devices/e1000/e1000_ethtool-2.6.20-ethercat.c
changeset 680 48c2dbc12bde
equal deleted inserted replaced
679:62fc387ec928 680:48c2dbc12bde
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* ethtool support for e1000 */
       
    30 
       
    31 #include "e1000-2.6.20-ethercat.h"
       
    32 
       
    33 #include <asm/uaccess.h>
       
    34 
       
    35 extern char e1000_driver_name[];
       
    36 extern char e1000_driver_version[];
       
    37 
       
    38 extern int e1000_up(struct e1000_adapter *adapter);
       
    39 extern void e1000_down(struct e1000_adapter *adapter);
       
    40 extern void e1000_reinit_locked(struct e1000_adapter *adapter);
       
    41 extern void e1000_reset(struct e1000_adapter *adapter);
       
    42 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
       
    43 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
       
    44 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
       
    45 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
       
    46 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
       
    47 extern void e1000_update_stats(struct e1000_adapter *adapter);
       
    48 
       
    49 
       
    50 struct e1000_stats {
       
    51 	char stat_string[ETH_GSTRING_LEN];
       
    52 	int sizeof_stat;
       
    53 	int stat_offset;
       
    54 };
       
    55 
       
    56 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
       
    57 		      offsetof(struct e1000_adapter, m)
       
    58 static const struct e1000_stats e1000_gstrings_stats[] = {
       
    59 	{ "rx_packets", E1000_STAT(stats.gprc) },
       
    60 	{ "tx_packets", E1000_STAT(stats.gptc) },
       
    61 	{ "rx_bytes", E1000_STAT(stats.gorcl) },
       
    62 	{ "tx_bytes", E1000_STAT(stats.gotcl) },
       
    63 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
       
    64 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
       
    65 	{ "rx_multicast", E1000_STAT(stats.mprc) },
       
    66 	{ "tx_multicast", E1000_STAT(stats.mptc) },
       
    67 	{ "rx_errors", E1000_STAT(stats.rxerrc) },
       
    68 	{ "tx_errors", E1000_STAT(stats.txerrc) },
       
    69 	{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
       
    70 	{ "multicast", E1000_STAT(stats.mprc) },
       
    71 	{ "collisions", E1000_STAT(stats.colc) },
       
    72 	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
       
    73 	{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
       
    74 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
       
    75 	{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
       
    76 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
       
    77 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
       
    78 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
       
    79 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
       
    80 	{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
       
    81 	{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
       
    82 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
       
    83 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
       
    84 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
       
    85 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
       
    86 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
       
    87 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
       
    88 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
       
    89 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
       
    90 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
       
    91 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
       
    92 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
       
    93 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
       
    94 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
       
    95 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
       
    96 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
       
    97 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
       
    98 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
       
    99 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
       
   100 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
       
   101 	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
       
   102 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
       
   103 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
       
   104 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
       
   105 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
       
   106 };
       
   107 
       
   108 #define E1000_QUEUE_STATS_LEN 0
       
   109 #define E1000_GLOBAL_STATS_LEN	\
       
   110 	sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
       
   111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
       
   112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
       
   113 	"Register test  (offline)", "Eeprom test    (offline)",
       
   114 	"Interrupt test (offline)", "Loopback test  (offline)",
       
   115 	"Link test   (on/offline)"
       
   116 };
       
   117 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
       
   118 
       
   119 static int
       
   120 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
       
   121 {
       
   122 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   123 	struct e1000_hw *hw = &adapter->hw;
       
   124 
       
   125 	if (hw->media_type == e1000_media_type_copper) {
       
   126 
       
   127 		ecmd->supported = (SUPPORTED_10baseT_Half |
       
   128 		                   SUPPORTED_10baseT_Full |
       
   129 		                   SUPPORTED_100baseT_Half |
       
   130 		                   SUPPORTED_100baseT_Full |
       
   131 		                   SUPPORTED_1000baseT_Full|
       
   132 		                   SUPPORTED_Autoneg |
       
   133 		                   SUPPORTED_TP);
       
   134 		if (hw->phy_type == e1000_phy_ife)
       
   135 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
       
   136 		ecmd->advertising = ADVERTISED_TP;
       
   137 
       
   138 		if (hw->autoneg == 1) {
       
   139 			ecmd->advertising |= ADVERTISED_Autoneg;
       
   140 			/* the e1000 autoneg seems to match ethtool nicely */
       
   141 			ecmd->advertising |= hw->autoneg_advertised;
       
   142 		}
       
   143 
       
   144 		ecmd->port = PORT_TP;
       
   145 		ecmd->phy_address = hw->phy_addr;
       
   146 
       
   147 		if (hw->mac_type == e1000_82543)
       
   148 			ecmd->transceiver = XCVR_EXTERNAL;
       
   149 		else
       
   150 			ecmd->transceiver = XCVR_INTERNAL;
       
   151 
       
   152 	} else {
       
   153 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
       
   154 				     SUPPORTED_FIBRE |
       
   155 				     SUPPORTED_Autoneg);
       
   156 
       
   157 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
       
   158 				     ADVERTISED_FIBRE |
       
   159 				     ADVERTISED_Autoneg);
       
   160 
       
   161 		ecmd->port = PORT_FIBRE;
       
   162 
       
   163 		if (hw->mac_type >= e1000_82545)
       
   164 			ecmd->transceiver = XCVR_INTERNAL;
       
   165 		else
       
   166 			ecmd->transceiver = XCVR_EXTERNAL;
       
   167 	}
       
   168 
       
   169 	if ((adapter->ecdev && ecdev_get_link(adapter->ecdev))
       
   170             || (!adapter->ecdev && netif_carrier_ok(adapter->netdev))) {
       
   171 
       
   172 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
       
   173 		                                   &adapter->link_duplex);
       
   174 		ecmd->speed = adapter->link_speed;
       
   175 
       
   176 		/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
       
   177 		 *          and HALF_DUPLEX != DUPLEX_HALF */
       
   178 
       
   179 		if (adapter->link_duplex == FULL_DUPLEX)
       
   180 			ecmd->duplex = DUPLEX_FULL;
       
   181 		else
       
   182 			ecmd->duplex = DUPLEX_HALF;
       
   183 	} else {
       
   184 		ecmd->speed = -1;
       
   185 		ecmd->duplex = -1;
       
   186 	}
       
   187 
       
   188 	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
       
   189 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
       
   190 	return 0;
       
   191 }
       
   192 
       
   193 static int
       
   194 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
       
   195 {
       
   196 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   197 	struct e1000_hw *hw = &adapter->hw;
       
   198 
       
   199 	if (adapter->ecdev)
       
   200 		return -EBUSY;
       
   201 
       
   202 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
       
   203 	 * cannot be changed */
       
   204 	if (e1000_check_phy_reset_block(hw)) {
       
   205 		DPRINTK(DRV, ERR, "Cannot change link characteristics "
       
   206 		        "when SoL/IDER is active.\n");
       
   207 		return -EINVAL;
       
   208 	}
       
   209 
       
   210 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   211 		msleep(1);
       
   212 
       
   213 	if (ecmd->autoneg == AUTONEG_ENABLE) {
       
   214 		hw->autoneg = 1;
       
   215 		if (hw->media_type == e1000_media_type_fiber)
       
   216 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
       
   217 				     ADVERTISED_FIBRE |
       
   218 				     ADVERTISED_Autoneg;
       
   219 		else
       
   220 			hw->autoneg_advertised = ecmd->advertising |
       
   221 			                         ADVERTISED_TP |
       
   222 			                         ADVERTISED_Autoneg;
       
   223 		ecmd->advertising = hw->autoneg_advertised;
       
   224 	} else
       
   225 		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
       
   226 			clear_bit(__E1000_RESETTING, &adapter->flags);
       
   227 			return -EINVAL;
       
   228 		}
       
   229 
       
   230 	/* reset the link */
       
   231 
       
   232 	if (netif_running(adapter->netdev)) {
       
   233 		e1000_down(adapter);
       
   234 		e1000_up(adapter);
       
   235 	} else
       
   236 		e1000_reset(adapter);
       
   237 
       
   238 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   239 	return 0;
       
   240 }
       
   241 
       
   242 static void
       
   243 e1000_get_pauseparam(struct net_device *netdev,
       
   244                      struct ethtool_pauseparam *pause)
       
   245 {
       
   246 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   247 	struct e1000_hw *hw = &adapter->hw;
       
   248 
       
   249 	pause->autoneg =
       
   250 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
       
   251 
       
   252 	if (hw->fc == E1000_FC_RX_PAUSE)
       
   253 		pause->rx_pause = 1;
       
   254 	else if (hw->fc == E1000_FC_TX_PAUSE)
       
   255 		pause->tx_pause = 1;
       
   256 	else if (hw->fc == E1000_FC_FULL) {
       
   257 		pause->rx_pause = 1;
       
   258 		pause->tx_pause = 1;
       
   259 	}
       
   260 }
       
   261 
       
   262 static int
       
   263 e1000_set_pauseparam(struct net_device *netdev,
       
   264                      struct ethtool_pauseparam *pause)
       
   265 {
       
   266 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   267 	struct e1000_hw *hw = &adapter->hw;
       
   268 	int retval = 0;
       
   269 
       
   270 	if (adapter->ecdev)
       
   271 		return -EBUSY;
       
   272 
       
   273 	adapter->fc_autoneg = pause->autoneg;
       
   274 
       
   275 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   276 		msleep(1);
       
   277 
       
   278 	if (pause->rx_pause && pause->tx_pause)
       
   279 		hw->fc = E1000_FC_FULL;
       
   280 	else if (pause->rx_pause && !pause->tx_pause)
       
   281 		hw->fc = E1000_FC_RX_PAUSE;
       
   282 	else if (!pause->rx_pause && pause->tx_pause)
       
   283 		hw->fc = E1000_FC_TX_PAUSE;
       
   284 	else if (!pause->rx_pause && !pause->tx_pause)
       
   285 		hw->fc = E1000_FC_NONE;
       
   286 
       
   287 	hw->original_fc = hw->fc;
       
   288 
       
   289 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
       
   290 		if (netif_running(adapter->netdev)) {
       
   291 			e1000_down(adapter);
       
   292 			e1000_up(adapter);
       
   293 		} else
       
   294 			e1000_reset(adapter);
       
   295 	} else
       
   296 		retval = ((hw->media_type == e1000_media_type_fiber) ?
       
