devices/e1000e/ethtool-3.4-orig.c
branchstable-1.5
changeset 2491 5e9221a78855
equal deleted inserted replaced
2490:6ad972f38438 2491:5e9221a78855
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2012 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* ethtool support for e1000 */
       
    30 
       
    31 #include <linux/netdevice.h>
       
    32 #include <linux/interrupt.h>
       
    33 #include <linux/ethtool.h>
       
    34 #include <linux/pci.h>
       
    35 #include <linux/slab.h>
       
    36 #include <linux/delay.h>
       
    37 #include <linux/vmalloc.h>
       
    38 
       
    39 #include "e1000.h"
       
    40 
       
    41 enum {NETDEV_STATS, E1000_STATS};
       
    42 
       
    43 struct e1000_stats {
       
    44 	char stat_string[ETH_GSTRING_LEN];
       
    45 	int type;
       
    46 	int sizeof_stat;
       
    47 	int stat_offset;
       
    48 };
       
    49 
       
    50 #define E1000_STAT(str, m) { \
       
    51 		.stat_string = str, \
       
    52 		.type = E1000_STATS, \
       
    53 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
       
    54 		.stat_offset = offsetof(struct e1000_adapter, m) }
       
    55 #define E1000_NETDEV_STAT(str, m) { \
       
    56 		.stat_string = str, \
       
    57 		.type = NETDEV_STATS, \
       
    58 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
       
    59 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
       
    60 
       
    61 static const struct e1000_stats e1000_gstrings_stats[] = {
       
    62 	E1000_STAT("rx_packets", stats.gprc),
       
    63 	E1000_STAT("tx_packets", stats.gptc),
       
    64 	E1000_STAT("rx_bytes", stats.gorc),
       
    65 	E1000_STAT("tx_bytes", stats.gotc),
       
    66 	E1000_STAT("rx_broadcast", stats.bprc),
       
    67 	E1000_STAT("tx_broadcast", stats.bptc),
       
    68 	E1000_STAT("rx_multicast", stats.mprc),
       
    69 	E1000_STAT("tx_multicast", stats.mptc),
       
    70 	E1000_NETDEV_STAT("rx_errors", rx_errors),
       
    71 	E1000_NETDEV_STAT("tx_errors", tx_errors),
       
    72 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
       
    73 	E1000_STAT("multicast", stats.mprc),
       
    74 	E1000_STAT("collisions", stats.colc),
       
    75 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
       
    76 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
       
    77 	E1000_STAT("rx_crc_errors", stats.crcerrs),
       
    78 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
       
    79 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
       
    80 	E1000_STAT("rx_missed_errors", stats.mpc),
       
    81 	E1000_STAT("tx_aborted_errors", stats.ecol),
       
    82 	E1000_STAT("tx_carrier_errors", stats.tncrs),
       
    83 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
       
    84 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
       
    85 	E1000_STAT("tx_window_errors", stats.latecol),
       
    86 	E1000_STAT("tx_abort_late_coll", stats.latecol),
       
    87 	E1000_STAT("tx_deferred_ok", stats.dc),
       
    88 	E1000_STAT("tx_single_coll_ok", stats.scc),
       
    89 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
       
    90 	E1000_STAT("tx_timeout_count", tx_timeout_count),
       
    91 	E1000_STAT("tx_restart_queue", restart_queue),
       
    92 	E1000_STAT("rx_long_length_errors", stats.roc),
       
    93 	E1000_STAT("rx_short_length_errors", stats.ruc),
       
    94 	E1000_STAT("rx_align_errors", stats.algnerrc),
       
    95 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
       
    96 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
       
    97 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
       
    98 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
       
    99 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
       
   100 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
       
   101 	E1000_STAT("rx_long_byte_count", stats.gorc),
       
   102 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
       
   103 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
       
   104 	E1000_STAT("rx_header_split", rx_hdr_split),
       
   105 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
       
   106 	E1000_STAT("tx_smbus", stats.mgptc),
       
   107 	E1000_STAT("rx_smbus", stats.mgprc),
       
   108 	E1000_STAT("dropped_smbus", stats.mgpdc),
       
   109 	E1000_STAT("rx_dma_failed", rx_dma_failed),
       
   110 	E1000_STAT("tx_dma_failed", tx_dma_failed),
       
   111 };
       
   112 
       
   113 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
       
   114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
       
   115 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
       
   116 	"Register test  (offline)", "Eeprom test    (offline)",
       
   117 	"Interrupt test (offline)", "Loopback test  (offline)",
       
   118 	"Link test   (on/offline)"
       
   119 };
       
   120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
       
   121 
       
   122 static int e1000_get_settings(struct net_device *netdev,
       
   123 			      struct ethtool_cmd *ecmd)
       
   124 {
       
   125 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   126 	struct e1000_hw *hw = &adapter->hw;
       
   127 	u32 speed;
       
   128 
       
   129 	if (hw->phy.media_type == e1000_media_type_copper) {
       
   130 
       
   131 		ecmd->supported = (SUPPORTED_10baseT_Half |
       
   132 				   SUPPORTED_10baseT_Full |
       
   133 				   SUPPORTED_100baseT_Half |
       
   134 				   SUPPORTED_100baseT_Full |
       
   135 				   SUPPORTED_1000baseT_Full |
       
   136 				   SUPPORTED_Autoneg |
       
   137 				   SUPPORTED_TP);
       
   138 		if (hw->phy.type == e1000_phy_ife)
       
   139 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
       
   140 		ecmd->advertising = ADVERTISED_TP;
       
   141 
       
   142 		if (hw->mac.autoneg == 1) {
       
   143 			ecmd->advertising |= ADVERTISED_Autoneg;
       
   144 			/* the e1000 autoneg seems to match ethtool nicely */
       
   145 			ecmd->advertising |= hw->phy.autoneg_advertised;
       
   146 		}
       
   147 
       
   148 		ecmd->port = PORT_TP;
       
   149 		ecmd->phy_address = hw->phy.addr;
       
   150 		ecmd->transceiver = XCVR_INTERNAL;
       
   151 
       
   152 	} else {
       
   153 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
       
   154 				     SUPPORTED_FIBRE |
       
   155 				     SUPPORTED_Autoneg);
       
   156 
       
   157 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
       
   158 				     ADVERTISED_FIBRE |
       
   159 				     ADVERTISED_Autoneg);
       
   160 
       
   161 		ecmd->port = PORT_FIBRE;
       
   162 		ecmd->transceiver = XCVR_EXTERNAL;
       
   163 	}
       
   164 
       
   165 	speed = -1;
       
   166 	ecmd->duplex = -1;
       
   167 
       
   168 	if (netif_running(netdev)) {
       
   169 		if (netif_carrier_ok(netdev)) {
       
   170 			speed = adapter->link_speed;
       
   171 			ecmd->duplex = adapter->link_duplex - 1;
       
   172 		}
       
   173 	} else {
       
   174 		u32 status = er32(STATUS);
       
   175 		if (status & E1000_STATUS_LU) {
       
   176 			if (status & E1000_STATUS_SPEED_1000)
       
   177 				speed = SPEED_1000;
       
   178 			else if (status & E1000_STATUS_SPEED_100)
       
   179 				speed = SPEED_100;
       
   180 			else
       
   181 				speed = SPEED_10;
       
   182 
       
   183 			if (status & E1000_STATUS_FD)
       
   184 				ecmd->duplex = DUPLEX_FULL;
       
   185 			else
       
   186 				ecmd->duplex = DUPLEX_HALF;
       
   187 		}
       
   188 	}
       
   189 
       
   190 	ethtool_cmd_speed_set(ecmd, speed);
       
   191 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
       
   192 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
       
   193 
       
   194 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
       
   195 	if ((hw->phy.media_type == e1000_media_type_copper) &&
       
   196 	    netif_carrier_ok(netdev))
       
   197 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
       
   198 		                                      ETH_TP_MDI;
       
   199 	else
       
   200 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
       
   201 
       
   202 	return 0;
       
   203 }
       
   204 
       
   205 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
       
   206 {
       
   207 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
   208 
       
   209 	mac->autoneg = 0;
       
   210 
       
   211 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
       
   212 	 * for the switch() below to work */
       
   213 	if ((spd & 1) || (dplx & ~1))
       
   214 		goto err_inval;
       
   215 
       
   216 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
   217 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
       
   218 	    spd != SPEED_1000 &&
       
   219 	    dplx != DUPLEX_FULL) {
       
   220 		goto err_inval;
       
   221 	}
       
   222 
       
   223 	switch (spd + dplx) {
       
   224 	case SPEED_10 + DUPLEX_HALF:
       
   225 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
       
   226 		break;
       
   227 	case SPEED_10 + DUPLEX_FULL:
       
   228 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
       
   229 		break;
       
   230 	case SPEED_100 + DUPLEX_HALF:
       
   231 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
       
   232 		break;
       
   233 	case SPEED_100 + DUPLEX_FULL:
       
   234 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
       
   235 		break;
       
   236 	case SPEED_1000 + DUPLEX_FULL:
       
   237 		mac->autoneg = 1;
       
   238 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
       
   239 		break;
       
   240 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
   241 	default:
       
   242 		goto err_inval;
       
   243 	}
       
   244 	return 0;
       
   245 
       
   246 err_inval:
       
   247 	e_err("Unsupported Speed/Duplex configuration\n");
       
   248 	return -EINVAL;
       
   249 }
       
   250 
       
   251 static int e1000_set_settings(struct net_device *netdev,
       
   252 			      struct ethtool_cmd *ecmd)
       
   253 {
       
   254 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   255 	struct e1000_hw *hw = &adapter->hw;
       
   256 
       
   257 	/*
       
   258 	 * When SoL/IDER sessions are active, autoneg/speed/duplex
       
   259 	 * cannot be changed
       
   260 	 */
       
   261 	if (hw->phy.ops.check_reset_block &&
       
   262 	    hw->phy.ops.check_reset_block(hw)) {
       
   263 		e_err("Cannot change link characteristics when SoL/IDER is "
       
