */
       
   885 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
       
   886 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
       
   887 			*data = 1;
       
   888 			return *data;
       
   889 		}
       
   890 		checksum += temp;
       
   891 	}
       
   892 
       
   893 	/* If Checksum is not Correct return error else test passed */
       
   894 	if ((checksum != (u16) NVM_SUM) && !(*data))
       
   895 		*data = 2;
       
   896 
       
   897 	return *data;
       
   898 }
       
   899 
       
   900 static irqreturn_t e1000_test_intr(int irq, void *data)
       
   901 {
       
   902 	struct net_device *netdev = (struct net_device *) data;
       
   903 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   904 	struct e1000_hw *hw = &adapter->hw;
       
   905 
       
   906 	adapter->test_icr |= er32(ICR);
       
   907 
       
   908 	return IRQ_HANDLED;
       
   909 }
       
   910 
       
   911 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
       
   912 {
       
   913 	struct net_device *netdev = adapter->netdev;
       
   914 	struct e1000_hw *hw = &adapter->hw;
       
   915 	u32 mask;
       
   916 	u32 shared_int = 1;
       
   917 	u32 irq = adapter->pdev->irq;
       
   918 	int i;
       
   919 	int ret_val = 0;
       
   920 	int int_mode = E1000E_INT_MODE_LEGACY;
       
   921 
       
   922 	*data = 0;
       
   923 
       
   924 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
       
   925 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
       
   926 		int_mode = adapter->int_mode;
       
   927 		e1000e_reset_interrupt_capability(adapter);
       
   928 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
   929 		e1000e_set_interrupt_capability(adapter);
       
   930 	}
       
   931 	/* Hook up test interrupt handler just for this test */
       
   932 	if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
       
   933 			 netdev)) {
       
   934 		shared_int = 0;
       
   935 	} else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
       
   936 		 netdev->name, netdev)) {
       
   937 		*data = 1;
       
   938 		ret_val = -1;
       
   939 		goto out;
       
   940 	}
       
   941 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
       
   942 
       
   943 	/* Disable all the interrupts */
       
   944 	ew32(IMC, 0xFFFFFFFF);
       
   945 	msleep(10);
       
   946 
       
   947 	/* Test each interrupt */
       
   948 	for (i = 0; i < 10; i++) {
       
   949 		/* Interrupt to test */
       
   950 		mask = 1 << i;
       
   951 
       
   952 		if (adapter->flags & FLAG_IS_ICH) {
       
   953 			switch (mask) {
       
   954 			case E1000_ICR_RXSEQ:
       
   955 				continue;
       
   956 			case 0x00000100:
       
   957 				if (adapter->hw.mac.type == e1000_ich8lan ||
       
   958 				    adapter->hw.mac.type == e1000_ich9lan)
       
   959 					continue;
       
   960 				break;
       
   961 			default:
       
   962 				break;
       
   963 			}
       
   964 		}
       
   965 
       
   966 		if (!shared_int) {
       
   967 			/*
       
   968 			 * Disable the interrupt to be reported in
       
   969 			 * the cause register and then force the same
       
   970 			 * interrupt and see if one gets posted.  If
       
   971 			 * an interrupt was posted to the bus, the
       
   972 			 * test failed.
       
   973 			 */
       
   974 			adapter->test_icr = 0;
       
   975 			ew32(IMC, mask);
       
   976 			ew32(ICS, mask);
       
   977 			msleep(10);
       
   978 
       
   979 			if (adapter->test_icr & mask) {
       
   980 				*data = 3;
       
   981 				break;
       
   982 			}
       
   983 		}
       
   984 
       
   985 		/*
       
   986 		 * Enable the interrupt to be reported in
       
   987 		 * the cause register and then force the same
       
   988 		 * interrupt and see if one gets posted.  If
       
   989 		 * an interrupt was not posted to the bus, the
       
   990 		 * test failed.
       
   991 		 */
       
   992 		adapter->test_icr = 0;
       
   993 		ew32(IMS, mask);
       
   994 		ew32(ICS, mask);
       
   995 		msleep(10);
       
   996 
       
   997 		if (!(adapter->test_icr & mask)) {
       
   998 			*data = 4;
       
   999 			break;
       
  1000 		}
       
  1001 
       
  1002 		if (!shared_int) {
       
  1003 			/*
       
  1004 			 * Disable the other interrupts to be reported in
       
  1005 			 * the cause register and then force the other
       
  1006 			 * interrupts and see if any get posted.  If
       
  1007 			 * an interrupt was posted to the bus, the
       
  1008 			 * test failed.
       
  1009 			 */
       
  1010 			adapter->test_icr = 0;
       
  1011 			ew32(IMC, ~mask & 0x00007FFF);
       
  1012 			ew32(ICS, ~mask & 0x00007FFF);
       
  1013 			msleep(10);
       
  1014 
       
  1015 			if (adapter->test_icr) {
       
  1016 				*data = 5;
       
  1017 				break;
       
  1018 			}
       
  1019 		}
       
  1020 	}
       
  1021 
       
  1022 	/* Disable all the interrupts */
       
  1023 	ew32(IMC, 0xFFFFFFFF);
       
  1024 	msleep(10);
       
  1025 
       
  1026 	/* Unhook test interrupt handler */
       
  1027 	free_irq(irq, netdev);
       
  1028 
       
  1029 out:
       
  1030 	if (int_mode == E1000E_INT_MODE_MSIX) {
       
  1031 		e1000e_reset_interrupt_capability(adapter);
       
  1032 		adapter->int_mode = int_mode;
       
  1033 		e1000e_set_interrupt_capability(adapter);
       
