devices/e1000/e1000_hw-3.0-orig.c
branchstable-1.5
changeset 2386 6742f8751872
equal deleted inserted replaced
2385:56a3d42f1ae6 2386:6742f8751872
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27  */
       
    28 
       
    29 /* e1000_hw.c
       
    30  * Shared functions for accessing and configuring the MAC
       
    31  */
       
    32 
       
    33 #include "e1000.h"
       
    34 
       
    35 static s32 e1000_check_downshift(struct e1000_hw *hw);
       
    36 static s32 e1000_check_polarity(struct e1000_hw *hw,
       
    37 				e1000_rev_polarity *polarity);
       
    38 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
       
    39 static void e1000_clear_vfta(struct e1000_hw *hw);
       
    40 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
       
    41 					      bool link_up);
       
    42 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
       
    43 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
       
    44 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
       
    45 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
       
    46 				  u16 *max_length);
       
    47 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
       
    48 static s32 e1000_id_led_init(struct e1000_hw *hw);
       
    49 static void e1000_init_rx_addrs(struct e1000_hw *hw);
       
    50 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
       
    51 				  struct e1000_phy_info *phy_info);
       
    52 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
       
    53 				  struct e1000_phy_info *phy_info);
       
    54 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
       
    55 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
       
    56 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
       
    57 static s32 e1000_set_phy_type(struct e1000_hw *hw);
       
    58 static void e1000_phy_init_script(struct e1000_hw *hw);
       
    59 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
       
    60 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
       
    61 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
       
    62 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
       
    63 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
       
    64 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
       
    65 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
       
    66 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
       
    67 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
       
    68 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
       
    69 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
       
    70 				  u16 words, u16 *data);
       
    71 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
       
    72 					u16 words, u16 *data);
       
    73 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
       
    74 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
       
    75 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
       
    76 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
       
    77 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
       
    78 				  u16 phy_data);
       
    79 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
       
    80 				 u16 *phy_data);
       
    81 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
       
    82 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
       
    83 static void e1000_release_eeprom(struct e1000_hw *hw);
       
    84 static void e1000_standby_eeprom(struct e1000_hw *hw);
       
    85 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
       
    86 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
       
    87 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
       
    88 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
       
    89 				u16 *data);
       
    90 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
       
    91 				 u16 *data);
       
    92 
       
    93 /* IGP cable length table */
       
    94 static const
       
    95 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
       
    96 	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
       
    97 	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
       
    98 	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
       
    99 	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
       
   100 	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
       
   101 	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
       
   102 	    100,
       
   103 	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
       
   104 	    110, 110,
       
   105 	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
       
   106 	    120, 120
       
   107 };
       
   108 
       
   109 static DEFINE_SPINLOCK(e1000_eeprom_lock);
       
   110 
       
   111 /**
       
   112  * e1000_set_phy_type - Set the phy type member in the hw struct.
       
   113  * @hw: Struct containing variables accessed by shared code
       
   114  */
       
   115 static s32 e1000_set_phy_type(struct e1000_hw *hw)
       
   116 {
       
   117 	e_dbg("e1000_set_phy_type");
       
   118 
       
   119 	if (hw->mac_type == e1000_undefined)
       
   120 		return -E1000_ERR_PHY_TYPE;
       
   121 
       
   122 	switch (hw->phy_id) {
       
   123 	case M88E1000_E_PHY_ID:
       
   124 	case M88E1000_I_PHY_ID:
       
   125 	case M88E1011_I_PHY_ID:
       
   126 	case M88E1111_I_PHY_ID:
       
   127 	case M88E1118_E_PHY_ID:
       
   128 		hw->phy_type = e1000_phy_m88;
       
   129 		break;
       
   130 	case IGP01E1000_I_PHY_ID:
       
   131 		if (hw->mac_type == e1000_82541 ||
       
   132 		    hw->mac_type == e1000_82541_rev_2 ||
       
   133 		    hw->mac_type == e1000_82547 ||
       
   134 		    hw->mac_type == e1000_82547_rev_2)
       
   135 			hw->phy_type = e1000_phy_igp;
       
   136 		break;
       
   137 	case RTL8211B_PHY_ID:
       
   138 		hw->phy_type = e1000_phy_8211;
       
   139 		break;
       
   140 	case RTL8201N_PHY_ID:
       
   141 		hw->phy_type = e1000_phy_8201;
       
   142 		break;
       
   143 	default:
       
   144 		/* Should never have loaded on this device */
       
   145 		hw->phy_type = e1000_phy_undefined;
       
   146 		return -E1000_ERR_PHY_TYPE;
       
   147 	}
       
   148 
       
   149 	return E1000_SUCCESS;
       
   150 }
       
   151 
       
   152 /**
       
   153  * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
       
   154  * @hw: Struct containing variables accessed by shared code
       
   155  */
       
   156 static void e1000_phy_init_script(struct e1000_hw *hw)
       
   157 {
       
   158 	u32 ret_val;
       
   159 	u16 phy_saved_data;
       
   160 
       
   161 	e_dbg("e1000_phy_init_script");
       
   162 
       
   163 	if (hw->phy_init_script) {
       
   164 		msleep(20);
       
   165 
       
   166 		/* Save off the current value of register 0x2F5B to be restored at
       
   167 		 * the end of this routine. */
       
   168 		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
       
   169 
       
   170 		/* Disabled the PHY transmitter */
       
   171 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
       
   172 		msleep(20);
       
   173 
       
   174 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
       
   175 		msleep(5);
       
   176 
       
   177 		switch (hw->mac_type) {
       
   178 		case e1000_82541:
       
   179 		case e1000_82547:
       
   180 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
       
   181 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
       
   182 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
       
   183 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
       
   184 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
       
   185 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
       
   186 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
       
   187 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
       
   188 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
       
   189 			break;
       
   190 
       
   191 		case e1000_82541_rev_2:
       
   192 		case e1000_82547_rev_2:
       
   193 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
       
   194 			break;
       
   195 		default:
       
   196 			break;
       
   197 		}
       
   198 
       
   199 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
       
   200 		msleep(20);
       
   201 
       
   202 		/* Now enable the transmitter */
       
   203 		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
       
   204 
       
   205 		if (hw->mac_type == e1000_82547) {
       
   206 			u16 fused, fine, coarse;
       
   207 
       
   208 			/* Move to analog registers page */
       
   209 			e1000_read_phy_reg(hw,
       
   210 					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
       
   211 					   &fused);
       
   212 
       
   213 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
       
   214 				e1000_read_phy_reg(hw,
       
   215 						   IGP01E1000_ANALOG_FUSE_STATUS,
       
   216 						   &fused);
       
   217 
       
   218 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
       
   219 				coarse =
       
   220 				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
       
   221 
       
   222 				if (coarse >
       
   223 				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
       
   224 					coarse -=
       
   225 					    IGP01E1000_ANALOG_FUSE_COARSE_10;
       
   226 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
       
   227 				} else if (coarse ==
       
   228 					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
       
   229 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
       
   230 
       
   231 				fused =
       
   232 				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
       
   233 				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
       
   234 				    (coarse &
       
   235 				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
       
   236 
       
   237 				e1000_write_phy_reg(hw,
       
   238 						    IGP01E1000_ANALOG_FUSE_CONTROL,
       
   239 						    fused);
       
   240 				e1000_write_phy_reg(hw,
       
   241 						    IGP01E1000_ANALOG_FUSE_BYPASS,
       
   242 						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
       
   243 			}
       
   244 		}
       
   245 	}
       
   246 }
       
   247 
       
   248 /**
       
   249  * e1000_set_mac_type - Set the mac type member in the hw struct.
       
   250  * @hw: Struct containing variables accessed by shared code
       
   251  */
       
   252 s32 e1000_set_mac_type(struct e1000_hw *hw)
       
   253 {
       
   254 	e_dbg("e1000_set_mac_type");
       
   255 
       
   256 	switch (hw->device_id) {
       
   257 	case E1000_DEV_ID_82542:
       
   258 		switch (hw->revision_id) {
       
   259 		case E1000_82542_2_0_REV_ID:
       
   260 			hw->mac_type = e1000_82542_rev2_0;
       
   261 			break;
       
   262 		case E1000_82542_2_1_REV_ID:
       
   263 			hw->mac_type = e1000_82542_rev2_1;
       
   264 			break;
       
   265 		default:
       
   266 			/* Invalid 82542 revision ID */
       
   267 			return -E1000_ERR_MAC_TYPE;
       
   268 		}
       
   269 		break;
       
   270 	case E1000_DEV_ID_82543GC_FIBER:
       
   271 	case E1000_DEV_ID_82543GC_COPPER:
       
   272 		hw->mac_type = e1000_82543;
       
   273 		break;
       
   274 	case E1000_DEV_ID_82544EI_COPPER:
       
   275 	case E1000_DEV_ID_82544EI_FIBER:
       
   276 	case E1000_DEV_ID_82544GC_COPPER:
       
   277 	case E1000_DEV_ID_82544GC_LOM:
       
   278 		hw->mac_type = e1000_82544;
       
   279 		break;
       
   280 	case E1000_DEV_ID_82540EM:
       
   281 	case E1000_DEV_ID_82540EM_LOM:
       
   282 	case E1000_DEV_ID_82540EP:
       
   283 	case E1000_DEV_ID_82540EP_LOM:
       
   284 	case E1000_DEV_ID_82540EP_LP:
       
   285 		hw->mac_type = e1000_82540;
       
   286 		break;
       
   287 	case E1000_DEV_ID_82545EM_COPPER:
       
   288 	case E1000_DEV_ID_82545EM_FIBER:
       
   289 		hw->mac_type = e1000_82545;
       
   290 		break;
       
   291 	case E1000_DEV_ID_82545GM_COPPER:
       
   292 	case E1000_DEV_ID_82545GM_FIBER:
       
   293 	case E1000_DEV_ID_82545GM_SERDES:
       
   294 		hw->mac_type = e1000_82545_rev_3;
       
   295 		break;
       
   296 	case E1000_DEV_ID_82546EB_COPPER:
       
   297 	case E1000_DEV_ID_82546EB_FIBER:
       
   298 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
       
   299 		hw->mac_type = e1000_82546;
       
   300 		break;
       
   301 	case E1000_DEV_ID_82546GB_COPPER:
       
   302 	case E1000_DEV_ID_82546GB_FIBER:
       
   303 	case E1000_DEV_ID_82546GB_SERDES:
       
   304 	case E1000_DEV_ID_82546GB_PCIE:
       
   305 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
       
   306 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
   307 		hw->mac_type = e1000_82546_rev_3;
       
   308 		break;
       
   309 	case E1000_DEV_ID_82541EI:
       
   310 	case E1000_DEV_ID_82541EI_MOBILE:
       
   311 	case E1000_DEV_ID_82541ER_LOM:
       
   312 		hw->mac_type = e1000_82541;
       
   313 		break;
       
   314 	case E1000_DEV_ID_82541ER:
       
   315 	case E1000_DEV_ID_82541GI:
       
   316 	case E1000_DEV_ID_82541GI_LF:
       
   317 	case E1000_DEV_ID_82541GI_MOBILE:
       
   318 		hw->mac_type = e1000_82541_rev_2;
       
   319 		break;
       
   320 	case E1000_DEV_ID_82547EI:
       
   321 	case E1000_DEV_ID_82547EI_MOBILE:
       
   322 		hw->mac_type = e1000_82547;
       
   323 		break;
       
   324 	case E1000_DEV_ID_82547GI:
       
   325 		hw->mac_type = e1000_82547_rev_2;
       
   326 		break;
       
   327 	case E1000_DEV_ID_INTEL_CE4100_GBE:
       
   328 		hw->mac_type = e1000_ce4100;
       
   329 		break;
       
   330 	default:
       
   331 		/* Should never have loaded on this device */
       
   332 		return -E1000_ERR_MAC_TYPE;
       
   333 	}
       
   334 
       
   335 	switch (hw->mac_type) {
       
   336 	case e1000_82541:
       
   337 	case e1000_82547:
       
   338 	case e1000_82541_rev_2:
       
   339 	case e1000_82547_rev_2:
       
   340 		hw->asf_firmware_present = true;
       
   341 		break;
       
   342 	default:
       
   343 		break;
       
   344 	}
       
   345 
       
   346 	/* The 82543 chip does not count tx_carrier_errors properly in
       
   347 	 * FD mode
       
   348 	 */
       
   349 	if (hw->mac_type == e1000_82543)
       
   350 		hw->bad_tx_carr_stats_fd = true;
       
   351 
       
   352 	if (hw->mac_type > e1000_82544)
       
   353 		hw->has_smbus = true;
       
   354 
       
   355 	return E1000_SUCCESS;
       
   356 }
       
   357 
       
   358 /**
       
   359  * e1000_set_media_type - Set media type and TBI compatibility.
       
   360  * @hw: Struct containing variables accessed by shared code
       
   361  */
       
   362 void e1000_set_media_type(struct e1000_hw *hw)
       
   363 {
       
   364 	u32 status;
       
   365 
       
   366 	e_dbg("e1000_set_media_type");
       
   367 
       
   368 	if (hw->mac_type != e1000_82543) {
       
   369 		/* tbi_compatibility is only valid on 82543 */
       
   370 		hw->tbi_compatibility_en = false;
       
   371 	}
       
   372 
       
   373 	switch (hw->device_id) {
       
   374 	case E1000_DEV_ID_82545GM_SERDES:
       
   375 	case E1000_DEV_ID_82546GB_SERDES:
       
   376 		hw->media_type = e1000_media_type_internal_serdes;
       
   377 		break;
       
   378 	default:
       
   379 		switch (hw->mac_type) {
       
   380 		case e1000_82542_rev2_0:
       
   381 		case e1000_82542_rev2_1:
       
   382 			hw->media_type = e1000_media_type_fiber;
       
   383 			break;
       
   384 		case e1000_ce4100:
       
   385 			hw->media_type = e1000_media_type_copper;
       
   386 			break;
       
   387 		default:
       
   388 			status = er32(STATUS);
       
   389 			if (status & E1000_STATUS_TBIMODE) {
       
   390 				hw->media_type = e1000_media_type_fiber;
       
   391 				/* tbi_compatibility not valid on fiber */
       
   392 				hw->tbi_compatibility_en = false;
       
   393 			} else {
       
   394 				hw->media_type = e1000_media_type_copper;
       
   395 			}
       
   396 			break;
       
   397 		}
       
   398 	}
       
   399 }
       
   400 
       
   401 /**
       
   402  * e1000_reset_hw: reset the hardware completely
       
   403  * @hw: Struct containing variables accessed by shared code
       
   404  *
       
   405  * Reset the transmit and receive units; mask and clear all interrupts.
       
   406  */
       
   407 s32 e1000_reset_hw(struct e1000_hw *hw)
       
   408 {
       
   409 	u32 ctrl;
       
   410 	u32 ctrl_ext;
       
   411 	u32 icr;
       
   412 	u32 manc;
       
   413 	u32 led_ctrl;
       
   414 	s32 ret_val;
       
   415 
       
   416 	e_dbg("e1000_reset_hw");
       
   417 
       
   418 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
       
   419 	if (hw->mac_type == e1000_82542_rev2_0) {
       
   420 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
       
   421 		e1000_pci_clear_mwi(hw);
       
   422 	}
       
   423 
       
   424 	/* Clear interrupt mask to stop board from generating interrupts */
       
   425 	e_dbg("Masking off all interrupts\n");
       
   426 	ew32(IMC, 0xffffffff);
       
   427 
       
   428 	/* Disable the Transmit and Receive units.  Then delay to allow
       
   429 	 * any pending transactions to complete before we hit the MAC with
       
   430 	 * the global reset.
       
   431 	 */
       
   432 	ew32(RCTL, 0);
       
   433 	ew32(TCTL, E1000_TCTL_PSP);
       
   434 	E1000_WRITE_FLUSH();
       
   435 
       
   436 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
       
   437 	hw->tbi_compatibility_on = false;
       
   438 
       
   439 	/* Delay to allow any outstanding PCI transactions to complete before
       
   440 	 * resetting the device
       
   441 	 */
       
   442 	msleep(10);
       
   443 
       
   444 	ctrl = er32(CTRL);
       
   445 
       
   446 	/* Must reset the PHY before resetting the MAC */
       
   447 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
       
   448 		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
       
   449 		msleep(5);
       
   450 	}
       
   451 
       
   452 	/* Issue a global reset to the MAC.  This will reset the chip's
       
   453 	 * transmit, receive, DMA, and link units.  It will not effect
       
   454 	 * the current PCI configuration.  The global reset bit is self-
       
   455 	 * clearing, and should clear within a microsecond.
       
   456 	 */
       
   457 	e_dbg("Issuing a global reset to MAC\n");
       
   458 
       
   459 	switch (hw->mac_type) {
       
   460 	case e1000_82544:
       
   461 	case e1000_82540:
       
   462 	case e1000_82545:
       
   463 	case e1000_82546:
       
   464 	case e1000_82541:
       
   465 	case e1000_82541_rev_2:
       
   466 		/* These controllers can't ack the 64-bit write when issuing the
       
   467 		 * reset, so use IO-mapping as a workaround to issue the reset */
       
   468 		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
       
   469 		break;
       
   470 	case e1000_82545_rev_3:
       
   471 	case e1000_82546_rev_3:
       
   472 		/* Reset is performed on a shadow of the control register */
       
   473 		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
       
   474 		break;
       
   475 	case e1000_ce4100:
       
   476 	default:
       
   477 		ew32(CTRL, (ctrl | E1000_CTRL_RST));
       
   478 		break;
       
   479 	}
       
   480 
       
   481 	/* After MAC reset, force reload of EEPROM to restore power-on settings to
       
   482 	 * device.  Later controllers reload the EEPROM automatically, so just wait
       
   483 	 * for reload to complete.
       
   484 	 */
       
   485 	switch (hw->mac_type) {
       
   486 	case e1000_82542_rev2_0:
       
   487 	case e1000_82542_rev2_1:
       
   488 	case e1000_82543:
       
   489 	case e1000_82544:
       
   490 		/* Wait for reset to complete */
       
   491 		udelay(10);
       
   492 		ctrl_ext = er32(CTRL_EXT);
       
   493 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
   494 		ew32(CTRL_EXT, ctrl_ext);
       
   495 		E1000_WRITE_FLUSH();
       
   496 		/* Wait for EEPROM reload */
       
   497 		msleep(2);
       
   498 		break;
       
   499 	case e1000_82541:
       
   500 	case e1000_82541_rev_2:
       
   501 	case e1000_82547:
       
   502 	case e1000_82547_rev_2:
       
   503 		/* Wait for EEPROM reload */
       
   504 		msleep(20);
       
   505 		break;
       
   506 	default:
       
   507 		/* Auto read done will delay 5ms or poll based on mac type */
       
   508 		ret_val = e1000_get_auto_rd_done(hw);
       
   509 		if (ret_val)
       
   510 			return ret_val;
       
   511 		break;
       
   512 	}
       
   513 
       
   514 	/* Disable HW ARPs on ASF enabled adapters */
       
   515 	if (hw->mac_type >= e1000_82540) {
       
   516 		manc = er32(MANC);
       
   517 		manc &= ~(E1000_MANC_ARP_EN);
       
   518 		ew32(MANC, manc);
       
   519 	}
       
   520 
       
   521 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
       
   522 		e1000_phy_init_script(hw);
       
   523 
       
   524 		/* Configure activity LED after PHY reset */
       
   525 		led_ctrl = er32(LEDCTL);
       
   526 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
       
   527 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
       
   528 		ew32(LEDCTL, led_ctrl);
       
   529 	}
       
   530 
       
   531 	/* Clear interrupt mask to stop board from generating interrupts */
       
   532 	e_dbg("Masking off all interrupts\n");
       
   533 	ew32(IMC, 0xffffffff);
       
   534 
       
   535 	/* Clear any pending interrupt events. */
       
   536 	icr = er32(ICR);
       
   537 
       
   538 	/* If MWI was previously enabled, reenable it. */
       
   539 	if (hw->mac_type == e1000_82542_rev2_0) {
       
   540 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
   541 			e1000_pci_set_mwi(hw);
       
   542 	}
       
   543 
       
   544 	return E1000_SUCCESS;
       
   545 }
       
   546 
       
   547 /**
       
   548  * e1000_init_hw: Performs basic configuration of the adapter.
       
   549  * @hw: Struct containing variables accessed by shared code
       
   550  *
       
   551  * Assumes that the controller has previously been reset and is in a
       
   552  * post-reset uninitialized state. Initializes the receive address registers,
       
   553  * multicast table, and VLAN filter table. Calls routines to setup link
       
   554  * configuration and flow control settings. Clears all on-chip counters. Leaves
       
   555  * the transmit and receive units disabled and uninitialized.
       
   556  */
       
   557 s32 e1000_init_hw(struct e1000_hw *hw)
       
   558 {
       
   559 	u32 ctrl;
       
   560 	u32 i;
       
   561 	s32 ret_val;
       
   562 	u32 mta_size;
       
   563 	u32 ctrl_ext;
       
   564 
       
   565 	e_dbg("e1000_init_hw");
       
   566 
       
   567 	/* Initialize Identification LED */
       
   568 	ret_val = e1000_id_led_init(hw);
       
   569 	if (ret_val) {
       
   570 		e_dbg("Error Initializing Identification LED\n");
       
   571 		return ret_val;
       
   572 	}
       
   573 
       
   574 	/* Set the media type and TBI compatibility */
       
   575 	e1000_set_media_type(hw);
       
   576 
       
   577 	/* Disabling VLAN filtering. */
       
   578 	e_dbg("Initializing the IEEE VLAN\n");
       
   579 	if (hw->mac_type < e1000_82545_rev_3)
       
   580 		ew32(VET, 0);
       
   581 	e1000_clear_vfta(hw);
       
   582 
       
   583 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
       
   584 	if (hw->mac_type == e1000_82542_rev2_0) {
       
   585 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
       
   586 		e1000_pci_clear_mwi(hw);
       
   587 		ew32(RCTL, E1000_RCTL_RST);
       
   588 		E1000_WRITE_FLUSH();
       
   589 		msleep(5);
       
   590 	}
       
   591 
       
   592 	/* Setup the receive address. This involves initializing all of the Receive
       
   593 	 * Address Registers (RARs 0 - 15).
       
   594 	 */
       
   595 	e1000_init_rx_addrs(hw);
       
   596 
       
   597 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
       
   598 	if (hw->mac_type == e1000_82542_rev2_0) {
       
   599 		ew32(RCTL, 0);
       
   600 		E1000_WRITE_FLUSH();
       
   601 		msleep(1);
       
   602 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
   603 			e1000_pci_set_mwi(hw);
       
   604 	}
       
   605 
       
   606 	/* Zero out the Multicast HASH table */
       
   607 	e_dbg("Zeroing the MTA\n");
       
   608 	mta_size = E1000_MC_TBL_SIZE;
       
   609 	for (i = 0; i < mta_size; i++) {
       
   610 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
       
   611 		/* use write flush to prevent Memory Write Block (MWB) from
       
   612 		 * occurring when accessing our register space */
       
   613 		E1000_WRITE_FLUSH();
       
   614 	}
       
   615 
       
   616 	/* Set the PCI priority bit correctly in the CTRL register.  This
       
   617 	 * determines if the adapter gives priority to receives, or if it
       
   618 	 * gives equal priority to transmits and receives.  Valid only on
       
   619 	 * 82542 and 82543 silicon.
       
   620 	 */
       
   621 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
       
   622 		ctrl = er32(CTRL);
       
   623 		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
       
   624 	}
       
   625 
       
   626 	switch (hw->mac_type) {
       
   627 	case e1000_82545_rev_3:
       
   628 	case e1000_82546_rev_3:
       
   629 		break;
       
   630 	default:
       
   631 		/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
       
   632 		if (hw->bus_type == e1000_bus_type_pcix
       
   633 		    && e1000_pcix_get_mmrbc(hw) > 2048)
       
   634 			e1000_pcix_set_mmrbc(hw, 2048);
       
   635 		break;
       
   636 	}
       
   637 
       
   638 	/* Call a subroutine to configure the link and setup flow control. */
       
   639 	ret_val = e1000_setup_link(hw);
       
   640 
       
   641 	/* Set the transmit descriptor write-back policy */
       
   642 	if (hw->mac_type > e1000_82544) {
       
   643 		ctrl = er32(TXDCTL);
       
   644 		ctrl =
       
   645 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
       
   646 		    E1000_TXDCTL_FULL_TX_DESC_WB;
       
   647 		ew32(TXDCTL, ctrl);
       
   648 	}
       
   649 
       
   650 	/* Clear all of the statistics registers (clear on read).  It is
       
   651 	 * important that we do this after we have tried to establish link
       
   652 	 * because the symbol error count will increment wildly if there
       
   653 	 * is no link.
       
   654 	 */
       
   655 	e1000_clear_hw_cntrs(hw);
       
   656 
       
   657 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
       
   658 	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
       
   659 		ctrl_ext = er32(CTRL_EXT);
       
   660 		/* Relaxed ordering must be disabled to avoid a parity
       
   661 		 * error crash in a PCI slot. */
       
   662 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
       
   663 		ew32(CTRL_EXT, ctrl_ext);
       
   664 	}
       
   665 
       
   666 	return ret_val;
       
   667 }
       
   668 
       
   669 /**
       
   670  * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
       
   671  * @hw: Struct containing variables accessed by shared code.
       
   672  */
       
   673 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
       
   674 {
       
   675 	u16 eeprom_data;
       
   676 	s32 ret_val;
       
   677 
       
   678 	e_dbg("e1000_adjust_serdes_amplitude");
       
   679 
       
   680 	if (hw->media_type != e1000_media_type_internal_serdes)
       
   681 		return E1000_SUCCESS;
       
   682 
       
   683 	switch (hw->mac_type) {
       
   684 	case e1000_82545_rev_3:
       
   685 	case e1000_82546_rev_3:
       
   686 		break;
       
   687 	default:
       
   688 		return E1000_SUCCESS;
       
   689 	}
       
   690 
       
   691 	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
       
   692 	                            &eeprom_data);
       
   693 	if (ret_val) {
       
   694 		return ret_val;
       
   695 	}
       
   696 
       
   697 	if (eeprom_data != EEPROM_RESERVED_WORD) {
       
   698 		/* Adjust SERDES output amplitude only. */
       
   699 		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
       
   700 		ret_val =
       
   701 		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
       
   702 		if (ret_val)
       
   703 			return ret_val;
       
   704 	}
       
   705 
       
   706 	return E1000_SUCCESS;
       
   707 }
       
   708 
       
   709 /**
       
   710  * e1000_setup_link - Configures flow control and link settings.
       
   711  * @hw: Struct containing variables accessed by shared code
       
   712  *
       
   713  * Determines which flow control settings to use. Calls the appropriate media-
       
   714  * specific link configuration function. Configures the flow control settings.
       
   715  * Assuming the adapter has a valid link partner, a valid link should be
       
   716  * established. Assumes the hardware has previously been reset and the
       
   717  * transmitter and receiver are not enabled.
       
   718  */
       
   719 s32 e1000_setup_link(struct e1000_hw *hw)
       
   720 {
       
   721 	u32 ctrl_ext;
       
   722 	s32 ret_val;
       
   723 	u16 eeprom_data;
       
   724 
       
   725 	e_dbg("e1000_setup_link");
       
   726 
       
   727 	/* Read and store word 0x0F of the EEPROM. This word contains bits
       
   728 	 * that determine the hardware's default PAUSE (flow control) mode,
       
   729 	 * a bit that determines whether the HW defaults to enabling or
       
   730 	 * disabling auto-negotiation, and the direction of the
       
   731 	 * SW defined pins. If there is no SW over-ride of the flow
       
   732 	 * control setting, then the variable hw->fc will
       
   733 	 * be initialized based on a value in the EEPROM.
       
   734 	 */
       
   735 	if (hw->fc == E1000_FC_DEFAULT) {
       
   736 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
       
   737 					    1, &eeprom_data);
       
   738 		if (ret_val) {
       
   739 			e_dbg("EEPROM Read Error\n");
       
   740 			return -E1000_ERR_EEPROM;
       
   741 		}
       
   742 		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
       
   743 			hw->fc = E1000_FC_NONE;
       
   744 		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
       
   745 			 EEPROM_WORD0F_ASM_DIR)
       
   746 			hw->fc = E1000_FC_TX_PAUSE;
       
   747 		else
       
   748 			hw->fc = E1000_FC_FULL;
       
   749 	}
       
   750 
       
   751 	/* We want to save off the original Flow Control configuration just
       
   752 	 * in case we get disconnected and then reconnected into a different
       
   753 	 * hub or switch with different Flow Control capabilities.
       
   754 	 */
       
   755 	if (hw->mac_type == e1000_82542_rev2_0)
       
   756 		hw->fc &= (~E1000_FC_TX_PAUSE);
       
   757 
       
   758 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
       
   759 		hw->fc &= (~E1000_FC_RX_PAUSE);
       
   760 
       
   761 	hw->original_fc = hw->fc;
       
   762 
       
   763 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
       
   764 
       
   765 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
       
   766 	 * polarity value for the SW controlled pins, and setup the
       
   767 	 * Extended Device Control reg with that info.
       
