|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2008 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* |
|
30 * 82571EB Gigabit Ethernet Controller |
|
31 * 82571EB Gigabit Ethernet Controller (Copper) |
|
32 * 82571EB Gigabit Ethernet Controller (Fiber) |
|
33 * 82571EB Dual Port Gigabit Mezzanine Adapter |
|
34 * 82571EB Quad Port Gigabit Mezzanine Adapter |
|
35 * 82571PT Gigabit PT Quad Port Server ExpressModule |
|
36 * 82572EI Gigabit Ethernet Controller (Copper) |
|
37 * 82572EI Gigabit Ethernet Controller (Fiber) |
|
38 * 82572EI Gigabit Ethernet Controller |
|
39 * 82573V Gigabit Ethernet Controller (Copper) |
|
40 * 82573E Gigabit Ethernet Controller (Copper) |
|
41 * 82573L Gigabit Ethernet Controller |
|
42 * 82574L Gigabit Network Connection |
|
43 * 82583V Gigabit Network Connection |
|
44 */ |
|
45 |
|
46 #include <linux/netdevice.h> |
|
47 #include <linux/delay.h> |
|
48 #include <linux/pci.h> |
|
49 |
|
50 #include "e1000.h" |
|
51 |
|
52 #define ID_LED_RESERVED_F746 0xF746 |
|
53 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ |
|
54 (ID_LED_OFF1_ON2 << 8) | \ |
|
55 (ID_LED_DEF1_DEF2 << 4) | \ |
|
56 (ID_LED_DEF1_DEF2)) |
|
57 |
|
58 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 |
|
59 |
|
60 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */ |
|
61 |
|
62 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); |
|
63 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); |
|
64 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); |
|
65 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); |
|
66 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, |
|
67 u16 words, u16 *data); |
|
68 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); |
|
69 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); |
|
70 static s32 e1000_setup_link_82571(struct e1000_hw *hw); |
|
71 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); |
|
72 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); |
|
73 static s32 e1000_led_on_82574(struct e1000_hw *hw); |
|
74 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); |
|
75 |
|
76 /** |
|
77 * e1000_init_phy_params_82571 - Init PHY func ptrs. |
|
78 * @hw: pointer to the HW structure |
|
79 * |
|
80 * This is a function pointer entry point called by the api module. |
|
81 **/ |
|
82 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) |
|
83 { |
|
84 struct e1000_phy_info *phy = &hw->phy; |
|
85 s32 ret_val; |
|
86 |
|
87 if (hw->phy.media_type != e1000_media_type_copper) { |
|
88 phy->type = e1000_phy_none; |
|
89 return 0; |
|
90 } |
|
91 |
|
92 phy->addr = 1; |
|
93 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
94 phy->reset_delay_us = 100; |
|
95 |
|
96 switch (hw->mac.type) { |
|
97 case e1000_82571: |
|
98 case e1000_82572: |
|
99 phy->type = e1000_phy_igp_2; |
|
100 break; |
|
101 case e1000_82573: |
|
102 phy->type = e1000_phy_m88; |
|
103 break; |
|
104 case e1000_82574: |
|
105 case e1000_82583: |
|
106 phy->type = e1000_phy_bm; |
|
107 break; |
|
108 default: |
|
109 return -E1000_ERR_PHY; |
|
110 break; |
|
111 } |
|
112 |
|
113 /* This can only be done after all function pointers are setup. */ |
|
114 ret_val = e1000_get_phy_id_82571(hw); |
|
115 |
|
116 /* Verify phy id */ |
|
117 switch (hw->mac.type) { |
|
118 case e1000_82571: |
|
119 case e1000_82572: |
|
120 if (phy->id != IGP01E1000_I_PHY_ID) |
|
121 return -E1000_ERR_PHY; |
|
122 break; |
|
123 case e1000_82573: |
|
124 if (phy->id != M88E1111_I_PHY_ID) |
|
125 return -E1000_ERR_PHY; |
|
126 break; |
|
127 case e1000_82574: |
|
128 case e1000_82583: |
|
129 if (phy->id != BME1000_E_PHY_ID_R2) |
|
130 return -E1000_ERR_PHY; |
|
131 break; |
|
132 default: |
|
133 return -E1000_ERR_PHY; |
|
134 break; |
|
135 } |
|
136 |
|
137 return 0; |
|
138 } |
|
139 |
|
140 /** |
|
141 * e1000_init_nvm_params_82571 - Init NVM func ptrs. |
|
142 * @hw: pointer to the HW structure |
|
143 * |
|
144 * This is a function pointer entry point called by the api module. |
|
145 **/ |
|
146 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) |
|
147 { |
|
148 struct e1000_nvm_info *nvm = &hw->nvm; |
|
149 u32 eecd = er32(EECD); |
|
150 u16 size; |
|
151 |
|
152 nvm->opcode_bits = 8; |
|
153 nvm->delay_usec = 1; |
|
154 switch (nvm->override) { |
|
155 case e1000_nvm_override_spi_large: |
|
156 nvm->page_size = 32; |
|
157 nvm->address_bits = 16; |
|
158 break; |
|
159 case e1000_nvm_override_spi_small: |
|
160 nvm->page_size = 8; |
|
161 nvm->address_bits = 8; |
|
162 break; |
|
163 default: |
|
164 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
|
165 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
|
166 break; |
|
167 } |
|
168 |
|
169 switch (hw->mac.type) { |
|
170 case e1000_82573: |
|
171 case e1000_82574: |
|
172 case e1000_82583: |
|
173 if (((eecd >> 15) & 0x3) == 0x3) { |
|
174 nvm->type = e1000_nvm_flash_hw; |
|
175 nvm->word_size = 2048; |
|
176 /* |
|
177 * Autonomous Flash update bit must be cleared due |
|
178 * to Flash update issue. |
|
179 */ |
|
180 eecd &= ~E1000_EECD_AUPDEN; |
|
181 ew32(EECD, eecd); |
|
182 break; |
|
183 } |
|
184 /* Fall Through */ |
|
185 default: |
|
186 nvm->type = e1000_nvm_eeprom_spi; |
|
187 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
|
188 E1000_EECD_SIZE_EX_SHIFT); |
|
189 /* |
|
190 * Added to a constant, "size" becomes the left-shift value |
|
191 * for setting word_size. |
|
192 */ |
|
193 size += NVM_WORD_SIZE_BASE_SHIFT; |
|
194 |
|
195 /* EEPROM access above 16k is unsupported */ |
|
196 if (size > 14) |
|
197 size = 14; |
|
198 nvm->word_size = 1 << size; |
|
199 break; |
|
200 } |
|
201 |
|
202 return 0; |
|
203 } |
|
204 |
|
205 /** |
|
206 * e1000_init_mac_params_82571 - Init MAC func ptrs. |
|
207 * @hw: pointer to the HW structure |
|
208 * |
|
209 * This is a function pointer entry point called by the api module. |
|
210 **/ |
|
211 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter) |
|
212 { |
|
213 struct e1000_hw *hw = &adapter->hw; |
|
214 struct e1000_mac_info *mac = &hw->mac; |
|
215 struct e1000_mac_operations *func = &mac->ops; |
|
216 u32 swsm = 0; |
|
217 u32 swsm2 = 0; |
|
218 bool force_clear_smbi = false; |
|
219 |
|
220 /* Set media type */ |
|
221 switch (adapter->pdev->device) { |
|
222 case E1000_DEV_ID_82571EB_FIBER: |
|
223 case E1000_DEV_ID_82572EI_FIBER: |
|
224 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
225 hw->phy.media_type = e1000_media_type_fiber; |
|
226 break; |
|
227 case E1000_DEV_ID_82571EB_SERDES: |
|
228 case E1000_DEV_ID_82572EI_SERDES: |
|
229 case E1000_DEV_ID_82571EB_SERDES_DUAL: |
|
230 case E1000_DEV_ID_82571EB_SERDES_QUAD: |
|
231 hw->phy.media_type = e1000_media_type_internal_serdes; |
|
232 break; |
|
233 default: |
|
234 hw->phy.media_type = e1000_media_type_copper; |
|
235 break; |
|
236 } |
|
237 |
|
238 /* Set mta register count */ |
|
239 mac->mta_reg_count = 128; |
|
240 /* Set rar entry count */ |
|
241 mac->rar_entry_count = E1000_RAR_ENTRIES; |
|
242 /* Set if manageability features are enabled. */ |
|
243 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0; |
|
244 |
|
245 /* check for link */ |
|
246 switch (hw->phy.media_type) { |
|
247 case e1000_media_type_copper: |
|
248 func->setup_physical_interface = e1000_setup_copper_link_82571; |
|
249 func->check_for_link = e1000e_check_for_copper_link; |
|
