devices/e1000e/es2lan-2.6.32-ethercat.c
branchredundancy
changeset 2136 729df853b3fb
equal deleted inserted replaced
2135:f99b2249704c 2136:729df853b3fb
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2008 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /*
       
    30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
       
    31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
       
    32  */
       
    33 
       
    34 #include <linux/netdevice.h>
       
    35 #include <linux/ethtool.h>
       
    36 #include <linux/delay.h>
       
    37 #include <linux/pci.h>
       
    38 
       
    39 #include "e1000-2.6.32-ethercat.h"
       
    40 
       
    41 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00
       
    42 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	 0x02
       
    43 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	 0x10
       
    44 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE	 0x1F
       
    45 
       
    46 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	 0x0008
       
    47 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	 0x0800
       
    48 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	 0x0010
       
    49 
       
    50 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
       
    51 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	 0x0000
       
    52 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE		 0x2000
       
    53 
       
    54 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
       
    55 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	 0x00010000
       
    56 
       
    57 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	 0x8
       
    58 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	 0x9
       
    59 
       
    60 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
       
    61 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	 0x0002 /* 1=Reversal Disab. */
       
    62 #define GG82563_PSCR_CROSSOVER_MODE_MASK	 0x0060
       
    63 #define GG82563_PSCR_CROSSOVER_MODE_MDI		 0x0000 /* 00=Manual MDI */
       
    64 #define GG82563_PSCR_CROSSOVER_MODE_MDIX	 0x0020 /* 01=Manual MDIX */
       
    65 #define GG82563_PSCR_CROSSOVER_MODE_AUTO	 0x0060 /* 11=Auto crossover */
       
    66 
       
    67 /* PHY Specific Control Register 2 (Page 0, Register 26) */
       
    68 #define GG82563_PSCR2_REVERSE_AUTO_NEG		 0x2000
       
    69 						/* 1=Reverse Auto-Negotiation */
       
    70 
       
    71 /* MAC Specific Control Register (Page 2, Register 21) */
       
    72 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
       
    73 #define GG82563_MSCR_TX_CLK_MASK		 0x0007
       
    74 #define GG82563_MSCR_TX_CLK_10MBPS_2_5		 0x0004
       
    75 #define GG82563_MSCR_TX_CLK_100MBPS_25		 0x0005
       
    76 #define GG82563_MSCR_TX_CLK_1000MBPS_25		 0x0007
       
    77 
       
    78 #define GG82563_MSCR_ASSERT_CRS_ON_TX		 0x0010 /* 1=Assert */
       
    79 
       
    80 /* DSP Distance Register (Page 5, Register 26) */
       
    81 #define GG82563_DSPD_CABLE_LENGTH		 0x0007 /* 0 = <50M
       
    82 							   1 = 50-80M
       
    83 							   2 = 80-110M
       
    84 							   3 = 110-140M
       
    85 							   4 = >140M */
       
    86 
       
    87 /* Kumeran Mode Control Register (Page 193, Register 16) */
       
    88 #define GG82563_KMCR_PASS_FALSE_CARRIER		 0x0800
       
    89 
       
    90 /* Max number of times Kumeran read/write should be validated */
       
    91 #define GG82563_MAX_KMRN_RETRY  0x5
       
    92 
       
    93 /* Power Management Control Register (Page 193, Register 20) */
       
    94 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	 0x0001
       
    95 					   /* 1=Enable SERDES Electrical Idle */
       
    96 
       
    97 /* In-Band Control Register (Page 194, Register 18) */
       
    98 #define GG82563_ICR_DIS_PADDING			 0x0010 /* Disable Padding */
       
    99 
       
   100 /*
       
   101  * A table for the GG82563 cable length where the range is defined
       
   102  * with a lower bound at "index" and the upper bound at
       
   103  * "index + 5".
       
   104  */
       
   105 static const u16 e1000_gg82563_cable_length_table[] =
       
   106 	 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
       
   107 
       
   108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
       
   109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
       
   110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
       
   111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
       
   112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
       
   113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
       
   114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
       
   115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
       
   116 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
       
   117                                             u16 *data);
       
   118 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
       
   119                                              u16 data);
       
   120 
       
   121 /**
       
   122  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
       
   123  *  @hw: pointer to the HW structure
       
   124  *
       
   125  *  This is a function pointer entry point called by the api module.
       
   126  **/
       
   127 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
       
   128 {
       
   129 	struct e1000_phy_info *phy = &hw->phy;
       
   130 	s32 ret_val;
       
   131 
       
   132 	if (hw->phy.media_type != e1000_media_type_copper) {
       
   133 		phy->type	= e1000_phy_none;
       
   134 		return 0;
       
   135 	}
       
   136 
       
   137 	phy->addr		= 1;
       
   138 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   139 	phy->reset_delay_us      = 100;
       
   140 	phy->type		= e1000_phy_gg82563;
       
   141 
       
   142 	/* This can only be done after all function pointers are setup. */
       
   143 	ret_val = e1000e_get_phy_id(hw);
       
   144 
       
   145 	/* Verify phy id */
       
   146 	if (phy->id != GG82563_E_PHY_ID)
       
   147 		return -E1000_ERR_PHY;
       
   148 
       
   149 	return ret_val;
       
   150 }
       
   151 
       
   152 /**
       
   153  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
       
   154  *  @hw: pointer to the HW structure
       
   155  *
       
   156  *  This is a function pointer entry point called by the api module.
       
   157  **/
       
   158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
       
   159 {
       
   160 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   161 	u32 eecd = er32(EECD);
       
   162 	u16 size;
       
   163 
       
   164 	nvm->opcode_bits	= 8;
       
   165 	nvm->delay_usec	 = 1;
       
   166 	switch (nvm->override) {
       
   167 	case e1000_nvm_override_spi_large:
       
   168 		nvm->page_size    = 32;
       
   169 		nvm->address_bits = 16;
       
   170 		break;
       
   171 	case e1000_nvm_override_spi_small:
       
   172 		nvm->page_size    = 8;
       
   173 		nvm->address_bits = 8;
       
   174 		break;
       
   175 	default:
       
   176 		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
       
   177 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
       
   178 		break;
       
   179 	}
       
   180 
       
   181 	nvm->type = e1000_nvm_eeprom_spi;
       
   182 
       
   183 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
       
   184 			  E1000_EECD_SIZE_EX_SHIFT);
       
   185 
       
   186 	/*
       
   187 	 * Added to a constant, "size" becomes the left-shift value
       
   188 	 * for setting word_size.
       