   768 	 * This is needed because one of the SW controlled pins is used for
       
   769 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
       
   770 	 * or e1000_phy_setup() is called.
       
   771 	 */
       
   772 	if (hw->mac_type == e1000_82543) {
       
   773 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
       
   774 					    1, &eeprom_data);
       
   775 		if (ret_val) {
       
   776 			e_dbg("EEPROM Read Error\n");
       
   777 			return -E1000_ERR_EEPROM;
       
   778 		}
       
   779 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
       
   780 			    SWDPIO__EXT_SHIFT);
       
   781 		ew32(CTRL_EXT, ctrl_ext);
       
   782 	}
       
   783 
       
   784 	/* Call the necessary subroutine to configure the link. */
       
   785 	ret_val = (hw->media_type == e1000_media_type_copper) ?
       
   786 	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
       
   787 
       
   788 	/* Initialize the flow control address, type, and PAUSE timer
       
   789 	 * registers to their default values.  This is done even if flow
       
   790 	 * control is disabled, because it does not hurt anything to
       
   791 	 * initialize these registers.
       
   792 	 */
       
   793 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
       
   794 
       
   795 	ew32(FCT, FLOW_CONTROL_TYPE);
       
   796 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
       
   797 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
       
   798 
       
   799 	ew32(FCTTV, hw->fc_pause_time);
       
   800 
       
   801 	/* Set the flow control receive threshold registers.  Normally,
       
   802 	 * these registers will be set to a default threshold that may be
       
   803 	 * adjusted later by the driver's runtime code.  However, if the
       
   804 	 * ability to transmit pause frames in not enabled, then these
       
   805 	 * registers will be set to 0.
       
   806 	 */
       
   807 	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
       
   808 		ew32(FCRTL, 0);
       
   809 		ew32(FCRTH, 0);
       
   810 	} else {
       
   811 		/* We need to set up the Receive Threshold high and low water marks
       
   812 		 * as well as (optionally) enabling the transmission of XON frames.
       
   813 		 */
       
   814 		if (hw->fc_send_xon) {
       
   815 			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
       
   816 			ew32(FCRTH, hw->fc_high_water);
       
   817 		} else {
       
   818 			ew32(FCRTL, hw->fc_low_water);
       
   819 			ew32(FCRTH, hw->fc_high_water);
       
   820 		}
       
   821 	}
       
   822 	return ret_val;
       
   823 }
       
   824 
       
   825 /**
       
   826  * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
       
   827  * @hw: Struct containing variables accessed by shared code
       
   828  *
       
   829  * Manipulates Physical Coding Sublayer functions in order to configure
       
   830  * link. Assumes the hardware has been previously reset and the transmitter
       
   831  * and receiver are not enabled.
       
   832  */
       
   833 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
       
   834 {
       
   835 	u32 ctrl;
       
   836 	u32 status;
       
   837 	u32 txcw = 0;
       
   838 	u32 i;
       
   839 	u32 signal = 0;
       
   840 	s32 ret_val;
       
   841 
       
   842 	e_dbg("e1000_setup_fiber_serdes_link");
       
   843 
       
   844 	/* On adapters with a MAC newer than 82544, SWDP 1 will be
       
   845 	 * set when the optics detect a signal. On older adapters, it will be
       
   846 	 * cleared when there is a signal.  This applies to fiber media only.
       
   847 	 * If we're on serdes media, adjust the output amplitude to value
       
   848 	 * set in the EEPROM.
       
   849 	 */
       
   850 	ctrl = er32(CTRL);
       
   851 	if (hw->media_type == e1000_media_type_fiber)
       
   852 		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
       
   853 
       
   854 	ret_val = e1000_adjust_serdes_amplitude(hw);
       
   855 	if (ret_val)
       
   856 		return ret_val;
       
   857 
       
   858 	/* Take the link out of reset */
       
   859 	ctrl &= ~(E1000_CTRL_LRST);
       
   860 
       
   861 	/* Adjust VCO speed to improve BER performance */
       
   862 	ret_val = e1000_set_vco_speed(hw);
       
   863 	if (ret_val)
       
   864 		return ret_val;
       
   865 
       
   866 	e1000_config_collision_dist(hw);
       
   867 
       
   868 	/* Check for a software override of the flow control settings, and setup
       
   869 	 * the device accordingly.  If auto-negotiation is enabled, then software
       
   870 	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
       
   871 	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
       
   872 	 * auto-negotiation is disabled, then software will have to manually
       
   873 	 * configure the two flow control enable bits in the CTRL register.
       
   874 	 *
       
   875 	 * The possible values of the "fc" parameter are:
       
   876 	 *      0:  Flow control is completely disabled
       
   877 	 *      1:  Rx flow control is enabled (we can receive pause frames, but
       
   878 	 *          not send pause frames).
       
   879 	 *      2:  Tx flow control is enabled (we can send pause frames but we do
       
   880 	 *          not support receiving pause frames).
       
   881 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
       
   882 	 */
       
   883 	switch (hw->fc) {
       
   884 	case E1000_FC_NONE:
       
   885 		/* Flow control is completely disabled by a software over-ride. */
       
   886 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
       
   887 		break;
       
   888 	case E1000_FC_RX_PAUSE:
       
   889 		/* RX Flow control is enabled and TX Flow control is disabled by a
       
   890 		 * software over-ride. Since there really isn't a way to advertise
       
   891 		 * that we are capable of RX Pause ONLY, we will advertise that we
       
   892 		 * support both symmetric and asymmetric RX PAUSE. Later, we will
       
   893 		 *  disable the adapter's ability to send PAUSE frames.
       
   894 		 */
       
   895 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   896 		break;
       
   897 	case E1000_FC_TX_PAUSE:
       
   898 		/* TX Flow control is enabled, and RX Flow control is disabled, by a
       
   899 		 * software over-ride.
       
   900 		 */
       
   901 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
       
   902 		break;
       
   903 	case E1000_FC_FULL:
       
   904 		/* Flow control (both RX and TX) is enabled by a software over-ride. */
       
   905 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   906 		break;
       
   907 	default:
       
   908 		e_dbg("Flow control param set incorrectly\n");
       
   909 		return -E1000_ERR_CONFIG;
       
   910 		break;
       
   911 	}
       
   912 
       
   913 	/* Since auto-negotiation is enabled, take the link out of reset (the link
       
   914 	 * will be in reset, because we previously reset the chip). This will
       
   915 	 * restart auto-negotiation.  If auto-negotiation is successful then the
       
   916 	 * link-up status bit will be set and the flow control enable bits (RFCE
       
   917 	 * and TFCE) will be set according to their negotiated value.
       
   918 	 */
       
   919 	e_dbg("Auto-negotiation enabled\n");
       
   920 
       
   921 	ew32(TXCW, txcw);
       
   922 	ew32(CTRL, ctrl);
       
   923 	E1000_WRITE_FLUSH();
       
   924 
       
   925 	hw->txcw = txcw;
       
   926 	msleep(1);
       
   927 
       
   928 	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
       
   929 	 * indication in the Device Status Register.  Time-out if a link isn't
       
   930 	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
       
   931 	 * less than 500 milliseconds even if the other end is doing it in SW).
       
   932 	 * For internal serdes, we just assume a signal is present, then poll.
       
   933 	 */
       
   934 	if (hw->media_type == e1000_media_type_internal_serdes ||
       
   935 	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
       
   936 		e_dbg("Looking for Link\n");
       
   937 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
       
   938 			msleep(10);
       
   939 			status = er32(STATUS);
       
   940 			if (status & E1000_STATUS_LU)
       
   941 				break;
       
   942 		}
       
   943 		if (i == (LINK_UP_TIMEOUT / 10)) {
       
   944 			e_dbg("Never got a valid link from auto-neg!!!\n");
       
   945 			hw->autoneg_failed = 1;
       
   946 			/* AutoNeg failed to achieve a link, so we'll call
       
   947 			 * e1000_check_for_link. This routine will force the link up if
       
   948 			 * we detect a signal. This will allow us to communicate with
       
   949 			 * non-autonegotiating link partners.
       
   950 			 */
       
   951 			ret_val = e1000_check_for_link(hw);
       
   952 			if (ret_val) {
       
   953 				e_dbg("Error while checking for link\n");
       
   954 				return ret_val;
       
   955 			}
       
   956 			hw->autoneg_failed = 0;
       
   957 		} else {
       
   958 			hw->autoneg_failed = 0;
       
   959 			e_dbg("Valid Link Found\n");
       
   960 		}
       
   961 	} else {
       
   962 		e_dbg("No Signal Detected\n");
       
   963 	}
       
   964 	return E1000_SUCCESS;
       
   965 }
       
   966 
       
   967 /**
       
   968  * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
       
   969  * @hw: Struct containing variables accessed by shared code
       
   970  *
       
   971  * Commits changes to PHY configuration by calling e1000_phy_reset().
       
   972  */
       
   973 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
       
   974 {
       
   975 	s32 ret_val;
       
   976 
       
   977 	/* SW reset the PHY so all changes take effect */
       
   978 	ret_val = e1000_phy_reset(hw);
       
   979 	if (ret_val) {
       
   980 		e_dbg("Error Resetting the PHY\n");
       
   981 		return ret_val;
       
   982 	}
       
   983 
       
   984 	return E1000_SUCCESS;
       
   985 }
       
   986 
       
   987 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
       
   988 {
       
   989 	s32 ret_val;
       
   990 	u32 ctrl_aux;
       
   991 
       
   992 	switch (hw->phy_type) {
       
   993 	case e1000_phy_8211:
       
   994 		ret_val = e1000_copper_link_rtl_setup(hw);
       
   995 		if (ret_val) {
       
   996 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
       
   997 			return ret_val;
       
   998 		}
       
   999 		break;
       
  1000 	case e1000_phy_8201:
       
  1001 		/* Set RMII mode */
       
  1002 		ctrl_aux = er32(CTL_AUX);
       
  1003 		ctrl_aux |= E1000_CTL_AUX_RMII;
       
  1004 		ew32(CTL_AUX, ctrl_aux);
       
  1005 		E1000_WRITE_FLUSH();
       
  1006 
       
  1007 		/* Disable the J/K bits required for receive */
       
  1008 		ctrl_aux = er32(CTL_AUX);
       
  1009 		ctrl_aux |= 0x4;
       
  1010 		ctrl_aux &= ~0x2;
       
  1011 		ew32(CTL_AUX, ctrl_aux);
       
  1012 		E1000_WRITE_FLUSH();
       
  1013 		ret_val = e1000_copper_link_rtl_setup(hw);
       
  1014 
       
  1015 		if (ret_val) {
       
  1016 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
       
  1017 			return ret_val;
       
  1018 		}
       
  1019 		break;
       
  1020 	default:
       
  1021 		e_dbg("Error Resetting the PHY\n");
       
  1022 		return E1000_ERR_PHY_TYPE;
       
  1023 	}
       
  1024 
       
  1025 	return E1000_SUCCESS;
       
  1026 }
       
  1027 
       
  1028 /**
       
  1029  * e1000_copper_link_preconfig - early configuration for copper
       
  1030  * @hw: Struct containing variables accessed by shared code
       
  1031  *
       
  1032  * Make sure we have a valid PHY and change PHY mode before link setup.
       
  1033  */
       
  1034 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
       
  1035 {
       
  1036 	u32 ctrl;
       
  1037 	s32 ret_val;
       
  1038 	u16 phy_data;
       
  1039 
       
  1040 	e_dbg("e1000_copper_link_preconfig");
       
  1041 
       
  1042 	ctrl = er32(CTRL);
       
  1043 	/* With 82543, we need to force speed and duplex on the MAC equal to what
       
  1044 	 * the PHY speed and duplex configuration is. In addition, we need to
       
  1045 	 * perform a hardware reset on the PHY to take it out of reset.
       
  1046 	 */
       
  1047 	if (hw->mac_type > e1000_82543) {
       
  1048 		ctrl |= E1000_CTRL_SLU;
       
  1049 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1050 		ew32(CTRL, ctrl);
       
  1051 	} else {
       
  1052 		ctrl |=
       
  1053 		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
       
  1054 		ew32(CTRL, ctrl);
       
  1055 		ret_val = e1000_phy_hw_reset(hw);
       
  1056 		if (ret_val)
       
  1057 			return ret_val;
       
  1058 	}
       
  1059 
       
  1060 	/* Make sure we have a valid PHY */
       
  1061 	ret_val = e1000_detect_gig_phy(hw);
       
  1062 	if (ret_val) {
       
  1063 		e_dbg("Error, did not detect valid phy.\n");
       
  1064 		return ret_val;
       
  1065 	}
       
  1066 	e_dbg("Phy ID = %x\n", hw->phy_id);
       
  1067 
       
  1068 	/* Set PHY to class A mode (if necessary) */
       
  1069 	ret_val = e1000_set_phy_mode(hw);
       
  1070 	if (ret_val)
       
  1071 		return ret_val;
       
  1072 
       
  1073 	if ((hw->mac_type == e1000_82545_rev_3) ||
       
  1074 	    (hw->mac_type == e1000_82546_rev_3)) {
       
  1075 		ret_val =
       
  1076 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1077 		phy_data |= 0x00000008;
       
  1078 		ret_val =
       
  1079 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1080 	}
       
  1081 
       
  1082 	if (hw->mac_type <= e1000_82543 ||
       
  1083 	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
       
  1084 	    hw->mac_type == e1000_82541_rev_2
       
  1085 	    || hw->mac_type == e1000_82547_rev_2)
       
  1086 		hw->phy_reset_disable = false;
       
  1087 
       
  1088 	return E1000_SUCCESS;
       
  1089 }
       
  1090 
       
  1091 /**
       
  1092  * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
       
  1093  * @hw: Struct containing variables accessed by shared code
       
  1094  */
       
  1095 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
       
  1096 {
       
  1097 	u32 led_ctrl;
       
  1098 	s32 ret_val;
       
  1099 	u16 phy_data;
       
  1100 
       
  1101 	e_dbg("e1000_copper_link_igp_setup");
       
  1102 
       
  1103 	if (hw->phy_reset_disable)
       
  1104 		return E1000_SUCCESS;
       
  1105 
       
  1106 	ret_val = e1000_phy_reset(hw);
       
  1107 	if (ret_val) {
       
  1108 		e_dbg("Error Resetting the PHY\n");
       
  1109 		return ret_val;
       
  1110 	}
       
  1111 
       
  1112 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
       
  1113 	msleep(15);
       
  1114 	/* Configure activity LED after PHY reset */
       
  1115 	led_ctrl = er32(LEDCTL);
       
  1116 	led_ctrl &= IGP_ACTIVITY_LED_MASK;
       
  1117 	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
       
  1118 	ew32(LEDCTL, led_ctrl);
       
  1119 
       
  1120 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
       
  1121 	if (hw->phy_type == e1000_phy_igp) {
       
  1122 		/* disable lplu d3 during driver init */
       
  1123 		ret_val = e1000_set_d3_lplu_state(hw, false);
       
  1124 		if (ret_val) {
       
  1125 			e_dbg("Error Disabling LPLU D3\n");
       
  1126 			return ret_val;
       
  1127 		}
       
  1128 	}
       
  1129 
       
  1130 	/* Configure mdi-mdix settings */
       
  1131 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
       
  1132 	if (ret_val)
       
  1133 		return ret_val;
       
  1134 
       
  1135 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
       
  1136 		hw->dsp_config_state = e1000_dsp_config_disabled;
       
  1137 		/* Force MDI for earlier revs of the IGP PHY */
       
  1138 		phy_data &=
       
  1139 		    ~(IGP01E1000_PSCR_AUTO_MDIX |
       
  1140 		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
       
  1141 		hw->mdix = 1;
       
  1142 
       
  1143 	} else {
       
  1144 		hw->dsp_config_state = e1000_dsp_config_enabled;
       
  1145 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
  1146 
       
  1147 		switch (hw->mdix) {
       
  1148 		case 1:
       
  1149 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  1150 			break;
       
  1151 		case 2:
       
  1152 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  1153 			break;
       
  1154 		case 0:
       
  1155 		default:
       
  1156 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
       
  1157 			break;
       
  1158 		}
       
  1159 	}
       
  1160 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
       
  1161 	if (ret_val)
       
  1162 		return ret_val;
       
  1163 
       
  1164 	/* set auto-master slave resolution settings */
       
  1165 	if (hw->autoneg) {
       
  1166 		e1000_ms_type phy_ms_setting = hw->master_slave;
       
  1167 
       
  1168 		if (hw->ffe_config_state == e1000_ffe_config_active)
       
  1169 			hw->ffe_config_state = e1000_ffe_config_enabled;
       
  1170 
       
  1171 		if (hw->dsp_config_state == e1000_dsp_config_activated)
       
  1172 			hw->dsp_config_state = e1000_dsp_config_enabled;
       
  1173 
       
  1174 		/* when autonegotiation advertisement is only 1000Mbps then we
       
  1175 		 * should disable SmartSpeed and enable Auto MasterSlave
       
  1176 		 * resolution as hardware default. */
       
  1177 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
       
  1178 			/* Disable SmartSpeed */
       
  1179 			ret_val =
       
  1180 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1181 					       &phy_data);
       
  1182 			if (ret_val)
       
  1183 				return ret_val;
       
  1184 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1185 			ret_val =
       
  1186 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1187 						phy_data);
       
  1188 			if (ret_val)
       
  1189 				return ret_val;
       
  1190 			/* Set auto Master/Slave resolution process */
       
  1191 			ret_val =
       
  1192 			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
       
  1193 			if (ret_val)
       
  1194 				return ret_val;
       
  1195 			phy_data &= ~CR_1000T_MS_ENABLE;
       
  1196 			ret_val =
       
  1197 			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
       
  1198 			if (ret_val)
       
  1199 				return ret_val;
       
  1200 		}
       
  1201 
       
  1202 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
       
  1203 		if (ret_val)
       
  1204 			return ret_val;
       
  1205 
       
  1206 		/* load defaults for future use */
       
  1207 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
       
  1208 		    ((phy_data & CR_1000T_MS_VALUE) ?
       
  1209 		     e1000_ms_force_master :
       
  1210 		     e1000_ms_force_slave) : e1000_ms_auto;
       
  1211 
       
  1212 		switch (phy_ms_setting) {
       
  1213 		case e1000_ms_force_master:
       
  1214 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
       
  1215 			break;
       
  1216 		case e1000_ms_force_slave:
       
  1217 			phy_data |= CR_1000T_MS_ENABLE;
       
  1218 			phy_data &= ~(CR_1000T_MS_VALUE);
       
  1219 			break;
       
  1220 		case e1000_ms_auto:
       
  1221 			phy_data &= ~CR_1000T_MS_ENABLE;
       
  1222 		default:
       
  1223 			break;
       
  1224 		}
       
  1225 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
       
  1226 		if (ret_val)
       
  1227 			return ret_val;
       
  1228 	}
       
  1229 
       
  1230 	return E1000_SUCCESS;
       
  1231 }
       
  1232 
       
  1233 /**
       
  1234  * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
       
  1235  * @hw: Struct containing variables accessed by shared code
       
  1236  */
       
  1237 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
       
  1238 {
       
  1239 	s32 ret_val;
       
  1240 	u16 phy_data;
       
  1241 
       
  1242 	e_dbg("e1000_copper_link_mgp_setup");
       
  1243 
       
  1244 	if (hw->phy_reset_disable)
       
  1245 		return E1000_SUCCESS;
       
  1246 
       
  1247 	/* Enable CRS on TX. This must be set for half-duplex operation. */
       
  1248 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1249 	if (ret_val)
       
  1250 		return ret_val;
       
  1251 
       
  1252 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1253 
       
  1254 	/* Options:
       
  1255 	 *   MDI/MDI-X = 0 (default)
       
  1256 	 *   0 - Auto for all speeds
       
  1257 	 *   1 - MDI mode
       
  1258 	 *   2 - MDI-X mode
       
  1259 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
  1260 	 */
       
  1261 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1262 
       
  1263 	switch (hw->mdix) {
       
  1264 	case 1:
       
  1265 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
       
  1266 		break;
       
  1267 	case 2:
       
  1268 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
       
  1269 		break;
       
  1270 	case 3:
       
  1271 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
       
  1272 		break;
       
  1273 	case 0:
       
  1274 	default:
       
  1275 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
       
  1276 		break;
       
  1277 	}
       
  1278 
       
  1279 	/* Options:
       
  1280 	 *   disable_polarity_correction = 0 (default)
       
  1281 	 *       Automatic Correction for Reversed Cable Polarity
       
  1282 	 *   0 - Disabled
       
  1283 	 *   1 - Enabled
       
  1284 	 */
       
  1285 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
       
  1286 	if (hw->disable_polarity_correction == 1)
       
  1287 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
       
  1288 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1289 	if (ret_val)
       
  1290 		return ret_val;
       
  1291 
       
  1292 	if (hw->phy_revision < M88E1011_I_REV_4) {
       
  1293 		/* Force TX_CLK in the Extended PHY Specific Control Register
       
  1294 		 * to 25MHz clock.
       
  1295 		 */
       
  1296 		ret_val =
       
  1297 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
       
  1298 				       &phy_data);
       
  1299 		if (ret_val)
       
  1300 			return ret_val;
       
  1301 
       
  1302 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
  1303 
       
  1304 		if ((hw->phy_revision == E1000_REVISION_2) &&
       
  1305 		    (hw->phy_id == M88E1111_I_PHY_ID)) {
       
  1306 			/* Vidalia Phy, set the downshift counter to 5x */
       
  1307 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
       
  1308 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
       
  1309 			ret_val = e1000_write_phy_reg(hw,
       
  1310 						      M88E1000_EXT_PHY_SPEC_CTRL,
       
  1311 						      phy_data);
       
  1312 			if (ret_val)
       
  1313 				return ret_val;
       
  1314 		} else {
       
  1315 			/* Configure Master and Slave downshift values */
       
  1316 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
       
  1317 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
       
  1318 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
       
  1319 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
       
  1320 			ret_val = e1000_write_phy_reg(hw,
       
  1321 						      M88E1000_EXT_PHY_SPEC_CTRL,
       
  1322 						      phy_data);
       
  1323 			if (ret_val)
       
  1324 				return ret_val;
       
  1325 		}
       
  1326 	}
       
  1327 
       
  1328 	/* SW Reset the PHY so all changes take effect */
       
  1329 	ret_val = e1000_phy_reset(hw);
       
  1330 	if (ret_val) {
       
  1331 		e_dbg("Error Resetting the PHY\n");
       
  1332 		return ret_val;
       
  1333 	}
       
  1334 
       
  1335 	return E1000_SUCCESS;
       
  1336 }
       
  1337 
       
  1338 /**
       
  1339  * e1000_copper_link_autoneg - setup auto-neg
       
  1340  * @hw: Struct containing variables accessed by shared code
       
  1341  *
       
  1342  * Setup auto-negotiation and flow control advertisements,
       
  1343  * and then perform auto-negotiation.
       
  1344  */
       
  1345 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
       
  1346 {
       
  1347 	s32 ret_val;
       
  1348 	u16 phy_data;
       
  1349 
       
  1350 	e_dbg("e1000_copper_link_autoneg");
       
  1351 
       
  1352 	/* Perform some bounds checking on the hw->autoneg_advertised
       
  1353 	 * parameter.  If this variable is zero, then set it to the default.
       
  1354 	 */
       
  1355 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
  1356 
       
  1357 	/* If autoneg_advertised is zero, we assume it was not defaulted
       
  1358 	 * by the calling code so we set to advertise full capability.
       
  1359 	 */
       
  1360 	if (hw->autoneg_advertised == 0)
       
  1361 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
  1362 
       
  1363 	/* IFE/RTL8201N PHY only supports 10/100 */
       
  1364 	if (hw->phy_type == e1000_phy_8201)
       
  1365 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
       
  1366 
       
  1367 	e_dbg("Reconfiguring auto-neg advertisement params\n");
       
  1368 	ret_val = e1000_phy_setup_autoneg(hw);
       
  1369 	if (ret_val) {
       
  1370 		e_dbg("Error Setting up Auto-Negotiation\n");
       
  1371 		return ret_val;
       
  1372 	}
       
  1373 	e_dbg("Restarting Auto-Neg\n");
       
  1374 
       
  1375 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
       
  1376 	 * the Auto Neg Restart bit in the PHY control register.
       
  1377 	 */
       
  1378 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
       
  1379 	if (ret_val)
       
  1380 		return ret_val;
       
  1381 
       
  1382 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
       
  1383 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
       
  1384 	if (ret_val)
       
  1385 		return ret_val;
       
  1386 
       
  1387 	/* Does the user want to wait for Auto-Neg to complete here, or
       
  1388 	 * check at a later time (for example, callback routine).
       
  1389 	 */
       
  1390 	if (hw->wait_autoneg_complete) {
       
  1391 		ret_val = e1000_wait_autoneg(hw);
       
  1392 		if (ret_val) {
       
  1393 			e_dbg
       
  1394 			    ("Error while waiting for autoneg to complete\n");
       
  1395 			return ret_val;
       
  1396 		}
       
  1397 	}
       
  1398 
       
  1399 	hw->get_link_status = true;
       
  1400 
       
  1401 	return E1000_SUCCESS;
       
  1402 }
       
  1403 
       
  1404 /**
       
  1405  * e1000_copper_link_postconfig - post link setup
       
  1406  * @hw: Struct containing variables accessed by shared code
       
  1407  *
       
  1408  * Config the MAC and the PHY after link is up.
       
  1409  *   1) Set up the MAC to the current PHY speed/duplex
       
  1410  *      if we are on 82543.  If we
       
  1411  *      are on newer silicon, we only need to configure
       
  1412  *      collision distance in the Transmit Control Register.
       
  1413  *   2) Set up flow control on the MAC to that established with
       
  1414  *      the link partner.
       
  1415  *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
       
  1416  */
       
  1417 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
       
  1418 {
       
  1419 	s32 ret_val;
       
  1420 	e_dbg("e1000_copper_link_postconfig");
       
  1421 
       
  1422 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
       
  1423 		e1000_config_collision_dist(hw);
       
  1424 	} else {
       
  1425 		ret_val = e1000_config_mac_to_phy(hw);
       
  1426 		if (ret_val) {
       
  1427 			e_dbg("Error configuring MAC to PHY settings\n");
       
  1428 			return ret_val;
       
  1429 		}
       
  1430 	}
       
  1431 	ret_val = e1000_config_fc_after_link_up(hw);
       
  1432 	if (ret_val) {
       
  1433 		e_dbg("Error Configuring Flow Control\n");
       
  1434 		return ret_val;
       
  1435 	}
       
  1436 
       
  1437 	/* Config DSP to improve Giga link quality */
       
  1438 	if (hw->phy_type == e1000_phy_igp) {
       
  1439 		ret_val = e1000_config_dsp_after_link_change(hw, true);
       
  1440 		if (ret_val) {
       
  1441 			e_dbg("Error Configuring DSP after link up\n");
       
  1442 			return ret_val;
       
  1443 		}
       
  1444 	}
       
  1445 
       
  1446 	return E1000_SUCCESS;
       
  1447 }
       
  1448 
       
  1449 /**
       
  1450  * e1000_setup_copper_link - phy/speed/duplex setting
       
  1451  * @hw: Struct containing variables accessed by shared code
       
  1452  *
       
  1453  * Detects which PHY is present and sets up the speed and duplex
       
  1454  */
       
  1455 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
       
  1456 {
       
  1457 	s32 ret_val;
       
  1458 	u16 i;
       
  1459 	u16 phy_data;
       
  1460 
       
  1461 	e_dbg("e1000_setup_copper_link");
       
  1462 
       
  1463 	/* Check if it is a valid PHY and set PHY mode if necessary. */
       
  1464 	ret_val = e1000_copper_link_preconfig(hw);
       
  1465 	if (ret_val)
       
  1466 		return ret_val;
       
  1467 
       
  1468 	if (hw->phy_type == e1000_phy_igp) {
       
  1469 		ret_val = e1000_copper_link_igp_setup(hw);
       
  1470 		if (ret_val)
       
  1471 			return ret_val;
       
  1472 	} else if (hw->phy_type == e1000_phy_m88) {
       
  1473 		ret_val = e1000_copper_link_mgp_setup(hw);
       
  1474 		if (ret_val)
       
  1475 			return ret_val;
       
  1476 	} else {
       
  1477 		ret_val = gbe_dhg_phy_setup(hw);
       
  1478 		if (ret_val) {
       
  1479 			e_dbg("gbe_dhg_phy_setup failed!\n");
       
  1480 			return ret_val;
       
  1481 		}
       
  1482 	}
       
  1483 
       
  1484 	if (hw->autoneg) {
       
  1485 		/* Setup autoneg and flow control advertisement
       
  1486 		 * and perform autonegotiation */
       
  1487 		ret_val = e1000_copper_link_autoneg(hw);
       
  1488 		if (ret_val)
       
  1489 			return ret_val;
       
  1490 	} else {
       
  1491 		/* PHY will be set to 10H, 10F, 100H,or 100F
       
  1492 		 * depending on value from forced_speed_duplex. */
       
  1493 		e_dbg("Forcing speed and duplex\n");
       
  1494 		ret_val = e1000_phy_force_speed_duplex(hw);
       
  1495 		if (ret_val) {
       
  1496 			e_dbg("Error Forcing Speed and Duplex\n");
       
  1497 			return ret_val;
       
  1498 		}
       
  1499 	}
       
  1500 
       
  1501 	/* Check link status. Wait up to 100 microseconds for link to become
       
  1502 	 * valid.
       
