devices/e1000e/mac-3.4-orig.c
branchstable-1.5
changeset 2491 5e9221a78855
equal deleted inserted replaced
2490:6ad972f38438 2491:5e9221a78855
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2012 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000.h"
       
    30 
       
    31 /**
       
    32  *  e1000e_get_bus_info_pcie - Get PCIe bus information
       
    33  *  @hw: pointer to the HW structure
       
    34  *
       
    35  *  Determines and stores the system bus information for a particular
       
    36  *  network interface.  The following bus information is determined and stored:
       
    37  *  bus speed, bus width, type (PCIe), and PCIe function.
       
    38  **/
       
    39 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
       
    40 {
       
    41 	struct e1000_mac_info *mac = &hw->mac;
       
    42 	struct e1000_bus_info *bus = &hw->bus;
       
    43 	struct e1000_adapter *adapter = hw->adapter;
       
    44 	u16 pcie_link_status, cap_offset;
       
    45 
       
    46 	cap_offset = adapter->pdev->pcie_cap;
       
    47 	if (!cap_offset) {
       
    48 		bus->width = e1000_bus_width_unknown;
       
    49 	} else {
       
    50 		pci_read_config_word(adapter->pdev,
       
    51 				     cap_offset + PCIE_LINK_STATUS,
       
    52 				     &pcie_link_status);
       
    53 		bus->width = (enum e1000_bus_width)((pcie_link_status &
       
    54 						     PCIE_LINK_WIDTH_MASK) >>
       
    55 						    PCIE_LINK_WIDTH_SHIFT);
       
    56 	}
       
    57 
       
    58 	mac->ops.set_lan_id(hw);
       
    59 
       
    60 	return 0;
       
    61 }
       
    62 
       
    63 /**
       
    64  *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
       
    65  *
       
    66  *  @hw: pointer to the HW structure
       
    67  *
       
    68  *  Determines the LAN function id by reading memory-mapped registers
       
    69  *  and swaps the port value if requested.
       
    70  **/
       
    71 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
       
    72 {
       
    73 	struct e1000_bus_info *bus = &hw->bus;
       
    74 	u32 reg;
       
    75 
       
    76 	/*
       
    77 	 * The status register reports the correct function number
       
    78 	 * for the device regardless of function swap state.
       
    79 	 */
       
    80 	reg = er32(STATUS);
       
    81 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
       
    82 }
       
    83 
       
    84 /**
       
    85  *  e1000_set_lan_id_single_port - Set LAN id for a single port device
       
    86  *  @hw: pointer to the HW structure
       
    87  *
       
    88  *  Sets the LAN function id to zero for a single port device.
       
    89  **/
       
    90 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
       
    91 {
       
    92 	struct e1000_bus_info *bus = &hw->bus;
       
    93 
       
    94 	bus->func = 0;
       
    95 }
       
    96 
       
    97 /**
       
    98  *  e1000_clear_vfta_generic - Clear VLAN filter table
       
    99  *  @hw: pointer to the HW structure
       
   100  *
       
   101  *  Clears the register array which contains the VLAN filter table by
       
   102  *  setting all the values to 0.
       
   103  **/
       
   104 void e1000_clear_vfta_generic(struct e1000_hw *hw)
       
   105 {
       
   106 	u32 offset;
       
   107 
       
   108 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
   109 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
       
   110 		e1e_flush();
       
   111 	}
       
   112 }
       
   113 
       
   114 /**
       
   115  *  e1000_write_vfta_generic - Write value to VLAN filter table
       
   116  *  @hw: pointer to the HW structure
       
   117  *  @offset: register offset in VLAN filter table
       
   118  *  @value: register value written to VLAN filter table
       
   119  *
       
   120  *  Writes value at the given offset in the register array which stores
       
   121  *  the VLAN filter table.
       
   122  **/
       
   123 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
       
   124 {
       
   125 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
       
   126 	e1e_flush();
       
   127 }
       
   128 
       
   129 /**
       
   130  *  e1000e_init_rx_addrs - Initialize receive address's
       
   131  *  @hw: pointer to the HW structure
       
   132  *  @rar_count: receive address registers
       
   133  *
       
   134  *  Setup the receive address registers by setting the base receive address
       
   135  *  register to the devices MAC address and clearing all the other receive
       
   136  *  address registers to 0.
       
   137  **/
       
   138 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
       
   139 {
       
   140 	u32 i;
       
   141 	u8 mac_addr[ETH_ALEN] = { 0 };
       
   142 
       
   143 	/* Setup the receive address */
       
   144 	e_dbg("Programming MAC Address into RAR[0]\n");
       
   145 
       
   146 	e1000e_rar_set(hw, hw->mac.addr, 0);
       
   147 
       
   148 	/* Zero out the other (rar_entry_count - 1) receive addresses */
       
   149 	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
       
   150 	for (i = 1; i < rar_count; i++)
       
   151 		e1000e_rar_set(hw, mac_addr, i);
       
   152 }
       
   153 
       
   154 /**
       
   155  *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
       
   156  *  @hw: pointer to the HW structure
       
   157  *
       
   158  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
       
   159  *  can be setup by pre-boot software and must be treated like a permanent
       
   160  *  address and must override the actual permanent MAC address. If an
       
   161  *  alternate MAC address is found it is programmed into RAR0, replacing
       
   162  *  the permanent address that was installed into RAR0 by the Si on reset.
       
   163  *  This function will return SUCCESS unless it encounters an error while
       
   164  *  reading the EEPROM.
       
   165  **/
       
   166 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
       
   167 {
       
   168 	u32 i;
       
   169 	s32 ret_val = 0;
       
   170 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
       
   171 	u8 alt_mac_addr[ETH_ALEN];
       
   172 
       
   173 	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
       
   174 	if (ret_val)
       
   175 		return ret_val;
       
   176 
       
   177 	/* not supported on 82573 */
       
   178 	if (hw->mac.type == e1000_82573)
       
   179 		return 0;
       
   180 
       
   181 	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
       
   182 				 &nvm_alt_mac_addr_offset);
       
   183 	if (ret_val) {
       
   184 		e_dbg("NVM Read Error\n");
       
   185 		return ret_val;
       
   186 	}
       
   187 
       
   188 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
       
   189 	    (nvm_alt_mac_addr_offset == 0x0000))
       
   190 		/* There is no Alternate MAC Address */
       
   191 		return 0;
       
   192 
       
   193 	if (hw->bus.func == E1000_FUNC_1)
       
   194 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
       
   195 	for (i = 0; i < ETH_ALEN; i += 2) {
       
   196 		offset = nvm_alt_mac_addr_offset + (i >> 1);
       
   197 		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
       
   198 		if (ret_val) {
       
   199 			e_dbg("NVM Read Error\n");
       
   200 			return ret_val;
       
   201 		}
       
   202 
       
   203 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
       
   204 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
       
   205 	}
       
   206 
       
   207 	/* if multicast bit is set, the alternate address will not be used */
       
   208 	if (is_multicast_ether_addr(alt_mac_addr)) {
       
   209 		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
       
   210 		return 0;
       
   211 	}
       
   212 
       
   213 	/*
       
   214 	 * We have a valid alternate MAC address, and we want to treat it the
       
   215 	 * same as the normal permanent MAC address stored by the HW into the
       
   216 	 * RAR. Do this by mapping this address into RAR0.
       
   217 	 */
       
   218 	e1000e_rar_set(hw, alt_mac_addr, 0);
       
   219 
       
   220 	return 0;
       
   221 }
       
   222 
       
   223 /**
       
   224  *  e1000e_rar_set - Set receive address register
       
   225  *  @hw: pointer to the HW structure
       
   226  *  @addr: pointer to the receive address
       
   227  *  @index: receive address array register
       
   228  *
       
   229  *  Sets the receive address array register at index to the address passed
       
   230  *  in by addr.
       