   189 	 */
       
   190 	size += NVM_WORD_SIZE_BASE_SHIFT;
       
   191 
       
   192 	/* EEPROM access above 16k is unsupported */
       
   193 	if (size > 14)
       
   194 		size = 14;
       
   195 	nvm->word_size	= 1 << size;
       
   196 
       
   197 	return 0;
       
   198 }
       
   199 
       
   200 /**
       
   201  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
       
   202  *  @hw: pointer to the HW structure
       
   203  *
       
   204  *  This is a function pointer entry point called by the api module.
       
   205  **/
       
   206 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
       
   207 {
       
   208 	struct e1000_hw *hw = &adapter->hw;
       
   209 	struct e1000_mac_info *mac = &hw->mac;
       
   210 	struct e1000_mac_operations *func = &mac->ops;
       
   211 
       
   212 	/* Set media type */
       
   213 	switch (adapter->pdev->device) {
       
   214 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
       
   215 		hw->phy.media_type = e1000_media_type_internal_serdes;
       
   216 		break;
       
   217 	default:
       
   218 		hw->phy.media_type = e1000_media_type_copper;
       
   219 		break;
       
   220 	}
       
   221 
       
   222 	/* Set mta register count */
       
   223 	mac->mta_reg_count = 128;
       
   224 	/* Set rar entry count */
       
   225 	mac->rar_entry_count = E1000_RAR_ENTRIES;
       
   226 	/* Set if manageability features are enabled. */
       
   227 	mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
       
   228 
       
   229 	/* check for link */
       
   230 	switch (hw->phy.media_type) {
       
   231 	case e1000_media_type_copper:
       
   232 		func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
       
   233 		func->check_for_link = e1000e_check_for_copper_link;
       
   234 		break;
       
   235 	case e1000_media_type_fiber:
       
   236 		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
       
   237 		func->check_for_link = e1000e_check_for_fiber_link;
       
   238 		break;
       
   239 	case e1000_media_type_internal_serdes:
       
   240 		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
       
   241 		func->check_for_link = e1000e_check_for_serdes_link;
       
   242 		break;
       
   243 	default:
       
   244 		return -E1000_ERR_CONFIG;
       
   245 		break;
       
   246 	}
       
   247 
       
   248 	return 0;
       
   249 }
       
   250 
       
   251 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
       
   252 {
       
   253 	struct e1000_hw *hw = &adapter->hw;
       
   254 	s32 rc;
       
   255 
       
   256 	rc = e1000_init_mac_params_80003es2lan(adapter);
       
   257 	if (rc)
       
   258 		return rc;
       
   259 
       
   260 	rc = e1000_init_nvm_params_80003es2lan(hw);
       
   261 	if (rc)
       
   262 		return rc;
       
   263 
       
   264 	rc = e1000_init_phy_params_80003es2lan(hw);
       
   265 	if (rc)
       
   266 		return rc;
       
   267 
       
   268 	return 0;
       
   269 }
       
   270 
       
   271 /**
       
   272  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
       
   273  *  @hw: pointer to the HW structure
       
   274  *
       
   275  *  A wrapper to acquire access rights to the correct PHY.  This is a
       
   276  *  function pointer entry point called by the api module.
       
   277  **/
       
   278 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
       
   279 {
       
   280 	u16 mask;
       
   281 
       
   282 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
       
   283 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
       
   284 }
       
   285 
       
   286 /**
       
   287  *  e1000_release_phy_80003es2lan - Release rights to access PHY
       
   288  *  @hw: pointer to the HW structure
       
   289  *
       
   290  *  A wrapper to release access rights to the correct PHY.  This is a
       
   291  *  function pointer entry point called by the api module.
       
   292  **/
       
   293 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
       
   294 {
       
   295 	u16 mask;
       
   296 
       
   297 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
       
   298 	e1000_release_swfw_sync_80003es2lan(hw, mask);
       
   299 }
       
   300 
       
   301 /**
       
   302  *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
       
   303  *  @hw: pointer to the HW structure
       
   304  *
       
   305  *  Acquire the semaphore to access the Kumeran interface.
       
   306  *
       
   307  **/
       
   308 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
       
   309 {
       
   310 	u16 mask;
       
   311 
       
   312 	mask = E1000_SWFW_CSR_SM;
       
   313 
       
   314 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
       
   315 }
       
   316 
       
   317 /**
       
   318  *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
       
   319  *  @hw: pointer to the HW structure
       
   320  *
       
   321  *  Release the semaphore used to access the Kumeran interface
       
   322  **/
       
   323 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
       
   324 {
       
   325 	u16 mask;
       
   326 
       
   327 	mask = E1000_SWFW_CSR_SM;
       
   328 
       
   329 	e1000_release_swfw_sync_80003es2lan(hw, mask);
       
   330 }
       
   331 
       
   332 /**
       
   333  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
       
   334  *  @hw: pointer to the HW structure
       
   335  *
       
   336  *  Acquire the semaphore to access the EEPROM.  This is a function
       
   337  *  pointer entry point called by the api module.
       
   338  **/
       
   339 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
       
   340 {
       
   341 	s32 ret_val;
       
   342 
       
   343 	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
       
   344 	if (ret_val)
       
   345 		return ret_val;
       
   346 
       
   347 	ret_val = e1000e_acquire_nvm(hw);
       
   348 
       
   349 	if (ret_val)
       
   350 		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
       
   351 
       
   352 	return ret_val;
       
   353 }
       
   354 
       
   355 /**
       
   356  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
       
   357  *  @hw: pointer to the HW structure
       
   358  *
       
   359  *  Release the semaphore used to access the EEPROM.  This is a
       
   360  *  function pointer entry point called by the api module.
       
   361  **/
       
   362 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
       
   363 {
       
   364 	e1000e_release_nvm(hw);
       
   365 	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
       
   366 }
       
   367 
       
   368 /**
       
   369  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
       
   370  *  @hw: pointer to the HW structure
       
   371  *  @mask: specifies which semaphore to acquire
       
   372  *
       
   373  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
       
   374  *  will also specify which port we're acquiring the lock for.
       