  1503 	 */
       
  1504 	for (i = 0; i < 10; i++) {
       
  1505 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  1506 		if (ret_val)
       
  1507 			return ret_val;
       
  1508 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  1509 		if (ret_val)
       
  1510 			return ret_val;
       
  1511 
       
  1512 		if (phy_data & MII_SR_LINK_STATUS) {
       
  1513 			/* Config the MAC and PHY after link is up */
       
  1514 			ret_val = e1000_copper_link_postconfig(hw);
       
  1515 			if (ret_val)
       
  1516 				return ret_val;
       
  1517 
       
  1518 			e_dbg("Valid link established!!!\n");
       
  1519 			return E1000_SUCCESS;
       
  1520 		}
       
  1521 		udelay(10);
       
  1522 	}
       
  1523 
       
  1524 	e_dbg("Unable to establish link!!!\n");
       
  1525 	return E1000_SUCCESS;
       
  1526 }
       
  1527 
       
  1528 /**
       
  1529  * e1000_phy_setup_autoneg - phy settings
       
  1530  * @hw: Struct containing variables accessed by shared code
       
  1531  *
       
  1532  * Configures PHY autoneg and flow control advertisement settings
       
  1533  */
       
  1534 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
       
  1535 {
       
  1536 	s32 ret_val;
       
  1537 	u16 mii_autoneg_adv_reg;
       
  1538 	u16 mii_1000t_ctrl_reg;
       
  1539 
       
  1540 	e_dbg("e1000_phy_setup_autoneg");
       
  1541 
       
  1542 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
       
  1543 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
       
  1544 	if (ret_val)
       
  1545 		return ret_val;
       
  1546 
       
  1547 	/* Read the MII 1000Base-T Control Register (Address 9). */
       
  1548 	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
       
  1549 	if (ret_val)
       
  1550 		return ret_val;
       
  1551 	else if (hw->phy_type == e1000_phy_8201)
       
  1552 		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
       
  1553 
       
  1554 	/* Need to parse both autoneg_advertised and fc and set up
       
  1555 	 * the appropriate PHY registers.  First we will parse for
       
  1556 	 * autoneg_advertised software override.  Since we can advertise
       
  1557 	 * a plethora of combinations, we need to check each bit
       
  1558 	 * individually.
       
  1559 	 */
       
  1560 
       
  1561 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
       
  1562 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
       
  1563 	 * the  1000Base-T Control Register (Address 9).
       
  1564 	 */
       
  1565 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
       
  1566 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
       
  1567 
       
  1568 	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
       
  1569 
       
  1570 	/* Do we want to advertise 10 Mb Half Duplex? */
       
  1571 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
       
  1572 		e_dbg("Advertise 10mb Half duplex\n");
       
  1573 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
       
  1574 	}
       
  1575 
       
  1576 	/* Do we want to advertise 10 Mb Full Duplex? */
       
  1577 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
       
  1578 		e_dbg("Advertise 10mb Full duplex\n");
       
  1579 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
       
  1580 	}
       
  1581 
       
  1582 	/* Do we want to advertise 100 Mb Half Duplex? */
       
  1583 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
       
  1584 		e_dbg("Advertise 100mb Half duplex\n");
       
  1585 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
       
  1586 	}
       
  1587 
       
  1588 	/* Do we want to advertise 100 Mb Full Duplex? */
       
  1589 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
       
  1590 		e_dbg("Advertise 100mb Full duplex\n");
       
  1591 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
       
  1592 	}
       
  1593 
       
  1594 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
       
  1595 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
       
  1596 		e_dbg
       
  1597 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
       
  1598 	}
       
  1599 
       
  1600 	/* Do we want to advertise 1000 Mb Full Duplex? */
       
  1601 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
       
  1602 		e_dbg("Advertise 1000mb Full duplex\n");
       
  1603 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
       
  1604 	}
       
  1605 
       
  1606 	/* Check for a software override of the flow control settings, and
       
  1607 	 * setup the PHY advertisement registers accordingly.  If
       
  1608 	 * auto-negotiation is enabled, then software will have to set the
       
  1609 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
       
  1610 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
       
  1611 	 *
       
  1612 	 * The possible values of the "fc" parameter are:
       
  1613 	 *      0:  Flow control is completely disabled
       
  1614 	 *      1:  Rx flow control is enabled (we can receive pause frames
       
  1615 	 *          but not send pause frames).
       
  1616 	 *      2:  Tx flow control is enabled (we can send pause frames
       
  1617 	 *          but we do not support receiving pause frames).
       
  1618 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
       
  1619 	 *  other:  No software override.  The flow control configuration
       
  1620 	 *          in the EEPROM is used.
       
  1621 	 */
       
  1622 	switch (hw->fc) {
       
  1623 	case E1000_FC_NONE:	/* 0 */
       
  1624 		/* Flow control (RX & TX) is completely disabled by a
       
  1625 		 * software over-ride.
       
  1626 		 */
       
  1627 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1628 		break;
       
  1629 	case E1000_FC_RX_PAUSE:	/* 1 */
       
  1630 		/* RX Flow control is enabled, and TX Flow control is
       
  1631 		 * disabled, by a software over-ride.
       
  1632 		 */
       
  1633 		/* Since there really isn't a way to advertise that we are
       
  1634 		 * capable of RX Pause ONLY, we will advertise that we
       
  1635 		 * support both symmetric and asymmetric RX PAUSE.  Later
       
  1636 		 * (in e1000_config_fc_after_link_up) we will disable the
       
  1637 		 *hw's ability to send PAUSE frames.
       
  1638 		 */
       
  1639 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1640 		break;
       
  1641 	case E1000_FC_TX_PAUSE:	/* 2 */
       
  1642 		/* TX Flow control is enabled, and RX Flow control is
       
  1643 		 * disabled, by a software over-ride.
       
  1644 		 */
       
  1645 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
       
  1646 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
       
  1647 		break;
       
  1648 	case E1000_FC_FULL:	/* 3 */
       
  1649 		/* Flow control (both RX and TX) is enabled by a software
       
  1650 		 * over-ride.
       
  1651 		 */
       
  1652 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1653 		break;
       
  1654 	default:
       
  1655 		e_dbg("Flow control param set incorrectly\n");
       
  1656 		return -E1000_ERR_CONFIG;
       
  1657 	}
       
  1658 
       
  1659 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
       
  1660 	if (ret_val)
       
  1661 		return ret_val;
       
  1662 
       
  1663 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
       
  1664 
       
  1665 	if (hw->phy_type == e1000_phy_8201) {
       
  1666 		mii_1000t_ctrl_reg = 0;
       
  1667 	} else {
       
  1668 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
       
  1669 		                              mii_1000t_ctrl_reg);
       
  1670 		if (ret_val)
       
  1671 			return ret_val;
       
  1672 	}
       
  1673 
       
  1674 	return E1000_SUCCESS;
       
  1675 }
       
  1676 
       
  1677 /**
       
  1678  * e1000_phy_force_speed_duplex - force link settings
       
  1679  * @hw: Struct containing variables accessed by shared code
       
  1680  *
       
  1681  * Force PHY speed and duplex settings to hw->forced_speed_duplex
       
  1682  */
       
  1683 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
       
  1684 {
       
  1685 	u32 ctrl;
       
  1686 	s32 ret_val;
       
  1687 	u16 mii_ctrl_reg;
       
  1688 	u16 mii_status_reg;
       
  1689 	u16 phy_data;
       
  1690 	u16 i;
       
  1691 
       
  1692 	e_dbg("e1000_phy_force_speed_duplex");
       
  1693 
       
  1694 	/* Turn off Flow control if we are forcing speed and duplex. */
       
  1695 	hw->fc = E1000_FC_NONE;
       
  1696 
       
  1697 	e_dbg("hw->fc = %d\n", hw->fc);
       
  1698 
       
  1699 	/* Read the Device Control Register. */
       
  1700 	ctrl = er32(CTRL);
       
  1701 
       
  1702 	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
       
  1703 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1704 	ctrl &= ~(DEVICE_SPEED_MASK);
       
  1705 
       
  1706 	/* Clear the Auto Speed Detect Enable bit. */
       
  1707 	ctrl &= ~E1000_CTRL_ASDE;
       
  1708 
       
  1709 	/* Read the MII Control Register. */
       
  1710 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
       
  1711 	if (ret_val)
       
  1712 		return ret_val;
       
  1713 
       
  1714 	/* We need to disable autoneg in order to force link and duplex. */
       
  1715 
       
  1716 	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
       
  1717 
       
  1718 	/* Are we forcing Full or Half Duplex? */
       
  1719 	if (hw->forced_speed_duplex == e1000_100_full ||
       
  1720 	    hw->forced_speed_duplex == e1000_10_full) {
       
  1721 		/* We want to force full duplex so we SET the full duplex bits in the
       
  1722 		 * Device and MII Control Registers.
       
  1723 		 */
       
  1724 		ctrl |= E1000_CTRL_FD;
       
  1725 		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
       
  1726 		e_dbg("Full Duplex\n");
       
  1727 	} else {
       
  1728 		/* We want to force half duplex so we CLEAR the full duplex bits in
       
  1729 		 * the Device and MII Control Registers.
       
  1730 		 */
       
  1731 		ctrl &= ~E1000_CTRL_FD;
       
  1732 		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
       
  1733 		e_dbg("Half Duplex\n");
       
  1734 	}
       
  1735 
       
  1736 	/* Are we forcing 100Mbps??? */
       
  1737 	if (hw->forced_speed_duplex == e1000_100_full ||
       
  1738 	    hw->forced_speed_duplex == e1000_100_half) {
       
  1739 		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
       
  1740 		ctrl |= E1000_CTRL_SPD_100;
       
  1741 		mii_ctrl_reg |= MII_CR_SPEED_100;
       
  1742 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
       
  1743 		e_dbg("Forcing 100mb ");
       
  1744 	} else {
       
  1745 		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
       
  1746 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1747 		mii_ctrl_reg |= MII_CR_SPEED_10;
       
  1748 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
       
  1749 		e_dbg("Forcing 10mb ");
       
  1750 	}
       
  1751 
       
  1752 	e1000_config_collision_dist(hw);
       
  1753 
       
  1754 	/* Write the configured values back to the Device Control Reg. */
       
  1755 	ew32(CTRL, ctrl);
       
  1756 
       
  1757 	if (hw->phy_type == e1000_phy_m88) {
       
  1758 		ret_val =
       
  1759 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1760 		if (ret_val)
       
  1761 			return ret_val;
       
  1762 
       
  1763 		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
       
  1764 		 * forced whenever speed are duplex are forced.
       
  1765 		 */
       
  1766 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1767 		ret_val =
       
  1768 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1769 		if (ret_val)
       
  1770 			return ret_val;
       
  1771 
       
  1772 		e_dbg("M88E1000 PSCR: %x\n", phy_data);
       
  1773 
       
  1774 		/* Need to reset the PHY or these changes will be ignored */
       
  1775 		mii_ctrl_reg |= MII_CR_RESET;
       
  1776 
       
  1777 		/* Disable MDI-X support for 10/100 */
       
  1778 	} else {
       
  1779 		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
       
  1780 		 * forced whenever speed or duplex are forced.
       
  1781 		 */
       
  1782 		ret_val =
       
  1783 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
       
  1784 		if (ret_val)
       
  1785 			return ret_val;
       
  1786 
       
  1787 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
  1788 		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  1789 
       
  1790 		ret_val =
       
  1791 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
       
  1792 		if (ret_val)
       
  1793 			return ret_val;
       
  1794 	}
       
  1795 
       
  1796 	/* Write back the modified PHY MII control register. */
       
  1797 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
       
  1798 	if (ret_val)
       
  1799 		return ret_val;
       
  1800 
       
  1801 	udelay(1);
       
  1802 
       
  1803 	/* The wait_autoneg_complete flag may be a little misleading here.
       
  1804 	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
       
  1805 	 * But we do want to delay for a period while forcing only so we
       
  1806 	 * don't generate false No Link messages.  So we will wait here
       
  1807 	 * only if the user has set wait_autoneg_complete to 1, which is
       
  1808 	 * the default.
       
  1809 	 */
       
  1810 	if (hw->wait_autoneg_complete) {
       
  1811 		/* We will wait for autoneg to complete. */
       
  1812 		e_dbg("Waiting for forced speed/duplex link.\n");
       
  1813 		mii_status_reg = 0;
       
  1814 
       
  1815 		/* We will wait for autoneg to complete or 4.5 seconds to expire. */
       
  1816 		for (i = PHY_FORCE_TIME; i > 0; i--) {
       
  1817 			/* Read the MII Status Register and wait for Auto-Neg Complete bit
       
  1818 			 * to be set.
       
  1819 			 */
       
  1820 			ret_val =
       
  1821 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  1822 			if (ret_val)
       
  1823 				return ret_val;
       
  1824 
       
  1825 			ret_val =
       
  1826 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  1827 			if (ret_val)
       
  1828 				return ret_val;
       
  1829 
       
  1830 			if (mii_status_reg & MII_SR_LINK_STATUS)
       
  1831 				break;
       
  1832 			msleep(100);
       
  1833 		}
       
  1834 		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
       
  1835 			/* We didn't get link.  Reset the DSP and wait again for link. */
       
  1836 			ret_val = e1000_phy_reset_dsp(hw);
       
  1837 			if (ret_val) {
       
  1838 				e_dbg("Error Resetting PHY DSP\n");
       
  1839 				return ret_val;
       
  1840 			}
       
  1841 		}
       
  1842 		/* This loop will early-out if the link condition has been met.  */
       
  1843 		for (i = PHY_FORCE_TIME; i > 0; i--) {
       
  1844 			if (mii_status_reg & MII_SR_LINK_STATUS)
       
  1845 				break;
       
  1846 			msleep(100);
       
  1847 			/* Read the MII Status Register and wait for Auto-Neg Complete bit
       
  1848 			 * to be set.
       
  1849 			 */
       
  1850 			ret_val =
       
  1851 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  1852 			if (ret_val)
       
  1853 				return ret_val;
       
  1854 
       
  1855 			ret_val =
       
  1856 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  1857 			if (ret_val)
       
  1858 				return ret_val;
       
  1859 		}
       
  1860 	}
       
  1861 
       
  1862 	if (hw->phy_type == e1000_phy_m88) {
       
  1863 		/* Because we reset the PHY above, we need to re-force TX_CLK in the
       
  1864 		 * Extended PHY Specific Control Register to 25MHz clock.  This value
       
  1865 		 * defaults back to a 2.5MHz clock when the PHY is reset.
       
  1866 		 */
       
  1867 		ret_val =
       
  1868 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
       
  1869 				       &phy_data);
       
  1870 		if (ret_val)
       
  1871 			return ret_val;
       
  1872 
       
  1873 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
  1874 		ret_val =
       
  1875 		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
       
  1876 					phy_data);
       
  1877 		if (ret_val)
       
  1878 			return ret_val;
       
  1879 
       
  1880 		/* In addition, because of the s/w reset above, we need to enable CRS on
       
  1881 		 * TX.  This must be set for both full and half duplex operation.
       
  1882 		 */
       
  1883 		ret_val =
       
  1884 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1885 		if (ret_val)
       
  1886 			return ret_val;
       
  1887 
       
  1888 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1889 		ret_val =
       
  1890 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1891 		if (ret_val)
       
  1892 			return ret_val;
       
  1893 
       
  1894 		if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
       
  1895 		    && (!hw->autoneg)
       
  1896 		    && (hw->forced_speed_duplex == e1000_10_full
       
  1897 			|| hw->forced_speed_duplex == e1000_10_half)) {
       
  1898 			ret_val = e1000_polarity_reversal_workaround(hw);
       
  1899 			if (ret_val)
       
  1900 				return ret_val;
       
  1901 		}
       
  1902 	}
       
  1903 	return E1000_SUCCESS;
       
  1904 }
       
  1905 
       
  1906 /**
       
  1907  * e1000_config_collision_dist - set collision distance register
       
  1908  * @hw: Struct containing variables accessed by shared code
       
  1909  *
       
  1910  * Sets the collision distance in the Transmit Control register.
       
  1911  * Link should have been established previously. Reads the speed and duplex
       
  1912  * information from the Device Status register.
       
  1913  */
       
  1914 void e1000_config_collision_dist(struct e1000_hw *hw)
       
  1915 {
       
  1916 	u32 tctl, coll_dist;
       
  1917 
       
  1918 	e_dbg("e1000_config_collision_dist");
       
  1919 
       
  1920 	if (hw->mac_type < e1000_82543)
       
  1921 		coll_dist = E1000_COLLISION_DISTANCE_82542;
       
  1922 	else
       
  1923 		coll_dist = E1000_COLLISION_DISTANCE;
       
  1924 
       
  1925 	tctl = er32(TCTL);
       
  1926 
       
  1927 	tctl &= ~E1000_TCTL_COLD;
       
  1928 	tctl |= coll_dist << E1000_COLD_SHIFT;
       
  1929 
       
  1930 	ew32(TCTL, tctl);
       
  1931 	E1000_WRITE_FLUSH();
       
  1932 }
       
  1933 
       
  1934 /**
       
  1935  * e1000_config_mac_to_phy - sync phy and mac settings
       
  1936  * @hw: Struct containing variables accessed by shared code
       
  1937  * @mii_reg: data to write to the MII control register
       
  1938  *
       
  1939  * Sets MAC speed and duplex settings to reflect the those in the PHY
       
  1940  * The contents of the PHY register containing the needed information need to
       
  1941  * be passed in.
       
  1942  */
       
  1943 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
       
  1944 {
       
  1945 	u32 ctrl;
       
  1946 	s32 ret_val;
       
  1947 	u16 phy_data;
       
  1948 
       
  1949 	e_dbg("e1000_config_mac_to_phy");
       
  1950 
       
  1951 	/* 82544 or newer MAC, Auto Speed Detection takes care of
       
  1952 	 * MAC speed/duplex configuration.*/
       
  1953 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
       
  1954 		return E1000_SUCCESS;
       
  1955 
       
  1956 	/* Read the Device Control Register and set the bits to Force Speed
       
  1957 	 * and Duplex.
       
  1958 	 */
       
  1959 	ctrl = er32(CTRL);
       
  1960 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1961 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
       
  1962 
       
  1963 	switch (hw->phy_type) {
       
  1964 	case e1000_phy_8201:
       
  1965 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
       
  1966 		if (ret_val)
       
  1967 			return ret_val;
       
  1968 
       
  1969 		if (phy_data & RTL_PHY_CTRL_FD)
       
  1970 			ctrl |= E1000_CTRL_FD;
       
  1971 		else
       
  1972 			ctrl &= ~E1000_CTRL_FD;
       
  1973 
       
  1974 		if (phy_data & RTL_PHY_CTRL_SPD_100)
       
  1975 			ctrl |= E1000_CTRL_SPD_100;
       
  1976 		else
       
  1977 			ctrl |= E1000_CTRL_SPD_10;
       
  1978 
       
  1979 		e1000_config_collision_dist(hw);
       
  1980 		break;
       
  1981 	default:
       
  1982 		/* Set up duplex in the Device Control and Transmit Control
       
  1983 		 * registers depending on negotiated values.
       
  1984 		 */
       
  1985 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
       
  1986 		                             &phy_data);
       
  1987 		if (ret_val)
       
  1988 			return ret_val;
       
  1989 
       
  1990 		if (phy_data & M88E1000_PSSR_DPLX)
       
  1991 			ctrl |= E1000_CTRL_FD;
       
  1992 		else
       
  1993 			ctrl &= ~E1000_CTRL_FD;
       
  1994 
       
  1995 		e1000_config_collision_dist(hw);
       
  1996 
       
  1997 		/* Set up speed in the Device Control register depending on
       
  1998 		 * negotiated values.
       
  1999 		 */
       
  2000 		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
       
  2001 			ctrl |= E1000_CTRL_SPD_1000;
       
  2002 		else if ((phy_data & M88E1000_PSSR_SPEED) ==
       
  2003 		         M88E1000_PSSR_100MBS)
       
  2004 			ctrl |= E1000_CTRL_SPD_100;
       
  2005 	}
       
  2006 
       
  2007 	/* Write the configured values back to the Device Control Reg. */
       
  2008 	ew32(CTRL, ctrl);
       
  2009 	return E1000_SUCCESS;
       
  2010 }
       
  2011 
       
  2012 /**
       
  2013  * e1000_force_mac_fc - force flow control settings
       
  2014  * @hw: Struct containing variables accessed by shared code
       
  2015  *
       
  2016  * Forces the MAC's flow control settings.
       
  2017  * Sets the TFCE and RFCE bits in the device control register to reflect
       
  2018  * the adapter settings. TFCE and RFCE need to be explicitly set by
       
  2019  * software when a Copper PHY is used because autonegotiation is managed
       
  2020  * by the PHY rather than the MAC. Software must also configure these
       
  2021  * bits when link is forced on a fiber connection.
       
  2022  */
       
  2023 s32 e1000_force_mac_fc(struct e1000_hw *hw)
       
  2024 {
       
  2025 	u32 ctrl;
       
  2026 
       
  2027 	e_dbg("e1000_force_mac_fc");
       
  2028 
       
  2029 	/* Get the current configuration of the Device Control Register */
       
  2030 	ctrl = er32(CTRL);
       
  2031 
       
  2032 	/* Because we didn't get link via the internal auto-negotiation
       
  2033 	 * mechanism (we either forced link or we got link via PHY
       
  2034 	 * auto-neg), we have to manually enable/disable transmit an
       
  2035 	 * receive flow control.
       
  2036 	 *
       
  2037 	 * The "Case" statement below enables/disable flow control
       
  2038 	 * according to the "hw->fc" parameter.
       
  2039 	 *
       
  2040 	 * The possible values of the "fc" parameter are:
       
  2041 	 *      0:  Flow control is completely disabled
       
  2042 	 *      1:  Rx flow control is enabled (we can receive pause
       
  2043 	 *          frames but not send pause frames).
       
  2044 	 *      2:  Tx flow control is enabled (we can send pause frames
       
  2045 	 *          frames but we do not receive pause frames).
       
  2046 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
       
  2047 	 *  other:  No other values should be possible at this point.
       
  2048 	 */
       
  2049 
       
  2050 	switch (hw->fc) {
       
  2051 	case E1000_FC_NONE:
       
  2052 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
       
  2053 		break;
       
  2054 	case E1000_FC_RX_PAUSE:
       
  2055 		ctrl &= (~E1000_CTRL_TFCE);
       
  2056 		ctrl |= E1000_CTRL_RFCE;
       
  2057 		break;
       
  2058 	case E1000_FC_TX_PAUSE:
       
  2059 		ctrl &= (~E1000_CTRL_RFCE);
       
  2060 		ctrl |= E1000_CTRL_TFCE;
       
  2061 		break;
       
  2062 	case E1000_FC_FULL:
       
  2063 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
       
  2064 		break;
       
  2065 	default:
       
  2066 		e_dbg("Flow control param set incorrectly\n");
       
  2067 		return -E1000_ERR_CONFIG;
       
  2068 	}
       
  2069 
       
  2070 	/* Disable TX Flow Control for 82542 (rev 2.0) */
       
  2071 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2072 		ctrl &= (~E1000_CTRL_TFCE);
       
  2073 
       
  2074 	ew32(CTRL, ctrl);
       
  2075 	return E1000_SUCCESS;
       
  2076 }
       
  2077 
       
  2078 /**
       
  2079  * e1000_config_fc_after_link_up - configure flow control after autoneg
       
  2080  * @hw: Struct containing variables accessed by shared code
       
  2081  *
       
  2082  * Configures flow control settings after link is established
       
  2083  * Should be called immediately after a valid link has been established.
       
  2084  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
       
  2085  * and autonegotiation is enabled, the MAC flow control settings will be set
       
  2086  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
       
  2087  * and RFCE bits will be automatically set to the negotiated flow control mode.
       
  2088  */
       
  2089 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
       
  2090 {
       
  2091 	s32 ret_val;
       
  2092 	u16 mii_status_reg;
       
  2093 	u16 mii_nway_adv_reg;
       
  2094 	u16 mii_nway_lp_ability_reg;
       
  2095 	u16 speed;
       
  2096 	u16 duplex;
       
  2097 
       
  2098 	e_dbg("e1000_config_fc_after_link_up");
       
  2099 
       
  2100 	/* Check for the case where we have fiber media and auto-neg failed
       
  2101 	 * so we had to force link.  In this case, we need to force the
       
  2102 	 * configuration of the MAC to match the "fc" parameter.
       
  2103 	 */
       
  2104 	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
       
  2105 	    || ((hw->media_type == e1000_media_type_internal_serdes)
       
  2106 		&& (hw->autoneg_failed))
       
  2107 	    || ((hw->media_type == e1000_media_type_copper)
       
  2108 		&& (!hw->autoneg))) {
       
  2109 		ret_val = e1000_force_mac_fc(hw);
       
  2110 		if (ret_val) {
       
  2111 			e_dbg("Error forcing flow control settings\n");
       
  2112 			return ret_val;
       
  2113 		}
       
  2114 	}
       
  2115 
       
  2116 	/* Check for the case where we have copper media and auto-neg is
       
  2117 	 * enabled.  In this case, we need to check and see if Auto-Neg
       
  2118 	 * has completed, and if so, how the PHY and link partner has
       
  2119 	 * flow control configured.
       
  2120 	 */
       
  2121 	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
       
  2122 		/* Read the MII Status Register and check to see if AutoNeg
       
  2123 		 * has completed.  We read this twice because this reg has
       
  2124 		 * some "sticky" (latched) bits.
       
  2125 		 */
       
  2126 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  2127 		if (ret_val)
       
  2128 			return ret_val;
       
  2129 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  2130 		if (ret_val)
       
  2131 			return ret_val;
       
  2132 
       
  2133 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
       
  2134 			/* The AutoNeg process has completed, so we now need to
       
  2135 			 * read both the Auto Negotiation Advertisement Register
       
  2136 			 * (Address 4) and the Auto_Negotiation Base Page Ability
       
  2137 			 * Register (Address 5) to determine how flow control was
       
  2138 			 * negotiated.
       
  2139 			 */
       
  2140 			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
       
  2141 						     &mii_nway_adv_reg);
       
  2142 			if (ret_val)
       
  2143 				return ret_val;
       
  2144 			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
       
  2145 						     &mii_nway_lp_ability_reg);
       
  2146 			if (ret_val)
       
  2147 				return ret_val;
       
  2148 
       
  2149 			/* Two bits in the Auto Negotiation Advertisement Register
       
  2150 			 * (Address 4) and two bits in the Auto Negotiation Base
       
  2151 			 * Page Ability Register (Address 5) determine flow control
       
  2152 			 * for both the PHY and the link partner.  The following
       
  2153 			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
       
  2154 			 * 1999, describes these PAUSE resolution bits and how flow
       
  2155 			 * control is determined based upon these settings.
       
  2156 			 * NOTE:  DC = Don't Care
       
  2157 			 *
       
  2158 			 *   LOCAL DEVICE  |   LINK PARTNER
       
  2159 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
       
  2160 			 *-------|---------|-------|---------|--------------------
       
  2161 			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
       
  2162 			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
       
  2163 			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
       
  2164 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
       
  2165 			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
       
  2166 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
       
  2167 			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
       
  2168 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
       
  2169 			 *
       
  2170 			 */
       
  2171 			/* Are both PAUSE bits set to 1?  If so, this implies
       
  2172 			 * Symmetric Flow Control is enabled at both ends.  The
       
  2173 			 * ASM_DIR bits are irrelevant per the spec.
       
  2174 			 *
       
  2175 			 * For Symmetric Flow Control:
       
  2176 			 *
       
  2177 			 *   LOCAL DEVICE  |   LINK PARTNER
       
  2178 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  2179 			 *-------|---------|-------|---------|--------------------
       
  2180 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
       
  2181 			 *
       
  2182 			 */
       
  2183 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  2184 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
       
  2185 				/* Now we need to check if the user selected RX ONLY
       
  2186 				 * of pause frames.  In this case, we had to advertise
       
  2187 				 * FULL flow control because we could not advertise RX
       
  2188 				 * ONLY. Hence, we must now check to see if we need to
       
  2189 				 * turn OFF  the TRANSMISSION of PAUSE frames.
       
  2190 				 */
       
  2191 				if (hw->original_fc == E1000_FC_FULL) {
       
  2192 					hw->fc = E1000_FC_FULL;
       
  2193 					e_dbg("Flow Control = FULL.\n");
       
  2194 				} else {
       
  2195 					hw->fc = E1000_FC_RX_PAUSE;
       
  2196 					e_dbg
       
  2197 					    ("Flow Control = RX PAUSE frames only.\n");
       
  2198 				}
       
  2199 			}
       
  2200 			/* For receiving PAUSE frames ONLY.
       