  1034 	}
       
  1035 
       
  1036 	return ret_val;
       
  1037 }
       
  1038 
       
  1039 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
       
  1040 {
       
  1041 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1042 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1043 	struct pci_dev *pdev = adapter->pdev;
       
  1044 	int i;
       
  1045 
       
  1046 	if (tx_ring->desc && tx_ring->buffer_info) {
       
  1047 		for (i = 0; i < tx_ring->count; i++) {
       
  1048 			if (tx_ring->buffer_info[i].dma)
       
  1049 				pci_unmap_single(pdev,
       
  1050 					tx_ring->buffer_info[i].dma,
       
  1051 					tx_ring->buffer_info[i].length,
       
  1052 					PCI_DMA_TODEVICE);
       
  1053 			if (tx_ring->buffer_info[i].skb)
       
  1054 				dev_kfree_skb(tx_ring->buffer_info[i].skb);
       
  1055 		}
       
  1056 	}
       
  1057 
       
  1058 	if (rx_ring->desc && rx_ring->buffer_info) {
       
  1059 		for (i = 0; i < rx_ring->count; i++) {
       
  1060 			if (rx_ring->buffer_info[i].dma)
       
  1061 				pci_unmap_single(pdev,
       
  1062 					rx_ring->buffer_info[i].dma,
       
  1063 					2048, PCI_DMA_FROMDEVICE);
       
  1064 			if (rx_ring->buffer_info[i].skb)
       
  1065 				dev_kfree_skb(rx_ring->buffer_info[i].skb);
       
  1066 		}
       
  1067 	}
       
  1068 
       
  1069 	if (tx_ring->desc) {
       
  1070 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
       
  1071 				  tx_ring->dma);
       
  1072 		tx_ring->desc = NULL;
       
  1073 	}
       
  1074 	if (rx_ring->desc) {
       
  1075 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
       
  1076 				  rx_ring->dma);
       
  1077 		rx_ring->desc = NULL;
       
  1078 	}
       
  1079 
       
  1080 	kfree(tx_ring->buffer_info);
       
  1081 	tx_ring->buffer_info = NULL;
       
  1082 	kfree(rx_ring->buffer_info);
       
  1083 	rx_ring->buffer_info = NULL;
       
  1084 }
       
  1085 
       
  1086 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
       
  1087 {
       
  1088 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1089 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1090 	struct pci_dev *pdev = adapter->pdev;
       
  1091 	struct e1000_hw *hw = &adapter->hw;
       
  1092 	u32 rctl;
       
  1093 	int i;
       
  1094 	int ret_val;
       
  1095 
       
  1096 	/* Setup Tx descriptor ring and Tx buffers */
       
  1097 
       
  1098 	if (!tx_ring->count)
       
  1099 		tx_ring->count = E1000_DEFAULT_TXD;
       
  1100 
       
  1101 	tx_ring->buffer_info = kcalloc(tx_ring->count,
       
  1102 				       sizeof(struct e1000_buffer),
       
  1103 				       GFP_KERNEL);
       
  1104 	if (!(tx_ring->buffer_info)) {
       
  1105 		ret_val = 1;
       
  1106 		goto err_nomem;
       
  1107 	}
       
  1108 
       
  1109 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  1110 	tx_ring->size = ALIGN(tx_ring->size, 4096);
       
  1111 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
       
  1112 					   &tx_ring->dma, GFP_KERNEL);
       
  1113 	if (!tx_ring->desc) {
       
  1114 		ret_val = 2;
       
  1115 		goto err_nomem;
       
  1116 	}
       
  1117 	tx_ring->next_to_use = 0;
       
  1118 	tx_ring->next_to_clean = 0;
       
  1119 
       
  1120 	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
       
  1121 	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
       
  1122 	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
       
  1123 	ew32(TDH, 0);
       
  1124 	ew32(TDT, 0);
       
  1125 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
       
  1126 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
       
  1127 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
       
  1128 
       
  1129 	for (i = 0; i < tx_ring->count; i++) {
       
  1130 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  1131 		struct sk_buff *skb;
       
  1132 		unsigned int skb_size = 1024;
       
  1133 
       
  1134 		skb = alloc_skb(skb_size, GFP_KERNEL);
       
  1135 		if (!skb) {
       
  1136 			ret_val = 3;
       
  1137 			goto err_nomem;
       
  1138 		}
       
  1139 		skb_put(skb, skb_size);
       
  1140 		tx_ring->buffer_info[i].skb = skb;
       
  1141 		tx_ring->buffer_info[i].length = skb->len;
       
  1142 		tx_ring->buffer_info[i].dma =
       
  1143 			pci_map_single(pdev, skb->data, skb->len,
       
  1144 				       PCI_DMA_TODEVICE);
       
  1145 		if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
       
  1146 			ret_val = 4;
       
  1147 			goto err_nomem;
       
  1148 		}
       
  1149 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
       
  1150 		tx_desc->lower.data = cpu_to_le32(skb->len);
       
  1151 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
       
  1152 						   E1000_TXD_CMD_IFCS |
       
  1153 						   E1000_TXD_CMD_RS);
       
  1154 		tx_desc->upper.data = 0;
       
  1155 	}
       
  1156 
       
  1157 	/* Setup Rx descriptor ring and Rx buffers */
       
  1158 
       
  1159 	if (!rx_ring->count)
       
  1160 		rx_ring->count = E1000_DEFAULT_RXD;
       
  1161 
       
  1162 	rx_ring->buffer_info = kcalloc(rx_ring->count,
       
  1163 				       sizeof(struct e1000_buffer),
       
  1164 				       GFP_KERNEL);
       
  1165 	if (!(rx_ring->buffer_info)) {
       
  1166 		ret_val = 5;
       
