devices/e1000e/ich8lan-3.4-orig.c
branchstable-1.5
changeset 2491 5e9221a78855
equal deleted inserted replaced
2490:6ad972f38438 2491:5e9221a78855
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2012 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /*
       
    30  * 82562G 10/100 Network Connection
       
    31  * 82562G-2 10/100 Network Connection
       
    32  * 82562GT 10/100 Network Connection
       
    33  * 82562GT-2 10/100 Network Connection
       
    34  * 82562V 10/100 Network Connection
       
    35  * 82562V-2 10/100 Network Connection
       
    36  * 82566DC-2 Gigabit Network Connection
       
    37  * 82566DC Gigabit Network Connection
       
    38  * 82566DM-2 Gigabit Network Connection
       
    39  * 82566DM Gigabit Network Connection
       
    40  * 82566MC Gigabit Network Connection
       
    41  * 82566MM Gigabit Network Connection
       
    42  * 82567LM Gigabit Network Connection
       
    43  * 82567LF Gigabit Network Connection
       
    44  * 82567V Gigabit Network Connection
       
    45  * 82567LM-2 Gigabit Network Connection
       
    46  * 82567LF-2 Gigabit Network Connection
       
    47  * 82567V-2 Gigabit Network Connection
       
    48  * 82567LF-3 Gigabit Network Connection
       
    49  * 82567LM-3 Gigabit Network Connection
       
    50  * 82567LM-4 Gigabit Network Connection
       
    51  * 82577LM Gigabit Network Connection
       
    52  * 82577LC Gigabit Network Connection
       
    53  * 82578DM Gigabit Network Connection
       
    54  * 82578DC Gigabit Network Connection
       
    55  * 82579LM Gigabit Network Connection
       
    56  * 82579V Gigabit Network Connection
       
    57  */
       
    58 
       
    59 #include "e1000.h"
       
    60 
       
    61 #define ICH_FLASH_GFPREG		0x0000
       
    62 #define ICH_FLASH_HSFSTS		0x0004
       
    63 #define ICH_FLASH_HSFCTL		0x0006
       
    64 #define ICH_FLASH_FADDR			0x0008
       
    65 #define ICH_FLASH_FDATA0		0x0010
       
    66 #define ICH_FLASH_PR0			0x0074
       
    67 
       
    68 #define ICH_FLASH_READ_COMMAND_TIMEOUT	500
       
    69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
       
    70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
       
    71 #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
       
    72 #define ICH_FLASH_CYCLE_REPEAT_COUNT	10
       
    73 
       
    74 #define ICH_CYCLE_READ			0
       
    75 #define ICH_CYCLE_WRITE			2
       
    76 #define ICH_CYCLE_ERASE			3
       
    77 
       
    78 #define FLASH_GFPREG_BASE_MASK		0x1FFF
       
    79 #define FLASH_SECTOR_ADDR_SHIFT		12
       
    80 
       
    81 #define ICH_FLASH_SEG_SIZE_256		256
       
    82 #define ICH_FLASH_SEG_SIZE_4K		4096
       
    83 #define ICH_FLASH_SEG_SIZE_8K		8192
       
    84 #define ICH_FLASH_SEG_SIZE_64K		65536
       
    85 
       
    86 
       
    87 #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
       
    88 /* FW established a valid mode */
       
    89 #define E1000_ICH_FWSM_FW_VALID		0x00008000
       
    90 
       
    91 #define E1000_ICH_MNG_IAMT_MODE		0x2
       
    92 
       
    93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
       
    94 				 (ID_LED_DEF1_OFF2 <<  8) | \
       
    95 				 (ID_LED_DEF1_ON2  <<  4) | \
       
    96 				 (ID_LED_DEF1_DEF2))
       
    97 
       
    98 #define E1000_ICH_NVM_SIG_WORD		0x13
       
    99 #define E1000_ICH_NVM_SIG_MASK		0xC000
       
   100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
       
   101 #define E1000_ICH_NVM_SIG_VALUE         0x80
       
   102 
       
   103 #define E1000_ICH8_LAN_INIT_TIMEOUT	1500
       
   104 
       
   105 #define E1000_FEXTNVM_SW_CONFIG		1
       
   106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
       
   107 
       
   108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
       
   109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
       
   110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
       
   111 
       
   112 #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
       
   113 
       
   114 #define E1000_ICH_RAR_ENTRIES		7
       
   115 
       
   116 #define PHY_PAGE_SHIFT 5
       
   117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
       
   118 			   ((reg) & MAX_PHY_REG_ADDRESS))
       
   119 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
       
   120 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
       
   121 
       
   122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
       
   123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
       
   124 #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
       
   125 
       
   126 #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
       
   127 
       
   128 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
       
   129 
       
   130 /* SMBus Address Phy Register */
       
   131 #define HV_SMB_ADDR            PHY_REG(768, 26)
       
   132 #define HV_SMB_ADDR_MASK       0x007F
       
   133 #define HV_SMB_ADDR_PEC_EN     0x0200
       
   134 #define HV_SMB_ADDR_VALID      0x0080
       
   135 
       
   136 /* PHY Power Management Control */
       
   137 #define HV_PM_CTRL		PHY_REG(770, 17)
       
   138 
       
   139 /* PHY Low Power Idle Control */
       
   140 #define I82579_LPI_CTRL				PHY_REG(772, 20)
       
   141 #define I82579_LPI_CTRL_ENABLE_MASK		0x6000
       
   142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
       
   143 
       
   144 /* EMI Registers */
       
   145 #define I82579_EMI_ADDR         0x10
       
   146 #define I82579_EMI_DATA         0x11
       
   147 #define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
       
   148 #define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
       
   149 #define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
       
   150 
       
   151 /* Strapping Option Register - RO */
       
   152 #define E1000_STRAP                     0x0000C
       
   153 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
       
   154 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
       
   155 
       
   156 /* OEM Bits Phy Register */
       
   157 #define HV_OEM_BITS            PHY_REG(768, 25)
       
   158 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
       
   159 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
       
   160 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
       
   161 
       
   162 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
       
   163 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
       
   164 
       
   165 /* KMRN Mode Control */
       
   166 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
       
   167 #define HV_KMRN_MDIO_SLOW      0x0400
       
   168 
       
   169 /* KMRN FIFO Control and Status */
       
   170 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
       
   171 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
       
   172 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
       
   173 
       
   174 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
       
   175 /* Offset 04h HSFSTS */
       
   176 union ich8_hws_flash_status {
       
   177 	struct ich8_hsfsts {
       
   178 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
       
   179 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
       
   180 		u16 dael       :1; /* bit 2 Direct Access error Log */
       
   181 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
       
   182 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
       
   183 		u16 reserved1  :2; /* bit 13:6 Reserved */
       
   184 		u16 reserved2  :6; /* bit 13:6 Reserved */
       
   185 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
       
   186 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
       
   187 	} hsf_status;
       
   188 	u16 regval;
       
   189 };
       
   190 
       
   191 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
       
   192 /* Offset 06h FLCTL */
       
   193 union ich8_hws_flash_ctrl {
       
   194 	struct ich8_hsflctl {
       
   195 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
       
   196 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
       
   197 		u16 reserved   :5;   /* 7:3 Reserved  */
       
   198 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
       
   199 		u16 flockdn    :6;   /* 15:10 Reserved */
       
   200 	} hsf_ctrl;
       
   201 	u16 regval;
       
   202 };
       
   203 
       
   204 /* ICH Flash Region Access Permissions */
       
   205 union ich8_hws_flash_regacc {
       
   206 	struct ich8_flracc {
       
   207 		u32 grra      :8; /* 0:7 GbE region Read Access */
       
   208 		u32 grwa      :8; /* 8:15 GbE region Write Access */
       
   209 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
       
   210 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
       
   211 	} hsf_flregacc;
       
   212 	u16 regval;
       
   213 };
       
   214 
       
   215 /* ICH Flash Protected Region */
       
   216 union ich8_flash_protected_range {
       
   217 	struct ich8_pr {
       
   218 		u32 base:13;     /* 0:12 Protected Range Base */
       
   219 		u32 reserved1:2; /* 13:14 Reserved */
       
   220 		u32 rpe:1;       /* 15 Read Protection Enable */
       
   221 		u32 limit:13;    /* 16:28 Protected Range Limit */
       
   222 		u32 reserved2:2; /* 29:30 Reserved */
       
   223 		u32 wpe:1;       /* 31 Write Protection Enable */
       
   224 	} range;
       
   225 	u32 regval;
       
   226 };
       
   227 
       
   228 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
       
   229 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
       
   230 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
       
   231 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
       
   232 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
       
   233 						u32 offset, u8 byte);
       
   234 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
   235 					 u8 *data);
       
   236 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
       
   237 					 u16 *data);
       
   238 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
   239 					 u8 size, u16 *data);
       
   240 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
       
   241 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
       
   242 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
       
   243 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
       
   244 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
       
   245 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
       
   246 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
       
   247 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
       
   248 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
       
   249 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
       
   250 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
       
   251 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
       
   252 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
       
   253 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
       
   254 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
       
   255 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
       
   256 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
       
   257 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
       
   258 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
       
   259 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
       
   260 
       
   261 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
       
   262 {
       
   263 	return readw(hw->flash_address + reg);
       
   264 }
       
   265 
       
   266 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
       
   267 {
       
   268 	return readl(hw->flash_address + reg);
       
   269 }
       
   270 
       
   271 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
       
   272 {
       
   273 	writew(val, hw->flash_address + reg);
       
   274 }
       
   275 
       
   276 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
       
   277 {
       
   278 	writel(val, hw->flash_address + reg);
       
   279 }
       
   280 
       
   281 #define er16flash(reg)		__er16flash(hw, (reg))
       
   282 #define er32flash(reg)		__er32flash(hw, (reg))
       
   283 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
       
   284 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
       
   285 
       
   286 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
       
   287 {
       
   288 	u32 ctrl;
       
   289 
       
   290 	ctrl = er32(CTRL);
       
   291 	ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
       
   292 	ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
       
   293 	ew32(CTRL, ctrl);
       
   294 	e1e_flush();
       
   295 	udelay(10);
       
   296 	ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
       
   297 	ew32(CTRL, ctrl);
       
   298 }
       
   299 
       
   300 /**
       
   301  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
       
   302  *  @hw: pointer to the HW structure
       
   303  *
       
   304  *  Initialize family-specific PHY parameters and function pointers.
       
   305  **/
       
   306 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
       
   307 {
       
   308 	struct e1000_phy_info *phy = &hw->phy;
       
   309 	s32 ret_val = 0;
       
   310 
       
   311 	phy->addr                     = 1;
       
   312 	phy->reset_delay_us           = 100;
       
   313 
       
   314 	phy->ops.set_page             = e1000_set_page_igp;
       
   315 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
       
   316 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
       
   317 	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
       
   318 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
       
   319 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
       
   320 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
       
   321 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
       
   322 	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
       
   323 	phy->ops.power_up             = e1000_power_up_phy_copper;
       
   324 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
       
   325 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   326 
       
   327 	if (!hw->phy.ops.check_reset_block(hw)) {
       
   328 		u32 fwsm = er32(FWSM);
       
   329 
       
   330 		/*
       
   331 		 * The MAC-PHY interconnect may still be in SMBus mode after
       
   332 		 * Sx->S0.  If resetting the PHY is not blocked, toggle the
       
   333 		 * LANPHYPC Value bit to force the interconnect to PCIe mode.
       
   334 		 */
       
   335 		e1000_toggle_lanphypc_value_ich8lan(hw);
       
   336 		msleep(50);
       
   337 
       
   338 		/*
       
   339 		 * Gate automatic PHY configuration by hardware on
       
   340 		 * non-managed 82579
       
   341 		 */
       
   342 		if ((hw->mac.type == e1000_pch2lan) &&
       
   343 		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
       
   344 			e1000_gate_hw_phy_config_ich8lan(hw, true);
       
   345 
       
   346 		/*
       
   347 		 * Reset the PHY before any access to it.  Doing so, ensures
       
   348 		 * that the PHY is in a known good state before we read/write
       
   349 		 * PHY registers.  The generic reset is sufficient here,
       
   350 		 * because we haven't determined the PHY type yet.
       
   351 		 */
       
   352 		ret_val = e1000e_phy_hw_reset_generic(hw);
       
   353 		if (ret_val)
       
   354 			return ret_val;
       
   355 
       
   356 		/* Ungate automatic PHY configuration on non-managed 82579 */
       
   357 		if ((hw->mac.type == e1000_pch2lan) &&
       
   358 		    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
       
   359 			usleep_range(10000, 20000);
       
   360 			e1000_gate_hw_phy_config_ich8lan(hw, false);
       
   361 		}
       
   362 	}
       
   363 
       
   364 	phy->id = e1000_phy_unknown;
       
   365 	switch (hw->mac.type) {
       
   366 	default:
       
   367 		ret_val = e1000e_get_phy_id(hw);
       
   368 		if (ret_val)
       
   369 			return ret_val;
       
   370 		if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
       
   371 			break;
       
   372 		/* fall-through */
       
   373 	case e1000_pch2lan:
       
   374 		/*
       
   375 		 * In case the PHY needs to be in mdio slow mode,
       
   376 		 * set slow mode and try to get the PHY id again.
       
   377 		 */
       
   378 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
   379 		if (ret_val)
       
   380 			return ret_val;
       
   381 		ret_val = e1000e_get_phy_id(hw);
       
   382 		if (ret_val)
       
   383 			return ret_val;
       
   384 		break;
       
   385 	}
       
   386 	phy->type = e1000e_get_phy_type_from_id(phy->id);
       
   387 
       
   388 	switch (phy->type) {
       
   389 	case e1000_phy_82577:
       
   390 	case e1000_phy_82579:
       
   391 		phy->ops.check_polarity = e1000_check_polarity_82577;
       
   392 		phy->ops.force_speed_duplex =
       
   393 		    e1000_phy_force_speed_duplex_82577;
       
   394 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
       
   395 		phy->ops.get_info = e1000_get_phy_info_82577;
       
   396 		phy->ops.commit = e1000e_phy_sw_reset;
       
   397 		break;
       
   398 	case e1000_phy_82578:
       
   399 		phy->ops.check_polarity = e1000_check_polarity_m88;
       
   400 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
       
   401 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
       
   402 		phy->ops.get_info = e1000e_get_phy_info_m88;
       
   403 		break;
       
   404 	default:
       
   405 		ret_val = -E1000_ERR_PHY;
       
   406 		break;
       
   407 	}
       
   408 
       
   409 	return ret_val;
       
   410 }
       
   411 
       
   412 /**
       
   413  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
       
   414  *  @hw: pointer to the HW structure
       
   415  *
       
   416  *  Initialize family-specific PHY parameters and function pointers.
       
   417  **/
       
   418 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
       
   419 {
       
   420 	struct e1000_phy_info *phy = &hw->phy;
       
   421 	s32 ret_val;
       
   422 	u16 i = 0;
       
   423 
       
   424 	phy->addr			= 1;
       
   425 	phy->reset_delay_us		= 100;
       
   426 
       
   427 	phy->ops.power_up               = e1000_power_up_phy_copper;
       
   428 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
       
   429 
       
   430 	/*
       
   431 	 * We may need to do this twice - once for IGP and if that fails,
       
   432 	 * we'll set BM func pointers and try again
       
   433 	 */
       
   434 	ret_val = e1000e_determine_phy_address(hw);
       
   435 	if (ret_val) {
       
   436 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
       
   437 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
       
   438 		ret_val = e1000e_determine_phy_address(hw);
       
   439 		if (ret_val) {
       
   440 			e_dbg("Cannot determine PHY addr. Erroring out\n");
       
   441 			return ret_val;
       
   442 		}
       
   443 	}
       
   444 
       
   445 	phy->id = 0;
       
   446 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
       
   447 	       (i++ < 100)) {
       
   448 		usleep_range(1000, 2000);
       
   449 		ret_val = e1000e_get_phy_id(hw);
       
   450 		if (ret_val)
       
   451 			return ret_val;
       
   452 	}
       
   453 
       
   454 	/* Verify phy id */
       
   455 	switch (phy->id) {
       
   456 	case IGP03E1000_E_PHY_ID:
       
   457 		phy->type = e1000_phy_igp_3;
       
   458 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   459 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
       
   460 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
       
   461 		phy->ops.get_info = e1000e_get_phy_info_igp;
       
   462 		phy->ops.check_polarity = e1000_check_polarity_igp;
       
   463 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
       
   464 		break;
       
   465 	case IFE_E_PHY_ID:
       
   466 	case IFE_PLUS_E_PHY_ID:
       
   467 	case IFE_C_E_PHY_ID:
       
   468 		phy->type = e1000_phy_ife;
       
   469 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
       
   470 		phy->ops.get_info = e1000_get_phy_info_ife;
       
   471 		phy->ops.check_polarity = e1000_check_polarity_ife;
       
   472 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
       
   473 		break;
       
   474 	case BME1000_E_PHY_ID:
       
   475 		phy->type = e1000_phy_bm;
       
   476 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   477 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
       
   478 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
       
   479 		phy->ops.commit = e1000e_phy_sw_reset;
       
   480 		phy->ops.get_info = e1000e_get_phy_info_m88;
       
   481 		phy->ops.check_polarity = e1000_check_polarity_m88;
       
   482 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
       
   483 		break;
       
   484 	default:
       
   485 		return -E1000_ERR_PHY;
       
   486 		break;
       
   487 	}
       
   488 
       
   489 	return 0;
       
   490 }
       
   491 
       
   492 /**
       
   493  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
       
   494  *  @hw: pointer to the HW structure
       
   495  *
       
   496  *  Initialize family-specific NVM parameters and function
       
   497  *  pointers.
       
   498  **/
       
   499 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
       
   500 {
       
   501 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   502 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
   503 	u32 gfpreg, sector_base_addr, sector_end_addr;
       
   504 	u16 i;
       
   505 
       
   506 	/* Can't read flash registers if the register set isn't mapped. */
       
   507 	if (!hw->flash_address) {
       
   508 		e_dbg("ERROR: Flash registers not mapped\n");
       
   509 		return -E1000_ERR_CONFIG;
       
   510 	}
       
   511 
       
   512 	nvm->type = e1000_nvm_flash_sw;
       
   513 
       
   514 	gfpreg = er32flash(ICH_FLASH_GFPREG);
       
   515 
       
   516 	/*
       
   517 	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
       
   518 	 * Add 1 to sector_end_addr since this sector is included in
       
   519 	 * the overall size.
       
   520 	 */
       
   521 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
       
   522 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
       
   523 
       
   524 	/* flash_base_addr is byte-aligned */
       
   525 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
       
   526 
       
   527 	/*
       
   528 	 * find total size of the NVM, then cut in half since the total
       
   529 	 * size represents two separate NVM banks.
       