   231  **/
       
   232 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
       
   233 {
       
   234 	u32 rar_low, rar_high;
       
   235 
       
   236 	/*
       
   237 	 * HW expects these in little endian so we reverse the byte order
       
   238 	 * from network order (big endian) to little endian
       
   239 	 */
       
   240 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
       
   241 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
       
   242 
       
   243 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
       
   244 
       
   245 	/* If MAC address zero, no need to set the AV bit */
       
   246 	if (rar_low || rar_high)
       
   247 		rar_high |= E1000_RAH_AV;
       
   248 
       
   249 	/*
       
   250 	 * Some bridges will combine consecutive 32-bit writes into
       
   251 	 * a single burst write, which will malfunction on some parts.
       
   252 	 * The flushes avoid this.
       
   253 	 */
       
   254 	ew32(RAL(index), rar_low);
       
   255 	e1e_flush();
       
   256 	ew32(RAH(index), rar_high);
       
   257 	e1e_flush();
       
   258 }
       
   259 
       
   260 /**
       
   261  *  e1000_hash_mc_addr - Generate a multicast hash value
       
   262  *  @hw: pointer to the HW structure
       
   263  *  @mc_addr: pointer to a multicast address
       
   264  *
       
   265  *  Generates a multicast address hash value which is used to determine
       
   266  *  the multicast filter table array address and new table value.
       
   267  **/
       
   268 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
       
   269 {
       
   270 	u32 hash_value, hash_mask;
       
   271 	u8 bit_shift = 0;
       
   272 
       
   273 	/* Register count multiplied by bits per register */
       
   274 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
       
   275 
       
   276 	/*
       
   277 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
       
   278 	 * where 0xFF would still fall within the hash mask.
       
   279 	 */
       
   280 	while (hash_mask >> bit_shift != 0xFF)
       
   281 		bit_shift++;
       
   282 
       
   283 	/*
       
   284 	 * The portion of the address that is used for the hash table
       
   285 	 * is determined by the mc_filter_type setting.
       
   286 	 * The algorithm is such that there is a total of 8 bits of shifting.
       
   287 	 * The bit_shift for a mc_filter_type of 0 represents the number of
       
   288 	 * left-shifts where the MSB of mc_addr[5] would still fall within
       
   289 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
       
   290 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
       
   291 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
       
   292 	 * cases are a variation of this algorithm...essentially raising the
       
   293 	 * number of bits to shift mc_addr[5] left, while still keeping the
       
   294 	 * 8-bit shifting total.
       
   295 	 *
       
   296 	 * For example, given the following Destination MAC Address and an
       
   297 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
       
   298 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
       
   299 	 * values resulting from each mc_filter_type...
       
   300 	 * [0] [1] [2] [3] [4] [5]
       
   301 	 * 01  AA  00  12  34  56
       
   302 	 * LSB           MSB
       
   303 	 *
       
   304 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
       
   305 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
       
   306 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
       
   307 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
       
   308 	 */
       
   309 	switch (hw->mac.mc_filter_type) {
       
   310 	default:
       
   311 	case 0:
       
   312 		break;
       
   313 	case 1:
       
   314 		bit_shift += 1;
       
   315 		break;
       
   316 	case 2:
       
   317 		bit_shift += 2;
       
   318 		break;
       
   319 	case 3:
       
   320 		bit_shift += 4;
       
   321 		break;
       
   322 	}
       
   323 
       
   324 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
       
   325 				   (((u16)mc_addr[5]) << bit_shift)));
       
   326 
       
   327 	return hash_value;
       
   328 }
       
   329 
       
   330 /**
       
   331  *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
       
   332  *  @hw: pointer to the HW structure
       
   333  *  @mc_addr_list: array of multicast addresses to program
       
   334  *  @mc_addr_count: number of multicast addresses to program
       
   335  *
       
   336  *  Updates entire Multicast Table Array.
       
   337  *  The caller must have a packed mc_addr_list of multicast addresses.
       
   338  **/
       
   339 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
       
   340 					u8 *mc_addr_list, u32 mc_addr_count)
       
   341 {
       
   342 	u32 hash_value, hash_bit, hash_reg;
       
   343 	int i;
       
   344 
       
   345 	/* clear mta_shadow */
       
   346 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
       
   347 
       
   348 	/* update mta_shadow from mc_addr_list */
       
   349 	for (i = 0; (u32)i < mc_addr_count; i++) {
       
   350 		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
       
   351 
       
   352 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
       
   353 		hash_bit = hash_value & 0x1F;
       
   354 
       
   355 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
       
   356 		mc_addr_list += (ETH_ALEN);
       
   357 	}
       
   358 
       
   359 	/* replace the entire MTA table */
       
   360 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
       
   361 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
       
   362 	e1e_flush();
       
   363 }
       
   364 
       
   365 /**
       
   366  *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
       
   367  *  @hw: pointer to the HW structure
       
   368  *
       
   369  *  Clears the base hardware counters by reading the counter registers.
       
   370  **/
       
   371 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
       
   372 {
       
   373 	er32(CRCERRS);
       
   374 	er32(SYMERRS);
       
   375 	er32(MPC);
       
   376 	er32(SCC);
       
   377 	er32(ECOL);
       
   378 	er32(MCC);
       
   379 	er32(LATECOL);
       
   380 	er32(COLC);
       
   381 	er32(DC);
       
   382 	er32(SEC);
       
   383 	er32(RLEC);
       
   384 	er32(XONRXC);
       
   385 	er32(XONTXC);
       
   386 	er32(XOFFRXC);
       
   387 	er32(XOFFTXC);
       
   388 	er32(FCRUC);
       
   389 	er32(GPRC);
       
   390 	er32(BPRC);
       
   391 	er32(MPRC);
       
   392 	er32(GPTC);
       
   393 	er32(GORCL);
       
   394 	er32(GORCH);
       
   395 	er32(GOTCL);
       
   396 	er32(GOTCH);
       
   397 	er32(RNBC);
       
   398 	er32(RUC);
       
   399 	er32(RFC);
       
   400 	er32(ROC);
       
   401 	er32(RJC);
       
   402 	er32(TORL);
       
   403 	er32(TORH);
       
   404 	er32(TOTL);
       
   405 	er32(TOTH);
       
   406 	er32(TPR);
       
   407 	er32(TPT);
       
   408 	er32(MPTC);
       
   409 	er32(BPTC);
       
   410 }
       
   411 
       
   412 /**
       
   413  *  e1000e_check_for_copper_link - Check for link (Copper)
       
   414  *  @hw: pointer to the HW structure
       
   415  *
       
   416  *  Checks to see of the link status of the hardware has changed.  If a
       
   417  *  change in link status has been detected, then we read the PHY registers
       
   418  *  to get the current speed/duplex if link exists.
       
   419  **/
       
   420 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
       
   421 {
       
   422 	struct e1000_mac_info *mac = &hw->mac;
       
   423 	s32 ret_val;
       
   424 	bool link;
       
   425 
       
   426 	/*
       
   427 	 * We only want to go out to the PHY registers to see if Auto-Neg
       
   428 	 * has completed and/or if our link status has changed.  The
       
   429 	 * get_link_status flag is set upon receiving a Link Status
       
   430 	 * Change or Rx Sequence Error interrupt.
       
   431 	 */
       
   432 	if (!mac->get_link_status)
       
   433 		return 0;
       
   434 
       
   435 	/*
       
   436 	 * First we want to see if the MII Status Register reports
       
   437 	 * link.  If so, then we want to get the current speed/duplex
       
   438 	 * of the PHY.
       
   439 	 */
       
   440 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
   441 	if (ret_val)
       
   442 		return ret_val;
       
   443 
       
   444 	if (!link)
       
   445 		return 0;	/* No link detected */
       
   446 
       
   447 	mac->get_link_status = false;
       
   448 
       
   449 	/*
       
   450 	 * Check if there was DownShift, must be checked
       
   451 	 * immediately after link-up
       
   452 	 */
       
   453 	e1000e_check_downshift(hw);
       
   454 
       
   455 	/*
       
   456 	 * If we are forcing speed/duplex, then we simply return since
       
   457 	 * we have already determined whether we have link or not.
       
   458 	 */
       
   459 	if (!mac->autoneg)
       
   460 		return -E1000_ERR_CONFIG;
       
   461 
       
   462 	/*
       
   463 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
       
   464 	 * of MAC speed/duplex configuration.  So we only need to
       
   465 	 * configure Collision Distance in the MAC.
       