  1167 		goto err_nomem;
       
  1168 	}
       
  1169 
       
  1170 	rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
       
  1171 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
       
  1172 					   &rx_ring->dma, GFP_KERNEL);
       
  1173 	if (!rx_ring->desc) {
       
  1174 		ret_val = 6;
       
  1175 		goto err_nomem;
       
  1176 	}
       
  1177 	rx_ring->next_to_use = 0;
       
  1178 	rx_ring->next_to_clean = 0;
       
  1179 
       
  1180 	rctl = er32(RCTL);
       
  1181 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1182 	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
       
  1183 	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
       
  1184 	ew32(RDLEN, rx_ring->size);
       
  1185 	ew32(RDH, 0);
       
  1186 	ew32(RDT, 0);
       
  1187 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
       
  1188 		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
       
  1189 		E1000_RCTL_SBP | E1000_RCTL_SECRC |
       
  1190 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1191 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1192 	ew32(RCTL, rctl);
       
  1193 
       
  1194 	for (i = 0; i < rx_ring->count; i++) {
       
  1195 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  1196 		struct sk_buff *skb;
       
  1197 
       
  1198 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
       
  1199 		if (!skb) {
       
  1200 			ret_val = 7;
       
  1201 			goto err_nomem;
       
  1202 		}
       
  1203 		skb_reserve(skb, NET_IP_ALIGN);
       
  1204 		rx_ring->buffer_info[i].skb = skb;
       
  1205 		rx_ring->buffer_info[i].dma =
       
  1206 			pci_map_single(pdev, skb->data, 2048,
       
  1207 				       PCI_DMA_FROMDEVICE);
       
  1208 		if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
       
  1209 			ret_val = 8;
       
  1210 			goto err_nomem;
       
  1211 		}
       
  1212 		rx_desc->buffer_addr =
       
  1213 			cpu_to_le64(rx_ring->buffer_info[i].dma);
       
  1214 		memset(skb->data, 0x00, skb->len);
       
  1215 	}
       
  1216 
       
  1217 	return 0;
       
  1218 
       
  1219 err_nomem:
       
  1220 	e1000_free_desc_rings(adapter);
       
  1221 	return ret_val;
       
  1222 }
       
  1223 
       
  1224 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
       
  1225 {
       
  1226 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1227 	e1e_wphy(&adapter->hw, 29, 0x001F);
       
  1228 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
       
  1229 	e1e_wphy(&adapter->hw, 29, 0x001A);
       
  1230 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
       
  1231 }
       
  1232 
       
  1233 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
       
  1234 {
       
  1235 	struct e1000_hw *hw = &adapter->hw;
       
  1236 	u32 ctrl_reg = 0;
       
  1237 	u32 stat_reg = 0;
       
  1238 	u16 phy_reg = 0;
       
  1239 
       
  1240 	hw->mac.autoneg = 0;
       
  1241 
       
  1242 	if (hw->phy.type == e1000_phy_m88) {
       
  1243 		/* Auto-MDI/MDIX Off */
       
  1244 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
       
  1245 		/* reset to update Auto-MDI/MDIX */
       
  1246 		e1e_wphy(hw, PHY_CONTROL, 0x9140);
       
  1247 		/* autoneg off */
       
  1248 		e1e_wphy(hw, PHY_CONTROL, 0x8140);
       
  1249 	} else if (hw->phy.type == e1000_phy_gg82563)
       
  1250 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
       
  1251 
       
  1252 	ctrl_reg = er32(CTRL);
       
  1253 
       
  1254 	switch (hw->phy.type) {
       
  1255 	case e1000_phy_ife:
       
  1256 		/* force 100, set loopback */
       
  1257 		e1e_wphy(hw, PHY_CONTROL, 0x6100);
       
  1258 
       
  1259 		/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1260 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1261 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1262 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1263 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
       
  1264 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1265 		break;
       
  1266 	case e1000_phy_bm:
       
  1267 		/* Set Default MAC Interface speed to 1GB */
       
  1268 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
       
  1269 		phy_reg &= ~0x0007;
       
  1270 		phy_reg |= 0x006;
       
  1271 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
       
  1272 		/* Assert SW reset for above settings to take effect */
       
  1273 		e1000e_commit_phy(hw);
       
  1274 		mdelay(1);
       
  1275 		/* Force Full Duplex */
       
  1276 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
       
  1277 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
       
  1278 		/* Set Link Up (in force link) */
       
  1279 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
       
  1280 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
       
  1281 		/* Force Link */
       
  1282 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
       
  1283 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
       
  1284 		/* Set Early Link Enable */
       
  1285 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
       
  1286 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
       
  1287 		/* fall through */
       
  1288 	default:
       
  1289 		/* force 1000, set loopback */
       
  1290 		e1e_wphy(hw, PHY_CONTROL, 0x4140);
       
  1291 		mdelay(250);
       
  1292 
       
  1293 		/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1294 		ctrl_reg = er32(CTRL);
       
  1295 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1296 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1297 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1298 			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
       
  1299 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1300 
       
  1301 		if (adapter->flags & FLAG_IS_ICH)
       
  1302 			ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
       
  1303 	}
       
  1304 
       
  1305 	if (hw->phy.media_type == e1000_media_type_copper &&
       
  1306 	    hw->phy.type == e1000_phy_m88) {
       
  1307 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
       
  1308 	} else {
       
  1309 		/*
       
  1310 		 * Set the ILOS bit on the fiber Nic if half duplex link is
       
  1311 		 * detected.
       