   530 	 */
       
   531 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
       
   532 				<< FLASH_SECTOR_ADDR_SHIFT;
       
   533 	nvm->flash_bank_size /= 2;
       
   534 	/* Adjust to word count */
       
   535 	nvm->flash_bank_size /= sizeof(u16);
       
   536 
       
   537 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
       
   538 
       
   539 	/* Clear shadow ram */
       
   540 	for (i = 0; i < nvm->word_size; i++) {
       
   541 		dev_spec->shadow_ram[i].modified = false;
       
   542 		dev_spec->shadow_ram[i].value    = 0xFFFF;
       
   543 	}
       
   544 
       
   545 	return 0;
       
   546 }
       
   547 
       
   548 /**
       
   549  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
       
   550  *  @hw: pointer to the HW structure
       
   551  *
       
   552  *  Initialize family-specific MAC parameters and function
       
   553  *  pointers.
       
   554  **/
       
   555 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
       
   556 {
       
   557 	struct e1000_mac_info *mac = &hw->mac;
       
   558 
       
   559 	/* Set media type function pointer */
       
   560 	hw->phy.media_type = e1000_media_type_copper;
       
   561 
       
   562 	/* Set mta register count */
       
   563 	mac->mta_reg_count = 32;
       
   564 	/* Set rar entry count */
       
   565 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
       
   566 	if (mac->type == e1000_ich8lan)
       
   567 		mac->rar_entry_count--;
       
   568 	/* FWSM register */
       
   569 	mac->has_fwsm = true;
       
   570 	/* ARC subsystem not supported */
       
   571 	mac->arc_subsystem_valid = false;
       
   572 	/* Adaptive IFS supported */
       
   573 	mac->adaptive_ifs = true;
       
   574 
       
   575 	/* LED operations */
       
   576 	switch (mac->type) {
       
   577 	case e1000_ich8lan:
       
   578 	case e1000_ich9lan:
       
   579 	case e1000_ich10lan:
       
   580 		/* check management mode */
       
   581 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
       
   582 		/* ID LED init */
       
   583 		mac->ops.id_led_init = e1000e_id_led_init_generic;
       
   584 		/* blink LED */
       
   585 		mac->ops.blink_led = e1000e_blink_led_generic;
       
   586 		/* setup LED */
       
   587 		mac->ops.setup_led = e1000e_setup_led_generic;
       
   588 		/* cleanup LED */
       
   589 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
       
   590 		/* turn on/off LED */
       
   591 		mac->ops.led_on = e1000_led_on_ich8lan;
       
   592 		mac->ops.led_off = e1000_led_off_ich8lan;
       
   593 		break;
       
   594 	case e1000_pchlan:
       
   595 	case e1000_pch2lan:
       
   596 		/* check management mode */
       
   597 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
       
   598 		/* ID LED init */
       
   599 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
       
   600 		/* setup LED */
       
   601 		mac->ops.setup_led = e1000_setup_led_pchlan;
       
   602 		/* cleanup LED */
       
   603 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
       
   604 		/* turn on/off LED */
       
   605 		mac->ops.led_on = e1000_led_on_pchlan;
       
   606 		mac->ops.led_off = e1000_led_off_pchlan;
       
   607 		break;
       
   608 	default:
       
   609 		break;
       
   610 	}
       
   611 
       
   612 	/* Enable PCS Lock-loss workaround for ICH8 */
       
   613 	if (mac->type == e1000_ich8lan)
       
   614 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
       
   615 
       
   616 	/* Gate automatic PHY configuration by hardware on managed 82579 */
       
   617 	if ((mac->type == e1000_pch2lan) &&
       
   618 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
       
   619 		e1000_gate_hw_phy_config_ich8lan(hw, true);
       
   620 
       
   621 	return 0;
       
   622 }
       
   623 
       
   624 /**
       
   625  *  e1000_set_eee_pchlan - Enable/disable EEE support
       
   626  *  @hw: pointer to the HW structure
       
   627  *
       
   628  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
       
   629  *  the LPI Control register will remain set only if/when link is up.
       
   630  **/
       
   631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
       
   632 {
       
   633 	s32 ret_val = 0;
       
   634 	u16 phy_reg;
       
   635 
       
   636 	if (hw->phy.type != e1000_phy_82579)
       
   637 		return 0;
       
   638 
       
   639 	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
       
   640 	if (ret_val)
       
   641 		return ret_val;
       
   642 
       
   643 	if (hw->dev_spec.ich8lan.eee_disable)
       
   644 		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
       
   645 	else
       
   646 		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
       
   647 
       
   648 	return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
       
   649 }
       
   650 
       
   651 /**
       
   652  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
       
   653  *  @hw: pointer to the HW structure
       
   654  *
       
   655  *  Checks to see of the link status of the hardware has changed.  If a
       
   656  *  change in link status has been detected, then we read the PHY registers
       
   657  *  to get the current speed/duplex if link exists.
       
   658  **/
       
   659 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
       
   660 {
       
   661 	struct e1000_mac_info *mac = &hw->mac;
       
   662 	s32 ret_val;
       
   663 	bool link;
       
   664 	u16 phy_reg;
       
   665 
       
   666 	/*
       
   667 	 * We only want to go out to the PHY registers to see if Auto-Neg
       
   668 	 * has completed and/or if our link status has changed.  The
       
   669 	 * get_link_status flag is set upon receiving a Link Status
       
   670 	 * Change or Rx Sequence Error interrupt.
       
   671 	 */
       
   672 	if (!mac->get_link_status)
       
   673 		return 0;
       
   674 
       
   675 	/*
       
   676 	 * First we want to see if the MII Status Register reports
       
   677 	 * link.  If so, then we want to get the current speed/duplex
       
   678 	 * of the PHY.
       
   679 	 */
       
   680 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
   681 	if (ret_val)
       
   682 		return ret_val;
       
   683 
       
   684 	if (hw->mac.type == e1000_pchlan) {
       
   685 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
       
   686 		if (ret_val)
       
   687 			return ret_val;
       
   688 	}
       
   689 
       
   690 	if (!link)
       
   691 		return 0; /* No link detected */
       
   692 
       
   693 	mac->get_link_status = false;
       
   694 
       
   695 	switch (hw->mac.type) {
       
   696 	case e1000_pch2lan:
       
   697 		ret_val = e1000_k1_workaround_lv(hw);
       
   698 		if (ret_val)
       
   699 			return ret_val;
       
   700 		/* fall-thru */
       
   701 	case e1000_pchlan:
       
   702 		if (hw->phy.type == e1000_phy_82578) {
       
   703 			ret_val = e1000_link_stall_workaround_hv(hw);
       
   704 			if (ret_val)
       
   705 				return ret_val;
       
   706 		}
       
   707 
       
   708 		/*
       
   709 		 * Workaround for PCHx parts in half-duplex:
       
   710 		 * Set the number of preambles removed from the packet
       
   711 		 * when it is passed from the PHY to the MAC to prevent
       
   712 		 * the MAC from misinterpreting the packet type.
       
   713 		 */
       
   714 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
       
   715 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
       
   716 
       
   717 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
       
   718 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
       
   719 
       
   720 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
       
   721 		break;
       
   722 	default:
       
   723 		break;
       
   724 	}
       
   725 
       
   726 	/*
       
   727 	 * Check if there was DownShift, must be checked
       
   728 	 * immediately after link-up
       
   729 	 */
       
   730 	e1000e_check_downshift(hw);
       
   731 
       
   732 	/* Enable/Disable EEE after link up */
       
   733 	ret_val = e1000_set_eee_pchlan(hw);
       
   734 	if (ret_val)
       
   735 		return ret_val;
       
   736 
       
   737 	/*
       
   738 	 * If we are forcing speed/duplex, then we simply return since
       
   739 	 * we have already determined whether we have link or not.
       
   740 	 */
       
   741 	if (!mac->autoneg)
       
   742 		return -E1000_ERR_CONFIG;
       
   743 
       
   744 	/*
       
   745 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
       
   746 	 * of MAC speed/duplex configuration.  So we only need to
       
   747 	 * configure Collision Distance in the MAC.
       
   748 	 */
       
   749 	mac->ops.config_collision_dist(hw);
       
   750 
       
   751 	/*
       
   752 	 * Configure Flow Control now that Auto-Neg has completed.
       
   753 	 * First, we need to restore the desired flow control
       
   754 	 * settings because we may have had to re-autoneg with a
       
   755 	 * different link partner.
       
   756 	 */
       
   757 	ret_val = e1000e_config_fc_after_link_up(hw);
       
   758 	if (ret_val)
       
   759 		e_dbg("Error configuring flow control\n");
       
   760 
       
   761 	return ret_val;
       
   762 }
       
   763 
       
   764 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
       
   765 {
       
   766 	struct e1000_hw *hw = &adapter->hw;
       
   767 	s32 rc;
       
   768 
       
   769 	rc = e1000_init_mac_params_ich8lan(hw);
       
   770 	if (rc)
       
   771 		return rc;
       
   772 
       
   773 	rc = e1000_init_nvm_params_ich8lan(hw);
       
   774 	if (rc)
       
   775 		return rc;
       
   776 
       
   777 	switch (hw->mac.type) {
       
   778 	case e1000_ich8lan:
       
   779 	case e1000_ich9lan:
       
   780 	case e1000_ich10lan:
       
   781 		rc = e1000_init_phy_params_ich8lan(hw);
       
   782 		break;
       
   783 	case e1000_pchlan:
       
   784 	case e1000_pch2lan:
       
   785 		rc = e1000_init_phy_params_pchlan(hw);
       
   786 		break;
       
   787 	default:
       
   788 		break;
       
   789 	}
       
   790 	if (rc)
       
   791 		return rc;
       
   792 
       
   793 	/*
       
   794 	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
       
   795 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
       
   796 	 */
       
   797 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
       
   798 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
       
   799 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
       
   800 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
       
   801 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
       
   802 
       
   803 		hw->mac.ops.blink_led = NULL;
       
   804 	}
       
   805 
       
   806 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
       
   807 	    (adapter->hw.phy.type != e1000_phy_ife))
       
   808 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
       
   809 
       
   810 	/* Enable workaround for 82579 w/ ME enabled */
       
   811 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
       
   812 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
       
   813 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
       
   814 
       
   815 	/* Disable EEE by default until IEEE802.3az spec is finalized */
       
   816 	if (adapter->flags2 & FLAG2_HAS_EEE)
       
   817 		adapter->hw.dev_spec.ich8lan.eee_disable = true;
       
   818 
       
   819 	return 0;
       
   820 }
       
   821 
       
   822 static DEFINE_MUTEX(nvm_mutex);
       
   823 
       
   824 /**
       
   825  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
       
   826  *  @hw: pointer to the HW structure
       
   827  *
       
   828  *  Acquires the mutex for performing NVM operations.
       
   829  **/
       
   830 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
       
   831 {
       
   832 	mutex_lock(&nvm_mutex);
       
   833 
       
   834 	return 0;
       
   835 }
       
   836 
       
   837 /**
       
   838  *  e1000_release_nvm_ich8lan - Release NVM mutex
       
   839  *  @hw: pointer to the HW structure
       
   840  *
       
   841  *  Releases the mutex used while performing NVM operations.
       
   842  **/
       
   843 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
       
   844 {
       
   845 	mutex_unlock(&nvm_mutex);
       
   846 }
       
   847 
       
   848 /**
       
   849  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
       
   850  *  @hw: pointer to the HW structure
       
   851  *
       
   852  *  Acquires the software control flag for performing PHY and select
       
   853  *  MAC CSR accesses.
       
   854  **/
       
   855 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
       
   856 {
       
   857 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
       
   858 	s32 ret_val = 0;
       
   859 
       
   860 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
       
   861 			     &hw->adapter->state)) {
       
   862 		e_dbg("contention for Phy access\n");
       
   863 		return -E1000_ERR_PHY;
       
   864 	}
       
   865 
       
   866 	while (timeout) {
       
   867 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
   868 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
       
   869 			break;
       
   870 
       
   871 		mdelay(1);
       
   872 		timeout--;
       
   873 	}
       
   874 
       
   875 	if (!timeout) {
       
   876 		e_dbg("SW has already locked the resource.\n");
       
   877 		ret_val = -E1000_ERR_CONFIG;
       
   878 		goto out;
       
   879 	}
       
   880 
       
   881 	timeout = SW_FLAG_TIMEOUT;
       
   882 
       
   883 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
       
   884 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   885 
       
   886 	while (timeout) {
       
   887 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
   888 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
       
   889 			break;
       
   890 
       
   891 		mdelay(1);
       
   892 		timeout--;
       
   893 	}
       
   894 
       
   895 	if (!timeout) {
       
   896 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
       
   897 		      er32(FWSM), extcnf_ctrl);
       
   898 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
       
   899 		ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   900 		ret_val = -E1000_ERR_CONFIG;
       
   901 		goto out;
       
   902 	}
       
   903 
       
   904 out:
       
   905 	if (ret_val)
       
   906 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
       
   907 
       
   908 	return ret_val;
       
   909 }
       
   910 
       
   911 /**
       
   912  *  e1000_release_swflag_ich8lan - Release software control flag
       
   913  *  @hw: pointer to the HW structure
       
   914  *
       
   915  *  Releases the software control flag for performing PHY and select
       
   916  *  MAC CSR accesses.
       
   917  **/
       
   918 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
       
   919 {
       
   920 	u32 extcnf_ctrl;
       
   921 
       
   922 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
   923 
       
   924 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
       
   925 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
       
   926 		ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   927 	} else {
       
   928 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
       
   929 	}
       
   930 
       
   931 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
       
   932 }
       
   933 
       
   934 /**
       
   935  *  e1000_check_mng_mode_ich8lan - Checks management mode
       
   936  *  @hw: pointer to the HW structure
       
   937  *
       
   938  *  This checks if the adapter has any manageability enabled.
       
   939  *  This is a function pointer entry point only called by read/write
       
   940  *  routines for the PHY and NVM parts.
       
   941  **/
       
   942 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
       
   943 {
       
   944 	u32 fwsm;
       
   945 
       
   946 	fwsm = er32(FWSM);
       
   947 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
       
   948 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
       
   949 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
       
   950 }
       
   951 
       
   952 /**
       
   953  *  e1000_check_mng_mode_pchlan - Checks management mode
       
   954  *  @hw: pointer to the HW structure
       
   955  *
       
   956  *  This checks if the adapter has iAMT enabled.
       
   957  *  This is a function pointer entry point only called by read/write
       
   958  *  routines for the PHY and NVM parts.
       
   959  **/
       
   960 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
       
   961 {
       
   962 	u32 fwsm;
       
   963 
       
   964 	fwsm = er32(FWSM);
       
   965 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
       
   966 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
       
   967 }
       
   968 
       
   969 /**
       
   970  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
       
   971  *  @hw: pointer to the HW structure
       
   972  *
       
   973  *  Checks if firmware is blocking the reset of the PHY.
       
   974  *  This is a function pointer entry point only called by
       
   975  *  reset routines.
       
   976  **/
       
   977 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
       
   978 {
       
   979 	u32 fwsm;
       
   980 
       
   981 	fwsm = er32(FWSM);
       
   982 
       
   983 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
       
   984 }
       
   985 
       
   986 /**
       
   987  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
       
   988  *  @hw: pointer to the HW structure
       
   989  *
       
   990  *  Assumes semaphore already acquired.
       
   991  *
       
   992  **/
       
   993 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
       
   994 {
       
   995 	u16 phy_data;
       
   996 	u32 strap = er32(STRAP);
       
   997 	s32 ret_val = 0;
       
   998 
       
   999 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
       
  1000 
       
  1001 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
       
  1002 	if (ret_val)
       
  1003 		return ret_val;
       
  1004 
       
  1005 	phy_data &= ~HV_SMB_ADDR_MASK;
       
  1006 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
       
  1007 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
       
  1008 
       
  1009 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
       
  1010 }
       
  1011 
       
  1012 /**
       
  1013  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
       
  1014  *  @hw:   pointer to the HW structure
       
  1015  *
       
  1016  *  SW should configure the LCD from the NVM extended configuration region
       
  1017  *  as a workaround for certain parts.
       
  1018  **/
       
  1019 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
       
  1020 {
       
  1021 	struct e1000_phy_info *phy = &hw->phy;
       
  1022 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
       
  1023 	s32 ret_val = 0;
       
  1024 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
       
  1025 
       
  1026 	/*
       
  1027 	 * Initialize the PHY from the NVM on ICH platforms.  This
       
  1028 	 * is needed due to an issue where the NVM configuration is
       
  1029 	 * not properly autoloaded after power transitions.
       
  1030 	 * Therefore, after each PHY reset, we will load the
       
  1031 	 * configuration data out of the NVM manually.
       
  1032 	 */
       
  1033 	switch (hw->mac.type) {
       
  1034 	case e1000_ich8lan:
       
  1035 		if (phy->type != e1000_phy_igp_3)
       
  1036 			return ret_val;
       
  1037 
       
  1038 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
       
  1039 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
       
  1040 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
       
  1041 			break;
       
  1042 		}
       
  1043 		/* Fall-thru */
       
  1044 	case e1000_pchlan:
       
  1045 	case e1000_pch2lan:
       
  1046 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
       
  1047 		break;
       
  1048 	default:
       
  1049 		return ret_val;
       
  1050 	}
       
  1051 
       
  1052 	ret_val = hw->phy.ops.acquire(hw);
       
  1053 	if (ret_val)
       
  1054 		return ret_val;
       
  1055 
       
  1056 	data = er32(FEXTNVM);
       
  1057 	if (!(data & sw_cfg_mask))
       
  1058 		goto release;
       
  1059 
       
  1060 	/*
       
  1061 	 * Make sure HW does not configure LCD from PHY
       
  1062 	 * extended configuration before SW configuration
       
  1063 	 */
       
  1064 	data = er32(EXTCNF_CTRL);
       
  1065 	if (!(hw->mac.type == e1000_pch2lan)) {
       
  1066 		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
       
  1067 			goto release;
       
  1068 	}
       
  1069 
       
  1070 	cnf_size = er32(EXTCNF_SIZE);
       
  1071 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
       
  1072 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
       
  1073 	if (!cnf_size)
       
  1074 		goto release;
       
  1075 
       
  1076 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
       
  1077 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
       
  1078 
       
  1079 	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
       
  1080 	    (hw->mac.type == e1000_pchlan)) ||
       
  1081 	     (hw->mac.type == e1000_pch2lan)) {
       
  1082 		/*
       
  1083 		 * HW configures the SMBus address and LEDs when the
       
  1084 		 * OEM and LCD Write Enable bits are set in the NVM.
       
  1085 		 * When both NVM bits are cleared, SW will configure
       
  1086 		 * them instead.
       