   466 	 */
       
   467 	mac->ops.config_collision_dist(hw);
       
   468 
       
   469 	/*
       
   470 	 * Configure Flow Control now that Auto-Neg has completed.
       
   471 	 * First, we need to restore the desired flow control
       
   472 	 * settings because we may have had to re-autoneg with a
       
   473 	 * different link partner.
       
   474 	 */
       
   475 	ret_val = e1000e_config_fc_after_link_up(hw);
       
   476 	if (ret_val)
       
   477 		e_dbg("Error configuring flow control\n");
       
   478 
       
   479 	return ret_val;
       
   480 }
       
   481 
       
   482 /**
       
   483  *  e1000e_check_for_fiber_link - Check for link (Fiber)
       
   484  *  @hw: pointer to the HW structure
       
   485  *
       
   486  *  Checks for link up on the hardware.  If link is not up and we have
       
   487  *  a signal, then we need to force link up.
       
   488  **/
       
   489 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
       
   490 {
       
   491 	struct e1000_mac_info *mac = &hw->mac;
       
   492 	u32 rxcw;
       
   493 	u32 ctrl;
       
   494 	u32 status;
       
   495 	s32 ret_val;
       
   496 
       
   497 	ctrl = er32(CTRL);
       
   498 	status = er32(STATUS);
       
   499 	rxcw = er32(RXCW);
       
   500 
       
   501 	/*
       
   502 	 * If we don't have link (auto-negotiation failed or link partner
       
   503 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
       
   504 	 * and our link partner is not trying to auto-negotiate with us (we
       
   505 	 * are receiving idles or data), we need to force link up. We also
       
   506 	 * need to give auto-negotiation time to complete, in case the cable
       
   507 	 * was just plugged in. The autoneg_failed flag does this.
       
   508 	 */
       
   509 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   510 	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
       
   511 	    !(rxcw & E1000_RXCW_C)) {
       
   512 		if (!mac->autoneg_failed) {
       
   513 			mac->autoneg_failed = true;
       
   514 			return 0;
       
   515 		}
       
   516 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
       
   517 
       
   518 		/* Disable auto-negotiation in the TXCW register */
       
   519 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   520 
       
   521 		/* Force link-up and also force full-duplex. */
       
   522 		ctrl = er32(CTRL);
       
   523 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   524 		ew32(CTRL, ctrl);
       
   525 
       
   526 		/* Configure Flow Control after forcing link up. */
       
   527 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   528 		if (ret_val) {
       
   529 			e_dbg("Error configuring flow control\n");
       
   530 			return ret_val;
       
   531 		}
       
   532 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   533 		/*
       
   534 		 * If we are forcing link and we are receiving /C/ ordered
       
   535 		 * sets, re-enable auto-negotiation in the TXCW register
       
   536 		 * and disable forced link in the Device Control register
       
   537 		 * in an attempt to auto-negotiate with our link partner.
       
   538 		 */
       
   539 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
       
   540 		ew32(TXCW, mac->txcw);
       
   541 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   542 
       
   543 		mac->serdes_has_link = true;
       
   544 	}
       
   545 
       
   546 	return 0;
       
   547 }
       
   548 
       
   549 /**
       
   550  *  e1000e_check_for_serdes_link - Check for link (Serdes)
       
   551  *  @hw: pointer to the HW structure
       
   552  *
       
   553  *  Checks for link up on the hardware.  If link is not up and we have
       
   554  *  a signal, then we need to force link up.
       
   555  **/
       
   556 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
       
   557 {
       
   558 	struct e1000_mac_info *mac = &hw->mac;
       
   559 	u32 rxcw;
       
   560 	u32 ctrl;
       
   561 	u32 status;
       
   562 	s32 ret_val;
       
   563 
       
   564 	ctrl = er32(CTRL);
       
   565 	status = er32(STATUS);
       
   566 	rxcw = er32(RXCW);
       
   567 
       
   568 	/*
       
   569 	 * If we don't have link (auto-negotiation failed or link partner
       
   570 	 * cannot auto-negotiate), and our link partner is not trying to
       
   571 	 * auto-negotiate with us (we are receiving idles or data),
       
   572 	 * we need to force link up. We also need to give auto-negotiation
       
   573 	 * time to complete.
       
   574 	 */
       
   575 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
       
   576 	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
       
   577 		if (!mac->autoneg_failed) {
       
   578 			mac->autoneg_failed = true;
       
   579 			return 0;
       
   580 		}
       
   581 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
       
   582 
       
   583 		/* Disable auto-negotiation in the TXCW register */
       
   584 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
   585 
       
   586 		/* Force link-up and also force full-duplex. */
       
   587 		ctrl = er32(CTRL);
       
   588 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
   589 		ew32(CTRL, ctrl);
       
   590 
       
   591 		/* Configure Flow Control after forcing link up. */
       
   592 		ret_val = e1000e_config_fc_after_link_up(hw);
       
   593 		if (ret_val) {
       
   594 			e_dbg("Error configuring flow control\n");
       
   595 			return ret_val;
       
   596 		}
       
   597 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
       
   598 		/*
       
   599 		 * If we are forcing link and we are receiving /C/ ordered
       
   600 		 * sets, re-enable auto-negotiation in the TXCW register
       
   601 		 * and disable forced link in the Device Control register
       
   602 		 * in an attempt to auto-negotiate with our link partner.
       
   603 		 */
       
   604 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
       
   605 		ew32(TXCW, mac->txcw);
       
   606 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
   607 
       
   608 		mac->serdes_has_link = true;
       
   609 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
       
   610 		/*
       
   611 		 * If we force link for non-auto-negotiation switch, check
       
   612 		 * link status based on MAC synchronization for internal
       
   613 		 * serdes media type.
       
   614 		 */
       
   615 		/* SYNCH bit and IV bit are sticky. */
       
   616 		udelay(10);
       
   617 		rxcw = er32(RXCW);
       
   618 		if (rxcw & E1000_RXCW_SYNCH) {
       
   619 			if (!(rxcw & E1000_RXCW_IV)) {
       
   620 				mac->serdes_has_link = true;
       
   621 				e_dbg("SERDES: Link up - forced.\n");
       
   622 			}
       
   623 		} else {
       
   624 			mac->serdes_has_link = false;
       
   625 			e_dbg("SERDES: Link down - force failed.\n");
       
   626 		}
       
   627 	}
       
   628 
       
   629 	if (E1000_TXCW_ANE & er32(TXCW)) {
       
   630 		status = er32(STATUS);
       
   631 		if (status & E1000_STATUS_LU) {
       
   632 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
       
   633 			udelay(10);
       
   634 			rxcw = er32(RXCW);
       
   635 			if (rxcw & E1000_RXCW_SYNCH) {
       
   636 				if (!(rxcw & E1000_RXCW_IV)) {
       
   637 					mac->serdes_has_link = true;
       
   638 					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
       
   639 				} else {
       
   640 					mac->serdes_has_link = false;
       
   641 					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
       
   642 				}
       
   643 			} else {
       
   644 				mac->serdes_has_link = false;
       
   645 				e_dbg("SERDES: Link down - no sync.\n");
       
   646 			}
       
   647 		} else {
       
   648 			mac->serdes_has_link = false;
       
   649 			e_dbg("SERDES: Link down - autoneg failed\n");
       
   650 		}
       
   651 	}
       
   652 
       
   653 	return 0;
       
   654 }
       
   655 
       
   656 /**
       
   657  *  e1000_set_default_fc_generic - Set flow control default values
       
   658  *  @hw: pointer to the HW structure
       
   659  *
       
   660  *  Read the EEPROM for the default values for flow control and store the
       
   661  *  values.
       
   662  **/
       
   663 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
       
   664 {
       
   665 	s32 ret_val;
       
   666 	u16 nvm_data;
       
   667 
       
   668 	/*
       
   669 	 * Read and store word 0x0F of the EEPROM. This word contains bits
       
   670 	 * that determine the hardware's default PAUSE (flow control) mode,
       
   671 	 * a bit that determines whether the HW defaults to enabling or
       
   672 	 * disabling auto-negotiation, and the direction of the
       
   673 	 * SW defined pins. If there is no SW over-ride of the flow
       
   674 	 * control setting, then the variable hw->fc will
       
   675 	 * be initialized based on a value in the EEPROM.
       