  1312 		 */
       
  1313 		stat_reg = er32(STATUS);
       
  1314 		if ((stat_reg & E1000_STATUS_FD) == 0)
       
  1315 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
       
  1316 	}
       
  1317 
       
  1318 	ew32(CTRL, ctrl_reg);
       
  1319 
       
  1320 	/*
       
  1321 	 * Disable the receiver on the PHY so when a cable is plugged in, the
       
  1322 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
       
  1323 	 */
       
  1324 	if (hw->phy.type == e1000_phy_m88)
       
  1325 		e1000_phy_disable_receiver(adapter);
       
  1326 
       
  1327 	udelay(500);
       
  1328 
       
  1329 	return 0;
       
  1330 }
       
  1331 
       
  1332 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
       
  1333 {
       
  1334 	struct e1000_hw *hw = &adapter->hw;
       
  1335 	u32 ctrl = er32(CTRL);
       
  1336 	int link = 0;
       
  1337 
       
  1338 	/* special requirements for 82571/82572 fiber adapters */
       
  1339 
       
  1340 	/*
       
  1341 	 * jump through hoops to make sure link is up because serdes
       
  1342 	 * link is hardwired up
       
  1343 	 */
       
  1344 	ctrl |= E1000_CTRL_SLU;
       
  1345 	ew32(CTRL, ctrl);
       
  1346 
       
  1347 	/* disable autoneg */
       
  1348 	ctrl = er32(TXCW);
       
  1349 	ctrl &= ~(1 << 31);
       
  1350 	ew32(TXCW, ctrl);
       
  1351 
       
  1352 	link = (er32(STATUS) & E1000_STATUS_LU);
       
  1353 
       
  1354 	if (!link) {
       
  1355 		/* set invert loss of signal */
       
  1356 		ctrl = er32(CTRL);
       
  1357 		ctrl |= E1000_CTRL_ILOS;
       
  1358 		ew32(CTRL, ctrl);
       
  1359 	}
       
  1360 
       
  1361 	/*
       
  1362 	 * special write to serdes control register to enable SerDes analog
       
  1363 	 * loopback
       
  1364 	 */
       
  1365 #define E1000_SERDES_LB_ON 0x410
       
  1366 	ew32(SCTL, E1000_SERDES_LB_ON);
       
  1367 	msleep(10);
       
  1368 
       
  1369 	return 0;
       
  1370 }
       
  1371 
       
  1372 /* only call this for fiber/serdes connections to es2lan */
       
  1373 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
       
  1374 {
       
  1375 	struct e1000_hw *hw = &adapter->hw;
       
  1376 	u32 ctrlext = er32(CTRL_EXT);
       
  1377 	u32 ctrl = er32(CTRL);
       
  1378 
       
  1379 	/*
       
  1380 	 * save CTRL_EXT to restore later, reuse an empty variable (unused
       
  1381 	 * on mac_type 80003es2lan)
       
  1382 	 */
       
  1383 	adapter->tx_fifo_head = ctrlext;
       
  1384 
       
  1385 	/* clear the serdes mode bits, putting the device into mac loopback */
       
  1386 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
       
  1387 	ew32(CTRL_EXT, ctrlext);
       
  1388 
       
  1389 	/* force speed to 1000/FD, link up */
       
  1390 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1391 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
       
  1392 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
       
  1393 	ew32(CTRL, ctrl);
       
  1394 
       
  1395 	/* set mac loopback */
       
  1396 	ctrl = er32(RCTL);
       
  1397 	ctrl |= E1000_RCTL_LBM_MAC;
       
  1398 	ew32(RCTL, ctrl);
       
  1399 
       
  1400 	/* set testing mode parameters (no need to reset later) */
       
  1401 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
       
  1402 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
       
  1403 	ew32(KMRNCTRLSTA,
       
  1404 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
       
  1405 
       
  1406 	return 0;
       
  1407 }
       
  1408 
       
  1409 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
       
  1410 {
       
  1411 	struct e1000_hw *hw = &adapter->hw;
       
  1412 	u32 rctl;
       
  1413 
       
  1414 	if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1415 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1416 		switch (hw->mac.type) {
       
  1417 		case e1000_80003es2lan:
       
  1418 			return e1000_set_es2lan_mac_loopback(adapter);
       
  1419 			break;
       
  1420 		case e1000_82571:
       
  1421 		case e1000_82572:
       
  1422 			return e1000_set_82571_fiber_loopback(adapter);
       
  1423 			break;
       
  1424 		default:
       
  1425 			rctl = er32(RCTL);
       
  1426 			rctl |= E1000_RCTL_LBM_TCVR;
       
  1427 			ew32(RCTL, rctl);
       
  1428 			return 0;
       
  1429 		}
       
  1430 	} else if (hw->phy.media_type == e1000_media_type_copper) {
       
  1431 		return e1000_integrated_phy_loopback(adapter);
       
  1432 	}
       
  1433 
       
  1434 	return 7;
       
  1435 }
       
  1436 
       
  1437 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
       
  1438 {
       
  1439 	struct e1000_hw *hw = &adapter->hw;
       
  1440 	u32 rctl;
       
  1441 	u16 phy_reg;
       
  1442 
       
  1443 	rctl = er32(RCTL);
       
  1444 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
       
  1445 	ew32(RCTL, rctl);
       
  1446 
       
  1447 	switch (hw->mac.type) {
       
  1448 	case e1000_80003es2lan:
       
  1449 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1450 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1451 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
       
  1452 			ew32(CTRL_EXT, adapter->tx_fifo_head);
       
  1453 			adapter->tx_fifo_head = 0;
       
  1454 		}
       
  1455 		/* fall through */
       
  1456 	case e1000_82571:
       