  1087 		 */
       
  1088 		ret_val = e1000_write_smbus_addr(hw);
       
  1089 		if (ret_val)
       
  1090 			goto release;
       
  1091 
       
  1092 		data = er32(LEDCTL);
       
  1093 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
       
  1094 							(u16)data);
       
  1095 		if (ret_val)
       
  1096 			goto release;
       
  1097 	}
       
  1098 
       
  1099 	/* Configure LCD from extended configuration region. */
       
  1100 
       
  1101 	/* cnf_base_addr is in DWORD */
       
  1102 	word_addr = (u16)(cnf_base_addr << 1);
       
  1103 
       
  1104 	for (i = 0; i < cnf_size; i++) {
       
  1105 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
       
  1106 					 &reg_data);
       
  1107 		if (ret_val)
       
  1108 			goto release;
       
  1109 
       
  1110 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
       
  1111 					 1, &reg_addr);
       
  1112 		if (ret_val)
       
  1113 			goto release;
       
  1114 
       
  1115 		/* Save off the PHY page for future writes. */
       
  1116 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
       
  1117 			phy_page = reg_data;
       
  1118 			continue;
       
  1119 		}
       
  1120 
       
  1121 		reg_addr &= PHY_REG_MASK;
       
  1122 		reg_addr |= phy_page;
       
  1123 
       
  1124 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
       
  1125 						    reg_data);
       
  1126 		if (ret_val)
       
  1127 			goto release;
       
  1128 	}
       
  1129 
       
  1130 release:
       
  1131 	hw->phy.ops.release(hw);
       
  1132 	return ret_val;
       
  1133 }
       
  1134 
       
  1135 /**
       
  1136  *  e1000_k1_gig_workaround_hv - K1 Si workaround
       
  1137  *  @hw:   pointer to the HW structure
       
  1138  *  @link: link up bool flag
       
  1139  *
       
  1140  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
       
  1141  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
       
  1142  *  If link is down, the function will restore the default K1 setting located
       
  1143  *  in the NVM.
       
  1144  **/
       
  1145 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
       
  1146 {
       
  1147 	s32 ret_val = 0;
       
  1148 	u16 status_reg = 0;
       
  1149 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
       
  1150 
       
  1151 	if (hw->mac.type != e1000_pchlan)
       
  1152 		return 0;
       
  1153 
       
  1154 	/* Wrap the whole flow with the sw flag */
       
  1155 	ret_val = hw->phy.ops.acquire(hw);
       
  1156 	if (ret_val)
       
  1157 		return ret_val;
       
  1158 
       
  1159 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
       
  1160 	if (link) {
       
  1161 		if (hw->phy.type == e1000_phy_82578) {
       
  1162 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
       
  1163 			                                          &status_reg);
       
  1164 			if (ret_val)
       
  1165 				goto release;
       
  1166 
       
  1167 			status_reg &= BM_CS_STATUS_LINK_UP |
       
  1168 			              BM_CS_STATUS_RESOLVED |
       
  1169 			              BM_CS_STATUS_SPEED_MASK;
       
  1170 
       
  1171 			if (status_reg == (BM_CS_STATUS_LINK_UP |
       
  1172 			                   BM_CS_STATUS_RESOLVED |
       
  1173 			                   BM_CS_STATUS_SPEED_1000))
       
  1174 				k1_enable = false;
       
  1175 		}
       
  1176 
       
  1177 		if (hw->phy.type == e1000_phy_82577) {
       
  1178 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
       
  1179 			                                          &status_reg);
       
  1180 			if (ret_val)
       
  1181 				goto release;
       
  1182 
       
  1183 			status_reg &= HV_M_STATUS_LINK_UP |
       
  1184 			              HV_M_STATUS_AUTONEG_COMPLETE |
       
  1185 			              HV_M_STATUS_SPEED_MASK;
       
  1186 
       
  1187 			if (status_reg == (HV_M_STATUS_LINK_UP |
       
  1188 			                   HV_M_STATUS_AUTONEG_COMPLETE |
       
  1189 			                   HV_M_STATUS_SPEED_1000))
       
  1190 				k1_enable = false;
       
  1191 		}
       
  1192 
       
  1193 		/* Link stall fix for link up */
       
  1194 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
       
  1195 		                                           0x0100);
       
  1196 		if (ret_val)
       
  1197 			goto release;
       
  1198 
       
  1199 	} else {
       
  1200 		/* Link stall fix for link down */
       
  1201 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
       
  1202 		                                           0x4100);
       
  1203 		if (ret_val)
       
  1204 			goto release;
       
  1205 	}
       
  1206 
       
  1207 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
       
  1208 
       
  1209 release:
       
  1210 	hw->phy.ops.release(hw);
       
  1211 
       
  1212 	return ret_val;
       
  1213 }
       
  1214 
       
  1215 /**
       
  1216  *  e1000_configure_k1_ich8lan - Configure K1 power state
       
  1217  *  @hw: pointer to the HW structure
       
  1218  *  @enable: K1 state to configure
       
  1219  *
       
  1220  *  Configure the K1 power state based on the provided parameter.
       
  1221  *  Assumes semaphore already acquired.
       
  1222  *
       
  1223  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1224  **/
       
  1225 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
       
  1226 {
       
  1227 	s32 ret_val = 0;
       
  1228 	u32 ctrl_reg = 0;
       
  1229 	u32 ctrl_ext = 0;
       
  1230 	u32 reg = 0;
       
  1231 	u16 kmrn_reg = 0;
       
  1232 
       
  1233 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
       
  1234 					      &kmrn_reg);
       
  1235 	if (ret_val)
       
  1236 		return ret_val;
       
  1237 
       
  1238 	if (k1_enable)
       
  1239 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
       
  1240 	else
       
  1241 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
       
  1242 
       
  1243 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
       
  1244 					       kmrn_reg);
       
  1245 	if (ret_val)
       
  1246 		return ret_val;
       
  1247 
       
  1248 	udelay(20);
       
  1249 	ctrl_ext = er32(CTRL_EXT);
       
  1250 	ctrl_reg = er32(CTRL);
       
  1251 
       
  1252 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1253 	reg |= E1000_CTRL_FRCSPD;
       
  1254 	ew32(CTRL, reg);
       
  1255 
       
  1256 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
       
  1257 	e1e_flush();
       
  1258 	udelay(20);
       
  1259 	ew32(CTRL, ctrl_reg);
       
  1260 	ew32(CTRL_EXT, ctrl_ext);
       
  1261 	e1e_flush();
       
  1262 	udelay(20);
       
  1263 
       
  1264 	return 0;
       
  1265 }
       
  1266 
       
  1267 /**
       
  1268  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
       
  1269  *  @hw:       pointer to the HW structure
       
  1270  *  @d0_state: boolean if entering d0 or d3 device state
       
  1271  *
       
  1272  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
       
  1273  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
       
  1274  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
       
  1275  **/
       
  1276 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
       
  1277 {
       
  1278 	s32 ret_val = 0;
       
  1279 	u32 mac_reg;
       
  1280 	u16 oem_reg;
       
  1281 
       
  1282 	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
       
  1283 		return ret_val;
       
  1284 
       
  1285 	ret_val = hw->phy.ops.acquire(hw);
       
  1286 	if (ret_val)
       
  1287 		return ret_val;
       
  1288 
       
  1289 	if (!(hw->mac.type == e1000_pch2lan)) {
       
  1290 		mac_reg = er32(EXTCNF_CTRL);
       
  1291 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
       
  1292 			goto release;
       
  1293 	}
       
  1294 
       
  1295 	mac_reg = er32(FEXTNVM);
       
  1296 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
       
  1297 		goto release;
       
  1298 
       
  1299 	mac_reg = er32(PHY_CTRL);
       
  1300 
       
  1301 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
       
  1302 	if (ret_val)
       
  1303 		goto release;
       
  1304 
       
  1305 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
       
  1306 
       
  1307 	if (d0_state) {
       
  1308 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
       
  1309 			oem_reg |= HV_OEM_BITS_GBE_DIS;
       
  1310 
       
  1311 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
       
  1312 			oem_reg |= HV_OEM_BITS_LPLU;
       
  1313 	} else {
       
  1314 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
       
  1315 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
       
  1316 			oem_reg |= HV_OEM_BITS_GBE_DIS;
       
  1317 
       
  1318 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
       
  1319 			       E1000_PHY_CTRL_NOND0A_LPLU))
       
  1320 			oem_reg |= HV_OEM_BITS_LPLU;
       
  1321 	}
       
  1322 
       
  1323 	/* Set Restart auto-neg to activate the bits */
       
  1324 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
       
  1325 	    !hw->phy.ops.check_reset_block(hw))
       
  1326 		oem_reg |= HV_OEM_BITS_RESTART_AN;
       
  1327 
       
  1328 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
       
  1329 
       
  1330 release:
       
  1331 	hw->phy.ops.release(hw);
       
  1332 
       
  1333 	return ret_val;
       
  1334 }
       
  1335 
       
  1336 
       
  1337 /**
       
  1338  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
       
  1339  *  @hw:   pointer to the HW structure
       
  1340  **/
       
  1341 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
       
  1342 {
       
  1343 	s32 ret_val;
       
  1344 	u16 data;
       
  1345 
       
  1346 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
       
  1347 	if (ret_val)
       
  1348 		return ret_val;
       
  1349 
       
  1350 	data |= HV_KMRN_MDIO_SLOW;
       
  1351 
       
  1352 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
       
  1353 
       
  1354 	return ret_val;
       
  1355 }
       
  1356 
       
  1357 /**
       
  1358  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
       
  1359  *  done after every PHY reset.
       
  1360  **/
       
  1361 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
       
  1362 {
       
  1363 	s32 ret_val = 0;
       
  1364 	u16 phy_data;
       
  1365 
       
  1366 	if (hw->mac.type != e1000_pchlan)
       
  1367 		return 0;
       
  1368 
       
  1369 	/* Set MDIO slow mode before any other MDIO access */
       
  1370 	if (hw->phy.type == e1000_phy_82577) {
       
  1371 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
  1372 		if (ret_val)
       
  1373 			return ret_val;
       
  1374 	}
       
  1375 
       
  1376 	if (((hw->phy.type == e1000_phy_82577) &&
       
  1377 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
       
  1378 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
       
  1379 		/* Disable generation of early preamble */
       
  1380 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
       
  1381 		if (ret_val)
       
  1382 			return ret_val;
       
  1383 
       
  1384 		/* Preamble tuning for SSC */
       
  1385 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
       
  1386 		if (ret_val)
       
  1387 			return ret_val;
       
  1388 	}
       
  1389 
       
  1390 	if (hw->phy.type == e1000_phy_82578) {
       
  1391 		/*
       
  1392 		 * Return registers to default by doing a soft reset then
       
  1393 		 * writing 0x3140 to the control register.
       
  1394 		 */
       
  1395 		if (hw->phy.revision < 2) {
       
  1396 			e1000e_phy_sw_reset(hw);
       
  1397 			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
       
  1398 		}
       
  1399 	}
       
  1400 
       
  1401 	/* Select page 0 */
       
  1402 	ret_val = hw->phy.ops.acquire(hw);
       
  1403 	if (ret_val)
       
  1404 		return ret_val;
       
  1405 
       
  1406 	hw->phy.addr = 1;
       
  1407 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
       
  1408 	hw->phy.ops.release(hw);
       
  1409 	if (ret_val)
       
  1410 		return ret_val;
       
  1411 
       
  1412 	/*
       
  1413 	 * Configure the K1 Si workaround during phy reset assuming there is
       
  1414 	 * link so that it disables K1 if link is in 1Gbps.
       
  1415 	 */
       
  1416 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
       
  1417 	if (ret_val)
       
  1418 		return ret_val;
       
  1419 
       
  1420 	/* Workaround for link disconnects on a busy hub in half duplex */
       
  1421 	ret_val = hw->phy.ops.acquire(hw);
       
  1422 	if (ret_val)
       
  1423 		return ret_val;
       
  1424 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
       
  1425 	if (ret_val)
       
  1426 		goto release;
       
  1427 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
       
  1428 					       phy_data & 0x00FF);
       
  1429 release:
       
  1430 	hw->phy.ops.release(hw);
       
  1431 
       
  1432 	return ret_val;
       
  1433 }
       
  1434 
       
  1435 /**
       
  1436  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
       
  1437  *  @hw:   pointer to the HW structure
       
  1438  **/
       
  1439 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
       
  1440 {
       
  1441 	u32 mac_reg;
       
  1442 	u16 i, phy_reg = 0;
       
  1443 	s32 ret_val;
       
  1444 
       
  1445 	ret_val = hw->phy.ops.acquire(hw);
       
  1446 	if (ret_val)
       
  1447 		return;
       
  1448 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  1449 	if (ret_val)
       
  1450 		goto release;
       
  1451 
       
  1452 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
       
  1453 	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
       
  1454 		mac_reg = er32(RAL(i));
       
  1455 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
       
  1456 					   (u16)(mac_reg & 0xFFFF));
       
  1457 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
       
  1458 					   (u16)((mac_reg >> 16) & 0xFFFF));
       
  1459 
       
  1460 		mac_reg = er32(RAH(i));
       
  1461 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
       
  1462 					   (u16)(mac_reg & 0xFFFF));
       
  1463 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
       
  1464 					   (u16)((mac_reg & E1000_RAH_AV)
       
  1465 						 >> 16));
       
  1466 	}
       
  1467 
       
  1468 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  1469 
       
  1470 release:
       
  1471 	hw->phy.ops.release(hw);
       
  1472 }
       
  1473 
       
  1474 /**
       
  1475  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
       
  1476  *  with 82579 PHY
       
  1477  *  @hw: pointer to the HW structure
       
  1478  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
       
  1479  **/
       
  1480 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
       
  1481 {
       
  1482 	s32 ret_val = 0;
       
  1483 	u16 phy_reg, data;
       
  1484 	u32 mac_reg;
       
  1485 	u16 i;
       
  1486 
       
  1487 	if (hw->mac.type != e1000_pch2lan)
       
  1488 		return 0;
       
  1489 
       
  1490 	/* disable Rx path while enabling/disabling workaround */
       
  1491 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
       
  1492 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
       
  1493 	if (ret_val)
       
  1494 		return ret_val;
       
  1495 
       
  1496 	if (enable) {
       
  1497 		/*
       
  1498 		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
       
  1499 		 * SHRAL/H) and initial CRC values to the MAC
       
  1500 		 */
       
  1501 		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
       
  1502 			u8 mac_addr[ETH_ALEN] = {0};
       
  1503 			u32 addr_high, addr_low;
       
  1504 
       
  1505 			addr_high = er32(RAH(i));
       
  1506 			if (!(addr_high & E1000_RAH_AV))
       
  1507 				continue;
       
  1508 			addr_low = er32(RAL(i));
       
  1509 			mac_addr[0] = (addr_low & 0xFF);
       
  1510 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
       
  1511 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
       
  1512 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
       
  1513 			mac_addr[4] = (addr_high & 0xFF);
       
  1514 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
       
  1515 
       
  1516 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
       
  1517 		}
       
  1518 
       
  1519 		/* Write Rx addresses to the PHY */
       
  1520 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
       
  1521 
       
  1522 		/* Enable jumbo frame workaround in the MAC */
       
  1523 		mac_reg = er32(FFLT_DBG);
       
  1524 		mac_reg &= ~(1 << 14);
       
  1525 		mac_reg |= (7 << 15);
       
  1526 		ew32(FFLT_DBG, mac_reg);
       
  1527 
       
  1528 		mac_reg = er32(RCTL);
       
  1529 		mac_reg |= E1000_RCTL_SECRC;
       
  1530 		ew32(RCTL, mac_reg);
       
  1531 
       
  1532 		ret_val = e1000e_read_kmrn_reg(hw,
       
  1533 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  1534 						&data);
       
  1535 		if (ret_val)
       
  1536 			return ret_val;
       
  1537 		ret_val = e1000e_write_kmrn_reg(hw,
       
  1538 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  1539 						data | (1 << 0));
       
  1540 		if (ret_val)
       
  1541 			return ret_val;
       
  1542 		ret_val = e1000e_read_kmrn_reg(hw,
       
  1543 						E1000_KMRNCTRLSTA_HD_CTRL,
       
  1544 						&data);
       
  1545 		if (ret_val)
       
  1546 			return ret_val;
       
  1547 		data &= ~(0xF << 8);
       
  1548 		data |= (0xB << 8);
       
  1549 		ret_val = e1000e_write_kmrn_reg(hw,
       
  1550 						E1000_KMRNCTRLSTA_HD_CTRL,
       
  1551 						data);
       
  1552 		if (ret_val)
       
  1553 			return ret_val;
       
  1554 
       
  1555 		/* Enable jumbo frame workaround in the PHY */
       
  1556 		e1e_rphy(hw, PHY_REG(769, 23), &data);
       
  1557 		data &= ~(0x7F << 5);
       
  1558 		data |= (0x37 << 5);
       
  1559 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
       
  1560 		if (ret_val)
       
  1561 			return ret_val;
       
  1562 		e1e_rphy(hw, PHY_REG(769, 16), &data);
       
  1563 		data &= ~(1 << 13);
       
  1564 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
       
  1565 		if (ret_val)
       
  1566 			return ret_val;
       
  1567 		e1e_rphy(hw, PHY_REG(776, 20), &data);
       
  1568 		data &= ~(0x3FF << 2);
       
  1569 		data |= (0x1A << 2);
       
  1570 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
       
  1571 		if (ret_val)
       
  1572 			return ret_val;
       
  1573 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
       
  1574 		if (ret_val)
       
  1575 			return ret_val;
       
  1576 		e1e_rphy(hw, HV_PM_CTRL, &data);
       
  1577 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
       
  1578 		if (ret_val)
       
  1579 			return ret_val;
       
  1580 	} else {
       
  1581 		/* Write MAC register values back to h/w defaults */
       
  1582 		mac_reg = er32(FFLT_DBG);
       
  1583 		mac_reg &= ~(0xF << 14);
       
  1584 		ew32(FFLT_DBG, mac_reg);
       
  1585 
       
  1586 		mac_reg = er32(RCTL);
       
  1587 		mac_reg &= ~E1000_RCTL_SECRC;
       
  1588 		ew32(RCTL, mac_reg);
       
  1589 
       
  1590 		ret_val = e1000e_read_kmrn_reg(hw,
       
  1591 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  1592 						&data);
       
  1593 		if (ret_val)
       
  1594 			return ret_val;
       
  1595 		ret_val = e1000e_write_kmrn_reg(hw,
       
  1596 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  1597 						data & ~(1 << 0));
       
  1598 		if (ret_val)
       
  1599 			return ret_val;
       
  1600 		ret_val = e1000e_read_kmrn_reg(hw,
       
  1601 						E1000_KMRNCTRLSTA_HD_CTRL,
       
  1602 						&data);
       
  1603 		if (ret_val)
       
  1604 			return ret_val;
       
  1605 		data &= ~(0xF << 8);
       
  1606 		data |= (0xB << 8);
       
  1607 		ret_val = e1000e_write_kmrn_reg(hw,
       
  1608 						E1000_KMRNCTRLSTA_HD_CTRL,
       
  1609 						data);
       
  1610 		if (ret_val)
       
  1611 			return ret_val;
       
  1612 
       
  1613 		/* Write PHY register values back to h/w defaults */
       
  1614 		e1e_rphy(hw, PHY_REG(769, 23), &data);
       
  1615 		data &= ~(0x7F << 5);
       
  1616 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
       
  1617 		if (ret_val)
       
  1618 			return ret_val;
       
  1619 		e1e_rphy(hw, PHY_REG(769, 16), &data);
       
  1620 		data |= (1 << 13);
       
  1621 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
       
  1622 		if (ret_val)
       
  1623 			return ret_val;
       
  1624 		e1e_rphy(hw, PHY_REG(776, 20), &data);
       
  1625 		data &= ~(0x3FF << 2);
       
  1626 		data |= (0x8 << 2);
       
  1627 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
       
  1628 		if (ret_val)
       
  1629 			return ret_val;
       
  1630 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
       
  1631 		if (ret_val)
       
  1632 			return ret_val;
       
  1633 		e1e_rphy(hw, HV_PM_CTRL, &data);
       
  1634 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
       
  1635 		if (ret_val)
       
  1636 			return ret_val;
       
  1637 	}
       
  1638 
       
  1639 	/* re-enable Rx path after enabling/disabling workaround */
       
  1640 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
       
  1641 }
       
  1642 
       
  1643 /**
       
  1644  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
       
  1645  *  done after every PHY reset.
       