   676 	 */
       
   677 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
       
   678 
       
   679 	if (ret_val) {
       
   680 		e_dbg("NVM Read Error\n");
       
   681 		return ret_val;
       
   682 	}
       
   683 
       
   684 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
       
   685 		hw->fc.requested_mode = e1000_fc_none;
       
   686 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
       
   687 		hw->fc.requested_mode = e1000_fc_tx_pause;
       
   688 	else
       
   689 		hw->fc.requested_mode = e1000_fc_full;
       
   690 
       
   691 	return 0;
       
   692 }
       
   693 
       
   694 /**
       
   695  *  e1000e_setup_link_generic - Setup flow control and link settings
       
   696  *  @hw: pointer to the HW structure
       
   697  *
       
   698  *  Determines which flow control settings to use, then configures flow
       
   699  *  control.  Calls the appropriate media-specific link configuration
       
   700  *  function.  Assuming the adapter has a valid link partner, a valid link
       
   701  *  should be established.  Assumes the hardware has previously been reset
       
   702  *  and the transmitter and receiver are not enabled.
       
   703  **/
       
   704 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
       
   705 {
       
   706 	s32 ret_val;
       
   707 
       
   708 	/*
       
   709 	 * In the case of the phy reset being blocked, we already have a link.
       
   710 	 * We do not need to set it up again.
       
   711 	 */
       
   712 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
       
   713 		return 0;
       
   714 
       
   715 	/*
       
   716 	 * If requested flow control is set to default, set flow control
       
   717 	 * based on the EEPROM flow control settings.
       
   718 	 */
       
   719 	if (hw->fc.requested_mode == e1000_fc_default) {
       
   720 		ret_val = e1000_set_default_fc_generic(hw);
       
   721 		if (ret_val)
       
   722 			return ret_val;
       
   723 	}
       
   724 
       
   725 	/*
       
   726 	 * Save off the requested flow control mode for use later.  Depending
       
   727 	 * on the link partner's capabilities, we may or may not use this mode.
       
   728 	 */
       
   729 	hw->fc.current_mode = hw->fc.requested_mode;
       
   730 
       
   731 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
       
   732 
       
   733 	/* Call the necessary media_type subroutine to configure the link. */
       
   734 	ret_val = hw->mac.ops.setup_physical_interface(hw);
       
   735 	if (ret_val)
       
   736 		return ret_val;
       
   737 
       
   738 	/*
       
   739 	 * Initialize the flow control address, type, and PAUSE timer
       
   740 	 * registers to their default values.  This is done even if flow
       
   741 	 * control is disabled, because it does not hurt anything to
       
   742 	 * initialize these registers.
       
   743 	 */
       
   744 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
       
   745 	ew32(FCT, FLOW_CONTROL_TYPE);
       
   746 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
       
   747 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
       
   748 
       
   749 	ew32(FCTTV, hw->fc.pause_time);
       
   750 
       
   751 	return e1000e_set_fc_watermarks(hw);
       
   752 }
       
   753 
       
   754 /**
       
   755  *  e1000_commit_fc_settings_generic - Configure flow control
       
   756  *  @hw: pointer to the HW structure
       
   757  *
       
   758  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
       
   759  *  base on the flow control settings in e1000_mac_info.
       
   760  **/
       
   761 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
       
   762 {
       
   763 	struct e1000_mac_info *mac = &hw->mac;
       
   764 	u32 txcw;
       
   765 
       
   766 	/*
       
   767 	 * Check for a software override of the flow control settings, and
       
   768 	 * setup the device accordingly.  If auto-negotiation is enabled, then
       
   769 	 * software will have to set the "PAUSE" bits to the correct value in
       
   770 	 * the Transmit Config Word Register (TXCW) and re-start auto-
       
   771 	 * negotiation.  However, if auto-negotiation is disabled, then
       
   772 	 * software will have to manually configure the two flow control enable
       
   773 	 * bits in the CTRL register.
       
   774 	 *
       
   775 	 * The possible values of the "fc" parameter are:
       
   776 	 *      0:  Flow control is completely disabled
       
   777 	 *      1:  Rx flow control is enabled (we can receive pause frames,
       
   778 	 *          but not send pause frames).
       
   779 	 *      2:  Tx flow control is enabled (we can send pause frames but we
       
   780 	 *          do not support receiving pause frames).
       
   781 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
       
   782 	 */
       
   783 	switch (hw->fc.current_mode) {
       
   784 	case e1000_fc_none:
       
   785 		/* Flow control completely disabled by a software over-ride. */
       
   786 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
       
   787 		break;
       
   788 	case e1000_fc_rx_pause:
       
   789 		/*
       
   790 		 * Rx Flow control is enabled and Tx Flow control is disabled
       
   791 		 * by a software over-ride. Since there really isn't a way to
       
   792 		 * advertise that we are capable of Rx Pause ONLY, we will
       
   793 		 * advertise that we support both symmetric and asymmetric Rx
       
   794 		 * PAUSE.  Later, we will disable the adapter's ability to send
       
   795 		 * PAUSE frames.
       
   796 		 */
       
   797 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   798 		break;
       
   799 	case e1000_fc_tx_pause:
       
   800 		/*
       
   801 		 * Tx Flow control is enabled, and Rx Flow control is disabled,
       
   802 		 * by a software over-ride.
       
   803 		 */
       
   804 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
       
   805 		break;
       
   806 	case e1000_fc_full:
       
   807 		/*
       
   808 		 * Flow control (both Rx and Tx) is enabled by a software
       
   809 		 * over-ride.
       
   810 		 */
       
   811 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
       
   812 		break;
       
   813 	default:
       
   814 		e_dbg("Flow control param set incorrectly\n");
       
   815 		return -E1000_ERR_CONFIG;
       
   816 		break;
       
   817 	}
       
   818 
       
   819 	ew32(TXCW, txcw);
       
   820 	mac->txcw = txcw;
       
   821 
       
   822 	return 0;
       
   823 }
       
   824 
       
   825 /**
       
   826  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
       
   827  *  @hw: pointer to the HW structure
       
   828  *
       
   829  *  Polls for link up by reading the status register, if link fails to come
       
   830  *  up with auto-negotiation, then the link is forced if a signal is detected.
       
   831  **/
       
   832 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
       
   833 {
       
   834 	struct e1000_mac_info *mac = &hw->mac;
       
   835 	u32 i, status;
       
   836 	s32 ret_val;
       
   837 
       
   838 	/*
       
   839 	 * If we have a signal (the cable is plugged in, or assumed true for
       
   840 	 * serdes media) then poll for a "Link-Up" indication in the Device
       
   841 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
       
   842 	 * seconds (Auto-negotiation should complete in less than 500
       
   843 	 * milliseconds even if the other end is doing it in SW).
       
   844 	 */
       
   845 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
       
   846 		usleep_range(10000, 20000);
       
   847 		status = er32(STATUS);
       
   848 		if (status & E1000_STATUS_LU)
       
   849 			break;
       
   850 	}
       
   851 	if (i == FIBER_LINK_UP_LIMIT) {
       
   852 		e_dbg("Never got a valid link from auto-neg!!!\n");
       
   853 		mac->autoneg_failed = true;
       
   854 		/*
       
   855 		 * AutoNeg failed to achieve a link, so we'll call
       
   856 		 * mac->check_for_link. This routine will force the
       
   857 		 * link up if we detect a signal. This will allow us to
       
   858 		 * communicate with non-autonegotiating link partners.
       
   859 		 */
       
   860 		ret_val = mac->ops.check_for_link(hw);
       
   861 		if (ret_val) {
       
   862 			e_dbg("Error while checking for link\n");
       
   863 			return ret_val;
       
   864 		}
       
   865 		mac->autoneg_failed = false;
       
   866 	} else {
       
   867 		mac->autoneg_failed = false;
       
   868 		e_dbg("Valid Link Found\n");
       
   869 	}
       
   870 
       
   871 	return 0;
       
   872 }
       
   873 
       
   874 /**
       
   875  *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
       
   876  *  @hw: pointer to the HW structure
       
   877  *
       
   878  *  Configures collision distance and flow control for fiber and serdes
       
   879  *  links.  Upon successful setup, poll for link.
       