250 func->get_link_up_info = e1000e_get_speed_and_duplex_copper; |
|
251 break; |
|
252 case e1000_media_type_fiber: |
|
253 func->setup_physical_interface = |
|
254 e1000_setup_fiber_serdes_link_82571; |
|
255 func->check_for_link = e1000e_check_for_fiber_link; |
|
256 func->get_link_up_info = |
|
257 e1000e_get_speed_and_duplex_fiber_serdes; |
|
258 break; |
|
259 case e1000_media_type_internal_serdes: |
|
260 func->setup_physical_interface = |
|
261 e1000_setup_fiber_serdes_link_82571; |
|
262 func->check_for_link = e1000_check_for_serdes_link_82571; |
|
263 func->get_link_up_info = |
|
264 e1000e_get_speed_and_duplex_fiber_serdes; |
|
265 break; |
|
266 default: |
|
267 return -E1000_ERR_CONFIG; |
|
268 break; |
|
269 } |
|
270 |
|
271 switch (hw->mac.type) { |
|
272 case e1000_82574: |
|
273 case e1000_82583: |
|
274 func->check_mng_mode = e1000_check_mng_mode_82574; |
|
275 func->led_on = e1000_led_on_82574; |
|
276 break; |
|
277 default: |
|
278 func->check_mng_mode = e1000e_check_mng_mode_generic; |
|
279 func->led_on = e1000e_led_on_generic; |
|
280 break; |
|
281 } |
|
282 |
|
283 /* |
|
284 * Ensure that the inter-port SWSM.SMBI lock bit is clear before |
|
285 * first NVM or PHY acess. This should be done for single-port |
|
286 * devices, and for one port only on dual-port devices so that |
|
287 * for those devices we can still use the SMBI lock to synchronize |
|
288 * inter-port accesses to the PHY & NVM. |
|
289 */ |
|
290 switch (hw->mac.type) { |
|
291 case e1000_82571: |
|
292 case e1000_82572: |
|
293 swsm2 = er32(SWSM2); |
|
294 |
|
295 if (!(swsm2 & E1000_SWSM2_LOCK)) { |
|
296 /* Only do this for the first interface on this card */ |
|
297 ew32(SWSM2, |
|
298 swsm2 | E1000_SWSM2_LOCK); |
|
299 force_clear_smbi = true; |
|
300 } else |
|
301 force_clear_smbi = false; |
|
302 break; |
|
303 default: |
|
304 force_clear_smbi = true; |
|
305 break; |
|
306 } |
|
307 |
|
308 if (force_clear_smbi) { |
|
309 /* Make sure SWSM.SMBI is clear */ |
|
310 swsm = er32(SWSM); |
|
311 if (swsm & E1000_SWSM_SMBI) { |
|
312 /* This bit should not be set on a first interface, and |
|
313 * indicates that the bootagent or EFI code has |
|
314 * improperly left this bit enabled |
|
315 */ |
|
316 hw_dbg(hw, "Please update your 82571 Bootagent\n"); |
|
317 } |
|
318 ew32(SWSM, swsm & ~E1000_SWSM_SMBI); |
|
319 } |
|
320 |
|
321 /* |
|
322 * Initialze device specific counter of SMBI acquisition |
|
323 * timeouts. |
|
324 */ |
|
325 hw->dev_spec.e82571.smb_counter = 0; |
|
326 |
|
327 return 0; |
|
328 } |
|
329 |
|
330 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) |
|
331 { |
|
332 struct e1000_hw *hw = &adapter->hw; |
|
333 static int global_quad_port_a; /* global port a indication */ |
|
334 struct pci_dev *pdev = adapter->pdev; |
|
335 u16 eeprom_data = 0; |
|
336 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; |
|
337 s32 rc; |
|
338 |
|
339 rc = e1000_init_mac_params_82571(adapter); |
|
340 if (rc) |
|
341 return rc; |
|
342 |
|
343 rc = e1000_init_nvm_params_82571(hw); |
|
344 if (rc) |
|
345 return rc; |
|
346 |
|
347 rc = e1000_init_phy_params_82571(hw); |
|
348 if (rc) |
|
349 return rc; |
|
350 |
|
351 /* tag quad port adapters first, it's used below */ |
|
352 switch (pdev->device) { |
|
353 case E1000_DEV_ID_82571EB_QUAD_COPPER: |
|
354 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
355 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: |
|
356 case E1000_DEV_ID_82571PT_QUAD_COPPER: |
|
357 adapter->flags |= FLAG_IS_QUAD_PORT; |
|
358 /* mark the first port */ |
|
359 if (global_quad_port_a == 0) |
|
360 adapter->flags |= FLAG_IS_QUAD_PORT_A; |
|
361 /* Reset for multiple quad port adapters */ |
|
362 global_quad_port_a++; |
|
363 if (global_quad_port_a == 4) |
|
364 global_quad_port_a = 0; |
|
365 break; |
|
366 default: |
|
367 break; |
|
368 } |
|
369 |
|
370 switch (adapter->hw.mac.type) { |
|
371 case e1000_82571: |
|
372 /* these dual ports don't have WoL on port B at all */ |
|
373 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || |
|
374 (pdev->device == E1000_DEV_ID_82571EB_SERDES) || |
|
375 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && |
|
376 (is_port_b)) |
|
377 adapter->flags &= ~FLAG_HAS_WOL; |
|
378 /* quad ports only support WoL on port A */ |
|
379 if (adapter->flags & FLAG_IS_QUAD_PORT && |
|
380 (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) |
|
381 adapter->flags &= ~FLAG_HAS_WOL; |
|
382 /* Does not support WoL on any port */ |
|
383 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) |
|
384 adapter->flags &= ~FLAG_HAS_WOL; |
|
385 break; |
|
386 |
|
387 case e1000_82573: |
|
388 if (pdev->device == E1000_DEV_ID_82573L) { |
|
389 if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1, |
|
390 &eeprom_data) < 0) |
|
391 break; |
|
392 if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) { |
|
393 adapter->flags |= FLAG_HAS_JUMBO_FRAMES; |
|
394 adapter->max_hw_frame_size = DEFAULT_JUMBO; |
|
395 } |
|
396 } |
|
397 break; |
|
398 default: |
|
399 break; |
|
400 } |
|
401 |
|
402 return 0; |
|
403 } |
|
404 |
|
405 /** |
|
406 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision |
|
407 * @hw: pointer to the HW structure |
|
408 * |
|
409 * Reads the PHY registers and stores the PHY ID and possibly the PHY |
|
410 * revision in the hardware structure. |
|
411 **/ |
|
412 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) |
|
413 { |
|
414 struct e1000_phy_info *phy = &hw->phy; |
|
415 s32 ret_val; |
|
416 u16 phy_id = 0; |
|
417 |
|
418 switch (hw->mac.type) { |
|
419 case e1000_82571: |
|
420 case e1000_82572: |
|
421 /* |
|
422 * The 82571 firmware may still be configuring the PHY. |
|
423 * In this case, we cannot access the PHY until the |
|
424 * configuration is done. So we explicitly set the |
|
425 * PHY ID. |
|
426 */ |
|
427 phy->id = IGP01E1000_I_PHY_ID; |
|
428 break; |
|
429 case e1000_82573: |
|
430 return e1000e_get_phy_id(hw); |
|
431 break; |
|
432 case e1000_82574: |
|
433 case e1000_82583: |
|
434 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); |
|
435 if (ret_val) |
|
436 return ret_val; |
|
437 |
|
438 phy->id = (u32)(phy_id << 16); |
|
439 udelay(20); |
|
440 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); |
|
441 if (ret_val) |
|
442 return ret_val; |
|
443 |
|
444 phy->id |= (u32)(phy_id); |
|
445 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); |
|
446 break; |
|
447 default: |
|
448 return -E1000_ERR_PHY; |
|
449 break; |
|
450 } |
|
451 |
|
452 return 0; |
|
453 } |
|
454 |
|
455 /** |
|
456 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore |
|
457 * @hw: pointer to the HW structure |
|
458 * |
|
459 * Acquire the HW semaphore to access the PHY or NVM |
|
460 **/ |
|
461 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) |
|
462 { |
|
463 u32 swsm; |
|
464 s32 sw_timeout = hw->nvm.word_size + 1; |
|
465 s32 fw_timeout = hw->nvm.word_size + 1; |
|
466 s32 i = 0; |
|
467 |
|
468 /* |
|
469 * If we have timedout 3 times on trying to acquire |
|
470 * the inter-port SMBI semaphore, there is old code |
|
471 * operating on the other port, and it is not |
|
472 * releasing SMBI. Modify the number of times that |
|
473 * we try for the semaphore to interwork with this |
|
474 * older code. |
|
475 */ |
|
476 if (hw->dev_spec.e82571.smb_counter > 2) |
|
477 sw_timeout = 1; |
|
