|
1 /****************************************************************************** |
|
2 * |
|
3 * $Id$ |
|
4 * |
|
5 * Copyright (C) 2007-2008 Florian Pose, Ingenieurgemeinschaft IgH |
|
6 * |
|
7 * This file is part of the IgH EtherCAT Master. |
|
8 * |
|
9 * The IgH EtherCAT Master is free software; you can redistribute it and/or |
|
10 * modify it under the terms of the GNU General Public License version 2, as |
|
11 * published by the Free Software Foundation. |
|
12 * |
|
13 * The IgH EtherCAT Master is distributed in the hope that it will be useful, |
|
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
|
16 * Public License for more details. |
|
17 * |
|
18 * You should have received a copy of the GNU General Public License along |
|
19 * with the IgH EtherCAT Master; if not, write to the Free Software |
|
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|
21 * |
|
22 * --- |
|
23 * |
|
24 * The license mentioned above concerns the source code only. Using the |
|
25 * EtherCAT technology and brand is only permitted in compliance with the |
|
26 * industrial property and similar rights of Beckhoff Automation GmbH. |
|
27 * |
|
28 * --- |
|
29 * |
|
30 * vim: noexpandtab |
|
31 * |
|
32 *****************************************************************************/ |
|
33 |
|
34 /** |
|
35 \file |
|
36 EtherCAT driver for e100-compatible NICs. |
|
37 */ |
|
38 |
|
39 /* Former documentation: */ |
|
40 |
|
41 /******************************************************************************* |
|
42 |
|
43 Intel PRO/100 Linux driver |
|
44 Copyright(c) 1999 - 2006 Intel Corporation. |
|
45 |
|
46 This program is free software; you can redistribute it and/or modify it |
|
47 under the terms and conditions of the GNU General Public License, |
|
48 version 2, as published by the Free Software Foundation. |
|
49 |
|
50 This program is distributed in the hope it will be useful, but WITHOUT |
|
51 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
52 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
53 more details. |
|
54 |
|
55 You should have received a copy of the GNU General Public License along with |
|
56 this program; if not, write to the Free Software Foundation, Inc., |
|
57 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
58 |
|
59 The full GNU General Public License is included in this distribution in |
|
60 the file called "COPYING". |
|
61 |
|
62 Contact Information: |
|
63 Linux NICS <linux.nics@intel.com> |
|
64 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
65 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
66 |
|
67 *******************************************************************************/ |
|
68 |
|
69 /* |
|
70 * e100.c: Intel(R) PRO/100 ethernet driver |
|
71 * |
|
72 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on |
|
73 * original e100 driver, but better described as a munging of |
|
74 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. |
|
75 * |
|
76 * References: |
|
77 * Intel 8255x 10/100 Mbps Ethernet Controller Family, |
|
78 * Open Source Software Developers Manual, |
|
79 * http://sourceforge.net/projects/e1000 |
|
80 * |
|
81 * |
|
82 * Theory of Operation |
|
83 * |
|
84 * I. General |
|
85 * |
|
86 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet |
|
87 * controller family, which includes the 82557, 82558, 82559, 82550, |
|
88 * 82551, and 82562 devices. 82558 and greater controllers |
|
89 * integrate the Intel 82555 PHY. The controllers are used in |
|
90 * server and client network interface cards, as well as in |
|
91 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx |
|
92 * configurations. 8255x supports a 32-bit linear addressing |
|
93 * mode and operates at 33Mhz PCI clock rate. |
|
94 * |
|
95 * II. Driver Operation |
|
96 * |
|
97 * Memory-mapped mode is used exclusively to access the device's |
|
98 * shared-memory structure, the Control/Status Registers (CSR). All |
|
99 * setup, configuration, and control of the device, including queuing |
|
100 * of Tx, Rx, and configuration commands is through the CSR. |
|
101 * cmd_lock serializes accesses to the CSR command register. cb_lock |
|
102 * protects the shared Command Block List (CBL). |
|
103 * |
|
104 * 8255x is highly MII-compliant and all access to the PHY go |
|
105 * through the Management Data Interface (MDI). Consequently, the |
|
106 * driver leverages the mii.c library shared with other MII-compliant |
|
107 * devices. |
|
108 * |
|
109 * Big- and Little-Endian byte order as well as 32- and 64-bit |
|
110 * archs are supported. Weak-ordered memory and non-cache-coherent |
|
111 * archs are supported. |
|
112 * |
|
113 * III. Transmit |
|
114 * |
|
115 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked |
|
116 * together in a fixed-size ring (CBL) thus forming the flexible mode |
|
117 * memory structure. A TCB marked with the suspend-bit indicates |
|
118 * the end of the ring. The last TCB processed suspends the |
|
119 * controller, and the controller can be restarted by issue a CU |
|
120 * resume command to continue from the suspend point, or a CU start |
|
121 * command to start at a given position in the ring. |
|
122 * |
|
123 * Non-Tx commands (config, multicast setup, etc) are linked |
|
124 * into the CBL ring along with Tx commands. The common structure |
|
125 * used for both Tx and non-Tx commands is the Command Block (CB). |
|
126 * |
|
127 * cb_to_use is the next CB to use for queuing a command; cb_to_clean |
|
128 * is the next CB to check for completion; cb_to_send is the first |
|
129 * CB to start on in case of a previous failure to resume. CB clean |
|
130 * up happens in interrupt context in response to a CU interrupt. |
|
131 * cbs_avail keeps track of number of free CB resources available. |
|
132 * |
|
133 * Hardware padding of short packets to minimum packet size is |
|
134 * enabled. 82557 pads with 7Eh, while the later controllers pad |
|
135 * with 00h. |
|
136 * |
|
137 * IV. Receive |
|
138 * |
|
139 * The Receive Frame Area (RFA) comprises a ring of Receive Frame |
|
140 * Descriptors (RFD) + data buffer, thus forming the simplified mode |
|
141 * memory structure. Rx skbs are allocated to contain both the RFD |
|
142 * and the data buffer, but the RFD is pulled off before the skb is |
|
143 * indicated. The data buffer is aligned such that encapsulated |
|
144 * protocol headers are u32-aligned. Since the RFD is part of the |
|
145 * mapped shared memory, and completion status is contained within |
|
146 * the RFD, the RFD must be dma_sync'ed to maintain a consistent |
|
147 * view from software and hardware. |
|
148 * |
|
149 * In order to keep updates to the RFD link field from colliding with |
|
150 * hardware writes to mark packets complete, we use the feature that |
|
151 * hardware will not write to a size 0 descriptor and mark the previous |
|
152 * packet as end-of-list (EL). After updating the link, we remove EL |
|
153 * and only then restore the size such that hardware may use the |
|
154 * previous-to-end RFD. |
|
155 * |
|
156 * Under typical operation, the receive unit (RU) is start once, |
|
157 * and the controller happily fills RFDs as frames arrive. If |
|
158 * replacement RFDs cannot be allocated, or the RU goes non-active, |
|
159 * the RU must be restarted. Frame arrival generates an interrupt, |
|
160 * and Rx indication and re-allocation happen in the same context, |
|
161 * therefore no locking is required. A software-generated interrupt |
|
162 * is generated from the watchdog to recover from a failed allocation |
|
163 * scenario where all Rx resources have been indicated and none re- |
|
164 * placed. |
|
165 * |
|
166 * V. Miscellaneous |
|
167 * |
|
168 * VLAN offloading of tagging, stripping and filtering is not |
|
169 * supported, but driver will accommodate the extra 4-byte VLAN tag |
|
170 * for processing by upper layers. Tx/Rx Checksum offloading is not |
|
171 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is |
|
172 * not supported (hardware limitation). |
|
173 * |
|
174 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. |
|
175 * |
|
176 * Thanks to JC (jchapman@katalix.com) for helping with |
|
177 * testing/troubleshooting the development driver. |
|
178 * |
|
179 * TODO: |
|
180 * o several entry points race with dev->close |
|
181 * o check for tx-no-resources/stop Q races with tx clean/wake Q |
|
182 * |
|
183 * FIXES: |
|
184 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> |
|
185 * - Stratus87247: protect MDI control register manipulations |
|
186 * 2009/06/01 - Andreas Mohr <andi at lisas dot de> |
|
187 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs |
|
188 */ |
|
189 |
|
190 #include <linux/module.h> |
|
191 #include <linux/moduleparam.h> |
|
192 #include <linux/kernel.h> |
|
193 #include <linux/types.h> |
|
194 #include <linux/sched.h> |
|
195 #include <linux/slab.h> |
|
196 #include <linux/delay.h> |
|
197 #include <linux/init.h> |
|
198 #include <linux/pci.h> |
|
199 #include <linux/dma-mapping.h> |
|
200 #include <linux/dmapool.h> |
|
201 #include <linux/netdevice.h> |
|
202 #include <linux/etherdevice.h> |
|
203 #include <linux/mii.h> |
|
204 #include <linux/if_vlan.h> |
|
205 #include <linux/skbuff.h> |
|
206 #include <linux/ethtool.h> |
|
207 #include <linux/string.h> |
|
208 #include <linux/firmware.h> |
|
209 |
|
210 // EtherCAT includes |
|
211 #include "../globals.h" |
|
212 #include "ecdev.h" |
|
213 |
|
214 #define DRV_NAME "ec_e100" |
|
215 #include <asm/unaligned.h> |
|
216 |
|
217 |
|
218 #define DRV_EXT "-NAPI" |
|
219 #define DRV_VERSION "3.5.24-k2"DRV_EXT |
|
220 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" |
|
221 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" |
|
222 #define PFX DRV_NAME ": " |
|
223 |
|
224 #define E100_WATCHDOG_PERIOD (2 * HZ) |
|
225 #define E100_NAPI_WEIGHT 16 |