  1646  **/
       
  1647 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
       
  1648 {
       
  1649 	s32 ret_val = 0;
       
  1650 
       
  1651 	if (hw->mac.type != e1000_pch2lan)
       
  1652 		return 0;
       
  1653 
       
  1654 	/* Set MDIO slow mode before any other MDIO access */
       
  1655 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
  1656 
       
  1657 	ret_val = hw->phy.ops.acquire(hw);
       
  1658 	if (ret_val)
       
  1659 		return ret_val;
       
  1660 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
       
  1661 					       I82579_MSE_THRESHOLD);
       
  1662 	if (ret_val)
       
  1663 		goto release;
       
  1664 	/* set MSE higher to enable link to stay up when noise is high */
       
  1665 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034);
       
  1666 	if (ret_val)
       
  1667 		goto release;
       
  1668 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
       
  1669 					       I82579_MSE_LINK_DOWN);
       
  1670 	if (ret_val)
       
  1671 		goto release;
       
  1672 	/* drop link after 5 times MSE threshold was reached */
       
  1673 	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005);
       
  1674 release:
       
  1675 	hw->phy.ops.release(hw);
       
  1676 
       
  1677 	return ret_val;
       
  1678 }
       
  1679 
       
  1680 /**
       
  1681  *  e1000_k1_gig_workaround_lv - K1 Si workaround
       
  1682  *  @hw:   pointer to the HW structure
       
  1683  *
       
  1684  *  Workaround to set the K1 beacon duration for 82579 parts
       
  1685  **/
       
  1686 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
       
  1687 {
       
  1688 	s32 ret_val = 0;
       
  1689 	u16 status_reg = 0;
       
  1690 	u32 mac_reg;
       
  1691 	u16 phy_reg;
       
  1692 
       
  1693 	if (hw->mac.type != e1000_pch2lan)
       
  1694 		return 0;
       
  1695 
       
  1696 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
       
  1697 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
       
  1698 	if (ret_val)
       
  1699 		return ret_val;
       
  1700 
       
  1701 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
       
  1702 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
       
  1703 		mac_reg = er32(FEXTNVM4);
       
  1704 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
       
  1705 
       
  1706 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
       
  1707 		if (ret_val)
       
  1708 			return ret_val;
       
  1709 
       
  1710 		if (status_reg & HV_M_STATUS_SPEED_1000) {
       
  1711 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
       
  1712 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
       
  1713 		} else {
       
  1714 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
       
  1715 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
       
  1716 		}
       
  1717 		ew32(FEXTNVM4, mac_reg);
       
  1718 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
       
  1719 	}
       
  1720 
       
  1721 	return ret_val;
       
  1722 }
       
  1723 
       
  1724 /**
       
  1725  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
       
  1726  *  @hw:   pointer to the HW structure
       
  1727  *  @gate: boolean set to true to gate, false to ungate
       
  1728  *
       
  1729  *  Gate/ungate the automatic PHY configuration via hardware; perform
       
  1730  *  the configuration via software instead.
       
  1731  **/
       
  1732 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
       
  1733 {
       
  1734 	u32 extcnf_ctrl;
       
  1735 
       
  1736 	if (hw->mac.type != e1000_pch2lan)
       
  1737 		return;
       
  1738 
       
  1739 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
  1740 
       
  1741 	if (gate)
       
  1742 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
       
  1743 	else
       
  1744 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
       
  1745 
       
  1746 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
  1747 }
       
  1748 
       
  1749 /**
       
  1750  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
       
  1751  *  @hw: pointer to the HW structure
       
  1752  *
       
  1753  *  Check the appropriate indication the MAC has finished configuring the
       
  1754  *  PHY after a software reset.
       
  1755  **/
       
  1756 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
       
  1757 {
       
  1758 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
       
  1759 
       
  1760 	/* Wait for basic configuration completes before proceeding */
       
  1761 	do {
       
  1762 		data = er32(STATUS);
       
  1763 		data &= E1000_STATUS_LAN_INIT_DONE;
       
  1764 		udelay(100);
       
  1765 	} while ((!data) && --loop);
       
  1766 
       
  1767 	/*
       
  1768 	 * If basic configuration is incomplete before the above loop
       
  1769 	 * count reaches 0, loading the configuration from NVM will
       
  1770 	 * leave the PHY in a bad state possibly resulting in no link.
       
  1771 	 */
       
  1772 	if (loop == 0)
       
  1773 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
       
  1774 
       
  1775 	/* Clear the Init Done bit for the next init event */
       
  1776 	data = er32(STATUS);
       
  1777 	data &= ~E1000_STATUS_LAN_INIT_DONE;
       
  1778 	ew32(STATUS, data);
       
  1779 }
       
  1780 
       
  1781 /**
       
  1782  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
       
  1783  *  @hw: pointer to the HW structure
       
  1784  **/
       
  1785 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
       
  1786 {
       
  1787 	s32 ret_val = 0;
       
  1788 	u16 reg;
       
  1789 
       
  1790 	if (hw->phy.ops.check_reset_block(hw))
       
  1791 		return 0;
       
  1792 
       
  1793 	/* Allow time for h/w to get to quiescent state after reset */
       
  1794 	usleep_range(10000, 20000);
       
  1795 
       
  1796 	/* Perform any necessary post-reset workarounds */
       
  1797 	switch (hw->mac.type) {
       
  1798 	case e1000_pchlan:
       
  1799 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
       
  1800 		if (ret_val)
       
  1801 			return ret_val;
       
  1802 		break;
       
  1803 	case e1000_pch2lan:
       
  1804 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
       
  1805 		if (ret_val)
       
  1806 			return ret_val;
       
  1807 		break;
       
  1808 	default:
       
  1809 		break;
       
  1810 	}
       
  1811 
       
  1812 	/* Clear the host wakeup bit after lcd reset */
       
  1813 	if (hw->mac.type >= e1000_pchlan) {
       
  1814 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
       
  1815 		reg &= ~BM_WUC_HOST_WU_BIT;
       
  1816 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
       
  1817 	}
       
  1818 
       
  1819 	/* Configure the LCD with the extended configuration region in NVM */
       
  1820 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
       
  1821 	if (ret_val)
       
  1822 		return ret_val;
       
  1823 
       
  1824 	/* Configure the LCD with the OEM bits in NVM */
       
  1825 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
       
  1826 
       
  1827 	if (hw->mac.type == e1000_pch2lan) {
       
  1828 		/* Ungate automatic PHY configuration on non-managed 82579 */
       
  1829 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
       
  1830 			usleep_range(10000, 20000);
       
  1831 			e1000_gate_hw_phy_config_ich8lan(hw, false);
       
  1832 		}
       
  1833 
       
  1834 		/* Set EEE LPI Update Timer to 200usec */
       
  1835 		ret_val = hw->phy.ops.acquire(hw);
       
  1836 		if (ret_val)
       
  1837 			return ret_val;
       
  1838 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
       
  1839 						       I82579_LPI_UPDATE_TIMER);
       
  1840 		if (!ret_val)
       
  1841 			ret_val = hw->phy.ops.write_reg_locked(hw,
       
  1842 							       I82579_EMI_DATA,
       
  1843 							       0x1387);
       
  1844 		hw->phy.ops.release(hw);
       
  1845 	}
       
  1846 
       
  1847 	return ret_val;
       
  1848 }
       
  1849 
       
  1850 /**
       
  1851  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
       
  1852  *  @hw: pointer to the HW structure
       
  1853  *
       
  1854  *  Resets the PHY
       
  1855  *  This is a function pointer entry point called by drivers
       
  1856  *  or other shared routines.
       
  1857  **/
       
  1858 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
       
  1859 {
       
  1860 	s32 ret_val = 0;
       
  1861 
       
  1862 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
       
  1863 	if ((hw->mac.type == e1000_pch2lan) &&
       
  1864 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
       
  1865 		e1000_gate_hw_phy_config_ich8lan(hw, true);
       
  1866 
       
  1867 	ret_val = e1000e_phy_hw_reset_generic(hw);
       
  1868 	if (ret_val)
       
  1869 		return ret_val;
       
  1870 
       
  1871 	return e1000_post_phy_reset_ich8lan(hw);
       
  1872 }
       
  1873 
       
  1874 /**
       
  1875  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
       
  1876  *  @hw: pointer to the HW structure
       
  1877  *  @active: true to enable LPLU, false to disable
       
  1878  *
       
  1879  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
       
  1880  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
       
  1881  *  the phy speed. This function will manually set the LPLU bit and restart
       
  1882  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
       
  1883  *  since it configures the same bit.
       
  1884  **/
       
  1885 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
       
  1886 {
       
  1887 	s32 ret_val = 0;
       
  1888 	u16 oem_reg;
       
  1889 
       
  1890 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
       
  1891 	if (ret_val)
       
  1892 		return ret_val;
       
  1893 
       
  1894 	if (active)
       
  1895 		oem_reg |= HV_OEM_BITS_LPLU;
       
  1896 	else
       
  1897 		oem_reg &= ~HV_OEM_BITS_LPLU;
       
  1898 
       
  1899 	if (!hw->phy.ops.check_reset_block(hw))
       
  1900 		oem_reg |= HV_OEM_BITS_RESTART_AN;
       
  1901 
       
  1902 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
       
  1903 }
       
  1904 
       
  1905 /**
       
  1906  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
       
  1907  *  @hw: pointer to the HW structure
       
  1908  *  @active: true to enable LPLU, false to disable
       
  1909  *
       
  1910  *  Sets the LPLU D0 state according to the active flag.  When
       
  1911  *  activating LPLU this function also disables smart speed
       
  1912  *  and vice versa.  LPLU will not be activated unless the
       
  1913  *  device autonegotiation advertisement meets standards of
       
  1914  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  1915  *  This is a function pointer entry point only called by
       
  1916  *  PHY setup routines.
       
  1917  **/
       
  1918 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
       
  1919 {
       
  1920 	struct e1000_phy_info *phy = &hw->phy;
       
  1921 	u32 phy_ctrl;
       
  1922 	s32 ret_val = 0;
       
  1923 	u16 data;
       
  1924 
       
  1925 	if (phy->type == e1000_phy_ife)
       
  1926 		return 0;
       
  1927 
       
  1928 	phy_ctrl = er32(PHY_CTRL);
       
  1929 
       
  1930 	if (active) {
       
  1931 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
       
  1932 		ew32(PHY_CTRL, phy_ctrl);
       
  1933 
       
  1934 		if (phy->type != e1000_phy_igp_3)
       
  1935 			return 0;
       
  1936 
       
  1937 		/*
       
  1938 		 * Call gig speed drop workaround on LPLU before accessing
       
  1939 		 * any PHY registers
       
  1940 		 */
       
  1941 		if (hw->mac.type == e1000_ich8lan)
       
  1942 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  1943 
       
  1944 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  1945 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  1946 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1947 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  1948 		if (ret_val)
       
  1949 			return ret_val;
       
  1950 	} else {
       
  1951 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
       
  1952 		ew32(PHY_CTRL, phy_ctrl);
       
  1953 
       
  1954 		if (phy->type != e1000_phy_igp_3)
       
  1955 			return 0;
       
  1956 
       
  1957 		/*
       
  1958 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  1959 		 * during Dx states where the power conservation is most
       
  1960 		 * important.  During driver activity we should enable
       
  1961 		 * SmartSpeed, so performance is maintained.
       
  1962 		 */
       
  1963 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  1964 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1965 					   &data);
       
  1966 			if (ret_val)
       
  1967 				return ret_val;
       
  1968 
       
  1969 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  1970 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1971 					   data);
       
  1972 			if (ret_val)
       
  1973 				return ret_val;
       
  1974 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  1975 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1976 					   &data);
       
  1977 			if (ret_val)
       
  1978 				return ret_val;
       
  1979 
       
  1980 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1981 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1982 					   data);
       
  1983 			if (ret_val)
       
  1984 				return ret_val;
       
  1985 		}
       
  1986 	}
       
  1987 
       
  1988 	return 0;
       
  1989 }
       
  1990 
       
  1991 /**
       
  1992  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
       
  1993  *  @hw: pointer to the HW structure
       
  1994  *  @active: true to enable LPLU, false to disable
       
  1995  *
       
  1996  *  Sets the LPLU D3 state according to the active flag.  When
       
  1997  *  activating LPLU this function also disables smart speed
       
  1998  *  and vice versa.  LPLU will not be activated unless the
       
  1999  *  device autonegotiation advertisement meets standards of
       
  2000  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  2001  *  This is a function pointer entry point only called by
       
  2002  *  PHY setup routines.
       
  2003  **/
       
  2004 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
       
  2005 {
       
  2006 	struct e1000_phy_info *phy = &hw->phy;
       
  2007 	u32 phy_ctrl;
       
  2008 	s32 ret_val = 0;
       
  2009 	u16 data;
       
  2010 
       
  2011 	phy_ctrl = er32(PHY_CTRL);
       
  2012 
       
  2013 	if (!active) {
       
  2014 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
       
  2015 		ew32(PHY_CTRL, phy_ctrl);
       
  2016 
       
  2017 		if (phy->type != e1000_phy_igp_3)
       
  2018 			return 0;
       
  2019 
       
  2020 		/*
       
  2021 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  2022 		 * during Dx states where the power conservation is most
       
  2023 		 * important.  During driver activity we should enable
       
  2024 		 * SmartSpeed, so performance is maintained.
       
  2025 		 */
       
  2026 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  2027 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2028 					   &data);
       
  2029 			if (ret_val)
       
  2030 				return ret_val;
       
  2031 
       
  2032 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  2033 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2034 					   data);
       
  2035 			if (ret_val)
       
  2036 				return ret_val;
       
  2037 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  2038 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2039 					   &data);
       
  2040 			if (ret_val)
       
  2041 				return ret_val;
       
  2042 
       
  2043 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  2044 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2045 					   data);
       
  2046 			if (ret_val)
       
  2047 				return ret_val;
       
  2048 		}
       
  2049 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
  2050 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
  2051 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
       
  2052 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
       
  2053 		ew32(PHY_CTRL, phy_ctrl);
       
  2054 
       
  2055 		if (phy->type != e1000_phy_igp_3)
       
  2056 			return 0;
       
  2057 
       
  2058 		/*
       
  2059 		 * Call gig speed drop workaround on LPLU before accessing
       
  2060 		 * any PHY registers
       
  2061 		 */
       
  2062 		if (hw->mac.type == e1000_ich8lan)
       
  2063 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  2064 
       
  2065 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  2066 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  2067 		if (ret_val)
       
  2068 			return ret_val;
       
  2069 
       
  2070 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  2071 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  2072 	}
       
  2073 
       
  2074 	return ret_val;
       
  2075 }
       
  2076 
       
  2077 /**
       
  2078  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
       
  2079  *  @hw: pointer to the HW structure
       
  2080  *  @bank:  pointer to the variable that returns the active bank
       
  2081  *
       
  2082  *  Reads signature byte from the NVM using the flash access registers.
       
  2083  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
       
  2084  **/
       
  2085 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
       
  2086 {
       
  2087 	u32 eecd;
       
  2088 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2089 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
       
  2090 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
       
  2091 	u8 sig_byte = 0;
       
  2092 	s32 ret_val;
       
  2093 
       
  2094 	switch (hw->mac.type) {
       
  2095 	case e1000_ich8lan:
       
  2096 	case e1000_ich9lan:
       
  2097 		eecd = er32(EECD);
       
  2098 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
       
  2099 		    E1000_EECD_SEC1VAL_VALID_MASK) {
       
  2100 			if (eecd & E1000_EECD_SEC1VAL)
       
  2101 				*bank = 1;
       
  2102 			else
       
  2103 				*bank = 0;
       
  2104 
       
  2105 			return 0;
       
  2106 		}
       
  2107 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
       
  2108 		/* fall-thru */
       
  2109 	default:
       
  2110 		/* set bank to 0 in case flash read fails */
       
  2111 		*bank = 0;
       
  2112 
       
  2113 		/* Check bank 0 */
       
  2114 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
       
  2115 		                                        &sig_byte);
       
  2116 		if (ret_val)
       
  2117 			return ret_val;
       
  2118 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
       
  2119 		    E1000_ICH_NVM_SIG_VALUE) {
       
  2120 			*bank = 0;
       
  2121 			return 0;
       
  2122 		}
       
  2123 
       
  2124 		/* Check bank 1 */
       
  2125 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
       
  2126 		                                        bank1_offset,
       
  2127 		                                        &sig_byte);
       
  2128 		if (ret_val)
       
  2129 			return ret_val;
       
  2130 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
       
  2131 		    E1000_ICH_NVM_SIG_VALUE) {
       
  2132 			*bank = 1;
       
  2133 			return 0;
       
  2134 		}
       
  2135 
       
  2136 		e_dbg("ERROR: No valid NVM bank present\n");
       
  2137 		return -E1000_ERR_NVM;
       
  2138 	}
       
  2139 }
       
  2140 
       
  2141 /**
       
  2142  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
       
  2143  *  @hw: pointer to the HW structure
       
  2144  *  @offset: The offset (in bytes) of the word(s) to read.
       
  2145  *  @words: Size of data to read in words
       
  2146  *  @data: Pointer to the word(s) to read at offset.
       
  2147  *
       
  2148  *  Reads a word(s) from the NVM using the flash access registers.
       
  2149  **/
       
  2150 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
       
  2151 				  u16 *data)
       
  2152 {
       
  2153 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2154 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2155 	u32 act_offset;
       
  2156 	s32 ret_val = 0;
       
  2157 	u32 bank = 0;
       
  2158 	u16 i, word;
       
  2159 
       
  2160 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
       
  2161 	    (words == 0)) {
       
  2162 		e_dbg("nvm parameter(s) out of bounds\n");
       
  2163 		ret_val = -E1000_ERR_NVM;
       
  2164 		goto out;
       
  2165 	}
       
  2166 
       
  2167 	nvm->ops.acquire(hw);
       
  2168 
       
  2169 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
       
  2170 	if (ret_val) {
       
  2171 		e_dbg("Could not detect valid bank, assuming bank 0\n");
       
  2172 		bank = 0;
       
  2173 	}
       
  2174 
       
  2175 	act_offset = (bank) ? nvm->flash_bank_size : 0;
       
  2176 	act_offset += offset;
       
  2177 
       
  2178 	ret_val = 0;
       
  2179 	for (i = 0; i < words; i++) {
       
  2180 		if (dev_spec->shadow_ram[offset+i].modified) {
       
  2181 			data[i] = dev_spec->shadow_ram[offset+i].value;
       
  2182 		} else {
       
  2183 			ret_val = e1000_read_flash_word_ich8lan(hw,
       
  2184 								act_offset + i,
       
  2185 								&word);
       
  2186 			if (ret_val)
       
  2187 				break;
       
  2188 			data[i] = word;
       
  2189 		}
       
  2190 	}
       
  2191 
       
  2192 	nvm->ops.release(hw);
       
  2193 
       
  2194 out:
       
  2195 	if (ret_val)
       
  2196 		e_dbg("NVM read error: %d\n", ret_val);
       
  2197 
       
  2198 	return ret_val;
       
  2199 }
       
  2200 
       
  2201 /**
       
  2202  *  e1000_flash_cycle_init_ich8lan - Initialize flash
       
  2203  *  @hw: pointer to the HW structure
       
  2204  *
       
  2205  *  This function does initial flash setup so that a new read/write/erase cycle
       
  2206  *  can be started.
       