  2201 			 *
       
  2202 			 *   LOCAL DEVICE  |   LINK PARTNER
       
  2203 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  2204 			 *-------|---------|-------|---------|--------------------
       
  2205 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
       
  2206 			 *
       
  2207 			 */
       
  2208 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  2209 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  2210 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  2211 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
       
  2212 			{
       
  2213 				hw->fc = E1000_FC_TX_PAUSE;
       
  2214 				e_dbg
       
  2215 				    ("Flow Control = TX PAUSE frames only.\n");
       
  2216 			}
       
  2217 			/* For transmitting PAUSE frames ONLY.
       
  2218 			 *
       
  2219 			 *   LOCAL DEVICE  |   LINK PARTNER
       
  2220 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  2221 			 *-------|---------|-------|---------|--------------------
       
  2222 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
       
  2223 			 *
       
  2224 			 */
       
  2225 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  2226 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  2227 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  2228 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
       
  2229 			{
       
  2230 				hw->fc = E1000_FC_RX_PAUSE;
       
  2231 				e_dbg
       
  2232 				    ("Flow Control = RX PAUSE frames only.\n");
       
  2233 			}
       
  2234 			/* Per the IEEE spec, at this point flow control should be
       
  2235 			 * disabled.  However, we want to consider that we could
       
  2236 			 * be connected to a legacy switch that doesn't advertise
       
  2237 			 * desired flow control, but can be forced on the link
       
  2238 			 * partner.  So if we advertised no flow control, that is
       
  2239 			 * what we will resolve to.  If we advertised some kind of
       
  2240 			 * receive capability (Rx Pause Only or Full Flow Control)
       
  2241 			 * and the link partner advertised none, we will configure
       
  2242 			 * ourselves to enable Rx Flow Control only.  We can do
       
  2243 			 * this safely for two reasons:  If the link partner really
       
  2244 			 * didn't want flow control enabled, and we enable Rx, no
       
  2245 			 * harm done since we won't be receiving any PAUSE frames
       
  2246 			 * anyway.  If the intent on the link partner was to have
       
  2247 			 * flow control enabled, then by us enabling RX only, we
       
  2248 			 * can at least receive pause frames and process them.
       
  2249 			 * This is a good idea because in most cases, since we are
       
  2250 			 * predominantly a server NIC, more times than not we will
       
  2251 			 * be asked to delay transmission of packets than asking
       
  2252 			 * our link partner to pause transmission of frames.
       
  2253 			 */
       
  2254 			else if ((hw->original_fc == E1000_FC_NONE ||
       
  2255 				  hw->original_fc == E1000_FC_TX_PAUSE) ||
       
  2256 				 hw->fc_strict_ieee) {
       
  2257 				hw->fc = E1000_FC_NONE;
       
  2258 				e_dbg("Flow Control = NONE.\n");
       
  2259 			} else {
       
  2260 				hw->fc = E1000_FC_RX_PAUSE;
       
  2261 				e_dbg
       
  2262 				    ("Flow Control = RX PAUSE frames only.\n");
       
  2263 			}
       
  2264 
       
  2265 			/* Now we need to do one last check...  If we auto-
       
  2266 			 * negotiated to HALF DUPLEX, flow control should not be
       
  2267 			 * enabled per IEEE 802.3 spec.
       
  2268 			 */
       
  2269 			ret_val =
       
  2270 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
       
  2271 			if (ret_val) {
       
  2272 				e_dbg
       
  2273 				    ("Error getting link speed and duplex\n");
       
  2274 				return ret_val;
       
  2275 			}
       
  2276 
       
  2277 			if (duplex == HALF_DUPLEX)
       
  2278 				hw->fc = E1000_FC_NONE;
       
  2279 
       
  2280 			/* Now we call a subroutine to actually force the MAC
       
  2281 			 * controller to use the correct flow control settings.
       
  2282 			 */
       
  2283 			ret_val = e1000_force_mac_fc(hw);
       
  2284 			if (ret_val) {
       
  2285 				e_dbg
       
  2286 				    ("Error forcing flow control settings\n");
       
  2287 				return ret_val;
       
  2288 			}
       
  2289 		} else {
       
  2290 			e_dbg
       
  2291 			    ("Copper PHY and Auto Neg has not completed.\n");
       
  2292 		}
       
  2293 	}
       
  2294 	return E1000_SUCCESS;
       
  2295 }
       
  2296 
       
  2297 /**
       
  2298  * e1000_check_for_serdes_link_generic - Check for link (Serdes)
       
  2299  * @hw: pointer to the HW structure
       
  2300  *
       
  2301  * Checks for link up on the hardware.  If link is not up and we have
       
  2302  * a signal, then we need to force link up.
       
  2303  */
       
  2304 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
       
  2305 {
       
  2306 	u32 rxcw;
       
  2307 	u32 ctrl;
       
  2308 	u32 status;
       
  2309 	s32 ret_val = E1000_SUCCESS;
       
  2310 
       
  2311 	e_dbg("e1000_check_for_serdes_link_generic");
       
  2312 
       
  2313 	ctrl = er32(CTRL);
       
  2314 	status = er32(STATUS);
       
  2315 	rxcw = er32(RXCW);
       
  2316 
       
  2317 	/*
       
  2318 	 * If we don't have link (auto-negotiation failed or link partner
       
  2319 	 * cannot auto-negotiate), and our link partner is not trying to
       
  2320 	 * auto-negotiate with us (we are receiving idles or data),
       
  2321 	 * we need to force link up. We also need to give auto-negotiation
       
  2322 	 * time to complete.
       
  2323 	 */
       
  2324 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
  2325 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
       
  2326 		if (hw->autoneg_failed == 0) {
       
  2327 			hw->autoneg_failed = 1;
       
  2328 			goto out;
       
  2329 		}
       
  2330 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
       
  2331 
       
  2332 		/* Disable auto-negotiation in the TXCW register */
       
  2333 		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
       
  2334 
       
  2335 		/* Force link-up and also force full-duplex. */
       
  2336 		ctrl = er32(CTRL);
       
  2337 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
  2338 		ew32(CTRL, ctrl);
       
  2339 
       
  2340 		/* Configure Flow Control after forcing link up. */
       
  2341 		ret_val = e1000_config_fc_after_link_up(hw);
       
  2342 		if (ret_val) {
       
  2343 			e_dbg("Error configuring flow control\n");
       
  2344 			goto out;
       
  2345 		}
       
  2346 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
  2347 		/*
       
  2348 		 * If we are forcing link and we are receiving /C/ ordered
       
  2349 		 * sets, re-enable auto-negotiation in the TXCW register
       
  2350 		 * and disable forced link in the Device Control register
       
  2351 		 * in an attempt to auto-negotiate with our link partner.
       
  2352 		 */
       
  2353 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
       
  2354 		ew32(TXCW, hw->txcw);
       
  2355 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
  2356 
       
  2357 		hw->serdes_has_link = true;
       
  2358 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
       
  2359 		/*
       
  2360 		 * If we force link for non-auto-negotiation switch, check
       
  2361 		 * link status based on MAC synchronization for internal
       
  2362 		 * serdes media type.
       
  2363 		 */
       
  2364 		/* SYNCH bit and IV bit are sticky. */
       
  2365 		udelay(10);
       
  2366 		rxcw = er32(RXCW);
       
  2367 		if (rxcw & E1000_RXCW_SYNCH) {
       
  2368 			if (!(rxcw & E1000_RXCW_IV)) {
       
  2369 				hw->serdes_has_link = true;
       
  2370 				e_dbg("SERDES: Link up - forced.\n");
       
  2371 			}
       
  2372 		} else {
       
  2373 			hw->serdes_has_link = false;
       
  2374 			e_dbg("SERDES: Link down - force failed.\n");
       
  2375 		}
       
  2376 	}
       
  2377 
       
  2378 	if (E1000_TXCW_ANE & er32(TXCW)) {
       
  2379 		status = er32(STATUS);
       
  2380 		if (status & E1000_STATUS_LU) {
       
  2381 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
       
  2382 			udelay(10);
       
  2383 			rxcw = er32(RXCW);
       
  2384 			if (rxcw & E1000_RXCW_SYNCH) {
       
  2385 				if (!(rxcw & E1000_RXCW_IV)) {
       
  2386 					hw->serdes_has_link = true;
       
  2387 					e_dbg("SERDES: Link up - autoneg "
       
  2388 						 "completed successfully.\n");
       
  2389 				} else {
       
  2390 					hw->serdes_has_link = false;
       
  2391 					e_dbg("SERDES: Link down - invalid"
       
  2392 						 "codewords detected in autoneg.\n");
       
  2393 				}
       
  2394 			} else {
       
  2395 				hw->serdes_has_link = false;
       
  2396 				e_dbg("SERDES: Link down - no sync.\n");
       
  2397 			}
       
  2398 		} else {
       
  2399 			hw->serdes_has_link = false;
       
  2400 			e_dbg("SERDES: Link down - autoneg failed\n");
       
  2401 		}
       
  2402 	}
       
  2403 
       
  2404       out:
       
  2405 	return ret_val;
       
  2406 }
       
  2407 
       
  2408 /**
       
  2409  * e1000_check_for_link
       
  2410  * @hw: Struct containing variables accessed by shared code
       
  2411  *
       
  2412  * Checks to see if the link status of the hardware has changed.
       
  2413  * Called by any function that needs to check the link status of the adapter.
       
  2414  */
       
  2415 s32 e1000_check_for_link(struct e1000_hw *hw)
       
  2416 {
       
  2417 	u32 rxcw = 0;
       
  2418 	u32 ctrl;
       
  2419 	u32 status;
       
  2420 	u32 rctl;
       
  2421 	u32 icr;
       
  2422 	u32 signal = 0;
       
  2423 	s32 ret_val;
       
  2424 	u16 phy_data;
       
  2425 
       
  2426 	e_dbg("e1000_check_for_link");
       
  2427 
       
  2428 	ctrl = er32(CTRL);
       
  2429 	status = er32(STATUS);
       
  2430 
       
  2431 	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
       
  2432 	 * set when the optics detect a signal. On older adapters, it will be
       
  2433 	 * cleared when there is a signal.  This applies to fiber media only.
       
  2434 	 */
       
  2435 	if ((hw->media_type == e1000_media_type_fiber) ||
       
  2436 	    (hw->media_type == e1000_media_type_internal_serdes)) {
       
  2437 		rxcw = er32(RXCW);
       
  2438 
       
  2439 		if (hw->media_type == e1000_media_type_fiber) {
       
  2440 			signal =
       
  2441 			    (hw->mac_type >
       
  2442 			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
       
  2443 			if (status & E1000_STATUS_LU)
       
  2444 				hw->get_link_status = false;
       
  2445 		}
       
  2446 	}
       
  2447 
       
  2448 	/* If we have a copper PHY then we only want to go out to the PHY
       
  2449 	 * registers to see if Auto-Neg has completed and/or if our link
       
  2450 	 * status has changed.  The get_link_status flag will be set if we
       
  2451 	 * receive a Link Status Change interrupt or we have Rx Sequence
       
  2452 	 * Errors.
       
  2453 	 */
       
  2454 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
       
  2455 		/* First we want to see if the MII Status Register reports
       
  2456 		 * link.  If so, then we want to get the current speed/duplex
       
  2457 		 * of the PHY.
       
  2458 		 * Read the register twice since the link bit is sticky.
       
  2459 		 */
       
  2460 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  2461 		if (ret_val)
       
  2462 			return ret_val;
       
  2463 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  2464 		if (ret_val)
       
  2465 			return ret_val;
       
  2466 
       
  2467 		if (phy_data & MII_SR_LINK_STATUS) {
       
  2468 			hw->get_link_status = false;
       
  2469 			/* Check if there was DownShift, must be checked immediately after
       
  2470 			 * link-up */
       
  2471 			e1000_check_downshift(hw);
       
  2472 
       
  2473 			/* If we are on 82544 or 82543 silicon and speed/duplex
       
  2474 			 * are forced to 10H or 10F, then we will implement the polarity
       
  2475 			 * reversal workaround.  We disable interrupts first, and upon
       
  2476 			 * returning, place the devices interrupt state to its previous
       
  2477 			 * value except for the link status change interrupt which will
       
  2478 			 * happen due to the execution of this workaround.
       
  2479 			 */
       
  2480 
       
  2481 			if ((hw->mac_type == e1000_82544
       
  2482 			     || hw->mac_type == e1000_82543) && (!hw->autoneg)
       
  2483 			    && (hw->forced_speed_duplex == e1000_10_full
       
  2484 				|| hw->forced_speed_duplex == e1000_10_half)) {
       
  2485 				ew32(IMC, 0xffffffff);
       
  2486 				ret_val =
       
  2487 				    e1000_polarity_reversal_workaround(hw);
       
  2488 				icr = er32(ICR);
       
  2489 				ew32(ICS, (icr & ~E1000_ICS_LSC));
       
  2490 				ew32(IMS, IMS_ENABLE_MASK);
       
  2491 			}
       
  2492 
       
  2493 		} else {
       
  2494 			/* No link detected */
       
  2495 			e1000_config_dsp_after_link_change(hw, false);
       
  2496 			return 0;
       
  2497 		}
       
  2498 
       
  2499 		/* If we are forcing speed/duplex, then we simply return since
       
  2500 		 * we have already determined whether we have link or not.
       
  2501 		 */
       
  2502 		if (!hw->autoneg)
       
  2503 			return -E1000_ERR_CONFIG;
       
  2504 
       
  2505 		/* optimize the dsp settings for the igp phy */
       
  2506 		e1000_config_dsp_after_link_change(hw, true);
       
  2507 
       
  2508 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
       
  2509 		 * have Si on board that is 82544 or newer, Auto
       
  2510 		 * Speed Detection takes care of MAC speed/duplex
       
  2511 		 * configuration.  So we only need to configure Collision
       
  2512 		 * Distance in the MAC.  Otherwise, we need to force
       
  2513 		 * speed/duplex on the MAC to the current PHY speed/duplex
       
  2514 		 * settings.
       
  2515 		 */
       
  2516 		if ((hw->mac_type >= e1000_82544) &&
       
  2517 		    (hw->mac_type != e1000_ce4100))
       
  2518 			e1000_config_collision_dist(hw);
       
  2519 		else {
       
  2520 			ret_val = e1000_config_mac_to_phy(hw);
       
  2521 			if (ret_val) {
       
  2522 				e_dbg
       
  2523 				    ("Error configuring MAC to PHY settings\n");
       
  2524 				return ret_val;
       
  2525 			}
       
  2526 		}
       
  2527 
       
  2528 		/* Configure Flow Control now that Auto-Neg has completed. First, we
       
  2529 		 * need to restore the desired flow control settings because we may
       
  2530 		 * have had to re-autoneg with a different link partner.
       
  2531 		 */
       
  2532 		ret_val = e1000_config_fc_after_link_up(hw);
       
  2533 		if (ret_val) {
       
  2534 			e_dbg("Error configuring flow control\n");
       
  2535 			return ret_val;
       
  2536 		}
       
  2537 
       
  2538 		/* At this point we know that we are on copper and we have
       
  2539 		 * auto-negotiated link.  These are conditions for checking the link
       
  2540 		 * partner capability register.  We use the link speed to determine if
       
  2541 		 * TBI compatibility needs to be turned on or off.  If the link is not
       
  2542 		 * at gigabit speed, then TBI compatibility is not needed.  If we are
       
  2543 		 * at gigabit speed, we turn on TBI compatibility.
       
  2544 		 */
       
  2545 		if (hw->tbi_compatibility_en) {
       
  2546 			u16 speed, duplex;
       
  2547 			ret_val =
       
  2548 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
       
  2549 			if (ret_val) {
       
  2550 				e_dbg
       
  2551 				    ("Error getting link speed and duplex\n");
       
  2552 				return ret_val;
       
  2553 			}
       
  2554 			if (speed != SPEED_1000) {
       
  2555 				/* If link speed is not set to gigabit speed, we do not need
       
  2556 				 * to enable TBI compatibility.
       
  2557 				 */
       
  2558 				if (hw->tbi_compatibility_on) {
       
  2559 					/* If we previously were in the mode, turn it off. */
       
  2560 					rctl = er32(RCTL);
       
  2561 					rctl &= ~E1000_RCTL_SBP;
       
  2562 					ew32(RCTL, rctl);
       
  2563 					hw->tbi_compatibility_on = false;
       
  2564 				}
       
  2565 			} else {
       
  2566 				/* If TBI compatibility is was previously off, turn it on. For
       
  2567 				 * compatibility with a TBI link partner, we will store bad
       
  2568 				 * packets. Some frames have an additional byte on the end and
       
  2569 				 * will look like CRC errors to to the hardware.
       
  2570 				 */
       
  2571 				if (!hw->tbi_compatibility_on) {
       
  2572 					hw->tbi_compatibility_on = true;
       
  2573 					rctl = er32(RCTL);
       
  2574 					rctl |= E1000_RCTL_SBP;
       
  2575 					ew32(RCTL, rctl);
       
  2576 				}
       
  2577 			}
       
  2578 		}
       
  2579 	}
       
  2580 
       
  2581 	if ((hw->media_type == e1000_media_type_fiber) ||
       
  2582 	    (hw->media_type == e1000_media_type_internal_serdes))
       
  2583 		e1000_check_for_serdes_link_generic(hw);
       
  2584 
       
  2585 	return E1000_SUCCESS;
       
  2586 }
       
  2587 
       
  2588 /**
       
  2589  * e1000_get_speed_and_duplex
       
  2590  * @hw: Struct containing variables accessed by shared code
       
  2591  * @speed: Speed of the connection
       
  2592  * @duplex: Duplex setting of the connection
       
  2593 
       
  2594  * Detects the current speed and duplex settings of the hardware.
       
  2595  */
       
  2596 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
       
  2597 {
       
  2598 	u32 status;
       
  2599 	s32 ret_val;
       
  2600 	u16 phy_data;
       
  2601 
       
  2602 	e_dbg("e1000_get_speed_and_duplex");
       
  2603 
       
  2604 	if (hw->mac_type >= e1000_82543) {
       
  2605 		status = er32(STATUS);
       
  2606 		if (status & E1000_STATUS_SPEED_1000) {
       
  2607 			*speed = SPEED_1000;
       
  2608 			e_dbg("1000 Mbs, ");
       
  2609 		} else if (status & E1000_STATUS_SPEED_100) {
       
  2610 			*speed = SPEED_100;
       
  2611 			e_dbg("100 Mbs, ");
       
  2612 		} else {
       
  2613 			*speed = SPEED_10;
       
  2614 			e_dbg("10 Mbs, ");
       
  2615 		}
       
  2616 
       
  2617 		if (status & E1000_STATUS_FD) {
       
  2618 			*duplex = FULL_DUPLEX;
       
  2619 			e_dbg("Full Duplex\n");
       
  2620 		} else {
       
  2621 			*duplex = HALF_DUPLEX;
       
  2622 			e_dbg(" Half Duplex\n");
       
  2623 		}
       
  2624 	} else {
       
  2625 		e_dbg("1000 Mbs, Full Duplex\n");
       
  2626 		*speed = SPEED_1000;
       
  2627 		*duplex = FULL_DUPLEX;
       
  2628 	}
       
  2629 
       
  2630 	/* IGP01 PHY may advertise full duplex operation after speed downgrade even
       
  2631 	 * if it is operating at half duplex.  Here we set the duplex settings to
       
  2632 	 * match the duplex in the link partner's capabilities.
       
  2633 	 */
       
  2634 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
       
  2635 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
       
  2636 		if (ret_val)
       
  2637 			return ret_val;
       
  2638 
       
  2639 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
       
  2640 			*duplex = HALF_DUPLEX;
       
  2641 		else {
       
  2642 			ret_val =
       
  2643 			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
       
  2644 			if (ret_val)
       
  2645 				return ret_val;
       
  2646 			if ((*speed == SPEED_100
       
  2647 			     && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
       
  2648 			    || (*speed == SPEED_10
       
  2649 				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
       
  2650 				*duplex = HALF_DUPLEX;
       
  2651 		}
       
  2652 	}
       
  2653 
       
  2654 	return E1000_SUCCESS;
       
  2655 }
       
  2656 
       
  2657 /**
       
  2658  * e1000_wait_autoneg
       
  2659  * @hw: Struct containing variables accessed by shared code
       
  2660  *
       
  2661  * Blocks until autoneg completes or times out (~4.5 seconds)
       
  2662  */
       
  2663 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
       
  2664 {
       
  2665 	s32 ret_val;
       
  2666 	u16 i;
       
  2667 	u16 phy_data;
       
  2668 
       
  2669 	e_dbg("e1000_wait_autoneg");
       
  2670 	e_dbg("Waiting for Auto-Neg to complete.\n");
       
  2671 
       
  2672 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
       
  2673 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
       
  2674 		/* Read the MII Status Register and wait for Auto-Neg
       
  2675 		 * Complete bit to be set.
       
  2676 		 */
       
  2677 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  2678 		if (ret_val)
       
  2679 			return ret_val;
       
  2680 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  2681 		if (ret_val)
       
  2682 			return ret_val;
       
  2683 		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
       
  2684 			return E1000_SUCCESS;
       
  2685 		}
       
  2686 		msleep(100);
       
  2687 	}
       
  2688 	return E1000_SUCCESS;
       
  2689 }
       
  2690 
       
  2691 /**
       
  2692  * e1000_raise_mdi_clk - Raises the Management Data Clock
       
  2693  * @hw: Struct containing variables accessed by shared code
       
  2694  * @ctrl: Device control register's current value
       
  2695  */
       
  2696 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
       
  2697 {
       
  2698 	/* Raise the clock input to the Management Data Clock (by setting the MDC
       
  2699 	 * bit), and then delay 10 microseconds.
       
  2700 	 */
       
  2701 	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
       
  2702 	E1000_WRITE_FLUSH();
       
  2703 	udelay(10);
       
  2704 }
       
  2705 
       
  2706 /**
       
  2707  * e1000_lower_mdi_clk - Lowers the Management Data Clock
       
  2708  * @hw: Struct containing variables accessed by shared code
       
  2709  * @ctrl: Device control register's current value
       
  2710  */
       
  2711 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
       
  2712 {
       
  2713 	/* Lower the clock input to the Management Data Clock (by clearing the MDC
       
  2714 	 * bit), and then delay 10 microseconds.
       
  2715 	 */
       
  2716 	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
       
  2717 	E1000_WRITE_FLUSH();
       
  2718 	udelay(10);
       
  2719 }
       
  2720 
       
  2721 /**
       
  2722  * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
       
  2723  * @hw: Struct containing variables accessed by shared code
       
  2724  * @data: Data to send out to the PHY
       
  2725  * @count: Number of bits to shift out
       
  2726  *
       
  2727  * Bits are shifted out in MSB to LSB order.
       
  2728  */
       
  2729 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
       
  2730 {
       
  2731 	u32 ctrl;
       
  2732 	u32 mask;
       
  2733 
       
  2734 	/* We need to shift "count" number of bits out to the PHY. So, the value
       
  2735 	 * in the "data" parameter will be shifted out to the PHY one bit at a
       
  2736 	 * time. In order to do this, "data" must be broken down into bits.
       
  2737 	 */
       
  2738 	mask = 0x01;
       
  2739 	mask <<= (count - 1);
       
  2740 
       
  2741 	ctrl = er32(CTRL);
       
  2742 
       
  2743 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
       
  2744 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
       
  2745 
       
  2746 	while (mask) {
       
  2747 		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
       
  2748 		 * then raising and lowering the Management Data Clock. A "0" is
       
  2749 		 * shifted out to the PHY by setting the MDIO bit to "0" and then
       
  2750 		 * raising and lowering the clock.
       
  2751 		 */
       
  2752 		if (data & mask)
       
  2753 			ctrl |= E1000_CTRL_MDIO;
       
  2754 		else
       
  2755 			ctrl &= ~E1000_CTRL_MDIO;
       
  2756 
       
  2757 		ew32(CTRL, ctrl);
       
  2758 		E1000_WRITE_FLUSH();
       
  2759 
       
  2760 		udelay(10);
       
  2761 
       
  2762 		e1000_raise_mdi_clk(hw, &ctrl);
       
  2763 		e1000_lower_mdi_clk(hw, &ctrl);
       
  2764 
       
  2765 		mask = mask >> 1;
       
  2766 	}
       
  2767 }
       
  2768 
       
  2769 /**
       
  2770  * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
       
  2771  * @hw: Struct containing variables accessed by shared code
       
  2772  *
       
  2773  * Bits are shifted in in MSB to LSB order.
       
  2774  */
       
  2775 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
       
  2776 {
       
  2777 	u32 ctrl;
       
  2778 	u16 data = 0;
       
  2779 	u8 i;
       
  2780 
       
  2781 	/* In order to read a register from the PHY, we need to shift in a total
       
  2782 	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
       
  2783 	 * to avoid contention on the MDIO pin when a read operation is performed.
       
  2784 	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
       
  2785 	 * by raising the input to the Management Data Clock (setting the MDC bit),
       
  2786 	 * and then reading the value of the MDIO bit.
       
  2787 	 */
       
  2788 	ctrl = er32(CTRL);
       
  2789 
       
  2790 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
       
  2791 	ctrl &= ~E1000_CTRL_MDIO_DIR;
       
  2792 	ctrl &= ~E1000_CTRL_MDIO;
       
  2793 
       
  2794 	ew32(CTRL, ctrl);
       
  2795 	E1000_WRITE_FLUSH();
       
  2796 
       
  2797 	/* Raise and Lower the clock before reading in the data. This accounts for
       
  2798 	 * the turnaround bits. The first clock occurred when we clocked out the
       
  2799 	 * last bit of the Register Address.
       
  2800 	 */
       
  2801 	e1000_raise_mdi_clk(hw, &ctrl);
       
  2802 	e1000_lower_mdi_clk(hw, &ctrl);
       
  2803 
       
  2804 	for (data = 0, i = 0; i < 16; i++) {
       
  2805 		data = data << 1;
       
  2806 		e1000_raise_mdi_clk(hw, &ctrl);
       
  2807 		ctrl = er32(CTRL);
       
  2808 		/* Check to see if we shifted in a "1". */
       
  2809 		if (ctrl & E1000_CTRL_MDIO)
       
  2810 			data |= 1;
       
  2811 		e1000_lower_mdi_clk(hw, &ctrl);
       
  2812 	}
       
  2813 
       
  2814 	e1000_raise_mdi_clk(hw, &ctrl);
       
  2815 	e1000_lower_mdi_clk(hw, &ctrl);
       
  2816 
       
  2817 	return data;
       
  2818 }
       
  2819 
       
  2820 
       
  2821 /**
       
  2822  * e1000_read_phy_reg - read a phy register
       
  2823  * @hw: Struct containing variables accessed by shared code
       
  2824  * @reg_addr: address of the PHY register to read
       
  2825  *
       
  2826  * Reads the value from a PHY register, if the value is on a specific non zero
       
  2827  * page, sets the page first.
       
  2828  */
       
  2829 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
       
  2830 {
       
  2831 	u32 ret_val;
       
  2832 
       
  2833 	e_dbg("e1000_read_phy_reg");
       
  2834 
       
  2835 	if ((hw->phy_type == e1000_phy_igp) &&
       
  2836 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
       
  2837 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  2838 						 (u16) reg_addr);
       
  2839 		if (ret_val)
       
  2840 			return ret_val;
       
  2841 	}
       
  2842 
       
  2843 	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
       
  2844 					phy_data);
       
  2845 
       
  2846 	return ret_val;
       
  2847 }
       
  2848 
       
  2849 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
       
  2850 				 u16 *phy_data)
       
  2851 {
       
  2852 	u32 i;
       
  2853 	u32 mdic = 0;
       
  2854 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
       
  2855 
       
  2856 	e_dbg("e1000_read_phy_reg_ex");
       
  2857 
       
  2858 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
       
  2859 		e_dbg("PHY Address %d is out of range\n", reg_addr);
       
  2860 		return -E1000_ERR_PARAM;
       
  2861 	}
       
  2862 
       
  2863 	if (hw->mac_type > e1000_82543) {
       
  2864 		/* Set up Op-code, Phy Address, and register address in the MDI
       
  2865 		 * Control register.  The MAC will take care of interfacing with the
       
  2866 		 * PHY to retrieve the desired data.
       