   264 		      "active.\n");
       
   265 		return -EINVAL;
       
   266 	}
       
   267 
       
   268 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   269 		usleep_range(1000, 2000);
       
   270 
       
   271 	if (ecmd->autoneg == AUTONEG_ENABLE) {
       
   272 		hw->mac.autoneg = 1;
       
   273 		if (hw->phy.media_type == e1000_media_type_fiber)
       
   274 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
       
   275 						     ADVERTISED_FIBRE |
       
   276 						     ADVERTISED_Autoneg;
       
   277 		else
       
   278 			hw->phy.autoneg_advertised = ecmd->advertising |
       
   279 						     ADVERTISED_TP |
       
   280 						     ADVERTISED_Autoneg;
       
   281 		ecmd->advertising = hw->phy.autoneg_advertised;
       
   282 		if (adapter->fc_autoneg)
       
   283 			hw->fc.requested_mode = e1000_fc_default;
       
   284 	} else {
       
   285 		u32 speed = ethtool_cmd_speed(ecmd);
       
   286 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
       
   287 			clear_bit(__E1000_RESETTING, &adapter->state);
       
   288 			return -EINVAL;
       
   289 		}
       
   290 	}
       
   291 
       
   292 	/* reset the link */
       
   293 
       
   294 	if (netif_running(adapter->netdev)) {
       
   295 		e1000e_down(adapter);
       
   296 		e1000e_up(adapter);
       
   297 	} else {
       
   298 		e1000e_reset(adapter);
       
   299 	}
       
   300 
       
   301 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   302 	return 0;
       
   303 }
       
   304 
       
   305 static void e1000_get_pauseparam(struct net_device *netdev,
       
   306 				 struct ethtool_pauseparam *pause)
       
   307 {
       
   308 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   309 	struct e1000_hw *hw = &adapter->hw;
       
   310 
       
   311 	pause->autoneg =
       
   312 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
       
   313 
       
   314 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
       
   315 		pause->rx_pause = 1;
       
   316 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
       
   317 		pause->tx_pause = 1;
       
   318 	} else if (hw->fc.current_mode == e1000_fc_full) {
       
   319 		pause->rx_pause = 1;
       
   320 		pause->tx_pause = 1;
       
   321 	}
       
   322 }
       
   323 
       
   324 static int e1000_set_pauseparam(struct net_device *netdev,
       
   325 				struct ethtool_pauseparam *pause)
       
   326 {
       
   327 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   328 	struct e1000_hw *hw = &adapter->hw;
       
   329 	int retval = 0;
       
   330 
       
   331 	adapter->fc_autoneg = pause->autoneg;
       
   332 
       
   333 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   334 		usleep_range(1000, 2000);
       
   335 
       
   336 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
       
   337 		hw->fc.requested_mode = e1000_fc_default;
       
   338 		if (netif_running(adapter->netdev)) {
       
   339 			e1000e_down(adapter);
       
   340 			e1000e_up(adapter);
       
   341 		} else {
       
   342 			e1000e_reset(adapter);
       
   343 		}
       
   344 	} else {
       
   345 		if (pause->rx_pause && pause->tx_pause)
       
   346 			hw->fc.requested_mode = e1000_fc_full;
       
   347 		else if (pause->rx_pause && !pause->tx_pause)
       
   348 			hw->fc.requested_mode = e1000_fc_rx_pause;
       
   349 		else if (!pause->rx_pause && pause->tx_pause)
       
   350 			hw->fc.requested_mode = e1000_fc_tx_pause;
       
   351 		else if (!pause->rx_pause && !pause->tx_pause)
       
   352 			hw->fc.requested_mode = e1000_fc_none;
       
   353 
       
   354 		hw->fc.current_mode = hw->fc.requested_mode;
       
   355 
       
   356 		if (hw->phy.media_type == e1000_media_type_fiber) {
       
   357 			retval = hw->mac.ops.setup_link(hw);
       
   358 			/* implicit goto out */
       
   359 		} else {
       
   360 			retval = e1000e_force_mac_fc(hw);
       
   361 			if (retval)
       
   362 				goto out;
       
   363 			e1000e_set_fc_watermarks(hw);
       
   364 		}
       
   365 	}
       
   366 
       
   367 out:
       
   368 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   369 	return retval;
       
   370 }
       
   371 
       
   372 static u32 e1000_get_msglevel(struct net_device *netdev)
       
   373 {
       
   374 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   375 	return adapter->msg_enable;
       
   376 }
       
   377 
       
   378 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
       
   379 {
       
   380 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   381 	adapter->msg_enable = data;
       
   382 }
       
   383 
       
   384 static int e1000_get_regs_len(struct net_device *netdev)
       
   385 {
       
   386 #define E1000_REGS_LEN 32 /* overestimate */
       
   387 	return E1000_REGS_LEN * sizeof(u32);
       
   388 }
       
   389 
       
   390 static void e1000_get_regs(struct net_device *netdev,
       
   391 			   struct ethtool_regs *regs, void *p)
       
   392 {
       
   393 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   394 	struct e1000_hw *hw = &adapter->hw;
       
   395 	u32 *regs_buff = p;
       
   396 	u16 phy_data;
       
   397 
       
   398 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
       
   399 
       
   400 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
       
   401 			adapter->pdev->device;
       
   402 
       
   403 	regs_buff[0]  = er32(CTRL);
       
   404 	regs_buff[1]  = er32(STATUS);
       
   405 
       
   406 	regs_buff[2]  = er32(RCTL);
       
   407 	regs_buff[3]  = er32(RDLEN);
       
   408 	regs_buff[4]  = er32(RDH);
       
   409 	regs_buff[5]  = er32(RDT);
       
   410 	regs_buff[6]  = er32(RDTR);
       
   411 
       
   412 	regs_buff[7]  = er32(TCTL);
       
   413 	regs_buff[8]  = er32(TDLEN);
       
   414 	regs_buff[9]  = er32(TDH);
       
   415 	regs_buff[10] = er32(TDT);
       
   416 	regs_buff[11] = er32(TIDV);
       
   417 
       
   418 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
       
   419 
       
   420 	/* ethtool doesn't use anything past this point, so all this
       
   421 	 * code is likely legacy junk for apps that may or may not
       
   422 	 * exist */
       
   423 	if (hw->phy.type == e1000_phy_m88) {
       
   424 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
   425 		regs_buff[13] = (u32)phy_data; /* cable length */
       
   426 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   427 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   428 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   429 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   430 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
       
   431 		regs_buff[18] = regs_buff[13]; /* cable polarity */
       
   432 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   433 		regs_buff[20] = regs_buff[17]; /* polarity correction */
       
   434 		/* phy receive errors */
       
   435 		regs_buff[22] = adapter->phy_stats.receive_errors;
       
   436 		regs_buff[23] = regs_buff[13]; /* mdix mode */
       
   437 	}
       
   438 	regs_buff[21] = 0; /* was idle_errors */
       
   439 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
       
   440 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
       
   441 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
       
   442 }
       
   443 
       
   444 static int e1000_get_eeprom_len(struct net_device *netdev)
       
   445 {
       
   446 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   447 	return adapter->hw.nvm.word_size * 2;
       
   448 }
       
   449 
       
   450 static int e1000_get_eeprom(struct net_device *netdev,
       
   451 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   452 {
       
   453 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   454 	struct e1000_hw *hw = &adapter->hw;
       
   455 	u16 *eeprom_buff;
       
   456 	int first_word;
       
   457 	int last_word;
       
   458 	int ret_val = 0;
       
   459 	u16 i;
       
   460 
       
   461 	if (eeprom->len == 0)
       
   462 		return -EINVAL;
       
   463 
       
   464 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
       
   465 
       
   466 	first_word = eeprom->offset >> 1;
       
   467 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   468 
       
   469 	eeprom_buff = kmalloc(sizeof(u16) *
       
   470 			(last_word - first_word + 1), GFP_KERNEL);
       
   471 	if (!eeprom_buff)
       
   472 		return -ENOMEM;
       
   473 
       
   474 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
       
   475 		ret_val = e1000_read_nvm(hw, first_word,
       
   476 					 last_word - first_word + 1,
       
   477 					 eeprom_buff);
       
   478 	} else {
       
   479 		for (i = 0; i < last_word - first_word + 1; i++) {
       
   480 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
       
   481 						      &eeprom_buff[i]);
       
   482 			if (ret_val)
       
   483 				break;
       
   484 		}
       
   485 	}
       
   486 
       
   487 	if (ret_val) {
       
   488 		/* a read error occurred, throw away the result */
       
   489 		memset(eeprom_buff, 0xff, sizeof(u16) *
       
   490 		       (last_word - first_word + 1));
       
   491 	} else {
       
   492 		/* Device's eeprom is always little-endian, word addressable */
       
   493 		for (i = 0; i < last_word - first_word + 1; i++)
       
   494 			le16_to_cpus(&eeprom_buff[i]);
       
   495 	}
       
   496 
       
   497 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
       
   498 	kfree(eeprom_buff);
       
   499 
       
   500 	return ret_val;
       
   501 }
       
   502 
       
   503 static int e1000_set_eeprom(struct net_device *netdev,
       
   504 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   505 {
       
   506 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   507 	struct e1000_hw *hw = &adapter->hw;
       
   508 	u16 *eeprom_buff;
       
   509 	void *ptr;
       
   510 	int max_len;
       
   511 	int first_word;
       
   512 	int last_word;
       
   513 	int ret_val = 0;
       
   514 	u16 i;
       
   515 
       
   516 	if (eeprom->len == 0)
       
   517 		return -EOPNOTSUPP;
       
   518 
       
   519 	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
       
   520 		return -EFAULT;
       
   521 
       
   522 	if (adapter->flags & FLAG_READ_ONLY_NVM)
       
   523 		return -EINVAL;
       
   524 
       
   525 	max_len = hw->nvm.word_size * 2;
       
   526 
       
   527 	first_word = eeprom->offset >> 1;
       
   528 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   529 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
       