   297 			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
       
   298 
       
   299 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   300 	return retval;
       
   301 }
       
   302 
       
   303 static uint32_t
       
   304 e1000_get_rx_csum(struct net_device *netdev)
       
   305 {
       
   306 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   307 	return adapter->rx_csum;
       
   308 }
       
   309 
       
   310 static int
       
   311 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
       
   312 {
       
   313 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   314 
       
   315 	if (adapter->ecdev)
       
   316 		return -EBUSY;
       
   317 
       
   318 	adapter->rx_csum = data;
       
   319 
       
   320 	if (netif_running(netdev))
       
   321 		e1000_reinit_locked(adapter);
       
   322 	else
       
   323 		e1000_reset(adapter);
       
   324 	return 0;
       
   325 }
       
   326 
       
   327 static uint32_t
       
   328 e1000_get_tx_csum(struct net_device *netdev)
       
   329 {
       
   330 	return (netdev->features & NETIF_F_HW_CSUM) != 0;
       
   331 }
       
   332 
       
   333 static int
       
   334 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
       
   335 {
       
   336 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   337 
       
   338 	if (adapter->hw.mac_type < e1000_82543) {
       
   339 		if (!data)
       
   340 			return -EINVAL;
       
   341 		return 0;
       
   342 	}
       
   343 
       
   344 	if (data)
       
   345 		netdev->features |= NETIF_F_HW_CSUM;
       
   346 	else
       
   347 		netdev->features &= ~NETIF_F_HW_CSUM;
       
   348 
       
   349 	return 0;
       
   350 }
       
   351 
       
   352 #ifdef NETIF_F_TSO
       
   353 static int
       
   354 e1000_set_tso(struct net_device *netdev, uint32_t data)
       
   355 {
       
   356 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   357 	if ((adapter->hw.mac_type < e1000_82544) ||
       
   358 	    (adapter->hw.mac_type == e1000_82547))
       
   359 		return data ? -EINVAL : 0;
       
   360 
       
   361 	if (data)
       
   362 		netdev->features |= NETIF_F_TSO;
       
   363 	else
       
   364 		netdev->features &= ~NETIF_F_TSO;
       
   365 
       
   366 #ifdef NETIF_F_TSO6
       
   367 	if (data)
       
   368 		netdev->features |= NETIF_F_TSO6;
       
   369 	else
       
   370 		netdev->features &= ~NETIF_F_TSO6;
       
   371 #endif
       
   372 
       
   373 	DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
       
   374 	adapter->tso_force = TRUE;
       
   375 	return 0;
       
   376 }
       
   377 #endif /* NETIF_F_TSO */
       
   378 
       
   379 static uint32_t
       
   380 e1000_get_msglevel(struct net_device *netdev)
       
   381 {
       
   382 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   383 	return adapter->msg_enable;
       
   384 }
       
   385 
       
   386 static void
       
   387 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
       
   388 {
       
   389 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   390 	adapter->msg_enable = data;
       
   391 }
       
   392 
       
   393 static int
       
   394 e1000_get_regs_len(struct net_device *netdev)
       
   395 {
       
   396 #define E1000_REGS_LEN 32
       
   397 	return E1000_REGS_LEN * sizeof(uint32_t);
       
   398 }
       
   399 
       
   400 static void
       
   401 e1000_get_regs(struct net_device *netdev,
       
   402 	       struct ethtool_regs *regs, void *p)
       
   403 {
       
   404 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   405 	struct e1000_hw *hw = &adapter->hw;
       
   406 	uint32_t *regs_buff = p;
       
   407 	uint16_t phy_data;
       
   408 
       
   409 	memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
       
   410 
       
   411 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
       
   412 
       
   413 	regs_buff[0]  = E1000_READ_REG(hw, CTRL);
       
   414 	regs_buff[1]  = E1000_READ_REG(hw, STATUS);
       
   415 
       
   416 	regs_buff[2]  = E1000_READ_REG(hw, RCTL);
       
   417 	regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
       
   418 	regs_buff[4]  = E1000_READ_REG(hw, RDH);
       
   419 	regs_buff[5]  = E1000_READ_REG(hw, RDT);
       
   420 	regs_buff[6]  = E1000_READ_REG(hw, RDTR);
       
   421 
       
   422 	regs_buff[7]  = E1000_READ_REG(hw, TCTL);
       
   423 	regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
       
   424 	regs_buff[9]  = E1000_READ_REG(hw, TDH);
       
   425 	regs_buff[10] = E1000_READ_REG(hw, TDT);
       
   426 	regs_buff[11] = E1000_READ_REG(hw, TIDV);
       
   427 
       
   428 	regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
       
   429 	if (hw->phy_type == e1000_phy_igp) {
       
   430 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   431 				    IGP01E1000_PHY_AGC_A);
       
   432 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
       
   433 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   434 		regs_buff[13] = (uint32_t)phy_data; /* cable length */
       
   435 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   436 				    IGP01E1000_PHY_AGC_B);
       
   437 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
       
   438 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   439 		regs_buff[14] = (uint32_t)phy_data; /* cable length */
       
   440 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   441 				    IGP01E1000_PHY_AGC_C);
       
   442 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
       
   443 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   444 		regs_buff[15] = (uint32_t)phy_data; /* cable length */
       
   445 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   446 				    IGP01E1000_PHY_AGC_D);
       
   447 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
       
   448 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   449 		regs_buff[16] = (uint32_t)phy_data; /* cable length */
       
   450 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
       
   451 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
       
   452 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
       
   453 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   454 		regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
       
   455 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   456 				    IGP01E1000_PHY_PCS_INIT_REG);
       
   457 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
       
   458 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   459 		regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
       
   460 		regs_buff[20] = 0; /* polarity correction enabled (always) */
       
   461 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
       
   462 		regs_buff[23] = regs_buff[18]; /* mdix mode */
       
   463 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
       
   464 	} else {
       
   465 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
   466 		regs_buff[13] = (uint32_t)phy_data; /* cable length */
       
   467 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   468 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   469 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   470 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   471 		regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
       
   472 		regs_buff[18] = regs_buff[13]; /* cable polarity */
       
   473 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   474 		regs_buff[20] = regs_buff[17]; /* polarity correction */
       
   475 		/* phy receive errors */
       
   476 		regs_buff[22] = adapter->phy_stats.receive_errors;
       
   477 		regs_buff[23] = regs_buff[13]; /* mdix mode */
       
   478 	}
       
   479 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
       
   480 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
       
   481 	regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
       
   482 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
       
   483 	if (hw->mac_type >= e1000_82540 &&
       
   484 	    hw->mac_type < e1000_82571 &&
       
   485 	    hw->media_type == e1000_media_type_copper) {
       
   486 		regs_buff[26] = E1000_READ_REG(hw, MANC);
       
   487 	}
       
   488 }
       
   489 
       
   490 static int
       
   491 e1000_get_eeprom_len(struct net_device *netdev)
       
   492 {
       
   493 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   494 	return adapter->hw.eeprom.word_size * 2;
       
   495 }
       
   496 
       
   497 static int
       
   498 e1000_get_eeprom(struct net_device *netdev,
       
   499                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
       
   500 {
       
   501 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   502 	struct e1000_hw *hw = &adapter->hw;
       
   503 	uint16_t *eeprom_buff;
       
   504 	int first_word, last_word;
       
   505 	int ret_val = 0;
       
   506 	uint16_t i;
       
   507 
       
   508 	if (eeprom->len == 0)
       
   509 		return -EINVAL;
       
   510 
       
   511 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
       
   512 
       
   513 	first_word = eeprom->offset >> 1;
       
   514 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   515 
       
   516 	eeprom_buff = kmalloc(sizeof(uint16_t) *
       
   517 			(last_word - first_word + 1), GFP_KERNEL);
       
   518 	if (!eeprom_buff)
       
   519 		return -ENOMEM;
       
   520 
       
   521 	if (hw->eeprom.type == e1000_eeprom_spi)
       
   522 		ret_val = e1000_read_eeprom(hw, first_word,
       
   523 					    last_word - first_word + 1,
       
   524 					    eeprom_buff);
       
   525 	else {
       
   526 		for (i = 0; i < last_word - first_word + 1; i++)
       
   527 			if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
       
   528 							&eeprom_buff[i])))
       
   529 				break;
       
   530 	}
       
   531 
       
   532 	/* Device's eeprom is always little-endian, word addressable */
       
   533 	for (i = 0; i < last_word - first_word + 1; i++)
       
   534 		le16_to_cpus(&eeprom_buff[i]);
       
   535 
       
   536 	memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
       
   537 			eeprom->len);
       
   538 	kfree(eeprom_buff);
       
   539 
       
   540 	return ret_val;
       
   541 }
       
   542 
       
   543 static int
       
   544 e1000_set_eeprom(struct net_device *netdev,
       
   545                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
       
   546 {
       
   547 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   548 	struct e1000_hw *hw = &adapter->hw;
       
   549 	uint16_t *eeprom_buff;
       
   550 	void *ptr;
       
   551 	int max_len, first_word, last_word, ret_val = 0;
       