   375  **/
       
   376 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
       
   377 {
       
   378 	u32 swfw_sync;
       
   379 	u32 swmask = mask;
       
   380 	u32 fwmask = mask << 16;
       
   381 	s32 i = 0;
       
   382 	s32 timeout = 50;
       
   383 
       
   384 	while (i < timeout) {
       
   385 		if (e1000e_get_hw_semaphore(hw))
       
   386 			return -E1000_ERR_SWFW_SYNC;
       
   387 
       
   388 		swfw_sync = er32(SW_FW_SYNC);
       
   389 		if (!(swfw_sync & (fwmask | swmask)))
       
   390 			break;
       
   391 
       
   392 		/*
       
   393 		 * Firmware currently using resource (fwmask)
       
   394 		 * or other software thread using resource (swmask)
       
   395 		 */
       
   396 		e1000e_put_hw_semaphore(hw);
       
   397 		mdelay(5);
       
   398 		i++;
       
   399 	}
       
   400 
       
   401 	if (i == timeout) {
       
   402 		hw_dbg(hw,
       
   403 		       "Driver can't access resource, SW_FW_SYNC timeout.\n");
       
   404 		return -E1000_ERR_SWFW_SYNC;
       
   405 	}
       
   406 
       
   407 	swfw_sync |= swmask;
       
   408 	ew32(SW_FW_SYNC, swfw_sync);
       
   409 
       
   410 	e1000e_put_hw_semaphore(hw);
       
   411 
       
   412 	return 0;
       
   413 }
       
   414 
       
   415 /**
       
   416  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
       
   417  *  @hw: pointer to the HW structure
       
   418  *  @mask: specifies which semaphore to acquire
       
   419  *
       
   420  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
       
   421  *  will also specify which port we're releasing the lock for.
       
   422  **/
       
   423 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
       
   424 {
       
   425 	u32 swfw_sync;
       
   426 
       
   427 	while (e1000e_get_hw_semaphore(hw) != 0);
       
   428 	/* Empty */
       
   429 
       
   430 	swfw_sync = er32(SW_FW_SYNC);
       
   431 	swfw_sync &= ~mask;
       
   432 	ew32(SW_FW_SYNC, swfw_sync);
       
   433 
       
   434 	e1000e_put_hw_semaphore(hw);
       
   435 }
       
   436 
       
   437 /**
       
   438  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
       
   439  *  @hw: pointer to the HW structure
       
   440  *  @offset: offset of the register to read
       
   441  *  @data: pointer to the data returned from the operation
       
   442  *
       
   443  *  Read the GG82563 PHY register.  This is a function pointer entry
       
   444  *  point called by the api module.
       
   445  **/
       
   446 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
       
   447 						  u32 offset, u16 *data)
       
   448 {
       
   449 	s32 ret_val;
       
   450 	u32 page_select;
       
   451 	u16 temp;
       
   452 
       
   453 	ret_val = e1000_acquire_phy_80003es2lan(hw);
       
   454 	if (ret_val)
       
   455 		return ret_val;
       
   456 
       
   457 	/* Select Configuration Page */
       
   458 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
       
   459 		page_select = GG82563_PHY_PAGE_SELECT;
       
   460 	} else {
       
   461 		/*
       
   462 		 * Use Alternative Page Select register to access
       
   463 		 * registers 30 and 31
       
   464 		 */
       
   465 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
       
   466 	}
       
   467 
       
   468 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
       
   469 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
       
   470 	if (ret_val) {
       
   471 		e1000_release_phy_80003es2lan(hw);
       
   472 		return ret_val;
       
   473 	}
       
   474 
       
   475 	/*
       
   476 	 * The "ready" bit in the MDIC register may be incorrectly set
       
   477 	 * before the device has completed the "Page Select" MDI
       
   478 	 * transaction.  So we wait 200us after each MDI command...
       
   479 	 */
       
   480 	udelay(200);
       
   481 
       
   482 	/* ...and verify the command was successful. */
       
   483 	ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
       
   484 
       
   485 	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
       
   486 		ret_val = -E1000_ERR_PHY;
       
   487 		e1000_release_phy_80003es2lan(hw);
       
   488 		return ret_val;
       
   489 	}
       
   490 
       
   491 	udelay(200);
       
   492 
       
   493 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   494 					   data);
       
   495 
       
   496 	udelay(200);
       
   497 	e1000_release_phy_80003es2lan(hw);
       
   498 
       
   499 	return ret_val;
       
   500 }
       
   501 
       
   502 /**
       
   503  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
       
   504  *  @hw: pointer to the HW structure
       
   505  *  @offset: offset of the register to read
       
   506  *  @data: value to write to the register
       
   507  *
       
   508  *  Write to the GG82563 PHY register.  This is a function pointer entry
       
   509  *  point called by the api module.
       
   510  **/
       
   511 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
       
   512 						   u32 offset, u16 data)
       
   513 {
       
   514 	s32 ret_val;
       
   515 	u32 page_select;
       
   516 	u16 temp;
       
   517 
       
   518 	ret_val = e1000_acquire_phy_80003es2lan(hw);
       
   519 	if (ret_val)
       
   520 		return ret_val;
       
   521 
       
   522 	/* Select Configuration Page */
       
   523 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
       
   524 		page_select = GG82563_PHY_PAGE_SELECT;
       
   525 	} else {
       
   526 		/*
       
   527 		 * Use Alternative Page Select register to access
       
   528 		 * registers 30 and 31
       
   529 		 */
       
   530 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
       
   531 	}
       
   532 
       
   533 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
       
   534 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
       
   535 	if (ret_val) {
       
   536 		e1000_release_phy_80003es2lan(hw);
       
   537 		return ret_val;
       
   538 	}
       
   539 
       
   540 
       
   541 	/*
       
   542 	 * The "ready" bit in the MDIC register may be incorrectly set
       
   543 	 * before the device has completed the "Page Select" MDI
       
   544 	 * transaction.  So we wait 200us after each MDI command...
       