   530 	if (!eeprom_buff)
       
   531 		return -ENOMEM;
       
   532 
       
   533 	ptr = (void *)eeprom_buff;
       
   534 
       
   535 	if (eeprom->offset & 1) {
       
   536 		/* need read/modify/write of first changed EEPROM word */
       
   537 		/* only the second byte of the word is being modified */
       
   538 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
       
   539 		ptr++;
       
   540 	}
       
   541 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
       
   542 		/* need read/modify/write of last changed EEPROM word */
       
   543 		/* only the first byte of the word is being modified */
       
   544 		ret_val = e1000_read_nvm(hw, last_word, 1,
       
   545 				  &eeprom_buff[last_word - first_word]);
       
   546 
       
   547 	if (ret_val)
       
   548 		goto out;
       
   549 
       
   550 	/* Device's eeprom is always little-endian, word addressable */
       
   551 	for (i = 0; i < last_word - first_word + 1; i++)
       
   552 		le16_to_cpus(&eeprom_buff[i]);
       
   553 
       
   554 	memcpy(ptr, bytes, eeprom->len);
       
   555 
       
   556 	for (i = 0; i < last_word - first_word + 1; i++)
       
   557 		cpu_to_le16s(&eeprom_buff[i]);
       
   558 
       
   559 	ret_val = e1000_write_nvm(hw, first_word,
       
   560 				  last_word - first_word + 1, eeprom_buff);
       
   561 
       
   562 	if (ret_val)
       
   563 		goto out;
       
   564 
       
   565 	/*
       
   566 	 * Update the checksum over the first part of the EEPROM if needed
       
   567 	 * and flush shadow RAM for applicable controllers
       
   568 	 */
       
   569 	if ((first_word <= NVM_CHECKSUM_REG) ||
       
   570 	    (hw->mac.type == e1000_82583) ||
       
   571 	    (hw->mac.type == e1000_82574) ||
       
   572 	    (hw->mac.type == e1000_82573))
       
   573 		ret_val = e1000e_update_nvm_checksum(hw);
       
   574 
       
   575 out:
       
   576 	kfree(eeprom_buff);
       
   577 	return ret_val;
       
   578 }
       
   579 
       
   580 static void e1000_get_drvinfo(struct net_device *netdev,
       
   581 			      struct ethtool_drvinfo *drvinfo)
       
   582 {
       
   583 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   584 
       
   585 	strlcpy(drvinfo->driver,  e1000e_driver_name,
       
   586 		sizeof(drvinfo->driver));
       
   587 	strlcpy(drvinfo->version, e1000e_driver_version,
       
   588 		sizeof(drvinfo->version));
       
   589 
       
   590 	/*
       
   591 	 * EEPROM image version # is reported as firmware version # for
       
   592 	 * PCI-E controllers
       
   593 	 */
       
   594 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
       
   595 		"%d.%d-%d",
       
   596 		(adapter->eeprom_vers & 0xF000) >> 12,
       
   597 		(adapter->eeprom_vers & 0x0FF0) >> 4,
       
   598 		(adapter->eeprom_vers & 0x000F));
       
   599 
       
   600 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
       
   601 		sizeof(drvinfo->bus_info));
       
   602 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
       
   603 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
       
   604 }
       
   605 
       
   606 static void e1000_get_ringparam(struct net_device *netdev,
       
   607 				struct ethtool_ringparam *ring)
       
   608 {
       
   609 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   610 
       
   611 	ring->rx_max_pending = E1000_MAX_RXD;
       
   612 	ring->tx_max_pending = E1000_MAX_TXD;
       
   613 	ring->rx_pending = adapter->rx_ring_count;
       
   614 	ring->tx_pending = adapter->tx_ring_count;
       
   615 }
       
   616 
       
   617 static int e1000_set_ringparam(struct net_device *netdev,
       
   618 			       struct ethtool_ringparam *ring)
       
   619 {
       
   620 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   621 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
       
   622 	int err = 0, size = sizeof(struct e1000_ring);
       
   623 	bool set_tx = false, set_rx = false;
       
   624 	u16 new_rx_count, new_tx_count;
       
   625 
       
   626 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
   627 		return -EINVAL;
       
   628 
       
   629 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
       
   630 			       E1000_MAX_RXD);
       
   631 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
       
   632 
       
   633 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
       
   634 			       E1000_MAX_TXD);
       
   635 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
       
   636 
       
   637 	if ((new_tx_count == adapter->tx_ring_count) &&
       
   638 	    (new_rx_count == adapter->rx_ring_count))
       
   639 		/* nothing to do */
       
   640 		return 0;
       
   641 
       
   642 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   643 		usleep_range(1000, 2000);
       
   644 
       
   645 	if (!netif_running(adapter->netdev)) {
       
   646 		/* Set counts now and allocate resources during open() */
       
   647 		adapter->tx_ring->count = new_tx_count;
       
   648 		adapter->rx_ring->count = new_rx_count;
       
   649 		adapter->tx_ring_count = new_tx_count;
       
   650 		adapter->rx_ring_count = new_rx_count;
       
   651 		goto clear_reset;
       
   652 	}
       
   653 
       
   654 	set_tx = (new_tx_count != adapter->tx_ring_count);
       
   655 	set_rx = (new_rx_count != adapter->rx_ring_count);
       
   656 
       
   657 	/* Allocate temporary storage for ring updates */
       
   658 	if (set_tx) {
       
   659 		temp_tx = vmalloc(size);
       
   660 		if (!temp_tx) {
       
   661 			err = -ENOMEM;
       
   662 			goto free_temp;
       
   663 		}
       
   664 	}
       
   665 	if (set_rx) {
       
   666 		temp_rx = vmalloc(size);
       
   667 		if (!temp_rx) {
       
   668 			err = -ENOMEM;
       
   669 			goto free_temp;
       
   670 		}
       
   671 	}
       
   672 
       
   673 	e1000e_down(adapter);
       
   674 
       
   675 	/*
       
   676 	 * We can't just free everything and then setup again, because the
       
   677 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
       
   678 	 * structs.  First, attempt to allocate new resources...
       
   679 	 */
       
   680 	if (set_tx) {
       
   681 		memcpy(temp_tx, adapter->tx_ring, size);
       
   682 		temp_tx->count = new_tx_count;
       
   683 		err = e1000e_setup_tx_resources(temp_tx);
       
   684 		if (err)
       
   685 			goto err_setup;
       
   686 	}
       
   687 	if (set_rx) {
       
   688 		memcpy(temp_rx, adapter->rx_ring, size);
       
   689 		temp_rx->count = new_rx_count;
       
   690 		err = e1000e_setup_rx_resources(temp_rx);
       
   691 		if (err)
       
   692 			goto err_setup_rx;
       
   693 	}
       
   694 
       
   695 	/* ...then free the old resources and copy back any new ring data */
       
   696 	if (set_tx) {
       
   697 		e1000e_free_tx_resources(adapter->tx_ring);
       
   698 		memcpy(adapter->tx_ring, temp_tx, size);
       
   699 		adapter->tx_ring_count = new_tx_count;
       
   700 	}
       
   701 	if (set_rx) {
       
   702 		e1000e_free_rx_resources(adapter->rx_ring);
       
   703 		memcpy(adapter->rx_ring, temp_rx, size);
       
   704 		adapter->rx_ring_count = new_rx_count;
       
   705 	}
       
   706 
       
   707 err_setup_rx:
       
   708 	if (err && set_tx)
       
   709 		e1000e_free_tx_resources(temp_tx);
       
   710 err_setup:
       
   711 	e1000e_up(adapter);
       
   712 free_temp:
       
   713 	vfree(temp_tx);
       
   714 	vfree(temp_rx);
       
   715 clear_reset:
       
   716 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   717 	return err;
       
   718 }
       
   719 
       
   720 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
       
   721 			     int reg, int offset, u32 mask, u32 write)
       
   722 {
       
   723 	u32 pat, val;
       
   724 	static const u32 test[] = {
       
   725 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
       
   726 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
       
   727 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
       
   728 				      (test[pat] & write));
       
   729 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
       
   730 		if (val != (test[pat] & write & mask)) {
       
   731 			e_err("pattern test reg %04X failed: got 0x%08X "
       
   732 			      "expected 0x%08X\n", reg + offset, val,
       
   733 			      (test[pat] & write & mask));
       
   734 			*data = reg;
       
   735 			return 1;
       
   736 		}
       
   737 	}
       
   738 	return 0;
       
   739 }
       
   740 
       
   741 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
       
   742 			      int reg, u32 mask, u32 write)
       
   743 {
       
   744 	u32 val;
       
   745 	__ew32(&adapter->hw, reg, write & mask);
       
   746 	val = __er32(&adapter->hw, reg);
       
   747 	if ((write & mask) != (val & mask)) {
       
   748 		e_err("set/check reg %04X test failed: got 0x%08X "
       
   749 		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
       
   750 		*data = reg;
       
   751 		return 1;
       
   752 	}
       
   753 	return 0;
       
   754 }
       
   755 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
       
   756 	do {                                                                   \
       
   757 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
       
   758 			return 1;                                              \
       
   759 	} while (0)
       
   760 #define REG_PATTERN_TEST(reg, mask, write)                                     \
       
   761 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
       
   762 
       
   763 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
       
   764 	do {                                                                   \
       
   765 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
       
   766 			return 1;                                              \
       
   767 	} while (0)
       
   768 
       
   769 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
       
   770 {
       
   771 	struct e1000_hw *hw = &adapter->hw;
       
   772 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
   773 	u32 value;
       
   774 	u32 before;
       
   775 	u32 after;
       
   776 	u32 i;
       
   777 	u32 toggle;
       
   778 	u32 mask;
       
   779 
       
   780 	/*
       
   781 	 * The status register is Read Only, so a write should fail.
       
   782 	 * Some bits that get toggled are ignored.
       