  2207  **/
       
  2208 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
       
  2209 {
       
  2210 	union ich8_hws_flash_status hsfsts;
       
  2211 	s32 ret_val = -E1000_ERR_NVM;
       
  2212 
       
  2213 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2214 
       
  2215 	/* Check if the flash descriptor is valid */
       
  2216 	if (hsfsts.hsf_status.fldesvalid == 0) {
       
  2217 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
       
  2218 		return -E1000_ERR_NVM;
       
  2219 	}
       
  2220 
       
  2221 	/* Clear FCERR and DAEL in hw status by writing 1 */
       
  2222 	hsfsts.hsf_status.flcerr = 1;
       
  2223 	hsfsts.hsf_status.dael = 1;
       
  2224 
       
  2225 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2226 
       
  2227 	/*
       
  2228 	 * Either we should have a hardware SPI cycle in progress
       
  2229 	 * bit to check against, in order to start a new cycle or
       
  2230 	 * FDONE bit should be changed in the hardware so that it
       
  2231 	 * is 1 after hardware reset, which can then be used as an
       
  2232 	 * indication whether a cycle is in progress or has been
       
  2233 	 * completed.
       
  2234 	 */
       
  2235 
       
  2236 	if (hsfsts.hsf_status.flcinprog == 0) {
       
  2237 		/*
       
  2238 		 * There is no cycle running at present,
       
  2239 		 * so we can start a cycle.
       
  2240 		 * Begin by setting Flash Cycle Done.
       
  2241 		 */
       
  2242 		hsfsts.hsf_status.flcdone = 1;
       
  2243 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2244 		ret_val = 0;
       
  2245 	} else {
       
  2246 		s32 i;
       
  2247 
       
  2248 		/*
       
  2249 		 * Otherwise poll for sometime so the current
       
  2250 		 * cycle has a chance to end before giving up.
       
  2251 		 */
       
  2252 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
       
  2253 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2254 			if (hsfsts.hsf_status.flcinprog == 0) {
       
  2255 				ret_val = 0;
       
  2256 				break;
       
  2257 			}
       
  2258 			udelay(1);
       
  2259 		}
       
  2260 		if (!ret_val) {
       
  2261 			/*
       
  2262 			 * Successful in waiting for previous cycle to timeout,
       
  2263 			 * now set the Flash Cycle Done.
       
  2264 			 */
       
  2265 			hsfsts.hsf_status.flcdone = 1;
       
  2266 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2267 		} else {
       
  2268 			e_dbg("Flash controller busy, cannot get access\n");
       
  2269 		}
       
  2270 	}
       
  2271 
       
  2272 	return ret_val;
       
  2273 }
       
  2274 
       
  2275 /**
       
  2276  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
       
  2277  *  @hw: pointer to the HW structure
       
  2278  *  @timeout: maximum time to wait for completion
       
  2279  *
       
  2280  *  This function starts a flash cycle and waits for its completion.
       
  2281  **/
       
  2282 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
       
  2283 {
       
  2284 	union ich8_hws_flash_ctrl hsflctl;
       
  2285 	union ich8_hws_flash_status hsfsts;
       
  2286 	u32 i = 0;
       
  2287 
       
  2288 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
       
  2289 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2290 	hsflctl.hsf_ctrl.flcgo = 1;
       
  2291 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2292 
       
  2293 	/* wait till FDONE bit is set to 1 */
       
  2294 	do {
       
  2295 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2296 		if (hsfsts.hsf_status.flcdone == 1)
       
  2297 			break;
       
  2298 		udelay(1);
       
  2299 	} while (i++ < timeout);
       
  2300 
       
  2301 	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
       
  2302 		return 0;
       
  2303 
       
  2304 	return -E1000_ERR_NVM;
       
  2305 }
       
  2306 
       
  2307 /**
       
  2308  *  e1000_read_flash_word_ich8lan - Read word from flash
       
  2309  *  @hw: pointer to the HW structure
       
  2310  *  @offset: offset to data location
       
  2311  *  @data: pointer to the location for storing the data
       
  2312  *
       
  2313  *  Reads the flash word at offset into data.  Offset is converted
       
  2314  *  to bytes before read.
       
  2315  **/
       
  2316 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2317 					 u16 *data)
       
  2318 {
       
  2319 	/* Must convert offset into bytes. */
       
  2320 	offset <<= 1;
       
  2321 
       
  2322 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
       
  2323 }
       
  2324 
       
  2325 /**
       
  2326  *  e1000_read_flash_byte_ich8lan - Read byte from flash
       
  2327  *  @hw: pointer to the HW structure
       
  2328  *  @offset: The offset of the byte to read.
       
  2329  *  @data: Pointer to a byte to store the value read.
       
  2330  *
       
  2331  *  Reads a single byte from the NVM using the flash access registers.
       
  2332  **/
       
  2333 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2334 					 u8 *data)
       
  2335 {
       
  2336 	s32 ret_val;
       
  2337 	u16 word = 0;
       
  2338 
       
  2339 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
       
  2340 	if (ret_val)
       
  2341 		return ret_val;
       
  2342 
       
  2343 	*data = (u8)word;
       
  2344 
       
  2345 	return 0;
       
  2346 }
       
  2347 
       
  2348 /**
       
  2349  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
       
  2350  *  @hw: pointer to the HW structure
       
  2351  *  @offset: The offset (in bytes) of the byte or word to read.
       
  2352  *  @size: Size of data to read, 1=byte 2=word
       
  2353  *  @data: Pointer to the word to store the value read.
       
  2354  *
       
  2355  *  Reads a byte or word from the NVM using the flash access registers.
       
  2356  **/
       
  2357 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2358 					 u8 size, u16 *data)
       
  2359 {
       
  2360 	union ich8_hws_flash_status hsfsts;
       
  2361 	union ich8_hws_flash_ctrl hsflctl;
       
  2362 	u32 flash_linear_addr;
       
  2363 	u32 flash_data = 0;
       
  2364 	s32 ret_val = -E1000_ERR_NVM;
       
  2365 	u8 count = 0;
       
  2366 
       
  2367 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
       
  2368 		return -E1000_ERR_NVM;
       
  2369 
       
  2370 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
       
  2371 			    hw->nvm.flash_base_addr;
       
  2372 
       
  2373 	do {
       
  2374 		udelay(1);
       
  2375 		/* Steps */
       
  2376 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  2377 		if (ret_val)
       
  2378 			break;
       
  2379 
       
  2380 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2381 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  2382 		hsflctl.hsf_ctrl.fldbcount = size - 1;
       
  2383 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
       
  2384 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2385 
       
  2386 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  2387 
       
  2388 		ret_val = e1000_flash_cycle_ich8lan(hw,
       
  2389 						ICH_FLASH_READ_COMMAND_TIMEOUT);
       
  2390 
       
  2391 		/*
       
  2392 		 * Check if FCERR is set to 1, if set to 1, clear it
       
  2393 		 * and try the whole sequence a few more times, else
       
  2394 		 * read in (shift in) the Flash Data0, the order is
       
  2395 		 * least significant byte first msb to lsb
       
  2396 		 */
       
  2397 		if (!ret_val) {
       
  2398 			flash_data = er32flash(ICH_FLASH_FDATA0);
       
  2399 			if (size == 1)
       
  2400 				*data = (u8)(flash_data & 0x000000FF);
       
  2401 			else if (size == 2)
       
  2402 				*data = (u16)(flash_data & 0x0000FFFF);
       
  2403 			break;
       
  2404 		} else {
       
  2405 			/*
       
  2406 			 * If we've gotten here, then things are probably
       
  2407 			 * completely hosed, but if the error condition is
       
  2408 			 * detected, it won't hurt to give it another try...
       
  2409 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  2410 			 */
       
  2411 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2412 			if (hsfsts.hsf_status.flcerr == 1) {
       
  2413 				/* Repeat for some time before giving up. */
       
  2414 				continue;
       
  2415 			} else if (hsfsts.hsf_status.flcdone == 0) {
       
  2416 				e_dbg("Timeout error - flash cycle did not complete.\n");
       
  2417 				break;
       
  2418 			}
       
  2419 		}
       
  2420 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  2421 
       
  2422 	return ret_val;
       
  2423 }
       
  2424 
       
  2425 /**
       
  2426  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
       
  2427  *  @hw: pointer to the HW structure
       
  2428  *  @offset: The offset (in bytes) of the word(s) to write.
       
  2429  *  @words: Size of data to write in words
       
  2430  *  @data: Pointer to the word(s) to write at offset.
       
  2431  *
       
  2432  *  Writes a byte or word to the NVM using the flash access registers.
       
  2433  **/
       
  2434 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
       
  2435 				   u16 *data)
       
  2436 {
       
  2437 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2438 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2439 	u16 i;
       
  2440 
       
  2441 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
       
  2442 	    (words == 0)) {
       
  2443 		e_dbg("nvm parameter(s) out of bounds\n");
       
  2444 		return -E1000_ERR_NVM;
       
  2445 	}
       
  2446 
       
  2447 	nvm->ops.acquire(hw);
       
  2448 
       
  2449 	for (i = 0; i < words; i++) {
       
  2450 		dev_spec->shadow_ram[offset+i].modified = true;
       
  2451 		dev_spec->shadow_ram[offset+i].value = data[i];
       
  2452 	}
       
  2453 
       
  2454 	nvm->ops.release(hw);
       
  2455 
       
  2456 	return 0;
       
  2457 }
       
  2458 
       
  2459 /**
       
  2460  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
       
  2461  *  @hw: pointer to the HW structure
       
  2462  *
       
  2463  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
       
  2464  *  which writes the checksum to the shadow ram.  The changes in the shadow
       
  2465  *  ram are then committed to the EEPROM by processing each bank at a time
       
  2466  *  checking for the modified bit and writing only the pending changes.
       
  2467  *  After a successful commit, the shadow ram is cleared and is ready for
       
  2468  *  future writes.
       
  2469  **/
       
  2470 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
       
  2471 {
       
  2472 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2473 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2474 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
       
  2475 	s32 ret_val;
       
  2476 	u16 data;
       
  2477 
       
  2478 	ret_val = e1000e_update_nvm_checksum_generic(hw);
       
  2479 	if (ret_val)
       
  2480 		goto out;
       
  2481 
       
  2482 	if (nvm->type != e1000_nvm_flash_sw)
       
  2483 		goto out;
       
  2484 
       
  2485 	nvm->ops.acquire(hw);
       
  2486 
       
  2487 	/*
       
  2488 	 * We're writing to the opposite bank so if we're on bank 1,
       
  2489 	 * write to bank 0 etc.  We also need to erase the segment that
       
  2490 	 * is going to be written
       
  2491 	 */
       
  2492 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
       
  2493 	if (ret_val) {
       
  2494 		e_dbg("Could not detect valid bank, assuming bank 0\n");
       
  2495 		bank = 0;
       
  2496 	}
       
  2497 
       
  2498 	if (bank == 0) {
       
  2499 		new_bank_offset = nvm->flash_bank_size;
       
  2500 		old_bank_offset = 0;
       
  2501 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
       
  2502 		if (ret_val)
       
  2503 			goto release;
       
  2504 	} else {
       
  2505 		old_bank_offset = nvm->flash_bank_size;
       
  2506 		new_bank_offset = 0;
       
  2507 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
       
  2508 		if (ret_val)
       
  2509 			goto release;
       
  2510 	}
       
  2511 
       
  2512 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
       
  2513 		/*
       
  2514 		 * Determine whether to write the value stored
       
  2515 		 * in the other NVM bank or a modified value stored
       
  2516 		 * in the shadow RAM
       
  2517 		 */
       
  2518 		if (dev_spec->shadow_ram[i].modified) {
       
  2519 			data = dev_spec->shadow_ram[i].value;
       
  2520 		} else {
       
  2521 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
       
  2522 			                                        old_bank_offset,
       
  2523 			                                        &data);
       
  2524 			if (ret_val)
       
  2525 				break;
       
  2526 		}
       
  2527 
       
  2528 		/*
       
  2529 		 * If the word is 0x13, then make sure the signature bits
       
  2530 		 * (15:14) are 11b until the commit has completed.
       
  2531 		 * This will allow us to write 10b which indicates the
       
  2532 		 * signature is valid.  We want to do this after the write
       
  2533 		 * has completed so that we don't mark the segment valid
       
  2534 		 * while the write is still in progress
       
  2535 		 */
       
  2536 		if (i == E1000_ICH_NVM_SIG_WORD)
       
  2537 			data |= E1000_ICH_NVM_SIG_MASK;
       
  2538 
       
  2539 		/* Convert offset to bytes. */
       
  2540 		act_offset = (i + new_bank_offset) << 1;
       
  2541 
       
  2542 		udelay(100);
       
  2543 		/* Write the bytes to the new bank. */
       
  2544 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  2545 							       act_offset,
       
  2546 							       (u8)data);
       
  2547 		if (ret_val)
       
  2548 			break;
       
  2549 
       
  2550 		udelay(100);
       
  2551 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  2552 							  act_offset + 1,
       
  2553 							  (u8)(data >> 8));
       
  2554 		if (ret_val)
       
  2555 			break;
       
  2556 	}
       
  2557 
       
  2558 	/*
       
  2559 	 * Don't bother writing the segment valid bits if sector
       
  2560 	 * programming failed.
       
  2561 	 */
       
  2562 	if (ret_val) {
       
  2563 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
       
  2564 		e_dbg("Flash commit failed.\n");
       
  2565 		goto release;
       
  2566 	}
       
  2567 
       
  2568 	/*
       
  2569 	 * Finally validate the new segment by setting bit 15:14
       
  2570 	 * to 10b in word 0x13 , this can be done without an
       
  2571 	 * erase as well since these bits are 11 to start with
       
  2572 	 * and we need to change bit 14 to 0b
       
  2573 	 */
       
  2574 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
       
  2575 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
       
  2576 	if (ret_val)
       
  2577 		goto release;
       
  2578 
       
  2579 	data &= 0xBFFF;
       
  2580 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  2581 						       act_offset * 2 + 1,
       
  2582 						       (u8)(data >> 8));
       
  2583 	if (ret_val)
       
  2584 		goto release;
       
  2585 
       
  2586 	/*
       
  2587 	 * And invalidate the previously valid segment by setting
       
  2588 	 * its signature word (0x13) high_byte to 0b. This can be
       
  2589 	 * done without an erase because flash erase sets all bits
       
  2590 	 * to 1's. We can write 1's to 0's without an erase
       
  2591 	 */
       
  2592 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
       
  2593 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
       
  2594 	if (ret_val)
       
  2595 		goto release;
       
  2596 
       
  2597 	/* Great!  Everything worked, we can now clear the cached entries. */
       
  2598 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
       
  2599 		dev_spec->shadow_ram[i].modified = false;
       
  2600 		dev_spec->shadow_ram[i].value = 0xFFFF;
       
  2601 	}
       
  2602 
       
  2603 release:
       
  2604 	nvm->ops.release(hw);
       
  2605 
       
  2606 	/*
       
  2607 	 * Reload the EEPROM, or else modifications will not appear
       
  2608 	 * until after the next adapter reset.
       
  2609 	 */
       
  2610 	if (!ret_val) {
       
  2611 		nvm->ops.reload(hw);
       
  2612 		usleep_range(10000, 20000);
       
  2613 	}
       
  2614 
       
  2615 out:
       
  2616 	if (ret_val)
       
  2617 		e_dbg("NVM update error: %d\n", ret_val);
       
  2618 
       
  2619 	return ret_val;
       
  2620 }
       
  2621 
       
  2622 /**
       
  2623  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
       
  2624  *  @hw: pointer to the HW structure
       
  2625  *
       
  2626  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
       
  2627  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
       
  2628  *  calculated, in which case we need to calculate the checksum and set bit 6.
       
  2629  **/
       
  2630 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
       
  2631 {
       
  2632 	s32 ret_val;
       
  2633 	u16 data;
       
  2634 
       
  2635 	/*
       
  2636 	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
       
  2637 	 * needs to be fixed.  This bit is an indication that the NVM
       
  2638 	 * was prepared by OEM software and did not calculate the
       
  2639 	 * checksum...a likely scenario.
       
  2640 	 */
       
  2641 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
       
  2642 	if (ret_val)
       
  2643 		return ret_val;
       
  2644 
       
  2645 	if ((data & 0x40) == 0) {
       
  2646 		data |= 0x40;
       
  2647 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
       
  2648 		if (ret_val)
       
  2649 			return ret_val;
       
  2650 		ret_val = e1000e_update_nvm_checksum(hw);
       
  2651 		if (ret_val)
       
  2652 			return ret_val;
       
  2653 	}
       
  2654 
       
  2655 	return e1000e_validate_nvm_checksum_generic(hw);
       
  2656 }
       
  2657 
       
  2658 /**
       
  2659  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
       
  2660  *  @hw: pointer to the HW structure
       
  2661  *
       
  2662  *  To prevent malicious write/erase of the NVM, set it to be read-only
       
  2663  *  so that the hardware ignores all write/erase cycles of the NVM via
       
  2664  *  the flash control registers.  The shadow-ram copy of the NVM will
       
  2665  *  still be updated, however any updates to this copy will not stick
       
  2666  *  across driver reloads.
       
  2667  **/
       
  2668 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
       
  2669 {
       
  2670 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2671 	union ich8_flash_protected_range pr0;
       
  2672 	union ich8_hws_flash_status hsfsts;
       
  2673 	u32 gfpreg;
       
  2674 
       
  2675 	nvm->ops.acquire(hw);
       
  2676 
       
  2677 	gfpreg = er32flash(ICH_FLASH_GFPREG);
       
  2678 
       
  2679 	/* Write-protect GbE Sector of NVM */
       
  2680 	pr0.regval = er32flash(ICH_FLASH_PR0);
       
  2681 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
       
  2682 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
       
  2683 	pr0.range.wpe = true;
       
  2684 	ew32flash(ICH_FLASH_PR0, pr0.regval);
       
  2685 
       
  2686 	/*
       
  2687 	 * Lock down a subset of GbE Flash Control Registers, e.g.
       
  2688 	 * PR0 to prevent the write-protection from being lifted.
       
  2689 	 * Once FLOCKDN is set, the registers protected by it cannot
       
  2690 	 * be written until FLOCKDN is cleared by a hardware reset.
       
  2691 	 */
       
  2692 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2693 	hsfsts.hsf_status.flockdn = true;
       
  2694 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2695 
       
  2696 	nvm->ops.release(hw);
       
  2697 }
       
  2698 
       
  2699 /**
       
  2700  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
       
  2701  *  @hw: pointer to the HW structure
       
  2702  *  @offset: The offset (in bytes) of the byte/word to read.
       