   545 	 */
       
   546 	udelay(200);
       
   547 
       
   548 	/* ...and verify the command was successful. */
       
   549 	ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
       
   550 
       
   551 	if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
       
   552 		e1000_release_phy_80003es2lan(hw);
       
   553 		return -E1000_ERR_PHY;
       
   554 	}
       
   555 
       
   556 	udelay(200);
       
   557 
       
   558 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   559 					    data);
       
   560 
       
   561 	udelay(200);
       
   562 	e1000_release_phy_80003es2lan(hw);
       
   563 
       
   564 	return ret_val;
       
   565 }
       
   566 
       
   567 /**
       
   568  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
       
   569  *  @hw: pointer to the HW structure
       
   570  *  @offset: offset of the register to read
       
   571  *  @words: number of words to write
       
   572  *  @data: buffer of data to write to the NVM
       
   573  *
       
   574  *  Write "words" of data to the ESB2 NVM.  This is a function
       
   575  *  pointer entry point called by the api module.
       
   576  **/
       
   577 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
       
   578 				       u16 words, u16 *data)
       
   579 {
       
   580 	return e1000e_write_nvm_spi(hw, offset, words, data);
       
   581 }
       
   582 
       
   583 /**
       
   584  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
       
   585  *  @hw: pointer to the HW structure
       
   586  *
       
   587  *  Wait a specific amount of time for manageability processes to complete.
       
   588  *  This is a function pointer entry point called by the phy module.
       
   589  **/
       
   590 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
       
   591 {
       
   592 	s32 timeout = PHY_CFG_TIMEOUT;
       
   593 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
       
   594 
       
   595 	if (hw->bus.func == 1)
       
   596 		mask = E1000_NVM_CFG_DONE_PORT_1;
       
   597 
       
   598 	while (timeout) {
       
   599 		if (er32(EEMNGCTL) & mask)
       
   600 			break;
       
   601 		msleep(1);
       
   602 		timeout--;
       
   603 	}
       
   604 	if (!timeout) {
       
   605 		hw_dbg(hw, "MNG configuration cycle has not completed.\n");
       
   606 		return -E1000_ERR_RESET;
       
   607 	}
       
   608 
       
   609 	return 0;
       
   610 }
       
   611 
       
   612 /**
       
   613  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
       
   614  *  @hw: pointer to the HW structure
       
   615  *
       
   616  *  Force the speed and duplex settings onto the PHY.  This is a
       
   617  *  function pointer entry point called by the phy module.
       
   618  **/
       
   619 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
       
   620 {
       
   621 	s32 ret_val;
       
   622 	u16 phy_data;
       
   623 	bool link;
       
   624 
       
   625 	/*
       
   626 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
       
   627 	 * forced whenever speed and duplex are forced.
       
   628 	 */
       
   629 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   630 	if (ret_val)
       
   631 		return ret_val;
       
   632 
       
   633 	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
       
   634 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
       
   635 	if (ret_val)
       
   636 		return ret_val;
       
   637 
       
   638 	hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
       
   639 
       
   640 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
       
   641 	if (ret_val)
       
   642 		return ret_val;
       
   643 
       
   644 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
   645 
       
   646 	/* Reset the phy to commit changes. */
       
   647 	phy_data |= MII_CR_RESET;
       
   648 
       
   649 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
       
   650 	if (ret_val)
       
   651 		return ret_val;
       
   652 
       
   653 	udelay(1);
       
   654 
       
   655 	if (hw->phy.autoneg_wait_to_complete) {
       
   656 		hw_dbg(hw, "Waiting for forced speed/duplex link "
       
   657 			 "on GG82563 phy.\n");
       
   658 
       
   659 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
   660 						     100000, &link);
       
   661 		if (ret_val)
       
   662 			return ret_val;
       
   663 
       
   664 		if (!link) {
       
   665 			/*
       
   666 			 * We didn't get link.
       
   667 			 * Reset the DSP and cross our fingers.
       
   668 			 */
       
   669 			ret_val = e1000e_phy_reset_dsp(hw);
       
   670 			if (ret_val)
       
   671 				return ret_val;
       
   672 		}
       
   673 
       
   674 		/* Try once more */
       
   675 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
   676 						     100000, &link);
       
   677 		if (ret_val)
       
   678 			return ret_val;
       
   679 	}
       
   680 
       
   681 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
       
   682 	if (ret_val)
       
   683 		return ret_val;
       
   684 
       
   685 	/*
       
   686 	 * Resetting the phy means we need to verify the TX_CLK corresponds
       
   687 	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
       
   688 	 */
       
   689 	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
       
   690 	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
       
   691 		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
       
   692 	else
       
   693 		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
       
   694 
       
   695 	/*
       
   696 	 * In addition, we must re-enable CRS on Tx for both half and full
       
   697 	 * duplex.
       
   698 	 */
       
   699 	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
       
   700 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
       
   701 
       
   702 	return ret_val;
       
   703 }
       
   704 
       
   705 /**
       
   706  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
       
   707  *  @hw: pointer to the HW structure
       
   708  *
       
   709  *  Find the approximate cable length as measured by the GG82563 PHY.
       
   710  *  This is a function pointer entry point called by the phy module.
       
   711  **/
       
   712 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
       
   713 {
       
   714 	struct e1000_phy_info *phy = &hw->phy;
       
   715 	s32 ret_val;
       
   716 	u16 phy_data;
       
   717 	u16 index;
       
   718 
       
   719 	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
       
   720 	if (ret_val)
       
   721 		return ret_val;
       
   722 
       
   723 	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
       
   724 	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
       
   725 	phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
       
   726 
       
   727 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
   728 
       
   729 	return 0;
       
   730 }
       
   731 
       
   732 /**
       
   733  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
       
   734  *  @hw: pointer to the HW structure
       
   735  *  @speed: pointer to speed buffer
       
   736  *  @duplex: pointer to duplex buffer
       
   737  *
       
   738  *  Retrieve the current speed and duplex configuration.
       
   739  *  This is a function pointer entry point called by the api module.
       
   740  **/
       
   741 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
       
   742 					      u16 *duplex)
       
   743 {
       
   744 	s32 ret_val;
       
   745 
       
   746 	if (hw->phy.media_type == e1000_media_type_copper) {
       
   747 		ret_val = e1000e_get_speed_and_duplex_copper(hw,
       
   748 								    speed,
       
   749 								    duplex);
       
   750 		hw->phy.ops.cfg_on_link_up(hw);
       
   751 	} else {
       
   752 		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
       
   753 								  speed,
       
   754 								  duplex);
       
   755 	}
       
   756 
       
   757 	return ret_val;
       
   758 }
       
   759 
       
   760 /**
       
   761  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
       
   762  *  @hw: pointer to the HW structure
       
   763  *
       
   764  *  Perform a global reset to the ESB2 controller.
       