  2867 		 */
       
  2868 		if (hw->mac_type == e1000_ce4100) {
       
  2869 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
       
  2870 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
       
  2871 				(INTEL_CE_GBE_MDIC_OP_READ) |
       
  2872 				(INTEL_CE_GBE_MDIC_GO));
       
  2873 
       
  2874 			writel(mdic, E1000_MDIO_CMD);
       
  2875 
       
  2876 			/* Poll the ready bit to see if the MDI read
       
  2877 			 * completed
       
  2878 			 */
       
  2879 			for (i = 0; i < 64; i++) {
       
  2880 				udelay(50);
       
  2881 				mdic = readl(E1000_MDIO_CMD);
       
  2882 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
       
  2883 					break;
       
  2884 			}
       
  2885 
       
  2886 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
       
  2887 				e_dbg("MDI Read did not complete\n");
       
  2888 				return -E1000_ERR_PHY;
       
  2889 			}
       
  2890 
       
  2891 			mdic = readl(E1000_MDIO_STS);
       
  2892 			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
       
  2893 				e_dbg("MDI Read Error\n");
       
  2894 				return -E1000_ERR_PHY;
       
  2895 			}
       
  2896 			*phy_data = (u16) mdic;
       
  2897 		} else {
       
  2898 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
       
  2899 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
       
  2900 				(E1000_MDIC_OP_READ));
       
  2901 
       
  2902 			ew32(MDIC, mdic);
       
  2903 
       
  2904 			/* Poll the ready bit to see if the MDI read
       
  2905 			 * completed
       
  2906 			 */
       
  2907 			for (i = 0; i < 64; i++) {
       
  2908 				udelay(50);
       
  2909 				mdic = er32(MDIC);
       
  2910 				if (mdic & E1000_MDIC_READY)
       
  2911 					break;
       
  2912 			}
       
  2913 			if (!(mdic & E1000_MDIC_READY)) {
       
  2914 				e_dbg("MDI Read did not complete\n");
       
  2915 				return -E1000_ERR_PHY;
       
  2916 			}
       
  2917 			if (mdic & E1000_MDIC_ERROR) {
       
  2918 				e_dbg("MDI Error\n");
       
  2919 				return -E1000_ERR_PHY;
       
  2920 			}
       
  2921 			*phy_data = (u16) mdic;
       
  2922 		}
       
  2923 	} else {
       
  2924 		/* We must first send a preamble through the MDIO pin to signal the
       
  2925 		 * beginning of an MII instruction.  This is done by sending 32
       
  2926 		 * consecutive "1" bits.
       
  2927 		 */
       
  2928 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
       
  2929 
       
  2930 		/* Now combine the next few fields that are required for a read
       
  2931 		 * operation.  We use this method instead of calling the
       
  2932 		 * e1000_shift_out_mdi_bits routine five different times. The format of
       
  2933 		 * a MII read instruction consists of a shift out of 14 bits and is
       
  2934 		 * defined as follows:
       
  2935 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
       
  2936 		 * followed by a shift in of 18 bits.  This first two bits shifted in
       
  2937 		 * are TurnAround bits used to avoid contention on the MDIO pin when a
       
  2938 		 * READ operation is performed.  These two bits are thrown away
       
  2939 		 * followed by a shift in of 16 bits which contains the desired data.
       
  2940 		 */
       
  2941 		mdic = ((reg_addr) | (phy_addr << 5) |
       
  2942 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
       
  2943 
       
  2944 		e1000_shift_out_mdi_bits(hw, mdic, 14);
       
  2945 
       
  2946 		/* Now that we've shifted out the read command to the MII, we need to
       
  2947 		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
       
  2948 		 * register address.
       
  2949 		 */
       
  2950 		*phy_data = e1000_shift_in_mdi_bits(hw);
       
  2951 	}
       
  2952 	return E1000_SUCCESS;
       
  2953 }
       
  2954 
       
  2955 /**
       
  2956  * e1000_write_phy_reg - write a phy register
       
  2957  *
       
  2958  * @hw: Struct containing variables accessed by shared code
       
  2959  * @reg_addr: address of the PHY register to write
       
  2960  * @data: data to write to the PHY
       
  2961 
       
  2962  * Writes a value to a PHY register
       
  2963  */
       
  2964 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
       
  2965 {
       
  2966 	u32 ret_val;
       
  2967 
       
  2968 	e_dbg("e1000_write_phy_reg");
       
  2969 
       
  2970 	if ((hw->phy_type == e1000_phy_igp) &&
       
  2971 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
       
  2972 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  2973 						 (u16) reg_addr);
       
  2974 		if (ret_val)
       
  2975 			return ret_val;
       
  2976 	}
       
  2977 
       
  2978 	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
       
  2979 					 phy_data);
       
  2980 
       
  2981 	return ret_val;
       
  2982 }
       
  2983 
       
  2984 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
       
  2985 				  u16 phy_data)
       
  2986 {
       
  2987 	u32 i;
       
  2988 	u32 mdic = 0;
       
  2989 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
       
  2990 
       
  2991 	e_dbg("e1000_write_phy_reg_ex");
       
  2992 
       
  2993 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
       
  2994 		e_dbg("PHY Address %d is out of range\n", reg_addr);
       
  2995 		return -E1000_ERR_PARAM;
       
  2996 	}
       
  2997 
       
  2998 	if (hw->mac_type > e1000_82543) {
       
  2999 		/* Set up Op-code, Phy Address, register address, and data
       
  3000 		 * intended for the PHY register in the MDI Control register.
       
  3001 		 * The MAC will take care of interfacing with the PHY to send
       
  3002 		 * the desired data.
       
  3003 		 */
       
  3004 		if (hw->mac_type == e1000_ce4100) {
       
  3005 			mdic = (((u32) phy_data) |
       
  3006 				(reg_addr << E1000_MDIC_REG_SHIFT) |
       
  3007 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
       
  3008 				(INTEL_CE_GBE_MDIC_OP_WRITE) |
       
  3009 				(INTEL_CE_GBE_MDIC_GO));
       
  3010 
       
  3011 			writel(mdic, E1000_MDIO_CMD);
       
  3012 
       
  3013 			/* Poll the ready bit to see if the MDI read
       
  3014 			 * completed
       
  3015 			 */
       
  3016 			for (i = 0; i < 640; i++) {
       
  3017 				udelay(5);
       
  3018 				mdic = readl(E1000_MDIO_CMD);
       
  3019 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
       
  3020 					break;
       
  3021 			}
       
  3022 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
       
  3023 				e_dbg("MDI Write did not complete\n");
       
  3024 				return -E1000_ERR_PHY;
       
  3025 			}
       
  3026 		} else {
       
  3027 			mdic = (((u32) phy_data) |
       
  3028 				(reg_addr << E1000_MDIC_REG_SHIFT) |
       
  3029 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
       
  3030 				(E1000_MDIC_OP_WRITE));
       
  3031 
       
  3032 			ew32(MDIC, mdic);
       
  3033 
       
  3034 			/* Poll the ready bit to see if the MDI read
       
  3035 			 * completed
       
  3036 			 */
       
  3037 			for (i = 0; i < 641; i++) {
       
  3038 				udelay(5);
       
  3039 				mdic = er32(MDIC);
       
  3040 				if (mdic & E1000_MDIC_READY)
       
  3041 					break;
       
  3042 			}
       
  3043 			if (!(mdic & E1000_MDIC_READY)) {
       
  3044 				e_dbg("MDI Write did not complete\n");
       
  3045 				return -E1000_ERR_PHY;
       
  3046 			}
       
  3047 		}
       
  3048 	} else {
       
  3049 		/* We'll need to use the SW defined pins to shift the write command
       
  3050 		 * out to the PHY. We first send a preamble to the PHY to signal the
       
  3051 		 * beginning of the MII instruction.  This is done by sending 32
       
  3052 		 * consecutive "1" bits.
       
  3053 		 */
       
  3054 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
       
  3055 
       
  3056 		/* Now combine the remaining required fields that will indicate a
       
  3057 		 * write operation. We use this method instead of calling the
       
  3058 		 * e1000_shift_out_mdi_bits routine for each field in the command. The
       
  3059 		 * format of a MII write instruction is as follows:
       
  3060 		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
       
  3061 		 */
       
  3062 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
       
  3063 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
       
  3064 		mdic <<= 16;
       
  3065 		mdic |= (u32) phy_data;
       
  3066 
       
  3067 		e1000_shift_out_mdi_bits(hw, mdic, 32);
       
  3068 	}
       
  3069 
       
  3070 	return E1000_SUCCESS;
       
  3071 }
       
  3072 
       
  3073 /**
       
  3074  * e1000_phy_hw_reset - reset the phy, hardware style
       
  3075  * @hw: Struct containing variables accessed by shared code
       
  3076  *
       
  3077  * Returns the PHY to the power-on reset state
       
  3078  */
       
  3079 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
       
  3080 {
       
  3081 	u32 ctrl, ctrl_ext;
       
  3082 	u32 led_ctrl;
       
  3083 	s32 ret_val;
       
  3084 
       
  3085 	e_dbg("e1000_phy_hw_reset");
       
  3086 
       
  3087 	e_dbg("Resetting Phy...\n");
       
  3088 
       
  3089 	if (hw->mac_type > e1000_82543) {
       
  3090 		/* Read the device control register and assert the E1000_CTRL_PHY_RST
       
  3091 		 * bit. Then, take it out of reset.
       
  3092 		 * For e1000 hardware, we delay for 10ms between the assert
       
  3093 		 * and deassert.
       
  3094 		 */
       
  3095 		ctrl = er32(CTRL);
       
  3096 		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
       
  3097 		E1000_WRITE_FLUSH();
       
  3098 
       
  3099 		msleep(10);
       
  3100 
       
  3101 		ew32(CTRL, ctrl);
       
  3102 		E1000_WRITE_FLUSH();
       
  3103 
       
  3104 	} else {
       
  3105 		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
       
  3106 		 * bit to put the PHY into reset. Then, take it out of reset.
       
  3107 		 */
       
  3108 		ctrl_ext = er32(CTRL_EXT);
       
  3109 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
       
  3110 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
       
  3111 		ew32(CTRL_EXT, ctrl_ext);
       
  3112 		E1000_WRITE_FLUSH();
       
  3113 		msleep(10);
       
  3114 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
       
  3115 		ew32(CTRL_EXT, ctrl_ext);
       
  3116 		E1000_WRITE_FLUSH();
       
  3117 	}
       
  3118 	udelay(150);
       
  3119 
       
  3120 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
       
  3121 		/* Configure activity LED after PHY reset */
       
  3122 		led_ctrl = er32(LEDCTL);
       
  3123 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
       
  3124 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
       
  3125 		ew32(LEDCTL, led_ctrl);
       
  3126 	}
       
  3127 
       
  3128 	/* Wait for FW to finish PHY configuration. */
       
  3129 	ret_val = e1000_get_phy_cfg_done(hw);
       
  3130 	if (ret_val != E1000_SUCCESS)
       
  3131 		return ret_val;
       
  3132 
       
  3133 	return ret_val;
       
  3134 }
       
  3135 
       
  3136 /**
       
  3137  * e1000_phy_reset - reset the phy to commit settings
       
  3138  * @hw: Struct containing variables accessed by shared code
       
  3139  *
       
  3140  * Resets the PHY
       
  3141  * Sets bit 15 of the MII Control register
       
  3142  */
       
  3143 s32 e1000_phy_reset(struct e1000_hw *hw)
       
  3144 {
       
  3145 	s32 ret_val;
       
  3146 	u16 phy_data;
       
  3147 
       
  3148 	e_dbg("e1000_phy_reset");
       
  3149 
       
  3150 	switch (hw->phy_type) {
       
  3151 	case e1000_phy_igp:
       
  3152 		ret_val = e1000_phy_hw_reset(hw);
       
  3153 		if (ret_val)
       
  3154 			return ret_val;
       
  3155 		break;
       
  3156 	default:
       
  3157 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
       
  3158 		if (ret_val)
       
  3159 			return ret_val;
       
  3160 
       
  3161 		phy_data |= MII_CR_RESET;
       
  3162 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
       
  3163 		if (ret_val)
       
  3164 			return ret_val;
       
  3165 
       
  3166 		udelay(1);
       
  3167 		break;
       
  3168 	}
       
  3169 
       
  3170 	if (hw->phy_type == e1000_phy_igp)
       
  3171 		e1000_phy_init_script(hw);
       
  3172 
       
  3173 	return E1000_SUCCESS;
       
  3174 }
       
  3175 
       
  3176 /**
       
  3177  * e1000_detect_gig_phy - check the phy type
       
  3178  * @hw: Struct containing variables accessed by shared code
       
  3179  *
       
  3180  * Probes the expected PHY address for known PHY IDs
       
  3181  */
       
  3182 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
       
  3183 {
       
  3184 	s32 phy_init_status, ret_val;
       
  3185 	u16 phy_id_high, phy_id_low;
       
  3186 	bool match = false;
       
  3187 
       
  3188 	e_dbg("e1000_detect_gig_phy");
       
  3189 
       
  3190 	if (hw->phy_id != 0)
       
  3191 		return E1000_SUCCESS;
       
  3192 
       
  3193 	/* Read the PHY ID Registers to identify which PHY is onboard. */
       
  3194 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
       
  3195 	if (ret_val)
       
  3196 		return ret_val;
       
  3197 
       
  3198 	hw->phy_id = (u32) (phy_id_high << 16);
       
  3199 	udelay(20);
       
  3200 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
       
  3201 	if (ret_val)
       
  3202 		return ret_val;
       
  3203 
       
  3204 	hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
       
  3205 	hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
       
  3206 
       
  3207 	switch (hw->mac_type) {
       
  3208 	case e1000_82543:
       
  3209 		if (hw->phy_id == M88E1000_E_PHY_ID)
       
  3210 			match = true;
       
  3211 		break;
       
  3212 	case e1000_82544:
       
  3213 		if (hw->phy_id == M88E1000_I_PHY_ID)
       
  3214 			match = true;
       
  3215 		break;
       
  3216 	case e1000_82540:
       
  3217 	case e1000_82545:
       
  3218 	case e1000_82545_rev_3:
       
  3219 	case e1000_82546:
       
  3220 	case e1000_82546_rev_3:
       
  3221 		if (hw->phy_id == M88E1011_I_PHY_ID)
       
  3222 			match = true;
       
  3223 		break;
       
  3224 	case e1000_ce4100:
       
  3225 		if ((hw->phy_id == RTL8211B_PHY_ID) ||
       
  3226 		    (hw->phy_id == RTL8201N_PHY_ID) ||
       
  3227 		    (hw->phy_id == M88E1118_E_PHY_ID))
       
  3228 			match = true;
       
  3229 		break;
       
  3230 	case e1000_82541:
       
  3231 	case e1000_82541_rev_2:
       
  3232 	case e1000_82547:
       
  3233 	case e1000_82547_rev_2:
       
  3234 		if (hw->phy_id == IGP01E1000_I_PHY_ID)
       
  3235 			match = true;
       
  3236 		break;
       
  3237 	default:
       
  3238 		e_dbg("Invalid MAC type %d\n", hw->mac_type);
       
  3239 		return -E1000_ERR_CONFIG;
       
  3240 	}
       
  3241 	phy_init_status = e1000_set_phy_type(hw);
       
  3242 
       
  3243 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
       
  3244 		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
       
  3245 		return E1000_SUCCESS;
       
  3246 	}
       
  3247 	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
       
  3248 	return -E1000_ERR_PHY;
       
  3249 }
       
  3250 
       
  3251 /**
       
  3252  * e1000_phy_reset_dsp - reset DSP
       
  3253  * @hw: Struct containing variables accessed by shared code
       
  3254  *
       
  3255  * Resets the PHY's DSP
       
  3256  */
       
  3257 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
       
  3258 {
       
  3259 	s32 ret_val;
       
  3260 	e_dbg("e1000_phy_reset_dsp");
       
  3261 
       
  3262 	do {
       
  3263 		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
       
  3264 		if (ret_val)
       
  3265 			break;
       
  3266 		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
       
  3267 		if (ret_val)
       
  3268 			break;
       
  3269 		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
       
  3270 		if (ret_val)
       
  3271 			break;
       
  3272 		ret_val = E1000_SUCCESS;
       
  3273 	} while (0);
       
  3274 
       
  3275 	return ret_val;
       
  3276 }
       
  3277 
       
  3278 /**
       
  3279  * e1000_phy_igp_get_info - get igp specific registers
       
  3280  * @hw: Struct containing variables accessed by shared code
       
  3281  * @phy_info: PHY information structure
       
  3282  *
       
  3283  * Get PHY information from various PHY registers for igp PHY only.
       
  3284  */
       
  3285 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
       
  3286 				  struct e1000_phy_info *phy_info)
       
  3287 {
       
  3288 	s32 ret_val;
       
  3289 	u16 phy_data, min_length, max_length, average;
       
  3290 	e1000_rev_polarity polarity;
       
  3291 
       
  3292 	e_dbg("e1000_phy_igp_get_info");
       
  3293 
       
  3294 	/* The downshift status is checked only once, after link is established,
       
  3295 	 * and it stored in the hw->speed_downgraded parameter. */
       
  3296 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
       
  3297 
       
  3298 	/* IGP01E1000 does not need to support it. */
       
  3299 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
       
  3300 
       
  3301 	/* IGP01E1000 always correct polarity reversal */
       
  3302 	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
       
  3303 
       
  3304 	/* Check polarity status */
       
  3305 	ret_val = e1000_check_polarity(hw, &polarity);
       
  3306 	if (ret_val)
       
  3307 		return ret_val;
       
  3308 
       
  3309 	phy_info->cable_polarity = polarity;
       
  3310 
       
  3311 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
       
  3312 	if (ret_val)
       
  3313 		return ret_val;
       
  3314 
       
  3315 	phy_info->mdix_mode =
       
  3316 	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
       
  3317 				 IGP01E1000_PSSR_MDIX_SHIFT);
       
  3318 
       
  3319 	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  3320 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  3321 		/* Local/Remote Receiver Information are only valid at 1000 Mbps */
       
  3322 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
       
  3323 		if (ret_val)
       
  3324 			return ret_val;
       
  3325 
       
  3326 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
       
  3327 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
       
  3328 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  3329 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
       
  3330 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
       
  3331 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  3332 
       
  3333 		/* Get cable length */
       
  3334 		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
       
  3335 		if (ret_val)
       
  3336 			return ret_val;
       
  3337 
       
  3338 		/* Translate to old method */
       
  3339 		average = (max_length + min_length) / 2;
       
  3340 
       
  3341 		if (average <= e1000_igp_cable_length_50)
       
  3342 			phy_info->cable_length = e1000_cable_length_50;
       
  3343 		else if (average <= e1000_igp_cable_length_80)
       
  3344 			phy_info->cable_length = e1000_cable_length_50_80;
       
  3345 		else if (average <= e1000_igp_cable_length_110)
       
  3346 			phy_info->cable_length = e1000_cable_length_80_110;
       
  3347 		else if (average <= e1000_igp_cable_length_140)
       
  3348 			phy_info->cable_length = e1000_cable_length_110_140;
       
  3349 		else
       
  3350 			phy_info->cable_length = e1000_cable_length_140;
       
  3351 	}
       
  3352 
       
  3353 	return E1000_SUCCESS;
       
  3354 }
       
  3355 
       
  3356 /**
       
  3357  * e1000_phy_m88_get_info - get m88 specific registers
       
  3358  * @hw: Struct containing variables accessed by shared code
       
  3359  * @phy_info: PHY information structure
       
  3360  *
       
  3361  * Get PHY information from various PHY registers for m88 PHY only.
       
  3362  */
       
  3363 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
       
  3364 				  struct e1000_phy_info *phy_info)
       
  3365 {
       
  3366 	s32 ret_val;
       
  3367 	u16 phy_data;
       
  3368 	e1000_rev_polarity polarity;
       
  3369 
       
  3370 	e_dbg("e1000_phy_m88_get_info");
       
  3371 
       
  3372 	/* The downshift status is checked only once, after link is established,
       
  3373 	 * and it stored in the hw->speed_downgraded parameter. */
       
  3374 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
       
  3375 
       
  3376 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  3377 	if (ret_val)
       
  3378 		return ret_val;
       
  3379 
       
  3380 	phy_info->extended_10bt_distance =
       
  3381 	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
       
  3382 	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
       
  3383 	    e1000_10bt_ext_dist_enable_lower :
       
  3384 	    e1000_10bt_ext_dist_enable_normal;
       
  3385 
       
  3386 	phy_info->polarity_correction =
       
  3387 	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
       
  3388 	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
       
  3389 	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
       
  3390 
       
  3391 	/* Check polarity status */
       
  3392 	ret_val = e1000_check_polarity(hw, &polarity);
       
  3393 	if (ret_val)
       
  3394 		return ret_val;
       
  3395 	phy_info->cable_polarity = polarity;
       
  3396 
       
  3397 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  3398 	if (ret_val)
       
  3399 		return ret_val;
       
  3400 
       
  3401 	phy_info->mdix_mode =
       
  3402 	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
       
  3403 				 M88E1000_PSSR_MDIX_SHIFT);
       
  3404 
       
  3405 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
       
  3406 		/* Cable Length Estimation and Local/Remote Receiver Information
       
  3407 		 * are only valid at 1000 Mbps.
       
  3408 		 */
       
  3409 		phy_info->cable_length =
       
  3410 		    (e1000_cable_length) ((phy_data &
       
  3411 					   M88E1000_PSSR_CABLE_LENGTH) >>
       
  3412 					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
       
  3413 
       
  3414 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
       
  3415 		if (ret_val)
       
  3416 			return ret_val;
       
  3417 
       
  3418 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
       
  3419 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
       
  3420 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  3421 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
       
  3422 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
       
  3423 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
       
  3424 
       
  3425 	}
       
  3426 
       
  3427 	return E1000_SUCCESS;
       
  3428 }
       
  3429 
       
  3430 /**
       
  3431  * e1000_phy_get_info - request phy info
       
  3432  * @hw: Struct containing variables accessed by shared code
       
  3433  * @phy_info: PHY information structure
       
  3434  *
       
  3435  * Get PHY information from various PHY registers
       
  3436  */
       
  3437 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
       
  3438 {
       
  3439 	s32 ret_val;
       
  3440 	u16 phy_data;
       
  3441 
       
  3442 	e_dbg("e1000_phy_get_info");
       
  3443 
       
  3444 	phy_info->cable_length = e1000_cable_length_undefined;
       
  3445 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
       
  3446 	phy_info->cable_polarity = e1000_rev_polarity_undefined;
       
  3447 	phy_info->downshift = e1000_downshift_undefined;
       
  3448 	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
       
  3449 	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
       
  3450 	phy_info->local_rx = e1000_1000t_rx_status_undefined;
       
  3451 	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
       
  3452 
       
  3453 	if (hw->media_type != e1000_media_type_copper) {
       
  3454 		e_dbg("PHY info is only valid for copper media\n");
       
  3455 		return -E1000_ERR_CONFIG;
       
  3456 	}
       
  3457 
       
  3458 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  3459 	if (ret_val)
       
  3460 		return ret_val;
       
  3461 
       
  3462 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
       
  3463 	if (ret_val)
       
  3464 		return ret_val;
       
  3465 
       
  3466 	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
       
  3467 		e_dbg("PHY info is only valid if link is up\n");
       
  3468 		return -E1000_ERR_CONFIG;
       
  3469 	}
       
  3470 
       
  3471 	if (hw->phy_type == e1000_phy_igp)
       
  3472 		return e1000_phy_igp_get_info(hw, phy_info);
       
  3473 	else if ((hw->phy_type == e1000_phy_8211) ||
       
  3474 	         (hw->phy_type == e1000_phy_8201))
       
  3475 		return E1000_SUCCESS;
       
  3476 	else
       
  3477 		return e1000_phy_m88_get_info(hw, phy_info);
       
  3478 }
       
  3479 
       
  3480 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
       
  3481 {
       
  3482 	e_dbg("e1000_validate_mdi_settings");
       
  3483 
       
  3484 	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
       
  3485 		e_dbg("Invalid MDI setting detected\n");
       
  3486 		hw->mdix = 1;
       
  3487 		return -E1000_ERR_CONFIG;
       
  3488 	}
       
  3489 	return E1000_SUCCESS;
       
  3490 }
       
  3491 
       
  3492 /**
       
  3493  * e1000_init_eeprom_params - initialize sw eeprom vars
       
  3494  * @hw: Struct containing variables accessed by shared code
       
  3495  *
       
  3496  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
       
  3497  * is configured.
       
  3498  */
       
  3499 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
       
  3500 {
       
  3501 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  3502 	u32 eecd = er32(EECD);
       
  3503 	s32 ret_val = E1000_SUCCESS;
       
  3504 	u16 eeprom_size;
       
  3505 
       
  3506 	e_dbg("e1000_init_eeprom_params");
       
  3507 
       
  3508 	switch (hw->mac_type) {
       
  3509 	case e1000_82542_rev2_0:
       
  3510 	case e1000_82542_rev2_1:
       
  3511 	case e1000_82543:
       
  3512 	case e1000_82544:
       
  3513 		eeprom->type = e1000_eeprom_microwire;
       
  3514 		eeprom->word_size = 64;
       
  3515 		eeprom->opcode_bits = 3;
       
  3516 		eeprom->address_bits = 6;
       
  3517 		eeprom->delay_usec = 50;
       
  3518 		break;
       
  3519 	case e1000_82540:
       
  3520 	case e1000_82545:
       
  3521 	case e1000_82545_rev_3:
       
  3522 	case e1000_82546:
       
  3523 	case e1000_82546_rev_3:
       
  3524 		eeprom->type = e1000_eeprom_microwire;
       
  3525 		eeprom->opcode_bits = 3;
       
  3526 		eeprom->delay_usec = 50;
       
  3527 		if (eecd & E1000_EECD_SIZE) {
       
  3528 			eeprom->word_size = 256;
       
  3529 			eeprom->address_bits = 8;
       
  3530 		} else {
       
  3531 			eeprom->word_size = 64;
       
  3532 			eeprom->address_bits = 6;
       
  3533 		}
       
  3534 		break;
       
  3535 	case e1000_82541:
       
  3536 	case e1000_82541_rev_2:
       
  3537 	case e1000_82547:
       
  3538 	case e1000_82547_rev_2:
       
  3539 		if (eecd & E1000_EECD_TYPE) {
       
  3540 			eeprom->type = e1000_eeprom_spi;
       
  3541 			eeprom->opcode_bits = 8;
       
  3542 			eeprom->delay_usec = 1;
       
  3543 			if (eecd & E1000_EECD_ADDR_BITS) {
       
  3544 				eeprom->page_size = 32;
       
  3545 				eeprom->address_bits = 16;
       
  3546 			} else {
       
  3547 				eeprom->page_size = 8;
       
  3548 				eeprom->address_bits = 8;
       
  3549 			}
       
  3550 		} else {
       
  3551 			eeprom->type = e1000_eeprom_microwire;
       
  3552 			eeprom->opcode_bits = 3;
       
  3553 			eeprom->delay_usec = 50;
       
  3554 			if (eecd & E1000_EECD_ADDR_BITS) {
       
  3555 				eeprom->word_size = 256;
       
  3556 				eeprom->address_bits = 8;
       
  3557 			} else {
       
  3558 				eeprom->word_size = 64;
       
  3559 				eeprom->address_bits = 6;
       
  3560 			}
       
  3561 		}
       
  3562 		break;
       
  3563 	default:
       
  3564 		break;
       
  3565 	}
       
  3566 
       
  3567 	if (eeprom->type == e1000_eeprom_spi) {
       
  3568 		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
       
  3569 		 * 32KB (incremented by powers of 2).
       
  3570 		 */
       
  3571 		/* Set to default value for initial eeprom read. */
       
  3572 		eeprom->word_size = 64;
       
  3573 		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
       
  3574 		if (ret_val)
       
  3575 			return ret_val;
       
  3576 		eeprom_size =
       
  3577 		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
       
  3578 		/* 256B eeprom size was not supported in earlier hardware, so we
       
  3579 		 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
       
  3580 		 * is never the result used in the shifting logic below. */
       
  3581 		if (eeprom_size)
       
  3582 			eeprom_size++;
       
  3583 
       
  3584 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
       
  3585 	}
       
  3586 	return ret_val;
       
  3587 }
       
  3588 
       
  3589 /**
       
  3590  * e1000_raise_ee_clk - Raises the EEPROM's clock input.
       
  3591  * @hw: Struct containing variables accessed by shared code
       
  3592  * @eecd: EECD's current value
       
  3593  */
       
  3594 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
       
  3595 {
       
  3596 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
       
  3597 	 * wait <delay> microseconds.
       
  3598 	 */
       
  3599 	*eecd = *eecd | E1000_EECD_SK;
       
  3600 	ew32(EECD, *eecd);
       
  3601 	E1000_WRITE_FLUSH();
       
  3602 	udelay(hw->eeprom.delay_usec);
       
  3603 }
       
  3604 
       
  3605 /**
       
  3606  * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
       
  3607  * @hw: Struct containing variables accessed by shared code
       
  3608  * @eecd: EECD's current value
       
  3609  */
       
  3610 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
       
  3611 {
       
  3612 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
       
  3613 	 * wait 50 microseconds.
       
  3614 	 */
       
  3615 	*eecd = *eecd & ~E1000_EECD_SK;
       
  3616 	ew32(EECD, *eecd);
       
  3617 	E1000_WRITE_FLUSH();
       
  3618 	udelay(hw->eeprom.delay_usec);
       
  3619 }
       
  3620 
       
  3621 /**
       
  3622  * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
       
  3623  * @hw: Struct containing variables accessed by shared code
       
  3624  * @data: data to send to the EEPROM
       
  3625  * @count: number of bits to shift out
       
  3626  */
       
  3627 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
       
  3628 {
       
  3629 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  3630 	u32 eecd;
       
  3631 	u32 mask;
       
  3632 
       
  3633 	/* We need to shift "count" bits out to the EEPROM. So, value in the
       
  3634 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
       
  3635 	 * In order to do this, "data" must be broken down into bits.
       