   552 	uint16_t i;
       
   553 
       
   554 	if (eeprom->len == 0)
       
   555 		return -EOPNOTSUPP;
       
   556 
       
   557 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
       
   558 		return -EFAULT;
       
   559 
       
   560 	max_len = hw->eeprom.word_size * 2;
       
   561 
       
   562 	first_word = eeprom->offset >> 1;
       
   563 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   564 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
       
   565 	if (!eeprom_buff)
       
   566 		return -ENOMEM;
       
   567 
       
   568 	ptr = (void *)eeprom_buff;
       
   569 
       
   570 	if (eeprom->offset & 1) {
       
   571 		/* need read/modify/write of first changed EEPROM word */
       
   572 		/* only the second byte of the word is being modified */
       
   573 		ret_val = e1000_read_eeprom(hw, first_word, 1,
       
   574 					    &eeprom_buff[0]);
       
   575 		ptr++;
       
   576 	}
       
   577 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
       
   578 		/* need read/modify/write of last changed EEPROM word */
       
   579 		/* only the first byte of the word is being modified */
       
   580 		ret_val = e1000_read_eeprom(hw, last_word, 1,
       
   581 		                  &eeprom_buff[last_word - first_word]);
       
   582 	}
       
   583 
       
   584 	/* Device's eeprom is always little-endian, word addressable */
       
   585 	for (i = 0; i < last_word - first_word + 1; i++)
       
   586 		le16_to_cpus(&eeprom_buff[i]);
       
   587 
       
   588 	memcpy(ptr, bytes, eeprom->len);
       
   589 
       
   590 	for (i = 0; i < last_word - first_word + 1; i++)
       
   591 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
       
   592 
       
   593 	ret_val = e1000_write_eeprom(hw, first_word,
       
   594 				     last_word - first_word + 1, eeprom_buff);
       
   595 
       
   596 	/* Update the checksum over the first part of the EEPROM if needed
       
   597 	 * and flush shadow RAM for 82573 conrollers */
       
   598 	if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
       
   599 				(hw->mac_type == e1000_82573)))
       
   600 		e1000_update_eeprom_checksum(hw);
       
   601 
       
   602 	kfree(eeprom_buff);
       
   603 	return ret_val;
       
   604 }
       
   605 
       
   606 static void
       
   607 e1000_get_drvinfo(struct net_device *netdev,
       
   608                        struct ethtool_drvinfo *drvinfo)
       
   609 {
       
   610 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   611 	char firmware_version[32];
       
   612 	uint16_t eeprom_data;
       
   613 
       
   614 	strncpy(drvinfo->driver,  e1000_driver_name, 32);
       
   615 	strncpy(drvinfo->version, e1000_driver_version, 32);
       
   616 
       
   617 	/* EEPROM image version # is reported as firmware version # for
       
   618 	 * 8257{1|2|3} controllers */
       
   619 	e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
       
   620 	switch (adapter->hw.mac_type) {
       
   621 	case e1000_82571:
       
   622 	case e1000_82572:
       
   623 	case e1000_82573:
       
   624 	case e1000_80003es2lan:
       
   625 	case e1000_ich8lan:
       
   626 		sprintf(firmware_version, "%d.%d-%d",
       
   627 			(eeprom_data & 0xF000) >> 12,
       
   628 			(eeprom_data & 0x0FF0) >> 4,
       
   629 			eeprom_data & 0x000F);
       
   630 		break;
       
   631 	default:
       
   632 		sprintf(firmware_version, "N/A");
       
   633 	}
       
   634 
       
   635 	strncpy(drvinfo->fw_version, firmware_version, 32);
       
   636 	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
       
   637 	drvinfo->n_stats = E1000_STATS_LEN;
       
   638 	drvinfo->testinfo_len = E1000_TEST_LEN;
       
   639 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
       
   640 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
       
   641 }
       
   642 
       
   643 static void
       
   644 e1000_get_ringparam(struct net_device *netdev,
       
   645                     struct ethtool_ringparam *ring)
       
   646 {
       
   647 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   648 	e1000_mac_type mac_type = adapter->hw.mac_type;
       
   649 	struct e1000_tx_ring *txdr = adapter->tx_ring;
       
   650 	struct e1000_rx_ring *rxdr = adapter->rx_ring;
       
   651 
       
   652 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
       
   653 		E1000_MAX_82544_RXD;
       
   654 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
       
   655 		E1000_MAX_82544_TXD;
       
   656 	ring->rx_mini_max_pending = 0;
       
   657 	ring->rx_jumbo_max_pending = 0;
       
   658 	ring->rx_pending = rxdr->count;
       
   659 	ring->tx_pending = txdr->count;
       
   660 	ring->rx_mini_pending = 0;
       
   661 	ring->rx_jumbo_pending = 0;
       
   662 }
       
   663 
       
   664 static int
       
   665 e1000_set_ringparam(struct net_device *netdev,
       
   666                     struct ethtool_ringparam *ring)
       
   667 {
       
   668 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   669 	e1000_mac_type mac_type = adapter->hw.mac_type;
       
   670 	struct e1000_tx_ring *txdr, *tx_old;
       
   671 	struct e1000_rx_ring *rxdr, *rx_old;
       
   672 	int i, err, tx_ring_size, rx_ring_size;
       
   673 
       
   674     if (adapter->ecdev)
       
   675         return -EBUSY;
       
   676 
       
   677 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
   678 		return -EINVAL;
       
   679 
       
   680 	tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
       
   681 	rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
       
   682 
       
   683 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   684 		msleep(1);
       
   685 
       
   686 	if (netif_running(adapter->netdev))
       
   687 		e1000_down(adapter);
       
   688 
       
   689 	tx_old = adapter->tx_ring;
       
   690 	rx_old = adapter->rx_ring;
       
   691 
       
   692 	err = -ENOMEM;
       
   693 	txdr = kzalloc(tx_ring_size, GFP_KERNEL);
       
   694 	if (!txdr)
       
   695 		goto err_alloc_tx;
       
   696 
       
   697 	rxdr = kzalloc(rx_ring_size, GFP_KERNEL);
       
   698 	if (!rxdr)
       
   699 		goto err_alloc_rx;
       
   700 
       
   701 	adapter->tx_ring = txdr;
       
   702 	adapter->rx_ring = rxdr;
       
   703 
       
   704 	rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
       
   705 	rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
       
   706 		E1000_MAX_RXD : E1000_MAX_82544_RXD));
       
   707 	E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
       
   708 
       
   709 	txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
       
   710 	txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
       
   711 		E1000_MAX_TXD : E1000_MAX_82544_TXD));
       
   712 	E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
       
   713 
       
   714 	for (i = 0; i < adapter->num_tx_queues; i++)
       
   715 		txdr[i].count = txdr->count;
       
   716 	for (i = 0; i < adapter->num_rx_queues; i++)
       
   717 		rxdr[i].count = rxdr->count;
       
   718 
       
   719 	if (netif_running(adapter->netdev)) {
       
   720 		/* Try to get new resources before deleting old */
       
   721 		if ((err = e1000_setup_all_rx_resources(adapter)))
       
   722 			goto err_setup_rx;
       
   723 		if ((err = e1000_setup_all_tx_resources(adapter)))
       
   724 			goto err_setup_tx;
       
   725 
       
   726 		/* save the new, restore the old in order to free it,
       
   727 		 * then restore the new back again */
       
   728 
       
   729 		adapter->rx_ring = rx_old;
       
   730 		adapter->tx_ring = tx_old;
       
   731 		e1000_free_all_rx_resources(adapter);
       
   732 		e1000_free_all_tx_resources(adapter);
       
   733 		kfree(tx_old);
       
   734 		kfree(rx_old);
       
   735 		adapter->rx_ring = rxdr;
       
   736 		adapter->tx_ring = txdr;
       
   737 		if ((err = e1000_up(adapter)))
       
   738 			goto err_setup;
       
   739 	}
       
   740 
       
   741 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   742 	return 0;
       
   743 err_setup_tx:
       
   744 	e1000_free_all_rx_resources(adapter);
       
   745 err_setup_rx:
       
   746 	adapter->rx_ring = rx_old;
       
   747 	adapter->tx_ring = tx_old;
       
   748 	kfree(rxdr);
       
   749 err_alloc_rx:
       
   750 	kfree(txdr);
       
   751 err_alloc_tx:
       
   752 	e1000_up(adapter);
       
   753 err_setup:
       
   754 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   755 	return err;
       
   756 }
       
   757 
       
   758 #define REG_PATTERN_TEST(R, M, W)                                              \
       
   759 {                                                                              \
       
   760 	uint32_t pat, value;                                                   \
       
   761 	uint32_t test[] =                                                      \
       
   762 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
       
   763 	for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
       
   764 		E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
       
   765 		value = E1000_READ_REG(&adapter->hw, R);                       \
       
   766 		if (value != (test[pat] & W & M)) {                             \
       
   767 			DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
       
   768 			        "0x%08X expected 0x%08X\n",                    \
       
   769 			        E1000_##R, value, (test[pat] & W & M));        \
       
   770 			*data = (adapter->hw.mac_type < e1000_82543) ?         \
       
   771 				E1000_82542_##R : E1000_##R;                   \
       
   772 			return 1;                                              \
       
   773 		}                                                              \
       
   774 	}                                                                      \
       
   775 }
       
   776 
       
   777 #define REG_SET_AND_CHECK(R, M, W)                                             \
       
   778 {                                                                              \
       
   779 	uint32_t value;                                                        \
       
   780 	E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
       
   781 	value = E1000_READ_REG(&adapter->hw, R);                               \
       
   782 	if ((W & M) != (value & M)) {                                          \
       
   783 		DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
       
   784 		        "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
       
   785 		*data = (adapter->hw.mac_type < e1000_82543) ?                 \
       
   786 			E1000_82542_##R : E1000_##R;                           \
       
   787 		return 1;                                                      \
       
   788 	}                                                                      \
       
   789 }
       
   790 
       
   791 static int
       
   792 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
       
   793 {
       
   794 	uint32_t value, before, after;
       
   795 	uint32_t i, toggle;
       
   796 
       
   797 	/* The status register is Read Only, so a write should fail.
       