   765  *  This is a function pointer entry point called by the api module.
       
   766  **/
       
   767 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
       
   768 {
       
   769 	u32 ctrl;
       
   770 	u32 icr;
       
   771 	s32 ret_val;
       
   772 
       
   773 	/*
       
   774 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
       
   775 	 * on the last TLP read/write transaction when MAC is reset.
       
   776 	 */
       
   777 	ret_val = e1000e_disable_pcie_master(hw);
       
   778 	if (ret_val)
       
   779 		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
       
   780 
       
   781 	hw_dbg(hw, "Masking off all interrupts\n");
       
   782 	ew32(IMC, 0xffffffff);
       
   783 
       
   784 	ew32(RCTL, 0);
       
   785 	ew32(TCTL, E1000_TCTL_PSP);
       
   786 	e1e_flush();
       
   787 
       
   788 	msleep(10);
       
   789 
       
   790 	ctrl = er32(CTRL);
       
   791 
       
   792 	ret_val = e1000_acquire_phy_80003es2lan(hw);
       
   793 	hw_dbg(hw, "Issuing a global reset to MAC\n");
       
   794 	ew32(CTRL, ctrl | E1000_CTRL_RST);
       
   795 	e1000_release_phy_80003es2lan(hw);
       
   796 
       
   797 	ret_val = e1000e_get_auto_rd_done(hw);
       
   798 	if (ret_val)
       
   799 		/* We don't want to continue accessing MAC registers. */
       
   800 		return ret_val;
       
   801 
       
   802 	/* Clear any pending interrupt events. */
       
   803 	ew32(IMC, 0xffffffff);
       
   804 	icr = er32(ICR);
       
   805 
       
   806 	return 0;
       
   807 }
       
   808 
       
   809 /**
       
   810  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
       
   811  *  @hw: pointer to the HW structure
       
   812  *
       
   813  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
       
   814  *  This is a function pointer entry point called by the api module.
       
   815  **/
       
   816 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
       
   817 {
       
   818 	struct e1000_mac_info *mac = &hw->mac;
       
   819 	u32 reg_data;
       
   820 	s32 ret_val;
       
   821 	u16 i;
       
   822 
       
   823 	e1000_initialize_hw_bits_80003es2lan(hw);
       
   824 
       
   825 	/* Initialize identification LED */
       
   826 	ret_val = e1000e_id_led_init(hw);
       
   827 	if (ret_val) {
       
   828 		hw_dbg(hw, "Error initializing identification LED\n");
       
   829 		return ret_val;
       
   830 	}
       
   831 
       
   832 	/* Disabling VLAN filtering */
       
   833 	hw_dbg(hw, "Initializing the IEEE VLAN\n");
       
   834 	e1000e_clear_vfta(hw);
       
   835 
       
   836 	/* Setup the receive address. */
       
   837 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
       
   838 
       
   839 	/* Zero out the Multicast HASH table */
       
   840 	hw_dbg(hw, "Zeroing the MTA\n");
       
   841 	for (i = 0; i < mac->mta_reg_count; i++)
       
   842 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
       
   843 
       
   844 	/* Setup link and flow control */
       
   845 	ret_val = e1000e_setup_link(hw);
       
   846 
       
   847 	/* Set the transmit descriptor write-back policy */
       
   848 	reg_data = er32(TXDCTL(0));
       
   849 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
       
   850 		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
       
   851 	ew32(TXDCTL(0), reg_data);
       
   852 
       
   853 	/* ...for both queues. */
       
   854 	reg_data = er32(TXDCTL(1));
       
   855 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
       
   856 		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
       
   857 	ew32(TXDCTL(1), reg_data);
       
   858 
       
   859 	/* Enable retransmit on late collisions */
       
   860 	reg_data = er32(TCTL);
       
   861 	reg_data |= E1000_TCTL_RTLC;
       
   862 	ew32(TCTL, reg_data);
       
   863 
       
   864 	/* Configure Gigabit Carry Extend Padding */
       
   865 	reg_data = er32(TCTL_EXT);
       
   866 	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
       
   867 	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
       
   868 	ew32(TCTL_EXT, reg_data);
       
   869 
       
   870 	/* Configure Transmit Inter-Packet Gap */
       
   871 	reg_data = er32(TIPG);
       
   872 	reg_data &= ~E1000_TIPG_IPGT_MASK;
       
   873 	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
       
   874 	ew32(TIPG, reg_data);
       
   875 
       
   876 	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
       
   877 	reg_data &= ~0x00100000;
       
   878 	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
       
   879 
       
   880 	/*
       
   881 	 * Clear all of the statistics registers (clear on read).  It is
       
   882 	 * important that we do this after we have tried to establish link
       
   883 	 * because the symbol error count will increment wildly if there
       
   884 	 * is no link.
       
   885 	 */
       
   886 	e1000_clear_hw_cntrs_80003es2lan(hw);
       
   887 
       
   888 	return ret_val;
       
   889 }
       
   890 
       
   891 /**
       
   892  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
       
   893  *  @hw: pointer to the HW structure
       
   894  *
       
   895  *  Initializes required hardware-dependent bits needed for normal operation.
       
   896  **/
       
   897 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
       
   898 {
       
   899 	u32 reg;
       
   900 
       
   901 	/* Transmit Descriptor Control 0 */
       
   902 	reg = er32(TXDCTL(0));
       
   903 	reg |= (1 << 22);
       
   904 	ew32(TXDCTL(0), reg);
       
   905 
       
   906 	/* Transmit Descriptor Control 1 */
       
   907 	reg = er32(TXDCTL(1));
       
   908 	reg |= (1 << 22);
       
   909 	ew32(TXDCTL(1), reg);
       
   910 
       
   911 	/* Transmit Arbitration Control 0 */
       
   912 	reg = er32(TARC(0));
       
   913 	reg &= ~(0xF << 27); /* 30:27 */
       
   914 	if (hw->phy.media_type != e1000_media_type_copper)
       
   915 		reg &= ~(1 << 20);
       
   916 	ew32(TARC(0), reg);
       
   917 
       
   918 	/* Transmit Arbitration Control 1 */
       
   919 	reg = er32(TARC(1));
       
   920 	if (er32(TCTL) & E1000_TCTL_MULR)
       