   783 	 */
       
   784 	switch (mac->type) {
       
   785 	/* there are several bits on newer hardware that are r/w */
       
   786 	case e1000_82571:
       
   787 	case e1000_82572:
       
   788 	case e1000_80003es2lan:
       
   789 		toggle = 0x7FFFF3FF;
       
   790 		break;
       
   791         default:
       
   792 		toggle = 0x7FFFF033;
       
   793 		break;
       
   794 	}
       
   795 
       
   796 	before = er32(STATUS);
       
   797 	value = (er32(STATUS) & toggle);
       
   798 	ew32(STATUS, toggle);
       
   799 	after = er32(STATUS) & toggle;
       
   800 	if (value != after) {
       
   801 		e_err("failed STATUS register test got: 0x%08X expected: "
       
   802 		      "0x%08X\n", after, value);
       
   803 		*data = 1;
       
   804 		return 1;
       
   805 	}
       
   806 	/* restore previous status */
       
   807 	ew32(STATUS, before);
       
   808 
       
   809 	if (!(adapter->flags & FLAG_IS_ICH)) {
       
   810 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
       
   811 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
       
   812 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
       
   813 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
       
   814 	}
       
   815 
       
   816 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
       
   817 	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   818 	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
       
   819 	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
       
   820 	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
       
   821 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
       
   822 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
       
   823 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
       
   824 	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   825 	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
       
   826 
       
   827 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
       
   828 
       
   829 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
       
   830 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
       
   831 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
       
   832 
       
   833 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
       
   834 	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   835 	if (!(adapter->flags & FLAG_IS_ICH))
       
   836 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
       
   837 	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   838 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
       
   839 	mask = 0x8003FFFF;
       
   840 	switch (mac->type) {
       
   841 	case e1000_ich10lan:
       
   842 	case e1000_pchlan:
       
   843 	case e1000_pch2lan:
       
   844 		mask |= (1 << 18);
       
   845 		break;
       
   846 	default:
       
   847 		break;
       
   848 	}
       
   849 	for (i = 0; i < mac->rar_entry_count; i++)
       
   850 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
       
   851 		                       mask, 0xFFFFFFFF);
       
   852 
       
   853 	for (i = 0; i < mac->mta_reg_count; i++)
       
   854 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
       
   855 
       
   856 	*data = 0;
       
   857 	return 0;
       
   858 }
       
   859 
       
   860 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
       
   861 {
       
   862 	u16 temp;
       
   863 	u16 checksum = 0;
       
   864 	u16 i;
       
   865 
       
   866 	*data = 0;
       
   867 	/* Read and add up the contents of the EEPROM */
       
   868 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
       
   869 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
       
   870 			*data = 1;
       
   871 			return *data;
       
   872 		}
       
   873 		checksum += temp;
       
   874 	}
       
   875 
       
   876 	/* If Checksum is not Correct return error else test passed */
       
   877 	if ((checksum != (u16) NVM_SUM) && !(*data))
       
   878 		*data = 2;
       
   879 
       
   880 	return *data;
       
   881 }
       
   882 
       
   883 static irqreturn_t e1000_test_intr(int irq, void *data)
       
   884 {
       
   885 	struct net_device *netdev = (struct net_device *) data;
       
   886 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   887 	struct e1000_hw *hw = &adapter->hw;
       
   888 
       
   889 	adapter->test_icr |= er32(ICR);
       
   890 
       
   891 	return IRQ_HANDLED;
       
   892 }
       
   893 
       
   894 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
       
   895 {
       
   896 	struct net_device *netdev = adapter->netdev;
       
   897 	struct e1000_hw *hw = &adapter->hw;
       
   898 	u32 mask;
       
   899 	u32 shared_int = 1;
       
   900 	u32 irq = adapter->pdev->irq;
       
   901 	int i;
       
   902 	int ret_val = 0;
       
   903 	int int_mode = E1000E_INT_MODE_LEGACY;
       
   904 
       
   905 	*data = 0;
       
   906 
       
   907 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
       
   908 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
       
   909 		int_mode = adapter->int_mode;
       
   910 		e1000e_reset_interrupt_capability(adapter);
       
   911 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
   912 		e1000e_set_interrupt_capability(adapter);
       
   913 	}
       
   914 	/* Hook up test interrupt handler just for this test */
       
   915 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
       
   916 			 netdev)) {
       
   917 		shared_int = 0;
       
   918 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
       
   919 		 netdev->name, netdev)) {
       
   920 		*data = 1;
       
   921 		ret_val = -1;
       
   922 		goto out;
       
   923 	}
       
   924 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
       
   925 
       
   926 	/* Disable all the interrupts */
       
   927 	ew32(IMC, 0xFFFFFFFF);
       
   928 	e1e_flush();
       
   929 	usleep_range(10000, 20000);
       
   930 
       
   931 	/* Test each interrupt */
       
   932 	for (i = 0; i < 10; i++) {
       
   933 		/* Interrupt to test */
       
   934 		mask = 1 << i;
       
   935 
       
   936 		if (adapter->flags & FLAG_IS_ICH) {
       
   937 			switch (mask) {
       
   938 			case E1000_ICR_RXSEQ:
       
   939 				continue;
       
   940 			case 0x00000100:
       
   941 				if (adapter->hw.mac.type == e1000_ich8lan ||
       
   942 				    adapter->hw.mac.type == e1000_ich9lan)
       
   943 					continue;
       
   944 				break;
       
   945 			default:
       
   946 				break;
       
   947 			}
       
   948 		}
       
   949 
       
   950 		if (!shared_int) {
       
   951 			/*
       
   952 			 * Disable the interrupt to be reported in
       
   953 			 * the cause register and then force the same
       
   954 			 * interrupt and see if one gets posted.  If
       
   955 			 * an interrupt was posted to the bus, the
       
   956 			 * test failed.
       
   957 			 */
       
   958 			adapter->test_icr = 0;
       
   959 			ew32(IMC, mask);
       
   960 			ew32(ICS, mask);
       
   961 			e1e_flush();
       
   962 			usleep_range(10000, 20000);
       
   963 
       
   964 			if (adapter->test_icr & mask) {
       
   965 				*data = 3;
       
   966 				break;
       
   967 			}
       
   968 		}
       
   969 
       
   970 		/*
       
   971 		 * Enable the interrupt to be reported in
       
   972 		 * the cause register and then force the same
       
   973 		 * interrupt and see if one gets posted.  If
       
   974 		 * an interrupt was not posted to the bus, the
       
   975 		 * test failed.
       
   976 		 */
       
   977 		adapter->test_icr = 0;
       
   978 		ew32(IMS, mask);
       
   979 		ew32(ICS, mask);
       
   980 		e1e_flush();
       
   981 		usleep_range(10000, 20000);
       
   982 
       
   983 		if (!(adapter->test_icr & mask)) {
       
   984 			*data = 4;
       
   985 			break;
       
   986 		}
       
   987 
       
   988 		if (!shared_int) {
       
   989 			/*
       
   990 			 * Disable the other interrupts to be reported in
       
   991 			 * the cause register and then force the other
       
   992 			 * interrupts and see if any get posted.  If
       
   993 			 * an interrupt was posted to the bus, the
       
   994 			 * test failed.
       
   995 			 */
       
   996 			adapter->test_icr = 0;
       
   997 			ew32(IMC, ~mask & 0x00007FFF);
       
   998 			ew32(ICS, ~mask & 0x00007FFF);
       
   999 			e1e_flush();
       
  1000 			usleep_range(10000, 20000);
       
  1001 
       
  1002 			if (adapter->test_icr) {
       
  1003 				*data = 5;
       
  1004 				break;
       
  1005 			}
       
  1006 		}
       
  1007 	}
       
  1008 
       
  1009 	/* Disable all the interrupts */
       
  1010 	ew32(IMC, 0xFFFFFFFF);
       
  1011 	e1e_flush();
       
  1012 	usleep_range(10000, 20000);
       
  1013 
       
  1014 	/* Unhook test interrupt handler */
       
  1015 	free_irq(irq, netdev);
       
  1016 
       
  1017 out:
       
  1018 	if (int_mode == E1000E_INT_MODE_MSIX) {
       
  1019 		e1000e_reset_interrupt_capability(adapter);
       
  1020 		adapter->int_mode = int_mode;
       
  1021 		e1000e_set_interrupt_capability(adapter);
       
  1022 	}
       
  1023 
       
  1024 	return ret_val;
       
  1025 }
       
  1026 
       
  1027 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
       
  1028 {
       
  1029 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1030 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1031 	struct pci_dev *pdev = adapter->pdev;
       
  1032 	int i;
       
  1033 
       
  1034 	if (tx_ring->desc && tx_ring->buffer_info) {
       
  1035 		for (i = 0; i < tx_ring->count; i++) {
       
  1036 			if (tx_ring->buffer_info[i].dma)
       
  1037 				dma_unmap_single(&pdev->dev,
       
  1038 					tx_ring->buffer_info[i].dma,
       
  1039 					tx_ring->buffer_info[i].length,
       
  1040 					DMA_TO_DEVICE);
       
  1041 			if (tx_ring->buffer_info[i].skb)
       
  1042 				dev_kfree_skb(tx_ring->buffer_info[i].skb);
       
  1043 		}
       
  1044 	}
       
  1045 
       
  1046 	if (rx_ring->desc && rx_ring->buffer_info) {
       
  1047 		for (i = 0; i < rx_ring->count; i++) {
       
  1048 			if (rx_ring->buffer_info[i].dma)
       
  1049 				dma_unmap_single(&pdev->dev,
       
  1050 					rx_ring->buffer_info[i].dma,
       
  1051 					2048, DMA_FROM_DEVICE);
       
  1052 			if (rx_ring->buffer_info[i].skb)
       
  1053 				dev_kfree_skb(rx_ring->buffer_info[i].skb);
       
  1054 		}
       
  1055 	}
       
  1056 
       
  1057 	if (tx_ring->desc) {
       
  1058 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
       
  1059 				  tx_ring->dma);
       
  1060 		tx_ring->desc = NULL;
       
  1061 	}
       
  1062 	if (rx_ring->desc) {
       
  1063 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
       
  1064 				  rx_ring->dma);
       