|
226 |
|
227 #define FIRMWARE_D101M "e100/d101m_ucode.bin" |
|
228 #define FIRMWARE_D101S "e100/d101s_ucode.bin" |
|
229 #define FIRMWARE_D102E "e100/d102e_ucode.bin" |
|
230 |
|
231 MODULE_DESCRIPTION(DRV_DESCRIPTION); |
|
232 MODULE_AUTHOR(DRV_COPYRIGHT); |
|
233 MODULE_LICENSE("GPL"); |
|
234 MODULE_VERSION(DRV_VERSION); |
|
235 MODULE_FIRMWARE(FIRMWARE_D101M); |
|
236 MODULE_FIRMWARE(FIRMWARE_D101S); |
|
237 MODULE_FIRMWARE(FIRMWARE_D102E); |
|
238 |
|
239 MODULE_DESCRIPTION(DRV_DESCRIPTION); |
|
240 MODULE_AUTHOR("Florian Pose <fp@igh-essen.com>"); |
|
241 MODULE_LICENSE("GPL"); |
|
242 MODULE_VERSION(DRV_VERSION ", master " EC_MASTER_VERSION); |
|
243 |
|
244 void e100_ec_poll(struct net_device *); |
|
245 |
|
246 static int debug = 3; |
|
247 static int eeprom_bad_csum_allow = 0; |
|
248 static int use_io = 0; |
|
249 module_param(debug, int, 0); |
|
250 module_param(eeprom_bad_csum_allow, int, 0); |
|
251 module_param(use_io, int, 0); |
|
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
|
253 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); |
|
254 MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); |
|
255 #define DPRINTK(nlevel, klevel, fmt, args...) \ |
|
256 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ |
|
257 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ |
|
258 __func__ , ## args)) |
|
259 |
|
260 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ |
|
261 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ |
|
262 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } |
|
263 static struct pci_device_id e100_id_table[] = { |
|
264 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), |
|
265 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), |
|
266 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), |
|
267 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), |
|
268 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), |
|
269 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), |
|
270 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), |
|
271 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), |
|
272 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), |
|
273 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), |
|
274 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), |
|
275 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), |
|
276 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), |
|
277 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), |
|
278 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), |
|
279 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), |
|
280 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), |
|
281 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), |
|
282 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), |
|
283 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), |
|
284 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), |
|
285 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), |
|
286 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), |
|
287 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), |
|
288 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), |
|
289 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), |
|
290 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), |
|
291 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), |
|
292 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), |
|
293 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), |
|
294 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), |
|
295 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), |
|
296 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), |
|
297 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), |
|
298 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), |
|
299 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), |
|
300 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), |
|
301 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), |
|
302 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), |
|
303 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), |
|
304 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), |
|
305 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), |
|
306 { 0, } |
|
307 }; |
|
308 |
|
309 // prevent from being loaded automatically |
|
310 //MODULE_DEVICE_TABLE(pci, e100_id_table); |
|
311 |
|
312 enum mac { |
|
313 mac_82557_D100_A = 0, |
|
314 mac_82557_D100_B = 1, |
|
315 mac_82557_D100_C = 2, |
|
316 mac_82558_D101_A4 = 4, |
|
317 mac_82558_D101_B0 = 5, |
|
318 mac_82559_D101M = 8, |
|
319 mac_82559_D101S = 9, |
|
320 mac_82550_D102 = 12, |
|
321 mac_82550_D102_C = 13, |
|
322 mac_82551_E = 14, |
|
323 mac_82551_F = 15, |
|
324 mac_82551_10 = 16, |
|
325 mac_unknown = 0xFF, |
|
326 }; |
|
327 |
|
328 enum phy { |
|
329 phy_100a = 0x000003E0, |
|
330 phy_100c = 0x035002A8, |
|
331 phy_82555_tx = 0x015002A8, |
|
332 phy_nsc_tx = 0x5C002000, |
|
333 phy_82562_et = 0x033002A8, |
|
334 phy_82562_em = 0x032002A8, |
|
335 phy_82562_ek = 0x031002A8, |
|
336 phy_82562_eh = 0x017002A8, |
|
337 phy_82552_v = 0xd061004d, |
|
338 phy_unknown = 0xFFFFFFFF, |
|
339 }; |
|
340 |
|
341 /* CSR (Control/Status Registers) */ |
|
342 struct csr { |
|
343 struct { |
|
344 u8 status; |
|
345 u8 stat_ack; |
|
346 u8 cmd_lo; |
|
347 u8 cmd_hi; |
|
348 u32 gen_ptr; |
|
349 } scb; |
|
350 u32 port; |
|
351 u16 flash_ctrl; |
|
352 u8 eeprom_ctrl_lo; |
|
353 u8 eeprom_ctrl_hi; |
|
354 u32 mdi_ctrl; |
|
355 u32 rx_dma_count; |
|
356 }; |
|
357 |
|
358 enum scb_status { |
|
359 rus_no_res = 0x08, |
|
360 rus_ready = 0x10, |
|
361 rus_mask = 0x3C, |
|
362 }; |
|
363 |
|
364 enum ru_state { |
|
365 RU_SUSPENDED = 0, |
|
366 RU_RUNNING = 1, |
|
367 RU_UNINITIALIZED = -1, |
|
368 }; |
|
369 |
|
370 enum scb_stat_ack { |
|
371 stat_ack_not_ours = 0x00, |
|
372 stat_ack_sw_gen = 0x04, |
|
373 stat_ack_rnr = 0x10, |
|
374 stat_ack_cu_idle = 0x20, |
|
375 stat_ack_frame_rx = 0x40, |
|
376 stat_ack_cu_cmd_done = 0x80, |
|
377 stat_ack_not_present = 0xFF, |
|
378 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), |
|
379 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), |
|
380 }; |
|
381 |
|
382 enum scb_cmd_hi { |
|
383 irq_mask_none = 0x00, |
|
384 irq_mask_all = 0x01, |
|
385 irq_sw_gen = 0x02, |
|
386 }; |
|
387 |
|
388 enum scb_cmd_lo { |
|
389 cuc_nop = 0x00, |
|
390 ruc_start = 0x01, |
|
391 ruc_load_base = 0x06, |
|
392 cuc_start = 0x10, |
|
393 cuc_resume = 0x20, |
|
394 cuc_dump_addr = 0x40, |
|
395 cuc_dump_stats = 0x50, |
|
396 cuc_load_base = 0x60, |
|
397 cuc_dump_reset = 0x70, |
|
398 }; |
|
399 |
|
400 enum cuc_dump { |
|
401 cuc_dump_complete = 0x0000A005, |
|
402 cuc_dump_reset_complete = 0x0000A007, |
|
403 }; |
|
404 |
|
405 enum port { |
|
406 software_reset = 0x0000, |
|
407 selftest = 0x0001, |
|
408 selective_reset = 0x0002, |
|
409 }; |
|
410 |
|
411 enum eeprom_ctrl_lo { |
|
412 eesk = 0x01, |
|
413 eecs = 0x02, |
|
414 eedi = 0x04, |
|
415 eedo = 0x08, |
|
416 }; |
|
417 |
|
418 enum mdi_ctrl { |
|
419 mdi_write = 0x04000000, |
|
420 mdi_read = 0x08000000, |
|
421 mdi_ready = 0x10000000, |
|
422 }; |
|
423 |
|
424 enum eeprom_op { |
|
425 op_write = 0x05, |
|
426 op_read = 0x06, |
|
427 op_ewds = 0x10, |
|
428 op_ewen = 0x13, |
|
429 }; |
|
430 |
|
431 enum eeprom_offsets { |
|
432 eeprom_cnfg_mdix = 0x03, |
|
433 eeprom_phy_iface = 0x06, |
|
434 eeprom_id = 0x0A, |
|
435 eeprom_config_asf = 0x0D, |
|
436 eeprom_smbus_addr = 0x90, |
|
437 }; |
|
438 |
|
439 enum eeprom_cnfg_mdix { |
|
440 eeprom_mdix_enabled = 0x0080, |
|
441 }; |
|
442 |
|
443 enum eeprom_phy_iface { |
|
444 NoSuchPhy = 0, |
|
445 I82553AB, |
|
446 I82553C, |
|
447 I82503, |
|
448 DP83840, |
|
449 S80C240, |
|
450 S80C24, |
|
451 I82555, |
|
452 DP83840A = 10, |
|
453 }; |
|
454 |
|
455 enum eeprom_id { |
|
456 eeprom_id_wol = 0x0020, |
|
457 }; |
|
458 |
|
459 enum eeprom_config_asf { |
|
460 eeprom_asf = 0x8000, |
|
461 eeprom_gcl = 0x4000, |
|
462 }; |
|
463 |
|
464 enum cb_status { |
|
465 cb_complete = 0x8000, |
|
466 cb_ok = 0x2000, |
|
467 }; |
|
468 |
|
469 enum cb_command { |
|
470 cb_nop = 0x0000, |
|
471 cb_iaaddr = 0x0001, |
|
472 cb_config = 0x0002, |
|
473 cb_multi = 0x0003, |
|
474 cb_tx = 0x0004, |
|
475 cb_ucode = 0x0005, |
|
476 cb_dump = 0x0006, |
|
477 cb_tx_sf = 0x0008, |
|
478 cb_cid = 0x1f00, |
|
479 cb_i = 0x2000, |
|
480 cb_s = 0x4000, |
|
481 cb_el = 0x8000, |
|
482 }; |
|
483 |
|
484 struct rfd { |
|
485 __le16 status; |
|
486 __le16 command; |
|
487 __le32 link; |
|
488 __le32 rbd; |
|
489 __le16 actual_size; |
|
490 __le16 size; |
|
491 }; |
|
492 |
|
493 struct rx { |
|
494 struct rx *next, *prev; |
|
495 struct sk_buff *skb; |
|
496 dma_addr_t dma_addr; |
|
497 }; |
|
498 |
|
499 #if defined(__BIG_ENDIAN_BITFIELD) |
|
500 #define X(a,b) b,a |
|
501 #else |
|
502 #define X(a,b) a,b |
|
503 #endif |
|
504 struct config { |
|
505 /*0*/ u8 X(byte_count:6, pad0:2); |
|
506 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); |
|
507 /*2*/ u8 adaptive_ifs; |
|
508 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), |
|
509 term_write_cache_line:1), pad3:4); |
|
510 /*4*/ u8 X(rx_dma_max_count:7, pad4:1); |
|
511 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); |
|
512 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), |
|
513 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), |
|
514 rx_discard_overruns:1), rx_save_bad_frames:1); |
|
515 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), |
|
516 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), |
|
517 tx_dynamic_tbd:1); |
|
518 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); |
|
519 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), |
|
520 link_status_wake:1), arp_wake:1), mcmatch_wake:1); |
|