  3636 	 */
       
  3637 	mask = 0x01 << (count - 1);
       
  3638 	eecd = er32(EECD);
       
  3639 	if (eeprom->type == e1000_eeprom_microwire) {
       
  3640 		eecd &= ~E1000_EECD_DO;
       
  3641 	} else if (eeprom->type == e1000_eeprom_spi) {
       
  3642 		eecd |= E1000_EECD_DO;
       
  3643 	}
       
  3644 	do {
       
  3645 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
       
  3646 		 * and then raising and then lowering the clock (the SK bit controls
       
  3647 		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
       
  3648 		 * by setting "DI" to "0" and then raising and then lowering the clock.
       
  3649 		 */
       
  3650 		eecd &= ~E1000_EECD_DI;
       
  3651 
       
  3652 		if (data & mask)
       
  3653 			eecd |= E1000_EECD_DI;
       
  3654 
       
  3655 		ew32(EECD, eecd);
       
  3656 		E1000_WRITE_FLUSH();
       
  3657 
       
  3658 		udelay(eeprom->delay_usec);
       
  3659 
       
  3660 		e1000_raise_ee_clk(hw, &eecd);
       
  3661 		e1000_lower_ee_clk(hw, &eecd);
       
  3662 
       
  3663 		mask = mask >> 1;
       
  3664 
       
  3665 	} while (mask);
       
  3666 
       
  3667 	/* We leave the "DI" bit set to "0" when we leave this routine. */
       
  3668 	eecd &= ~E1000_EECD_DI;
       
  3669 	ew32(EECD, eecd);
       
  3670 }
       
  3671 
       
  3672 /**
       
  3673  * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
       
  3674  * @hw: Struct containing variables accessed by shared code
       
  3675  * @count: number of bits to shift in
       
  3676  */
       
  3677 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
       
  3678 {
       
  3679 	u32 eecd;
       
  3680 	u32 i;
       
  3681 	u16 data;
       
  3682 
       
  3683 	/* In order to read a register from the EEPROM, we need to shift 'count'
       
  3684 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
       
  3685 	 * input to the EEPROM (setting the SK bit), and then reading the value of
       
  3686 	 * the "DO" bit.  During this "shifting in" process the "DI" bit should
       
  3687 	 * always be clear.
       
  3688 	 */
       
  3689 
       
  3690 	eecd = er32(EECD);
       
  3691 
       
  3692 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
       
  3693 	data = 0;
       
  3694 
       
  3695 	for (i = 0; i < count; i++) {
       
  3696 		data = data << 1;
       
  3697 		e1000_raise_ee_clk(hw, &eecd);
       
  3698 
       
  3699 		eecd = er32(EECD);
       
  3700 
       
  3701 		eecd &= ~(E1000_EECD_DI);
       
  3702 		if (eecd & E1000_EECD_DO)
       
  3703 			data |= 1;
       
  3704 
       
  3705 		e1000_lower_ee_clk(hw, &eecd);
       
  3706 	}
       
  3707 
       
  3708 	return data;
       
  3709 }
       
  3710 
       
  3711 /**
       
  3712  * e1000_acquire_eeprom - Prepares EEPROM for access
       
  3713  * @hw: Struct containing variables accessed by shared code
       
  3714  *
       
  3715  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
       
  3716  * function should be called before issuing a command to the EEPROM.
       
  3717  */
       
  3718 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
       
  3719 {
       
  3720 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  3721 	u32 eecd, i = 0;
       
  3722 
       
  3723 	e_dbg("e1000_acquire_eeprom");
       
  3724 
       
  3725 	eecd = er32(EECD);
       
  3726 
       
  3727 	/* Request EEPROM Access */
       
  3728 	if (hw->mac_type > e1000_82544) {
       
  3729 		eecd |= E1000_EECD_REQ;
       
  3730 		ew32(EECD, eecd);
       
  3731 		eecd = er32(EECD);
       
  3732 		while ((!(eecd & E1000_EECD_GNT)) &&
       
  3733 		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
       
  3734 			i++;
       
  3735 			udelay(5);
       
  3736 			eecd = er32(EECD);
       
  3737 		}
       
  3738 		if (!(eecd & E1000_EECD_GNT)) {
       
  3739 			eecd &= ~E1000_EECD_REQ;
       
  3740 			ew32(EECD, eecd);
       
  3741 			e_dbg("Could not acquire EEPROM grant\n");
       
  3742 			return -E1000_ERR_EEPROM;
       
  3743 		}
       
  3744 	}
       
  3745 
       
  3746 	/* Setup EEPROM for Read/Write */
       
  3747 
       
  3748 	if (eeprom->type == e1000_eeprom_microwire) {
       
  3749 		/* Clear SK and DI */
       
  3750 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
       
  3751 		ew32(EECD, eecd);
       
  3752 
       
  3753 		/* Set CS */
       
  3754 		eecd |= E1000_EECD_CS;
       
  3755 		ew32(EECD, eecd);
       
  3756 	} else if (eeprom->type == e1000_eeprom_spi) {
       
  3757 		/* Clear SK and CS */
       
  3758 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
       
  3759 		ew32(EECD, eecd);
       
  3760 		udelay(1);
       
  3761 	}
       
  3762 
       
  3763 	return E1000_SUCCESS;
       
  3764 }
       
  3765 
       
  3766 /**
       
  3767  * e1000_standby_eeprom - Returns EEPROM to a "standby" state
       
  3768  * @hw: Struct containing variables accessed by shared code
       
  3769  */
       
  3770 static void e1000_standby_eeprom(struct e1000_hw *hw)
       
  3771 {
       
  3772 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  3773 	u32 eecd;
       
  3774 
       
  3775 	eecd = er32(EECD);
       
  3776 
       
  3777 	if (eeprom->type == e1000_eeprom_microwire) {
       
  3778 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
       
  3779 		ew32(EECD, eecd);
       
  3780 		E1000_WRITE_FLUSH();
       
  3781 		udelay(eeprom->delay_usec);
       
  3782 
       
  3783 		/* Clock high */
       
  3784 		eecd |= E1000_EECD_SK;
       
  3785 		ew32(EECD, eecd);
       
  3786 		E1000_WRITE_FLUSH();
       
  3787 		udelay(eeprom->delay_usec);
       
  3788 
       
  3789 		/* Select EEPROM */
       
  3790 		eecd |= E1000_EECD_CS;
       
  3791 		ew32(EECD, eecd);
       
  3792 		E1000_WRITE_FLUSH();
       
  3793 		udelay(eeprom->delay_usec);
       
  3794 
       
  3795 		/* Clock low */
       
  3796 		eecd &= ~E1000_EECD_SK;
       
  3797 		ew32(EECD, eecd);
       
  3798 		E1000_WRITE_FLUSH();
       
  3799 		udelay(eeprom->delay_usec);
       
  3800 	} else if (eeprom->type == e1000_eeprom_spi) {
       
  3801 		/* Toggle CS to flush commands */
       
  3802 		eecd |= E1000_EECD_CS;
       
  3803 		ew32(EECD, eecd);
       
  3804 		E1000_WRITE_FLUSH();
       
  3805 		udelay(eeprom->delay_usec);
       
  3806 		eecd &= ~E1000_EECD_CS;
       
  3807 		ew32(EECD, eecd);
       
  3808 		E1000_WRITE_FLUSH();
       
  3809 		udelay(eeprom->delay_usec);
       
  3810 	}
       
  3811 }
       
  3812 
       
  3813 /**
       
  3814  * e1000_release_eeprom - drop chip select
       
  3815  * @hw: Struct containing variables accessed by shared code
       
  3816  *
       
  3817  * Terminates a command by inverting the EEPROM's chip select pin
       
  3818  */
       
  3819 static void e1000_release_eeprom(struct e1000_hw *hw)
       
  3820 {
       
  3821 	u32 eecd;
       
  3822 
       
  3823 	e_dbg("e1000_release_eeprom");
       
  3824 
       
  3825 	eecd = er32(EECD);
       
  3826 
       
  3827 	if (hw->eeprom.type == e1000_eeprom_spi) {
       
  3828 		eecd |= E1000_EECD_CS;	/* Pull CS high */
       
  3829 		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
       
  3830 
       
  3831 		ew32(EECD, eecd);
       
  3832 
       
  3833 		udelay(hw->eeprom.delay_usec);
       
  3834 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
       
  3835 		/* cleanup eeprom */
       
  3836 
       
  3837 		/* CS on Microwire is active-high */
       
  3838 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
       
  3839 
       
  3840 		ew32(EECD, eecd);
       
  3841 
       
  3842 		/* Rising edge of clock */
       
  3843 		eecd |= E1000_EECD_SK;
       
  3844 		ew32(EECD, eecd);
       
  3845 		E1000_WRITE_FLUSH();
       
  3846 		udelay(hw->eeprom.delay_usec);
       
  3847 
       
  3848 		/* Falling edge of clock */
       
  3849 		eecd &= ~E1000_EECD_SK;
       
  3850 		ew32(EECD, eecd);
       
  3851 		E1000_WRITE_FLUSH();
       
  3852 		udelay(hw->eeprom.delay_usec);
       
  3853 	}
       
  3854 
       
  3855 	/* Stop requesting EEPROM access */
       
  3856 	if (hw->mac_type > e1000_82544) {
       
  3857 		eecd &= ~E1000_EECD_REQ;
       
  3858 		ew32(EECD, eecd);
       
  3859 	}
       
  3860 }
       
  3861 
       
  3862 /**
       
  3863  * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
       
  3864  * @hw: Struct containing variables accessed by shared code
       
  3865  */
       
  3866 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
       
  3867 {
       
  3868 	u16 retry_count = 0;
       
  3869 	u8 spi_stat_reg;
       
  3870 
       
  3871 	e_dbg("e1000_spi_eeprom_ready");
       
  3872 
       
  3873 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
       
  3874 	 * EEPROM will signal that the command has been completed by clearing
       
  3875 	 * bit 0 of the internal status register.  If it's not cleared within
       
  3876 	 * 5 milliseconds, then error out.
       
  3877 	 */
       
  3878 	retry_count = 0;
       
  3879 	do {
       
  3880 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
       
  3881 					hw->eeprom.opcode_bits);
       
  3882 		spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
       
  3883 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
       
  3884 			break;
       
  3885 
       
  3886 		udelay(5);
       
  3887 		retry_count += 5;
       
  3888 
       
  3889 		e1000_standby_eeprom(hw);
       
  3890 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
       
  3891 
       
  3892 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
       
  3893 	 * only 0-5mSec on 5V devices)
       
  3894 	 */
       
  3895 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
       
  3896 		e_dbg("SPI EEPROM Status error\n");
       
  3897 		return -E1000_ERR_EEPROM;
       
  3898 	}
       
  3899 
       
  3900 	return E1000_SUCCESS;
       
  3901 }
       
  3902 
       
  3903 /**
       
  3904  * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
       
  3905  * @hw: Struct containing variables accessed by shared code
       
  3906  * @offset: offset of  word in the EEPROM to read
       
  3907  * @data: word read from the EEPROM
       
  3908  * @words: number of words to read
       
  3909  */
       
  3910 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
       
  3911 {
       
  3912 	s32 ret;
       
  3913 	spin_lock(&e1000_eeprom_lock);
       
  3914 	ret = e1000_do_read_eeprom(hw, offset, words, data);
       
  3915 	spin_unlock(&e1000_eeprom_lock);
       
  3916 	return ret;
       
  3917 }
       
  3918 
       
  3919 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
       
  3920 				u16 *data)
       
  3921 {
       
  3922 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  3923 	u32 i = 0;
       
  3924 
       
  3925 	e_dbg("e1000_read_eeprom");
       
  3926 
       
  3927 	if (hw->mac_type == e1000_ce4100) {
       
  3928 		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
       
  3929 		                      data);
       
  3930 		return E1000_SUCCESS;
       
  3931 	}
       
  3932 
       
  3933 	/* If eeprom is not yet detected, do so now */
       
  3934 	if (eeprom->word_size == 0)
       
  3935 		e1000_init_eeprom_params(hw);
       
  3936 
       
  3937 	/* A check for invalid values:  offset too large, too many words, and not
       
  3938 	 * enough words.
       
  3939 	 */
       
  3940 	if ((offset >= eeprom->word_size)
       
  3941 	    || (words > eeprom->word_size - offset) || (words == 0)) {
       
  3942 		e_dbg("\"words\" parameter out of bounds. Words = %d,"
       
  3943 		      "size = %d\n", offset, eeprom->word_size);
       
  3944 		return -E1000_ERR_EEPROM;
       
  3945 	}
       
  3946 
       
  3947 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
       
  3948 	 * directly. In this case, we need to acquire the EEPROM so that
       
  3949 	 * FW or other port software does not interrupt.
       
  3950 	 */
       
  3951 	/* Prepare the EEPROM for bit-bang reading */
       
  3952 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
       
  3953 		return -E1000_ERR_EEPROM;
       
  3954 
       
  3955 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
       
  3956 	 * acquired the EEPROM at this point, so any returns should release it */
       
  3957 	if (eeprom->type == e1000_eeprom_spi) {
       
  3958 		u16 word_in;
       
  3959 		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
       
  3960 
       
  3961 		if (e1000_spi_eeprom_ready(hw)) {
       
  3962 			e1000_release_eeprom(hw);
       
  3963 			return -E1000_ERR_EEPROM;
       
  3964 		}
       
  3965 
       
  3966 		e1000_standby_eeprom(hw);
       
  3967 
       
  3968 		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
       
  3969 		if ((eeprom->address_bits == 8) && (offset >= 128))
       
  3970 			read_opcode |= EEPROM_A8_OPCODE_SPI;
       
  3971 
       
  3972 		/* Send the READ command (opcode + addr)  */
       
  3973 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
       
  3974 		e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
       
  3975 					eeprom->address_bits);
       
  3976 
       
  3977 		/* Read the data.  The address of the eeprom internally increments with
       
  3978 		 * each byte (spi) being read, saving on the overhead of eeprom setup
       
  3979 		 * and tear-down.  The address counter will roll over if reading beyond
       
  3980 		 * the size of the eeprom, thus allowing the entire memory to be read
       
  3981 		 * starting from any offset. */
       
  3982 		for (i = 0; i < words; i++) {
       
  3983 			word_in = e1000_shift_in_ee_bits(hw, 16);
       
  3984 			data[i] = (word_in >> 8) | (word_in << 8);
       
  3985 		}
       
  3986 	} else if (eeprom->type == e1000_eeprom_microwire) {
       
  3987 		for (i = 0; i < words; i++) {
       
  3988 			/* Send the READ command (opcode + addr)  */
       
  3989 			e1000_shift_out_ee_bits(hw,
       
  3990 						EEPROM_READ_OPCODE_MICROWIRE,
       
  3991 						eeprom->opcode_bits);
       
  3992 			e1000_shift_out_ee_bits(hw, (u16) (offset + i),
       
  3993 						eeprom->address_bits);
       
  3994 
       
  3995 			/* Read the data.  For microwire, each word requires the overhead
       
  3996 			 * of eeprom setup and tear-down. */
       
  3997 			data[i] = e1000_shift_in_ee_bits(hw, 16);
       
  3998 			e1000_standby_eeprom(hw);
       
  3999 		}
       
  4000 	}
       
  4001 
       
  4002 	/* End this read operation */
       
  4003 	e1000_release_eeprom(hw);
       
  4004 
       
  4005 	return E1000_SUCCESS;
       
  4006 }
       
  4007 
       
  4008 /**
       
  4009  * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
       
  4010  * @hw: Struct containing variables accessed by shared code
       
  4011  *
       
  4012  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
       
  4013  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
       
  4014  * valid.
       
  4015  */
       
  4016 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
       
  4017 {
       
  4018 	u16 checksum = 0;
       
  4019 	u16 i, eeprom_data;
       
  4020 
       
  4021 	e_dbg("e1000_validate_eeprom_checksum");
       
  4022 
       
  4023 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
       
  4024 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
       
  4025 			e_dbg("EEPROM Read Error\n");
       
  4026 			return -E1000_ERR_EEPROM;
       
  4027 		}
       
  4028 		checksum += eeprom_data;
       
  4029 	}
       
  4030 
       
  4031 #ifdef CONFIG_PARISC
       
  4032 	/* This is a signature and not a checksum on HP c8000 */
       
  4033 	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
       
  4034 		return E1000_SUCCESS;
       
  4035 
       
  4036 #endif
       
  4037 	if (checksum == (u16) EEPROM_SUM)
       
  4038 		return E1000_SUCCESS;
       
  4039 	else {
       
  4040 		e_dbg("EEPROM Checksum Invalid\n");
       
  4041 		return -E1000_ERR_EEPROM;
       
  4042 	}
       
  4043 }
       
  4044 
       
  4045 /**
       
  4046  * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
       
  4047  * @hw: Struct containing variables accessed by shared code
       
  4048  *
       
  4049  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
       
  4050  * Writes the difference to word offset 63 of the EEPROM.
       
  4051  */
       
  4052 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
       
  4053 {
       
  4054 	u16 checksum = 0;
       
  4055 	u16 i, eeprom_data;
       
  4056 
       
  4057 	e_dbg("e1000_update_eeprom_checksum");
       
  4058 
       
  4059 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
       
  4060 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
       
  4061 			e_dbg("EEPROM Read Error\n");
       
  4062 			return -E1000_ERR_EEPROM;
       
  4063 		}
       
  4064 		checksum += eeprom_data;
       
  4065 	}
       
  4066 	checksum = (u16) EEPROM_SUM - checksum;
       
  4067 	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
       
  4068 		e_dbg("EEPROM Write Error\n");
       
  4069 		return -E1000_ERR_EEPROM;
       
  4070 	}
       
  4071 	return E1000_SUCCESS;
       
  4072 }
       
  4073 
       
  4074 /**
       
  4075  * e1000_write_eeprom - write words to the different EEPROM types.
       
  4076  * @hw: Struct containing variables accessed by shared code
       
  4077  * @offset: offset within the EEPROM to be written to
       
  4078  * @words: number of words to write
       
  4079  * @data: 16 bit word to be written to the EEPROM
       
  4080  *
       
  4081  * If e1000_update_eeprom_checksum is not called after this function, the
       
  4082  * EEPROM will most likely contain an invalid checksum.
       
  4083  */
       
  4084 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
       
  4085 {
       
  4086 	s32 ret;
       
  4087 	spin_lock(&e1000_eeprom_lock);
       
  4088 	ret = e1000_do_write_eeprom(hw, offset, words, data);
       
  4089 	spin_unlock(&e1000_eeprom_lock);
       
  4090 	return ret;
       
  4091 }
       
  4092 
       
  4093 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
       
  4094 				 u16 *data)
       
  4095 {
       
  4096 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  4097 	s32 status = 0;
       
  4098 
       
  4099 	e_dbg("e1000_write_eeprom");
       
  4100 
       
  4101 	if (hw->mac_type == e1000_ce4100) {
       
  4102 		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
       
  4103 		                       data);
       
  4104 		return E1000_SUCCESS;
       
  4105 	}
       
  4106 
       
  4107 	/* If eeprom is not yet detected, do so now */
       
  4108 	if (eeprom->word_size == 0)
       
  4109 		e1000_init_eeprom_params(hw);
       
  4110 
       
  4111 	/* A check for invalid values:  offset too large, too many words, and not
       
  4112 	 * enough words.
       
  4113 	 */
       
  4114 	if ((offset >= eeprom->word_size)
       
  4115 	    || (words > eeprom->word_size - offset) || (words == 0)) {
       
  4116 		e_dbg("\"words\" parameter out of bounds\n");
       
  4117 		return -E1000_ERR_EEPROM;
       
  4118 	}
       
  4119 
       
  4120 	/* Prepare the EEPROM for writing  */
       
  4121 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
       
  4122 		return -E1000_ERR_EEPROM;
       
  4123 
       
  4124 	if (eeprom->type == e1000_eeprom_microwire) {
       
  4125 		status = e1000_write_eeprom_microwire(hw, offset, words, data);
       
  4126 	} else {
       
  4127 		status = e1000_write_eeprom_spi(hw, offset, words, data);
       
  4128 		msleep(10);
       
  4129 	}
       
  4130 
       
  4131 	/* Done with writing */
       
  4132 	e1000_release_eeprom(hw);
       
  4133 
       
  4134 	return status;
       
  4135 }
       
  4136 
       
  4137 /**
       
  4138  * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
       
  4139  * @hw: Struct containing variables accessed by shared code
       
  4140  * @offset: offset within the EEPROM to be written to
       
  4141  * @words: number of words to write
       
  4142  * @data: pointer to array of 8 bit words to be written to the EEPROM
       
  4143  */
       
  4144 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
       
  4145 				  u16 *data)
       
  4146 {
       
  4147 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  4148 	u16 widx = 0;
       
  4149 
       
  4150 	e_dbg("e1000_write_eeprom_spi");
       
  4151 
       
  4152 	while (widx < words) {
       
  4153 		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
       
  4154 
       
  4155 		if (e1000_spi_eeprom_ready(hw))
       
  4156 			return -E1000_ERR_EEPROM;
       
  4157 
       
  4158 		e1000_standby_eeprom(hw);
       
  4159 
       
  4160 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
       
  4161 		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
       
  4162 					eeprom->opcode_bits);
       
  4163 
       
  4164 		e1000_standby_eeprom(hw);
       
  4165 
       
  4166 		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
       
  4167 		if ((eeprom->address_bits == 8) && (offset >= 128))
       
  4168 			write_opcode |= EEPROM_A8_OPCODE_SPI;
       
  4169 
       
  4170 		/* Send the Write command (8-bit opcode + addr) */
       
  4171 		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
       
  4172 
       
  4173 		e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
       
  4174 					eeprom->address_bits);
       
  4175 
       
  4176 		/* Send the data */
       
  4177 
       
  4178 		/* Loop to allow for up to whole page write (32 bytes) of eeprom */
       
  4179 		while (widx < words) {
       
  4180 			u16 word_out = data[widx];
       
  4181 			word_out = (word_out >> 8) | (word_out << 8);
       
  4182 			e1000_shift_out_ee_bits(hw, word_out, 16);
       
  4183 			widx++;
       
  4184 
       
  4185 			/* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
       
  4186 			 * operation, while the smaller eeproms are capable of an 8-byte
       
  4187 			 * PAGE WRITE operation.  Break the inner loop to pass new address
       
  4188 			 */
       
  4189 			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
       
  4190 				e1000_standby_eeprom(hw);
       
  4191 				break;
       
  4192 			}
       
  4193 		}
       
  4194 	}
       
  4195 
       
  4196 	return E1000_SUCCESS;
       
  4197 }
       
  4198 
       
  4199 /**
       
  4200  * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
       
  4201  * @hw: Struct containing variables accessed by shared code
       
  4202  * @offset: offset within the EEPROM to be written to
       
  4203  * @words: number of words to write
       
  4204  * @data: pointer to array of 8 bit words to be written to the EEPROM
       
  4205  */
       
  4206 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
       
  4207 					u16 words, u16 *data)
       
  4208 {
       
  4209 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
       
  4210 	u32 eecd;
       
  4211 	u16 words_written = 0;
       
  4212 	u16 i = 0;
       
  4213 
       
  4214 	e_dbg("e1000_write_eeprom_microwire");
       
  4215 
       
  4216 	/* Send the write enable command to the EEPROM (3-bit opcode plus
       
  4217 	 * 6/8-bit dummy address beginning with 11).  It's less work to include
       
  4218 	 * the 11 of the dummy address as part of the opcode than it is to shift
       
  4219 	 * it over the correct number of bits for the address.  This puts the
       
  4220 	 * EEPROM into write/erase mode.
       
  4221 	 */
       
  4222 	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
       
  4223 				(u16) (eeprom->opcode_bits + 2));
       
  4224 
       
  4225 	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
       
  4226 
       
  4227 	/* Prepare the EEPROM */
       
  4228 	e1000_standby_eeprom(hw);
       
  4229 
       
  4230 	while (words_written < words) {
       
  4231 		/* Send the Write command (3-bit opcode + addr) */
       
  4232 		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
       
  4233 					eeprom->opcode_bits);
       
  4234 
       
  4235 		e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
       
  4236 					eeprom->address_bits);
       
  4237 
       
  4238 		/* Send the data */
       
  4239 		e1000_shift_out_ee_bits(hw, data[words_written], 16);
       
  4240 
       
  4241 		/* Toggle the CS line.  This in effect tells the EEPROM to execute
       
  4242 		 * the previous command.
       
  4243 		 */
       
  4244 		e1000_standby_eeprom(hw);
       
  4245 
       
  4246 		/* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
       
  4247 		 * signal that the command has been completed by raising the DO signal.
       
  4248 		 * If DO does not go high in 10 milliseconds, then error out.
       
  4249 		 */
       
  4250 		for (i = 0; i < 200; i++) {
       
  4251 			eecd = er32(EECD);
       
  4252 			if (eecd & E1000_EECD_DO)
       
  4253 				break;
       
  4254 			udelay(50);
       
  4255 		}
       
  4256 		if (i == 200) {
       
  4257 			e_dbg("EEPROM Write did not complete\n");
       
  4258 			return -E1000_ERR_EEPROM;
       
  4259 		}
       
  4260 
       
  4261 		/* Recover from write */
       
  4262 		e1000_standby_eeprom(hw);
       
  4263 
       
  4264 		words_written++;
       
  4265 	}
       
  4266 
       
  4267 	/* Send the write disable command to the EEPROM (3-bit opcode plus
       
  4268 	 * 6/8-bit dummy address beginning with 10).  It's less work to include
       
  4269 	 * the 10 of the dummy address as part of the opcode than it is to shift
       
  4270 	 * it over the correct number of bits for the address.  This takes the
       
  4271 	 * EEPROM out of write/erase mode.
       
  4272 	 */
       
  4273 	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
       
  4274 				(u16) (eeprom->opcode_bits + 2));
       
  4275 
       
  4276 	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
       
  4277 
       
  4278 	return E1000_SUCCESS;
       
  4279 }
       
  4280 
       
  4281 /**
       
  4282  * e1000_read_mac_addr - read the adapters MAC from eeprom
       
  4283  * @hw: Struct containing variables accessed by shared code
       
  4284  *
       
  4285  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
       
  4286  * second function of dual function devices
       
  4287  */
       
  4288 s32 e1000_read_mac_addr(struct e1000_hw *hw)
       
  4289 {
       
  4290 	u16 offset;
       
  4291 	u16 eeprom_data, i;
       
  4292 
       
  4293 	e_dbg("e1000_read_mac_addr");
       
  4294 
       
  4295 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
       
  4296 		offset = i >> 1;
       
  4297 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
       
  4298 			e_dbg("EEPROM Read Error\n");
       
  4299 			return -E1000_ERR_EEPROM;
       
  4300 		}
       
  4301 		hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
       
  4302 		hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
       
  4303 	}
       
  4304 
       
  4305 	switch (hw->mac_type) {
       
  4306 	default:
       
  4307 		break;
       
  4308 	case e1000_82546:
       
  4309 	case e1000_82546_rev_3:
       
  4310 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
       
  4311 			hw->perm_mac_addr[5] ^= 0x01;
       
  4312 		break;
       
  4313 	}
       
  4314 
       
  4315 	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
       
  4316 		hw->mac_addr[i] = hw->perm_mac_addr[i];
       
  4317 	return E1000_SUCCESS;
       
  4318 }
       
  4319 
       
  4320 /**
       
  4321  * e1000_init_rx_addrs - Initializes receive address filters.
       
  4322  * @hw: Struct containing variables accessed by shared code
       
  4323  *
       
  4324  * Places the MAC address in receive address register 0 and clears the rest
       
  4325  * of the receive address registers. Clears the multicast table. Assumes
       
  4326  * the receiver is in reset when the routine is called.
       
  4327  */
       
  4328 static void e1000_init_rx_addrs(struct e1000_hw *hw)
       
  4329 {
       
  4330 	u32 i;
       
  4331 	u32 rar_num;
       
  4332 
       
  4333 	e_dbg("e1000_init_rx_addrs");
       
  4334 
       
  4335 	/* Setup the receive address. */
       
  4336 	e_dbg("Programming MAC Address into RAR[0]\n");
       
  4337 
       
  4338 	e1000_rar_set(hw, hw->mac_addr, 0);
       
  4339 
       
  4340 	rar_num = E1000_RAR_ENTRIES;
       
  4341 
       
  4342 	/* Zero out the other 15 receive addresses. */
       
  4343 	e_dbg("Clearing RAR[1-15]\n");
       
  4344 	for (i = 1; i < rar_num; i++) {
       
  4345 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
       
  4346 		E1000_WRITE_FLUSH();
       
  4347 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
       
  4348 		E1000_WRITE_FLUSH();
       
  4349 	}
       
  4350 }
       
  4351 
       
  4352 /**
       
  4353  * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
       
  4354  * @hw: Struct containing variables accessed by shared code
       
  4355  * @mc_addr: the multicast address to hash
       
  4356  */
       
  4357 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
       
  4358 {
       
  4359 	u32 hash_value = 0;
       
  4360 
       
  4361 	/* The portion of the address that is used for the hash table is
       
  4362 	 * determined by the mc_filter_type setting.
       