  1065 		rx_ring->desc = NULL;
       
  1066 	}
       
  1067 
       
  1068 	kfree(tx_ring->buffer_info);
       
  1069 	tx_ring->buffer_info = NULL;
       
  1070 	kfree(rx_ring->buffer_info);
       
  1071 	rx_ring->buffer_info = NULL;
       
  1072 }
       
  1073 
       
  1074 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
       
  1075 {
       
  1076 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1077 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1078 	struct pci_dev *pdev = adapter->pdev;
       
  1079 	struct e1000_hw *hw = &adapter->hw;
       
  1080 	u32 rctl;
       
  1081 	int i;
       
  1082 	int ret_val;
       
  1083 
       
  1084 	/* Setup Tx descriptor ring and Tx buffers */
       
  1085 
       
  1086 	if (!tx_ring->count)
       
  1087 		tx_ring->count = E1000_DEFAULT_TXD;
       
  1088 
       
  1089 	tx_ring->buffer_info = kcalloc(tx_ring->count,
       
  1090 				       sizeof(struct e1000_buffer),
       
  1091 				       GFP_KERNEL);
       
  1092 	if (!tx_ring->buffer_info) {
       
  1093 		ret_val = 1;
       
  1094 		goto err_nomem;
       
  1095 	}
       
  1096 
       
  1097 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  1098 	tx_ring->size = ALIGN(tx_ring->size, 4096);
       
  1099 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
       
  1100 					   &tx_ring->dma, GFP_KERNEL);
       
  1101 	if (!tx_ring->desc) {
       
  1102 		ret_val = 2;
       
  1103 		goto err_nomem;
       
  1104 	}
       
  1105 	tx_ring->next_to_use = 0;
       
  1106 	tx_ring->next_to_clean = 0;
       
  1107 
       
  1108 	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
       
  1109 	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
       
  1110 	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
       
  1111 	ew32(TDH, 0);
       
  1112 	ew32(TDT, 0);
       
  1113 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
       
  1114 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
       
  1115 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
       
  1116 
       
  1117 	for (i = 0; i < tx_ring->count; i++) {
       
  1118 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  1119 		struct sk_buff *skb;
       
  1120 		unsigned int skb_size = 1024;
       
  1121 
       
  1122 		skb = alloc_skb(skb_size, GFP_KERNEL);
       
  1123 		if (!skb) {
       
  1124 			ret_val = 3;
       
  1125 			goto err_nomem;
       
  1126 		}
       
  1127 		skb_put(skb, skb_size);
       
  1128 		tx_ring->buffer_info[i].skb = skb;
       
  1129 		tx_ring->buffer_info[i].length = skb->len;
       
  1130 		tx_ring->buffer_info[i].dma =
       
  1131 			dma_map_single(&pdev->dev, skb->data, skb->len,
       
  1132 				       DMA_TO_DEVICE);
       
  1133 		if (dma_mapping_error(&pdev->dev,
       
  1134 				      tx_ring->buffer_info[i].dma)) {
       
  1135 			ret_val = 4;
       
  1136 			goto err_nomem;
       
  1137 		}
       
  1138 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
       
  1139 		tx_desc->lower.data = cpu_to_le32(skb->len);
       
  1140 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
       
  1141 						   E1000_TXD_CMD_IFCS |
       
  1142 						   E1000_TXD_CMD_RS);
       
  1143 		tx_desc->upper.data = 0;
       
  1144 	}
       
  1145 
       
  1146 	/* Setup Rx descriptor ring and Rx buffers */
       
  1147 
       
  1148 	if (!rx_ring->count)
       
  1149 		rx_ring->count = E1000_DEFAULT_RXD;
       
  1150 
       
  1151 	rx_ring->buffer_info = kcalloc(rx_ring->count,
       
  1152 				       sizeof(struct e1000_buffer),
       
  1153 				       GFP_KERNEL);
       
  1154 	if (!rx_ring->buffer_info) {
       
  1155 		ret_val = 5;
       
  1156 		goto err_nomem;
       
  1157 	}
       
  1158 
       
  1159 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
       
  1160 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
       
  1161 					   &rx_ring->dma, GFP_KERNEL);
       
  1162 	if (!rx_ring->desc) {
       
  1163 		ret_val = 6;
       
  1164 		goto err_nomem;
       
  1165 	}
       
  1166 	rx_ring->next_to_use = 0;
       
  1167 	rx_ring->next_to_clean = 0;
       
  1168 
       
  1169 	rctl = er32(RCTL);
       
  1170 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
       
  1171 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1172 	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
       
  1173 	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
       
  1174 	ew32(RDLEN, rx_ring->size);
       
  1175 	ew32(RDH, 0);
       
  1176 	ew32(RDT, 0);
       
  1177 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
       
  1178 		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
       
  1179 		E1000_RCTL_SBP | E1000_RCTL_SECRC |
       
  1180 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1181 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1182 	ew32(RCTL, rctl);
       
  1183 
       
  1184 	for (i = 0; i < rx_ring->count; i++) {
       
  1185 		union e1000_rx_desc_extended *rx_desc;
       
  1186 		struct sk_buff *skb;
       
  1187 
       
  1188 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
       
  1189 		if (!skb) {
       
  1190 			ret_val = 7;
       
  1191 			goto err_nomem;
       
  1192 		}
       
  1193 		skb_reserve(skb, NET_IP_ALIGN);
       
  1194 		rx_ring->buffer_info[i].skb = skb;
       
  1195 		rx_ring->buffer_info[i].dma =
       
  1196 			dma_map_single(&pdev->dev, skb->data, 2048,
       
  1197 				       DMA_FROM_DEVICE);
       
  1198 		if (dma_mapping_error(&pdev->dev,
       
  1199 				      rx_ring->buffer_info[i].dma)) {
       
  1200 			ret_val = 8;
       
  1201 			goto err_nomem;
       
  1202 		}
       
  1203 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
       
  1204 		rx_desc->read.buffer_addr =
       
  1205 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
       
  1206 		memset(skb->data, 0x00, skb->len);
       
  1207 	}
       
  1208 
       
  1209 	return 0;
       
  1210 
       
  1211 err_nomem:
       
  1212 	e1000_free_desc_rings(adapter);
       
  1213 	return ret_val;
       
  1214 }
       
  1215 
       
  1216 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
       
  1217 {
       
  1218 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1219 	e1e_wphy(&adapter->hw, 29, 0x001F);
       
  1220 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
       
  1221 	e1e_wphy(&adapter->hw, 29, 0x001A);
       
  1222 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
       
  1223 }
       
  1224 
       
  1225 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
       
  1226 {
       
  1227 	struct e1000_hw *hw = &adapter->hw;
       
  1228 	u32 ctrl_reg = 0;
       
  1229 	u16 phy_reg = 0;
       
  1230 	s32 ret_val = 0;
       
  1231 
       
  1232 	hw->mac.autoneg = 0;
       
  1233 
       
  1234 	if (hw->phy.type == e1000_phy_ife) {
       
  1235 		/* force 100, set loopback */
       
  1236 		e1e_wphy(hw, PHY_CONTROL, 0x6100);
       
  1237 
       
  1238 		/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1239 		ctrl_reg = er32(CTRL);
       
  1240 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1241 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1242 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1243 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
       
  1244 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1245 
       
  1246 		ew32(CTRL, ctrl_reg);
       
  1247 		e1e_flush();
       
  1248 		udelay(500);
       
  1249 
       
  1250 		return 0;
       
  1251 	}
       
  1252 
       
  1253 	/* Specific PHY configuration for loopback */
       
  1254 	switch (hw->phy.type) {
       
  1255 	case e1000_phy_m88:
       
  1256 		/* Auto-MDI/MDIX Off */
       
  1257 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
       
  1258 		/* reset to update Auto-MDI/MDIX */
       
  1259 		e1e_wphy(hw, PHY_CONTROL, 0x9140);
       
  1260 		/* autoneg off */
       
  1261 		e1e_wphy(hw, PHY_CONTROL, 0x8140);
       
  1262 		break;
       
  1263 	case e1000_phy_gg82563:
       
  1264 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
       
  1265 		break;
       
  1266 	case e1000_phy_bm:
       
  1267 		/* Set Default MAC Interface speed to 1GB */
       
  1268 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
       
  1269 		phy_reg &= ~0x0007;
       
  1270 		phy_reg |= 0x006;
       
  1271 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
       
  1272 		/* Assert SW reset for above settings to take effect */
       
  1273 		e1000e_commit_phy(hw);
       
  1274 		mdelay(1);
       
  1275 		/* Force Full Duplex */
       
  1276 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
       
  1277 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
       
  1278 		/* Set Link Up (in force link) */
       
  1279 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
       
  1280 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
       
  1281 		/* Force Link */
       
  1282 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
       
  1283 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
       
  1284 		/* Set Early Link Enable */
       
  1285 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
       
  1286 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
       
  1287 		break;
       
  1288 	case e1000_phy_82577:
       
  1289 	case e1000_phy_82578:
       
  1290 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
       
  1291 		ret_val = hw->phy.ops.acquire(hw);
       
  1292 		if (ret_val) {
       
  1293 			e_err("Cannot setup 1Gbps loopback.\n");
       
  1294 			return ret_val;
       
  1295 		}
       
  1296 		e1000_configure_k1_ich8lan(hw, false);
       
  1297 		hw->phy.ops.release(hw);
       
  1298 		break;
       
  1299 	case e1000_phy_82579:
       
  1300 		/* Disable PHY energy detect power down */
       
  1301 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
       
  1302 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
       
  1303 		/* Disable full chip energy detect */
       
  1304 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
       
  1305 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
       
  1306 		/* Enable loopback on the PHY */
       
  1307 #define I82577_PHY_LBK_CTRL          19
       
  1308 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
       
  1309 		break;
       
  1310 	default:
       
  1311 		break;
       
  1312 	}
       
  1313 
       
  1314 	/* force 1000, set loopback */
       
  1315 	e1e_wphy(hw, PHY_CONTROL, 0x4140);
       
  1316 	mdelay(250);
       
  1317 
       
  1318 	/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1319 	ctrl_reg = er32(CTRL);
       
  1320 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1321 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1322 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1323 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
       
  1324 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1325 
       
  1326 	if (adapter->flags & FLAG_IS_ICH)
       
  1327 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
       
  1328 
       
  1329 	if (hw->phy.media_type == e1000_media_type_copper &&
       
  1330 	    hw->phy.type == e1000_phy_m88) {
       
  1331 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
       
  1332 	} else {
       
  1333 		/*
       
  1334 		 * Set the ILOS bit on the fiber Nic if half duplex link is
       
  1335 		 * detected.
       