478 |
|
479 /* Get the SW semaphore */ |
|
480 while (i < sw_timeout) { |
|
481 swsm = er32(SWSM); |
|
482 if (!(swsm & E1000_SWSM_SMBI)) |
|
483 break; |
|
484 |
|
485 udelay(50); |
|
486 i++; |
|
487 } |
|
488 |
|
489 if (i == sw_timeout) { |
|
490 hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n"); |
|
491 hw->dev_spec.e82571.smb_counter++; |
|
492 } |
|
493 /* Get the FW semaphore. */ |
|
494 for (i = 0; i < fw_timeout; i++) { |
|
495 swsm = er32(SWSM); |
|
496 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); |
|
497 |
|
498 /* Semaphore acquired if bit latched */ |
|
499 if (er32(SWSM) & E1000_SWSM_SWESMBI) |
|
500 break; |
|
501 |
|
502 udelay(50); |
|
503 } |
|
504 |
|
505 if (i == fw_timeout) { |
|
506 /* Release semaphores */ |
|
507 e1000_put_hw_semaphore_82571(hw); |
|
508 hw_dbg(hw, "Driver can't access the NVM\n"); |
|
509 return -E1000_ERR_NVM; |
|
510 } |
|
511 |
|
512 return 0; |
|
513 } |
|
514 |
|
515 /** |
|
516 * e1000_put_hw_semaphore_82571 - Release hardware semaphore |
|
517 * @hw: pointer to the HW structure |
|
518 * |
|
519 * Release hardware semaphore used to access the PHY or NVM |
|
520 **/ |
|
521 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) |
|
522 { |
|
523 u32 swsm; |
|
524 |
|
525 swsm = er32(SWSM); |
|
526 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); |
|
527 ew32(SWSM, swsm); |
|
528 } |
|
529 |
|
530 /** |
|
531 * e1000_acquire_nvm_82571 - Request for access to the EEPROM |
|
532 * @hw: pointer to the HW structure |
|
533 * |
|
534 * To gain access to the EEPROM, first we must obtain a hardware semaphore. |
|
535 * Then for non-82573 hardware, set the EEPROM access request bit and wait |
|
536 * for EEPROM access grant bit. If the access grant bit is not set, release |
|
537 * hardware semaphore. |
|
538 **/ |
|
539 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) |
|
540 { |
|
541 s32 ret_val; |
|
542 |
|
543 ret_val = e1000_get_hw_semaphore_82571(hw); |
|
544 if (ret_val) |
|
545 return ret_val; |
|
546 |
|
547 switch (hw->mac.type) { |
|
548 case e1000_82573: |
|
549 case e1000_82574: |
|
550 case e1000_82583: |
|
551 break; |
|
552 default: |
|
553 ret_val = e1000e_acquire_nvm(hw); |
|
554 break; |
|
555 } |
|
556 |
|
557 if (ret_val) |
|
558 e1000_put_hw_semaphore_82571(hw); |
|
559 |
|
560 return ret_val; |
|
561 } |
|
562 |
|
563 /** |
|
564 * e1000_release_nvm_82571 - Release exclusive access to EEPROM |
|
565 * @hw: pointer to the HW structure |
|
566 * |
|
567 * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
|
568 **/ |
|
569 static void e1000_release_nvm_82571(struct e1000_hw *hw) |
|
570 { |
|
571 e1000e_release_nvm(hw); |
|
572 e1000_put_hw_semaphore_82571(hw); |
|
573 } |
|
574 |
|
575 /** |
|
576 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface |
|
577 * @hw: pointer to the HW structure |
|
578 * @offset: offset within the EEPROM to be written to |
|
579 * @words: number of words to write |
|
580 * @data: 16 bit word(s) to be written to the EEPROM |
|
581 * |
|
582 * For non-82573 silicon, write data to EEPROM at offset using SPI interface. |
|
583 * |
|
584 * If e1000e_update_nvm_checksum is not called after this function, the |
|
585 * EEPROM will most likely contain an invalid checksum. |
|
586 **/ |
|
587 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, |
|
588 u16 *data) |
|
589 { |
|
590 s32 ret_val; |
|
591 |
|
592 switch (hw->mac.type) { |
|
593 case e1000_82573: |
|
594 case e1000_82574: |
|
595 case e1000_82583: |
|
596 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); |
|
597 break; |
|
598 case e1000_82571: |
|
599 case e1000_82572: |
|
600 ret_val = e1000e_write_nvm_spi(hw, offset, words, data); |
|
601 break; |
|
602 default: |
|
603 ret_val = -E1000_ERR_NVM; |
|
604 break; |
|
605 } |
|
606 |
|
607 return ret_val; |
|
608 } |
|
609 |
|
610 /** |
|
611 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum |
|
612 * @hw: pointer to the HW structure |
|
613 * |
|
614 * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
|
615 * up to the checksum. Then calculates the EEPROM checksum and writes the |
|
616 * value to the EEPROM. |
|
617 **/ |
|
618 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) |
|
619 { |
|
620 u32 eecd; |
|
621 s32 ret_val; |
|
622 u16 i; |
|
623 |
|
624 ret_val = e1000e_update_nvm_checksum_generic(hw); |
|
625 if (ret_val) |
|
626 return ret_val; |
|
627 |
|
628 /* |
|
629 * If our nvm is an EEPROM, then we're done |
|
630 * otherwise, commit the checksum to the flash NVM. |
|
631 */ |
|
632 if (hw->nvm.type != e1000_nvm_flash_hw) |
|
633 return ret_val; |
|
634 |
|
635 /* Check for pending operations. */ |
|
636 for (i = 0; i < E1000_FLASH_UPDATES; i++) { |
|
637 msleep(1); |
|
638 if ((er32(EECD) & E1000_EECD_FLUPD) == 0) |
|
639 break; |
|
640 } |
|
641 |
|
642 if (i == E1000_FLASH_UPDATES) |
|
643 return -E1000_ERR_NVM; |
|
644 |
|
645 /* Reset the firmware if using STM opcode. */ |
|
646 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { |
|
647 /* |
|
648 * The enabling of and the actual reset must be done |
|
649 * in two write cycles. |
|
650 */ |
|
651 ew32(HICR, E1000_HICR_FW_RESET_ENABLE); |
|
652 e1e_flush(); |
|
653 ew32(HICR, E1000_HICR_FW_RESET); |
|
654 } |
|
655 |
|
656 /* Commit the write to flash */ |
|
657 eecd = er32(EECD) | E1000_EECD_FLUPD; |
|
658 ew32(EECD, eecd); |
|
659 |
|
660 for (i = 0; i < E1000_FLASH_UPDATES; i++) { |
|
661 msleep(1); |
|
662 if ((er32(EECD) & E1000_EECD_FLUPD) == 0) |
|
663 break; |
|
664 } |
|
665 |
|
666 if (i == E1000_FLASH_UPDATES) |
|
667 return -E1000_ERR_NVM; |
|
668 |
|
669 return 0; |
|
670 } |
|
671 |
|
672 /** |
|
673 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum |
|
674 * @hw: pointer to the HW structure |
|
675 * |
|
676 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
|
677 * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
|
678 **/ |
|
679 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) |
|
680 { |
|
681 if (hw->nvm.type == e1000_nvm_flash_hw) |
|
682 e1000_fix_nvm_checksum_82571(hw); |
|
683 |
|
684 return e1000e_validate_nvm_checksum_generic(hw); |
|
685 } |
|
686 |
|
687 /** |
|
688 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon |
|
689 * @hw: pointer to the HW structure |
|
690 * @offset: offset within the EEPROM to be written to |
|
691 * @words: number of words to write |
|
692 * @data: 16 bit word(s) to be written to the EEPROM |
|
693 * |
|
694 * After checking for invalid values, poll the EEPROM to ensure the previous |
|
695 * command has completed before trying to write the next word. After write |
|
696 * poll for completion. |
|
697 * |
|
698 * If e1000e_update_nvm_checksum is not called after this function, the |
|
699 * EEPROM will most likely contain an invalid checksum. |
|
700 **/ |
|
701 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, |
|
702 u16 words, u16 *data) |
|
703 { |
|
704 struct e1000_nvm_info *nvm = &hw->nvm; |
|
705 u32 i; |
|
706 u32 eewr = 0; |
|
707 s32 ret_val = 0; |
|
708 |
|
709 /* |
|
710 * A check for invalid values: offset too large, too many words, |
|
711 * and not enough words. |
|
712 */ |
|
713 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
|
714 (words == 0)) { |
|
715 hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
|
716 return -E1000_ERR_NVM; |
|
717 } |
|
718 |
|
719 for (i = 0; i < words; i++) { |