  1457 	case e1000_82572:
       
  1458 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1459 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1460 #define E1000_SERDES_LB_OFF 0x400
       
  1461 			ew32(SCTL, E1000_SERDES_LB_OFF);
       
  1462 			msleep(10);
       
  1463 			break;
       
  1464 		}
       
  1465 		/* Fall Through */
       
  1466 	default:
       
  1467 		hw->mac.autoneg = 1;
       
  1468 		if (hw->phy.type == e1000_phy_gg82563)
       
  1469 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
       
  1470 		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
       
  1471 		if (phy_reg & MII_CR_LOOPBACK) {
       
  1472 			phy_reg &= ~MII_CR_LOOPBACK;
       
  1473 			e1e_wphy(hw, PHY_CONTROL, phy_reg);
       
  1474 			e1000e_commit_phy(hw);
       
  1475 		}
       
  1476 		break;
       
  1477 	}
       
  1478 }
       
  1479 
       
  1480 static void e1000_create_lbtest_frame(struct sk_buff *skb,
       
  1481 				      unsigned int frame_size)
       
  1482 {
       
  1483 	memset(skb->data, 0xFF, frame_size);
       
  1484 	frame_size &= ~1;
       
  1485 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
       
  1486 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
       
  1487 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
       
  1488 }
       
  1489 
       
  1490 static int e1000_check_lbtest_frame(struct sk_buff *skb,
       
  1491 				    unsigned int frame_size)
       
  1492 {
       
  1493 	frame_size &= ~1;
       
  1494 	if (*(skb->data + 3) == 0xFF)
       
  1495 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
       
  1496 		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
       
  1497 			return 0;
       
  1498 	return 13;
       
  1499 }
       
  1500 
       
  1501 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
       
  1502 {
       
  1503 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1504 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1505 	struct pci_dev *pdev = adapter->pdev;
       
  1506 	struct e1000_hw *hw = &adapter->hw;
       
  1507 	int i, j, k, l;
       
  1508 	int lc;
       
  1509 	int good_cnt;
       
  1510 	int ret_val = 0;
       
  1511 	unsigned long time;
       
  1512 
       
  1513 	ew32(RDT, rx_ring->count - 1);
       
  1514 
       
  1515 	/*
       
  1516 	 * Calculate the loop count based on the largest descriptor ring
       
  1517 	 * The idea is to wrap the largest ring a number of times using 64
       
  1518 	 * send/receive pairs during each loop
       
  1519 	 */
       
  1520 
       
  1521 	if (rx_ring->count <= tx_ring->count)
       
  1522 		lc = ((tx_ring->count / 64) * 2) + 1;
       
  1523 	else
       
  1524 		lc = ((rx_ring->count / 64) * 2) + 1;
       
  1525 
       
  1526 	k = 0;
       
  1527 	l = 0;
       
  1528 	for (j = 0; j <= lc; j++) { /* loop count loop */
       
  1529 		for (i = 0; i < 64; i++) { /* send the packets */
       
  1530 			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
       
  1531 						  1024);
       
  1532 			pci_dma_sync_single_for_device(pdev,
       
  1533 					tx_ring->buffer_info[k].dma,
       
  1534 					tx_ring->buffer_info[k].length,
       
  1535 					PCI_DMA_TODEVICE);
       
  1536 			k++;
       
  1537 			if (k == tx_ring->count)
       
  1538 				k = 0;
       
  1539 		}
       
  1540 		ew32(TDT, k);
       
  1541 		msleep(200);
       
  1542 		time = jiffies; /* set the start time for the receive */
       
  1543 		good_cnt = 0;
       
  1544 		do { /* receive the sent packets */
       
  1545 			pci_dma_sync_single_for_cpu(pdev,
       
  1546 					rx_ring->buffer_info[l].dma, 2048,
       
  1547 					PCI_DMA_FROMDEVICE);
       
  1548 
       
  1549 			ret_val = e1000_check_lbtest_frame(
       
  1550 					rx_ring->buffer_info[l].skb, 1024);
       
  1551 			if (!ret_val)
       
  1552 				good_cnt++;
       
  1553 			l++;
       
  1554 			if (l == rx_ring->count)
       
  1555 				l = 0;
       
  1556 			/*
       
  1557 			 * time + 20 msecs (200 msecs on 2.4) is more than
       
  1558 			 * enough time to complete the receives, if it's
       
  1559 			 * exceeded, break and error off
       
  1560 			 */
       
  1561 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
       
  1562 		if (good_cnt != 64) {
       
  1563 			ret_val = 13; /* ret_val is the same as mis-compare */
       
  1564 			break;
       
  1565 		}
       
  1566 		if (jiffies >= (time + 20)) {
       
  1567 			ret_val = 14; /* error code for time out error */
       
  1568 			break;
       
  1569 		}
       
  1570 	} /* end loop count loop */
       
  1571 	return ret_val;
       
  1572 }
       
  1573 
       
  1574 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
       
  1575 {
       
  1576 	/*
       
  1577 	 * PHY loopback cannot be performed if SoL/IDER
       
  1578 	 * sessions are active
       
  1579 	 */
       
  1580 	if (e1000_check_reset_block(&adapter->hw)) {
       
  1581 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
       
  1582 		*data = 0;
       
  1583 		goto out;
       
  1584 	}
       
  1585 
       
  1586 	*data = e1000_setup_desc_rings(adapter);
       
  1587 	if (*data)
       
  1588 		goto out;
       
  1589 
       
  1590 	*data = e1000_setup_loopback_test(adapter);
       
  1591 	if (*data)
       
  1592 		goto err_loopback;
       