  1336 		 */
       
  1337 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
       
  1338 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
       
  1339 	}
       
  1340 
       
  1341 	ew32(CTRL, ctrl_reg);
       
  1342 
       
  1343 	/*
       
  1344 	 * Disable the receiver on the PHY so when a cable is plugged in, the
       
  1345 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
       
  1346 	 */
       
  1347 	if (hw->phy.type == e1000_phy_m88)
       
  1348 		e1000_phy_disable_receiver(adapter);
       
  1349 
       
  1350 	udelay(500);
       
  1351 
       
  1352 	return 0;
       
  1353 }
       
  1354 
       
  1355 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
       
  1356 {
       
  1357 	struct e1000_hw *hw = &adapter->hw;
       
  1358 	u32 ctrl = er32(CTRL);
       
  1359 	int link = 0;
       
  1360 
       
  1361 	/* special requirements for 82571/82572 fiber adapters */
       
  1362 
       
  1363 	/*
       
  1364 	 * jump through hoops to make sure link is up because serdes
       
  1365 	 * link is hardwired up
       
  1366 	 */
       
  1367 	ctrl |= E1000_CTRL_SLU;
       
  1368 	ew32(CTRL, ctrl);
       
  1369 
       
  1370 	/* disable autoneg */
       
  1371 	ctrl = er32(TXCW);
       
  1372 	ctrl &= ~(1 << 31);
       
  1373 	ew32(TXCW, ctrl);
       
  1374 
       
  1375 	link = (er32(STATUS) & E1000_STATUS_LU);
       
  1376 
       
  1377 	if (!link) {
       
  1378 		/* set invert loss of signal */
       
  1379 		ctrl = er32(CTRL);
       
  1380 		ctrl |= E1000_CTRL_ILOS;
       
  1381 		ew32(CTRL, ctrl);
       
  1382 	}
       
  1383 
       
  1384 	/*
       
  1385 	 * special write to serdes control register to enable SerDes analog
       
  1386 	 * loopback
       
  1387 	 */
       
  1388 #define E1000_SERDES_LB_ON 0x410
       
  1389 	ew32(SCTL, E1000_SERDES_LB_ON);
       
  1390 	e1e_flush();
       
  1391 	usleep_range(10000, 20000);
       
  1392 
       
  1393 	return 0;
       
  1394 }
       
  1395 
       
  1396 /* only call this for fiber/serdes connections to es2lan */
       
  1397 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
       
  1398 {
       
  1399 	struct e1000_hw *hw = &adapter->hw;
       
  1400 	u32 ctrlext = er32(CTRL_EXT);
       
  1401 	u32 ctrl = er32(CTRL);
       
  1402 
       
  1403 	/*
       
  1404 	 * save CTRL_EXT to restore later, reuse an empty variable (unused
       
  1405 	 * on mac_type 80003es2lan)
       
  1406 	 */
       
  1407 	adapter->tx_fifo_head = ctrlext;
       
  1408 
       
  1409 	/* clear the serdes mode bits, putting the device into mac loopback */
       
  1410 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
       
  1411 	ew32(CTRL_EXT, ctrlext);
       
  1412 
       
  1413 	/* force speed to 1000/FD, link up */
       
  1414 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1415 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
       
  1416 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
       
  1417 	ew32(CTRL, ctrl);
       
  1418 
       
  1419 	/* set mac loopback */
       
  1420 	ctrl = er32(RCTL);
       
  1421 	ctrl |= E1000_RCTL_LBM_MAC;
       
  1422 	ew32(RCTL, ctrl);
       
  1423 
       
  1424 	/* set testing mode parameters (no need to reset later) */
       
  1425 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
       
  1426 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
       
  1427 	ew32(KMRNCTRLSTA,
       
  1428 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
       
  1429 
       
  1430 	return 0;
       
  1431 }
       
  1432 
       
  1433 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
       
  1434 {
       
  1435 	struct e1000_hw *hw = &adapter->hw;
       
  1436 	u32 rctl;
       
  1437 
       
  1438 	if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1439 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1440 		switch (hw->mac.type) {
       
  1441 		case e1000_80003es2lan:
       
  1442 			return e1000_set_es2lan_mac_loopback(adapter);
       
  1443 			break;
       
  1444 		case e1000_82571:
       
  1445 		case e1000_82572:
       
  1446 			return e1000_set_82571_fiber_loopback(adapter);
       
  1447 			break;
       
  1448 		default:
       
  1449 			rctl = er32(RCTL);
       
  1450 			rctl |= E1000_RCTL_LBM_TCVR;
       
  1451 			ew32(RCTL, rctl);
       
  1452 			return 0;
       
  1453 		}
       
  1454 	} else if (hw->phy.media_type == e1000_media_type_copper) {
       
  1455 		return e1000_integrated_phy_loopback(adapter);
       
  1456 	}
       
  1457 
       
  1458 	return 7;
       
  1459 }
       
  1460 
       
  1461 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
       
  1462 {
       
  1463 	struct e1000_hw *hw = &adapter->hw;
       
  1464 	u32 rctl;
       
  1465 	u16 phy_reg;
       
  1466 
       
  1467 	rctl = er32(RCTL);
       
  1468 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
       
  1469 	ew32(RCTL, rctl);
       
  1470 
       
  1471 	switch (hw->mac.type) {
       
  1472 	case e1000_80003es2lan:
       
  1473 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1474 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1475 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
       
  1476 			ew32(CTRL_EXT, adapter->tx_fifo_head);
       
  1477 			adapter->tx_fifo_head = 0;
       
  1478 		}
       
  1479 		/* fall through */
       
  1480 	case e1000_82571:
       
  1481 	case e1000_82572:
       
  1482 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1483 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1484 #define E1000_SERDES_LB_OFF 0x400
       
  1485 			ew32(SCTL, E1000_SERDES_LB_OFF);
       
  1486 			e1e_flush();
       
  1487 			usleep_range(10000, 20000);
       
  1488 			break;
       
  1489 		}
       
  1490 		/* Fall Through */
       
  1491 	default:
       
  1492 		hw->mac.autoneg = 1;
       
  1493 		if (hw->phy.type == e1000_phy_gg82563)
       
  1494 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
       
  1495 		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
       
  1496 		if (phy_reg & MII_CR_LOOPBACK) {
       
  1497 			phy_reg &= ~MII_CR_LOOPBACK;
       
  1498 			e1e_wphy(hw, PHY_CONTROL, phy_reg);
       
  1499 			e1000e_commit_phy(hw);
       
  1500 		}
       
  1501 		break;
       
  1502 	}
       
  1503 }
       
  1504 
       
  1505 static void e1000_create_lbtest_frame(struct sk_buff *skb,
       
  1506 				      unsigned int frame_size)
       
  1507 {
       
  1508 	memset(skb->data, 0xFF, frame_size);
       
  1509 	frame_size &= ~1;
       
  1510 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
       
  1511 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
       
  1512 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
       
  1513 }
       
  1514 
       
  1515 static int e1000_check_lbtest_frame(struct sk_buff *skb,
       
  1516 				    unsigned int frame_size)
       
  1517 {
       
  1518 	frame_size &= ~1;
       
  1519 	if (*(skb->data + 3) == 0xFF)
       
  1520 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
       
  1521 		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
       
  1522 			return 0;
       
  1523 	return 13;
       
  1524 }
       
  1525 
       
  1526 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
       
  1527 {
       
  1528 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1529 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1530 	struct pci_dev *pdev = adapter->pdev;
       
  1531 	struct e1000_hw *hw = &adapter->hw;
       
  1532 	int i, j, k, l;
       
  1533 	int lc;
       
  1534 	int good_cnt;
       
  1535 	int ret_val = 0;
       
  1536 	unsigned long time;
       
  1537 
       
  1538 	ew32(RDT, rx_ring->count - 1);
       
  1539 
       
  1540 	/*
       
  1541 	 * Calculate the loop count based on the largest descriptor ring
       
  1542 	 * The idea is to wrap the largest ring a number of times using 64
       
  1543 	 * send/receive pairs during each loop
       
  1544 	 */
       
  1545 
       
  1546 	if (rx_ring->count <= tx_ring->count)
       
  1547 		lc = ((tx_ring->count / 64) * 2) + 1;
       
  1548 	else
       
  1549 		lc = ((rx_ring->count / 64) * 2) + 1;
       
  1550 
       
  1551 	k = 0;
       
  1552 	l = 0;
       
  1553 	for (j = 0; j <= lc; j++) { /* loop count loop */
       
  1554 		for (i = 0; i < 64; i++) { /* send the packets */
       
  1555 			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
       
  1556 						  1024);
       
  1557 			dma_sync_single_for_device(&pdev->dev,
       
  1558 					tx_ring->buffer_info[k].dma,
       
  1559 					tx_ring->buffer_info[k].length,
       
  1560 					DMA_TO_DEVICE);
       
  1561 			k++;
       
  1562 			if (k == tx_ring->count)
       
  1563 				k = 0;
       
  1564 		}
       
  1565 		ew32(TDT, k);
       
  1566 		e1e_flush();
       
  1567 		msleep(200);
       
  1568 		time = jiffies; /* set the start time for the receive */
       
  1569 		good_cnt = 0;
       