  4363 	 */
       
  4364 	switch (hw->mc_filter_type) {
       
  4365 		/* [0] [1] [2] [3] [4] [5]
       
  4366 		 * 01  AA  00  12  34  56
       
  4367 		 * LSB                 MSB
       
  4368 		 */
       
  4369 	case 0:
       
  4370 		/* [47:36] i.e. 0x563 for above example address */
       
  4371 		hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
       
  4372 		break;
       
  4373 	case 1:
       
  4374 		/* [46:35] i.e. 0xAC6 for above example address */
       
  4375 		hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
       
  4376 		break;
       
  4377 	case 2:
       
  4378 		/* [45:34] i.e. 0x5D8 for above example address */
       
  4379 		hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
       
  4380 		break;
       
  4381 	case 3:
       
  4382 		/* [43:32] i.e. 0x634 for above example address */
       
  4383 		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
       
  4384 		break;
       
  4385 	}
       
  4386 
       
  4387 	hash_value &= 0xFFF;
       
  4388 	return hash_value;
       
  4389 }
       
  4390 
       
  4391 /**
       
  4392  * e1000_rar_set - Puts an ethernet address into a receive address register.
       
  4393  * @hw: Struct containing variables accessed by shared code
       
  4394  * @addr: Address to put into receive address register
       
  4395  * @index: Receive address register to write
       
  4396  */
       
  4397 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
       
  4398 {
       
  4399 	u32 rar_low, rar_high;
       
  4400 
       
  4401 	/* HW expects these in little endian so we reverse the byte order
       
  4402 	 * from network order (big endian) to little endian
       
  4403 	 */
       
  4404 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
       
  4405 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
       
  4406 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
       
  4407 
       
  4408 	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
       
  4409 	 * unit hang.
       
  4410 	 *
       
  4411 	 * Description:
       
  4412 	 * If there are any Rx frames queued up or otherwise present in the HW
       
  4413 	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
       
  4414 	 * hang.  To work around this issue, we have to disable receives and
       
  4415 	 * flush out all Rx frames before we enable RSS. To do so, we modify we
       
  4416 	 * redirect all Rx traffic to manageability and then reset the HW.
       
  4417 	 * This flushes away Rx frames, and (since the redirections to
       
  4418 	 * manageability persists across resets) keeps new ones from coming in
       
  4419 	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
       
  4420 	 * addresses and undo the re-direction to manageability.
       
  4421 	 * Now, frames are coming in again, but the MAC won't accept them, so
       
  4422 	 * far so good.  We now proceed to initialize RSS (if necessary) and
       
  4423 	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
       
  4424 	 * on our merry way.
       
  4425 	 */
       
  4426 	switch (hw->mac_type) {
       
  4427 	default:
       
  4428 		/* Indicate to hardware the Address is Valid. */
       
  4429 		rar_high |= E1000_RAH_AV;
       
  4430 		break;
       
  4431 	}
       
  4432 
       
  4433 	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
       
  4434 	E1000_WRITE_FLUSH();
       
  4435 	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
       
  4436 	E1000_WRITE_FLUSH();
       
  4437 }
       
  4438 
       
  4439 /**
       
  4440  * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
       
  4441  * @hw: Struct containing variables accessed by shared code
       
  4442  * @offset: Offset in VLAN filer table to write
       
  4443  * @value: Value to write into VLAN filter table
       
  4444  */
       
  4445 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
       
  4446 {
       
  4447 	u32 temp;
       
  4448 
       
  4449 	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
       
  4450 		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
       
  4451 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
       
  4452 		E1000_WRITE_FLUSH();
       
  4453 		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
       
  4454 		E1000_WRITE_FLUSH();
       
  4455 	} else {
       
  4456 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
       
  4457 		E1000_WRITE_FLUSH();
       
  4458 	}
       
  4459 }
       
  4460 
       
  4461 /**
       
  4462  * e1000_clear_vfta - Clears the VLAN filer table
       
  4463  * @hw: Struct containing variables accessed by shared code
       
  4464  */
       
  4465 static void e1000_clear_vfta(struct e1000_hw *hw)
       
  4466 {
       
  4467 	u32 offset;
       
  4468 	u32 vfta_value = 0;
       
  4469 	u32 vfta_offset = 0;
       
  4470 	u32 vfta_bit_in_reg = 0;
       
  4471 
       
  4472 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
  4473 		/* If the offset we want to clear is the same offset of the
       
  4474 		 * manageability VLAN ID, then clear all bits except that of the
       
  4475 		 * manageability unit */
       
  4476 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
       
  4477 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
       
  4478 		E1000_WRITE_FLUSH();
       
  4479 	}
       
  4480 }
       
  4481 
       
  4482 static s32 e1000_id_led_init(struct e1000_hw *hw)
       
  4483 {
       
  4484 	u32 ledctl;
       
  4485 	const u32 ledctl_mask = 0x000000FF;
       
  4486 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
       
  4487 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
       
  4488 	u16 eeprom_data, i, temp;
       
  4489 	const u16 led_mask = 0x0F;
       
  4490 
       
  4491 	e_dbg("e1000_id_led_init");
       
  4492 
       
  4493 	if (hw->mac_type < e1000_82540) {
       
  4494 		/* Nothing to do */
       
  4495 		return E1000_SUCCESS;
       
  4496 	}
       
  4497 
       
  4498 	ledctl = er32(LEDCTL);
       
  4499 	hw->ledctl_default = ledctl;
       
  4500 	hw->ledctl_mode1 = hw->ledctl_default;
       
  4501 	hw->ledctl_mode2 = hw->ledctl_default;
       
  4502 
       
  4503 	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
       
  4504 		e_dbg("EEPROM Read Error\n");
       
  4505 		return -E1000_ERR_EEPROM;
       
  4506 	}
       
  4507 
       
  4508 	if ((eeprom_data == ID_LED_RESERVED_0000) ||
       
  4509 	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
       
  4510 		eeprom_data = ID_LED_DEFAULT;
       
  4511 	}
       
  4512 
       
  4513 	for (i = 0; i < 4; i++) {
       
  4514 		temp = (eeprom_data >> (i << 2)) & led_mask;
       
  4515 		switch (temp) {
       
  4516 		case ID_LED_ON1_DEF2:
       
  4517 		case ID_LED_ON1_ON2:
       
  4518 		case ID_LED_ON1_OFF2:
       
  4519 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  4520 			hw->ledctl_mode1 |= ledctl_on << (i << 3);
       
  4521 			break;
       
  4522 		case ID_LED_OFF1_DEF2:
       
  4523 		case ID_LED_OFF1_ON2:
       
  4524 		case ID_LED_OFF1_OFF2:
       
  4525 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  4526 			hw->ledctl_mode1 |= ledctl_off << (i << 3);
       
  4527 			break;
       
  4528 		default:
       
  4529 			/* Do nothing */
       
  4530 			break;
       
  4531 		}
       
  4532 		switch (temp) {
       
  4533 		case ID_LED_DEF1_ON2:
       
  4534 		case ID_LED_ON1_ON2:
       
  4535 		case ID_LED_OFF1_ON2:
       
  4536 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  4537 			hw->ledctl_mode2 |= ledctl_on << (i << 3);
       
  4538 			break;
       
  4539 		case ID_LED_DEF1_OFF2:
       
  4540 		case ID_LED_ON1_OFF2:
       
  4541 		case ID_LED_OFF1_OFF2:
       
  4542 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  4543 			hw->ledctl_mode2 |= ledctl_off << (i << 3);
       
  4544 			break;
       
  4545 		default:
       
  4546 			/* Do nothing */
       
  4547 			break;
       
  4548 		}
       
  4549 	}
       
  4550 	return E1000_SUCCESS;
       
  4551 }
       
  4552 
       
  4553 /**
       
  4554  * e1000_setup_led
       
  4555  * @hw: Struct containing variables accessed by shared code
       
  4556  *
       
  4557  * Prepares SW controlable LED for use and saves the current state of the LED.
       
  4558  */
       
  4559 s32 e1000_setup_led(struct e1000_hw *hw)
       
  4560 {
       
  4561 	u32 ledctl;
       
  4562 	s32 ret_val = E1000_SUCCESS;
       
  4563 
       
  4564 	e_dbg("e1000_setup_led");
       
  4565 
       
  4566 	switch (hw->mac_type) {
       
  4567 	case e1000_82542_rev2_0:
       
  4568 	case e1000_82542_rev2_1:
       
  4569 	case e1000_82543:
       
  4570 	case e1000_82544:
       
  4571 		/* No setup necessary */
       
  4572 		break;
       
  4573 	case e1000_82541:
       
  4574 	case e1000_82547:
       
  4575 	case e1000_82541_rev_2:
       
  4576 	case e1000_82547_rev_2:
       
  4577 		/* Turn off PHY Smart Power Down (if enabled) */
       
  4578 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
       
  4579 					     &hw->phy_spd_default);
       
  4580 		if (ret_val)
       
  4581 			return ret_val;
       
  4582 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
       
  4583 					      (u16) (hw->phy_spd_default &
       
  4584 						     ~IGP01E1000_GMII_SPD));
       
  4585 		if (ret_val)
       
  4586 			return ret_val;
       
  4587 		/* Fall Through */
       
  4588 	default:
       
  4589 		if (hw->media_type == e1000_media_type_fiber) {
       
  4590 			ledctl = er32(LEDCTL);
       
  4591 			/* Save current LEDCTL settings */
       
  4592 			hw->ledctl_default = ledctl;
       
  4593 			/* Turn off LED0 */
       
  4594 			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
       
  4595 				    E1000_LEDCTL_LED0_BLINK |
       
  4596 				    E1000_LEDCTL_LED0_MODE_MASK);
       
  4597 			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
       
  4598 				   E1000_LEDCTL_LED0_MODE_SHIFT);
       
  4599 			ew32(LEDCTL, ledctl);
       
  4600 		} else if (hw->media_type == e1000_media_type_copper)
       
  4601 			ew32(LEDCTL, hw->ledctl_mode1);
       
  4602 		break;
       
  4603 	}
       
  4604 
       
  4605 	return E1000_SUCCESS;
       
  4606 }
       
  4607 
       
  4608 /**
       
  4609  * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
       
  4610  * @hw: Struct containing variables accessed by shared code
       
  4611  */
       
  4612 s32 e1000_cleanup_led(struct e1000_hw *hw)
       
  4613 {
       
  4614 	s32 ret_val = E1000_SUCCESS;
       
  4615 
       
  4616 	e_dbg("e1000_cleanup_led");
       
  4617 
       
  4618 	switch (hw->mac_type) {
       
  4619 	case e1000_82542_rev2_0:
       
  4620 	case e1000_82542_rev2_1:
       
  4621 	case e1000_82543:
       
  4622 	case e1000_82544:
       
  4623 		/* No cleanup necessary */
       
  4624 		break;
       
  4625 	case e1000_82541:
       
  4626 	case e1000_82547:
       
  4627 	case e1000_82541_rev_2:
       
  4628 	case e1000_82547_rev_2:
       
  4629 		/* Turn on PHY Smart Power Down (if previously enabled) */
       
  4630 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
       
  4631 					      hw->phy_spd_default);
       
  4632 		if (ret_val)
       
  4633 			return ret_val;
       
  4634 		/* Fall Through */
       
  4635 	default:
       
  4636 		/* Restore LEDCTL settings */
       
  4637 		ew32(LEDCTL, hw->ledctl_default);
       
  4638 		break;
       
  4639 	}
       
  4640 
       
  4641 	return E1000_SUCCESS;
       
  4642 }
       
  4643 
       
  4644 /**
       
  4645  * e1000_led_on - Turns on the software controllable LED
       
  4646  * @hw: Struct containing variables accessed by shared code
       
  4647  */
       
  4648 s32 e1000_led_on(struct e1000_hw *hw)
       
  4649 {
       
  4650 	u32 ctrl = er32(CTRL);
       
  4651 
       
  4652 	e_dbg("e1000_led_on");
       
  4653 
       
  4654 	switch (hw->mac_type) {
       
  4655 	case e1000_82542_rev2_0:
       
  4656 	case e1000_82542_rev2_1:
       
  4657 	case e1000_82543:
       
  4658 		/* Set SW Defineable Pin 0 to turn on the LED */
       
  4659 		ctrl |= E1000_CTRL_SWDPIN0;
       
  4660 		ctrl |= E1000_CTRL_SWDPIO0;
       
  4661 		break;
       
  4662 	case e1000_82544:
       
  4663 		if (hw->media_type == e1000_media_type_fiber) {
       
  4664 			/* Set SW Defineable Pin 0 to turn on the LED */
       
  4665 			ctrl |= E1000_CTRL_SWDPIN0;
       
  4666 			ctrl |= E1000_CTRL_SWDPIO0;
       
  4667 		} else {
       
  4668 			/* Clear SW Defineable Pin 0 to turn on the LED */
       
  4669 			ctrl &= ~E1000_CTRL_SWDPIN0;
       
  4670 			ctrl |= E1000_CTRL_SWDPIO0;
       
  4671 		}
       
  4672 		break;
       
  4673 	default:
       
  4674 		if (hw->media_type == e1000_media_type_fiber) {
       
  4675 			/* Clear SW Defineable Pin 0 to turn on the LED */
       
  4676 			ctrl &= ~E1000_CTRL_SWDPIN0;
       
  4677 			ctrl |= E1000_CTRL_SWDPIO0;
       
  4678 		} else if (hw->media_type == e1000_media_type_copper) {
       
  4679 			ew32(LEDCTL, hw->ledctl_mode2);
       
  4680 			return E1000_SUCCESS;
       
  4681 		}
       
  4682 		break;
       
  4683 	}
       
  4684 
       
  4685 	ew32(CTRL, ctrl);
       
  4686 
       
  4687 	return E1000_SUCCESS;
       
  4688 }
       
  4689 
       
  4690 /**
       
  4691  * e1000_led_off - Turns off the software controllable LED
       
  4692  * @hw: Struct containing variables accessed by shared code
       
  4693  */
       
  4694 s32 e1000_led_off(struct e1000_hw *hw)
       
  4695 {
       
  4696 	u32 ctrl = er32(CTRL);
       
  4697 
       
  4698 	e_dbg("e1000_led_off");
       
  4699 
       
  4700 	switch (hw->mac_type) {
       
  4701 	case e1000_82542_rev2_0:
       
  4702 	case e1000_82542_rev2_1:
       
  4703 	case e1000_82543:
       
  4704 		/* Clear SW Defineable Pin 0 to turn off the LED */
       
  4705 		ctrl &= ~E1000_CTRL_SWDPIN0;
       
  4706 		ctrl |= E1000_CTRL_SWDPIO0;
       
  4707 		break;
       
  4708 	case e1000_82544:
       
  4709 		if (hw->media_type == e1000_media_type_fiber) {
       
  4710 			/* Clear SW Defineable Pin 0 to turn off the LED */
       
  4711 			ctrl &= ~E1000_CTRL_SWDPIN0;
       
  4712 			ctrl |= E1000_CTRL_SWDPIO0;
       
  4713 		} else {
       
  4714 			/* Set SW Defineable Pin 0 to turn off the LED */
       
  4715 			ctrl |= E1000_CTRL_SWDPIN0;
       
  4716 			ctrl |= E1000_CTRL_SWDPIO0;
       
  4717 		}
       
  4718 		break;
       
  4719 	default:
       
  4720 		if (hw->media_type == e1000_media_type_fiber) {
       
  4721 			/* Set SW Defineable Pin 0 to turn off the LED */
       
  4722 			ctrl |= E1000_CTRL_SWDPIN0;
       
  4723 			ctrl |= E1000_CTRL_SWDPIO0;
       
  4724 		} else if (hw->media_type == e1000_media_type_copper) {
       
  4725 			ew32(LEDCTL, hw->ledctl_mode1);
       
  4726 			return E1000_SUCCESS;
       
  4727 		}
       
  4728 		break;
       
  4729 	}
       
  4730 
       
  4731 	ew32(CTRL, ctrl);
       
  4732 
       
  4733 	return E1000_SUCCESS;
       
  4734 }
       
  4735 
       
  4736 /**
       
  4737  * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
       
  4738  * @hw: Struct containing variables accessed by shared code
       
  4739  */
       
  4740 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
       
  4741 {
       
  4742 	volatile u32 temp;
       
  4743 
       
  4744 	temp = er32(CRCERRS);
       
  4745 	temp = er32(SYMERRS);
       
  4746 	temp = er32(MPC);
       
  4747 	temp = er32(SCC);
       
  4748 	temp = er32(ECOL);
       
  4749 	temp = er32(MCC);
       
  4750 	temp = er32(LATECOL);
       
  4751 	temp = er32(COLC);
       
  4752 	temp = er32(DC);
       
  4753 	temp = er32(SEC);
       
  4754 	temp = er32(RLEC);
       
  4755 	temp = er32(XONRXC);
       
  4756 	temp = er32(XONTXC);
       
  4757 	temp = er32(XOFFRXC);
       
  4758 	temp = er32(XOFFTXC);
       
  4759 	temp = er32(FCRUC);
       
  4760 
       
  4761 	temp = er32(PRC64);
       
  4762 	temp = er32(PRC127);
       
  4763 	temp = er32(PRC255);
       
  4764 	temp = er32(PRC511);
       
  4765 	temp = er32(PRC1023);
       
  4766 	temp = er32(PRC1522);
       
  4767 
       
  4768 	temp = er32(GPRC);
       
  4769 	temp = er32(BPRC);
       
  4770 	temp = er32(MPRC);
       
  4771 	temp = er32(GPTC);
       
  4772 	temp = er32(GORCL);
       
  4773 	temp = er32(GORCH);
       
  4774 	temp = er32(GOTCL);
       
  4775 	temp = er32(GOTCH);
       
  4776 	temp = er32(RNBC);
       
  4777 	temp = er32(RUC);
       
  4778 	temp = er32(RFC);
       
  4779 	temp = er32(ROC);
       
  4780 	temp = er32(RJC);
       
  4781 	temp = er32(TORL);
       
  4782 	temp = er32(TORH);
       
  4783 	temp = er32(TOTL);
       
  4784 	temp = er32(TOTH);
       
  4785 	temp = er32(TPR);
       
  4786 	temp = er32(TPT);
       
  4787 
       
  4788 	temp = er32(PTC64);
       
  4789 	temp = er32(PTC127);
       
  4790 	temp = er32(PTC255);
       
  4791 	temp = er32(PTC511);
       
  4792 	temp = er32(PTC1023);
       
  4793 	temp = er32(PTC1522);
       
  4794 
       
  4795 	temp = er32(MPTC);
       
  4796 	temp = er32(BPTC);
       
  4797 
       
  4798 	if (hw->mac_type < e1000_82543)
       
  4799 		return;
       
  4800 
       
  4801 	temp = er32(ALGNERRC);
       
  4802 	temp = er32(RXERRC);
       
  4803 	temp = er32(TNCRS);
       
  4804 	temp = er32(CEXTERR);
       
  4805 	temp = er32(TSCTC);
       
  4806 	temp = er32(TSCTFC);
       
  4807 
       
  4808 	if (hw->mac_type <= e1000_82544)
       
  4809 		return;
       
  4810 
       
  4811 	temp = er32(MGTPRC);
       
  4812 	temp = er32(MGTPDC);
       
  4813 	temp = er32(MGTPTC);
       
  4814 }
       
  4815 
       
  4816 /**
       
  4817  * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
       
  4818  * @hw: Struct containing variables accessed by shared code
       
  4819  *
       
  4820  * Call this after e1000_init_hw. You may override the IFS defaults by setting
       
  4821  * hw->ifs_params_forced to true. However, you must initialize hw->
       
  4822  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
       
  4823  * before calling this function.
       
  4824  */
       
  4825 void e1000_reset_adaptive(struct e1000_hw *hw)
       
  4826 {
       
  4827 	e_dbg("e1000_reset_adaptive");
       
  4828 
       
  4829 	if (hw->adaptive_ifs) {
       
  4830 		if (!hw->ifs_params_forced) {
       
  4831 			hw->current_ifs_val = 0;
       
  4832 			hw->ifs_min_val = IFS_MIN;
       
  4833 			hw->ifs_max_val = IFS_MAX;
       
  4834 			hw->ifs_step_size = IFS_STEP;
       
  4835 			hw->ifs_ratio = IFS_RATIO;
       
  4836 		}
       
  4837 		hw->in_ifs_mode = false;
       
  4838 		ew32(AIT, 0);
       
  4839 	} else {
       
  4840 		e_dbg("Not in Adaptive IFS mode!\n");
       
  4841 	}
       
  4842 }
       
  4843 
       
  4844 /**
       
  4845  * e1000_update_adaptive - update adaptive IFS
       
  4846  * @hw: Struct containing variables accessed by shared code
       
  4847  * @tx_packets: Number of transmits since last callback
       
  4848  * @total_collisions: Number of collisions since last callback
       
  4849  *
       
  4850  * Called during the callback/watchdog routine to update IFS value based on
       
  4851  * the ratio of transmits to collisions.
       
  4852  */
       
  4853 void e1000_update_adaptive(struct e1000_hw *hw)
       
  4854 {
       
  4855 	e_dbg("e1000_update_adaptive");
       
  4856 
       
  4857 	if (hw->adaptive_ifs) {
       
  4858 		if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
       
  4859 			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
       
  4860 				hw->in_ifs_mode = true;
       
  4861 				if (hw->current_ifs_val < hw->ifs_max_val) {
       
  4862 					if (hw->current_ifs_val == 0)
       
  4863 						hw->current_ifs_val =
       
  4864 						    hw->ifs_min_val;
       
  4865 					else
       
  4866 						hw->current_ifs_val +=
       
  4867 						    hw->ifs_step_size;
       
  4868 					ew32(AIT, hw->current_ifs_val);
       
  4869 				}
       
  4870 			}
       
  4871 		} else {
       
  4872 			if (hw->in_ifs_mode
       
  4873 			    && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
       
  4874 				hw->current_ifs_val = 0;
       
  4875 				hw->in_ifs_mode = false;
       
  4876 				ew32(AIT, 0);
       
  4877 			}
       
  4878 		}
       
  4879 	} else {
       
  4880 		e_dbg("Not in Adaptive IFS mode!\n");
       
  4881 	}
       
  4882 }
       
  4883 
       
  4884 /**
       
  4885  * e1000_tbi_adjust_stats
       
  4886  * @hw: Struct containing variables accessed by shared code
       
  4887  * @frame_len: The length of the frame in question
       
  4888  * @mac_addr: The Ethernet destination address of the frame in question
       
  4889  *
       
  4890  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
       
  4891  */
       
  4892 void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
       
  4893 			    u32 frame_len, u8 *mac_addr)
       
  4894 {
       
  4895 	u64 carry_bit;
       
  4896 
       
  4897 	/* First adjust the frame length. */
       
  4898 	frame_len--;
       
  4899 	/* We need to adjust the statistics counters, since the hardware
       
  4900 	 * counters overcount this packet as a CRC error and undercount
       
  4901 	 * the packet as a good packet
       
  4902 	 */
       
  4903 	/* This packet should not be counted as a CRC error.    */
       
  4904 	stats->crcerrs--;
       
  4905 	/* This packet does count as a Good Packet Received.    */
       
  4906 	stats->gprc++;
       
  4907 
       
  4908 	/* Adjust the Good Octets received counters             */
       
  4909 	carry_bit = 0x80000000 & stats->gorcl;
       
  4910 	stats->gorcl += frame_len;
       
  4911 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
       
  4912 	 * Received Count) was one before the addition,
       
  4913 	 * AND it is zero after, then we lost the carry out,
       
  4914 	 * need to add one to Gorch (Good Octets Received Count High).
       
  4915 	 * This could be simplified if all environments supported
       
  4916 	 * 64-bit integers.
       
  4917 	 */
       
  4918 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
       
  4919 		stats->gorch++;
       
  4920 	/* Is this a broadcast or multicast?  Check broadcast first,
       
  4921 	 * since the test for a multicast frame will test positive on
       
  4922 	 * a broadcast frame.
       
  4923 	 */
       
  4924 	if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
       
  4925 		/* Broadcast packet */
       
  4926 		stats->bprc++;
       
  4927 	else if (*mac_addr & 0x01)
       
  4928 		/* Multicast packet */
       
  4929 		stats->mprc++;
       
  4930 
       
  4931 	if (frame_len == hw->max_frame_size) {
       
  4932 		/* In this case, the hardware has overcounted the number of
       
  4933 		 * oversize frames.
       
  4934 		 */
       
  4935 		if (stats->roc > 0)
       
  4936 			stats->roc--;
       
  4937 	}
       
  4938 
       
  4939 	/* Adjust the bin counters when the extra byte put the frame in the
       
  4940 	 * wrong bin. Remember that the frame_len was adjusted above.
       
  4941 	 */
       
  4942 	if (frame_len == 64) {
       
  4943 		stats->prc64++;
       
  4944 		stats->prc127--;
       
  4945 	} else if (frame_len == 127) {
       
  4946 		stats->prc127++;
       
  4947 		stats->prc255--;
       
  4948 	} else if (frame_len == 255) {
       
  4949 		stats->prc255++;
       
  4950 		stats->prc511--;
       
  4951 	} else if (frame_len == 511) {
       
  4952 		stats->prc511++;
       
  4953 		stats->prc1023--;
       
  4954 	} else if (frame_len == 1023) {
       
  4955 		stats->prc1023++;
       
  4956 		stats->prc1522--;
       
  4957 	} else if (frame_len == 1522) {
       
  4958 		stats->prc1522++;
       
  4959 	}
       
  4960 }
       
  4961 
       
  4962 /**
       
  4963  * e1000_get_bus_info
       
  4964  * @hw: Struct containing variables accessed by shared code
       
  4965  *
       
  4966  * Gets the current PCI bus type, speed, and width of the hardware
       
  4967  */
       
  4968 void e1000_get_bus_info(struct e1000_hw *hw)
       
  4969 {
       
  4970 	u32 status;
       
  4971 
       
  4972 	switch (hw->mac_type) {
       
  4973 	case e1000_82542_rev2_0:
       
  4974 	case e1000_82542_rev2_1:
       
  4975 		hw->bus_type = e1000_bus_type_pci;
       
  4976 		hw->bus_speed = e1000_bus_speed_unknown;
       
  4977 		hw->bus_width = e1000_bus_width_unknown;
       
  4978 		break;
       
  4979 	default:
       
  4980 		status = er32(STATUS);
       
  4981 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
       
  4982 		    e1000_bus_type_pcix : e1000_bus_type_pci;
       
  4983 
       
  4984 		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
       
  4985 			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
       
  4986 			    e1000_bus_speed_66 : e1000_bus_speed_120;
       
  4987 		} else if (hw->bus_type == e1000_bus_type_pci) {
       
  4988 			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
       
  4989 			    e1000_bus_speed_66 : e1000_bus_speed_33;
       
  4990 		} else {
       
  4991 			switch (status & E1000_STATUS_PCIX_SPEED) {
       
  4992 			case E1000_STATUS_PCIX_SPEED_66:
       
  4993 				hw->bus_speed = e1000_bus_speed_66;
       
  4994 				break;
       
  4995 			case E1000_STATUS_PCIX_SPEED_100:
       
  4996 				hw->bus_speed = e1000_bus_speed_100;
       
  4997 				break;
       
  4998 			case E1000_STATUS_PCIX_SPEED_133:
       
  4999 				hw->bus_speed = e1000_bus_speed_133;
       
  5000 				break;
       
  5001 			default:
       
  5002 				hw->bus_speed = e1000_bus_speed_reserved;
       
  5003 				break;
       
  5004 			}
       
  5005 		}
       
  5006 		hw->bus_width = (status & E1000_STATUS_BUS64) ?
       
  5007 		    e1000_bus_width_64 : e1000_bus_width_32;
       
  5008 		break;
       
  5009 	}
       
  5010 }
       
  5011 
       
  5012 /**
       
  5013  * e1000_write_reg_io
       
  5014  * @hw: Struct containing variables accessed by shared code
       
  5015  * @offset: offset to write to
       
  5016  * @value: value to write
       
  5017  *
       
  5018  * Writes a value to one of the devices registers using port I/O (as opposed to
       
  5019  * memory mapped I/O). Only 82544 and newer devices support port I/O.
       
  5020  */
       
  5021 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
       
  5022 {
       
  5023 	unsigned long io_addr = hw->io_base;
       
  5024 	unsigned long io_data = hw->io_base + 4;
       
  5025 
       
  5026 	e1000_io_write(hw, io_addr, offset);
       
  5027 	e1000_io_write(hw, io_data, value);
       
  5028 }
       
  5029 
       
  5030 /**
       
  5031  * e1000_get_cable_length - Estimates the cable length.
       
  5032  * @hw: Struct containing variables accessed by shared code
       
  5033  * @min_length: The estimated minimum length
       
  5034  * @max_length: The estimated maximum length
       
  5035  *
       
  5036  * returns: - E1000_ERR_XXX
       
  5037  *            E1000_SUCCESS
       
  5038  *
       
  5039  * This function always returns a ranged length (minimum & maximum).
       
  5040  * So for M88 phy's, this function interprets the one value returned from the
       
  5041  * register to the minimum and maximum range.
       
  5042  * For IGP phy's, the function calculates the range by the AGC registers.
       