  2703  *  @size: Size of data to read, 1=byte 2=word
       
  2704  *  @data: The byte(s) to write to the NVM.
       
  2705  *
       
  2706  *  Writes one/two bytes to the NVM using the flash access registers.
       
  2707  **/
       
  2708 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2709 					  u8 size, u16 data)
       
  2710 {
       
  2711 	union ich8_hws_flash_status hsfsts;
       
  2712 	union ich8_hws_flash_ctrl hsflctl;
       
  2713 	u32 flash_linear_addr;
       
  2714 	u32 flash_data = 0;
       
  2715 	s32 ret_val;
       
  2716 	u8 count = 0;
       
  2717 
       
  2718 	if (size < 1 || size > 2 || data > size * 0xff ||
       
  2719 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
       
  2720 		return -E1000_ERR_NVM;
       
  2721 
       
  2722 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
       
  2723 			    hw->nvm.flash_base_addr;
       
  2724 
       
  2725 	do {
       
  2726 		udelay(1);
       
  2727 		/* Steps */
       
  2728 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  2729 		if (ret_val)
       
  2730 			break;
       
  2731 
       
  2732 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2733 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  2734 		hsflctl.hsf_ctrl.fldbcount = size -1;
       
  2735 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
       
  2736 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2737 
       
  2738 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  2739 
       
  2740 		if (size == 1)
       
  2741 			flash_data = (u32)data & 0x00FF;
       
  2742 		else
       
  2743 			flash_data = (u32)data;
       
  2744 
       
  2745 		ew32flash(ICH_FLASH_FDATA0, flash_data);
       
  2746 
       
  2747 		/*
       
  2748 		 * check if FCERR is set to 1 , if set to 1, clear it
       
  2749 		 * and try the whole sequence a few more times else done
       
  2750 		 */
       
  2751 		ret_val = e1000_flash_cycle_ich8lan(hw,
       
  2752 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
       
  2753 		if (!ret_val)
       
  2754 			break;
       
  2755 
       
  2756 		/*
       
  2757 		 * If we're here, then things are most likely
       
  2758 		 * completely hosed, but if the error condition
       
  2759 		 * is detected, it won't hurt to give it another
       
  2760 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  2761 		 */
       
  2762 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2763 		if (hsfsts.hsf_status.flcerr == 1)
       
  2764 			/* Repeat for some time before giving up. */
       
  2765 			continue;
       
  2766 		if (hsfsts.hsf_status.flcdone == 0) {
       
  2767 			e_dbg("Timeout error - flash cycle did not complete.\n");
       
  2768 			break;
       
  2769 		}
       
  2770 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  2771 
       
  2772 	return ret_val;
       
  2773 }
       
  2774 
       
  2775 /**
       
  2776  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
       
  2777  *  @hw: pointer to the HW structure
       
  2778  *  @offset: The index of the byte to read.
       
  2779  *  @data: The byte to write to the NVM.
       
  2780  *
       
  2781  *  Writes a single byte to the NVM using the flash access registers.
       
  2782  **/
       
  2783 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2784 					  u8 data)
       
  2785 {
       
  2786 	u16 word = (u16)data;
       
  2787 
       
  2788 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
       
  2789 }
       
  2790 
       
  2791 /**
       
  2792  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
       
  2793  *  @hw: pointer to the HW structure
       
  2794  *  @offset: The offset of the byte to write.
       
  2795  *  @byte: The byte to write to the NVM.
       
  2796  *
       
  2797  *  Writes a single byte to the NVM using the flash access registers.
       
  2798  *  Goes through a retry algorithm before giving up.
       
  2799  **/
       
  2800 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
       
  2801 						u32 offset, u8 byte)
       
  2802 {
       
  2803 	s32 ret_val;
       
  2804 	u16 program_retries;
       
  2805 
       
  2806 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
       
  2807 	if (!ret_val)
       
  2808 		return ret_val;
       
  2809 
       
  2810 	for (program_retries = 0; program_retries < 100; program_retries++) {
       
  2811 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
       
  2812 		udelay(100);
       
  2813 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
       
  2814 		if (!ret_val)
       
  2815 			break;
       
  2816 	}
       
  2817 	if (program_retries == 100)
       
  2818 		return -E1000_ERR_NVM;
       
  2819 
       
  2820 	return 0;
       
  2821 }
       
  2822 
       
  2823 /**
       
  2824  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
       
  2825  *  @hw: pointer to the HW structure
       
  2826  *  @bank: 0 for first bank, 1 for second bank, etc.
       
  2827  *
       
  2828  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
       
  2829  *  bank N is 4096 * N + flash_reg_addr.
       
  2830  **/
       
  2831 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
       
  2832 {
       
  2833 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2834 	union ich8_hws_flash_status hsfsts;
       
  2835 	union ich8_hws_flash_ctrl hsflctl;
       
  2836 	u32 flash_linear_addr;
       
  2837 	/* bank size is in 16bit words - adjust to bytes */
       
  2838 	u32 flash_bank_size = nvm->flash_bank_size * 2;
       
  2839 	s32 ret_val;
       
  2840 	s32 count = 0;
       
  2841 	s32 j, iteration, sector_size;
       
  2842 
       
  2843 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2844 
       
  2845 	/*
       
  2846 	 * Determine HW Sector size: Read BERASE bits of hw flash status
       
  2847 	 * register
       
  2848 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
       
  2849 	 *     consecutive sectors.  The start index for the nth Hw sector
       
  2850 	 *     can be calculated as = bank * 4096 + n * 256
       
  2851 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
       
  2852 	 *     The start index for the nth Hw sector can be calculated
       
  2853 	 *     as = bank * 4096
       
  2854 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
       
  2855 	 *     (ich9 only, otherwise error condition)
       
  2856 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
       
  2857 	 */
       
  2858 	switch (hsfsts.hsf_status.berasesz) {
       
  2859 	case 0:
       
  2860 		/* Hw sector size 256 */
       
  2861 		sector_size = ICH_FLASH_SEG_SIZE_256;
       
  2862 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
       
  2863 		break;
       
  2864 	case 1:
       
  2865 		sector_size = ICH_FLASH_SEG_SIZE_4K;
       
  2866 		iteration = 1;
       
  2867 		break;
       
  2868 	case 2:
       
  2869 		sector_size = ICH_FLASH_SEG_SIZE_8K;
       
  2870 		iteration = 1;
       
  2871 		break;
       
  2872 	case 3:
       
  2873 		sector_size = ICH_FLASH_SEG_SIZE_64K;
       
  2874 		iteration = 1;
       
  2875 		break;
       
  2876 	default:
       
  2877 		return -E1000_ERR_NVM;
       
  2878 	}
       
  2879 
       
  2880 	/* Start with the base address, then add the sector offset. */
       
  2881 	flash_linear_addr = hw->nvm.flash_base_addr;
       
  2882 	flash_linear_addr += (bank) ? flash_bank_size : 0;
       
  2883 
       
  2884 	for (j = 0; j < iteration ; j++) {
       
  2885 		do {
       
  2886 			/* Steps */
       
  2887 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  2888 			if (ret_val)
       
  2889 				return ret_val;
       
  2890 
       
  2891 			/*
       
  2892 			 * Write a value 11 (block Erase) in Flash
       
  2893 			 * Cycle field in hw flash control
       
  2894 			 */
       
  2895 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2896 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
       
  2897 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2898 
       
  2899 			/*
       
  2900 			 * Write the last 24 bits of an index within the
       
  2901 			 * block into Flash Linear address field in Flash
       
  2902 			 * Address.
       
  2903 			 */
       
  2904 			flash_linear_addr += (j * sector_size);
       
  2905 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  2906 
       
  2907 			ret_val = e1000_flash_cycle_ich8lan(hw,
       
  2908 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
       
  2909 			if (!ret_val)
       
  2910 				break;
       
  2911 
       
  2912 			/*
       
  2913 			 * Check if FCERR is set to 1.  If 1,
       
  2914 			 * clear it and try the whole sequence
       
  2915 			 * a few more times else Done
       
  2916 			 */
       
  2917 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2918 			if (hsfsts.hsf_status.flcerr == 1)
       
  2919 				/* repeat for some time before giving up */
       
  2920 				continue;
       
  2921 			else if (hsfsts.hsf_status.flcdone == 0)
       
  2922 				return ret_val;
       
  2923 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  2924 	}
       
  2925 
       
  2926 	return 0;
       
  2927 }
       
  2928 
       
  2929 /**
       
  2930  *  e1000_valid_led_default_ich8lan - Set the default LED settings
       
  2931  *  @hw: pointer to the HW structure
       
  2932  *  @data: Pointer to the LED settings
       
  2933  *
       
  2934  *  Reads the LED default settings from the NVM to data.  If the NVM LED
       
  2935  *  settings is all 0's or F's, set the LED default to a valid LED default
       
  2936  *  setting.
       
  2937  **/
       
  2938 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
       
  2939 {
       
  2940 	s32 ret_val;
       
  2941 
       
  2942 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  2943 	if (ret_val) {
       
  2944 		e_dbg("NVM Read Error\n");
       
  2945 		return ret_val;
       
  2946 	}
       
  2947 
       
  2948 	if (*data == ID_LED_RESERVED_0000 ||
       
  2949 	    *data == ID_LED_RESERVED_FFFF)
       
  2950 		*data = ID_LED_DEFAULT_ICH8LAN;
       
  2951 
       
  2952 	return 0;
       
  2953 }
       
  2954 
       
  2955 /**
       
  2956  *  e1000_id_led_init_pchlan - store LED configurations
       
  2957  *  @hw: pointer to the HW structure
       
  2958  *
       
  2959  *  PCH does not control LEDs via the LEDCTL register, rather it uses
       
  2960  *  the PHY LED configuration register.
       
  2961  *
       
  2962  *  PCH also does not have an "always on" or "always off" mode which
       
  2963  *  complicates the ID feature.  Instead of using the "on" mode to indicate
       
  2964  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
       
  2965  *  use "link_up" mode.  The LEDs will still ID on request if there is no
       
  2966  *  link based on logic in e1000_led_[on|off]_pchlan().
       
  2967  **/
       
  2968 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
       
  2969 {
       
  2970 	struct e1000_mac_info *mac = &hw->mac;
       
  2971 	s32 ret_val;
       
  2972 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
       
  2973 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
       
  2974 	u16 data, i, temp, shift;
       
  2975 
       
  2976 	/* Get default ID LED modes */
       
  2977 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
       
  2978 	if (ret_val)
       
  2979 		return ret_val;
       
  2980 
       
  2981 	mac->ledctl_default = er32(LEDCTL);
       
  2982 	mac->ledctl_mode1 = mac->ledctl_default;
       
  2983 	mac->ledctl_mode2 = mac->ledctl_default;
       
  2984 
       
  2985 	for (i = 0; i < 4; i++) {
       
  2986 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
       
  2987 		shift = (i * 5);
       
  2988 		switch (temp) {
       
  2989 		case ID_LED_ON1_DEF2:
       
  2990 		case ID_LED_ON1_ON2:
       
  2991 		case ID_LED_ON1_OFF2:
       
  2992 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
       
  2993 			mac->ledctl_mode1 |= (ledctl_on << shift);
       
  2994 			break;
       
  2995 		case ID_LED_OFF1_DEF2:
       
  2996 		case ID_LED_OFF1_ON2:
       
  2997 		case ID_LED_OFF1_OFF2:
       
  2998 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
       
  2999 			mac->ledctl_mode1 |= (ledctl_off << shift);
       
  3000 			break;
       
  3001 		default:
       
  3002 			/* Do nothing */
       
  3003 			break;
       
  3004 		}
       
  3005 		switch (temp) {
       
  3006 		case ID_LED_DEF1_ON2:
       
  3007 		case ID_LED_ON1_ON2:
       
  3008 		case ID_LED_OFF1_ON2:
       
  3009 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
       
  3010 			mac->ledctl_mode2 |= (ledctl_on << shift);
       
  3011 			break;
       
  3012 		case ID_LED_DEF1_OFF2:
       
  3013 		case ID_LED_ON1_OFF2:
       
  3014 		case ID_LED_OFF1_OFF2:
       
  3015 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
       
  3016 			mac->ledctl_mode2 |= (ledctl_off << shift);
       
  3017 			break;
       
  3018 		default:
       
  3019 			/* Do nothing */
       
  3020 			break;
       
  3021 		}
       
  3022 	}
       
  3023 
       
  3024 	return 0;
       
  3025 }
       
  3026 
       
  3027 /**
       
  3028  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
       
  3029  *  @hw: pointer to the HW structure
       
  3030  *
       
  3031  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
       
  3032  *  register, so the the bus width is hard coded.
       
  3033  **/
       
  3034 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
       
  3035 {
       
  3036 	struct e1000_bus_info *bus = &hw->bus;
       
  3037 	s32 ret_val;
       
  3038 
       
  3039 	ret_val = e1000e_get_bus_info_pcie(hw);
       
  3040 
       
  3041 	/*
       
  3042 	 * ICH devices are "PCI Express"-ish.  They have
       
  3043 	 * a configuration space, but do not contain
       
  3044 	 * PCI Express Capability registers, so bus width
       
  3045 	 * must be hardcoded.
       
  3046 	 */
       
  3047 	if (bus->width == e1000_bus_width_unknown)
       
  3048 		bus->width = e1000_bus_width_pcie_x1;
       
  3049 
       
  3050 	return ret_val;
       
  3051 }
       
  3052 
       
  3053 /**
       
  3054  *  e1000_reset_hw_ich8lan - Reset the hardware
       
  3055  *  @hw: pointer to the HW structure
       
  3056  *
       
  3057  *  Does a full reset of the hardware which includes a reset of the PHY and
       
  3058  *  MAC.
       
  3059  **/
       
  3060 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
       
  3061 {
       
  3062 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  3063 	u16 reg;
       
  3064 	u32 ctrl, kab;
       
  3065 	s32 ret_val;
       
  3066 
       
  3067 	/*
       
  3068 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
       
  3069 	 * on the last TLP read/write transaction when MAC is reset.
       
  3070 	 */
       
  3071 	ret_val = e1000e_disable_pcie_master(hw);
       
  3072 	if (ret_val)
       
  3073 		e_dbg("PCI-E Master disable polling has failed.\n");
       
  3074 
       
  3075 	e_dbg("Masking off all interrupts\n");
       
  3076 	ew32(IMC, 0xffffffff);
       
  3077 
       
  3078 	/*
       
  3079 	 * Disable the Transmit and Receive units.  Then delay to allow
       
  3080 	 * any pending transactions to complete before we hit the MAC
       
  3081 	 * with the global reset.
       
  3082 	 */
       
  3083 	ew32(RCTL, 0);
       
  3084 	ew32(TCTL, E1000_TCTL_PSP);
       
  3085 	e1e_flush();
       
  3086 
       
  3087 	usleep_range(10000, 20000);
       
  3088 
       
  3089 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
       
  3090 	if (hw->mac.type == e1000_ich8lan) {
       
  3091 		/* Set Tx and Rx buffer allocation to 8k apiece. */
       
  3092 		ew32(PBA, E1000_PBA_8K);
       
  3093 		/* Set Packet Buffer Size to 16k. */
       
  3094 		ew32(PBS, E1000_PBS_16K);
       
  3095 	}
       
  3096 
       
  3097 	if (hw->mac.type == e1000_pchlan) {
       
  3098 		/* Save the NVM K1 bit setting*/
       
  3099 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
       
  3100 		if (ret_val)
       
  3101 			return ret_val;
       
  3102 
       
  3103 		if (reg & E1000_NVM_K1_ENABLE)
       
  3104 			dev_spec->nvm_k1_enabled = true;
       
  3105 		else
       
  3106 			dev_spec->nvm_k1_enabled = false;
       
  3107 	}
       
  3108 
       
  3109 	ctrl = er32(CTRL);
       
  3110 
       
  3111 	if (!hw->phy.ops.check_reset_block(hw)) {
       
  3112 		/*
       
  3113 		 * Full-chip reset requires MAC and PHY reset at the same
       
  3114 		 * time to make sure the interface between MAC and the
       
  3115 		 * external PHY is reset.
       
  3116 		 */
       
  3117 		ctrl |= E1000_CTRL_PHY_RST;
       
  3118 
       
  3119 		/*
       
  3120 		 * Gate automatic PHY configuration by hardware on
       
  3121 		 * non-managed 82579
       
  3122 		 */
       
  3123 		if ((hw->mac.type == e1000_pch2lan) &&
       
  3124 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
       
  3125 			e1000_gate_hw_phy_config_ich8lan(hw, true);
       
  3126 	}
       
  3127 	ret_val = e1000_acquire_swflag_ich8lan(hw);
       
  3128 	e_dbg("Issuing a global reset to ich8lan\n");
       
  3129 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
       
  3130 	/* cannot issue a flush here because it hangs the hardware */
       
  3131 	msleep(20);
       
  3132 
       
  3133 	if (!ret_val)
       
  3134 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
       
  3135 
       
  3136 	if (ctrl & E1000_CTRL_PHY_RST) {
       
  3137 		ret_val = hw->phy.ops.get_cfg_done(hw);
       
  3138 		if (ret_val)
       
  3139 			return ret_val;
       
  3140 
       
  3141 		ret_val = e1000_post_phy_reset_ich8lan(hw);
       
  3142 		if (ret_val)
       
  3143 			return ret_val;
       
  3144 	}
       
  3145 
       
  3146 	/*
       
  3147 	 * For PCH, this write will make sure that any noise
       
  3148 	 * will be detected as a CRC error and be dropped rather than show up
       
  3149 	 * as a bad packet to the DMA engine.
       