   798 	 * Some bits that get toggled are ignored.
       
   799 	 */
       
   800 	switch (adapter->hw.mac_type) {
       
   801 	/* there are several bits on newer hardware that are r/w */
       
   802 	case e1000_82571:
       
   803 	case e1000_82572:
       
   804 	case e1000_80003es2lan:
       
   805 		toggle = 0x7FFFF3FF;
       
   806 		break;
       
   807 	case e1000_82573:
       
   808 	case e1000_ich8lan:
       
   809 		toggle = 0x7FFFF033;
       
   810 		break;
       
   811 	default:
       
   812 		toggle = 0xFFFFF833;
       
   813 		break;
       
   814 	}
       
   815 
       
   816 	before = E1000_READ_REG(&adapter->hw, STATUS);
       
   817 	value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
       
   818 	E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
       
   819 	after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
       
   820 	if (value != after) {
       
   821 		DPRINTK(DRV, ERR, "failed STATUS register test got: "
       
   822 		        "0x%08X expected: 0x%08X\n", after, value);
       
   823 		*data = 1;
       
   824 		return 1;
       
   825 	}
       
   826 	/* restore previous status */
       
   827 	E1000_WRITE_REG(&adapter->hw, STATUS, before);
       
   828 
       
   829 	if (adapter->hw.mac_type != e1000_ich8lan) {
       
   830 		REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
       
   831 		REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
       
   832 		REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
       
   833 		REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
       
   834 	}
       
   835 
       
   836 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
       
   837 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   838 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
       
   839 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
       
   840 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
       
   841 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
       
   842 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
       
   843 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
       
   844 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   845 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
       
   846 
       
   847 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
       
   848 
       
   849 	before = (adapter->hw.mac_type == e1000_ich8lan ?
       
   850 	          0x06C3B33E : 0x06DFB3FE);
       
   851 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
       
   852 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
       
   853 
       
   854 	if (adapter->hw.mac_type >= e1000_82543) {
       
   855 
       
   856 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
       
   857 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   858 		if (adapter->hw.mac_type != e1000_ich8lan)
       
   859 			REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
       
   860 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   861 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
       
   862 		value = (adapter->hw.mac_type == e1000_ich8lan ?
       
   863 		         E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
       
   864 		for (i = 0; i < value; i++) {
       
   865 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
       
   866 			                 0xFFFFFFFF);
       
   867 		}
       
   868 
       
   869 	} else {
       
   870 
       
   871 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
       
   872 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
       
   873 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
       
   874 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
       
   875 
       
   876 	}
       
   877 
       
   878 	value = (adapter->hw.mac_type == e1000_ich8lan ?
       
   879 			E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
       
   880 	for (i = 0; i < value; i++)
       
   881 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
       
   882 
       
   883 	*data = 0;
       
   884 	return 0;
       
   885 }
       
   886 
       
   887 static int
       
   888 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
       
   889 {
       
   890 	uint16_t temp;
       
   891 	uint16_t checksum = 0;
       
   892 	uint16_t i;
       
   893 
       
   894 	*data = 0;
       
   895 	/* Read and add up the contents of the EEPROM */
       
   896 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
       
   897 		if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
       
   898 			*data = 1;
       
   899 			break;
       
   900 		}
       
   901 		checksum += temp;
       
   902 	}
       
   903 
       
   904 	/* If Checksum is not Correct return error else test passed */
       
   905 	if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
       
   906 		*data = 2;
       
   907 
       
   908 	return *data;
       
   909 }
       
   910 
       
   911 static irqreturn_t
       
   912 e1000_test_intr(int irq, void *data)
       
   913 {
       
   914 	struct net_device *netdev = (struct net_device *) data;
       
   915 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   916 
       
   917 	adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
       
   918 
       
   919 	return IRQ_HANDLED;
       
   920 }
       
   921 
       
   922 static int
       
   923 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
       
   924 {
       
   925 	struct net_device *netdev = adapter->netdev;
       
   926 	uint32_t mask, i=0, shared_int = TRUE;
       
   927 	uint32_t irq = adapter->pdev->irq;
       
   928 
       
   929 	*data = 0;
       
   930 
       
   931 	/* NOTE: we don't test MSI interrupts here, yet */
       
   932 	/* Hook up test interrupt handler just for this test */
       
   933 	if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
       
   934 	                 netdev))
       
   935 		shared_int = FALSE;
       
   936 	else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
       
   937 	         netdev->name, netdev)) {
       
   938 		*data = 1;
       
   939 		return -1;
       
   940 	}
       
   941 	DPRINTK(HW, INFO, "testing %s interrupt\n",
       
   942 	        (shared_int ? "shared" : "unshared"));
       
   943 
       
   944 	/* Disable all the interrupts */
       
   945 	E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
       
   946 	msleep(10);
       
   947 
       
   948 	/* Test each interrupt */
       
   949 	for (; i < 10; i++) {
       
   950 
       
   951 		if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
       
   952 			continue;
       
   953 
       
   954 		/* Interrupt to test */
       
   955 		mask = 1 << i;
       
   956 
       
   957 		if (!shared_int) {
       
   958 			/* Disable the interrupt to be reported in
       
   959 			 * the cause register and then force the same
       
   960 			 * interrupt and see if one gets posted.  If
       
   961 			 * an interrupt was posted to the bus, the
       
   962 			 * test failed.
       
   963 			 */
       
   964 			adapter->test_icr = 0;
       
   965 			E1000_WRITE_REG(&adapter->hw, IMC, mask);
       
   966 			E1000_WRITE_REG(&adapter->hw, ICS, mask);
       
   967 			msleep(10);
       
   968 
       
   969 			if (adapter->test_icr & mask) {
       
   970 				*data = 3;
       
   971 				break;
       
   972 			}
       
   973 		}
       
   974 
       
   975 		/* Enable the interrupt to be reported in
       
   976 		 * the cause register and then force the same
       
   977 		 * interrupt and see if one gets posted.  If
       
   978 		 * an interrupt was not posted to the bus, the
       
   979 		 * test failed.
       
   980 		 */
       
   981 		adapter->test_icr = 0;
       
   982 		E1000_WRITE_REG(&adapter->hw, IMS, mask);
       
   983 		E1000_WRITE_REG(&adapter->hw, ICS, mask);
       
   984 		msleep(10);
       
   985 
       
   986 		if (!(adapter->test_icr & mask)) {
       
   987 			*data = 4;
       
   988 			break;
       
   989 		}
       
   990 
       
   991 		if (!shared_int) {
       
   992 			/* Disable the other interrupts to be reported in
       
   993 			 * the cause register and then force the other
       
   994 			 * interrupts and see if any get posted.  If
       
   995 			 * an interrupt was posted to the bus, the
       
   996 			 * test failed.
       
   997 			 */
       
   998 			adapter->test_icr = 0;
       
   999 			E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
       
  1000 			E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
       
  1001 			msleep(10);
       
  1002 
       
  1003 			if (adapter->test_icr) {
       
  1004 				*data = 5;
       
  1005 				break;
       
  1006 			}
       
  1007 		}
       
  1008 	}
       
  1009 
       
  1010 	/* Disable all the interrupts */
       
  1011 	E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
       
  1012 	msleep(10);
       
  1013 
       
  1014 	/* Unhook test interrupt handler */
       
  1015 	free_irq(irq, netdev);
       
  1016 
       
  1017 	return *data;
       
  1018 }
       
  1019 
       
  1020 static void
       
  1021 e1000_free_desc_rings(struct e1000_adapter *adapter)
       
  1022 {
       
  1023 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
       
  1024 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
       
  1025 	struct pci_dev *pdev = adapter->pdev;
       
  1026 	int i;
       
  1027 
       
  1028 	if (txdr->desc && txdr->buffer_info) {
       
  1029 		for (i = 0; i < txdr->count; i++) {
       
  1030 			if (txdr->buffer_info[i].dma)
       
  1031 				pci_unmap_single(pdev, txdr->buffer_info[i].dma,
       
  1032 						 txdr->buffer_info[i].length,
       
  1033 						 PCI_DMA_TODEVICE);
       
  1034 			if (txdr->buffer_info[i].skb)
       
  1035 				dev_kfree_skb(txdr->buffer_info[i].skb);
       
  1036 		}
       
  1037 	}
       
  1038 
       
  1039 	if (rxdr->desc && rxdr->buffer_info) {
       
  1040 		for (i = 0; i < rxdr->count; i++) {
       
  1041 			if (rxdr->buffer_info[i].dma)
       
  1042 				pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
       
  1043 						 rxdr->buffer_info[i].length,
       
  1044 						 PCI_DMA_FROMDEVICE);
       
  1045 			if (rxdr->buffer_info[i].skb)
       
  1046 				dev_kfree_skb(rxdr->buffer_info[i].skb);
       
  1047 		}
       
  1048 	}
       
  1049 
       
  1050 	if (txdr->desc) {
       
  1051 		pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
       
  1052 		txdr->desc = NULL;
       
  1053 	}
       
  1054 	if (rxdr->desc) {
       
  1055 		pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
       
  1056 		rxdr->desc = NULL;
       
  1057 	}
       
  1058 
       
  1059 	kfree(txdr->buffer_info);
       
  1060 	txdr->buffer_info = NULL;
       
  1061 	kfree(rxdr->buffer_info);
       
  1062 	rxdr->buffer_info = NULL;
       