521 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), |
|
522 loopback:2); |
|
523 /*11*/ u8 X(linear_priority:3, pad11:5); |
|
524 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); |
|
525 /*13*/ u8 ip_addr_lo; |
|
526 /*14*/ u8 ip_addr_hi; |
|
527 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), |
|
528 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), |
|
529 pad15_2:1), crs_or_cdt:1); |
|
530 /*16*/ u8 fc_delay_lo; |
|
531 /*17*/ u8 fc_delay_hi; |
|
532 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), |
|
533 rx_long_ok:1), fc_priority_threshold:3), pad18:1); |
|
534 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), |
|
535 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), |
|
536 full_duplex_force:1), full_duplex_pin:1); |
|
537 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); |
|
538 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); |
|
539 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); |
|
540 u8 pad_d102[9]; |
|
541 }; |
|
542 |
|
543 #define E100_MAX_MULTICAST_ADDRS 64 |
|
544 struct multi { |
|
545 __le16 count; |
|
546 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; |
|
547 }; |
|
548 |
|
549 /* Important: keep total struct u32-aligned */ |
|
550 #define UCODE_SIZE 134 |
|
551 struct cb { |
|
552 __le16 status; |
|
553 __le16 command; |
|
554 __le32 link; |
|
555 union { |
|
556 u8 iaaddr[ETH_ALEN]; |
|
557 __le32 ucode[UCODE_SIZE]; |
|
558 struct config config; |
|
559 struct multi multi; |
|
560 struct { |
|
561 u32 tbd_array; |
|
562 u16 tcb_byte_count; |
|
563 u8 threshold; |
|
564 u8 tbd_count; |
|
565 struct { |
|
566 __le32 buf_addr; |
|
567 __le16 size; |
|
568 u16 eol; |
|
569 } tbd; |
|
570 } tcb; |
|
571 __le32 dump_buffer_addr; |
|
572 } u; |
|
573 struct cb *next, *prev; |
|
574 dma_addr_t dma_addr; |
|
575 struct sk_buff *skb; |
|
576 }; |
|
577 |
|
578 enum loopback { |
|
579 lb_none = 0, lb_mac = 1, lb_phy = 3, |
|
580 }; |
|
581 |
|
582 struct stats { |
|
583 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, |
|
584 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, |
|
585 tx_multiple_collisions, tx_total_collisions; |
|
586 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, |
|
587 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, |
|
588 rx_short_frame_errors; |
|
589 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; |
|
590 __le16 xmt_tco_frames, rcv_tco_frames; |
|
591 __le32 complete; |
|
592 }; |
|
593 |
|
594 struct mem { |
|
595 struct { |
|
596 u32 signature; |
|
597 u32 result; |
|
598 } selftest; |
|
599 struct stats stats; |
|
600 u8 dump_buf[596]; |
|
601 }; |
|
602 |
|
603 struct param_range { |
|
604 u32 min; |
|
605 u32 max; |
|
606 u32 count; |
|
607 }; |
|
608 |
|
609 struct params { |
|
610 struct param_range rfds; |
|
611 struct param_range cbs; |
|
612 }; |
|
613 |
|
614 struct nic { |
|
615 /* Begin: frequently used values: keep adjacent for cache effect */ |
|
616 u32 msg_enable ____cacheline_aligned; |
|
617 struct net_device *netdev; |
|
618 struct pci_dev *pdev; |
|
619 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); |
|
620 |
|
621 struct rx *rxs ____cacheline_aligned; |
|
622 struct rx *rx_to_use; |
|
623 struct rx *rx_to_clean; |
|
624 struct rfd blank_rfd; |
|
625 enum ru_state ru_running; |
|
626 |
|
627 spinlock_t cb_lock ____cacheline_aligned; |
|
628 spinlock_t cmd_lock; |
|
629 struct csr __iomem *csr; |
|
630 enum scb_cmd_lo cuc_cmd; |
|
631 unsigned int cbs_avail; |
|
632 struct napi_struct napi; |
|
633 struct cb *cbs; |
|
634 struct cb *cb_to_use; |
|
635 struct cb *cb_to_send; |
|
636 struct cb *cb_to_clean; |
|
637 __le16 tx_command; |
|
638 /* End: frequently used values: keep adjacent for cache effect */ |
|
639 |
|
640 enum { |
|
641 ich = (1 << 0), |
|
642 promiscuous = (1 << 1), |
|
643 multicast_all = (1 << 2), |
|
644 wol_magic = (1 << 3), |
|
645 ich_10h_workaround = (1 << 4), |
|
646 } flags ____cacheline_aligned; |
|
647 |
|
648 enum mac mac; |
|
649 enum phy phy; |
|
650 struct params params; |
|
651 struct timer_list watchdog; |
|
652 struct timer_list blink_timer; |
|
653 struct mii_if_info mii; |
|
654 struct work_struct tx_timeout_task; |
|
655 enum loopback loopback; |
|
656 |
|
657 struct mem *mem; |
|
658 dma_addr_t dma_addr; |
|
659 |
|
660 struct pci_pool *cbs_pool; |
|
661 dma_addr_t cbs_dma_addr; |
|
662 u8 adaptive_ifs; |
|
663 u8 tx_threshold; |
|
664 u32 tx_frames; |
|
665 u32 tx_collisions; |
|
666 |
|
667 u32 tx_deferred; |
|
668 u32 tx_single_collisions; |
|
669 u32 tx_multiple_collisions; |
|
670 u32 tx_fc_pause; |
|
671 u32 tx_tco_frames; |
|
672 |
|
673 u32 rx_fc_pause; |
|
674 u32 rx_fc_unsupported; |
|
675 u32 rx_tco_frames; |
|
676 u32 rx_over_length_errors; |
|
677 |
|
678 u16 leds; |
|
679 u16 eeprom_wc; |
|
680 |
|
681 __le16 eeprom[256]; |
|
682 spinlock_t mdio_lock; |
|
683 const struct firmware *fw; |
|
684 ec_device_t *ecdev; |
|
685 unsigned long ec_watchdog_jiffies; |
|
686 }; |
|
687 |
|
688 static inline void e100_write_flush(struct nic *nic) |
|
689 { |
|
690 /* Flush previous PCI writes through intermediate bridges |
|
691 * by doing a benign read */ |
|
692 (void)ioread8(&nic->csr->scb.status); |
|
693 } |
|
694 |
|
695 static void e100_enable_irq(struct nic *nic) |
|
696 { |
|
697 unsigned long flags; |
|
698 |
|
699 if (nic->ecdev) |
|
700 return; |
|
701 |
|
702 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
703 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); |
|
704 e100_write_flush(nic); |
|
705 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
706 } |
|
707 |
|
708 static void e100_disable_irq(struct nic *nic) |
|
709 { |
|
710 unsigned long flags = 0; |
|
711 |
|
712 if (!nic->ecdev) |
|
713 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
714 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); |
|
715 e100_write_flush(nic); |
|
716 if (!nic->ecdev) |
|
717 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
718 } |
|
719 |
|
720 static void e100_hw_reset(struct nic *nic) |
|
721 { |
|
722 /* Put CU and RU into idle with a selective reset to get |
|
723 * device off of PCI bus */ |
|
724 iowrite32(selective_reset, &nic->csr->port); |
|
725 e100_write_flush(nic); udelay(20); |
|
726 |
|
727 /* Now fully reset device */ |
|
728 iowrite32(software_reset, &nic->csr->port); |
|
729 e100_write_flush(nic); udelay(20); |
|
730 |
|
731 /* Mask off our interrupt line - it's unmasked after reset */ |
|
732 e100_disable_irq(nic); |
|
733 } |
|
734 |
|
735 static int e100_self_test(struct nic *nic) |
|
736 { |
|
737 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); |
|
738 |
|
739 /* Passing the self-test is a pretty good indication |
|
740 * that the device can DMA to/from host memory */ |
|
741 |
|
742 nic->mem->selftest.signature = 0; |
|
743 nic->mem->selftest.result = 0xFFFFFFFF; |
|
744 |
|
745 iowrite32(selftest | dma_addr, &nic->csr->port); |
|
746 e100_write_flush(nic); |
|
747 /* Wait 10 msec for self-test to complete */ |
|
748 msleep(10); |
|
749 |
|
750 /* Interrupts are enabled after self-test */ |
|
751 e100_disable_irq(nic); |
|
752 |
|
753 /* Check results of self-test */ |
|
754 if (nic->mem->selftest.result != 0) { |
|
755 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", |
|
756 nic->mem->selftest.result); |
|
757 return -ETIMEDOUT; |
|
758 } |
|
759 if (nic->mem->selftest.signature == 0) { |
|
760 DPRINTK(HW, ERR, "Self-test failed: timed out\n"); |
|
761 return -ETIMEDOUT; |
|
762 } |
|
763 |
|
764 return 0; |
|
765 } |
|
766 |
|
767 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) |
|
768 { |
|
769 u32 cmd_addr_data[3]; |
|
770 u8 ctrl; |
|
771 int i, j; |
|
772 |
|
773 /* Three cmds: write/erase enable, write data, write/erase disable */ |
|
774 cmd_addr_data[0] = op_ewen << (addr_len - 2); |
|
775 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | |
|
776 le16_to_cpu(data); |
|
777 cmd_addr_data[2] = op_ewds << (addr_len - 2); |
|
778 |
|
779 /* Bit-bang cmds to write word to eeprom */ |
|
780 for (j = 0; j < 3; j++) { |
|
781 |
|
782 /* Chip select */ |
|
783 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); |
|
784 e100_write_flush(nic); udelay(4); |
|
785 |
|
786 for (i = 31; i >= 0; i--) { |
|
787 ctrl = (cmd_addr_data[j] & (1 << i)) ? |
|
788 eecs | eedi : eecs; |
|
789 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); |
|
790 e100_write_flush(nic); udelay(4); |
|
791 |
|
792 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); |
|
793 e100_write_flush(nic); udelay(4); |
|
794 } |
|
795 /* Wait 10 msec for cmd to complete */ |
|
796 msleep(10); |
|
797 |
|
798 /* Chip deselect */ |
|
799 iowrite8(0, &nic->csr->eeprom_ctrl_lo); |
|
800 e100_write_flush(nic); udelay(4); |
|
801 } |
|
802 }; |
|
803 |
|
804 /* General technique stolen from the eepro100 driver - very clever */ |
|
805 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) |
|
806 { |
|
807 u32 cmd_addr_data; |
|
808 u16 data = 0; |
|
809 u8 ctrl; |
|
810 int i; |
|
811 |
|
812 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; |
|
813 |
|
814 /* Chip select */ |
|
815 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); |
|
816 e100_write_flush(nic); udelay(4); |
|
817 |
|
818 /* Bit-bang to read word from eeprom */ |
|
819 for (i = 31; i >= 0; i--) { |
|
820 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; |
|
821 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); |
|
822 e100_write_flush(nic); udelay(4); |
|
823 |
|
824 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); |
|
825 e100_write_flush(nic); udelay(4); |
|
826 |
|
827 /* Eeprom drives a dummy zero to EEDO after receiving |
|
828 * complete address. Use this to adjust addr_len. */ |
|
829 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); |
|
830 if (!(ctrl & eedo) && i > 16) { |
|
831 *addr_len -= (i - 16); |
|
832 i = 17; |
|
833 } |
|
834 |
|