  1570 		do { /* receive the sent packets */
       
  1571 			dma_sync_single_for_cpu(&pdev->dev,
       
  1572 					rx_ring->buffer_info[l].dma, 2048,
       
  1573 					DMA_FROM_DEVICE);
       
  1574 
       
  1575 			ret_val = e1000_check_lbtest_frame(
       
  1576 					rx_ring->buffer_info[l].skb, 1024);
       
  1577 			if (!ret_val)
       
  1578 				good_cnt++;
       
  1579 			l++;
       
  1580 			if (l == rx_ring->count)
       
  1581 				l = 0;
       
  1582 			/*
       
  1583 			 * time + 20 msecs (200 msecs on 2.4) is more than
       
  1584 			 * enough time to complete the receives, if it's
       
  1585 			 * exceeded, break and error off
       
  1586 			 */
       
  1587 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
       
  1588 		if (good_cnt != 64) {
       
  1589 			ret_val = 13; /* ret_val is the same as mis-compare */
       
  1590 			break;
       
  1591 		}
       
  1592 		if (jiffies >= (time + 20)) {
       
  1593 			ret_val = 14; /* error code for time out error */
       
  1594 			break;
       
  1595 		}
       
  1596 	} /* end loop count loop */
       
  1597 	return ret_val;
       
  1598 }
       
  1599 
       
  1600 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
       
  1601 {
       
  1602 	struct e1000_hw *hw = &adapter->hw;
       
  1603 
       
  1604 	/*
       
  1605 	 * PHY loopback cannot be performed if SoL/IDER
       
  1606 	 * sessions are active
       
  1607 	 */
       
  1608 	if (hw->phy.ops.check_reset_block &&
       
  1609 	    hw->phy.ops.check_reset_block(hw)) {
       
  1610 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
       
  1611 		*data = 0;
       
  1612 		goto out;
       
  1613 	}
       
  1614 
       
  1615 	*data = e1000_setup_desc_rings(adapter);
       
  1616 	if (*data)
       
  1617 		goto out;
       
  1618 
       
  1619 	*data = e1000_setup_loopback_test(adapter);
       
  1620 	if (*data)
       
  1621 		goto err_loopback;
       
  1622 
       
  1623 	*data = e1000_run_loopback_test(adapter);
       
  1624 	e1000_loopback_cleanup(adapter);
       
  1625 
       
  1626 err_loopback:
       
  1627 	e1000_free_desc_rings(adapter);
       
  1628 out:
       
  1629 	return *data;
       
  1630 }
       
  1631 
       
  1632 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
       
  1633 {
       
  1634 	struct e1000_hw *hw = &adapter->hw;
       
  1635 
       
  1636 	*data = 0;
       
  1637 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1638 		int i = 0;
       
  1639 		hw->mac.serdes_has_link = false;
       
  1640 
       
  1641 		/*
       
  1642 		 * On some blade server designs, link establishment
       
  1643 		 * could take as long as 2-3 minutes
       
  1644 		 */
       
  1645 		do {
       
  1646 			hw->mac.ops.check_for_link(hw);
       
  1647 			if (hw->mac.serdes_has_link)
       
  1648 				return *data;
       
  1649 			msleep(20);
       
  1650 		} while (i++ < 3750);
       
  1651 
       
  1652 		*data = 1;
       
  1653 	} else {
       
  1654 		hw->mac.ops.check_for_link(hw);
       
  1655 		if (hw->mac.autoneg)
       
  1656 			/*
       
  1657 			 * On some Phy/switch combinations, link establishment
       
  1658 			 * can take a few seconds more than expected.
       
  1659 			 */
       
  1660 			msleep(5000);
       
  1661 
       
  1662 		if (!(er32(STATUS) & E1000_STATUS_LU))
       
  1663 			*data = 1;
       
  1664 	}
       
  1665 	return *data;
       
  1666 }
       
  1667 
       
  1668 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
       
  1669 {
       
  1670 	switch (sset) {
       
  1671 	case ETH_SS_TEST:
       
  1672 		return E1000_TEST_LEN;
       
  1673 	case ETH_SS_STATS:
       
  1674 		return E1000_STATS_LEN;
       
  1675 	default:
       
  1676 		return -EOPNOTSUPP;
       
  1677 	}
       
  1678 }
       
  1679 
       
  1680 static void e1000_diag_test(struct net_device *netdev,
       
  1681 			    struct ethtool_test *eth_test, u64 *data)
       
  1682 {
       
  1683 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1684 	u16 autoneg_advertised;
       
  1685 	u8 forced_speed_duplex;
       
  1686 	u8 autoneg;
       
  1687 	bool if_running = netif_running(netdev);
       
  1688 
       
  1689 	set_bit(__E1000_TESTING, &adapter->state);
       
  1690 
       
  1691 	if (!if_running) {
       
  1692 		/* Get control of and reset hardware */
       
  1693 		if (adapter->flags & FLAG_HAS_AMT)
       
  1694 			e1000e_get_hw_control(adapter);
       
  1695 
       
  1696 		e1000e_power_up_phy(adapter);
       
  1697 
       
  1698 		adapter->hw.phy.autoneg_wait_to_complete = 1;
       
  1699 		e1000e_reset(adapter);
       
  1700 		adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  1701 	}
       
  1702 
       
  1703 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
       
  1704 		/* Offline tests */
       
  1705 
       
  1706 		/* save speed, duplex, autoneg settings */
       
  1707 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
       
  1708 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
       
  1709 		autoneg = adapter->hw.mac.autoneg;
       
  1710 
       
  1711 		e_info("offline testing starting\n");
       
  1712 
       
  1713 		if (if_running)
       
  1714 			/* indicate we're in test mode */
       
  1715 			dev_close(netdev);
       
  1716 
       
  1717 		if (e1000_reg_test(adapter, &data[0]))
       
  1718 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1719 
       
  1720 		e1000e_reset(adapter);
       
  1721 		if (e1000_eeprom_test(adapter, &data[1]))
       
  1722 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1723 
       
  1724 		e1000e_reset(adapter);
       
  1725 		if (e1000_intr_test(adapter, &data[2]))
       
  1726 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1727 
       
  1728 		e1000e_reset(adapter);
       
  1729 		if (e1000_loopback_test(adapter, &data[3]))
       
  1730 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1731 
       
  1732 		/* force this routine to wait until autoneg complete/timeout */
       
  1733 		adapter->hw.phy.autoneg_wait_to_complete = 1;
       
  1734 		e1000e_reset(adapter);
       
  1735 		adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  1736 
       
  1737 		if (e1000_link_test(adapter, &data[4]))
       
  1738 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1739 
       
  1740 		/* restore speed, duplex, autoneg settings */
       
  1741 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
       
  1742 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
       
  1743 		adapter->hw.mac.autoneg = autoneg;
       
  1744 		e1000e_reset(adapter);
       
  1745 
       
  1746 		clear_bit(__E1000_TESTING, &adapter->state);
       
  1747 		if (if_running)
       
  1748 			dev_open(netdev);
       
  1749 	} else {
       
  1750 		/* Online tests */
       
  1751 
       
  1752 		e_info("online testing starting\n");
       
  1753 
       
  1754 		/* register, eeprom, intr and loopback tests not run online */
       
  1755 		data[0] = 0;
       
  1756 		data[1] = 0;
       
  1757 		data[2] = 0;
       
  1758 		data[3] = 0;
       
  1759 
       
  1760 		if (e1000_link_test(adapter, &data[4]))
       
  1761 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1762 
       
  1763 		clear_bit(__E1000_TESTING, &adapter->state);
       
  1764 	}
       
  1765 
       
  1766 	if (!if_running) {
       
  1767 		e1000e_reset(adapter);
       
  1768 
       
  1769 		if (adapter->flags & FLAG_HAS_AMT)
       
  1770 			e1000e_release_hw_control(adapter);
       
  1771 	}
       
  1772 
       
  1773 	msleep_interruptible(4 * 1000);
       
  1774 }
       
  1775 
       
  1776 static void e1000_get_wol(struct net_device *netdev,
       
  1777 			  struct ethtool_wolinfo *wol)
       
  1778 {
       
  1779 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1780 
       
  1781 	wol->supported = 0;
       
  1782 	wol->wolopts = 0;
       
  1783 
       
  1784 	if (!(adapter->flags & FLAG_HAS_WOL) ||
       
  1785 	    !device_can_wakeup(&adapter->pdev->dev))
       
  1786 		return;
       
  1787 
       
  1788 	wol->supported = WAKE_UCAST | WAKE_MCAST |
       
  1789 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
       
  1790 
       
  1791 	/* apply any specific unsupported masks here */
       
  1792 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
       
  1793 		wol->supported &= ~WAKE_UCAST;
       
  1794 
       
  1795 		if (adapter->wol & E1000_WUFC_EX)
       
  1796 			e_err("Interface does not support directed (unicast) "
       
  1797 			      "frame wake-up packets\n");
       
  1798 	}
       
  1799 
       
  1800 	if (adapter->wol & E1000_WUFC_EX)
       
  1801 		wol->wolopts |= WAKE_UCAST;
       
  1802 	if (adapter->wol & E1000_WUFC_MC)
       
  1803 		wol->wolopts |= WAKE_MCAST;
       
  1804 	if (adapter->wol & E1000_WUFC_BC)
       
  1805 		wol->wolopts |= WAKE_BCAST;
       
  1806 	if (adapter->wol & E1000_WUFC_MAG)
       
  1807 		wol->wolopts |= WAKE_MAGIC;
       
  1808 	if (adapter->wol & E1000_WUFC_LNKC)
       
  1809 		wol->wolopts |= WAKE_PHY;
       
  1810 }
       
  1811 
       
  1812 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  1813 {
       
  1814 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1815 
       
  1816 	if (!(adapter->flags & FLAG_HAS_WOL) ||
       
  1817 	    !device_can_wakeup(&adapter->pdev->dev) ||
       
  1818 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
       
  1819 			      WAKE_MAGIC | WAKE_PHY)))
       
  1820 		return -EOPNOTSUPP;
       