  1063 
       
  1064 	return;
       
  1065 }
       
  1066 
       
  1067 static int
       
  1068 e1000_setup_desc_rings(struct e1000_adapter *adapter)
       
  1069 {
       
  1070 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
       
  1071 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
       
  1072 	struct pci_dev *pdev = adapter->pdev;
       
  1073 	uint32_t rctl;
       
  1074 	int size, i, ret_val;
       
  1075 
       
  1076 	/* Setup Tx descriptor ring and Tx buffers */
       
  1077 
       
  1078 	if (!txdr->count)
       
  1079 		txdr->count = E1000_DEFAULT_TXD;
       
  1080 
       
  1081 	size = txdr->count * sizeof(struct e1000_buffer);
       
  1082 	if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
       
  1083 		ret_val = 1;
       
  1084 		goto err_nomem;
       
  1085 	}
       
  1086 	memset(txdr->buffer_info, 0, size);
       
  1087 
       
  1088 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
  1089 	E1000_ROUNDUP(txdr->size, 4096);
       
  1090 	if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
       
  1091 		ret_val = 2;
       
  1092 		goto err_nomem;
       
  1093 	}
       
  1094 	memset(txdr->desc, 0, txdr->size);
       
  1095 	txdr->next_to_use = txdr->next_to_clean = 0;
       
  1096 
       
  1097 	E1000_WRITE_REG(&adapter->hw, TDBAL,
       
  1098 			((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
       
  1099 	E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
       
  1100 	E1000_WRITE_REG(&adapter->hw, TDLEN,
       
  1101 			txdr->count * sizeof(struct e1000_tx_desc));
       
  1102 	E1000_WRITE_REG(&adapter->hw, TDH, 0);
       
  1103 	E1000_WRITE_REG(&adapter->hw, TDT, 0);
       
  1104 	E1000_WRITE_REG(&adapter->hw, TCTL,
       
  1105 			E1000_TCTL_PSP | E1000_TCTL_EN |
       
  1106 			E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
       
  1107 			E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
       
  1108 
       
  1109 	for (i = 0; i < txdr->count; i++) {
       
  1110 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
       
  1111 		struct sk_buff *skb;
       
  1112 		unsigned int size = 1024;
       
  1113 
       
  1114 		if (!(skb = alloc_skb(size, GFP_KERNEL))) {
       
  1115 			ret_val = 3;
       
  1116 			goto err_nomem;
       
  1117 		}
       
  1118 		skb_put(skb, size);
       
  1119 		txdr->buffer_info[i].skb = skb;
       
  1120 		txdr->buffer_info[i].length = skb->len;
       
  1121 		txdr->buffer_info[i].dma =
       
  1122 			pci_map_single(pdev, skb->data, skb->len,
       
  1123 				       PCI_DMA_TODEVICE);
       
  1124 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
       
  1125 		tx_desc->lower.data = cpu_to_le32(skb->len);
       
  1126 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
       
  1127 						   E1000_TXD_CMD_IFCS |
       
  1128 						   E1000_TXD_CMD_RPS);
       
  1129 		tx_desc->upper.data = 0;
       
  1130 	}
       
  1131 
       
  1132 	/* Setup Rx descriptor ring and Rx buffers */
       
  1133 
       
  1134 	if (!rxdr->count)
       
  1135 		rxdr->count = E1000_DEFAULT_RXD;
       
  1136 
       
  1137 	size = rxdr->count * sizeof(struct e1000_buffer);
       
  1138 	if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
       
  1139 		ret_val = 4;
       
  1140 		goto err_nomem;
       
  1141 	}
       
  1142 	memset(rxdr->buffer_info, 0, size);
       
  1143 
       
  1144 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
       
  1145 	if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
       
  1146 		ret_val = 5;
       
  1147 		goto err_nomem;
       
  1148 	}
       
  1149 	memset(rxdr->desc, 0, rxdr->size);
       
  1150 	rxdr->next_to_use = rxdr->next_to_clean = 0;
       
  1151 
       
  1152 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1153 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  1154 	E1000_WRITE_REG(&adapter->hw, RDBAL,
       
  1155 			((uint64_t) rxdr->dma & 0xFFFFFFFF));
       
  1156 	E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
       
  1157 	E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
       
  1158 	E1000_WRITE_REG(&adapter->hw, RDH, 0);
       
  1159 	E1000_WRITE_REG(&adapter->hw, RDT, 0);
       
  1160 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
       
  1161 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1162 		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1163 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1164 
       
  1165 	for (i = 0; i < rxdr->count; i++) {
       
  1166 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
       
  1167 		struct sk_buff *skb;
       
  1168 
       
  1169 		if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
       
  1170 				GFP_KERNEL))) {
       
  1171 			ret_val = 6;
       
  1172 			goto err_nomem;
       
  1173 		}
       
  1174 		skb_reserve(skb, NET_IP_ALIGN);
       
  1175 		rxdr->buffer_info[i].skb = skb;
       
  1176 		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
       
  1177 		rxdr->buffer_info[i].dma =
       
  1178 			pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
       
  1179 				       PCI_DMA_FROMDEVICE);
       
  1180 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
       
  1181 		memset(skb->data, 0x00, skb->len);
       
  1182 	}
       
  1183 
       
  1184 	return 0;
       
  1185 
       
  1186 err_nomem:
       
  1187 	e1000_free_desc_rings(adapter);
       
  1188 	return ret_val;
       
  1189 }
       
  1190 
       
  1191 static void
       
  1192 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
       
  1193 {
       
  1194 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1195 	e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
       
  1196 	e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
       
  1197 	e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
       
  1198 	e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
       
  1199 }
       
  1200 
       
  1201 static void
       
  1202 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
       
  1203 {
       
  1204 	uint16_t phy_reg;
       
  1205 
       
  1206 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
       
  1207 	 * Extended PHY Specific Control Register to 25MHz clock.  This
       
  1208 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
       
  1209 	 */
       
  1210 	e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
       
  1211 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
       
  1212 	e1000_write_phy_reg(&adapter->hw,
       
  1213 		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
       
  1214 
       
  1215 	/* In addition, because of the s/w reset above, we need to enable
       
  1216 	 * CRS on TX.  This must be set for both full and half duplex
       
  1217 	 * operation.
       
  1218 	 */
       
  1219 	e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
       
  1220 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1221 	e1000_write_phy_reg(&adapter->hw,
       
  1222 		M88E1000_PHY_SPEC_CTRL, phy_reg);
       
  1223 }
       
  1224 
       
  1225 static int
       
  1226 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
       
  1227 {
       
  1228 	uint32_t ctrl_reg;
       
  1229 	uint16_t phy_reg;
       
  1230 
       
  1231 	/* Setup the Device Control Register for PHY loopback test. */
       
  1232 
       
  1233 	ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
       
  1234 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
       
  1235 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
       
  1236 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
       
  1237 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
       
  1238 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
       
  1239 
       
  1240 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
       
  1241 
       
  1242 	/* Read the PHY Specific Control Register (0x10) */
       
  1243 	e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
       
  1244 
       
  1245 	/* Clear Auto-Crossover bits in PHY Specific Control Register
       
  1246 	 * (bits 6:5).
       
  1247 	 */
       
  1248 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1249 	e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
       
  1250 
       
  1251 	/* Perform software reset on the PHY */
       
  1252 	e1000_phy_reset(&adapter->hw);
       
  1253 
       
  1254 	/* Have to setup TX_CLK and TX_CRS after software reset */
       
  1255 	e1000_phy_reset_clk_and_crs(adapter);
       
  1256 
       
  1257 	e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
       
  1258 
       
  1259 	/* Wait for reset to complete. */
       
  1260 	udelay(500);
       
  1261 
       
  1262 	/* Have to setup TX_CLK and TX_CRS after software reset */
       
  1263 	e1000_phy_reset_clk_and_crs(adapter);
       
  1264 
       
  1265 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1266 	e1000_phy_disable_receiver(adapter);
       
  1267 
       
  1268 	/* Set the loopback bit in the PHY control register. */
       
  1269 	e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
       
  1270 	phy_reg |= MII_CR_LOOPBACK;
       
  1271 	e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
       
  1272 
       
  1273 	/* Setup TX_CLK and TX_CRS one more time. */
       
  1274 	e1000_phy_reset_clk_and_crs(adapter);
       
  1275 
       
  1276 	/* Check Phy Configuration */
       
  1277 	e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
       
  1278 	if (phy_reg != 0x4100)
       
  1279 		 return 9;
       
  1280 
       
  1281 	e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
       
  1282 	if (phy_reg != 0x0070)
       
  1283 		return 10;
       
  1284 
       
  1285 	e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
       
  1286 	if (phy_reg != 0x001A)
       
  1287 		return 11;
       
  1288 
       
  1289 	return 0;
       
  1290 }
       
  1291 
       
  1292 static int
       
  1293 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
       
  1294 {
       
  1295 	uint32_t ctrl_reg = 0;
       
  1296 	uint32_t stat_reg = 0;
       
  1297 
       
  1298 	adapter->hw.autoneg = FALSE;
       
  1299 
       
  1300 	if (adapter->hw.phy_type == e1000_phy_m88) {
       
  1301 		/* Auto-MDI/MDIX Off */
       
  1302 		e1000_write_phy_reg(&adapter->hw,
       
  1303 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
       
  1304 		/* reset to update Auto-MDI/MDIX */
       
  1305 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
       
  1306 		/* autoneg off */
       
  1307 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
       
  1308 	} else if (adapter->hw.phy_type == e1000_phy_gg82563)
       
  1309 		e1000_write_phy_reg(&adapter->hw,
       
  1310 		                    GG82563_PHY_KMRN_MODE_CTRL,
       
  1311 		                    0x1CC);
       