  3150 	 */
       
  3151 	if (hw->mac.type == e1000_pchlan)
       
  3152 		ew32(CRC_OFFSET, 0x65656565);
       
  3153 
       
  3154 	ew32(IMC, 0xffffffff);
       
  3155 	er32(ICR);
       
  3156 
       
  3157 	kab = er32(KABGTXD);
       
  3158 	kab |= E1000_KABGTXD_BGSQLBIAS;
       
  3159 	ew32(KABGTXD, kab);
       
  3160 
       
  3161 	return 0;
       
  3162 }
       
  3163 
       
  3164 /**
       
  3165  *  e1000_init_hw_ich8lan - Initialize the hardware
       
  3166  *  @hw: pointer to the HW structure
       
  3167  *
       
  3168  *  Prepares the hardware for transmit and receive by doing the following:
       
  3169  *   - initialize hardware bits
       
  3170  *   - initialize LED identification
       
  3171  *   - setup receive address registers
       
  3172  *   - setup flow control
       
  3173  *   - setup transmit descriptors
       
  3174  *   - clear statistics
       
  3175  **/
       
  3176 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
       
  3177 {
       
  3178 	struct e1000_mac_info *mac = &hw->mac;
       
  3179 	u32 ctrl_ext, txdctl, snoop;
       
  3180 	s32 ret_val;
       
  3181 	u16 i;
       
  3182 
       
  3183 	e1000_initialize_hw_bits_ich8lan(hw);
       
  3184 
       
  3185 	/* Initialize identification LED */
       
  3186 	ret_val = mac->ops.id_led_init(hw);
       
  3187 	if (ret_val)
       
  3188 		e_dbg("Error initializing identification LED\n");
       
  3189 		/* This is not fatal and we should not stop init due to this */
       
  3190 
       
  3191 	/* Setup the receive address. */
       
  3192 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
       
  3193 
       
  3194 	/* Zero out the Multicast HASH table */
       
  3195 	e_dbg("Zeroing the MTA\n");
       
  3196 	for (i = 0; i < mac->mta_reg_count; i++)
       
  3197 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
       
  3198 
       
  3199 	/*
       
  3200 	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
       
  3201 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
       
  3202 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
       
  3203 	 */
       
  3204 	if (hw->phy.type == e1000_phy_82578) {
       
  3205 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
       
  3206 		i &= ~BM_WUC_HOST_WU_BIT;
       
  3207 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
       
  3208 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
       
  3209 		if (ret_val)
       
  3210 			return ret_val;
       
  3211 	}
       
  3212 
       
  3213 	/* Setup link and flow control */
       
  3214 	ret_val = mac->ops.setup_link(hw);
       
  3215 
       
  3216 	/* Set the transmit descriptor write-back policy for both queues */
       
  3217 	txdctl = er32(TXDCTL(0));
       
  3218 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
       
  3219 		 E1000_TXDCTL_FULL_TX_DESC_WB;
       
  3220 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
       
  3221 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
       
  3222 	ew32(TXDCTL(0), txdctl);
       
  3223 	txdctl = er32(TXDCTL(1));
       
  3224 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
       
  3225 		 E1000_TXDCTL_FULL_TX_DESC_WB;
       
  3226 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
       
  3227 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
       
  3228 	ew32(TXDCTL(1), txdctl);
       
  3229 
       
  3230 	/*
       
  3231 	 * ICH8 has opposite polarity of no_snoop bits.
       
  3232 	 * By default, we should use snoop behavior.
       
  3233 	 */
       
  3234 	if (mac->type == e1000_ich8lan)
       
  3235 		snoop = PCIE_ICH8_SNOOP_ALL;
       
  3236 	else
       
  3237 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
       
  3238 	e1000e_set_pcie_no_snoop(hw, snoop);
       
  3239 
       
  3240 	ctrl_ext = er32(CTRL_EXT);
       
  3241 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
       
  3242 	ew32(CTRL_EXT, ctrl_ext);
       
  3243 
       
  3244 	/*
       
  3245 	 * Clear all of the statistics registers (clear on read).  It is
       
  3246 	 * important that we do this after we have tried to establish link
       
  3247 	 * because the symbol error count will increment wildly if there
       
  3248 	 * is no link.
       
  3249 	 */
       
  3250 	e1000_clear_hw_cntrs_ich8lan(hw);
       
  3251 
       
  3252 	return ret_val;
       
  3253 }
       
  3254 /**
       
  3255  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
       
  3256  *  @hw: pointer to the HW structure
       
  3257  *
       
  3258  *  Sets/Clears required hardware bits necessary for correctly setting up the
       
  3259  *  hardware for transmit and receive.
       
  3260  **/
       
  3261 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
       
  3262 {
       
  3263 	u32 reg;
       
  3264 
       
  3265 	/* Extended Device Control */
       
  3266 	reg = er32(CTRL_EXT);
       
  3267 	reg |= (1 << 22);
       
  3268 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
       
  3269 	if (hw->mac.type >= e1000_pchlan)
       
  3270 		reg |= E1000_CTRL_EXT_PHYPDEN;
       
  3271 	ew32(CTRL_EXT, reg);
       
  3272 
       
  3273 	/* Transmit Descriptor Control 0 */
       
  3274 	reg = er32(TXDCTL(0));
       
  3275 	reg |= (1 << 22);
       
  3276 	ew32(TXDCTL(0), reg);
       
  3277 
       
  3278 	/* Transmit Descriptor Control 1 */
       
  3279 	reg = er32(TXDCTL(1));
       
  3280 	reg |= (1 << 22);
       
  3281 	ew32(TXDCTL(1), reg);
       
  3282 
       
  3283 	/* Transmit Arbitration Control 0 */
       
  3284 	reg = er32(TARC(0));
       
  3285 	if (hw->mac.type == e1000_ich8lan)
       
  3286 		reg |= (1 << 28) | (1 << 29);
       
  3287 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
       
  3288 	ew32(TARC(0), reg);
       
  3289 
       
  3290 	/* Transmit Arbitration Control 1 */
       
  3291 	reg = er32(TARC(1));
       
  3292 	if (er32(TCTL) & E1000_TCTL_MULR)
       
  3293 		reg &= ~(1 << 28);
       
  3294 	else
       
  3295 		reg |= (1 << 28);
       
  3296 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
       
  3297 	ew32(TARC(1), reg);
       
  3298 
       
  3299 	/* Device Status */
       
  3300 	if (hw->mac.type == e1000_ich8lan) {
       
  3301 		reg = er32(STATUS);
       
  3302 		reg &= ~(1 << 31);
       
  3303 		ew32(STATUS, reg);
       
  3304 	}
       
  3305 
       
  3306 	/*
       
  3307 	 * work-around descriptor data corruption issue during nfs v2 udp
       
  3308 	 * traffic, just disable the nfs filtering capability
       
  3309 	 */
       
  3310 	reg = er32(RFCTL);
       
  3311 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
       
  3312 	ew32(RFCTL, reg);
       
  3313 }
       
  3314 
       
  3315 /**
       
  3316  *  e1000_setup_link_ich8lan - Setup flow control and link settings
       
  3317  *  @hw: pointer to the HW structure
       
  3318  *
       
  3319  *  Determines which flow control settings to use, then configures flow
       
  3320  *  control.  Calls the appropriate media-specific link configuration
       
  3321  *  function.  Assuming the adapter has a valid link partner, a valid link
       
  3322  *  should be established.  Assumes the hardware has previously been reset
       
  3323  *  and the transmitter and receiver are not enabled.
       
  3324  **/
       
  3325 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
       
  3326 {
       
  3327 	s32 ret_val;
       
  3328 
       
  3329 	if (hw->phy.ops.check_reset_block(hw))
       
  3330 		return 0;
       
  3331 
       
  3332 	/*
       
  3333 	 * ICH parts do not have a word in the NVM to determine
       
  3334 	 * the default flow control setting, so we explicitly
       
  3335 	 * set it to full.
       
  3336 	 */
       
  3337 	if (hw->fc.requested_mode == e1000_fc_default) {
       
  3338 		/* Workaround h/w hang when Tx flow control enabled */
       
  3339 		if (hw->mac.type == e1000_pchlan)
       
  3340 			hw->fc.requested_mode = e1000_fc_rx_pause;
       
  3341 		else
       
  3342 			hw->fc.requested_mode = e1000_fc_full;
       
  3343 	}
       
  3344 
       
  3345 	/*
       
  3346 	 * Save off the requested flow control mode for use later.  Depending
       
  3347 	 * on the link partner's capabilities, we may or may not use this mode.
       
  3348 	 */
       
  3349 	hw->fc.current_mode = hw->fc.requested_mode;
       
  3350 
       
  3351 	e_dbg("After fix-ups FlowControl is now = %x\n",
       
  3352 		hw->fc.current_mode);
       
  3353 
       
  3354 	/* Continue to configure the copper link. */
       
  3355 	ret_val = hw->mac.ops.setup_physical_interface(hw);
       
  3356 	if (ret_val)
       
  3357 		return ret_val;
       
  3358 
       
  3359 	ew32(FCTTV, hw->fc.pause_time);
       
  3360 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3361 	    (hw->phy.type == e1000_phy_82579) ||
       
  3362 	    (hw->phy.type == e1000_phy_82577)) {
       
  3363 		ew32(FCRTV_PCH, hw->fc.refresh_time);
       
  3364 
       
  3365 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
       
  3366 				   hw->fc.pause_time);
       
  3367 		if (ret_val)
       
  3368 			return ret_val;
       
  3369 	}
       
  3370 
       
  3371 	return e1000e_set_fc_watermarks(hw);
       
  3372 }
       
  3373 
       
  3374 /**
       
  3375  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
       
  3376  *  @hw: pointer to the HW structure
       
  3377  *
       
  3378  *  Configures the kumeran interface to the PHY to wait the appropriate time
       
  3379  *  when polling the PHY, then call the generic setup_copper_link to finish
       
  3380  *  configuring the copper link.
       
  3381  **/
       
  3382 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
       
  3383 {
       
  3384 	u32 ctrl;
       
  3385 	s32 ret_val;
       
  3386 	u16 reg_data;
       
  3387 
       
  3388 	ctrl = er32(CTRL);
       
  3389 	ctrl |= E1000_CTRL_SLU;
       
  3390 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  3391 	ew32(CTRL, ctrl);
       
  3392 
       
  3393 	/*
       
  3394 	 * Set the mac to wait the maximum time between each iteration
       
  3395 	 * and increase the max iterations when polling the phy;
       
  3396 	 * this fixes erroneous timeouts at 10Mbps.
       
  3397 	 */
       
  3398 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
       
  3399 	if (ret_val)
       
  3400 		return ret_val;
       
  3401 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
  3402 	                               &reg_data);
       
  3403 	if (ret_val)
       
  3404 		return ret_val;
       
  3405 	reg_data |= 0x3F;
       
  3406 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
  3407 	                                reg_data);
       
  3408 	if (ret_val)
       
  3409 		return ret_val;
       
  3410 
       
  3411 	switch (hw->phy.type) {
       
  3412 	case e1000_phy_igp_3:
       
  3413 		ret_val = e1000e_copper_link_setup_igp(hw);
       
  3414 		if (ret_val)
       
  3415 			return ret_val;
       
  3416 		break;
       
  3417 	case e1000_phy_bm:
       
  3418 	case e1000_phy_82578:
       
  3419 		ret_val = e1000e_copper_link_setup_m88(hw);
       
  3420 		if (ret_val)
       
  3421 			return ret_val;
       
  3422 		break;
       
  3423 	case e1000_phy_82577:
       
  3424 	case e1000_phy_82579:
       
  3425 		ret_val = e1000_copper_link_setup_82577(hw);
       
  3426 		if (ret_val)
       
  3427 			return ret_val;
       
  3428 		break;
       
  3429 	case e1000_phy_ife:
       
  3430 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
       
  3431 		if (ret_val)
       
  3432 			return ret_val;
       
  3433 
       
  3434 		reg_data &= ~IFE_PMC_AUTO_MDIX;
       
  3435 
       
  3436 		switch (hw->phy.mdix) {
       
  3437 		case 1:
       
  3438 			reg_data &= ~IFE_PMC_FORCE_MDIX;
       
  3439 			break;
       
  3440 		case 2:
       
  3441 			reg_data |= IFE_PMC_FORCE_MDIX;
       
  3442 			break;
       
  3443 		case 0:
       
  3444 		default:
       
  3445 			reg_data |= IFE_PMC_AUTO_MDIX;
       
  3446 			break;
       
  3447 		}
       
  3448 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
       
  3449 		if (ret_val)
       
  3450 			return ret_val;
       
  3451 		break;
       
  3452 	default:
       
  3453 		break;
       
  3454 	}
       
  3455 
       
  3456 	return e1000e_setup_copper_link(hw);
       
  3457 }
       
  3458 
       
  3459 /**
       
  3460  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
       
  3461  *  @hw: pointer to the HW structure
       
  3462  *  @speed: pointer to store current link speed
       
  3463  *  @duplex: pointer to store the current link duplex
       
  3464  *
       
  3465  *  Calls the generic get_speed_and_duplex to retrieve the current link
       
  3466  *  information and then calls the Kumeran lock loss workaround for links at
       
  3467  *  gigabit speeds.
       
  3468  **/
       
  3469 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
       
  3470 					  u16 *duplex)
       
  3471 {
       
  3472 	s32 ret_val;
       
  3473 
       
  3474 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
       
  3475 	if (ret_val)
       
  3476 		return ret_val;
       
  3477 
       
  3478 	if ((hw->mac.type == e1000_ich8lan) &&
       
  3479 	    (hw->phy.type == e1000_phy_igp_3) &&
       
  3480 	    (*speed == SPEED_1000)) {
       
  3481 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
       
  3482 	}
       
  3483 
       
  3484 	return ret_val;
       
  3485 }
       
  3486 
       
  3487 /**
       
  3488  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
       
  3489  *  @hw: pointer to the HW structure
       
  3490  *
       
  3491  *  Work-around for 82566 Kumeran PCS lock loss:
       
  3492  *  On link status change (i.e. PCI reset, speed change) and link is up and
       
  3493  *  speed is gigabit-
       
  3494  *    0) if workaround is optionally disabled do nothing
       
  3495  *    1) wait 1ms for Kumeran link to come up
       
  3496  *    2) check Kumeran Diagnostic register PCS lock loss bit
       
  3497  *    3) if not set the link is locked (all is good), otherwise...
       
  3498  *    4) reset the PHY
       
  3499  *    5) repeat up to 10 times
       
  3500  *  Note: this is only called for IGP3 copper when speed is 1gb.
       
  3501  **/
       
  3502 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
       
  3503 {
       
  3504 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  3505 	u32 phy_ctrl;
       
  3506 	s32 ret_val;
       
  3507 	u16 i, data;
       
  3508 	bool link;
       
  3509 
       
  3510 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
       
  3511 		return 0;
       
  3512 
       
  3513 	/*
       
  3514 	 * Make sure link is up before proceeding.  If not just return.
       
  3515 	 * Attempting this while link is negotiating fouled up link
       
  3516 	 * stability
       
  3517 	 */
       
  3518 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  3519 	if (!link)
       
  3520 		return 0;
       
  3521 
       
  3522 	for (i = 0; i < 10; i++) {
       
  3523 		/* read once to clear */
       
  3524 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
       
  3525 		if (ret_val)
       
  3526 			return ret_val;
       
  3527 		/* and again to get new status */
       
  3528 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
       
  3529 		if (ret_val)
       
  3530 			return ret_val;
       
  3531 
       
  3532 		/* check for PCS lock */
       
  3533 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
       
  3534 			return 0;
       
  3535 
       
  3536 		/* Issue PHY reset */
       
  3537 		e1000_phy_hw_reset(hw);
       
  3538 		mdelay(5);
       
  3539 	}
       
  3540 	/* Disable GigE link negotiation */
       
  3541 	phy_ctrl = er32(PHY_CTRL);
       
  3542 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
       
  3543 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  3544 	ew32(PHY_CTRL, phy_ctrl);
       
  3545 
       
  3546 	/*
       
  3547 	 * Call gig speed drop workaround on Gig disable before accessing
       
  3548 	 * any PHY registers
       
  3549 	 */
       
  3550 	e1000e_gig_downshift_workaround_ich8lan(hw);
       
  3551 
       
  3552 	/* unable to acquire PCS lock */
       
  3553 	return -E1000_ERR_PHY;
       
  3554 }
       
  3555 
       
  3556 /**
       
  3557  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
       
  3558  *  @hw: pointer to the HW structure
       
  3559  *  @state: boolean value used to set the current Kumeran workaround state
       
  3560  *
       
  3561  *  If ICH8, set the current Kumeran workaround state (enabled - true
       
  3562  *  /disabled - false).
       
  3563  **/
       
  3564 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
       
  3565 						 bool state)
       
  3566 {
       
  3567 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  3568 
       
  3569 	if (hw->mac.type != e1000_ich8lan) {
       
  3570 		e_dbg("Workaround applies to ICH8 only.\n");
       
  3571 		return;
       
  3572 	}
       
  3573 
       
  3574 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
       
  3575 }
       
  3576 
       
  3577 /**
       
  3578  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
       
  3579  *  @hw: pointer to the HW structure
       
  3580  *
       
  3581  *  Workaround for 82566 power-down on D3 entry:
       
  3582  *    1) disable gigabit link
       
  3583  *    2) write VR power-down enable
       
  3584  *    3) read it back
       
  3585  *  Continue if successful, else issue LCD reset and repeat
       
  3586  **/
       
  3587 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
       
  3588 {
       
  3589 	u32 reg;
       
  3590 	u16 data;
       
  3591 	u8  retry = 0;
       
  3592 
       
  3593 	if (hw->phy.type != e1000_phy_igp_3)
       
  3594 		return;
       
  3595 
       
  3596 	/* Try the workaround twice (if needed) */
       
  3597 	do {
       
  3598 		/* Disable link */
       
  3599 		reg = er32(PHY_CTRL);
       
  3600 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
       
  3601 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  3602 		ew32(PHY_CTRL, reg);
       
  3603 
       
  3604 		/*
       
  3605 		 * Call gig speed drop workaround on Gig disable before
       
  3606 		 * accessing any PHY registers
       
  3607 		 */
       
  3608 		if (hw->mac.type == e1000_ich8lan)
       
  3609 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  3610 
       
  3611 		/* Write VR power-down enable */
       
  3612 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
       
  3613 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
       
  3614 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
       
  3615 
       
  3616 		/* Read it back and test */
       
  3617 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
       
  3618 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
       
  3619 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
       
  3620 			break;
       
  3621 
       
  3622 		/* Issue PHY reset and repeat at most one more time */
       
  3623 		reg = er32(CTRL);
       
  3624 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
       
  3625 		retry++;
       
  3626 	} while (retry);
       
  3627 }
       
  3628 
       
  3629 /**
       
  3630  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
       
  3631  *  @hw: pointer to the HW structure
       
  3632  *
       
  3633  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
       
  3634  *  LPLU, Gig disable, MDIC PHY reset):
       
  3635  *    1) Set Kumeran Near-end loopback
       
  3636  *    2) Clear Kumeran Near-end loopback
       
  3637  *  Should only be called for ICH8[m] devices with any 1G Phy.
       
  3638  **/
       
  3639 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
       
  3640 {
       
  3641 	s32 ret_val;
       
  3642 	u16 reg_data;
       
  3643 
       
  3644 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
       
  3645 		return;
       
  3646 
       
  3647 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  3648 				      &reg_data);
       
  3649 	if (ret_val)
       
  3650 		return;
       
  3651 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
       
  3652 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  3653 				       reg_data);
       
  3654 	if (ret_val)
       
  3655 		return;
       
  3656 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
       
  3657 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  3658 				       reg_data);
       
  3659 }
       
  3660 
       
  3661 /**
       
  3662  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
       
  3663  *  @hw: pointer to the HW structure
       
  3664  *
       
  3665  *  During S0 to Sx transition, it is possible the link remains at gig
       
  3666  *  instead of negotiating to a lower speed.  Before going to Sx, set
       
  3667  *  'Gig Disable' to force link speed negotiation to a lower speed based on
       
  3668  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
       
  3669  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
       
  3670  *  needs to be written.
       