  1593 
       
  1594 	*data = e1000_run_loopback_test(adapter);
       
  1595 	e1000_loopback_cleanup(adapter);
       
  1596 
       
  1597 err_loopback:
       
  1598 	e1000_free_desc_rings(adapter);
       
  1599 out:
       
  1600 	return *data;
       
  1601 }
       
  1602 
       
  1603 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
       
  1604 {
       
  1605 	struct e1000_hw *hw = &adapter->hw;
       
  1606 
       
  1607 	*data = 0;
       
  1608 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1609 		int i = 0;
       
  1610 		hw->mac.serdes_has_link = false;
       
  1611 
       
  1612 		/*
       
  1613 		 * On some blade server designs, link establishment
       
  1614 		 * could take as long as 2-3 minutes
       
  1615 		 */
       
  1616 		do {
       
  1617 			hw->mac.ops.check_for_link(hw);
       
  1618 			if (hw->mac.serdes_has_link)
       
  1619 				return *data;
       
  1620 			msleep(20);
       
  1621 		} while (i++ < 3750);
       
  1622 
       
  1623 		*data = 1;
       
  1624 	} else {
       
  1625 		hw->mac.ops.check_for_link(hw);
       
  1626 		if (hw->mac.autoneg)
       
  1627 			msleep(4000);
       
  1628 
       
  1629 		if (!(er32(STATUS) &
       
  1630 		      E1000_STATUS_LU))
       
  1631 			*data = 1;
       
  1632 	}
       
  1633 	return *data;
       
  1634 }
       
  1635 
       
  1636 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
       
  1637 {
       
  1638 	switch (sset) {
       
  1639 	case ETH_SS_TEST:
       
  1640 		return E1000_TEST_LEN;
       
  1641 	case ETH_SS_STATS:
       
  1642 		return E1000_STATS_LEN;
       
  1643 	default:
       
  1644 		return -EOPNOTSUPP;
       
  1645 	}
       
  1646 }
       
  1647 
       
  1648 static void e1000_diag_test(struct net_device *netdev,
       
  1649 			    struct ethtool_test *eth_test, u64 *data)
       
  1650 {
       
  1651 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1652 	u16 autoneg_advertised;
       
  1653 	u8 forced_speed_duplex;
       
  1654 	u8 autoneg;
       
  1655 	bool if_running = netif_running(netdev);
       
  1656 
       
  1657 	set_bit(__E1000_TESTING, &adapter->state);
       
  1658 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
       
  1659 		/* Offline tests */
       
  1660 
       
  1661 		/* save speed, duplex, autoneg settings */
       
  1662 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
       
  1663 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
       
  1664 		autoneg = adapter->hw.mac.autoneg;
       
  1665 
       
  1666 		e_info("offline testing starting\n");
       
  1667 
       
  1668 		/*
       
  1669 		 * Link test performed before hardware reset so autoneg doesn't
       
  1670 		 * interfere with test result
       
  1671 		 */
       
  1672 		if (e1000_link_test(adapter, &data[4]))
       
  1673 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1674 
       
  1675 		if (if_running)
       
  1676 			/* indicate we're in test mode */
       
  1677 			dev_close(netdev);
       
  1678 		else
       
  1679 			e1000e_reset(adapter);
       
  1680 
       
  1681 		if (e1000_reg_test(adapter, &data[0]))
       
  1682 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1683 
       
  1684 		e1000e_reset(adapter);
       
  1685 		if (e1000_eeprom_test(adapter, &data[1]))
       
  1686 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1687 
       
  1688 		e1000e_reset(adapter);
       
  1689 		if (e1000_intr_test(adapter, &data[2]))
       
  1690 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1691 
       
  1692 		e1000e_reset(adapter);
       
  1693 		/* make sure the phy is powered up */
       
  1694 		e1000e_power_up_phy(adapter);
       
  1695 		if (e1000_loopback_test(adapter, &data[3]))
       
  1696 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1697 
       
  1698 		/* restore speed, duplex, autoneg settings */
       
  1699 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
       
  1700 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
       
  1701 		adapter->hw.mac.autoneg = autoneg;
       
  1702 
       
  1703 		/* force this routine to wait until autoneg complete/timeout */
       
  1704 		adapter->hw.phy.autoneg_wait_to_complete = 1;
       
  1705 		e1000e_reset(adapter);
       
  1706 		adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  1707 
       
  1708 		clear_bit(__E1000_TESTING, &adapter->state);
       
  1709 		if (if_running)
       
  1710 			dev_open(netdev);
       
  1711 	} else {
       
  1712 		e_info("online testing starting\n");
       
  1713 		/* Online tests */
       
  1714 		if (e1000_link_test(adapter, &data[4]))
       
  1715 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1716 
       
  1717 		/* Online tests aren't run; pass by default */
       
  1718 		data[0] = 0;
       
  1719 		data[1] = 0;
       
  1720 		data[2] = 0;
       
  1721 		data[3] = 0;
       
  1722 
       
  1723 		clear_bit(__E1000_TESTING, &adapter->state);
       
  1724 	}
       
  1725 	msleep_interruptible(4 * 1000);
       
  1726 }
       
  1727 
       
  1728 static void e1000_get_wol(struct net_device *netdev,
       
  1729 			  struct ethtool_wolinfo *wol)
       
  1730 {
       
  1731 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1732 
       
  1733 	wol->supported = 0;
       
  1734 	wol->wolopts = 0;
       
  1735 
       
  1736 	if (!(adapter->flags & FLAG_HAS_WOL) ||
       
  1737 	    !device_can_wakeup(&adapter->pdev->dev))
       
  1738 		return;
       