  1312 
       
  1313 	ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
       
  1314 
       
  1315 	if (adapter->hw.phy_type == e1000_phy_ife) {
       
  1316 		/* force 100, set loopback */
       
  1317 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
       
  1318 
       
  1319 		/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1320 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1321 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1322 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1323 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
       
  1324 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1325 	} else {
       
  1326 		/* force 1000, set loopback */
       
  1327 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
       
  1328 
       
  1329 		/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1330 		ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
       
  1331 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1332 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1333 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1334 			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
       
  1335 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1336 	}
       
  1337 
       
  1338 	if (adapter->hw.media_type == e1000_media_type_copper &&
       
  1339 	   adapter->hw.phy_type == e1000_phy_m88)
       
  1340 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
       
  1341 	else {
       
  1342 		/* Set the ILOS bit on the fiber Nic is half
       
  1343 		 * duplex link is detected. */
       
  1344 		stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
       
  1345 		if ((stat_reg & E1000_STATUS_FD) == 0)
       
  1346 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
       
  1347 	}
       
  1348 
       
  1349 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
       
  1350 
       
  1351 	/* Disable the receiver on the PHY so when a cable is plugged in, the
       
  1352 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
       
  1353 	 */
       
  1354 	if (adapter->hw.phy_type == e1000_phy_m88)
       
  1355 		e1000_phy_disable_receiver(adapter);
       
  1356 
       
  1357 	udelay(500);
       
  1358 
       
  1359 	return 0;
       
  1360 }
       
  1361 
       
  1362 static int
       
  1363 e1000_set_phy_loopback(struct e1000_adapter *adapter)
       
  1364 {
       
  1365 	uint16_t phy_reg = 0;
       
  1366 	uint16_t count = 0;
       
  1367 
       
  1368 	switch (adapter->hw.mac_type) {
       
  1369 	case e1000_82543:
       
  1370 		if (adapter->hw.media_type == e1000_media_type_copper) {
       
  1371 			/* Attempt to setup Loopback mode on Non-integrated PHY.
       
  1372 			 * Some PHY registers get corrupted at random, so
       
  1373 			 * attempt this 10 times.
       
  1374 			 */
       
  1375 			while (e1000_nonintegrated_phy_loopback(adapter) &&
       
  1376 			      count++ < 10);
       
  1377 			if (count < 11)
       
  1378 				return 0;
       
  1379 		}
       
  1380 		break;
       
  1381 
       
  1382 	case e1000_82544:
       
  1383 	case e1000_82540:
       
  1384 	case e1000_82545:
       
  1385 	case e1000_82545_rev_3:
       
  1386 	case e1000_82546:
       
  1387 	case e1000_82546_rev_3:
       
  1388 	case e1000_82541:
       
  1389 	case e1000_82541_rev_2:
       
  1390 	case e1000_82547:
       
  1391 	case e1000_82547_rev_2:
       
  1392 	case e1000_82571:
       
  1393 	case e1000_82572:
       
  1394 	case e1000_82573:
       
  1395 	case e1000_80003es2lan:
       
  1396 	case e1000_ich8lan:
       
  1397 		return e1000_integrated_phy_loopback(adapter);
       
  1398 		break;
       
  1399 
       
  1400 	default:
       
  1401 		/* Default PHY loopback work is to read the MII
       
  1402 		 * control register and assert bit 14 (loopback mode).
       
  1403 		 */
       
  1404 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
       
  1405 		phy_reg |= MII_CR_LOOPBACK;
       
  1406 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
       
  1407 		return 0;
       
  1408 		break;
       
  1409 	}
       
  1410 
       
  1411 	return 8;
       
  1412 }
       
  1413 
       
  1414 static int
       
  1415 e1000_setup_loopback_test(struct e1000_adapter *adapter)
       
  1416 {
       
  1417 	struct e1000_hw *hw = &adapter->hw;
       
  1418 	uint32_t rctl;
       
  1419 
       
  1420 	if (hw->media_type == e1000_media_type_fiber ||
       
  1421 	    hw->media_type == e1000_media_type_internal_serdes) {
       
  1422 		switch (hw->mac_type) {
       
  1423 		case e1000_82545:
       
  1424 		case e1000_82546:
       
  1425 		case e1000_82545_rev_3:
       
  1426 		case e1000_82546_rev_3:
       
  1427 			return e1000_set_phy_loopback(adapter);
       
  1428 			break;
       
  1429 		case e1000_82571:
       
  1430 		case e1000_82572:
       
  1431 #define E1000_SERDES_LB_ON 0x410
       
  1432 			e1000_set_phy_loopback(adapter);
       
  1433 			E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
       
  1434 			msleep(10);
       
  1435 			return 0;
       
  1436 			break;
       
  1437 		default:
       
  1438 			rctl = E1000_READ_REG(hw, RCTL);
       
  1439 			rctl |= E1000_RCTL_LBM_TCVR;
       
  1440 			E1000_WRITE_REG(hw, RCTL, rctl);
       
  1441 			return 0;
       
  1442 		}
       
  1443 	} else if (hw->media_type == e1000_media_type_copper)
       
  1444 		return e1000_set_phy_loopback(adapter);
       
  1445 
       
  1446 	return 7;
       
  1447 }
       
  1448 
       
  1449 static void
       
  1450 e1000_loopback_cleanup(struct e1000_adapter *adapter)
       
  1451 {
       
  1452 	struct e1000_hw *hw = &adapter->hw;
       
  1453 	uint32_t rctl;
       
  1454 	uint16_t phy_reg;
       
  1455 
       
  1456 	rctl = E1000_READ_REG(hw, RCTL);
       
  1457 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
       
  1458 	E1000_WRITE_REG(hw, RCTL, rctl);
       
  1459 
       
  1460 	switch (hw->mac_type) {
       
  1461 	case e1000_82571:
       
  1462 	case e1000_82572:
       
  1463 		if (hw->media_type == e1000_media_type_fiber ||
       
  1464 		    hw->media_type == e1000_media_type_internal_serdes) {
       
  1465 #define E1000_SERDES_LB_OFF 0x400
       
  1466 			E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
       
  1467 			msleep(10);
       
  1468 			break;
       
  1469 		}
       
  1470 		/* Fall Through */
       
  1471 	case e1000_82545:
       
  1472 	case e1000_82546:
       
  1473 	case e1000_82545_rev_3:
       
  1474 	case e1000_82546_rev_3:
       
  1475 	default:
       
  1476 		hw->autoneg = TRUE;
       
  1477 		if (hw->phy_type == e1000_phy_gg82563)
       
  1478 			e1000_write_phy_reg(hw,
       
  1479 					    GG82563_PHY_KMRN_MODE_CTRL,
       
  1480 					    0x180);
       
  1481 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
       
  1482 		if (phy_reg & MII_CR_LOOPBACK) {
       
  1483 			phy_reg &= ~MII_CR_LOOPBACK;
       
  1484 			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
       
  1485 			e1000_phy_reset(hw);
       
  1486 		}
       
  1487 		break;
       
  1488 	}
       
  1489 }
       
  1490 
       
  1491 static void
       
  1492 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
       
  1493 {
       
  1494 	memset(skb->data, 0xFF, frame_size);
       
  1495 	frame_size &= ~1;
       
  1496 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
       
  1497 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
       
  1498 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
       
  1499 }
       
  1500 
       
  1501 static int
       
  1502 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
       
  1503 {
       
  1504 	frame_size &= ~1;
       
  1505 	if (*(skb->data + 3) == 0xFF) {
       
  1506 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
       
  1507 		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
       
  1508 			return 0;
       
  1509 		}
       
  1510 	}
       
  1511 	return 13;
       
  1512 }
       
  1513 
       
  1514 static int
       
  1515 e1000_run_loopback_test(struct e1000_adapter *adapter)
       
  1516 {
       
  1517 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
       
  1518 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
       
  1519 	struct pci_dev *pdev = adapter->pdev;
       
  1520 	int i, j, k, l, lc, good_cnt, ret_val=0;
       
  1521 	unsigned long time;
       
  1522 
       
  1523 	E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
       
  1524 
       
  1525 	/* Calculate the loop count based on the largest descriptor ring
       
  1526 	 * The idea is to wrap the largest ring a number of times using 64
       
  1527 	 * send/receive pairs during each loop
       
  1528 	 */
       
  1529 
       
  1530 	if (rxdr->count <= txdr->count)
       
  1531 		lc = ((txdr->count / 64) * 2) + 1;
       
  1532 	else
       
  1533 		lc = ((rxdr->count / 64) * 2) + 1;
       
  1534 
       
  1535 	k = l = 0;
       
  1536 	for (j = 0; j <= lc; j++) { /* loop count loop */
       
  1537 		for (i = 0; i < 64; i++) { /* send the packets */
       
  1538 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
       
  1539 					1024);
       
  1540 			pci_dma_sync_single_for_device(pdev,
       
  1541 					txdr->buffer_info[k].dma,
       
  1542 				    	txdr->buffer_info[k].length,
       
  1543 				    	PCI_DMA_TODEVICE);
       
  1544 			if (unlikely(++k == txdr->count)) k = 0;
       
  1545 		}
       
  1546 		E1000_WRITE_REG(&adapter->hw, TDT, k);
       
  1547 		msleep(200);
       
  1548 		time = jiffies; /* set the start time for the receive */
       
  1549 		good_cnt = 0;
       
  1550 		do { /* receive the sent packets */
       
  1551 			pci_dma_sync_single_for_cpu(pdev,
       
  1552 					rxdr->buffer_info[l].dma,
       
  1553 				    	rxdr->buffer_info[l].length,
       
  1554 				    	PCI_DMA_FROMDEVICE);
       
  1555 
       
  1556 			ret_val = e1000_check_lbtest_frame(
       
  1557 					rxdr->buffer_info[l].skb,
       
  1558 				   	1024);
       