|
720 eewr = (data[i] << E1000_NVM_RW_REG_DATA) | |
|
721 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | |
|
722 E1000_NVM_RW_REG_START; |
|
723 |
|
724 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); |
|
725 if (ret_val) |
|
726 break; |
|
727 |
|
728 ew32(EEWR, eewr); |
|
729 |
|
730 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); |
|
731 if (ret_val) |
|
732 break; |
|
733 } |
|
734 |
|
735 return ret_val; |
|
736 } |
|
737 |
|
738 /** |
|
739 * e1000_get_cfg_done_82571 - Poll for configuration done |
|
740 * @hw: pointer to the HW structure |
|
741 * |
|
742 * Reads the management control register for the config done bit to be set. |
|
743 **/ |
|
744 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) |
|
745 { |
|
746 s32 timeout = PHY_CFG_TIMEOUT; |
|
747 |
|
748 while (timeout) { |
|
749 if (er32(EEMNGCTL) & |
|
750 E1000_NVM_CFG_DONE_PORT_0) |
|
751 break; |
|
752 msleep(1); |
|
753 timeout--; |
|
754 } |
|
755 if (!timeout) { |
|
756 hw_dbg(hw, "MNG configuration cycle has not completed.\n"); |
|
757 return -E1000_ERR_RESET; |
|
758 } |
|
759 |
|
760 return 0; |
|
761 } |
|
762 |
|
763 /** |
|
764 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state |
|
765 * @hw: pointer to the HW structure |
|
766 * @active: TRUE to enable LPLU, FALSE to disable |
|
767 * |
|
768 * Sets the LPLU D0 state according to the active flag. When activating LPLU |
|
769 * this function also disables smart speed and vice versa. LPLU will not be |
|
770 * activated unless the device autonegotiation advertisement meets standards |
|
771 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function |
|
772 * pointer entry point only called by PHY setup routines. |
|
773 **/ |
|
774 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) |
|
775 { |
|
776 struct e1000_phy_info *phy = &hw->phy; |
|
777 s32 ret_val; |
|
778 u16 data; |
|
779 |
|
780 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); |
|
781 if (ret_val) |
|
782 return ret_val; |
|
783 |
|
784 if (active) { |
|
785 data |= IGP02E1000_PM_D0_LPLU; |
|
786 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
|
787 if (ret_val) |
|
788 return ret_val; |
|
789 |
|
790 /* When LPLU is enabled, we should disable SmartSpeed */ |
|
791 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
|
792 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
793 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
|
794 if (ret_val) |
|
795 return ret_val; |
|
796 } else { |
|
797 data &= ~IGP02E1000_PM_D0_LPLU; |
|
798 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
|
799 /* |
|
800 * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
|
801 * during Dx states where the power conservation is most |
|
802 * important. During driver activity we should enable |
|
803 * SmartSpeed, so performance is maintained. |
|
804 */ |
|
805 if (phy->smart_speed == e1000_smart_speed_on) { |
|
806 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
807 &data); |
|
808 if (ret_val) |
|
809 return ret_val; |
|
810 |
|
811 data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
812 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
813 data); |
|
814 if (ret_val) |
|
815 return ret_val; |
|
816 } else if (phy->smart_speed == e1000_smart_speed_off) { |
|
817 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
818 &data); |
|
819 if (ret_val) |
|
820 return ret_val; |
|
821 |
|
822 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
823 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
824 data); |
|
825 if (ret_val) |
|
826 return ret_val; |
|
827 } |
|
828 } |
|
829 |
|
830 return 0; |
|
831 } |
|
832 |
|
833 /** |
|
834 * e1000_reset_hw_82571 - Reset hardware |
|
835 * @hw: pointer to the HW structure |
|
836 * |
|
837 * This resets the hardware into a known state. This is a |
|
838 * function pointer entry point called by the api module. |
|
839 **/ |
|
840 static s32 e1000_reset_hw_82571(struct e1000_hw *hw) |
|
841 { |
|
842 u32 ctrl; |
|
843 u32 extcnf_ctrl; |
|
844 u32 ctrl_ext; |
|
845 u32 icr; |
|
846 s32 ret_val; |
|
847 u16 i = 0; |
|
848 |
|
849 /* |
|
850 * Prevent the PCI-E bus from sticking if there is no TLP connection |
|
851 * on the last TLP read/write transaction when MAC is reset. |
|
852 */ |
|
853 ret_val = e1000e_disable_pcie_master(hw); |
|
854 if (ret_val) |
|
855 hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); |
|
856 |
|
857 hw_dbg(hw, "Masking off all interrupts\n"); |
|
858 ew32(IMC, 0xffffffff); |
|
859 |
|
860 ew32(RCTL, 0); |
|
861 ew32(TCTL, E1000_TCTL_PSP); |
|
862 e1e_flush(); |
|
863 |
|
864 msleep(10); |
|
865 |
|
866 /* |
|
867 * Must acquire the MDIO ownership before MAC reset. |
|
868 * Ownership defaults to firmware after a reset. |
|
869 */ |
|
870 switch (hw->mac.type) { |
|
871 case e1000_82573: |
|
872 case e1000_82574: |
|
873 case e1000_82583: |
|
874 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
875 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
|
876 |
|
877 do { |
|
878 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
879 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
880 |
|
881 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) |
|
882 break; |
|
883 |
|
884 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
|
885 |
|
886 msleep(2); |
|
887 i++; |
|
888 } while (i < MDIO_OWNERSHIP_TIMEOUT); |
|
889 break; |
|
890 default: |
|
891 break; |
|
892 } |
|
893 |
|
894 ctrl = er32(CTRL); |
|
895 |
|
896 hw_dbg(hw, "Issuing a global reset to MAC\n"); |
|
897 ew32(CTRL, ctrl | E1000_CTRL_RST); |
|
898 |
|
899 if (hw->nvm.type == e1000_nvm_flash_hw) { |
|
900 udelay(10); |
|
901 ctrl_ext = er32(CTRL_EXT); |
|
902 ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
|
903 ew32(CTRL_EXT, ctrl_ext); |
|
904 e1e_flush(); |
|
905 } |
|
906 |
|
907 ret_val = e1000e_get_auto_rd_done(hw); |
|
908 if (ret_val) |
|
909 /* We don't want to continue accessing MAC registers. */ |
|
910 return ret_val; |
|
911 |
|
912 /* |
|
913 * Phy configuration from NVM just starts after EECD_AUTO_RD is set. |
|
914 * Need to wait for Phy configuration completion before accessing |
|
915 * NVM and Phy. |
|
916 */ |
|
917 |
|
918 switch (hw->mac.type) { |
|
919 case e1000_82573: |
|
920 case e1000_82574: |
|
921 case e1000_82583: |
|
922 msleep(25); |
|
923 break; |
|
924 default: |
|
925 break; |
|
926 } |
|
927 |
|
928 /* Clear any pending interrupt events. */ |
|
929 ew32(IMC, 0xffffffff); |
|
930 icr = er32(ICR); |
|
931 |
|
932 if (hw->mac.type == e1000_82571 && |
|
933 hw->dev_spec.e82571.alt_mac_addr_is_present) |
|
934 e1000e_set_laa_state_82571(hw, true); |
|
935 |
|
936 /* Reinitialize the 82571 serdes link state machine */ |
|
937 if (hw->phy.media_type == e1000_media_type_internal_serdes) |
|
938 hw->mac.serdes_link_state = e1000_serdes_link_down; |
|
939 |
|
940 return 0; |
|
941 } |
|
942 |
|
943 /** |
|
944 * e1000_init_hw_82571 - Initialize hardware |
|
945 * @hw: pointer to the HW structure |
|
946 * |
|
947 * This inits the hardware readying it for operation. |
|
948 **/ |
|
949 static s32 e1000_init_hw_82571(struct e1000_hw *hw) |
|
950 { |
|
951 struct e1000_mac_info *mac = &hw->mac; |
|
952 u32 reg_data; |
|
953 s32 ret_val; |
|
954 u16 i; |
|
955 u16 rar_count = mac->rar_entry_count; |
|
956 |
|
957 e1000_initialize_hw_bits_82571(hw); |
|
958 |
|
959 /* Initialize identification LED */ |