  1739 
       
  1740 	wol->supported = WAKE_UCAST | WAKE_MCAST |
       
  1741 	                 WAKE_BCAST | WAKE_MAGIC |
       
  1742 	                 WAKE_PHY | WAKE_ARP;
       
  1743 
       
  1744 	/* apply any specific unsupported masks here */
       
  1745 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
       
  1746 		wol->supported &= ~WAKE_UCAST;
       
  1747 
       
  1748 		if (adapter->wol & E1000_WUFC_EX)
       
  1749 			e_err("Interface does not support directed (unicast) "
       
  1750 			      "frame wake-up packets\n");
       
  1751 	}
       
  1752 
       
  1753 	if (adapter->wol & E1000_WUFC_EX)
       
  1754 		wol->wolopts |= WAKE_UCAST;
       
  1755 	if (adapter->wol & E1000_WUFC_MC)
       
  1756 		wol->wolopts |= WAKE_MCAST;
       
  1757 	if (adapter->wol & E1000_WUFC_BC)
       
  1758 		wol->wolopts |= WAKE_BCAST;
       
  1759 	if (adapter->wol & E1000_WUFC_MAG)
       
  1760 		wol->wolopts |= WAKE_MAGIC;
       
  1761 	if (adapter->wol & E1000_WUFC_LNKC)
       
  1762 		wol->wolopts |= WAKE_PHY;
       
  1763 	if (adapter->wol & E1000_WUFC_ARP)
       
  1764 		wol->wolopts |= WAKE_ARP;
       
  1765 }
       
  1766 
       
  1767 static int e1000_set_wol(struct net_device *netdev,
       
  1768 			 struct ethtool_wolinfo *wol)
       
  1769 {
       
  1770 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1771 
       
  1772 	if (wol->wolopts & WAKE_MAGICSECURE)
       
  1773 		return -EOPNOTSUPP;
       
  1774 
       
  1775 	if (!(adapter->flags & FLAG_HAS_WOL) ||
       
  1776 	    !device_can_wakeup(&adapter->pdev->dev))
       
  1777 		return wol->wolopts ? -EOPNOTSUPP : 0;
       
  1778 
       
  1779 	/* these settings will always override what we currently have */
       
  1780 	adapter->wol = 0;
       
  1781 
       
  1782 	if (wol->wolopts & WAKE_UCAST)
       
  1783 		adapter->wol |= E1000_WUFC_EX;
       
  1784 	if (wol->wolopts & WAKE_MCAST)
       
  1785 		adapter->wol |= E1000_WUFC_MC;
       
  1786 	if (wol->wolopts & WAKE_BCAST)
       
  1787 		adapter->wol |= E1000_WUFC_BC;
       
  1788 	if (wol->wolopts & WAKE_MAGIC)
       
  1789 		adapter->wol |= E1000_WUFC_MAG;
       
  1790 	if (wol->wolopts & WAKE_PHY)
       
  1791 		adapter->wol |= E1000_WUFC_LNKC;
       
  1792 	if (wol->wolopts & WAKE_ARP)
       
  1793 		adapter->wol |= E1000_WUFC_ARP;
       
  1794 
       
  1795 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  1796 
       
  1797 	return 0;
       
  1798 }
       
  1799 
       
  1800 /* toggle LED 4 times per second = 2 "blinks" per second */
       
  1801 #define E1000_ID_INTERVAL	(HZ/4)
       
  1802 
       
  1803 /* bit defines for adapter->led_status */
       
  1804 #define E1000_LED_ON		0
       
  1805 
       
  1806 static void e1000e_led_blink_task(struct work_struct *work)
       
  1807 {
       
  1808 	struct e1000_adapter *adapter = container_of(work,
       
  1809 	                                struct e1000_adapter, led_blink_task);
       
  1810 
       
  1811 	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
       
  1812 		adapter->hw.mac.ops.led_off(&adapter->hw);
       
  1813 	else
       
  1814 		adapter->hw.mac.ops.led_on(&adapter->hw);
       
  1815 }
       
  1816 
       
  1817 static void e1000_led_blink_callback(unsigned long data)
       
  1818 {
       
  1819 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  1820 
       
  1821 	schedule_work(&adapter->led_blink_task);
       
  1822 	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
       
  1823 }
       
  1824 
       
  1825 static int e1000_phys_id(struct net_device *netdev, u32 data)
       
  1826 {
       
  1827 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1828 	struct e1000_hw *hw = &adapter->hw;
       
  1829 
       
  1830 	if (!data)
       
  1831 		data = INT_MAX;
       
  1832 
       
  1833 	if ((hw->phy.type == e1000_phy_ife) ||
       
  1834 	    (hw->mac.type == e1000_pchlan) ||
       
  1835 	    (hw->mac.type == e1000_82574)) {
       
  1836 		INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
       
  1837 		if (!adapter->blink_timer.function) {
       
  1838 			init_timer(&adapter->blink_timer);
       
  1839 			adapter->blink_timer.function =
       
  1840 				e1000_led_blink_callback;
       
  1841 			adapter->blink_timer.data = (unsigned long) adapter;
       
  1842 		}
       
  1843 		mod_timer(&adapter->blink_timer, jiffies);
       
  1844 		msleep_interruptible(data * 1000);
       
  1845 		del_timer_sync(&adapter->blink_timer);
       
  1846 		if (hw->phy.type == e1000_phy_ife)
       
  1847 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  1848 	} else {
       
  1849 		e1000e_blink_led(hw);
       
  1850 		msleep_interruptible(data * 1000);
       
  1851 	}
       
  1852 
       
  1853 	hw->mac.ops.led_off(hw);
       