  1821 
       
  1822 	/* these settings will always override what we currently have */
       
  1823 	adapter->wol = 0;
       
  1824 
       
  1825 	if (wol->wolopts & WAKE_UCAST)
       
  1826 		adapter->wol |= E1000_WUFC_EX;
       
  1827 	if (wol->wolopts & WAKE_MCAST)
       
  1828 		adapter->wol |= E1000_WUFC_MC;
       
  1829 	if (wol->wolopts & WAKE_BCAST)
       
  1830 		adapter->wol |= E1000_WUFC_BC;
       
  1831 	if (wol->wolopts & WAKE_MAGIC)
       
  1832 		adapter->wol |= E1000_WUFC_MAG;
       
  1833 	if (wol->wolopts & WAKE_PHY)
       
  1834 		adapter->wol |= E1000_WUFC_LNKC;
       
  1835 
       
  1836 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  1837 
       
  1838 	return 0;
       
  1839 }
       
  1840 
       
  1841 static int e1000_set_phys_id(struct net_device *netdev,
       
  1842 			     enum ethtool_phys_id_state state)
       
  1843 {
       
  1844 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1845 	struct e1000_hw *hw = &adapter->hw;
       
  1846 
       
  1847 	switch (state) {
       
  1848 	case ETHTOOL_ID_ACTIVE:
       
  1849 		if (!hw->mac.ops.blink_led)
       
  1850 			return 2;	/* cycle on/off twice per second */
       
  1851 
       
  1852 		hw->mac.ops.blink_led(hw);
       
  1853 		break;
       
  1854 
       
  1855 	case ETHTOOL_ID_INACTIVE:
       
  1856 		if (hw->phy.type == e1000_phy_ife)
       
  1857 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  1858 		hw->mac.ops.led_off(hw);
       
  1859 		hw->mac.ops.cleanup_led(hw);
       
  1860 		break;
       
  1861 
       
  1862 	case ETHTOOL_ID_ON:
       
  1863 		hw->mac.ops.led_on(hw);
       
  1864 		break;
       
  1865 
       
  1866 	case ETHTOOL_ID_OFF:
       
  1867 		hw->mac.ops.led_off(hw);
       
  1868 		break;
       
  1869 	}
       
  1870 	return 0;
       
  1871 }
       
  1872 
       
  1873 static int e1000_get_coalesce(struct net_device *netdev,
       
  1874 			      struct ethtool_coalesce *ec)
       
  1875 {
       
  1876 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1877 
       
  1878 	if (adapter->itr_setting <= 4)
       
  1879 		ec->rx_coalesce_usecs = adapter->itr_setting;
       
  1880 	else
       
  1881 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
       
  1882 
       
  1883 	return 0;
       
  1884 }
       
  1885 
       
  1886 static int e1000_set_coalesce(struct net_device *netdev,
       
  1887 			      struct ethtool_coalesce *ec)
       
  1888 {
       
  1889 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1890 	struct e1000_hw *hw = &adapter->hw;
       
  1891 
       
  1892 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
       
  1893 	    ((ec->rx_coalesce_usecs > 4) &&
       
  1894 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
       
  1895 	    (ec->rx_coalesce_usecs == 2))
       
  1896 		return -EINVAL;
       
  1897 
       
  1898 	if (ec->rx_coalesce_usecs == 4) {
       
  1899 		adapter->itr = adapter->itr_setting = 4;
       
  1900 	} else if (ec->rx_coalesce_usecs <= 3) {
       
  1901 		adapter->itr = 20000;
       
  1902 		adapter->itr_setting = ec->rx_coalesce_usecs;
       
  1903 	} else {
       
  1904 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
       
  1905 		adapter->itr_setting = adapter->itr & ~3;
       
  1906 	}
       
  1907 
       
  1908 	if (adapter->itr_setting != 0)
       
  1909 		ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  1910 	else
       
  1911 		ew32(ITR, 0);
       
  1912 
       
  1913 	return 0;
       
  1914 }
       
  1915 
       
  1916 static int e1000_nway_reset(struct net_device *netdev)
       
  1917 {
       
  1918 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1919 
       
  1920 	if (!netif_running(netdev))
       
  1921 		return -EAGAIN;
       
  1922 
       
  1923 	if (!adapter->hw.mac.autoneg)
       
  1924 		return -EINVAL;
       
  1925 
       
  1926 	e1000e_reinit_locked(adapter);
       
  1927 
       
  1928 	return 0;
       
  1929 }
       
  1930 
       
  1931 static void e1000_get_ethtool_stats(struct net_device *netdev,
       
  1932 				    struct ethtool_stats *stats,
       
  1933 				    u64 *data)
       
  1934 {
       
  1935 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1936 	struct rtnl_link_stats64 net_stats;
       
  1937 	int i;
       
  1938 	char *p = NULL;
       
  1939 
       
  1940 	e1000e_get_stats64(netdev, &net_stats);
       
  1941 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1942 		switch (e1000_gstrings_stats[i].type) {
       
  1943 		case NETDEV_STATS:
       
  1944 			p = (char *) &net_stats +
       
  1945 					e1000_gstrings_stats[i].stat_offset;
       
  1946 			break;
       
  1947 		case E1000_STATS:
       
  1948 			p = (char *) adapter +
       
  1949 					e1000_gstrings_stats[i].stat_offset;
       
  1950 			break;
       
  1951 		default:
       
  1952 			data[i] = 0;
       
  1953 			continue;
       
  1954 		}
       
  1955 
       
  1956 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
       
  1957 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
       
  1958 	}
       
  1959 }
       
  1960 
       
  1961 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
       
  1962 			      u8 *data)
       
  1963 {
       
  1964 	u8 *p = data;
       
  1965 	int i;
       
  1966 
       
  1967 	switch (stringset) {
       
  1968 	case ETH_SS_TEST:
       
  1969 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
       
  1970 		break;
       
  1971 	case ETH_SS_STATS:
       
  1972 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1973 			memcpy(p, e1000_gstrings_stats[i].stat_string,
       
  1974 			       ETH_GSTRING_LEN);
       
  1975 			p += ETH_GSTRING_LEN;
       
  1976 		}
       
  1977 		break;
       
  1978 	}
       
  1979 }
       
  1980 
       
  1981 static int e1000_get_rxnfc(struct net_device *netdev,
       
  1982 			   struct ethtool_rxnfc *info, u32 *rule_locs)
       
  1983 {
       
  1984 	info->data = 0;
       
  1985 
       
  1986 	switch (info->cmd) {
       
  1987 	case ETHTOOL_GRXFH: {
       
  1988 		struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1989 		struct e1000_hw *hw = &adapter->hw;
       
  1990 		u32 mrqc = er32(MRQC);
       
  1991 
       
  1992 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
       
  1993 			return 0;
       
  1994 
       
  1995 		switch (info->flow_type) {
       
  1996 		case TCP_V4_FLOW:
       
  1997 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
       
  1998 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
       
  1999 			/* fall through */
       
  2000 		case UDP_V4_FLOW:
       
  2001 		case SCTP_V4_FLOW:
       
  2002 		case AH_ESP_V4_FLOW:
       
  2003 		case IPV4_FLOW:
       
  2004 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
       
  2005 				info->data |= RXH_IP_SRC | RXH_IP_DST;
       
  2006 			break;
       
  2007 		case TCP_V6_FLOW:
       
  2008 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
       
  2009 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
       
  2010 			/* fall through */
       
  2011 		case UDP_V6_FLOW:
       
  2012 		case SCTP_V6_FLOW:
       
  2013 		case AH_ESP_V6_FLOW:
       
  2014 		case IPV6_FLOW:
       
  2015 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
       
  2016 				info->data |= RXH_IP_SRC | RXH_IP_DST;
       
  2017 			break;
       
  2018 		default:
       
  2019 			break;
       
  2020 		}
       
  2021 		return 0;
       
  2022 	}
       
  2023 	default:
       
  2024 		return -EOPNOTSUPP;
       
  2025 	}
       
  2026 }
       
  2027 
       
  2028 static const struct ethtool_ops e1000_ethtool_ops = {
       
  2029 	.get_settings		= e1000_get_settings,
       
  2030 	.set_settings		= e1000_set_settings,
       
  2031 	.get_drvinfo		= e1000_get_drvinfo,
       
  2032 	.get_regs_len		= e1000_get_regs_len,
       
  2033 	.get_regs		= e1000_get_regs,
       
  2034 	.get_wol		= e1000_get_wol,
       
  2035 	.set_wol		= e1000_set_wol,
       
  2036 	.get_msglevel		= e1000_get_msglevel,
       
  2037 	.set_msglevel		= e1000_set_msglevel,
       
  2038 	.nway_reset		= e1000_nway_reset,
       
  2039 	.get_link		= ethtool_op_get_link,
       
  2040 	.get_eeprom_len		= e1000_get_eeprom_len,
       
  2041 	.get_eeprom		= e1000_get_eeprom,
       
  2042 	.set_eeprom		= e1000_set_eeprom,
       
  2043 	.get_ringparam		= e1000_get_ringparam,
       
  2044 	.set_ringparam		= e1000_set_ringparam,
       
  2045 	.get_pauseparam		= e1000_get_pauseparam,
       
  2046 	.set_pauseparam		= e1000_set_pauseparam,
       
  2047 	.self_test		= e1000_diag_test,
       
  2048 	.get_strings		= e1000_get_strings,
       
  2049 	.set_phys_id		= e1000_set_phys_id,
       
  2050 	.get_ethtool_stats	= e1000_get_ethtool_stats,
       
  2051 	.get_sset_count		= e1000e_get_sset_count,
       
  2052 	.get_coalesce		= e1000_get_coalesce,
       
  2053 	.set_coalesce		= e1000_set_coalesce,
       
  2054 	.get_rxnfc		= e1000_get_rxnfc,
       
  2055 };
       
  2056 
       
  2057 void e1000e_set_ethtool_ops(struct net_device *netdev)
       
  2058 {
       
  2059 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
       
  2060 }