|
960 ret_val = e1000e_id_led_init(hw); |
|
961 if (ret_val) { |
|
962 hw_dbg(hw, "Error initializing identification LED\n"); |
|
963 return ret_val; |
|
964 } |
|
965 |
|
966 /* Disabling VLAN filtering */ |
|
967 hw_dbg(hw, "Initializing the IEEE VLAN\n"); |
|
968 e1000e_clear_vfta(hw); |
|
969 |
|
970 /* Setup the receive address. */ |
|
971 /* |
|
972 * If, however, a locally administered address was assigned to the |
|
973 * 82571, we must reserve a RAR for it to work around an issue where |
|
974 * resetting one port will reload the MAC on the other port. |
|
975 */ |
|
976 if (e1000e_get_laa_state_82571(hw)) |
|
977 rar_count--; |
|
978 e1000e_init_rx_addrs(hw, rar_count); |
|
979 |
|
980 /* Zero out the Multicast HASH table */ |
|
981 hw_dbg(hw, "Zeroing the MTA\n"); |
|
982 for (i = 0; i < mac->mta_reg_count; i++) |
|
983 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
|
984 |
|
985 /* Setup link and flow control */ |
|
986 ret_val = e1000_setup_link_82571(hw); |
|
987 |
|
988 /* Set the transmit descriptor write-back policy */ |
|
989 reg_data = er32(TXDCTL(0)); |
|
990 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
991 E1000_TXDCTL_FULL_TX_DESC_WB | |
|
992 E1000_TXDCTL_COUNT_DESC; |
|
993 ew32(TXDCTL(0), reg_data); |
|
994 |
|
995 /* ...for both queues. */ |
|
996 switch (mac->type) { |
|
997 case e1000_82573: |
|
998 case e1000_82574: |
|
999 case e1000_82583: |
|
1000 e1000e_enable_tx_pkt_filtering(hw); |
|
1001 reg_data = er32(GCR); |
|
1002 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; |
|
1003 ew32(GCR, reg_data); |
|
1004 break; |
|
1005 default: |
|
1006 reg_data = er32(TXDCTL(1)); |
|
1007 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
1008 E1000_TXDCTL_FULL_TX_DESC_WB | |
|
1009 E1000_TXDCTL_COUNT_DESC; |
|
1010 ew32(TXDCTL(1), reg_data); |
|
1011 break; |
|
1012 } |
|
1013 |
|
1014 /* |
|
1015 * Clear all of the statistics registers (clear on read). It is |
|
1016 * important that we do this after we have tried to establish link |
|
1017 * because the symbol error count will increment wildly if there |
|
1018 * is no link. |
|
1019 */ |
|
1020 e1000_clear_hw_cntrs_82571(hw); |
|
1021 |
|
1022 return ret_val; |
|
1023 } |
|
1024 |
|
1025 /** |
|
1026 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits |
|
1027 * @hw: pointer to the HW structure |
|
1028 * |
|
1029 * Initializes required hardware-dependent bits needed for normal operation. |
|
1030 **/ |
|
1031 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) |
|
1032 { |
|
1033 u32 reg; |
|
1034 |
|
1035 /* Transmit Descriptor Control 0 */ |
|
1036 reg = er32(TXDCTL(0)); |
|
1037 reg |= (1 << 22); |
|
1038 ew32(TXDCTL(0), reg); |
|
1039 |
|
1040 /* Transmit Descriptor Control 1 */ |
|
1041 reg = er32(TXDCTL(1)); |
|
1042 reg |= (1 << 22); |
|
1043 ew32(TXDCTL(1), reg); |
|
1044 |
|
1045 /* Transmit Arbitration Control 0 */ |
|
1046 reg = er32(TARC(0)); |
|
1047 reg &= ~(0xF << 27); /* 30:27 */ |
|
1048 switch (hw->mac.type) { |
|
1049 case e1000_82571: |
|
1050 case e1000_82572: |
|
1051 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); |
|
1052 break; |
|
1053 default: |
|
1054 break; |
|
1055 } |
|
1056 ew32(TARC(0), reg); |
|
1057 |
|
1058 /* Transmit Arbitration Control 1 */ |
|
1059 reg = er32(TARC(1)); |
|
1060 switch (hw->mac.type) { |
|
1061 case e1000_82571: |
|
1062 case e1000_82572: |
|
1063 reg &= ~((1 << 29) | (1 << 30)); |
|
1064 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); |
|
1065 if (er32(TCTL) & E1000_TCTL_MULR) |
|
1066 reg &= ~(1 << 28); |
|
1067 else |
|
1068 reg |= (1 << 28); |
|
1069 ew32(TARC(1), reg); |
|
1070 break; |
|
1071 default: |
|
1072 break; |
|
1073 } |
|
1074 |
|
1075 /* Device Control */ |
|
1076 switch (hw->mac.type) { |
|
1077 case e1000_82573: |
|
1078 case e1000_82574: |
|
1079 case e1000_82583: |
|
1080 reg = er32(CTRL); |
|
1081 reg &= ~(1 << 29); |
|
1082 ew32(CTRL, reg); |
|
1083 break; |
|
1084 default: |
|
1085 break; |
|
1086 } |
|
1087 |
|
1088 /* Extended Device Control */ |
|
1089 switch (hw->mac.type) { |
|
1090 case e1000_82573: |
|
1091 case e1000_82574: |
|
1092 case e1000_82583: |
|
1093 reg = er32(CTRL_EXT); |
|
1094 reg &= ~(1 << 23); |
|
1095 reg |= (1 << 22); |
|
1096 ew32(CTRL_EXT, reg); |
|
1097 break; |
|
1098 default: |
|
1099 break; |
|
1100 } |
|
1101 |
|
1102 if (hw->mac.type == e1000_82571) { |
|
1103 reg = er32(PBA_ECC); |
|
1104 reg |= E1000_PBA_ECC_CORR_EN; |
|
1105 ew32(PBA_ECC, reg); |
|
1106 } |
|
1107 /* |
|
1108 * Workaround for hardware errata. |
|
1109 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 |
|
1110 */ |
|
1111 |
|
1112 if ((hw->mac.type == e1000_82571) || |
|
1113 (hw->mac.type == e1000_82572)) { |
|
1114 reg = er32(CTRL_EXT); |
|
1115 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; |
|
1116 ew32(CTRL_EXT, reg); |
|
1117 } |
|
1118 |
|
1119 |
|
1120 /* PCI-Ex Control Registers */ |
|
1121 switch (hw->mac.type) { |
|
1122 case e1000_82574: |
|
1123 case e1000_82583: |
|
1124 reg = er32(GCR); |
|
1125 reg |= (1 << 22); |
|
1126 ew32(GCR, reg); |
|
1127 |
|
1128 reg = er32(GCR2); |
|
1129 reg |= 1; |
|
1130 ew32(GCR2, reg); |
|
1131 break; |
|
1132 default: |
|
1133 break; |
|
1134 } |
|
1135 |
|
1136 return; |
|
1137 } |
|
1138 |
|
1139 /** |
|
1140 * e1000e_clear_vfta - Clear VLAN filter table |
|
1141 * @hw: pointer to the HW structure |
|
1142 * |
|
1143 * Clears the register array which contains the VLAN filter table by |
|
1144 * setting all the values to 0. |
|
1145 **/ |
|
1146 void e1000e_clear_vfta(struct e1000_hw *hw) |
|
1147 { |
|
1148 u32 offset; |
|
1149 u32 vfta_value = 0; |
|
1150 u32 vfta_offset = 0; |
|
1151 u32 vfta_bit_in_reg = 0; |
|
1152 |
|
1153 switch (hw->mac.type) { |
|
1154 case e1000_82573: |
|
1155 case e1000_82574: |
|
1156 case e1000_82583: |
|
1157 if (hw->mng_cookie.vlan_id != 0) { |
|
1158 /* |
|
1159 * The VFTA is a 4096b bit-field, each identifying |
|
1160 * a single VLAN ID. The following operations |
|
1161 * determine which 32b entry (i.e. offset) into the |
|
1162 * array we want to set the VLAN ID (i.e. bit) of |
|
1163 * the manageability unit. |
|
1164 */ |
|
1165 vfta_offset = (hw->mng_cookie.vlan_id >> |
|
1166 E1000_VFTA_ENTRY_SHIFT) & |
|
1167 E1000_VFTA_ENTRY_MASK; |
|
1168 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & |
|
1169 E1000_VFTA_ENTRY_BIT_SHIFT_MASK); |
|
1170 } |
|
1171 break; |
|
1172 default: |
|
1173 break; |
|
1174 } |
|
1175 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
|
1176 /* |
|
1177 * If the offset we want to clear is the same offset of the |
|
1178 * manageability VLAN ID, then clear all bits except that of |
|
1179 * the manageability unit. |
|
1180 */ |
|
1181 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
|
1182 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); |
|
1183 e1e_flush(); |
|
1184 } |
|
1185 } |
|
1186 |
|
1187 /** |
|
1188 * e1000_check_mng_mode_82574 - Check manageability is enabled |
|
1189 * @hw: pointer to the HW structure |
|
1190 * |
|
1191 * Reads the NVM Initialization Control Word 2 and returns true |
|
1192 * (>0) if any manageability is enabled, else false (0). |
|
1193 **/ |
|
1194 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) |
|
1195 { |
|
1196 u16 data; |
|
1197 |
|
1198 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); |
|