   880  **/
       
   881 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
       
   882 {
       
   883 	u32 ctrl;
       
   884 	s32 ret_val;
       
   885 
       
   886 	ctrl = er32(CTRL);
       
   887 
       
   888 	/* Take the link out of reset */
       
   889 	ctrl &= ~E1000_CTRL_LRST;
       
   890 
       
   891 	hw->mac.ops.config_collision_dist(hw);
       
   892 
       
   893 	ret_val = e1000_commit_fc_settings_generic(hw);
       
   894 	if (ret_val)
       
   895 		return ret_val;
       
   896 
       
   897 	/*
       
   898 	 * Since auto-negotiation is enabled, take the link out of reset (the
       
   899 	 * link will be in reset, because we previously reset the chip). This
       
   900 	 * will restart auto-negotiation.  If auto-negotiation is successful
       
   901 	 * then the link-up status bit will be set and the flow control enable
       
   902 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
       
   903 	 */
       
   904 	e_dbg("Auto-negotiation enabled\n");
       
   905 
       
   906 	ew32(CTRL, ctrl);
       
   907 	e1e_flush();
       
   908 	usleep_range(1000, 2000);
       
   909 
       
   910 	/*
       
   911 	 * For these adapters, the SW definable pin 1 is set when the optics
       
   912 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
       
   913 	 * indication.
       
   914 	 */
       
   915 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
       
   916 	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
       
   917 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
       
   918 	} else {
       
   919 		e_dbg("No signal detected\n");
       
   920 	}
       
   921 
       
   922 	return ret_val;
       
   923 }
       
   924 
       
   925 /**
       
   926  *  e1000e_config_collision_dist_generic - Configure collision distance
       
   927  *  @hw: pointer to the HW structure
       
   928  *
       
   929  *  Configures the collision distance to the default value and is used
       
   930  *  during link setup.
       
   931  **/
       
   932 void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
       
   933 {
       
   934 	u32 tctl;
       
   935 
       
   936 	tctl = er32(TCTL);
       
   937 
       
   938 	tctl &= ~E1000_TCTL_COLD;
       
   939 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
       
   940 
       
   941 	ew32(TCTL, tctl);
       
   942 	e1e_flush();
       
   943 }
       
   944 
       
   945 /**
       
   946  *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
       
   947  *  @hw: pointer to the HW structure
       
   948  *
       
   949  *  Sets the flow control high/low threshold (watermark) registers.  If
       
   950  *  flow control XON frame transmission is enabled, then set XON frame
       
   951  *  transmission as well.
       
   952  **/
       
   953 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
       
   954 {
       
   955 	u32 fcrtl = 0, fcrth = 0;
       
   956 
       
   957 	/*
       
   958 	 * Set the flow control receive threshold registers.  Normally,
       
   959 	 * these registers will be set to a default threshold that may be
       
   960 	 * adjusted later by the driver's runtime code.  However, if the
       
   961 	 * ability to transmit pause frames is not enabled, then these
       
   962 	 * registers will be set to 0.
       
   963 	 */
       
   964 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
       
   965 		/*
       
   966 		 * We need to set up the Receive Threshold high and low water
       
   967 		 * marks as well as (optionally) enabling the transmission of
       
   968 		 * XON frames.
       
   969 		 */
       
   970 		fcrtl = hw->fc.low_water;
       
   971 		if (hw->fc.send_xon)
       
   972 			fcrtl |= E1000_FCRTL_XONE;
       
   973 
       
   974 		fcrth = hw->fc.high_water;
       
   975 	}
       
   976 	ew32(FCRTL, fcrtl);
       
   977 	ew32(FCRTH, fcrth);
       
   978 
       
   979 	return 0;
       
   980 }
       
   981 
       
   982 /**
       
   983  *  e1000e_force_mac_fc - Force the MAC's flow control settings
       
   984  *  @hw: pointer to the HW structure
       
   985  *
       
   986  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
       
   987  *  device control register to reflect the adapter settings.  TFCE and RFCE
       
   988  *  need to be explicitly set by software when a copper PHY is used because
       
   989  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
       
   990  *  also configure these bits when link is forced on a fiber connection.
       
   991  **/
       
   992 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
       
   993 {
       
   994 	u32 ctrl;
       
   995 
       
   996 	ctrl = er32(CTRL);
       
   997 
       
   998 	/*
       
   999 	 * Because we didn't get link via the internal auto-negotiation
       
  1000 	 * mechanism (we either forced link or we got link via PHY
       
  1001 	 * auto-neg), we have to manually enable/disable transmit an
       
  1002 	 * receive flow control.
       
  1003 	 *
       
  1004 	 * The "Case" statement below enables/disable flow control
       
  1005 	 * according to the "hw->fc.current_mode" parameter.
       
  1006 	 *
       
  1007 	 * The possible values of the "fc" parameter are:
       
  1008 	 *      0:  Flow control is completely disabled
       
  1009 	 *      1:  Rx flow control is enabled (we can receive pause
       
  1010 	 *          frames but not send pause frames).
       
  1011 	 *      2:  Tx flow control is enabled (we can send pause frames
       
  1012 	 *          frames but we do not receive pause frames).
       
  1013 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
       
  1014 	 *  other:  No other values should be possible at this point.
       
  1015 	 */
       
  1016 	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
       
  1017 
       
  1018 	switch (hw->fc.current_mode) {
       
  1019 	case e1000_fc_none:
       
  1020 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
       
  1021 		break;
       
  1022 	case e1000_fc_rx_pause:
       
  1023 		ctrl &= (~E1000_CTRL_TFCE);
       
  1024 		ctrl |= E1000_CTRL_RFCE;
       
  1025 		break;
       
  1026 	case e1000_fc_tx_pause:
       
  1027 		ctrl &= (~E1000_CTRL_RFCE);
       
  1028 		ctrl |= E1000_CTRL_TFCE;
       
  1029 		break;
       
  1030 	case e1000_fc_full:
       
  1031 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
       
  1032 		break;
       
  1033 	default:
       
  1034 		e_dbg("Flow control param set incorrectly\n");
       
  1035 		return -E1000_ERR_CONFIG;
       
  1036 	}
       
  1037 
       
  1038 	ew32(CTRL, ctrl);
       
  1039 
       
  1040 	return 0;
       
  1041 }
       
  1042 
       
  1043 /**
       
  1044  *  e1000e_config_fc_after_link_up - Configures flow control after link
       
  1045  *  @hw: pointer to the HW structure
       
  1046  *
       
  1047  *  Checks the status of auto-negotiation after link up to ensure that the
       
  1048  *  speed and duplex were not forced.  If the link needed to be forced, then
       
  1049  *  flow control needs to be forced also.  If auto-negotiation is enabled
       
  1050  *  and did not fail, then we configure flow control based on our link
       
  1051  *  partner.
       
  1052  **/
       
  1053 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
       
  1054 {
       
  1055 	struct e1000_mac_info *mac = &hw->mac;
       
  1056 	s32 ret_val = 0;
       
  1057 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
       
  1058 	u16 speed, duplex;
       
  1059 
       
  1060 	/*
       
  1061 	 * Check for the case where we have fiber media and auto-neg failed
       
  1062 	 * so we had to force link.  In this case, we need to force the
       
  1063 	 * configuration of the MAC to match the "fc" parameter.
       
  1064 	 */
       
  1065 	if (mac->autoneg_failed) {
       
  1066 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1067 		    hw->phy.media_type == e1000_media_type_internal_serdes)
       
  1068 			ret_val = e1000e_force_mac_fc(hw);
       
  1069 	} else {
       
  1070 		if (hw->phy.media_type == e1000_media_type_copper)
       
  1071 			ret_val = e1000e_force_mac_fc(hw);
       
  1072 	}
       
  1073 
       
  1074 	if (ret_val) {
       
  1075 		e_dbg("Error forcing flow control settings\n");
       
  1076 		return ret_val;
       
  1077 	}
       
  1078 
       
  1079 	/*
       
  1080 	 * Check for the case where we have copper media and auto-neg is
       
  1081 	 * enabled.  In this case, we need to check and see if Auto-Neg
       
  1082 	 * has completed, and if so, how the PHY and link partner has
       
  1083 	 * flow control configured.
       