  1559 			if (!ret_val)
       
  1560 				good_cnt++;
       
  1561 			if (unlikely(++l == rxdr->count)) l = 0;
       
  1562 			/* time + 20 msecs (200 msecs on 2.4) is more than
       
  1563 			 * enough time to complete the receives, if it's
       
  1564 			 * exceeded, break and error off
       
  1565 			 */
       
  1566 		} while (good_cnt < 64 && jiffies < (time + 20));
       
  1567 		if (good_cnt != 64) {
       
  1568 			ret_val = 13; /* ret_val is the same as mis-compare */
       
  1569 			break;
       
  1570 		}
       
  1571 		if (jiffies >= (time + 2)) {
       
  1572 			ret_val = 14; /* error code for time out error */
       
  1573 			break;
       
  1574 		}
       
  1575 	} /* end loop count loop */
       
  1576 	return ret_val;
       
  1577 }
       
  1578 
       
  1579 static int
       
  1580 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
       
  1581 {
       
  1582 	/* PHY loopback cannot be performed if SoL/IDER
       
  1583 	 * sessions are active */
       
  1584 	if (e1000_check_phy_reset_block(&adapter->hw)) {
       
  1585 		DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
       
  1586 		        "when SoL/IDER is active.\n");
       
  1587 		*data = 0;
       
  1588 		goto out;
       
  1589 	}
       
  1590 
       
  1591 	if ((*data = e1000_setup_desc_rings(adapter)))
       
  1592 		goto out;
       
  1593 	if ((*data = e1000_setup_loopback_test(adapter)))
       
  1594 		goto err_loopback;
       
  1595 	*data = e1000_run_loopback_test(adapter);
       
  1596 	e1000_loopback_cleanup(adapter);
       
  1597 
       
  1598 err_loopback:
       
  1599 	e1000_free_desc_rings(adapter);
       
  1600 out:
       
  1601 	return *data;
       
  1602 }
       
  1603 
       
  1604 static int
       
  1605 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
       
  1606 {
       
  1607 	*data = 0;
       
  1608 	if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
       
  1609 		int i = 0;
       
  1610 		adapter->hw.serdes_link_down = TRUE;
       
  1611 
       
  1612 		/* On some blade server designs, link establishment
       
  1613 		 * could take as long as 2-3 minutes */
       
  1614 		do {
       
  1615 			e1000_check_for_link(&adapter->hw);
       
  1616 			if (adapter->hw.serdes_link_down == FALSE)
       
  1617 				return *data;
       
  1618 			msleep(20);
       
  1619 		} while (i++ < 3750);
       
  1620 
       
  1621 		*data = 1;
       
  1622 	} else {
       
  1623 		e1000_check_for_link(&adapter->hw);
       
  1624 		if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
       
  1625 			msleep(4000);
       
  1626 
       
  1627 		if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
       
  1628 			*data = 1;
       
  1629 		}
       
  1630 	}
       
  1631 	return *data;
       
  1632 }
       
  1633 
       
  1634 static int
       
  1635 e1000_diag_test_count(struct net_device *netdev)
       
  1636 {
       
  1637 	return E1000_TEST_LEN;
       
  1638 }
       
  1639 
       
  1640 extern void e1000_power_up_phy(struct e1000_adapter *);
       
  1641 
       
  1642 static void
       
  1643 e1000_diag_test(struct net_device *netdev,
       
  1644 		   struct ethtool_test *eth_test, uint64_t *data)
       
  1645 {
       
  1646 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1647 	boolean_t if_running;
       
  1648 
       
  1649 	if (adapter->ecdev)
       
  1650 		return;
       
  1651 	
       
  1652 	if_running = netif_running(netdev);
       
  1653 
       
  1654 	set_bit(__E1000_TESTING, &adapter->flags);
       
  1655 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
       
  1656 		/* Offline tests */
       
  1657 
       
  1658 		/* save speed, duplex, autoneg settings */
       
  1659 		uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
       
  1660 		uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
       
  1661 		uint8_t autoneg = adapter->hw.autoneg;
       
  1662 
       
  1663 		DPRINTK(HW, INFO, "offline testing starting\n");
       
  1664 
       
  1665 		/* Link test performed before hardware reset so autoneg doesn't
       
  1666 		 * interfere with test result */
       
  1667 		if (e1000_link_test(adapter, &data[4]))
       
  1668 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1669 
       
  1670 		if (if_running)
       
  1671 			/* indicate we're in test mode */
       
  1672 			dev_close(netdev);
       
  1673 		else
       
  1674 			e1000_reset(adapter);
       
  1675 
       
  1676 		if (e1000_reg_test(adapter, &data[0]))
       
  1677 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1678 
       
  1679 		e1000_reset(adapter);
       
  1680 		if (e1000_eeprom_test(adapter, &data[1]))
       
  1681 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1682 
       
  1683 		e1000_reset(adapter);
       
  1684 		if (e1000_intr_test(adapter, &data[2]))
       
  1685 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1686 
       
  1687 		e1000_reset(adapter);
       
  1688 		/* make sure the phy is powered up */
       
  1689 		e1000_power_up_phy(adapter);
       
  1690 		if (e1000_loopback_test(adapter, &data[3]))
       
  1691 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1692 
       
  1693 		/* restore speed, duplex, autoneg settings */
       
  1694 		adapter->hw.autoneg_advertised = autoneg_advertised;
       
  1695 		adapter->hw.forced_speed_duplex = forced_speed_duplex;
       
  1696 		adapter->hw.autoneg = autoneg;
       
  1697 
       
  1698 		e1000_reset(adapter);
       
  1699 		clear_bit(__E1000_TESTING, &adapter->flags);
       
  1700 		if (if_running)
       
  1701 			dev_open(netdev);
       
  1702 	} else {
       
  1703 		DPRINTK(HW, INFO, "online testing starting\n");
       
  1704 		/* Online tests */
       
  1705 		if (e1000_link_test(adapter, &data[4]))
       
  1706 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1707 
       
  1708 		/* Online tests aren't run; pass by default */
       
  1709 		data[0] = 0;
       
  1710 		data[1] = 0;
       
  1711 		data[2] = 0;
       
  1712 		data[3] = 0;
       
  1713 
       
  1714 		clear_bit(__E1000_TESTING, &adapter->flags);
       
  1715 	}
       
  1716 	msleep_interruptible(4 * 1000);
       
  1717 }
       
  1718 
       
  1719 static int e1000_wol_exclusion(struct e1000_adapter *adapter, struct ethtool_wolinfo *wol)
       
  1720 {
       
  1721 	struct e1000_hw *hw = &adapter->hw;
       
  1722 	int retval = 1; /* fail by default */
       
  1723 
       
  1724 	switch (hw->device_id) {
       
  1725 	case E1000_DEV_ID_82542:
       
  1726 	case E1000_DEV_ID_82543GC_FIBER:
       
  1727 	case E1000_DEV_ID_82543GC_COPPER:
       
  1728 	case E1000_DEV_ID_82544EI_FIBER:
       
  1729 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
       
  1730 	case E1000_DEV_ID_82545EM_FIBER:
       
  1731 	case E1000_DEV_ID_82545EM_COPPER:
       
  1732 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
       
  1733 	case E1000_DEV_ID_82546GB_PCIE:
       
  1734 		/* these don't support WoL at all */
       
  1735 		wol->supported = 0;
       
  1736 		break;
       
  1737 	case E1000_DEV_ID_82546EB_FIBER:
       
  1738 	case E1000_DEV_ID_82546GB_FIBER:
       
  1739 	case E1000_DEV_ID_82571EB_FIBER:
       
  1740 	case E1000_DEV_ID_82571EB_SERDES:
       
  1741 	case E1000_DEV_ID_82571EB_COPPER:
       
  1742 		/* Wake events not supported on port B */
       
  1743 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
       
  1744 			wol->supported = 0;
       
  1745 			break;
       
  1746 		}
       
  1747 		/* return success for non excluded adapter ports */
       
  1748 		retval = 0;
       
  1749 		break;
       
  1750 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
       
  1751 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
       
  1752 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1753 		/* quad port adapters only support WoL on port A */
       
  1754 		if (!adapter->quad_port_a) {
       
  1755 			wol->supported = 0;
       
  1756 			break;
       
  1757 		}
       
  1758 		/* return success for non excluded adapter ports */
       
  1759 		retval = 0;
       
  1760 		break;
       
  1761 	default:
       
  1762 		/* dual port cards only support WoL on port A from now on
       
  1763 		 * unless it was enabled in the eeprom for port B
       
  1764 		 * so exclude FUNC_1 ports from having WoL enabled */
       
  1765 		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
       
  1766 		    !adapter->eeprom_wol) {
       
  1767 			wol->supported = 0;
       
  1768 			break;
       
  1769 		}
       
  1770 
       
  1771 		retval = 0;
       
  1772 	}
       
  1773 
       
  1774 	return retval;
       
  1775 }
       
  1776 
       
  1777 static void
       
  1778 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  1779 {
       
  1780 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1781 
       
  1782 	wol->supported = WAKE_UCAST | WAKE_MCAST |
       
  1783 	                 WAKE_BCAST | WAKE_MAGIC;
       
  1784 	wol->wolopts = 0;
       
  1785 
       
  1786 	/* this function will set ->supported = 0 and return 1 if wol is not
       
  1787 	 * supported by this hardware */
       
  1788 	if (e1000_wol_exclusion(adapter, wol))
       
  1789 		return;
       
  1790 
       
  1791 	/* apply any specific unsupported masks here */
       
  1792 	switch (adapter->hw.device_id) {
       
  1793 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1794 		/* KSP3 does not suppport UCAST wake-ups */
       