1199 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; |
|
1200 } |
|
1201 |
|
1202 /** |
|
1203 * e1000_led_on_82574 - Turn LED on |
|
1204 * @hw: pointer to the HW structure |
|
1205 * |
|
1206 * Turn LED on. |
|
1207 **/ |
|
1208 static s32 e1000_led_on_82574(struct e1000_hw *hw) |
|
1209 { |
|
1210 u32 ctrl; |
|
1211 u32 i; |
|
1212 |
|
1213 ctrl = hw->mac.ledctl_mode2; |
|
1214 if (!(E1000_STATUS_LU & er32(STATUS))) { |
|
1215 /* |
|
1216 * If no link, then turn LED on by setting the invert bit |
|
1217 * for each LED that's "on" (0x0E) in ledctl_mode2. |
|
1218 */ |
|
1219 for (i = 0; i < 4; i++) |
|
1220 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == |
|
1221 E1000_LEDCTL_MODE_LED_ON) |
|
1222 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); |
|
1223 } |
|
1224 ew32(LEDCTL, ctrl); |
|
1225 |
|
1226 return 0; |
|
1227 } |
|
1228 |
|
1229 /** |
|
1230 * e1000_update_mc_addr_list_82571 - Update Multicast addresses |
|
1231 * @hw: pointer to the HW structure |
|
1232 * @mc_addr_list: array of multicast addresses to program |
|
1233 * @mc_addr_count: number of multicast addresses to program |
|
1234 * @rar_used_count: the first RAR register free to program |
|
1235 * @rar_count: total number of supported Receive Address Registers |
|
1236 * |
|
1237 * Updates the Receive Address Registers and Multicast Table Array. |
|
1238 * The caller must have a packed mc_addr_list of multicast addresses. |
|
1239 * The parameter rar_count will usually be hw->mac.rar_entry_count |
|
1240 * unless there are workarounds that change this. |
|
1241 **/ |
|
1242 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw, |
|
1243 u8 *mc_addr_list, |
|
1244 u32 mc_addr_count, |
|
1245 u32 rar_used_count, |
|
1246 u32 rar_count) |
|
1247 { |
|
1248 if (e1000e_get_laa_state_82571(hw)) |
|
1249 rar_count--; |
|
1250 |
|
1251 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count, |
|
1252 rar_used_count, rar_count); |
|
1253 } |
|
1254 |
|
1255 /** |
|
1256 * e1000_setup_link_82571 - Setup flow control and link settings |
|
1257 * @hw: pointer to the HW structure |
|
1258 * |
|
1259 * Determines which flow control settings to use, then configures flow |
|
1260 * control. Calls the appropriate media-specific link configuration |
|
1261 * function. Assuming the adapter has a valid link partner, a valid link |
|
1262 * should be established. Assumes the hardware has previously been reset |
|
1263 * and the transmitter and receiver are not enabled. |
|
1264 **/ |
|
1265 static s32 e1000_setup_link_82571(struct e1000_hw *hw) |
|
1266 { |
|
1267 /* |
|
1268 * 82573 does not have a word in the NVM to determine |
|
1269 * the default flow control setting, so we explicitly |
|
1270 * set it to full. |
|
1271 */ |
|
1272 switch (hw->mac.type) { |
|
1273 case e1000_82573: |
|
1274 case e1000_82574: |
|
1275 case e1000_82583: |
|
1276 if (hw->fc.requested_mode == e1000_fc_default) |
|
1277 hw->fc.requested_mode = e1000_fc_full; |
|
1278 break; |
|
1279 default: |
|
1280 break; |
|
1281 } |
|
1282 |
|
1283 return e1000e_setup_link(hw); |
|
1284 } |
|
1285 |
|
1286 /** |
|
1287 * e1000_setup_copper_link_82571 - Configure copper link settings |
|
1288 * @hw: pointer to the HW structure |
|
1289 * |
|
1290 * Configures the link for auto-neg or forced speed and duplex. Then we check |
|
1291 * for link, once link is established calls to configure collision distance |
|
1292 * and flow control are called. |
|
1293 **/ |
|
1294 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) |
|
1295 { |
|
1296 u32 ctrl; |
|
1297 u32 led_ctrl; |
|
1298 s32 ret_val; |
|
1299 |
|
1300 ctrl = er32(CTRL); |
|
1301 ctrl |= E1000_CTRL_SLU; |
|
1302 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1303 ew32(CTRL, ctrl); |
|
1304 |
|
1305 switch (hw->phy.type) { |
|
1306 case e1000_phy_m88: |
|
1307 case e1000_phy_bm: |
|
1308 ret_val = e1000e_copper_link_setup_m88(hw); |
|
1309 break; |
|
1310 case e1000_phy_igp_2: |
|
1311 ret_val = e1000e_copper_link_setup_igp(hw); |
|
1312 /* Setup activity LED */ |
|
1313 led_ctrl = er32(LEDCTL); |
|
1314 led_ctrl &= IGP_ACTIVITY_LED_MASK; |
|
1315 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
|
1316 ew32(LEDCTL, led_ctrl); |
|
1317 break; |
|
1318 default: |
|
1319 return -E1000_ERR_PHY; |
|
1320 break; |
|
1321 } |
|
1322 |
|
1323 if (ret_val) |
|
1324 return ret_val; |
|
1325 |
|
1326 ret_val = e1000e_setup_copper_link(hw); |
|
1327 |
|
1328 return ret_val; |
|
1329 } |
|
1330 |
|
1331 /** |
|
1332 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes |
|
1333 * @hw: pointer to the HW structure |
|
1334 * |
|
1335 * Configures collision distance and flow control for fiber and serdes links. |
|
1336 * Upon successful setup, poll for link. |
|
1337 **/ |
|
1338 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) |
|
1339 { |
|
1340 switch (hw->mac.type) { |
|
1341 case e1000_82571: |
|
1342 case e1000_82572: |
|
1343 /* |
|
1344 * If SerDes loopback mode is entered, there is no form |
|
1345 * of reset to take the adapter out of that mode. So we |
|
1346 * have to explicitly take the adapter out of loopback |
|
1347 * mode. This prevents drivers from twiddling their thumbs |
|
1348 * if another tool failed to take it out of loopback mode. |
|
1349 */ |
|
1350 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); |
|
1351 break; |
|
1352 default: |
|
1353 break; |
|
1354 } |
|
1355 |
|
1356 return e1000e_setup_fiber_serdes_link(hw); |
|
1357 } |
|
1358 |
|
1359 /** |
|
1360 * e1000_check_for_serdes_link_82571 - Check for link (Serdes) |
|
1361 * @hw: pointer to the HW structure |
|
1362 * |
|
1363 * Checks for link up on the hardware. If link is not up and we have |
|
1364 * a signal, then we need to force link up. |
|
1365 **/ |
|
1366 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) |
|
1367 { |
|
1368 struct e1000_mac_info *mac = &hw->mac; |
|
1369 u32 rxcw; |
|
1370 u32 ctrl; |
|
1371 u32 status; |
|
1372 s32 ret_val = 0; |
|
1373 |
|
1374 ctrl = er32(CTRL); |
|
1375 status = er32(STATUS); |
|
1376 rxcw = er32(RXCW); |
|
1377 |
|
1378 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { |
|
1379 |
|
1380 /* Receiver is synchronized with no invalid bits. */ |
|
1381 switch (mac->serdes_link_state) { |
|
1382 case e1000_serdes_link_autoneg_complete: |
|
1383 if (!(status & E1000_STATUS_LU)) { |
|
1384 /* |
|
1385 * We have lost link, retry autoneg before |
|
1386 * reporting link failure |
|
1387 */ |
|
1388 mac->serdes_link_state = |
|
1389 e1000_serdes_link_autoneg_progress; |
|
1390 hw_dbg(hw, "AN_UP -> AN_PROG\n"); |
|
1391 } |
|
1392 break; |
|
1393 |
|
1394 case e1000_serdes_link_forced_up: |
|
1395 /* |
|
1396 * If we are receiving /C/ ordered sets, re-enable |
|
1397 * auto-negotiation in the TXCW register and disable |
|
1398 * forced link in the Device Control register in an |
|
1399 * attempt to auto-negotiate with our link partner. |
|
1400 */ |
|
1401 if (rxcw & E1000_RXCW_C) { |
|
1402 /* Enable autoneg, and unforce link up */ |
|
1403 ew32(TXCW, mac->txcw); |
|
1404 ew32(CTRL, |
|
1405 (ctrl & ~E1000_CTRL_SLU)); |
|
1406 mac->serdes_link_state = |
|
1407 e1000_serdes_link_autoneg_progress; |
|
1408 hw_dbg(hw, "FORCED_UP -> AN_PROG\n"); |
|
1409 } |
|
1410 break; |
|
1411 |
|
1412 case e1000_serdes_link_autoneg_progress: |
|
1413 /* |
|
1414 * If the LU bit is set in the STATUS register, |
|