835 data = (data << 1) | (ctrl & eedo ? 1 : 0); |
|
836 } |
|
837 |
|
838 /* Chip deselect */ |
|
839 iowrite8(0, &nic->csr->eeprom_ctrl_lo); |
|
840 e100_write_flush(nic); udelay(4); |
|
841 |
|
842 return cpu_to_le16(data); |
|
843 }; |
|
844 |
|
845 /* Load entire EEPROM image into driver cache and validate checksum */ |
|
846 static int e100_eeprom_load(struct nic *nic) |
|
847 { |
|
848 u16 addr, addr_len = 8, checksum = 0; |
|
849 |
|
850 /* Try reading with an 8-bit addr len to discover actual addr len */ |
|
851 e100_eeprom_read(nic, &addr_len, 0); |
|
852 nic->eeprom_wc = 1 << addr_len; |
|
853 |
|
854 for (addr = 0; addr < nic->eeprom_wc; addr++) { |
|
855 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); |
|
856 if (addr < nic->eeprom_wc - 1) |
|
857 checksum += le16_to_cpu(nic->eeprom[addr]); |
|
858 } |
|
859 |
|
860 /* The checksum, stored in the last word, is calculated such that |
|
861 * the sum of words should be 0xBABA */ |
|
862 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { |
|
863 DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); |
|
864 if (!eeprom_bad_csum_allow) |
|
865 return -EAGAIN; |
|
866 } |
|
867 |
|
868 return 0; |
|
869 } |
|
870 |
|
871 /* Save (portion of) driver EEPROM cache to device and update checksum */ |
|
872 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) |
|
873 { |
|
874 u16 addr, addr_len = 8, checksum = 0; |
|
875 |
|
876 /* Try reading with an 8-bit addr len to discover actual addr len */ |
|
877 e100_eeprom_read(nic, &addr_len, 0); |
|
878 nic->eeprom_wc = 1 << addr_len; |
|
879 |
|
880 if (start + count >= nic->eeprom_wc) |
|
881 return -EINVAL; |
|
882 |
|
883 for (addr = start; addr < start + count; addr++) |
|
884 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); |
|
885 |
|
886 /* The checksum, stored in the last word, is calculated such that |
|
887 * the sum of words should be 0xBABA */ |
|
888 for (addr = 0; addr < nic->eeprom_wc - 1; addr++) |
|
889 checksum += le16_to_cpu(nic->eeprom[addr]); |
|
890 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); |
|
891 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, |
|
892 nic->eeprom[nic->eeprom_wc - 1]); |
|
893 |
|
894 return 0; |
|
895 } |
|
896 |
|
897 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ |
|
898 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ |
|
899 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) |
|
900 { |
|
901 unsigned long flags = 0; |
|
902 unsigned int i; |
|
903 int err = 0; |
|
904 |
|
905 if (!nic->ecdev) |
|
906 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
907 |
|
908 /* Previous command is accepted when SCB clears */ |
|
909 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { |
|
910 if (likely(!ioread8(&nic->csr->scb.cmd_lo))) |
|
911 break; |
|
912 cpu_relax(); |
|
913 if (unlikely(i > E100_WAIT_SCB_FAST)) |
|
914 udelay(5); |
|
915 } |
|
916 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { |
|
917 err = -EAGAIN; |
|
918 goto err_unlock; |
|
919 } |
|
920 |
|
921 if (unlikely(cmd != cuc_resume)) |
|
922 iowrite32(dma_addr, &nic->csr->scb.gen_ptr); |
|
923 iowrite8(cmd, &nic->csr->scb.cmd_lo); |
|
924 |
|
925 err_unlock: |
|
926 if (!nic->ecdev) |
|
927 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
928 |
|
929 return err; |
|
930 } |
|
931 |
|
932 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, |
|
933 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) |
|
934 { |
|
935 struct cb *cb; |
|
936 unsigned long flags = 0; |
|
937 int err = 0; |
|
938 |
|
939 if (!nic->ecdev) |
|
940 spin_lock_irqsave(&nic->cb_lock, flags); |
|
941 |
|
942 if (unlikely(!nic->cbs_avail)) { |
|
943 err = -ENOMEM; |
|
944 goto err_unlock; |
|
945 } |
|
946 |
|
947 cb = nic->cb_to_use; |
|
948 nic->cb_to_use = cb->next; |
|
949 nic->cbs_avail--; |
|
950 cb->skb = skb; |
|
951 |
|
952 if (unlikely(!nic->cbs_avail)) |
|
953 err = -ENOSPC; |
|
954 |
|
955 cb_prepare(nic, cb, skb); |
|
956 |
|
957 /* Order is important otherwise we'll be in a race with h/w: |
|
958 * set S-bit in current first, then clear S-bit in previous. */ |
|
959 cb->command |= cpu_to_le16(cb_s); |
|
960 wmb(); |
|
961 cb->prev->command &= cpu_to_le16(~cb_s); |
|
962 |
|
963 while (nic->cb_to_send != nic->cb_to_use) { |
|
964 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, |
|
965 nic->cb_to_send->dma_addr))) { |
|
966 /* Ok, here's where things get sticky. It's |
|
967 * possible that we can't schedule the command |
|
968 * because the controller is too busy, so |
|
969 * let's just queue the command and try again |
|
970 * when another command is scheduled. */ |
|
971 if (err == -ENOSPC) { |
|
972 //request a reset |
|
973 schedule_work(&nic->tx_timeout_task); |
|
974 } |
|
975 break; |
|
976 } else { |
|
977 nic->cuc_cmd = cuc_resume; |
|
978 nic->cb_to_send = nic->cb_to_send->next; |
|
979 } |
|
980 } |
|
981 |
|
982 err_unlock: |
|
983 if (!nic->ecdev) |
|
984 spin_unlock_irqrestore(&nic->cb_lock, flags); |
|
985 |
|
986 return err; |
|
987 } |
|
988 |
|
989 static int mdio_read(struct net_device *netdev, int addr, int reg) |
|
990 { |
|
991 struct nic *nic = netdev_priv(netdev); |
|
992 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); |
|
993 } |
|
994 |
|
995 static void mdio_write(struct net_device *netdev, int addr, int reg, int data) |
|
996 { |
|
997 struct nic *nic = netdev_priv(netdev); |
|
998 |
|
999 nic->mdio_ctrl(nic, addr, mdi_write, reg, data); |
|
1000 } |
|
1001 |
|
1002 /* the standard mdio_ctrl() function for usual MII-compliant hardware */ |
|
1003 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) |
|
1004 { |
|
1005 u32 data_out = 0; |
|
1006 unsigned int i; |
|
1007 unsigned long flags = 0; |
|
1008 |
|
1009 |
|
1010 /* |
|
1011 * Stratus87247: we shouldn't be writing the MDI control |
|
1012 * register until the Ready bit shows True. Also, since |
|
1013 * manipulation of the MDI control registers is a multi-step |
|
1014 * procedure it should be done under lock. |
|
1015 */ |
|
1016 if (!nic->ecdev) |
|
1017 spin_lock_irqsave(&nic->mdio_lock, flags); |
|
1018 for (i = 100; i; --i) { |
|
1019 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) |
|
1020 break; |
|
1021 udelay(20); |
|
1022 } |
|
1023 if (unlikely(!i)) { |
|
1024 printk("e100.mdio_ctrl(%s) won't go Ready\n", |
|
1025 nic->netdev->name ); |
|
1026 if (!nic->ecdev) |
|
1027 spin_unlock_irqrestore(&nic->mdio_lock, flags); |
|
1028 return 0; /* No way to indicate timeout error */ |
|
1029 } |
|
1030 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); |
|
1031 |
|
1032 for (i = 0; i < 100; i++) { |
|
1033 udelay(20); |
|
1034 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) |
|
1035 break; |
|
1036 } |
|
1037 if (!nic->ecdev) |
|
1038 spin_unlock_irqrestore(&nic->mdio_lock, flags); |
|
1039 DPRINTK(HW, DEBUG, |
|
1040 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", |
|
1041 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); |
|
1042 return (u16)data_out; |
|
1043 } |
|
1044 |
|
1045 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ |
|
1046 static u16 mdio_ctrl_phy_82552_v(struct nic *nic, |
|
1047 u32 addr, |
|
1048 u32 dir, |
|
1049 u32 reg, |
|
1050 u16 data) |
|
1051 { |
|
1052 if ((reg == MII_BMCR) && (dir == mdi_write)) { |
|
1053 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { |
|
1054 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, |
|
1055 MII_ADVERTISE); |
|
1056 |
|
1057 /* |
|
1058 * Workaround Si issue where sometimes the part will not |
|
1059 * autoneg to 100Mbps even when advertised. |
|
1060 */ |
|
1061 if (advert & ADVERTISE_100FULL) |
|
1062 data |= BMCR_SPEED100 | BMCR_FULLDPLX; |
|
1063 else if (advert & ADVERTISE_100HALF) |
|
1064 data |= BMCR_SPEED100; |
|
1065 } |
|
1066 } |
|
1067 return mdio_ctrl_hw(nic, addr, dir, reg, data); |
|
1068 } |
|
1069 |
|
1070 /* Fully software-emulated mdio_ctrl() function for cards without |
|
1071 * MII-compliant PHYs. |
|
1072 * For now, this is mainly geared towards 80c24 support; in case of further |
|
1073 * requirements for other types (i82503, ...?) either extend this mechanism |
|
1074 * or split it, whichever is cleaner. |
|
1075 */ |
|
1076 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, |
|
1077 u32 addr, |
|
1078 u32 dir, |
|
1079 u32 reg, |
|
1080 u16 data) |
|
1081 { |
|
1082 /* might need to allocate a netdev_priv'ed register array eventually |
|
1083 * to be able to record state changes, but for now |
|
1084 * some fully hardcoded register handling ought to be ok I guess. */ |
|
1085 |
|
1086 if (dir == mdi_read) { |
|
1087 switch (reg) { |
|
1088 case MII_BMCR: |
|
1089 /* Auto-negotiation, right? */ |
|
1090 return BMCR_ANENABLE | |
|
1091 BMCR_FULLDPLX; |
|
1092 case MII_BMSR: |
|
1093 return BMSR_LSTATUS /* for mii_link_ok() */ | |
|
1094 BMSR_ANEGCAPABLE | |
|
1095 BMSR_10FULL; |
|
1096 case MII_ADVERTISE: |
|
1097 /* 80c24 is a "combo card" PHY, right? */ |
|
1098 return ADVERTISE_10HALF | |
|
1099 ADVERTISE_10FULL; |
|
1100 default: |
|
1101 DPRINTK(HW, DEBUG, |
|
1102 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", |
|
1103 dir == mdi_read ? "READ" : "WRITE", addr, reg, data); |
|
1104 return 0xFFFF; |
|
1105 } |
|
1106 } else { |
|
1107 switch (reg) { |
|
1108 default: |
|
1109 DPRINTK(HW, DEBUG, |
|
1110 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", |
|
1111 dir == mdi_read ? "READ" : "WRITE", addr, reg, data); |
|
1112 return 0xFFFF; |
|
1113 } |
|
1114 } |
|
1115 } |
|
1116 static inline int e100_phy_supports_mii(struct nic *nic) |
|
1117 { |
|
1118 /* for now, just check it by comparing whether we |
|
1119 are using MII software emulation. |
|
1120 */ |
|
1121 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); |
|
1122 } |
|
1123 |
|
1124 static void e100_get_defaults(struct nic *nic) |
|
1125 { |
|
1126 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; |
|