  1084 	 */
       
  1085 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
       
  1086 		/*
       
  1087 		 * Read the MII Status Register and check to see if AutoNeg
       
  1088 		 * has completed.  We read this twice because this reg has
       
  1089 		 * some "sticky" (latched) bits.
       
  1090 		 */
       
  1091 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
       
  1092 		if (ret_val)
       
  1093 			return ret_val;
       
  1094 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
       
  1095 		if (ret_val)
       
  1096 			return ret_val;
       
  1097 
       
  1098 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
       
  1099 			e_dbg("Copper PHY and Auto Neg has not completed.\n");
       
  1100 			return ret_val;
       
  1101 		}
       
  1102 
       
  1103 		/*
       
  1104 		 * The AutoNeg process has completed, so we now need to
       
  1105 		 * read both the Auto Negotiation Advertisement
       
  1106 		 * Register (Address 4) and the Auto_Negotiation Base
       
  1107 		 * Page Ability Register (Address 5) to determine how
       
  1108 		 * flow control was negotiated.
       
  1109 		 */
       
  1110 		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
       
  1111 		if (ret_val)
       
  1112 			return ret_val;
       
  1113 		ret_val =
       
  1114 		    e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
       
  1115 		if (ret_val)
       
  1116 			return ret_val;
       
  1117 
       
  1118 		/*
       
  1119 		 * Two bits in the Auto Negotiation Advertisement Register
       
  1120 		 * (Address 4) and two bits in the Auto Negotiation Base
       
  1121 		 * Page Ability Register (Address 5) determine flow control
       
  1122 		 * for both the PHY and the link partner.  The following
       
  1123 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
       
  1124 		 * 1999, describes these PAUSE resolution bits and how flow
       
  1125 		 * control is determined based upon these settings.
       
  1126 		 * NOTE:  DC = Don't Care
       
  1127 		 *
       
  1128 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1129 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
       
  1130 		 *-------|---------|-------|---------|--------------------
       
  1131 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
       
  1132 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
       
  1133 		 *   0   |    1    |   1   |    0    | e1000_fc_none
       
  1134 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1135 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
       
  1136 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
       
  1137 		 *   1   |    1    |   0   |    0    | e1000_fc_none
       
  1138 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1139 		 *
       
  1140 		 * Are both PAUSE bits set to 1?  If so, this implies
       
  1141 		 * Symmetric Flow Control is enabled at both ends.  The
       
  1142 		 * ASM_DIR bits are irrelevant per the spec.
       
  1143 		 *
       
  1144 		 * For Symmetric Flow Control:
       
  1145 		 *
       
  1146 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1147 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1148 		 *-------|---------|-------|---------|--------------------
       
  1149 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
       
  1150 		 *
       
  1151 		 */
       
  1152 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1153 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
       
  1154 			/*
       
  1155 			 * Now we need to check if the user selected Rx ONLY
       
  1156 			 * of pause frames.  In this case, we had to advertise
       
  1157 			 * FULL flow control because we could not advertise Rx
       
  1158 			 * ONLY. Hence, we must now check to see if we need to
       
  1159 			 * turn OFF the TRANSMISSION of PAUSE frames.
       
  1160 			 */
       
  1161 			if (hw->fc.requested_mode == e1000_fc_full) {
       
  1162 				hw->fc.current_mode = e1000_fc_full;
       
  1163 				e_dbg("Flow Control = FULL.\n");
       
  1164 			} else {
       
  1165 				hw->fc.current_mode = e1000_fc_rx_pause;
       
  1166 				e_dbg("Flow Control = Rx PAUSE frames only.\n");
       
  1167 			}
       
  1168 		}
       
  1169 		/*
       
  1170 		 * For receiving PAUSE frames ONLY.
       
  1171 		 *
       
  1172 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1173 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1174 		 *-------|---------|-------|---------|--------------------
       
  1175 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
       
  1176 		 */
       
  1177 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1178 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  1179 			 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  1180 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  1181 			hw->fc.current_mode = e1000_fc_tx_pause;
       
  1182 			e_dbg("Flow Control = Tx PAUSE frames only.\n");
       
  1183 		}
       
  1184 		/*
       
  1185 		 * For transmitting PAUSE frames ONLY.
       
  1186 		 *
       
  1187 		 *   LOCAL DEVICE  |   LINK PARTNER
       
  1188 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
       
  1189 		 *-------|---------|-------|---------|--------------------
       
  1190 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
       
  1191 		 */
       
  1192 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
       
  1193 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
       
  1194 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
       
  1195 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
       
  1196 			hw->fc.current_mode = e1000_fc_rx_pause;
       
  1197 			e_dbg("Flow Control = Rx PAUSE frames only.\n");
       
  1198 		} else {
       
  1199 			/*
       
  1200 			 * Per the IEEE spec, at this point flow control
       
  1201 			 * should be disabled.
       
  1202 			 */
       
  1203 			hw->fc.current_mode = e1000_fc_none;
       
  1204 			e_dbg("Flow Control = NONE.\n");
       
  1205 		}
       
  1206 
       
  1207 		/*
       
  1208 		 * Now we need to do one last check...  If we auto-
       
  1209 		 * negotiated to HALF DUPLEX, flow control should not be
       
  1210 		 * enabled per IEEE 802.3 spec.
       
  1211 		 */
       
  1212 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
       
  1213 		if (ret_val) {
       
  1214 			e_dbg("Error getting link speed and duplex\n");
       
  1215 			return ret_val;
       
  1216 		}
       
  1217 
       
  1218 		if (duplex == HALF_DUPLEX)
       
  1219 			hw->fc.current_mode = e1000_fc_none;
       
  1220 
       
  1221 		/*
       
  1222 		 * Now we call a subroutine to actually force the MAC
       
  1223 		 * controller to use the correct flow control settings.
       
  1224 		 */
       
  1225 		ret_val = e1000e_force_mac_fc(hw);
       
  1226 		if (ret_val) {
       
  1227 			e_dbg("Error forcing flow control settings\n");
       
  1228 			return ret_val;
       
  1229 		}
       
  1230 	}
       
  1231 
       
  1232 	return 0;
       
  1233 }
       
  1234 
       
  1235 /**
       
  1236  *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
       
  1237  *  @hw: pointer to the HW structure
       
  1238  *  @speed: stores the current speed
       
  1239  *  @duplex: stores the current duplex
       
  1240  *
       
  1241  *  Read the status register for the current speed/duplex and store the current
       
  1242  *  speed and duplex for copper connections.
       
  1243  **/
       
  1244 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
       
  1245 				       u16 *duplex)
       
  1246 {
       
  1247 	u32 status;
       
  1248 
       
  1249 	status = er32(STATUS);
       
  1250 	if (status & E1000_STATUS_SPEED_1000)
       
  1251 		*speed = SPEED_1000;
       
  1252 	else if (status & E1000_STATUS_SPEED_100)
       
  1253 		*speed = SPEED_100;
       
  1254 	else
       
  1255 		*speed = SPEED_10;
       
  1256 
       
  1257 	if (status & E1000_STATUS_FD)
       
  1258 		*duplex = FULL_DUPLEX;
       
  1259 	else
       
  1260 		*duplex = HALF_DUPLEX;
       
  1261 
       
  1262 	e_dbg("%u Mbps, %s Duplex\n",
       
  1263 	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
       
  1264 	      *duplex == FULL_DUPLEX ? "Full" : "Half");
       
  1265 
       
  1266 	return 0;
       
  1267 }
       
  1268 
       
  1269 /**
       
  1270  *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
       
  1271  *  @hw: pointer to the HW structure
       
  1272  *  @speed: stores the current speed
       
  1273  *  @duplex: stores the current duplex
       
  1274  *
       
  1275  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
       
  1276  *  for fiber/serdes links.
       