1415 * autoneg has completed sucessfully. If not, |
|
1416 * try foring the link because the far end may be |
|
1417 * available but not capable of autonegotiation. |
|
1418 */ |
|
1419 if (status & E1000_STATUS_LU) { |
|
1420 mac->serdes_link_state = |
|
1421 e1000_serdes_link_autoneg_complete; |
|
1422 hw_dbg(hw, "AN_PROG -> AN_UP\n"); |
|
1423 } else { |
|
1424 /* |
|
1425 * Disable autoneg, force link up and |
|
1426 * full duplex, and change state to forced |
|
1427 */ |
|
1428 ew32(TXCW, |
|
1429 (mac->txcw & ~E1000_TXCW_ANE)); |
|
1430 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
|
1431 ew32(CTRL, ctrl); |
|
1432 |
|
1433 /* Configure Flow Control after link up. */ |
|
1434 ret_val = |
|
1435 e1000e_config_fc_after_link_up(hw); |
|
1436 if (ret_val) { |
|
1437 hw_dbg(hw, "Error config flow control\n"); |
|
1438 break; |
|
1439 } |
|
1440 mac->serdes_link_state = |
|
1441 e1000_serdes_link_forced_up; |
|
1442 hw_dbg(hw, "AN_PROG -> FORCED_UP\n"); |
|
1443 } |
|
1444 mac->serdes_has_link = true; |
|
1445 break; |
|
1446 |
|
1447 case e1000_serdes_link_down: |
|
1448 default: |
|
1449 /* The link was down but the receiver has now gained |
|
1450 * valid sync, so lets see if we can bring the link |
|
1451 * up. */ |
|
1452 ew32(TXCW, mac->txcw); |
|
1453 ew32(CTRL, |
|
1454 (ctrl & ~E1000_CTRL_SLU)); |
|
1455 mac->serdes_link_state = |
|
1456 e1000_serdes_link_autoneg_progress; |
|
1457 hw_dbg(hw, "DOWN -> AN_PROG\n"); |
|
1458 break; |
|
1459 } |
|
1460 } else { |
|
1461 if (!(rxcw & E1000_RXCW_SYNCH)) { |
|
1462 mac->serdes_has_link = false; |
|
1463 mac->serdes_link_state = e1000_serdes_link_down; |
|
1464 hw_dbg(hw, "ANYSTATE -> DOWN\n"); |
|
1465 } else { |
|
1466 /* |
|
1467 * We have sync, and can tolerate one |
|
1468 * invalid (IV) codeword before declaring |
|
1469 * link down, so reread to look again |
|
1470 */ |
|
1471 udelay(10); |
|
1472 rxcw = er32(RXCW); |
|
1473 if (rxcw & E1000_RXCW_IV) { |
|
1474 mac->serdes_link_state = e1000_serdes_link_down; |
|
1475 mac->serdes_has_link = false; |
|
1476 hw_dbg(hw, "ANYSTATE -> DOWN\n"); |
|
1477 } |
|
1478 } |
|
1479 } |
|
1480 |
|
1481 return ret_val; |
|
1482 } |
|
1483 |
|
1484 /** |
|
1485 * e1000_valid_led_default_82571 - Verify a valid default LED config |
|
1486 * @hw: pointer to the HW structure |
|
1487 * @data: pointer to the NVM (EEPROM) |
|
1488 * |
|
1489 * Read the EEPROM for the current default LED configuration. If the |
|
1490 * LED configuration is not valid, set to a valid LED configuration. |
|
1491 **/ |
|
1492 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) |
|
1493 { |
|
1494 s32 ret_val; |
|
1495 |
|
1496 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
|
1497 if (ret_val) { |
|
1498 hw_dbg(hw, "NVM Read Error\n"); |
|
1499 return ret_val; |
|
1500 } |
|
1501 |
|
1502 switch (hw->mac.type) { |
|
1503 case e1000_82573: |
|
1504 case e1000_82574: |
|
1505 case e1000_82583: |
|
1506 if (*data == ID_LED_RESERVED_F746) |
|
1507 *data = ID_LED_DEFAULT_82573; |
|
1508 break; |
|
1509 default: |
|
1510 if (*data == ID_LED_RESERVED_0000 || |
|
1511 *data == ID_LED_RESERVED_FFFF) |
|
1512 *data = ID_LED_DEFAULT; |
|
1513 break; |
|
1514 } |
|
1515 |
|
1516 return 0; |
|
1517 } |
|
1518 |
|
1519 /** |
|
1520 * e1000e_get_laa_state_82571 - Get locally administered address state |
|
1521 * @hw: pointer to the HW structure |
|
1522 * |
|
1523 * Retrieve and return the current locally administered address state. |
|
1524 **/ |
|
1525 bool e1000e_get_laa_state_82571(struct e1000_hw *hw) |
|
1526 { |
|
1527 if (hw->mac.type != e1000_82571) |
|
1528 return 0; |
|
1529 |
|
1530 return hw->dev_spec.e82571.laa_is_present; |
|
1531 } |
|
1532 |
|
1533 /** |
|
1534 * e1000e_set_laa_state_82571 - Set locally administered address state |
|
1535 * @hw: pointer to the HW structure |
|
1536 * @state: enable/disable locally administered address |
|
1537 * |
|
1538 * Enable/Disable the current locally administers address state. |
|
1539 **/ |
|
1540 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) |
|
1541 { |
|
1542 if (hw->mac.type != e1000_82571) |
|
1543 return; |
|
1544 |
|
1545 hw->dev_spec.e82571.laa_is_present = state; |
|
1546 |
|
1547 /* If workaround is activated... */ |
|
1548 if (state) |
|
1549 /* |
|
1550 * Hold a copy of the LAA in RAR[14] This is done so that |
|
1551 * between the time RAR[0] gets clobbered and the time it |
|
1552 * gets fixed, the actual LAA is in one of the RARs and no |
|
1553 * incoming packets directed to this port are dropped. |
|
1554 * Eventually the LAA will be in RAR[0] and RAR[14]. |
|
1555 */ |
|
1556 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); |
|
1557 } |
|
1558 |
|
1559 /** |
|
1560 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum |
|
1561 * @hw: pointer to the HW structure |
|
1562 * |
|
1563 * Verifies that the EEPROM has completed the update. After updating the |
|
1564 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If |
|
1565 * the checksum fix is not implemented, we need to set the bit and update |
|
1566 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, |
|
1567 * we need to return bad checksum. |
|
1568 **/ |
|
1569 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) |
|
1570 { |
|
1571 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1572 s32 ret_val; |
|
1573 u16 data; |
|
1574 |
|
1575 if (nvm->type != e1000_nvm_flash_hw) |
|
1576 return 0; |
|
1577 |
|
1578 /* |
|
1579 * Check bit 4 of word 10h. If it is 0, firmware is done updating |
|
1580 * 10h-12h. Checksum may need to be fixed. |
|
1581 */ |
|
1582 ret_val = e1000_read_nvm(hw, 0x10, 1, &data); |
|
1583 if (ret_val) |
|
1584 return ret_val; |
|
1585 |
|
1586 if (!(data & 0x10)) { |
|
1587 /* |
|
1588 * Read 0x23 and check bit 15. This bit is a 1 |
|
1589 * when the checksum has already been fixed. If |
|
1590 * the checksum is still wrong and this bit is a |
|
1591 * 1, we need to return bad checksum. Otherwise, |
|
1592 * we need to set this bit to a 1 and update the |
|
1593 * checksum. |
|
1594 */ |
|
1595 ret_val = e1000_read_nvm(hw, 0x23, 1, &data); |
|
1596 if (ret_val) |
|
1597 return ret_val; |
|
1598 |
|
1599 if (!(data & 0x8000)) { |
|
1600 data |= 0x8000; |
|
1601 ret_val = e1000_write_nvm(hw, 0x23, 1, &data); |
|
1602 if (ret_val) |
|
1603 return ret_val; |
|
1604 ret_val = e1000e_update_nvm_checksum(hw); |
|
1605 } |
|
1606 } |
|
1607 |
|
1608 return 0; |
|
1609 } |
|
1610 |
|
1611 /** |
|
1612 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters |
|
1613 * @hw: pointer to the HW structure |
|
1614 * |
|
1615 * Clears the hardware counters by reading the counter registers. |
|
1616 **/ |
|
1617 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) |
|
1618 { |
|
1619 u32 temp; |
|
1620 |
|
1621 e1000e_clear_hw_cntrs_base(hw); |
|
1622 |
|
1623 temp = er32(PRC64); |
|
1624 temp = er32(PRC127); |
|
1625 temp = er32(PRC255); |
|
1626 temp = er32(PRC511); |
|
1627 temp = er32(PRC1023); |
|
1628 temp = er32(PRC1522); |
|
1629 temp = er32(PTC64); |
|
1630 temp = er32(PTC127); |
|
1631 temp = er32(PTC255); |
|
1632 temp = er32(PTC511); |
|
1633 temp = er32(PTC1023); |
|
1634 temp = er32(PTC1522); |
|
1635 |
|
1636 temp = er32(ALGNERRC); |
|
1637 temp = er32(RXERRC); |
|
1638 temp = er32(TNCRS); |
|
1639 temp = er32(CEXTERR); |
|
1640 temp = er32(TSCTC); |
|
1641 temp = er32(TSCTFC); |
|