1127 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; |
|
1128 |
|
1129 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ |
|
1130 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; |
|
1131 if (nic->mac == mac_unknown) |
|
1132 nic->mac = mac_82557_D100_A; |
|
1133 |
|
1134 nic->params.rfds = rfds; |
|
1135 nic->params.cbs = cbs; |
|
1136 |
|
1137 /* Quadwords to DMA into FIFO before starting frame transmit */ |
|
1138 nic->tx_threshold = 0xE0; |
|
1139 |
|
1140 /* no interrupt for every tx completion, delay = 256us if not 557 */ |
|
1141 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | |
|
1142 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); |
|
1143 |
|
1144 /* Template for a freshly allocated RFD */ |
|
1145 nic->blank_rfd.command = 0; |
|
1146 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); |
|
1147 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); |
|
1148 |
|
1149 /* MII setup */ |
|
1150 nic->mii.phy_id_mask = 0x1F; |
|
1151 nic->mii.reg_num_mask = 0x1F; |
|
1152 nic->mii.dev = nic->netdev; |
|
1153 nic->mii.mdio_read = mdio_read; |
|
1154 nic->mii.mdio_write = mdio_write; |
|
1155 } |
|
1156 |
|
1157 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1158 { |
|
1159 struct config *config = &cb->u.config; |
|
1160 u8 *c = (u8 *)config; |
|
1161 |
|
1162 cb->command = cpu_to_le16(cb_config); |
|
1163 |
|
1164 memset(config, 0, sizeof(struct config)); |
|
1165 |
|
1166 config->byte_count = 0x16; /* bytes in this struct */ |
|
1167 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ |
|
1168 config->direct_rx_dma = 0x1; /* reserved */ |
|
1169 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ |
|
1170 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ |
|
1171 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ |
|
1172 config->tx_underrun_retry = 0x3; /* # of underrun retries */ |
|
1173 if (e100_phy_supports_mii(nic)) |
|
1174 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ |
|
1175 config->pad10 = 0x6; |
|
1176 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ |
|
1177 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ |
|
1178 config->ifs = 0x6; /* x16 = inter frame spacing */ |
|
1179 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ |
|
1180 config->pad15_1 = 0x1; |
|
1181 config->pad15_2 = 0x1; |
|
1182 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ |
|
1183 config->fc_delay_hi = 0x40; /* time delay for fc frame */ |
|
1184 config->tx_padding = 0x1; /* 1=pad short frames */ |
|
1185 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ |
|
1186 config->pad18 = 0x1; |
|
1187 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ |
|
1188 config->pad20_1 = 0x1F; |
|
1189 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ |
|
1190 config->pad21_1 = 0x5; |
|
1191 |
|
1192 config->adaptive_ifs = nic->adaptive_ifs; |
|
1193 config->loopback = nic->loopback; |
|
1194 |
|
1195 if (nic->mii.force_media && nic->mii.full_duplex) |
|
1196 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ |
|
1197 |
|
1198 if (nic->flags & promiscuous || nic->loopback) { |
|
1199 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ |
|
1200 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ |
|
1201 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ |
|
1202 } |
|
1203 |
|
1204 if (nic->flags & multicast_all) |
|
1205 config->multicast_all = 0x1; /* 1=accept, 0=no */ |
|
1206 |
|
1207 /* disable WoL when up */ |
|
1208 if (nic->ecdev || |
|
1209 (netif_running(nic->netdev) || !(nic->flags & wol_magic))) |
|
1210 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ |
|
1211 |
|
1212 if (nic->mac >= mac_82558_D101_A4) { |
|
1213 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ |
|
1214 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ |
|
1215 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ |
|
1216 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ |
|
1217 if (nic->mac >= mac_82559_D101M) { |
|
1218 config->tno_intr = 0x1; /* TCO stats enable */ |
|
1219 /* Enable TCO in extended config */ |
|
1220 if (nic->mac >= mac_82551_10) { |
|
1221 config->byte_count = 0x20; /* extended bytes */ |
|
1222 config->rx_d102_mode = 0x1; /* GMRC for TCO */ |
|
1223 } |
|
1224 } else { |
|
1225 config->standard_stat_counter = 0x0; |
|
1226 } |
|
1227 } |
|
1228 |
|
1229 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1230 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); |
|
1231 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1232 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); |
|
1233 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1234 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); |
|
1235 } |
|
1236 |
|
1237 /************************************************************************* |
|
1238 * CPUSaver parameters |
|
1239 * |
|
1240 * All CPUSaver parameters are 16-bit literals that are part of a |
|
1241 * "move immediate value" instruction. By changing the value of |
|
1242 * the literal in the instruction before the code is loaded, the |
|
1243 * driver can change the algorithm. |
|
1244 * |
|
1245 * INTDELAY - This loads the dead-man timer with its initial value. |
|
1246 * When this timer expires the interrupt is asserted, and the |
|
1247 * timer is reset each time a new packet is received. (see |
|
1248 * BUNDLEMAX below to set the limit on number of chained packets) |
|
1249 * The current default is 0x600 or 1536. Experiments show that |
|
1250 * the value should probably stay within the 0x200 - 0x1000. |
|
1251 * |
|
1252 * BUNDLEMAX - |
|
1253 * This sets the maximum number of frames that will be bundled. In |
|
1254 * some situations, such as the TCP windowing algorithm, it may be |
|
1255 * better to limit the growth of the bundle size than let it go as |
|
1256 * high as it can, because that could cause too much added latency. |
|
1257 * The default is six, because this is the number of packets in the |
|
1258 * default TCP window size. A value of 1 would make CPUSaver indicate |
|
1259 * an interrupt for every frame received. If you do not want to put |
|
1260 * a limit on the bundle size, set this value to xFFFF. |
|
1261 * |
|
1262 * BUNDLESMALL - |
|
1263 * This contains a bit-mask describing the minimum size frame that |
|
1264 * will be bundled. The default masks the lower 7 bits, which means |
|
1265 * that any frame less than 128 bytes in length will not be bundled, |
|
1266 * but will instead immediately generate an interrupt. This does |
|
1267 * not affect the current bundle in any way. Any frame that is 128 |
|
1268 * bytes or large will be bundled normally. This feature is meant |
|
1269 * to provide immediate indication of ACK frames in a TCP environment. |
|
1270 * Customers were seeing poor performance when a machine with CPUSaver |
|
1271 * enabled was sending but not receiving. The delay introduced when |
|
1272 * the ACKs were received was enough to reduce total throughput, because |
|
1273 * the sender would sit idle until the ACK was finally seen. |
|
1274 * |
|
1275 * The current default is 0xFF80, which masks out the lower 7 bits. |
|
1276 * This means that any frame which is x7F (127) bytes or smaller |
|
1277 * will cause an immediate interrupt. Because this value must be a |
|
1278 * bit mask, there are only a few valid values that can be used. To |
|
1279 * turn this feature off, the driver can write the value xFFFF to the |
|
1280 * lower word of this instruction (in the same way that the other |
|
1281 * parameters are used). Likewise, a value of 0xF800 (2047) would |
|
1282 * cause an interrupt to be generated for every frame, because all |
|
1283 * standard Ethernet frames are <= 2047 bytes in length. |
|
1284 *************************************************************************/ |
|
1285 |
|
1286 /* if you wish to disable the ucode functionality, while maintaining the |
|
1287 * workarounds it provides, set the following defines to: |
|
1288 * BUNDLESMALL 0 |
|
1289 * BUNDLEMAX 1 |
|
1290 * INTDELAY 1 |
|
1291 */ |
|
1292 #define BUNDLESMALL 1 |
|
1293 #define BUNDLEMAX (u16)6 |
|
1294 #define INTDELAY (u16)1536 /* 0x600 */ |
|
1295 |
|
1296 /* Initialize firmware */ |
|
1297 static const struct firmware *e100_request_firmware(struct nic *nic) |
|
1298 { |
|
1299 const char *fw_name; |
|
1300 const struct firmware *fw = nic->fw; |
|
1301 u8 timer, bundle, min_size; |
|
1302 int err = 0; |
|
1303 |
|
1304 /* do not load u-code for ICH devices */ |
|
1305 if (nic->flags & ich) |
|
1306 return NULL; |
|
1307 |
|
1308 /* Search for ucode match against h/w revision */ |
|
1309 if (nic->mac == mac_82559_D101M) |
|
1310 fw_name = FIRMWARE_D101M; |
|
1311 else if (nic->mac == mac_82559_D101S) |
|
1312 fw_name = FIRMWARE_D101S; |
|
1313 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) |
|
1314 fw_name = FIRMWARE_D102E; |
|
1315 else /* No ucode on other devices */ |
|
1316 return NULL; |
|
1317 |
|
1318 /* If the firmware has not previously been loaded, request a pointer |
|
1319 * to it. If it was previously loaded, we are reinitializing the |
|
1320 * adapter, possibly in a resume from hibernate, in which case |
|
1321 * request_firmware() cannot be used. |
|
1322 */ |
|
1323 if (!fw) |
|
1324 err = request_firmware(&fw, fw_name, &nic->pdev->dev); |
|
1325 |
|
1326 if (err) { |
|
1327 DPRINTK(PROBE, ERR, "Failed to load firmware \"%s\": %d\n", |
|
1328 fw_name, err); |
|
1329 return ERR_PTR(err); |
|
1330 } |
|
1331 |
|
1332 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes |
|
1333 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ |
|
1334 if (fw->size != UCODE_SIZE * 4 + 3) { |
|
1335 DPRINTK(PROBE, ERR, "Firmware \"%s\" has wrong size %zu\n", |
|
1336 fw_name, fw->size); |
|
1337 release_firmware(fw); |
|
1338 return ERR_PTR(-EINVAL); |
|
1339 } |
|
1340 |
|
1341 /* Read timer, bundle and min_size from end of firmware blob */ |