  3671  **/
       
  3672 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
       
  3673 {
       
  3674 	u32 phy_ctrl;
       
  3675 	s32 ret_val;
       
  3676 
       
  3677 	phy_ctrl = er32(PHY_CTRL);
       
  3678 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
       
  3679 	ew32(PHY_CTRL, phy_ctrl);
       
  3680 
       
  3681 	if (hw->mac.type == e1000_ich8lan)
       
  3682 		e1000e_gig_downshift_workaround_ich8lan(hw);
       
  3683 
       
  3684 	if (hw->mac.type >= e1000_pchlan) {
       
  3685 		e1000_oem_bits_config_ich8lan(hw, false);
       
  3686 
       
  3687 		/* Reset PHY to activate OEM bits on 82577/8 */
       
  3688 		if (hw->mac.type == e1000_pchlan)
       
  3689 			e1000e_phy_hw_reset_generic(hw);
       
  3690 
       
  3691 		ret_val = hw->phy.ops.acquire(hw);
       
  3692 		if (ret_val)
       
  3693 			return;
       
  3694 		e1000_write_smbus_addr(hw);
       
  3695 		hw->phy.ops.release(hw);
       
  3696 	}
       
  3697 }
       
  3698 
       
  3699 /**
       
  3700  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
       
  3701  *  @hw: pointer to the HW structure
       
  3702  *
       
  3703  *  During Sx to S0 transitions on non-managed devices or managed devices
       
  3704  *  on which PHY resets are not blocked, if the PHY registers cannot be
       
  3705  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
       
  3706  *  the PHY.
       
  3707  **/
       
  3708 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
       
  3709 {
       
  3710 	u16 phy_id1, phy_id2;
       
  3711 	s32 ret_val;
       
  3712 
       
  3713 	if ((hw->mac.type != e1000_pch2lan) ||
       
  3714 	    hw->phy.ops.check_reset_block(hw))
       
  3715 		return;
       
  3716 
       
  3717 	ret_val = hw->phy.ops.acquire(hw);
       
  3718 	if (ret_val) {
       
  3719 		e_dbg("Failed to acquire PHY semaphore in resume\n");
       
  3720 		return;
       
  3721 	}
       
  3722 
       
  3723 	/* Test access to the PHY registers by reading the ID regs */
       
  3724 	ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
       
  3725 	if (ret_val)
       
  3726 		goto release;
       
  3727 	ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
       
  3728 	if (ret_val)
       
  3729 		goto release;
       
  3730 
       
  3731 	if (hw->phy.id == ((u32)(phy_id1 << 16) |
       
  3732 			   (u32)(phy_id2 & PHY_REVISION_MASK)))
       
  3733 		goto release;
       
  3734 
       
  3735 	e1000_toggle_lanphypc_value_ich8lan(hw);
       
  3736 
       
  3737 	hw->phy.ops.release(hw);
       
  3738 	msleep(50);
       
  3739 	e1000_phy_hw_reset(hw);
       
  3740 	msleep(50);
       
  3741 	return;
       
  3742 
       
  3743 release:
       
  3744 	hw->phy.ops.release(hw);
       
  3745 }
       
  3746 
       
  3747 /**
       
  3748  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
       
  3749  *  @hw: pointer to the HW structure
       
  3750  *
       
  3751  *  Return the LED back to the default configuration.
       
  3752  **/
       
  3753 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
       
  3754 {
       
  3755 	if (hw->phy.type == e1000_phy_ife)
       
  3756 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  3757 
       
  3758 	ew32(LEDCTL, hw->mac.ledctl_default);
       
  3759 	return 0;
       
  3760 }
       
  3761 
       
  3762 /**
       
  3763  *  e1000_led_on_ich8lan - Turn LEDs on
       
  3764  *  @hw: pointer to the HW structure
       
  3765  *
       
  3766  *  Turn on the LEDs.
       
  3767  **/
       
  3768 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
       
  3769 {
       
  3770 	if (hw->phy.type == e1000_phy_ife)
       
  3771 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  3772 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
       
  3773 
       
  3774 	ew32(LEDCTL, hw->mac.ledctl_mode2);
       
  3775 	return 0;
       
  3776 }
       
  3777 
       
  3778 /**
       
  3779  *  e1000_led_off_ich8lan - Turn LEDs off
       
  3780  *  @hw: pointer to the HW structure
       
  3781  *
       
  3782  *  Turn off the LEDs.
       
  3783  **/
       
  3784 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
       
  3785 {
       
  3786 	if (hw->phy.type == e1000_phy_ife)
       
  3787 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  3788 				(IFE_PSCL_PROBE_MODE |
       
  3789 				 IFE_PSCL_PROBE_LEDS_OFF));
       
  3790 
       
  3791 	ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  3792 	return 0;
       
  3793 }
       
  3794 
       
  3795 /**
       
  3796  *  e1000_setup_led_pchlan - Configures SW controllable LED
       
  3797  *  @hw: pointer to the HW structure
       
  3798  *
       
  3799  *  This prepares the SW controllable LED for use.
       
  3800  **/
       
  3801 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
       
  3802 {
       
  3803 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
       
  3804 }
       
  3805 
       
  3806 /**
       
  3807  *  e1000_cleanup_led_pchlan - Restore the default LED operation
       
  3808  *  @hw: pointer to the HW structure
       
  3809  *
       
  3810  *  Return the LED back to the default configuration.
       
  3811  **/
       
  3812 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
       
  3813 {
       
  3814 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
       
  3815 }
       
  3816 
       
  3817 /**
       
  3818  *  e1000_led_on_pchlan - Turn LEDs on
       
  3819  *  @hw: pointer to the HW structure
       
  3820  *
       
  3821  *  Turn on the LEDs.
       
  3822  **/
       
  3823 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
       
  3824 {
       
  3825 	u16 data = (u16)hw->mac.ledctl_mode2;
       
  3826 	u32 i, led;
       
  3827 
       
  3828 	/*
       
  3829 	 * If no link, then turn LED on by setting the invert bit
       
  3830 	 * for each LED that's mode is "link_up" in ledctl_mode2.
       
  3831 	 */
       
  3832 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
       
  3833 		for (i = 0; i < 3; i++) {
       
  3834 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
       
  3835 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
       
  3836 			    E1000_LEDCTL_MODE_LINK_UP)
       
  3837 				continue;
       
  3838 			if (led & E1000_PHY_LED0_IVRT)
       
  3839 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
       
  3840 			else
       
  3841 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
       
  3842 		}
       
  3843 	}
       
  3844 
       
  3845 	return e1e_wphy(hw, HV_LED_CONFIG, data);
       
  3846 }
       
  3847 
       
  3848 /**
       
  3849  *  e1000_led_off_pchlan - Turn LEDs off
       
  3850  *  @hw: pointer to the HW structure
       
  3851  *
       
  3852  *  Turn off the LEDs.
       
  3853  **/
       
  3854 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
       
  3855 {
       
  3856 	u16 data = (u16)hw->mac.ledctl_mode1;
       
  3857 	u32 i, led;
       
  3858 
       
  3859 	/*
       
  3860 	 * If no link, then turn LED off by clearing the invert bit
       
  3861 	 * for each LED that's mode is "link_up" in ledctl_mode1.
       
  3862 	 */
       
  3863 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
       
  3864 		for (i = 0; i < 3; i++) {
       
  3865 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
       
  3866 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
       
  3867 			    E1000_LEDCTL_MODE_LINK_UP)
       
  3868 				continue;
       
  3869 			if (led & E1000_PHY_LED0_IVRT)
       
  3870 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
       
  3871 			else
       
  3872 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
       
  3873 		}
       
  3874 	}
       
  3875 
       
  3876 	return e1e_wphy(hw, HV_LED_CONFIG, data);
       
  3877 }
       
  3878 
       
  3879 /**
       
  3880  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
       
  3881  *  @hw: pointer to the HW structure
       
  3882  *
       
  3883  *  Read appropriate register for the config done bit for completion status
       
  3884  *  and configure the PHY through s/w for EEPROM-less parts.
       
  3885  *
       
  3886  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
       
  3887  *  config done bit, so only an error is logged and continues.  If we were
       
  3888  *  to return with error, EEPROM-less silicon would not be able to be reset
       
  3889  *  or change link.
       
  3890  **/
       
  3891 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
       
  3892 {
       
  3893 	s32 ret_val = 0;
       
  3894 	u32 bank = 0;
       
  3895 	u32 status;
       
  3896 
       
  3897 	e1000e_get_cfg_done(hw);
       
  3898 
       
  3899 	/* Wait for indication from h/w that it has completed basic config */
       
  3900 	if (hw->mac.type >= e1000_ich10lan) {
       
  3901 		e1000_lan_init_done_ich8lan(hw);
       
  3902 	} else {
       
  3903 		ret_val = e1000e_get_auto_rd_done(hw);
       
  3904 		if (ret_val) {
       
  3905 			/*
       
  3906 			 * When auto config read does not complete, do not
       
  3907 			 * return with an error. This can happen in situations
       
  3908 			 * where there is no eeprom and prevents getting link.
       
  3909 			 */
       
  3910 			e_dbg("Auto Read Done did not complete\n");
       
  3911 			ret_val = 0;
       
  3912 		}
       
  3913 	}
       
  3914 
       
  3915 	/* Clear PHY Reset Asserted bit */
       
  3916 	status = er32(STATUS);
       
  3917 	if (status & E1000_STATUS_PHYRA)
       
  3918 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
       
  3919 	else
       
  3920 		e_dbg("PHY Reset Asserted not set - needs delay\n");
       
  3921 
       
  3922 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
       
  3923 	if (hw->mac.type <= e1000_ich9lan) {
       
  3924 		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
       
  3925 		    (hw->phy.type == e1000_phy_igp_3)) {
       
  3926 			e1000e_phy_init_script_igp3(hw);
       
  3927 		}
       
  3928 	} else {
       
  3929 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
       
  3930 			/* Maybe we should do a basic PHY config */
       
  3931 			e_dbg("EEPROM not present\n");
       
  3932 			ret_val = -E1000_ERR_CONFIG;
       
  3933 		}
       
  3934 	}
       
  3935 
       
  3936 	return ret_val;
       
  3937 }
       
  3938 
       
  3939 /**
       
  3940  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
       
  3941  * @hw: pointer to the HW structure
       
  3942  *
       
  3943  * In the case of a PHY power down to save power, or to turn off link during a
       
  3944  * driver unload, or wake on lan is not enabled, remove the link.
       
  3945  **/
       
  3946 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
       
  3947 {
       
  3948 	/* If the management interface is not enabled, then power down */
       
  3949 	if (!(hw->mac.ops.check_mng_mode(hw) ||
       
  3950 	      hw->phy.ops.check_reset_block(hw)))
       
  3951 		e1000_power_down_phy_copper(hw);
       
  3952 }
       
  3953 
       
  3954 /**
       
  3955  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
       
  3956  *  @hw: pointer to the HW structure
       
  3957  *
       
  3958  *  Clears hardware counters specific to the silicon family and calls
       
  3959  *  clear_hw_cntrs_generic to clear all general purpose counters.
       
  3960  **/
       
  3961 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
       
  3962 {
       
  3963 	u16 phy_data;
       
  3964 	s32 ret_val;
       
  3965 
       
  3966 	e1000e_clear_hw_cntrs_base(hw);
       
  3967 
       
  3968 	er32(ALGNERRC);
       
  3969 	er32(RXERRC);
       
  3970 	er32(TNCRS);
       
  3971 	er32(CEXTERR);
       
  3972 	er32(TSCTC);
       
  3973 	er32(TSCTFC);
       
  3974 
       
  3975 	er32(MGTPRC);
       
  3976 	er32(MGTPDC);
       
  3977 	er32(MGTPTC);
       
  3978 
       
  3979 	er32(IAC);
       
  3980 	er32(ICRXOC);
       
  3981 
       
  3982 	/* Clear PHY statistics registers */
       
  3983 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3984 	    (hw->phy.type == e1000_phy_82579) ||
       
  3985 	    (hw->phy.type == e1000_phy_82577)) {
       
  3986 		ret_val = hw->phy.ops.acquire(hw);
       
  3987 		if (ret_val)
       
  3988 			return;
       
  3989 		ret_val = hw->phy.ops.set_page(hw,
       
  3990 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
       
  3991 		if (ret_val)
       
  3992 			goto release;
       
  3993 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
       
  3994 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
       
  3995 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
       
  3996 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
       
  3997 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
       
  3998 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
       
  3999 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
       
  4000 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
       
  4001 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
       
  4002 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
       
  4003 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
       
  4004 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
       
  4005 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
       
  4006 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
       
  4007 release:
       
  4008 		hw->phy.ops.release(hw);
       
  4009 	}
       
  4010 }
       
  4011 
       
  4012 static const struct e1000_mac_operations ich8_mac_ops = {
       
  4013 	/* check_mng_mode dependent on mac type */
       
  4014 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
       
  4015 	/* cleanup_led dependent on mac type */
       
  4016 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
       
  4017 	.get_bus_info		= e1000_get_bus_info_ich8lan,
       
  4018 	.set_lan_id		= e1000_set_lan_id_single_port,
       
  4019 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
       
  4020 	/* led_on dependent on mac type */
       
  4021 	/* led_off dependent on mac type */
       
  4022 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
       
  4023 	.reset_hw		= e1000_reset_hw_ich8lan,
       
  4024 	.init_hw		= e1000_init_hw_ich8lan,
       
  4025 	.setup_link		= e1000_setup_link_ich8lan,
       
  4026 	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
       
  4027 	/* id_led_init dependent on mac type */
       
  4028 	.config_collision_dist	= e1000e_config_collision_dist_generic,
       
  4029 };
       
  4030 
       
  4031 static const struct e1000_phy_operations ich8_phy_ops = {
       
  4032 	.acquire		= e1000_acquire_swflag_ich8lan,
       
  4033 	.check_reset_block	= e1000_check_reset_block_ich8lan,
       
  4034 	.commit			= NULL,
       
  4035 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
       
  4036 	.get_cable_length	= e1000e_get_cable_length_igp_2,
       
  4037 	.read_reg		= e1000e_read_phy_reg_igp,
       
  4038 	.release		= e1000_release_swflag_ich8lan,
       
  4039 	.reset			= e1000_phy_hw_reset_ich8lan,
       
  4040 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
       
  4041 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
       
  4042 	.write_reg		= e1000e_write_phy_reg_igp,
       
  4043 };
       
  4044 
       
  4045 static const struct e1000_nvm_operations ich8_nvm_ops = {
       
  4046 	.acquire		= e1000_acquire_nvm_ich8lan,
       
  4047 	.read		 	= e1000_read_nvm_ich8lan,
       
  4048 	.release		= e1000_release_nvm_ich8lan,
       
  4049 	.reload			= e1000e_reload_nvm_generic,
       
  4050 	.update			= e1000_update_nvm_checksum_ich8lan,
       
  4051 	.valid_led_default	= e1000_valid_led_default_ich8lan,
       
  4052 	.validate		= e1000_validate_nvm_checksum_ich8lan,
       
  4053 	.write			= e1000_write_nvm_ich8lan,
       
  4054 };
       
  4055 
       
  4056 const struct e1000_info e1000_ich8_info = {
       
  4057 	.mac			= e1000_ich8lan,
       
  4058 	.flags			= FLAG_HAS_WOL
       
  4059 				  | FLAG_IS_ICH
       
  4060 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4061 				  | FLAG_HAS_AMT
       
  4062 				  | FLAG_HAS_FLASH
       
  4063 				  | FLAG_APME_IN_WUC,
       
  4064 	.pba			= 8,
       
  4065 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
       
  4066 	.get_variants		= e1000_get_variants_ich8lan,
       
  4067 	.mac_ops		= &ich8_mac_ops,
       
  4068 	.phy_ops		= &ich8_phy_ops,
       
  4069 	.nvm_ops		= &ich8_nvm_ops,
       
  4070 };
       
  4071 
       
  4072 const struct e1000_info e1000_ich9_info = {
       
  4073 	.mac			= e1000_ich9lan,
       
  4074 	.flags			= FLAG_HAS_JUMBO_FRAMES
       
  4075 				  | FLAG_IS_ICH
       
  4076 				  | FLAG_HAS_WOL
       
  4077 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4078 				  | FLAG_HAS_AMT
       
  4079 				  | FLAG_HAS_FLASH
       
  4080 				  | FLAG_APME_IN_WUC,
       
  4081 	.pba			= 18,
       
  4082 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  4083 	.get_variants		= e1000_get_variants_ich8lan,
       
  4084 	.mac_ops		= &ich8_mac_ops,
       
  4085 	.phy_ops		= &ich8_phy_ops,
       
  4086 	.nvm_ops		= &ich8_nvm_ops,
       
  4087 };
       
  4088 
       
  4089 const struct e1000_info e1000_ich10_info = {
       
  4090 	.mac			= e1000_ich10lan,
       
  4091 	.flags			= FLAG_HAS_JUMBO_FRAMES
       
  4092 				  | FLAG_IS_ICH
       
  4093 				  | FLAG_HAS_WOL
       
  4094 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4095 				  | FLAG_HAS_AMT
       
  4096 				  | FLAG_HAS_FLASH
       
  4097 				  | FLAG_APME_IN_WUC,
       
  4098 	.pba			= 18,
       
  4099 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  4100 	.get_variants		= e1000_get_variants_ich8lan,
       
  4101 	.mac_ops		= &ich8_mac_ops,
       
  4102 	.phy_ops		= &ich8_phy_ops,
       
  4103 	.nvm_ops		= &ich8_nvm_ops,
       
  4104 };
       
  4105 
       
  4106 const struct e1000_info e1000_pch_info = {
       
  4107 	.mac			= e1000_pchlan,
       
  4108 	.flags			= FLAG_IS_ICH
       
  4109 				  | FLAG_HAS_WOL
       
  4110 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4111 				  | FLAG_HAS_AMT
       
  4112 				  | FLAG_HAS_FLASH
       
  4113 				  | FLAG_HAS_JUMBO_FRAMES
       
  4114 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
       
  4115 				  | FLAG_APME_IN_WUC,
       
  4116 	.flags2			= FLAG2_HAS_PHY_STATS,
       
  4117 	.pba			= 26,
       
  4118 	.max_hw_frame_size	= 4096,
       
  4119 	.get_variants		= e1000_get_variants_ich8lan,
       
  4120 	.mac_ops		= &ich8_mac_ops,
       
  4121 	.phy_ops		= &ich8_phy_ops,
       
  4122 	.nvm_ops		= &ich8_nvm_ops,
       
  4123 };
       
  4124 
       
  4125 const struct e1000_info e1000_pch2_info = {
       
  4126 	.mac			= e1000_pch2lan,
       
  4127 	.flags			= FLAG_IS_ICH
       
  4128 				  | FLAG_HAS_WOL
       
  4129 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4130 				  | FLAG_HAS_AMT
       
  4131 				  | FLAG_HAS_FLASH
       
  4132 				  | FLAG_HAS_JUMBO_FRAMES
       
  4133 				  | FLAG_APME_IN_WUC,
       
  4134 	.flags2			= FLAG2_HAS_PHY_STATS
       
  4135 				  | FLAG2_HAS_EEE,
       
  4136 	.pba			= 26,
       
  4137 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  4138 	.get_variants		= e1000_get_variants_ich8lan,
       
  4139 	.mac_ops		= &ich8_mac_ops,
       
  4140 	.phy_ops		= &ich8_phy_ops,
       
  4141 	.nvm_ops		= &ich8_nvm_ops,
       
  4142 };