1642 |
|
1643 temp = er32(MGTPRC); |
|
1644 temp = er32(MGTPDC); |
|
1645 temp = er32(MGTPTC); |
|
1646 |
|
1647 temp = er32(IAC); |
|
1648 temp = er32(ICRXOC); |
|
1649 |
|
1650 temp = er32(ICRXPTC); |
|
1651 temp = er32(ICRXATC); |
|
1652 temp = er32(ICTXPTC); |
|
1653 temp = er32(ICTXATC); |
|
1654 temp = er32(ICTXQEC); |
|
1655 temp = er32(ICTXQMTC); |
|
1656 temp = er32(ICRXDMTC); |
|
1657 } |
|
1658 |
|
1659 static struct e1000_mac_operations e82571_mac_ops = { |
|
1660 /* .check_mng_mode: mac type dependent */ |
|
1661 /* .check_for_link: media type dependent */ |
|
1662 .id_led_init = e1000e_id_led_init, |
|
1663 .cleanup_led = e1000e_cleanup_led_generic, |
|
1664 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, |
|
1665 .get_bus_info = e1000e_get_bus_info_pcie, |
|
1666 /* .get_link_up_info: media type dependent */ |
|
1667 /* .led_on: mac type dependent */ |
|
1668 .led_off = e1000e_led_off_generic, |
|
1669 .update_mc_addr_list = e1000_update_mc_addr_list_82571, |
|
1670 .reset_hw = e1000_reset_hw_82571, |
|
1671 .init_hw = e1000_init_hw_82571, |
|
1672 .setup_link = e1000_setup_link_82571, |
|
1673 /* .setup_physical_interface: media type dependent */ |
|
1674 .setup_led = e1000e_setup_led_generic, |
|
1675 }; |
|
1676 |
|
1677 static struct e1000_phy_operations e82_phy_ops_igp = { |
|
1678 .acquire_phy = e1000_get_hw_semaphore_82571, |
|
1679 .check_reset_block = e1000e_check_reset_block_generic, |
|
1680 .commit_phy = NULL, |
|
1681 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, |
|
1682 .get_cfg_done = e1000_get_cfg_done_82571, |
|
1683 .get_cable_length = e1000e_get_cable_length_igp_2, |
|
1684 .get_phy_info = e1000e_get_phy_info_igp, |
|
1685 .read_phy_reg = e1000e_read_phy_reg_igp, |
|
1686 .release_phy = e1000_put_hw_semaphore_82571, |
|
1687 .reset_phy = e1000e_phy_hw_reset_generic, |
|
1688 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
|
1689 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1690 .write_phy_reg = e1000e_write_phy_reg_igp, |
|
1691 .cfg_on_link_up = NULL, |
|
1692 }; |
|
1693 |
|
1694 static struct e1000_phy_operations e82_phy_ops_m88 = { |
|
1695 .acquire_phy = e1000_get_hw_semaphore_82571, |
|
1696 .check_reset_block = e1000e_check_reset_block_generic, |
|
1697 .commit_phy = e1000e_phy_sw_reset, |
|
1698 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, |
|
1699 .get_cfg_done = e1000e_get_cfg_done, |
|
1700 .get_cable_length = e1000e_get_cable_length_m88, |
|
1701 .get_phy_info = e1000e_get_phy_info_m88, |
|
1702 .read_phy_reg = e1000e_read_phy_reg_m88, |
|
1703 .release_phy = e1000_put_hw_semaphore_82571, |
|
1704 .reset_phy = e1000e_phy_hw_reset_generic, |
|
1705 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
|
1706 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1707 .write_phy_reg = e1000e_write_phy_reg_m88, |
|
1708 .cfg_on_link_up = NULL, |
|
1709 }; |
|
1710 |
|
1711 static struct e1000_phy_operations e82_phy_ops_bm = { |
|
1712 .acquire_phy = e1000_get_hw_semaphore_82571, |
|
1713 .check_reset_block = e1000e_check_reset_block_generic, |
|
1714 .commit_phy = e1000e_phy_sw_reset, |
|
1715 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, |
|
1716 .get_cfg_done = e1000e_get_cfg_done, |
|
1717 .get_cable_length = e1000e_get_cable_length_m88, |
|
1718 .get_phy_info = e1000e_get_phy_info_m88, |
|
1719 .read_phy_reg = e1000e_read_phy_reg_bm2, |
|
1720 .release_phy = e1000_put_hw_semaphore_82571, |
|
1721 .reset_phy = e1000e_phy_hw_reset_generic, |
|
1722 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
|
1723 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1724 .write_phy_reg = e1000e_write_phy_reg_bm2, |
|
1725 .cfg_on_link_up = NULL, |
|
1726 }; |
|
1727 |
|
1728 static struct e1000_nvm_operations e82571_nvm_ops = { |
|
1729 .acquire_nvm = e1000_acquire_nvm_82571, |
|
1730 .read_nvm = e1000e_read_nvm_eerd, |
|
1731 .release_nvm = e1000_release_nvm_82571, |
|
1732 .update_nvm = e1000_update_nvm_checksum_82571, |
|
1733 .valid_led_default = e1000_valid_led_default_82571, |
|
1734 .validate_nvm = e1000_validate_nvm_checksum_82571, |
|
1735 .write_nvm = e1000_write_nvm_82571, |
|
1736 }; |
|
1737 |
|
1738 struct e1000_info e1000_82571_info = { |
|
1739 .mac = e1000_82571, |
|
1740 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1741 | FLAG_HAS_JUMBO_FRAMES |
|
1742 | FLAG_HAS_WOL |
|
1743 | FLAG_APME_IN_CTRL3 |
|
1744 | FLAG_RX_CSUM_ENABLED |
|
1745 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
1746 | FLAG_HAS_SMART_POWER_DOWN |
|
1747 | FLAG_RESET_OVERWRITES_LAA /* errata */ |
|
1748 | FLAG_TARC_SPEED_MODE_BIT /* errata */ |
|
1749 | FLAG_APME_CHECK_PORT_B, |
|
1750 .pba = 38, |
|
1751 .max_hw_frame_size = DEFAULT_JUMBO, |
|
1752 .get_variants = e1000_get_variants_82571, |
|
1753 .mac_ops = &e82571_mac_ops, |
|
1754 .phy_ops = &e82_phy_ops_igp, |
|
1755 .nvm_ops = &e82571_nvm_ops, |
|
1756 }; |
|
1757 |
|
1758 struct e1000_info e1000_82572_info = { |
|
1759 .mac = e1000_82572, |
|
1760 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1761 | FLAG_HAS_JUMBO_FRAMES |
|
1762 | FLAG_HAS_WOL |
|
1763 | FLAG_APME_IN_CTRL3 |
|
1764 | FLAG_RX_CSUM_ENABLED |
|
1765 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
1766 | FLAG_TARC_SPEED_MODE_BIT, /* errata */ |
|
1767 .pba = 38, |
|
1768 .max_hw_frame_size = DEFAULT_JUMBO, |
|
1769 .get_variants = e1000_get_variants_82571, |
|
1770 .mac_ops = &e82571_mac_ops, |
|
1771 .phy_ops = &e82_phy_ops_igp, |
|
1772 .nvm_ops = &e82571_nvm_ops, |
|
1773 }; |
|
1774 |
|
1775 struct e1000_info e1000_82573_info = { |
|
1776 .mac = e1000_82573, |
|
1777 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1778 | FLAG_HAS_JUMBO_FRAMES |
|
1779 | FLAG_HAS_WOL |
|
1780 | FLAG_APME_IN_CTRL3 |
|
1781 | FLAG_RX_CSUM_ENABLED |
|
1782 | FLAG_HAS_SMART_POWER_DOWN |
|
1783 | FLAG_HAS_AMT |
|
1784 | FLAG_HAS_ERT |
|
1785 | FLAG_HAS_SWSM_ON_LOAD, |
|
1786 .pba = 20, |
|
1787 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, |
|
1788 .get_variants = e1000_get_variants_82571, |
|
1789 .mac_ops = &e82571_mac_ops, |
|
1790 .phy_ops = &e82_phy_ops_m88, |
|
1791 .nvm_ops = &e82571_nvm_ops, |
|
1792 }; |
|
1793 |
|
1794 struct e1000_info e1000_82574_info = { |
|
1795 .mac = e1000_82574, |
|
1796 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1797 | FLAG_HAS_MSIX |
|
1798 | FLAG_HAS_JUMBO_FRAMES |
|
1799 | FLAG_HAS_WOL |
|
1800 | FLAG_APME_IN_CTRL3 |
|
1801 | FLAG_RX_CSUM_ENABLED |
|
1802 | FLAG_HAS_SMART_POWER_DOWN |
|
1803 | FLAG_HAS_AMT |
|
1804 | FLAG_HAS_CTRLEXT_ON_LOAD, |
|
1805 .pba = 20, |
|
1806 .max_hw_frame_size = DEFAULT_JUMBO, |
|
1807 .get_variants = e1000_get_variants_82571, |
|
1808 .mac_ops = &e82571_mac_ops, |
|
1809 .phy_ops = &e82_phy_ops_bm, |
|
1810 .nvm_ops = &e82571_nvm_ops, |
|
1811 }; |
|
1812 |
|
1813 struct e1000_info e1000_82583_info = { |
|
1814 .mac = e1000_82583, |
|
1815 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1816 | FLAG_HAS_WOL |
|
1817 | FLAG_APME_IN_CTRL3 |
|
1818 | FLAG_RX_CSUM_ENABLED |
|
1819 | FLAG_HAS_SMART_POWER_DOWN |
|
1820 | FLAG_HAS_AMT |
|
1821 | FLAG_HAS_CTRLEXT_ON_LOAD, |
|
1822 .pba = 20, |
|
1823 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, |
|
1824 .get_variants = e1000_get_variants_82571, |
|
1825 .mac_ops = &e82571_mac_ops, |
|
1826 .phy_ops = &e82_phy_ops_bm, |
|
1827 .nvm_ops = &e82571_nvm_ops, |
|
1828 }; |
|
1829 |