  1795 		wol->supported &= ~WAKE_UCAST;
       
  1796 
       
  1797 		if (adapter->wol & E1000_WUFC_EX)
       
  1798 			DPRINTK(DRV, ERR, "Interface does not support "
       
  1799 		        "directed (unicast) frame wake-up packets\n");
       
  1800 		break;
       
  1801 	default:
       
  1802 		break;
       
  1803 	}
       
  1804 
       
  1805 	if (adapter->wol & E1000_WUFC_EX)
       
  1806 		wol->wolopts |= WAKE_UCAST;
       
  1807 	if (adapter->wol & E1000_WUFC_MC)
       
  1808 		wol->wolopts |= WAKE_MCAST;
       
  1809 	if (adapter->wol & E1000_WUFC_BC)
       
  1810 		wol->wolopts |= WAKE_BCAST;
       
  1811 	if (adapter->wol & E1000_WUFC_MAG)
       
  1812 		wol->wolopts |= WAKE_MAGIC;
       
  1813 
       
  1814 	return;
       
  1815 }
       
  1816 
       
  1817 static int
       
  1818 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  1819 {
       
  1820 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1821 	struct e1000_hw *hw = &adapter->hw;
       
  1822 
       
  1823 	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
       
  1824 		return -EOPNOTSUPP;
       
  1825 
       
  1826 	if (e1000_wol_exclusion(adapter, wol))
       
  1827 		return wol->wolopts ? -EOPNOTSUPP : 0;
       
  1828 
       
  1829 	switch (hw->device_id) {
       
  1830 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1831 		if (wol->wolopts & WAKE_UCAST) {
       
  1832 			DPRINTK(DRV, ERR, "Interface does not support "
       
  1833 		        "directed (unicast) frame wake-up packets\n");
       
  1834 			return -EOPNOTSUPP;
       
  1835 		}
       
  1836 		break;
       
  1837 	default:
       
  1838 		break;
       
  1839 	}
       
  1840 
       
  1841 	/* these settings will always override what we currently have */
       
  1842 	adapter->wol = 0;
       
  1843 
       
  1844 	if (wol->wolopts & WAKE_UCAST)
       
  1845 		adapter->wol |= E1000_WUFC_EX;
       
  1846 	if (wol->wolopts & WAKE_MCAST)
       
  1847 		adapter->wol |= E1000_WUFC_MC;
       
  1848 	if (wol->wolopts & WAKE_BCAST)
       
  1849 		adapter->wol |= E1000_WUFC_BC;
       
  1850 	if (wol->wolopts & WAKE_MAGIC)
       
  1851 		adapter->wol |= E1000_WUFC_MAG;
       
  1852 
       
  1853 	return 0;
       
  1854 }
       
  1855 
       
  1856 /* toggle LED 4 times per second = 2 "blinks" per second */
       
  1857 #define E1000_ID_INTERVAL	(HZ/4)
       
  1858 
       
  1859 /* bit defines for adapter->led_status */
       
  1860 #define E1000_LED_ON		0
       
  1861 
       
  1862 static void
       
  1863 e1000_led_blink_callback(unsigned long data)
       
  1864 {
       
  1865 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  1866 
       
  1867 	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
       
  1868 		e1000_led_off(&adapter->hw);
       
  1869 	else
       
  1870 		e1000_led_on(&adapter->hw);
       
  1871 
       
  1872 	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
       
  1873 }
       
  1874 
       
  1875 static int
       
  1876 e1000_phys_id(struct net_device *netdev, uint32_t data)
       
  1877 {
       
  1878 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1879 
       
  1880 	if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
       
  1881 		data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
       
  1882 
       
  1883 	if (adapter->hw.mac_type < e1000_82571) {
       
  1884 		if (!adapter->blink_timer.function) {
       
  1885 			init_timer(&adapter->blink_timer);
       
  1886 			adapter->blink_timer.function = e1000_led_blink_callback;
       
  1887 			adapter->blink_timer.data = (unsigned long) adapter;
       
  1888 		}
       
  1889 		e1000_setup_led(&adapter->hw);
       
  1890 		mod_timer(&adapter->blink_timer, jiffies);
       
  1891 		msleep_interruptible(data * 1000);
       
  1892 		del_timer_sync(&adapter->blink_timer);
       
  1893 	} else if (adapter->hw.phy_type == e1000_phy_ife) {
       
  1894 		if (!adapter->blink_timer.function) {
       
  1895 			init_timer(&adapter->blink_timer);
       
  1896 			adapter->blink_timer.function = e1000_led_blink_callback;
       
  1897 			adapter->blink_timer.data = (unsigned long) adapter;
       
  1898 		}
       
  1899 		mod_timer(&adapter->blink_timer, jiffies);
       
  1900 		msleep_interruptible(data * 1000);
       
  1901 		del_timer_sync(&adapter->blink_timer);
       
  1902 		e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  1903 	} else {
       
  1904 		e1000_blink_led_start(&adapter->hw);
       
  1905 		msleep_interruptible(data * 1000);
       
  1906 	}
       
  1907 
       
  1908 	e1000_led_off(&adapter->hw);
       
  1909 	clear_bit(E1000_LED_ON, &adapter->led_status);
       
  1910 	e1000_cleanup_led(&adapter->hw);
       
  1911 
       
  1912 	return 0;
       
  1913 }
       
  1914 
       
  1915 static int
       
  1916 e1000_nway_reset(struct net_device *netdev)
       
  1917 {
       
  1918 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1919 
       
  1920 	if (adapter->ecdev)
       
  1921 		return -EBUSY;
       
  1922 
       
  1923 	if (netif_running(netdev))
       
  1924 		e1000_reinit_locked(adapter);
       
  1925 	return 0;
       
  1926 }
       
  1927 
       
  1928 static int
       
  1929 e1000_get_stats_count(struct net_device *netdev)
       
  1930 {
       
  1931 	return E1000_STATS_LEN;
       
  1932 }
       
  1933 
       
  1934 static void
       
  1935 e1000_get_ethtool_stats(struct net_device *netdev,
       
  1936 		struct ethtool_stats *stats, uint64_t *data)
       
  1937 {
       
  1938 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1939 	int i;
       
  1940 
       
  1941 	e1000_update_stats(adapter);
       
  1942 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1943 		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
       
  1944 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
       
  1945 			sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
       
  1946 	}
       
  1947 /*	BUG_ON(i != E1000_STATS_LEN); */
       
  1948 }
       
  1949 
       
  1950 static void
       
  1951 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
       
  1952 {
       
  1953 	uint8_t *p = data;
       
  1954 	int i;
       
  1955 
       
  1956 	switch (stringset) {
       
  1957 	case ETH_SS_TEST:
       
  1958 		memcpy(data, *e1000_gstrings_test,
       
  1959 			E1000_TEST_LEN*ETH_GSTRING_LEN);
       
  1960 		break;
       
  1961 	case ETH_SS_STATS:
       
  1962 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1963 			memcpy(p, e1000_gstrings_stats[i].stat_string,
       
  1964 			       ETH_GSTRING_LEN);
       
  1965 			p += ETH_GSTRING_LEN;
       
  1966 		}
       
  1967 /*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
       
  1968 		break;
       
  1969 	}
       
  1970 }
       
  1971 
       
  1972 static const struct ethtool_ops e1000_ethtool_ops = {
       
  1973 	.get_settings           = e1000_get_settings,
       
  1974 	.set_settings           = e1000_set_settings,
       
  1975 	.get_drvinfo            = e1000_get_drvinfo,
       
  1976 	.get_regs_len           = e1000_get_regs_len,
       
  1977 	.get_regs               = e1000_get_regs,
       
  1978 	.get_wol                = e1000_get_wol,
       
  1979 	.set_wol                = e1000_set_wol,
       
  1980 	.get_msglevel           = e1000_get_msglevel,
       
  1981 	.set_msglevel           = e1000_set_msglevel,
       
  1982 	.nway_reset             = e1000_nway_reset,
       
  1983 	.get_link               = ethtool_op_get_link,
       
  1984 	.get_eeprom_len         = e1000_get_eeprom_len,
       
  1985 	.get_eeprom             = e1000_get_eeprom,
       
  1986 	.set_eeprom             = e1000_set_eeprom,
       
  1987 	.get_ringparam          = e1000_get_ringparam,
       
  1988 	.set_ringparam          = e1000_set_ringparam,
       
  1989 	.get_pauseparam         = e1000_get_pauseparam,
       
  1990 	.set_pauseparam         = e1000_set_pauseparam,
       
  1991 	.get_rx_csum            = e1000_get_rx_csum,
       
  1992 	.set_rx_csum            = e1000_set_rx_csum,
       
  1993 	.get_tx_csum            = e1000_get_tx_csum,
       
  1994 	.set_tx_csum            = e1000_set_tx_csum,
       
  1995 	.get_sg                 = ethtool_op_get_sg,
       
  1996 	.set_sg                 = ethtool_op_set_sg,
       
  1997 #ifdef NETIF_F_TSO
       
  1998 	.get_tso                = ethtool_op_get_tso,
       
  1999 	.set_tso                = e1000_set_tso,
       
  2000 #endif
       
  2001 	.self_test_count        = e1000_diag_test_count,
       
  2002 	.self_test              = e1000_diag_test,
       
  2003 	.get_strings            = e1000_get_strings,
       
  2004 	.phys_id                = e1000_phys_id,
       
  2005 	.get_stats_count        = e1000_get_stats_count,
       
  2006 	.get_ethtool_stats      = e1000_get_ethtool_stats,
       
  2007 	.get_perm_addr          = ethtool_op_get_perm_addr,
       
  2008 };
       
  2009 
       
  2010 void e1000_set_ethtool_ops(struct net_device *netdev)
       
  2011 {
       
  2012 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
       
  2013 }