   921 		reg &= ~(1 << 28);
       
   922 	else
       
   923 		reg |= (1 << 28);
       
   924 	ew32(TARC(1), reg);
       
   925 }
       
   926 
       
   927 /**
       
   928  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
       
   929  *  @hw: pointer to the HW structure
       
   930  *
       
   931  *  Setup some GG82563 PHY registers for obtaining link
       
   932  **/
       
   933 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
       
   934 {
       
   935 	struct e1000_phy_info *phy = &hw->phy;
       
   936 	s32 ret_val;
       
   937 	u32 ctrl_ext;
       
   938 	u16 data;
       
   939 
       
   940 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
       
   941 	if (ret_val)
       
   942 		return ret_val;
       
   943 
       
   944 	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
       
   945 	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
       
   946 	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
       
   947 
       
   948 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
       
   949 	if (ret_val)
       
   950 		return ret_val;
       
   951 
       
   952 	/*
       
   953 	 * Options:
       
   954 	 *   MDI/MDI-X = 0 (default)
       
   955 	 *   0 - Auto for all speeds
       
   956 	 *   1 - MDI mode
       
   957 	 *   2 - MDI-X mode
       
   958 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
   959 	 */
       
   960 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
       
   961 	if (ret_val)
       
   962 		return ret_val;
       
   963 
       
   964 	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
       
   965 
       
   966 	switch (phy->mdix) {
       
   967 	case 1:
       
   968 		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
       
   969 		break;
       
   970 	case 2:
       
   971 		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
       
   972 		break;
       
   973 	case 0:
       
   974 	default:
       
   975 		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
       
   976 		break;
       
   977 	}
       
   978 
       
   979 	/*
       
   980 	 * Options:
       
   981 	 *   disable_polarity_correction = 0 (default)
       
   982 	 *       Automatic Correction for Reversed Cable Polarity
       
   983 	 *   0 - Disabled
       
   984 	 *   1 - Enabled
       
   985 	 */
       
   986 	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
       
   987 	if (phy->disable_polarity_correction)
       
   988 		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
       
   989 
       
   990 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
       
   991 	if (ret_val)
       
   992 		return ret_val;
       
   993 
       
   994 	/* SW Reset the PHY so all changes take effect */
       
   995 	ret_val = e1000e_commit_phy(hw);
       
   996 	if (ret_val) {
       
   997 		hw_dbg(hw, "Error Resetting the PHY\n");
       
   998 		return ret_val;
       
   999 	}
       
  1000 
       
  1001 	/* Bypass Rx and Tx FIFO's */
       
  1002 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
       
  1003 					E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
       
  1004 					E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
       
  1005 					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
       
  1006 	if (ret_val)
       
  1007 		return ret_val;
       
  1008 
       
  1009 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
       
  1010 				       E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
       
  1011 				       &data);
       
  1012 	if (ret_val)
       
  1013 		return ret_val;
       
  1014 	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
       
  1015 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
       
  1016 					E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
       
  1017 					data);
       
  1018 	if (ret_val)
       
  1019 		return ret_val;
       
  1020 
       
  1021 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
       
  1022 	if (ret_val)
       
  1023 		return ret_val;
       
  1024 
       
  1025 	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
       
  1026 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
       
  1027 	if (ret_val)
       
  1028 		return ret_val;
       
  1029 
       
  1030 	ctrl_ext = er32(CTRL_EXT);
       
  1031 	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
       
  1032 	ew32(CTRL_EXT, ctrl_ext);
       
  1033 
       
  1034 	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
       
  1035 	if (ret_val)
       
  1036 		return ret_val;
       
  1037 
       
  1038 	/*
       
  1039 	 * Do not init these registers when the HW is in IAMT mode, since the
       
  1040 	 * firmware will have already initialized them.  We only initialize
       
  1041 	 * them if the HW is not in IAMT mode.
       
  1042 	 */
       
  1043 	if (!e1000e_check_mng_mode(hw)) {
       
  1044 		/* Enable Electrical Idle on the PHY */
       
  1045 		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
       
  1046 		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
       
  1047 		if (ret_val)
       
  1048 			return ret_val;
       
  1049 
       
  1050 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
       
  1051 		if (ret_val)
       
  1052 			return ret_val;
       
  1053 
       
  1054 		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
       
  1055 		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
       
  1056 		if (ret_val)
       
  1057 			return ret_val;
       
  1058 	}
       
  1059 
       
  1060 	/*
       
  1061 	 * Workaround: Disable padding in Kumeran interface in the MAC
       
  1062 	 * and in the PHY to avoid CRC errors.
       
  1063 	 */
       
  1064 	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
       
  1065 	if (ret_val)
       
  1066 		return ret_val;
       
  1067 
       
  1068 	data |= GG82563_ICR_DIS_PADDING;
       
  1069 	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
       
  1070 	if (ret_val)
       
  1071 		return ret_val;
       
  1072 
       
  1073 	return 0;
       
  1074 }
       
  1075 
       
  1076 /**
       
  1077  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
       
  1078  *  @hw: pointer to the HW structure
       
  1079  *
       
  1080  *  Essentially a wrapper for setting up all things "copper" related.
       
  1081  *  This is a function pointer entry point called by the mac module.
       
  1082  **/
       
  1083 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
       
  1084 {
       
  1085 	u32 ctrl;
       
  1086 	s32 ret_val;
       
  1087 	u16 reg_data;
       
  1088 
       
  1089 	ctrl = er32(CTRL);
       
  1090 	ctrl |= E1000_CTRL_SLU;
       
  1091 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1092 	ew32(CTRL, ctrl);
       
  1093 
       
  1094 	/*
       
  1095 	 * Set the mac to wait the maximum time between each
       
  1096 	 * iteration and increase the max iterations when
       
  1097 	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
       
  1098 	 */
       
  1099 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
       
  1100 	                                           0xFFFF);
       
  1101 	if (ret_val)
       
  1102 		return ret_val;
       
  1103 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
       
  1104 	                                          &reg_data);
       
  1105 	if (ret_val)
       
  1106 		return ret_val;
       
  1107 	reg_data |= 0x3F;
       
  1108 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
       
  1109 	                                           reg_data);
       
  1110 	if (ret_val)
       
  1111 		return ret_val;
       
  1112 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
       
  1113 				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
       
  1114 				      &reg_data);
       
  1115 	if (ret_val)
       
  1116 		return ret_val;
       
  1117 	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
       
  1118 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
       
  1119 					E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
       
  1120 					reg_data);
       
  1121 	if (ret_val)
       
  1122 		return ret_val;
       
  1123 
       
  1124 	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
       
  1125 	if (ret_val)
       
  1126 		return ret_val;
       
  1127 
       
  1128 	ret_val = e1000e_setup_copper_link(hw);
       
  1129 
       
  1130 	return 0;
       
  1131 }
       
  1132 
       
  1133 /**
       
  1134  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
       
  1135  *  @hw: pointer to the HW structure
       
  1136  *  @duplex: current duplex setting
       
  1137  *
       
  1138  *  Configure the KMRN interface by applying last minute quirks for
       
  1139  *  10/100 operation.
       