|
1342 timer = fw->data[UCODE_SIZE * 4]; |
|
1343 bundle = fw->data[UCODE_SIZE * 4 + 1]; |
|
1344 min_size = fw->data[UCODE_SIZE * 4 + 2]; |
|
1345 |
|
1346 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || |
|
1347 min_size >= UCODE_SIZE) { |
|
1348 DPRINTK(PROBE, ERR, |
|
1349 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", |
|
1350 fw_name, timer, bundle, min_size); |
|
1351 release_firmware(fw); |
|
1352 return ERR_PTR(-EINVAL); |
|
1353 } |
|
1354 |
|
1355 /* OK, firmware is validated and ready to use. Save a pointer |
|
1356 * to it in the nic */ |
|
1357 nic->fw = fw; |
|
1358 return fw; |
|
1359 } |
|
1360 |
|
1361 static void e100_setup_ucode(struct nic *nic, struct cb *cb, |
|
1362 struct sk_buff *skb) |
|
1363 { |
|
1364 const struct firmware *fw = (void *)skb; |
|
1365 u8 timer, bundle, min_size; |
|
1366 |
|
1367 /* It's not a real skb; we just abused the fact that e100_exec_cb |
|
1368 will pass it through to here... */ |
|
1369 cb->skb = NULL; |
|
1370 |
|
1371 /* firmware is stored as little endian already */ |
|
1372 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); |
|
1373 |
|
1374 /* Read timer, bundle and min_size from end of firmware blob */ |
|
1375 timer = fw->data[UCODE_SIZE * 4]; |
|
1376 bundle = fw->data[UCODE_SIZE * 4 + 1]; |
|
1377 min_size = fw->data[UCODE_SIZE * 4 + 2]; |
|
1378 |
|
1379 /* Insert user-tunable settings in cb->u.ucode */ |
|
1380 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); |
|
1381 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); |
|
1382 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); |
|
1383 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); |
|
1384 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); |
|
1385 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); |
|
1386 |
|
1387 cb->command = cpu_to_le16(cb_ucode | cb_el); |
|
1388 } |
|
1389 |
|
1390 static inline int e100_load_ucode_wait(struct nic *nic) |
|
1391 { |
|
1392 const struct firmware *fw; |
|
1393 int err = 0, counter = 50; |
|
1394 struct cb *cb = nic->cb_to_clean; |
|
1395 |
|
1396 fw = e100_request_firmware(nic); |
|
1397 /* If it's NULL, then no ucode is required */ |
|
1398 if (!fw || IS_ERR(fw)) |
|
1399 return PTR_ERR(fw); |
|
1400 |
|
1401 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) |
|
1402 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err); |
|
1403 |
|
1404 /* must restart cuc */ |
|
1405 nic->cuc_cmd = cuc_start; |
|
1406 |
|
1407 /* wait for completion */ |
|
1408 e100_write_flush(nic); |
|
1409 udelay(10); |
|
1410 |
|
1411 /* wait for possibly (ouch) 500ms */ |
|
1412 while (!(cb->status & cpu_to_le16(cb_complete))) { |
|
1413 msleep(10); |
|
1414 if (!--counter) break; |
|
1415 } |
|
1416 |
|
1417 /* ack any interrupts, something could have been set */ |
|
1418 iowrite8(~0, &nic->csr->scb.stat_ack); |
|
1419 |
|
1420 /* if the command failed, or is not OK, notify and return */ |
|
1421 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { |
|
1422 DPRINTK(PROBE,ERR, "ucode load failed\n"); |
|
1423 err = -EPERM; |
|
1424 } |
|
1425 |
|
1426 return err; |
|
1427 } |
|
1428 |
|
1429 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, |
|
1430 struct sk_buff *skb) |
|
1431 { |
|
1432 cb->command = cpu_to_le16(cb_iaaddr); |
|
1433 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); |
|
1434 } |
|
1435 |
|
1436 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1437 { |
|
1438 cb->command = cpu_to_le16(cb_dump); |
|
1439 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + |
|
1440 offsetof(struct mem, dump_buf)); |
|
1441 } |
|
1442 |
|
1443 static int e100_phy_check_without_mii(struct nic *nic) |
|
1444 { |
|
1445 u8 phy_type; |
|
1446 int without_mii; |
|
1447 |
|
1448 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f; |
|
1449 |
|
1450 switch (phy_type) { |
|
1451 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ |
|
1452 case I82503: /* Non-MII PHY; UNTESTED! */ |
|
1453 case S80C24: /* Non-MII PHY; tested and working */ |
|
1454 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": |
|
1455 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter |
|
1456 * doesn't have a programming interface of any sort. The |
|
1457 * media is sensed automatically based on how the link partner |
|
1458 * is configured. This is, in essence, manual configuration. |
|
1459 */ |
|
1460 DPRINTK(PROBE, INFO, |
|
1461 "found MII-less i82503 or 80c24 or other PHY\n"); |
|
1462 |
|
1463 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; |
|
1464 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ |
|
1465 |
|
1466 /* these might be needed for certain MII-less cards... |
|
1467 * nic->flags |= ich; |
|
1468 * nic->flags |= ich_10h_workaround; */ |
|
1469 |
|
1470 without_mii = 1; |
|
1471 break; |
|
1472 default: |
|
1473 without_mii = 0; |
|
1474 break; |
|
1475 } |
|
1476 return without_mii; |
|
1477 } |
|
1478 |
|
1479 #define NCONFIG_AUTO_SWITCH 0x0080 |
|
1480 #define MII_NSC_CONG MII_RESV1 |
|
1481 #define NSC_CONG_ENABLE 0x0100 |
|
1482 #define NSC_CONG_TXREADY 0x0400 |
|
1483 #define ADVERTISE_FC_SUPPORTED 0x0400 |
|
1484 static int e100_phy_init(struct nic *nic) |
|
1485 { |
|
1486 struct net_device *netdev = nic->netdev; |
|
1487 u32 addr; |
|
1488 u16 bmcr, stat, id_lo, id_hi, cong; |
|
1489 |
|
1490 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ |
|
1491 for (addr = 0; addr < 32; addr++) { |
|
1492 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; |
|
1493 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); |
|
1494 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); |
|
1495 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); |
|
1496 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) |
|
1497 break; |
|
1498 } |
|
1499 if (addr == 32) { |
|
1500 /* uhoh, no PHY detected: check whether we seem to be some |
|
1501 * weird, rare variant which is *known* to not have any MII. |
|
1502 * But do this AFTER MII checking only, since this does |
|
1503 * lookup of EEPROM values which may easily be unreliable. */ |
|
1504 if (e100_phy_check_without_mii(nic)) |
|
1505 return 0; /* simply return and hope for the best */ |
|
1506 else { |
|
1507 /* for unknown cases log a fatal error */ |
|
1508 DPRINTK(HW, ERR, |
|
1509 "Failed to locate any known PHY, aborting.\n"); |
|
1510 return -EAGAIN; |
|
1511 } |
|
1512 } else |
|
1513 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); |
|
1514 |
|
1515 /* Get phy ID */ |
|
1516 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); |
|
1517 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); |
|
1518 nic->phy = (u32)id_hi << 16 | (u32)id_lo; |
|
1519 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); |
|
1520 |
|
1521 /* Select the phy and isolate the rest */ |
|
1522 for (addr = 0; addr < 32; addr++) { |
|
1523 if (addr != nic->mii.phy_id) { |
|
1524 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); |
|
1525 } else if (nic->phy != phy_82552_v) { |
|
1526 bmcr = mdio_read(netdev, addr, MII_BMCR); |
|
1527 mdio_write(netdev, addr, MII_BMCR, |
|
1528 bmcr & ~BMCR_ISOLATE); |
|
1529 } |
|
1530 } |
|
1531 /* |
|
1532 * Workaround for 82552: |
|
1533 * Clear the ISOLATE bit on selected phy_id last (mirrored on all |
|
1534 * other phy_id's) using bmcr value from addr discovery loop above. |
|
1535 */ |
|
1536 if (nic->phy == phy_82552_v) |
|
1537 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, |
|
1538 bmcr & ~BMCR_ISOLATE); |
|
1539 |
|
1540 /* Handle National tx phys */ |
|
1541 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF |
|
1542 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { |
|
1543 /* Disable congestion control */ |
|
1544 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); |
|
1545 cong |= NSC_CONG_TXREADY; |
|
1546 cong &= ~NSC_CONG_ENABLE; |
|
1547 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); |
|
1548 } |
|
1549 |
|
1550 if (nic->phy == phy_82552_v) { |
|
1551 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); |
|
1552 |
|
1553 /* assign special tweaked mdio_ctrl() function */ |
|
1554 nic->mdio_ctrl = mdio_ctrl_phy_82552_v; |
|
1555 |
|
1556 /* Workaround Si not advertising flow-control during autoneg */ |
|
1557 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; |
|
1558 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); |
|
1559 |
|
1560 /* Reset for the above changes to take effect */ |
|
1561 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); |
|
1562 bmcr |= BMCR_RESET; |
|
1563 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); |
|
1564 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && |
|
1565 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && |
|
1566 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { |
|
1567 /* enable/disable MDI/MDI-X auto-switching. */ |
|
1568 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, |
|
1569 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); |
|
1570 } |
|
1571 |
|
1572 return 0; |
|
1573 } |
|
1574 |
|
1575 static int e100_hw_init(struct nic *nic) |
|
1576 { |
|
1577 int err; |
|
1578 |
|
1579 e100_hw_reset(nic); |
|
1580 |
|
1581 DPRINTK(HW, ERR, "e100_hw_init\n"); |
|
1582 if (!in_interrupt() && (err = e100_self_test(nic))) |
|
1583 return err; |
|
1584 |
|
1585 if ((err = e100_phy_init(nic))) |
|
1586 return err; |
|
1587 if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) |
|
1588 return err; |
|
1589 if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) |
|
1590 return err; |
|
1591 if ((err = e100_load_ucode_wait(nic))) |
|
1592 return err; |
|
1593 if ((err = e100_exec_cb(nic, NULL, e100_configure))) |
|
1594 return err; |
|
1595 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) |
|
1596 return err; |
|
1597 if ((err = e100_exec_cmd(nic, cuc_dump_addr, |
|
1598 nic->dma_addr + offsetof(struct mem, stats)))) |
|
1599 return err; |