  1277  **/
       
  1278 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
       
  1279 					     u16 *duplex)
       
  1280 {
       
  1281 	*speed = SPEED_1000;
       
  1282 	*duplex = FULL_DUPLEX;
       
  1283 
       
  1284 	return 0;
       
  1285 }
       
  1286 
       
  1287 /**
       
  1288  *  e1000e_get_hw_semaphore - Acquire hardware semaphore
       
  1289  *  @hw: pointer to the HW structure
       
  1290  *
       
  1291  *  Acquire the HW semaphore to access the PHY or NVM
       
  1292  **/
       
  1293 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
       
  1294 {
       
  1295 	u32 swsm;
       
  1296 	s32 timeout = hw->nvm.word_size + 1;
       
  1297 	s32 i = 0;
       
  1298 
       
  1299 	/* Get the SW semaphore */
       
  1300 	while (i < timeout) {
       
  1301 		swsm = er32(SWSM);
       
  1302 		if (!(swsm & E1000_SWSM_SMBI))
       
  1303 			break;
       
  1304 
       
  1305 		udelay(50);
       
  1306 		i++;
       
  1307 	}
       
  1308 
       
  1309 	if (i == timeout) {
       
  1310 		e_dbg("Driver can't access device - SMBI bit is set.\n");
       
  1311 		return -E1000_ERR_NVM;
       
  1312 	}
       
  1313 
       
  1314 	/* Get the FW semaphore. */
       
  1315 	for (i = 0; i < timeout; i++) {
       
  1316 		swsm = er32(SWSM);
       
  1317 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
       
  1318 
       
  1319 		/* Semaphore acquired if bit latched */
       
  1320 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
       
  1321 			break;
       
  1322 
       
  1323 		udelay(50);
       
  1324 	}
       
  1325 
       
  1326 	if (i == timeout) {
       
  1327 		/* Release semaphores */
       
  1328 		e1000e_put_hw_semaphore(hw);
       
  1329 		e_dbg("Driver can't access the NVM\n");
       
  1330 		return -E1000_ERR_NVM;
       
  1331 	}
       
  1332 
       
  1333 	return 0;
       
  1334 }
       
  1335 
       
  1336 /**
       
  1337  *  e1000e_put_hw_semaphore - Release hardware semaphore
       
  1338  *  @hw: pointer to the HW structure
       
  1339  *
       
  1340  *  Release hardware semaphore used to access the PHY or NVM
       
  1341  **/
       
  1342 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
       
  1343 {
       
  1344 	u32 swsm;
       
  1345 
       
  1346 	swsm = er32(SWSM);
       
  1347 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
  1348 	ew32(SWSM, swsm);
       
  1349 }
       
  1350 
       
  1351 /**
       
  1352  *  e1000e_get_auto_rd_done - Check for auto read completion
       
  1353  *  @hw: pointer to the HW structure
       
  1354  *
       
  1355  *  Check EEPROM for Auto Read done bit.
       
  1356  **/
       
  1357 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
       
  1358 {
       
  1359 	s32 i = 0;
       
  1360 
       
  1361 	while (i < AUTO_READ_DONE_TIMEOUT) {
       
  1362 		if (er32(EECD) & E1000_EECD_AUTO_RD)
       
  1363 			break;
       
  1364 		usleep_range(1000, 2000);
       
  1365 		i++;
       
  1366 	}
       
  1367 
       
  1368 	if (i == AUTO_READ_DONE_TIMEOUT) {
       
  1369 		e_dbg("Auto read by HW from NVM has not completed.\n");
       
  1370 		return -E1000_ERR_RESET;
       
  1371 	}
       
  1372 
       
  1373 	return 0;
       
  1374 }
       
  1375 
       
  1376 /**
       
  1377  *  e1000e_valid_led_default - Verify a valid default LED config
       
  1378  *  @hw: pointer to the HW structure
       
  1379  *  @data: pointer to the NVM (EEPROM)
       
  1380  *
       
  1381  *  Read the EEPROM for the current default LED configuration.  If the
       
  1382  *  LED configuration is not valid, set to a valid LED configuration.
       
  1383  **/
       
  1384 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
       
  1385 {
       
  1386 	s32 ret_val;
       
  1387 
       
  1388 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  1389 	if (ret_val) {
       
  1390 		e_dbg("NVM Read Error\n");
       
  1391 		return ret_val;
       
  1392 	}
       
  1393 
       
  1394 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
       
  1395 		*data = ID_LED_DEFAULT;
       
  1396 
       
  1397 	return 0;
       
  1398 }
       
  1399 
       
  1400 /**
       
  1401  *  e1000e_id_led_init_generic -
       
  1402  *  @hw: pointer to the HW structure
       
  1403  *
       
  1404  **/
       
  1405 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
       
  1406 {
       
  1407 	struct e1000_mac_info *mac = &hw->mac;
       
  1408 	s32 ret_val;
       
  1409 	const u32 ledctl_mask = 0x000000FF;
       
  1410 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
       
  1411 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
       
  1412 	u16 data, i, temp;
       
  1413 	const u16 led_mask = 0x0F;
       
  1414 
       
  1415 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
       
  1416 	if (ret_val)
       
  1417 		return ret_val;
       
  1418 
       
  1419 	mac->ledctl_default = er32(LEDCTL);
       
  1420 	mac->ledctl_mode1 = mac->ledctl_default;
       
  1421 	mac->ledctl_mode2 = mac->ledctl_default;
       
  1422 
       
  1423 	for (i = 0; i < 4; i++) {
       
  1424 		temp = (data >> (i << 2)) & led_mask;
       
  1425 		switch (temp) {
       
  1426 		case ID_LED_ON1_DEF2:
       
  1427 		case ID_LED_ON1_ON2:
       
  1428 		case ID_LED_ON1_OFF2:
       
  1429 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1430 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
       
  1431 			break;
       
  1432 		case ID_LED_OFF1_DEF2:
       
  1433 		case ID_LED_OFF1_ON2:
       
  1434 		case ID_LED_OFF1_OFF2:
       
  1435 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
       
  1436 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
       
  1437 			break;
       
  1438 		default:
       
  1439 			/* Do nothing */
       
  1440 			break;
       
  1441 		}
       
  1442 		switch (temp) {
       
  1443 		case ID_LED_DEF1_ON2:
       
  1444 		case ID_LED_ON1_ON2:
       
  1445 		case ID_LED_OFF1_ON2:
       
  1446 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1447 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
       
  1448 			break;
       
  1449 		case ID_LED_DEF1_OFF2:
       
  1450 		case ID_LED_ON1_OFF2:
       
  1451 		case ID_LED_OFF1_OFF2:
       
  1452 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
       
  1453 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
       
  1454 			break;
       
  1455 		default:
       
  1456 			/* Do nothing */
       
  1457 			break;
       
  1458 		}
       
  1459 	}
       
  1460 
       
  1461 	return 0;
       
  1462 }
       
  1463 
       
  1464 /**
       
  1465  *  e1000e_setup_led_generic - Configures SW controllable LED
       
  1466  *  @hw: pointer to the HW structure
       
  1467  *
       
  1468  *  This prepares the SW controllable LED for use and saves the current state
       
  1469  *  of the LED so it can be later restored.
       
  1470  **/
       
  1471 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
       
  1472 {
       
  1473 	u32 ledctl;
       
  1474 
       
  1475 	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
       
  1476 		return -E1000_ERR_CONFIG;
       
  1477 
       
  1478 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1479 		ledctl = er32(LEDCTL);
       
  1480 		hw->mac.ledctl_default = ledctl;
       
  1481 		/* Turn off LED0 */
       
  1482 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
       
  1483 			    E1000_LEDCTL_LED0_MODE_MASK);
       
  1484 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
       
  1485 			   E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1486 		ew32(LEDCTL, ledctl);
       
  1487 	} else if (hw->phy.media_type == e1000_media_type_copper) {
       
  1488 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1489 	}
       
  1490 
       
  1491 	return 0;
       
  1492 }
       
  1493 
       
  1494 /**
       
  1495  *  e1000e_cleanup_led_generic - Set LED config to default operation
       
  1496  *  @hw: pointer to the HW structure
       
  1497  *
       
  1498  *  Remove the current LED configuration and set the LED configuration
       
  1499  *  to the default value, saved from the EEPROM.
       