  1140  **/
       
  1141 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
       
  1142 {
       
  1143 	s32 ret_val = 0;
       
  1144 	u16 speed;
       
  1145 	u16 duplex;
       
  1146 
       
  1147 	if (hw->phy.media_type == e1000_media_type_copper) {
       
  1148 		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
       
  1149 		                                             &duplex);
       
  1150 		if (ret_val)
       
  1151 			return ret_val;
       
  1152 
       
  1153 		if (speed == SPEED_1000)
       
  1154 			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
       
  1155 		else
       
  1156 			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
       
  1157 	}
       
  1158 
       
  1159 	return ret_val;
       
  1160 }
       
  1161 
       
  1162 /**
       
  1163  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
       
  1164  *  @hw: pointer to the HW structure
       
  1165  *  @duplex: current duplex setting
       
  1166  *
       
  1167  *  Configure the KMRN interface by applying last minute quirks for
       
  1168  *  10/100 operation.
       
  1169  **/
       
  1170 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
       
  1171 {
       
  1172 	s32 ret_val;
       
  1173 	u32 tipg;
       
  1174 	u32 i = 0;
       
  1175 	u16 reg_data, reg_data2;
       
  1176 
       
  1177 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
       
  1178 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
       
  1179 	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
       
  1180 	                               reg_data);
       
  1181 	if (ret_val)
       
  1182 		return ret_val;
       
  1183 
       
  1184 	/* Configure Transmit Inter-Packet Gap */
       
  1185 	tipg = er32(TIPG);
       
  1186 	tipg &= ~E1000_TIPG_IPGT_MASK;
       
  1187 	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
       
  1188 	ew32(TIPG, tipg);
       
  1189 
       
  1190 	do {
       
  1191 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
       
  1192 		if (ret_val)
       
  1193 			return ret_val;
       
  1194 
       
  1195 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
       
  1196 		if (ret_val)
       
  1197 			return ret_val;
       
  1198 		i++;
       
  1199 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
       
  1200 
       
  1201 	if (duplex == HALF_DUPLEX)
       
  1202 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
       
  1203 	else
       
  1204 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
       
  1205 
       
  1206 	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
       
  1207 
       
  1208 	return 0;
       
  1209 }
       
  1210 
       
  1211 /**
       
  1212  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
       
  1213  *  @hw: pointer to the HW structure
       
  1214  *
       
  1215  *  Configure the KMRN interface by applying last minute quirks for
       
  1216  *  gigabit operation.
       
  1217  **/
       
  1218 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
       
  1219 {
       
  1220 	s32 ret_val;
       
  1221 	u16 reg_data, reg_data2;
       
  1222 	u32 tipg;
       
  1223 	u32 i = 0;
       
  1224 
       
  1225 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
       
  1226 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
       
  1227 	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
       
  1228 	                               reg_data);
       
  1229 	if (ret_val)
       
  1230 		return ret_val;
       
  1231 
       
  1232 	/* Configure Transmit Inter-Packet Gap */
       
  1233 	tipg = er32(TIPG);
       
  1234 	tipg &= ~E1000_TIPG_IPGT_MASK;
       
  1235 	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
       
  1236 	ew32(TIPG, tipg);
       
  1237 
       
  1238 	do {
       
  1239 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
       
  1240 		if (ret_val)
       
  1241 			return ret_val;
       
  1242 
       
  1243 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
       
  1244 		if (ret_val)
       
  1245 			return ret_val;
       
  1246 		i++;
       
  1247 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
       
  1248 
       
  1249 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
       
  1250 	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
       
  1251 
       
  1252 	return ret_val;
       
  1253 }
       
  1254 
       
  1255 /**
       
  1256  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
       
  1257  *  @hw: pointer to the HW structure
       
  1258  *  @offset: register offset to be read
       
  1259  *  @data: pointer to the read data
       
  1260  *
       
  1261  *  Acquire semaphore, then read the PHY register at offset
       
  1262  *  using the kumeran interface.  The information retrieved is stored in data.
       
  1263  *  Release the semaphore before exiting.
       
  1264  **/
       
  1265 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
       
  1266 					   u16 *data)
       
  1267 {
       
  1268 	u32 kmrnctrlsta;
       
  1269 	s32 ret_val = 0;
       
  1270 
       
  1271 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
       
  1272 	if (ret_val)
       
  1273 		return ret_val;
       
  1274 
       
  1275 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
  1276 	               E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
       
  1277 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
  1278 
       
  1279 	udelay(2);
       
  1280 
       
  1281 	kmrnctrlsta = er32(KMRNCTRLSTA);
       
  1282 	*data = (u16)kmrnctrlsta;
       
  1283 
       
  1284 	e1000_release_mac_csr_80003es2lan(hw);
       
  1285 
       
  1286 	return ret_val;
       
  1287 }
       
  1288 
       
  1289 /**
       
  1290  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
       
  1291  *  @hw: pointer to the HW structure
       
  1292  *  @offset: register offset to write to
       
  1293  *  @data: data to write at register offset
       
  1294  *
       
  1295  *  Acquire semaphore, then write the data to PHY register
       
  1296  *  at the offset using the kumeran interface.  Release semaphore
       
  1297  *  before exiting.
       