  5043  */
       
  5044 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
       
  5045 				  u16 *max_length)
       
  5046 {
       
  5047 	s32 ret_val;
       
  5048 	u16 agc_value = 0;
       
  5049 	u16 i, phy_data;
       
  5050 	u16 cable_length;
       
  5051 
       
  5052 	e_dbg("e1000_get_cable_length");
       
  5053 
       
  5054 	*min_length = *max_length = 0;
       
  5055 
       
  5056 	/* Use old method for Phy older than IGP */
       
  5057 	if (hw->phy_type == e1000_phy_m88) {
       
  5058 
       
  5059 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
       
  5060 					     &phy_data);
       
  5061 		if (ret_val)
       
  5062 			return ret_val;
       
  5063 		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
       
  5064 		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
       
  5065 
       
  5066 		/* Convert the enum value to ranged values */
       
  5067 		switch (cable_length) {
       
  5068 		case e1000_cable_length_50:
       
  5069 			*min_length = 0;
       
  5070 			*max_length = e1000_igp_cable_length_50;
       
  5071 			break;
       
  5072 		case e1000_cable_length_50_80:
       
  5073 			*min_length = e1000_igp_cable_length_50;
       
  5074 			*max_length = e1000_igp_cable_length_80;
       
  5075 			break;
       
  5076 		case e1000_cable_length_80_110:
       
  5077 			*min_length = e1000_igp_cable_length_80;
       
  5078 			*max_length = e1000_igp_cable_length_110;
       
  5079 			break;
       
  5080 		case e1000_cable_length_110_140:
       
  5081 			*min_length = e1000_igp_cable_length_110;
       
  5082 			*max_length = e1000_igp_cable_length_140;
       
  5083 			break;
       
  5084 		case e1000_cable_length_140:
       
  5085 			*min_length = e1000_igp_cable_length_140;
       
  5086 			*max_length = e1000_igp_cable_length_170;
       
  5087 			break;
       
  5088 		default:
       
  5089 			return -E1000_ERR_PHY;
       
  5090 			break;
       
  5091 		}
       
  5092 	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
       
  5093 		u16 cur_agc_value;
       
  5094 		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
       
  5095 		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
       
  5096 		       IGP01E1000_PHY_AGC_A,
       
  5097 		       IGP01E1000_PHY_AGC_B,
       
  5098 		       IGP01E1000_PHY_AGC_C,
       
  5099 		       IGP01E1000_PHY_AGC_D
       
  5100 		};
       
  5101 		/* Read the AGC registers for all channels */
       
  5102 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
       
  5103 
       
  5104 			ret_val =
       
  5105 			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
       
  5106 			if (ret_val)
       
  5107 				return ret_val;
       
  5108 
       
  5109 			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
       
  5110 
       
  5111 			/* Value bound check. */
       
  5112 			if ((cur_agc_value >=
       
  5113 			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
       
  5114 			    || (cur_agc_value == 0))
       
  5115 				return -E1000_ERR_PHY;
       
  5116 
       
  5117 			agc_value += cur_agc_value;
       
  5118 
       
  5119 			/* Update minimal AGC value. */
       
  5120 			if (min_agc_value > cur_agc_value)
       
  5121 				min_agc_value = cur_agc_value;
       
  5122 		}
       
  5123 
       
  5124 		/* Remove the minimal AGC result for length < 50m */
       
  5125 		if (agc_value <
       
  5126 		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
       
  5127 			agc_value -= min_agc_value;
       
  5128 
       
  5129 			/* Get the average length of the remaining 3 channels */
       
  5130 			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
       
  5131 		} else {
       
  5132 			/* Get the average length of all the 4 channels. */
       
  5133 			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
       
  5134 		}
       
  5135 
       
  5136 		/* Set the range of the calculated length. */
       
  5137 		*min_length = ((e1000_igp_cable_length_table[agc_value] -
       
  5138 				IGP01E1000_AGC_RANGE) > 0) ?
       
  5139 		    (e1000_igp_cable_length_table[agc_value] -
       
  5140 		     IGP01E1000_AGC_RANGE) : 0;
       
  5141 		*max_length = e1000_igp_cable_length_table[agc_value] +
       
  5142 		    IGP01E1000_AGC_RANGE;
       
  5143 	}
       
  5144 
       
  5145 	return E1000_SUCCESS;
       
  5146 }
       
  5147 
       
  5148 /**
       
  5149  * e1000_check_polarity - Check the cable polarity
       
  5150  * @hw: Struct containing variables accessed by shared code
       
  5151  * @polarity: output parameter : 0 - Polarity is not reversed
       
  5152  *                               1 - Polarity is reversed.
       
  5153  *
       
  5154  * returns: - E1000_ERR_XXX
       
  5155  *            E1000_SUCCESS
       
  5156  *
       
  5157  * For phy's older than IGP, this function simply reads the polarity bit in the
       
  5158  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
       
  5159  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
       
  5160  * return 0.  If the link speed is 1000 Mbps the polarity status is in the
       
  5161  * IGP01E1000_PHY_PCS_INIT_REG.
       
  5162  */
       
  5163 static s32 e1000_check_polarity(struct e1000_hw *hw,
       
  5164 				e1000_rev_polarity *polarity)
       
  5165 {
       
  5166 	s32 ret_val;
       
  5167 	u16 phy_data;
       
  5168 
       
  5169 	e_dbg("e1000_check_polarity");
       
  5170 
       
  5171 	if (hw->phy_type == e1000_phy_m88) {
       
  5172 		/* return the Polarity bit in the Status register. */
       
  5173 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
       
  5174 					     &phy_data);
       
  5175 		if (ret_val)
       
  5176 			return ret_val;
       
  5177 		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
       
  5178 			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
       
  5179 		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
       
  5180 
       
  5181 	} else if (hw->phy_type == e1000_phy_igp) {
       
  5182 		/* Read the Status register to check the speed */
       
  5183 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
       
  5184 					     &phy_data);
       
  5185 		if (ret_val)
       
  5186 			return ret_val;
       
  5187 
       
  5188 		/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
       
  5189 		 * find the polarity status */
       
  5190 		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  5191 		    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  5192 
       
  5193 			/* Read the GIG initialization PCS register (0x00B4) */
       
  5194 			ret_val =
       
  5195 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
       
  5196 					       &phy_data);
       
  5197 			if (ret_val)
       
  5198 				return ret_val;
       
  5199 
       
  5200 			/* Check the polarity bits */
       
  5201 			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
       
  5202 			    e1000_rev_polarity_reversed :
       
  5203 			    e1000_rev_polarity_normal;
       
  5204 		} else {
       
  5205 			/* For 10 Mbps, read the polarity bit in the status register. (for
       
  5206 			 * 100 Mbps this bit is always 0) */
       
  5207 			*polarity =
       
  5208 			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
       
  5209 			    e1000_rev_polarity_reversed :
       
  5210 			    e1000_rev_polarity_normal;
       
  5211 		}
       
  5212 	}
       
  5213 	return E1000_SUCCESS;
       
  5214 }
       
  5215 
       
  5216 /**
       
  5217  * e1000_check_downshift - Check if Downshift occurred
       
  5218  * @hw: Struct containing variables accessed by shared code
       
  5219  * @downshift: output parameter : 0 - No Downshift occurred.
       
  5220  *                                1 - Downshift occurred.
       
  5221  *
       
  5222  * returns: - E1000_ERR_XXX
       
  5223  *            E1000_SUCCESS
       
  5224  *
       
  5225  * For phy's older than IGP, this function reads the Downshift bit in the Phy
       
  5226  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
       
  5227  * Link Health register.  In IGP this bit is latched high, so the driver must
       
  5228  * read it immediately after link is established.
       
  5229  */
       
  5230 static s32 e1000_check_downshift(struct e1000_hw *hw)
       
  5231 {
       
  5232 	s32 ret_val;
       
  5233 	u16 phy_data;
       
  5234 
       
  5235 	e_dbg("e1000_check_downshift");
       
  5236 
       
  5237 	if (hw->phy_type == e1000_phy_igp) {
       
  5238 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
       
  5239 					     &phy_data);
       
  5240 		if (ret_val)
       
  5241 			return ret_val;
       
  5242 
       
  5243 		hw->speed_downgraded =
       
  5244 		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
       
  5245 	} else if (hw->phy_type == e1000_phy_m88) {
       
  5246 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
       
  5247 					     &phy_data);
       
  5248 		if (ret_val)
       
  5249 			return ret_val;
       
  5250 
       
  5251 		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
       
  5252 		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
       
  5253 	}
       
  5254 
       
  5255 	return E1000_SUCCESS;
       
  5256 }
       
  5257 
       
  5258 /**
       
  5259  * e1000_config_dsp_after_link_change
       
  5260  * @hw: Struct containing variables accessed by shared code
       
  5261  * @link_up: was link up at the time this was called
       
  5262  *
       
  5263  * returns: - E1000_ERR_PHY if fail to read/write the PHY
       
  5264  *            E1000_SUCCESS at any other case.
       
  5265  *
       
  5266  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
       
  5267  * gigabit link is achieved to improve link quality.
       
  5268  */
       
  5269 
       
  5270 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
       
  5271 {
       
  5272 	s32 ret_val;
       
  5273 	u16 phy_data, phy_saved_data, speed, duplex, i;
       
  5274 	static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
       
  5275 	       IGP01E1000_PHY_AGC_PARAM_A,
       
  5276 	       IGP01E1000_PHY_AGC_PARAM_B,
       
  5277 	       IGP01E1000_PHY_AGC_PARAM_C,
       
  5278 	       IGP01E1000_PHY_AGC_PARAM_D
       
  5279 	};
       
  5280 	u16 min_length, max_length;
       
  5281 
       
  5282 	e_dbg("e1000_config_dsp_after_link_change");
       
  5283 
       
  5284 	if (hw->phy_type != e1000_phy_igp)
       
  5285 		return E1000_SUCCESS;
       
  5286 
       
  5287 	if (link_up) {
       
  5288 		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
       
  5289 		if (ret_val) {
       
  5290 			e_dbg("Error getting link speed and duplex\n");
       
  5291 			return ret_val;
       
  5292 		}
       
  5293 
       
  5294 		if (speed == SPEED_1000) {
       
  5295 
       
  5296 			ret_val =
       
  5297 			    e1000_get_cable_length(hw, &min_length,
       
  5298 						   &max_length);
       
  5299 			if (ret_val)
       
  5300 				return ret_val;
       
  5301 
       
  5302 			if ((hw->dsp_config_state == e1000_dsp_config_enabled)
       
  5303 			    && min_length >= e1000_igp_cable_length_50) {
       
  5304 
       
  5305 				for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
       
  5306 					ret_val =
       
  5307 					    e1000_read_phy_reg(hw,
       
  5308 							       dsp_reg_array[i],
       
  5309 							       &phy_data);
       
  5310 					if (ret_val)
       
  5311 						return ret_val;
       
  5312 
       
  5313 					phy_data &=
       
  5314 					    ~IGP01E1000_PHY_EDAC_MU_INDEX;
       
  5315 
       
  5316 					ret_val =
       
  5317 					    e1000_write_phy_reg(hw,
       
  5318 								dsp_reg_array
       
  5319 								[i], phy_data);
       
  5320 					if (ret_val)
       
  5321 						return ret_val;
       
  5322 				}
       
  5323 				hw->dsp_config_state =
       
  5324 				    e1000_dsp_config_activated;
       
  5325 			}
       
  5326 
       
  5327 			if ((hw->ffe_config_state == e1000_ffe_config_enabled)
       
  5328 			    && (min_length < e1000_igp_cable_length_50)) {
       
  5329 
       
  5330 				u16 ffe_idle_err_timeout =
       
  5331 				    FFE_IDLE_ERR_COUNT_TIMEOUT_20;
       
  5332 				u32 idle_errs = 0;
       
  5333 
       
  5334 				/* clear previous idle error counts */
       
  5335 				ret_val =
       
  5336 				    e1000_read_phy_reg(hw, PHY_1000T_STATUS,
       
  5337 						       &phy_data);
       
  5338 				if (ret_val)
       
  5339 					return ret_val;
       
  5340 
       
  5341 				for (i = 0; i < ffe_idle_err_timeout; i++) {
       
  5342 					udelay(1000);
       
  5343 					ret_val =
       
  5344 					    e1000_read_phy_reg(hw,
       
  5345 							       PHY_1000T_STATUS,
       
  5346 							       &phy_data);
       
  5347 					if (ret_val)
       
  5348 						return ret_val;
       
  5349 
       
  5350 					idle_errs +=
       
  5351 					    (phy_data &
       
  5352 					     SR_1000T_IDLE_ERROR_CNT);
       
  5353 					if (idle_errs >
       
  5354 					    SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT)
       
  5355 					{
       
  5356 						hw->ffe_config_state =
       
  5357 						    e1000_ffe_config_active;
       
  5358 
       
  5359 						ret_val =
       
  5360 						    e1000_write_phy_reg(hw,
       
  5361 									IGP01E1000_PHY_DSP_FFE,
       
  5362 									IGP01E1000_PHY_DSP_FFE_CM_CP);
       
  5363 						if (ret_val)
       
  5364 							return ret_val;
       
  5365 						break;
       
  5366 					}
       
  5367 
       
  5368 					if (idle_errs)
       
  5369 						ffe_idle_err_timeout =
       
  5370 						    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
       
  5371 				}
       
  5372 			}
       
  5373 		}
       
  5374 	} else {
       
  5375 		if (hw->dsp_config_state == e1000_dsp_config_activated) {
       
  5376 			/* Save off the current value of register 0x2F5B to be restored at
       
  5377 			 * the end of the routines. */
       
  5378 			ret_val =
       
  5379 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
       
  5380 
       
  5381 			if (ret_val)
       
  5382 				return ret_val;
       
  5383 
       
  5384 			/* Disable the PHY transmitter */
       
  5385 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
       
  5386 
       
  5387 			if (ret_val)
       
  5388 				return ret_val;
       
  5389 
       
  5390 			mdelay(20);
       
  5391 
       
  5392 			ret_val = e1000_write_phy_reg(hw, 0x0000,
       
  5393 						      IGP01E1000_IEEE_FORCE_GIGA);
       
  5394 			if (ret_val)
       
  5395 				return ret_val;
       
  5396 			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
       
  5397 				ret_val =
       
  5398 				    e1000_read_phy_reg(hw, dsp_reg_array[i],
       
  5399 						       &phy_data);
       
  5400 				if (ret_val)
       
  5401 					return ret_val;
       
  5402 
       
  5403 				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
       
  5404 				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
       
  5405 
       
  5406 				ret_val =
       
  5407 				    e1000_write_phy_reg(hw, dsp_reg_array[i],
       
  5408 							phy_data);
       
  5409 				if (ret_val)
       
  5410 					return ret_val;
       
  5411 			}
       
  5412 
       
  5413 			ret_val = e1000_write_phy_reg(hw, 0x0000,
       
  5414 						      IGP01E1000_IEEE_RESTART_AUTONEG);
       
  5415 			if (ret_val)
       
  5416 				return ret_val;
       
  5417 
       
  5418 			mdelay(20);
       
  5419 
       
  5420 			/* Now enable the transmitter */
       
  5421 			ret_val =
       
  5422 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
       
  5423 
       
  5424 			if (ret_val)
       
  5425 				return ret_val;
       
  5426 
       
  5427 			hw->dsp_config_state = e1000_dsp_config_enabled;
       
  5428 		}
       
  5429 
       
  5430 		if (hw->ffe_config_state == e1000_ffe_config_active) {
       
  5431 			/* Save off the current value of register 0x2F5B to be restored at
       
  5432 			 * the end of the routines. */
       
  5433 			ret_val =
       
  5434 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
       
  5435 
       
  5436 			if (ret_val)
       
  5437 				return ret_val;
       
  5438 
       
  5439 			/* Disable the PHY transmitter */
       
  5440 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
       
  5441 
       
  5442 			if (ret_val)
       
  5443 				return ret_val;
       
  5444 
       
  5445 			mdelay(20);
       
  5446 
       
  5447 			ret_val = e1000_write_phy_reg(hw, 0x0000,
       
  5448 						      IGP01E1000_IEEE_FORCE_GIGA);
       
  5449 			if (ret_val)
       
  5450 				return ret_val;
       
  5451 			ret_val =
       
  5452 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
       
  5453 						IGP01E1000_PHY_DSP_FFE_DEFAULT);
       
  5454 			if (ret_val)
       
  5455 				return ret_val;
       
  5456 
       
  5457 			ret_val = e1000_write_phy_reg(hw, 0x0000,
       
  5458 						      IGP01E1000_IEEE_RESTART_AUTONEG);
       
  5459 			if (ret_val)
       
  5460 				return ret_val;
       
  5461 
       
  5462 			mdelay(20);
       
  5463 
       
  5464 			/* Now enable the transmitter */
       
  5465 			ret_val =
       
  5466 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
       
  5467 
       
  5468 			if (ret_val)
       
  5469 				return ret_val;
       
  5470 
       
  5471 			hw->ffe_config_state = e1000_ffe_config_enabled;
       
  5472 		}
       
  5473 	}
       
  5474 	return E1000_SUCCESS;
       
  5475 }
       
  5476 
       
  5477 /**
       
  5478  * e1000_set_phy_mode - Set PHY to class A mode
       
  5479  * @hw: Struct containing variables accessed by shared code
       
  5480  *
       
  5481  * Assumes the following operations will follow to enable the new class mode.
       
  5482  *  1. Do a PHY soft reset
       
  5483  *  2. Restart auto-negotiation or force link.
       
  5484  */
       
  5485 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
       
  5486 {
       
  5487 	s32 ret_val;
       
  5488 	u16 eeprom_data;
       
  5489 
       
  5490 	e_dbg("e1000_set_phy_mode");
       
  5491 
       
  5492 	if ((hw->mac_type == e1000_82545_rev_3) &&
       
  5493 	    (hw->media_type == e1000_media_type_copper)) {
       
  5494 		ret_val =
       
  5495 		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
       
  5496 				      &eeprom_data);
       
  5497 		if (ret_val) {
       
  5498 			return ret_val;
       
  5499 		}
       
  5500 
       
  5501 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
       
  5502 		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
       
  5503 			ret_val =
       
  5504 			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
       
  5505 						0x000B);
       
  5506 			if (ret_val)
       
  5507 				return ret_val;
       
  5508 			ret_val =
       
  5509 			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
       
  5510 						0x8104);
       
  5511 			if (ret_val)
       
  5512 				return ret_val;
       
  5513 
       
  5514 			hw->phy_reset_disable = false;
       
  5515 		}
       
  5516 	}
       
  5517 
       
  5518 	return E1000_SUCCESS;
       
  5519 }
       
  5520 
       
  5521 /**
       
  5522  * e1000_set_d3_lplu_state - set d3 link power state
       
  5523  * @hw: Struct containing variables accessed by shared code
       
  5524  * @active: true to enable lplu false to disable lplu.
       
  5525  *
       
  5526  * This function sets the lplu state according to the active flag.  When
       
  5527  * activating lplu this function also disables smart speed and vise versa.
       
  5528  * lplu will not be activated unless the device autonegotiation advertisement
       
  5529  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  5530  *
       
  5531  * returns: - E1000_ERR_PHY if fail to read/write the PHY
       
  5532  *            E1000_SUCCESS at any other case.
       
  5533  */
       
  5534 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
       
  5535 {
       
  5536 	s32 ret_val;
       
  5537 	u16 phy_data;
       
  5538 	e_dbg("e1000_set_d3_lplu_state");
       
  5539 
       
  5540 	if (hw->phy_type != e1000_phy_igp)
       
  5541 		return E1000_SUCCESS;
       
  5542 
       
  5543 	/* During driver activity LPLU should not be used or it will attain link
       
  5544 	 * from the lowest speeds starting from 10Mbps. The capability is used for
       
  5545 	 * Dx transitions and states */
       
  5546 	if (hw->mac_type == e1000_82541_rev_2
       
  5547 	    || hw->mac_type == e1000_82547_rev_2) {
       
  5548 		ret_val =
       
  5549 		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
       
  5550 		if (ret_val)
       
  5551 			return ret_val;
       
  5552 	}
       
  5553 
       
  5554 	if (!active) {
       
  5555 		if (hw->mac_type == e1000_82541_rev_2 ||
       
  5556 		    hw->mac_type == e1000_82547_rev_2) {
       
  5557 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
       
  5558 			ret_val =
       
  5559 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
       
  5560 						phy_data);
       
  5561 			if (ret_val)
       
  5562 				return ret_val;
       
  5563 		}
       
  5564 
       
  5565 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
       
  5566 		 * Dx states where the power conservation is most important.  During
       
  5567 		 * driver activity we should enable SmartSpeed, so performance is
       
  5568 		 * maintained. */
       
  5569 		if (hw->smart_speed == e1000_smart_speed_on) {
       
  5570 			ret_val =
       
  5571 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  5572 					       &phy_data);
       
  5573 			if (ret_val)
       
  5574 				return ret_val;
       
  5575 
       
  5576 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  5577 			ret_val =
       
  5578 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  5579 						phy_data);
       
  5580 			if (ret_val)
       
  5581 				return ret_val;
       
  5582 		} else if (hw->smart_speed == e1000_smart_speed_off) {
       
  5583 			ret_val =
       
  5584 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  5585 					       &phy_data);
       
  5586 			if (ret_val)
       
  5587 				return ret_val;
       
  5588 
       
  5589 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  5590 			ret_val =
       
  5591 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  5592 						phy_data);
       
  5593 			if (ret_val)
       
  5594 				return ret_val;
       
  5595 		}
       
  5596 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
       
  5597 		   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
       
  5598 		   || (hw->autoneg_advertised ==
       
  5599 		       AUTONEG_ADVERTISE_10_100_ALL)) {
       
  5600 
       
  5601 		if (hw->mac_type == e1000_82541_rev_2 ||
       
  5602 		    hw->mac_type == e1000_82547_rev_2) {
       
  5603 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
       
  5604 			ret_val =
       
  5605 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
       
  5606 						phy_data);
       
  5607 			if (ret_val)
       
  5608 				return ret_val;
       
  5609 		}
       
  5610 
       
  5611 		/* When LPLU is enabled we should disable SmartSpeed */
       
  5612 		ret_val =
       
  5613 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  5614 				       &phy_data);
       
  5615 		if (ret_val)
       
  5616 			return ret_val;
       
  5617 
       
  5618 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  5619 		ret_val =
       
  5620 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  5621 					phy_data);
       
  5622 		if (ret_val)
       
  5623 			return ret_val;
       
  5624 
       
  5625 	}
       
  5626 	return E1000_SUCCESS;
       
  5627 }
       
  5628 
       
  5629 /**
       
  5630  * e1000_set_vco_speed
       
  5631  * @hw: Struct containing variables accessed by shared code
       
  5632  *
       
  5633  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
       
  5634  */
       
  5635 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
       
  5636 {
       
  5637 	s32 ret_val;
       
  5638 	u16 default_page = 0;
       
  5639 	u16 phy_data;
       
  5640 
       
  5641 	e_dbg("e1000_set_vco_speed");
       
  5642 
       
  5643 	switch (hw->mac_type) {
       
  5644 	case e1000_82545_rev_3:
       
  5645 	case e1000_82546_rev_3:
       
  5646 		break;
       
  5647 	default:
       
  5648 		return E1000_SUCCESS;
       
  5649 	}
       
  5650 
       
  5651 	/* Set PHY register 30, page 5, bit 8 to 0 */
       
  5652 
       
  5653 	ret_val =
       
  5654 	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
       
  5655 	if (ret_val)
       
  5656 		return ret_val;
       
  5657 
       
  5658 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
       
  5659 	if (ret_val)
       
  5660 		return ret_val;
       
  5661 
       
  5662 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
       
  5663 	if (ret_val)
       
  5664 		return ret_val;
       
  5665 
       
  5666 	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
       
  5667 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
       
  5668 	if (ret_val)
       
  5669 		return ret_val;
       
  5670 
       
  5671 	/* Set PHY register 30, page 4, bit 11 to 1 */
       
  5672 
       
  5673 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
       
  5674 	if (ret_val)
       
  5675 		return ret_val;
       
  5676 
       
  5677 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
       
  5678 	if (ret_val)
       
  5679 		return ret_val;
       
  5680 
       
  5681 	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
       
  5682 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
       
  5683 	if (ret_val)
       
  5684 		return ret_val;
       
  5685 
       
  5686 	ret_val =
       
  5687 	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
       
  5688 	if (ret_val)
       
  5689 		return ret_val;
       
  5690 
       
  5691 	return E1000_SUCCESS;
       
  5692 }
       
  5693 
       
  5694 
       
  5695 /**
       
  5696  * e1000_enable_mng_pass_thru - check for bmc pass through
       
  5697  * @hw: Struct containing variables accessed by shared code
       
  5698  *
       
  5699  * Verifies the hardware needs to allow ARPs to be processed by the host
       
  5700  * returns: - true/false
       
  5701  */
       
  5702 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
       
  5703 {
       
  5704 	u32 manc;
       
  5705 
       
  5706 	if (hw->asf_firmware_present) {
       
  5707 		manc = er32(MANC);
       
  5708 
       
  5709 		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
       
  5710 		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
       
  5711 			return false;
       
  5712 		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
       
  5713 			return true;
       
  5714 	}
       
  5715 	return false;
       
  5716 }
       
  5717 
       
  5718 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
       
  5719 {
       
  5720 	s32 ret_val;
       
  5721 	u16 mii_status_reg;
       
  5722 	u16 i;
       
  5723 
       
  5724 	/* Polarity reversal workaround for forced 10F/10H links. */
       
  5725 
       
  5726 	/* Disable the transmitter on the PHY */
       
  5727 
       
  5728 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
       
  5729 	if (ret_val)
       
  5730 		return ret_val;
       
  5731 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
       
  5732 	if (ret_val)
       
  5733 		return ret_val;
       
  5734 
       
  5735 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
       
  5736 	if (ret_val)
       
  5737 		return ret_val;
       
  5738 
       
  5739 	/* This loop will early-out if the NO link condition has been met. */
       
  5740 	for (i = PHY_FORCE_TIME; i > 0; i--) {
       
  5741 		/* Read the MII Status Register and wait for Link Status bit
       
  5742 		 * to be clear.
       
  5743 		 */
       
  5744 
       
  5745 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  5746 		if (ret_val)
       
  5747 			return ret_val;
       
  5748 
       
  5749 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  5750 		if (ret_val)
       
  5751 			return ret_val;
       
  5752 
       
  5753 		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
       
  5754 			break;
       
  5755 		mdelay(100);
       
  5756 	}
       
  5757 
       
  5758 	/* Recommended delay time after link has been lost */
       
  5759 	mdelay(1000);
       
  5760 
       
  5761 	/* Now we will re-enable th transmitter on the PHY */
       
  5762 
       
  5763 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
       
  5764 	if (ret_val)
       
  5765 		return ret_val;
       
  5766 	mdelay(50);
       
  5767 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
       
  5768 	if (ret_val)
       
  5769 		return ret_val;
       
  5770 	mdelay(50);
       
  5771 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
       
  5772 	if (ret_val)
       
  5773 		return ret_val;
       
  5774 	mdelay(50);
       
  5775 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
       
  5776 	if (ret_val)
       
  5777 		return ret_val;
       
  5778 
       
  5779 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
       
  5780 	if (ret_val)
       
  5781 		return ret_val;
       
  5782 
       
  5783 	/* This loop will early-out if the link condition has been met. */
       
  5784 	for (i = PHY_FORCE_TIME; i > 0; i--) {
       
  5785 		/* Read the MII Status Register and wait for Link Status bit
       
  5786 		 * to be set.
       
  5787 		 */
       
  5788 
       
  5789 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  5790 		if (ret_val)
       
  5791 			return ret_val;
       
  5792 
       
  5793 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
       
  5794 		if (ret_val)
       
  5795 			return ret_val;
       
  5796 
       
  5797 		if (mii_status_reg & MII_SR_LINK_STATUS)
       
  5798 			break;
       
  5799 		mdelay(100);
       
  5800 	}
       
  5801 	return E1000_SUCCESS;
       
  5802 }
       
  5803 
       
  5804 /**
       
  5805  * e1000_get_auto_rd_done
       
  5806  * @hw: Struct containing variables accessed by shared code
       
  5807  *
       
  5808  * Check for EEPROM Auto Read bit done.
       
  5809  * returns: - E1000_ERR_RESET if fail to reset MAC
       
  5810  *            E1000_SUCCESS at any other case.
       
  5811  */
       
  5812 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
       
  5813 {
       
  5814 	e_dbg("e1000_get_auto_rd_done");
       
  5815 	msleep(5);
       
  5816 	return E1000_SUCCESS;
       
  5817 }
       
  5818 
       
  5819 /**
       
  5820  * e1000_get_phy_cfg_done
       
  5821  * @hw: Struct containing variables accessed by shared code
       
  5822  *
       
  5823  * Checks if the PHY configuration is done
       
  5824  * returns: - E1000_ERR_RESET if fail to reset MAC
       
  5825  *            E1000_SUCCESS at any other case.
       
  5826  */
       
  5827 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
       
  5828 {
       
  5829 	e_dbg("e1000_get_phy_cfg_done");
       
  5830 	mdelay(10);
       
  5831 	return E1000_SUCCESS;
       
  5832 }