  1500  **/
       
  1501 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
       
  1502 {
       
  1503 	ew32(LEDCTL, hw->mac.ledctl_default);
       
  1504 	return 0;
       
  1505 }
       
  1506 
       
  1507 /**
       
  1508  *  e1000e_blink_led_generic - Blink LED
       
  1509  *  @hw: pointer to the HW structure
       
  1510  *
       
  1511  *  Blink the LEDs which are set to be on.
       
  1512  **/
       
  1513 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
       
  1514 {
       
  1515 	u32 ledctl_blink = 0;
       
  1516 	u32 i;
       
  1517 
       
  1518 	if (hw->phy.media_type == e1000_media_type_fiber) {
       
  1519 		/* always blink LED0 for PCI-E fiber */
       
  1520 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
       
  1521 		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
       
  1522 	} else {
       
  1523 		/*
       
  1524 		 * set the blink bit for each LED that's "on" (0x0E)
       
  1525 		 * in ledctl_mode2
       
  1526 		 */
       
  1527 		ledctl_blink = hw->mac.ledctl_mode2;
       
  1528 		for (i = 0; i < 4; i++)
       
  1529 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
       
  1530 			    E1000_LEDCTL_MODE_LED_ON)
       
  1531 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
       
  1532 						 (i * 8));
       
  1533 	}
       
  1534 
       
  1535 	ew32(LEDCTL, ledctl_blink);
       
  1536 
       
  1537 	return 0;
       
  1538 }
       
  1539 
       
  1540 /**
       
  1541  *  e1000e_led_on_generic - Turn LED on
       
  1542  *  @hw: pointer to the HW structure
       
  1543  *
       
  1544  *  Turn LED on.
       
  1545  **/
       
  1546 s32 e1000e_led_on_generic(struct e1000_hw *hw)
       
  1547 {
       
  1548 	u32 ctrl;
       
  1549 
       
  1550 	switch (hw->phy.media_type) {
       
  1551 	case e1000_media_type_fiber:
       
  1552 		ctrl = er32(CTRL);
       
  1553 		ctrl &= ~E1000_CTRL_SWDPIN0;
       
  1554 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1555 		ew32(CTRL, ctrl);
       
  1556 		break;
       
  1557 	case e1000_media_type_copper:
       
  1558 		ew32(LEDCTL, hw->mac.ledctl_mode2);
       
  1559 		break;
       
  1560 	default:
       
  1561 		break;
       
  1562 	}
       
  1563 
       
  1564 	return 0;
       
  1565 }
       
  1566 
       
  1567 /**
       
  1568  *  e1000e_led_off_generic - Turn LED off
       
  1569  *  @hw: pointer to the HW structure
       
  1570  *
       
  1571  *  Turn LED off.
       
  1572  **/
       
  1573 s32 e1000e_led_off_generic(struct e1000_hw *hw)
       
  1574 {
       
  1575 	u32 ctrl;
       
  1576 
       
  1577 	switch (hw->phy.media_type) {
       
  1578 	case e1000_media_type_fiber:
       
  1579 		ctrl = er32(CTRL);
       
  1580 		ctrl |= E1000_CTRL_SWDPIN0;
       
  1581 		ctrl |= E1000_CTRL_SWDPIO0;
       
  1582 		ew32(CTRL, ctrl);
       
  1583 		break;
       
  1584 	case e1000_media_type_copper:
       
  1585 		ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  1586 		break;
       
  1587 	default:
       
  1588 		break;
       
  1589 	}
       
  1590 
       
  1591 	return 0;
       
  1592 }
       
  1593 
       
  1594 /**
       
  1595  *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
       
  1596  *  @hw: pointer to the HW structure
       
  1597  *  @no_snoop: bitmap of snoop events
       
  1598  *
       
  1599  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
       
  1600  **/
       
  1601 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
       
  1602 {
       
  1603 	u32 gcr;
       
  1604 
       
  1605 	if (no_snoop) {
       
  1606 		gcr = er32(GCR);
       
  1607 		gcr &= ~(PCIE_NO_SNOOP_ALL);
       
  1608 		gcr |= no_snoop;
       
  1609 		ew32(GCR, gcr);
       
  1610 	}
       
  1611 }
       
  1612 
       
  1613 /**
       
  1614  *  e1000e_disable_pcie_master - Disables PCI-express master access
       
  1615  *  @hw: pointer to the HW structure
       
  1616  *
       
  1617  *  Returns 0 if successful, else returns -10
       
  1618  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
       
  1619  *  the master requests to be disabled.
       
  1620  *
       
  1621  *  Disables PCI-Express master access and verifies there are no pending
       
  1622  *  requests.
       
  1623  **/
       
  1624 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
       
  1625 {
       
  1626 	u32 ctrl;
       
  1627 	s32 timeout = MASTER_DISABLE_TIMEOUT;
       
  1628 
       
  1629 	ctrl = er32(CTRL);
       
  1630 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
       
  1631 	ew32(CTRL, ctrl);
       
  1632 
       
  1633 	while (timeout) {
       
  1634 		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
       
  1635 			break;
       
  1636 		udelay(100);
       
  1637 		timeout--;
       
  1638 	}
       
  1639 
       
  1640 	if (!timeout) {
       
  1641 		e_dbg("Master requests are pending.\n");
       
  1642 		return -E1000_ERR_MASTER_REQUESTS_PENDING;
       
  1643 	}
       
  1644 
       
  1645 	return 0;
       
  1646 }
       
  1647 
       
  1648 /**
       
  1649  *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
       
  1650  *  @hw: pointer to the HW structure
       
  1651  *
       
  1652  *  Reset the Adaptive Interframe Spacing throttle to default values.
       
  1653  **/
       
  1654 void e1000e_reset_adaptive(struct e1000_hw *hw)
       
  1655 {
       
  1656 	struct e1000_mac_info *mac = &hw->mac;
       
  1657 
       
  1658 	if (!mac->adaptive_ifs) {
       
  1659 		e_dbg("Not in Adaptive IFS mode!\n");
       
  1660 		return;
       
  1661 	}
       
  1662 
       
  1663 	mac->current_ifs_val = 0;
       
  1664 	mac->ifs_min_val = IFS_MIN;
       
  1665 	mac->ifs_max_val = IFS_MAX;
       
  1666 	mac->ifs_step_size = IFS_STEP;
       
  1667 	mac->ifs_ratio = IFS_RATIO;
       
  1668 
       
  1669 	mac->in_ifs_mode = false;
       
  1670 	ew32(AIT, 0);
       
  1671 }
       
  1672 
       
  1673 /**
       
  1674  *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
       
  1675  *  @hw: pointer to the HW structure
       
  1676  *
       
  1677  *  Update the Adaptive Interframe Spacing Throttle value based on the
       
  1678  *  time between transmitted packets and time between collisions.
       
  1679  **/
       
  1680 void e1000e_update_adaptive(struct e1000_hw *hw)
       
  1681 {
       
  1682 	struct e1000_mac_info *mac = &hw->mac;
       
  1683 
       
  1684 	if (!mac->adaptive_ifs) {
       
  1685 		e_dbg("Not in Adaptive IFS mode!\n");
       
  1686 		return;
       
  1687 	}
       
  1688 
       
  1689 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
       
  1690 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
       
  1691 			mac->in_ifs_mode = true;
       
  1692 			if (mac->current_ifs_val < mac->ifs_max_val) {
       
  1693 				if (!mac->current_ifs_val)
       
  1694 					mac->current_ifs_val = mac->ifs_min_val;
       
  1695 				else
       
  1696 					mac->current_ifs_val +=
       
  1697 					    mac->ifs_step_size;
       
  1698 				ew32(AIT, mac->current_ifs_val);
       
  1699 			}
       
  1700 		}
       
  1701 	} else {
       
  1702 		if (mac->in_ifs_mode &&
       
  1703 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
       
  1704 			mac->current_ifs_val = 0;
       
  1705 			mac->in_ifs_mode = false;
       
  1706 			ew32(AIT, 0);
       
  1707 		}
       
  1708 	}
       
  1709 }