|
1600 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) |
|
1601 return err; |
|
1602 |
|
1603 e100_disable_irq(nic); |
|
1604 |
|
1605 return 0; |
|
1606 } |
|
1607 |
|
1608 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1609 { |
|
1610 struct net_device *netdev = nic->netdev; |
|
1611 struct dev_mc_list *list = netdev->mc_list; |
|
1612 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); |
|
1613 |
|
1614 cb->command = cpu_to_le16(cb_multi); |
|
1615 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); |
|
1616 for (i = 0; list && i < count; i++, list = list->next) |
|
1617 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, |
|
1618 ETH_ALEN); |
|
1619 } |
|
1620 |
|
1621 static void e100_set_multicast_list(struct net_device *netdev) |
|
1622 { |
|
1623 struct nic *nic = netdev_priv(netdev); |
|
1624 |
|
1625 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", |
|
1626 netdev->mc_count, netdev->flags); |
|
1627 |
|
1628 if (netdev->flags & IFF_PROMISC) |
|
1629 nic->flags |= promiscuous; |
|
1630 else |
|
1631 nic->flags &= ~promiscuous; |
|
1632 |
|
1633 if (netdev->flags & IFF_ALLMULTI || |
|
1634 netdev->mc_count > E100_MAX_MULTICAST_ADDRS) |
|
1635 nic->flags |= multicast_all; |
|
1636 else |
|
1637 nic->flags &= ~multicast_all; |
|
1638 |
|
1639 e100_exec_cb(nic, NULL, e100_configure); |
|
1640 e100_exec_cb(nic, NULL, e100_multi); |
|
1641 } |
|
1642 |
|
1643 static void e100_update_stats(struct nic *nic) |
|
1644 { |
|
1645 struct net_device *dev = nic->netdev; |
|
1646 struct net_device_stats *ns = &dev->stats; |
|
1647 struct stats *s = &nic->mem->stats; |
|
1648 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : |
|
1649 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : |
|
1650 &s->complete; |
|
1651 |
|
1652 /* Device's stats reporting may take several microseconds to |
|
1653 * complete, so we're always waiting for results of the |
|
1654 * previous command. */ |
|
1655 |
|
1656 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { |
|
1657 *complete = 0; |
|
1658 nic->tx_frames = le32_to_cpu(s->tx_good_frames); |
|
1659 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); |
|
1660 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); |
|
1661 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); |
|
1662 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); |
|
1663 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); |
|
1664 ns->collisions += nic->tx_collisions; |
|
1665 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + |
|
1666 le32_to_cpu(s->tx_lost_crs); |
|
1667 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + |
|
1668 nic->rx_over_length_errors; |
|
1669 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); |
|
1670 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); |
|
1671 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); |
|
1672 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); |
|
1673 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); |
|
1674 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + |
|
1675 le32_to_cpu(s->rx_alignment_errors) + |
|
1676 le32_to_cpu(s->rx_short_frame_errors) + |
|
1677 le32_to_cpu(s->rx_cdt_errors); |
|
1678 nic->tx_deferred += le32_to_cpu(s->tx_deferred); |
|
1679 nic->tx_single_collisions += |
|
1680 le32_to_cpu(s->tx_single_collisions); |
|
1681 nic->tx_multiple_collisions += |
|
1682 le32_to_cpu(s->tx_multiple_collisions); |
|
1683 if (nic->mac >= mac_82558_D101_A4) { |
|
1684 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); |
|
1685 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); |
|
1686 nic->rx_fc_unsupported += |
|
1687 le32_to_cpu(s->fc_rcv_unsupported); |
|
1688 if (nic->mac >= mac_82559_D101M) { |
|
1689 nic->tx_tco_frames += |
|
1690 le16_to_cpu(s->xmt_tco_frames); |
|
1691 nic->rx_tco_frames += |
|
1692 le16_to_cpu(s->rcv_tco_frames); |
|
1693 } |
|
1694 } |
|
1695 } |
|
1696 |
|
1697 |
|
1698 if (e100_exec_cmd(nic, cuc_dump_reset, 0)) |
|
1699 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); |
|
1700 } |
|
1701 |
|
1702 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) |
|
1703 { |
|
1704 /* Adjust inter-frame-spacing (IFS) between two transmits if |
|
1705 * we're getting collisions on a half-duplex connection. */ |
|
1706 |
|
1707 if (duplex == DUPLEX_HALF) { |
|
1708 u32 prev = nic->adaptive_ifs; |
|
1709 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; |
|
1710 |
|
1711 if ((nic->tx_frames / 32 < nic->tx_collisions) && |
|
1712 (nic->tx_frames > min_frames)) { |
|
1713 if (nic->adaptive_ifs < 60) |
|
1714 nic->adaptive_ifs += 5; |
|
1715 } else if (nic->tx_frames < min_frames) { |
|
1716 if (nic->adaptive_ifs >= 5) |
|
1717 nic->adaptive_ifs -= 5; |
|
1718 } |
|
1719 if (nic->adaptive_ifs != prev) |
|
1720 e100_exec_cb(nic, NULL, e100_configure); |
|
1721 } |
|
1722 } |
|
1723 |
|
1724 static void e100_watchdog(unsigned long data) |
|
1725 { |
|
1726 struct nic *nic = (struct nic *)data; |
|
1727 struct ethtool_cmd cmd; |
|
1728 |
|
1729 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); |
|
1730 |
|
1731 /* mii library handles link maintenance tasks */ |
|
1732 |
|
1733 if (nic->ecdev) { |
|
1734 ecdev_set_link(nic->ecdev, mii_link_ok(&nic->mii) ? 1 : 0); |
|
1735 } else { |
|
1736 mii_ethtool_gset(&nic->mii, &cmd); |
|
1737 |
|
1738 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { |
|
1739 printk(KERN_INFO "e100: %s NIC Link is Up %s Mbps %s Duplex\n", |
|
1740 nic->netdev->name, |
|
1741 cmd.speed == SPEED_100 ? "100" : "10", |
|
1742 cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); |
|
1743 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { |
|
1744 printk(KERN_INFO "e100: %s NIC Link is Down\n", |
|
1745 nic->netdev->name); |
|
1746 } |
|
1747 |
|
1748 mii_check_link(&nic->mii); |
|
1749 |
|
1750 /* Software generated interrupt to recover from (rare) Rx |
|
1751 * allocation failure. |
|
1752 * Unfortunately have to use a spinlock to not re-enable interrupts |
|
1753 * accidentally, due to hardware that shares a register between the |
|
1754 * interrupt mask bit and the SW Interrupt generation bit */ |
|
1755 spin_lock_irq(&nic->cmd_lock); |
|
1756 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); |
|
1757 e100_write_flush(nic); |
|
1758 spin_unlock_irq(&nic->cmd_lock); |
|
1759 |
|
1760 e100_update_stats(nic); |
|
1761 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); |
|
1762 |
|
1763 if (nic->mac <= mac_82557_D100_C) |
|
1764 /* Issue a multicast command to workaround a 557 lock up */ |
|
1765 e100_set_multicast_list(nic->netdev); |
|
1766 |
|
1767 if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) |
|
1768 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ |
|
1769 nic->flags |= ich_10h_workaround; |
|
1770 else |
|
1771 nic->flags &= ~ich_10h_workaround; |
|
1772 |
|
1773 mod_timer(&nic->watchdog, |
|
1774 round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); |
|
1775 } |
|
1776 } |
|
1777 |
|
1778 static void e100_xmit_prepare(struct nic *nic, struct cb *cb, |
|
1779 struct sk_buff *skb) |
|
1780 { |
|
1781 cb->command = nic->tx_command; |
|
1782 /* interrupt every 16 packets regardless of delay */ |
|
1783 if ((nic->cbs_avail & ~15) == nic->cbs_avail) |
|
1784 cb->command |= cpu_to_le16(cb_i); |
|
1785 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); |
|
1786 cb->u.tcb.tcb_byte_count = 0; |
|
1787 cb->u.tcb.threshold = nic->tx_threshold; |
|
1788 cb->u.tcb.tbd_count = 1; |
|
1789 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, |
|
1790 skb->data, skb->len, PCI_DMA_TODEVICE)); |
|
1791 /* check for mapping failure? */ |
|
1792 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); |
|
1793 } |
|
1794 |
|
1795 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, |
|
1796 struct net_device *netdev) |
|
1797 { |
|
1798 struct nic *nic = netdev_priv(netdev); |
|
1799 int err; |
|
1800 |
|
1801 if (nic->flags & ich_10h_workaround) { |
|
1802 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. |
|
1803 Issue a NOP command followed by a 1us delay before |
|
1804 issuing the Tx command. */ |
|
1805 if (e100_exec_cmd(nic, cuc_nop, 0)) |
|
1806 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); |
|
1807 udelay(1); |
|
1808 } |
|
1809 |
|
1810 err = e100_exec_cb(nic, skb, e100_xmit_prepare); |
|
1811 |
|
1812 switch (err) { |
|
1813 case -ENOSPC: |
|
1814 /* We queued the skb, but now we're out of space. */ |
|
1815 DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); |
|
1816 if (!nic->ecdev) |
|
1817 netif_stop_queue(netdev); |
|
1818 break; |
|
1819 case -ENOMEM: |
|
1820 /* This is a hard error - log it. */ |
|
1821 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); |
|
1822 if (!nic->ecdev) |
|
1823 netif_stop_queue(netdev); |
|
1824 return NETDEV_TX_BUSY; |
|
1825 } |
|
1826 |
|
1827 netdev->trans_start = jiffies; |
|
1828 return NETDEV_TX_OK; |
|
1829 } |
|
1830 |
|
1831 static int e100_tx_clean(struct nic *nic) |
|
1832 { |
|
1833 struct net_device *dev = nic->netdev; |
|
1834 struct cb *cb; |
|
1835 int tx_cleaned = 0; |
|
1836 |
|
1837 if (!nic->ecdev) |
|
1838 spin_lock(&nic->cb_lock); |
|
1839 |
|
1840 /* Clean CBs marked complete */ |
|
1841 for (cb = nic->cb_to_clean; |
|
1842 cb->status & cpu_to_le16(cb_complete); |
|
1843 cb = nic->cb_to_clean = cb->next) { |
|
1844 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n", |
|
1845 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), |
|
1846 cb->status); |
|
1847 |
|
1848 if (likely(cb->skb != NULL)) { |
|
1849 dev->stats.tx_packets++; |
|
1850 dev->stats.tx_bytes += cb->skb->len; |
|
1851 |
|
1852 pci_unmap_single(nic->pdev, |
|
1853 le32_to_cpu(cb->u.tcb.tbd.buf_addr), |
|
1854 le16_to_cpu(cb->u.tcb.tbd.size), |
|
1855 PCI_DMA_TODEVICE); |
|
1856 if (!nic->ecdev) |
|
1857 dev_kfree_skb_any(cb->skb); |
|
1858 cb->skb = NULL; |
|