  1298  **/
       
  1299 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
       
  1300 					    u16 data)
       
  1301 {
       
  1302 	u32 kmrnctrlsta;
       
  1303 	s32 ret_val = 0;
       
  1304 
       
  1305 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
       
  1306 	if (ret_val)
       
  1307 		return ret_val;
       
  1308 
       
  1309 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
  1310 	               E1000_KMRNCTRLSTA_OFFSET) | data;
       
  1311 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
  1312 
       
  1313 	udelay(2);
       
  1314 
       
  1315 	e1000_release_mac_csr_80003es2lan(hw);
       
  1316 
       
  1317 	return ret_val;
       
  1318 }
       
  1319 
       
  1320 /**
       
  1321  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
       
  1322  *  @hw: pointer to the HW structure
       
  1323  *
       
  1324  *  Clears the hardware counters by reading the counter registers.
       
  1325  **/
       
  1326 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
       
  1327 {
       
  1328 	u32 temp;
       
  1329 
       
  1330 	e1000e_clear_hw_cntrs_base(hw);
       
  1331 
       
  1332 	temp = er32(PRC64);
       
  1333 	temp = er32(PRC127);
       
  1334 	temp = er32(PRC255);
       
  1335 	temp = er32(PRC511);
       
  1336 	temp = er32(PRC1023);
       
  1337 	temp = er32(PRC1522);
       
  1338 	temp = er32(PTC64);
       
  1339 	temp = er32(PTC127);
       
  1340 	temp = er32(PTC255);
       
  1341 	temp = er32(PTC511);
       
  1342 	temp = er32(PTC1023);
       
  1343 	temp = er32(PTC1522);
       
  1344 
       
  1345 	temp = er32(ALGNERRC);
       
  1346 	temp = er32(RXERRC);
       
  1347 	temp = er32(TNCRS);
       
  1348 	temp = er32(CEXTERR);
       
  1349 	temp = er32(TSCTC);
       
  1350 	temp = er32(TSCTFC);
       
  1351 
       
  1352 	temp = er32(MGTPRC);
       
  1353 	temp = er32(MGTPDC);
       
  1354 	temp = er32(MGTPTC);
       
  1355 
       
  1356 	temp = er32(IAC);
       
  1357 	temp = er32(ICRXOC);
       
  1358 
       
  1359 	temp = er32(ICRXPTC);
       
  1360 	temp = er32(ICRXATC);
       
  1361 	temp = er32(ICTXPTC);
       
  1362 	temp = er32(ICTXATC);
       
  1363 	temp = er32(ICTXQEC);
       
  1364 	temp = er32(ICTXQMTC);
       
  1365 	temp = er32(ICRXDMTC);
       
  1366 }
       
  1367 
       
  1368 static struct e1000_mac_operations es2_mac_ops = {
       
  1369 	.id_led_init		= e1000e_id_led_init,
       
  1370 	.check_mng_mode		= e1000e_check_mng_mode_generic,
       
  1371 	/* check_for_link dependent on media type */
       
  1372 	.cleanup_led		= e1000e_cleanup_led_generic,
       
  1373 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
       
  1374 	.get_bus_info		= e1000e_get_bus_info_pcie,
       
  1375 	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
       
  1376 	.led_on			= e1000e_led_on_generic,
       
  1377 	.led_off		= e1000e_led_off_generic,
       
  1378 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
       
  1379 	.reset_hw		= e1000_reset_hw_80003es2lan,
       
  1380 	.init_hw		= e1000_init_hw_80003es2lan,
       
  1381 	.setup_link		= e1000e_setup_link,
       
  1382 	/* setup_physical_interface dependent on media type */
       
  1383 	.setup_led		= e1000e_setup_led_generic,
       
  1384 };
       
  1385 
       
  1386 static struct e1000_phy_operations es2_phy_ops = {
       
  1387 	.acquire_phy		= e1000_acquire_phy_80003es2lan,
       
  1388 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1389 	.commit_phy	 	= e1000e_phy_sw_reset,
       
  1390 	.force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan,
       
  1391 	.get_cfg_done       	= e1000_get_cfg_done_80003es2lan,
       
  1392 	.get_cable_length   	= e1000_get_cable_length_80003es2lan,
       
  1393 	.get_phy_info       	= e1000e_get_phy_info_m88,
       
  1394 	.read_phy_reg       	= e1000_read_phy_reg_gg82563_80003es2lan,
       
  1395 	.release_phy		= e1000_release_phy_80003es2lan,
       
  1396 	.reset_phy	  	= e1000e_phy_hw_reset_generic,
       
  1397 	.set_d0_lplu_state  	= NULL,
       
  1398 	.set_d3_lplu_state  	= e1000e_set_d3_lplu_state,
       
  1399 	.write_phy_reg      	= e1000_write_phy_reg_gg82563_80003es2lan,
       
  1400 	.cfg_on_link_up      	= e1000_cfg_on_link_up_80003es2lan,
       
  1401 };
       
  1402 
       
  1403 static struct e1000_nvm_operations es2_nvm_ops = {
       
  1404 	.acquire_nvm		= e1000_acquire_nvm_80003es2lan,
       
  1405 	.read_nvm		= e1000e_read_nvm_eerd,
       
  1406 	.release_nvm		= e1000_release_nvm_80003es2lan,
       
  1407 	.update_nvm		= e1000e_update_nvm_checksum_generic,
       
  1408 	.valid_led_default	= e1000e_valid_led_default,
       
  1409 	.validate_nvm		= e1000e_validate_nvm_checksum_generic,
       
  1410 	.write_nvm		= e1000_write_nvm_80003es2lan,
       
  1411 };
       
  1412 
       
  1413 struct e1000_info e1000_es2_info = {
       
  1414 	.mac			= e1000_80003es2lan,
       
  1415 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1416 				  | FLAG_HAS_JUMBO_FRAMES
       
  1417 				  | FLAG_HAS_WOL
       
  1418 				  | FLAG_APME_IN_CTRL3
       
  1419 				  | FLAG_RX_CSUM_ENABLED
       
  1420 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  1421 				  | FLAG_RX_NEEDS_RESTART /* errata */
       
  1422 				  | FLAG_TARC_SET_BIT_ZERO /* errata */
       
  1423 				  | FLAG_APME_CHECK_PORT_B
       
  1424 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
       
  1425 				  | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
       
  1426 	.pba			= 38,
       
  1427 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  1428 	.get_variants		= e1000_get_variants_80003es2lan,
       
  1429 	.mac_ops		= &es2_mac_ops,
       
  1430 	.phy_ops		= &es2_phy_ops,
       
  1431 	.nvm_ops		= &es2_nvm_ops,
       
  1432 };
       
  1433