  1854 	clear_bit(E1000_LED_ON, &adapter->led_status);
       
  1855 	hw->mac.ops.cleanup_led(hw);
       
  1856 
       
  1857 	return 0;
       
  1858 }
       
  1859 
       
  1860 static int e1000_get_coalesce(struct net_device *netdev,
       
  1861 			      struct ethtool_coalesce *ec)
       
  1862 {
       
  1863 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1864 
       
  1865 	if (adapter->itr_setting <= 3)
       
  1866 		ec->rx_coalesce_usecs = adapter->itr_setting;
       
  1867 	else
       
  1868 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
       
  1869 
       
  1870 	return 0;
       
  1871 }
       
  1872 
       
  1873 static int e1000_set_coalesce(struct net_device *netdev,
       
  1874 			      struct ethtool_coalesce *ec)
       
  1875 {
       
  1876 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1877 	struct e1000_hw *hw = &adapter->hw;
       
  1878 
       
  1879 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
       
  1880 	    ((ec->rx_coalesce_usecs > 3) &&
       
  1881 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
       
  1882 	    (ec->rx_coalesce_usecs == 2))
       
  1883 		return -EINVAL;
       
  1884 
       
  1885 	if (ec->rx_coalesce_usecs <= 3) {
       
  1886 		adapter->itr = 20000;
       
  1887 		adapter->itr_setting = ec->rx_coalesce_usecs;
       
  1888 	} else {
       
  1889 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
       
  1890 		adapter->itr_setting = adapter->itr & ~3;
       
  1891 	}
       
  1892 
       
  1893 	if (adapter->itr_setting != 0)
       
  1894 		ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  1895 	else
       
  1896 		ew32(ITR, 0);
       
  1897 
       
  1898 	return 0;
       
  1899 }
       
  1900 
       
  1901 static int e1000_nway_reset(struct net_device *netdev)
       
  1902 {
       
  1903 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1904 	if (netif_running(netdev))
       
  1905 		e1000e_reinit_locked(adapter);
       
  1906 	return 0;
       
  1907 }
       
  1908 
       
  1909 static void e1000_get_ethtool_stats(struct net_device *netdev,
       
  1910 				    struct ethtool_stats *stats,
       
  1911 				    u64 *data)
       
  1912 {
       
  1913 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1914 	int i;
       
  1915 
       
  1916 	e1000e_update_stats(adapter);
       
  1917 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1918 		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
       
  1919 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
       
  1920 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
       
  1921 	}
       
  1922 }
       
  1923 
       
  1924 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
       
  1925 			      u8 *data)
       
  1926 {
       
  1927 	u8 *p = data;
       
  1928 	int i;
       
  1929 
       
  1930 	switch (stringset) {
       
  1931 	case ETH_SS_TEST:
       
  1932 		memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
       
  1933 		break;
       
  1934 	case ETH_SS_STATS:
       
  1935 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1936 			memcpy(p, e1000_gstrings_stats[i].stat_string,
       
  1937 			       ETH_GSTRING_LEN);
       
  1938 			p += ETH_GSTRING_LEN;
       
  1939 		}
       
  1940 		break;
       
  1941 	}
       
  1942 }
       
  1943 
       
  1944 static const struct ethtool_ops e1000_ethtool_ops = {
       
  1945 	.get_settings		= e1000_get_settings,
       
  1946 	.set_settings		= e1000_set_settings,
       
  1947 	.get_drvinfo		= e1000_get_drvinfo,
       
  1948 	.get_regs_len		= e1000_get_regs_len,
       
  1949 	.get_regs		= e1000_get_regs,
       
  1950 	.get_wol		= e1000_get_wol,
       
  1951 	.set_wol		= e1000_set_wol,
       
  1952 	.get_msglevel		= e1000_get_msglevel,
       
  1953 	.set_msglevel		= e1000_set_msglevel,
       
  1954 	.nway_reset		= e1000_nway_reset,
       
  1955 	.get_link		= e1000_get_link,
       
  1956 	.get_eeprom_len		= e1000_get_eeprom_len,
       
  1957 	.get_eeprom		= e1000_get_eeprom,
       
  1958 	.set_eeprom		= e1000_set_eeprom,
       
  1959 	.get_ringparam		= e1000_get_ringparam,
       
  1960 	.set_ringparam		= e1000_set_ringparam,
       
  1961 	.get_pauseparam		= e1000_get_pauseparam,
       
  1962 	.set_pauseparam		= e1000_set_pauseparam,
       
  1963 	.get_rx_csum		= e1000_get_rx_csum,
       
  1964 	.set_rx_csum		= e1000_set_rx_csum,
       
  1965 	.get_tx_csum		= e1000_get_tx_csum,
       
  1966 	.set_tx_csum		= e1000_set_tx_csum,
       
  1967 	.get_sg			= ethtool_op_get_sg,
       
  1968 	.set_sg			= ethtool_op_set_sg,
       
  1969 	.get_tso		= ethtool_op_get_tso,
       
  1970 	.set_tso		= e1000_set_tso,
       
  1971 	.self_test		= e1000_diag_test,
       
  1972 	.get_strings		= e1000_get_strings,
       
  1973 	.phys_id		= e1000_phys_id,
       
  1974 	.get_ethtool_stats	= e1000_get_ethtool_stats,
       
  1975 	.get_sset_count		= e1000e_get_sset_count,
       
  1976 	.get_coalesce		= e1000_get_coalesce,
       
  1977 	.set_coalesce		= e1000_set_coalesce,
       
  1978 };
       
  1979 
       
  1980 void e1000e_set_ethtool_ops(struct net_device *netdev)
       
  1981 {
       
  1982 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
       
  1983 }