1859 tx_cleaned = 1; |
|
1860 } |
|
1861 cb->status = 0; |
|
1862 nic->cbs_avail++; |
|
1863 } |
|
1864 |
|
1865 if (!nic->ecdev) { |
|
1866 spin_unlock(&nic->cb_lock); |
|
1867 |
|
1868 /* Recover from running out of Tx resources in xmit_frame */ |
|
1869 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) |
|
1870 netif_wake_queue(nic->netdev); |
|
1871 } |
|
1872 |
|
1873 return tx_cleaned; |
|
1874 } |
|
1875 |
|
1876 static void e100_clean_cbs(struct nic *nic) |
|
1877 { |
|
1878 if (nic->cbs) { |
|
1879 while (nic->cbs_avail != nic->params.cbs.count) { |
|
1880 struct cb *cb = nic->cb_to_clean; |
|
1881 if (cb->skb) { |
|
1882 pci_unmap_single(nic->pdev, |
|
1883 le32_to_cpu(cb->u.tcb.tbd.buf_addr), |
|
1884 le16_to_cpu(cb->u.tcb.tbd.size), |
|
1885 PCI_DMA_TODEVICE); |
|
1886 if (!nic->ecdev) |
|
1887 dev_kfree_skb(cb->skb); |
|
1888 } |
|
1889 nic->cb_to_clean = nic->cb_to_clean->next; |
|
1890 nic->cbs_avail++; |
|
1891 } |
|
1892 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); |
|
1893 nic->cbs = NULL; |
|
1894 nic->cbs_avail = 0; |
|
1895 } |
|
1896 nic->cuc_cmd = cuc_start; |
|
1897 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = |
|
1898 nic->cbs; |
|
1899 } |
|
1900 |
|
1901 static int e100_alloc_cbs(struct nic *nic) |
|
1902 { |
|
1903 struct cb *cb; |
|
1904 unsigned int i, count = nic->params.cbs.count; |
|
1905 |
|
1906 nic->cuc_cmd = cuc_start; |
|
1907 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; |
|
1908 nic->cbs_avail = 0; |
|
1909 |
|
1910 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL, |
|
1911 &nic->cbs_dma_addr); |
|
1912 if (!nic->cbs) |
|
1913 return -ENOMEM; |
|
1914 memset(nic->cbs, 0, count * sizeof(struct cb)); |
|
1915 |
|
1916 for (cb = nic->cbs, i = 0; i < count; cb++, i++) { |
|
1917 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; |
|
1918 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; |
|
1919 |
|
1920 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); |
|
1921 cb->link = cpu_to_le32(nic->cbs_dma_addr + |
|
1922 ((i+1) % count) * sizeof(struct cb)); |
|
1923 } |
|
1924 |
|
1925 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; |
|
1926 nic->cbs_avail = count; |
|
1927 |
|
1928 return 0; |
|
1929 } |
|
1930 |
|
1931 static inline void e100_start_receiver(struct nic *nic, struct rx *rx) |
|
1932 { |
|
1933 if (!nic->rxs) return; |
|
1934 if (RU_SUSPENDED != nic->ru_running) return; |
|
1935 |
|
1936 /* handle init time starts */ |
|
1937 if (!rx) rx = nic->rxs; |
|
1938 |
|
1939 /* (Re)start RU if suspended or idle and RFA is non-NULL */ |
|
1940 if (rx->skb) { |
|
1941 e100_exec_cmd(nic, ruc_start, rx->dma_addr); |
|
1942 nic->ru_running = RU_RUNNING; |
|
1943 } |
|
1944 } |
|
1945 |
|
1946 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) |
|
1947 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) |
|
1948 { |
|
1949 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) |
|
1950 return -ENOMEM; |
|
1951 |
|
1952 /* Init, and map the RFD. */ |
|
1953 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); |
|
1954 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, |
|
1955 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
1956 |
|
1957 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { |
|
1958 dev_kfree_skb_any(rx->skb); |
|
1959 rx->skb = NULL; |
|
1960 rx->dma_addr = 0; |
|
1961 return -ENOMEM; |
|
1962 } |
|
1963 |
|
1964 /* Link the RFD to end of RFA by linking previous RFD to |
|
1965 * this one. We are safe to touch the previous RFD because |
|
1966 * it is protected by the before last buffer's el bit being set */ |
|
1967 if (rx->prev->skb) { |
|
1968 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; |
|
1969 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); |
|
1970 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, |
|
1971 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
|
1972 } |
|
1973 |
|
1974 return 0; |
|
1975 } |
|
1976 |
|
1977 static int e100_rx_indicate(struct nic *nic, struct rx *rx, |
|
1978 unsigned int *work_done, unsigned int work_to_do) |
|
1979 { |
|
1980 struct net_device *dev = nic->netdev; |
|
1981 struct sk_buff *skb = rx->skb; |
|
1982 struct rfd *rfd = (struct rfd *)skb->data; |
|
1983 u16 rfd_status, actual_size; |
|
1984 |
|
1985 if (unlikely(work_done && *work_done >= work_to_do)) |
|
1986 return -EAGAIN; |
|
1987 |
|
1988 /* Need to sync before taking a peek at cb_complete bit */ |
|
1989 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, |
|
1990 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
|
1991 rfd_status = le16_to_cpu(rfd->status); |
|
1992 |
|
1993 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); |
|
1994 |
|
1995 /* If data isn't ready, nothing to indicate */ |
|
1996 if (unlikely(!(rfd_status & cb_complete))) { |
|
1997 /* If the next buffer has the el bit, but we think the receiver |
|
1998 * is still running, check to see if it really stopped while |
|
1999 * we had interrupts off. |
|
2000 * This allows for a fast restart without re-enabling |
|
2001 * interrupts */ |
|
2002 if ((le16_to_cpu(rfd->command) & cb_el) && |
|
2003 (RU_RUNNING == nic->ru_running)) |
|
2004 |
|
2005 if (ioread8(&nic->csr->scb.status) & rus_no_res) |
|
2006 nic->ru_running = RU_SUSPENDED; |
|
2007 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, |
|
2008 sizeof(struct rfd), |
|
2009 PCI_DMA_FROMDEVICE); |
|
2010 return -ENODATA; |
|
2011 } |
|
2012 |
|
2013 /* Get actual data size */ |
|
2014 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; |
|
2015 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) |
|
2016 actual_size = RFD_BUF_LEN - sizeof(struct rfd); |
|
2017 |
|
2018 /* Get data */ |
|
2019 pci_unmap_single(nic->pdev, rx->dma_addr, |
|
2020 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
2021 |
|
2022 /* If this buffer has the el bit, but we think the receiver |
|
2023 * is still running, check to see if it really stopped while |
|
2024 * we had interrupts off. |
|
2025 * This allows for a fast restart without re-enabling interrupts. |
|
2026 * This can happen when the RU sees the size change but also sees |
|
2027 * the el bit set. */ |
|
2028 if ((le16_to_cpu(rfd->command) & cb_el) && |
|
2029 (RU_RUNNING == nic->ru_running)) { |
|
2030 |
|
2031 if (ioread8(&nic->csr->scb.status) & rus_no_res) |
|
2032 nic->ru_running = RU_SUSPENDED; |
|
2033 } |
|
2034 |
|
2035 if (!nic->ecdev) { |
|
2036 /* Pull off the RFD and put the actual data (minus eth hdr) */ |
|
2037 skb_reserve(skb, sizeof(struct rfd)); |
|
2038 skb_put(skb, actual_size); |
|
2039 skb->protocol = eth_type_trans(skb, nic->netdev); |
|
2040 } |
|
2041 |
|
2042 if (unlikely(!(rfd_status & cb_ok))) { |
|
2043 if (!nic->ecdev) { |
|
2044 /* Don't indicate if hardware indicates errors */ |
|
2045 dev_kfree_skb_any(skb); |
|
2046 } |
|
2047 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { |
|
2048 /* Don't indicate oversized frames */ |
|
2049 nic->rx_over_length_errors++; |
|
2050 if (!nic->ecdev) |
|
2051 dev_kfree_skb_any(skb); |
|
2052 } else { |
|
2053 dev->stats.rx_packets++; |
|
2054 dev->stats.rx_bytes += actual_size; |
|
2055 if (nic->ecdev) { |
|
2056 ecdev_receive(nic->ecdev, |
|
2057 skb->data + sizeof(struct rfd), actual_size); |
|
2058 |
|
2059 // No need to detect link status as |
|
2060 // long as frames are received: Reset watchdog. |
|
2061 nic->ec_watchdog_jiffies = jiffies; |
|
2062 } else { |
|
2063 netif_receive_skb(skb); |
|
2064 } |
|
2065 if (work_done) |
|
2066 (*work_done)++; |
|
2067 } |
|
2068 |
|
2069 if (nic->ecdev) { |
|
2070 // make receive frame descriptior usable again |
|
2071 memcpy(skb->data, &nic->blank_rfd, sizeof(struct rfd)); |
|
2072 rx->dma_addr = pci_map_single(nic->pdev, skb->data, |
|
2073 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
2074 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { |
|
2075 rx->dma_addr = 0; |
|
2076 } |
|
2077 |
|
2078 /* Link the RFD to end of RFA by linking previous RFD to |
|
2079 * this one. We are safe to touch the previous RFD because |
|
2080 * it is protected by the before last buffer's el bit being set */ |
|
2081 if (rx->prev->skb) { |
|
2082 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; |
|
2083 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); |
|
2084 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, |
|
2085 sizeof(struct rfd), PCI_DMA_TODEVICE); |
|
2086 } |
|
2087 } else { |
|
2088 rx->skb = NULL; |
|
2089 } |
|
2090 |
|
2091 return 0; |
|
2092 } |
|
2093 |
|
2094 static void e100_rx_clean(struct nic *nic, unsigned int *work_done, |
|
2095 unsigned int work_to_do) |
|
2096 { |
|
2097 struct rx *rx; |
|
2098 int restart_required = 0, err = 0; |
|
2099 struct rx *old_before_last_rx, *new_before_last_rx; |
|
2100 struct rfd *old_before_last_rfd, *new_before_last_rfd; |
|
2101 |
|
2102 /* Indicate newly arrived packets */ |
|
2103 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { |
|
2104 err = e100_rx_indicate(nic, rx, work_done, work_to_do); |
|
2105 /* Hit quota or no more to clean */ |
|
2106 if (-EAGAIN == err || -ENODATA == err) |
|
2107 break; |
|
2108 } |
|
2109 |
|
2110 |
|
2111 /* On EAGAIN, hit quota so have more work to do, restart once |
|
2112 * cleanup is complete. |
|
2113 * Else, are we already rnr? then pay attention!!! this ensures that |
|
2114 * the state machine progression never allows a start with a |
|
2115 * partially cleaned list, avoiding a race between hardware |
|
2116 * and rx_to_clean when in NAPI mode */ |
|
2117 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) |
|
2118 restart_required = 1; |
|
2119 |
|
2120 old_before_last_rx = nic->rx_to_use->prev->prev; |
|
2121 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; |
|
2122 |
|
2123 if (!nic->ecdev) { |
|
2124 /* Alloc new skbs to refill list */ |
|
2125 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { |
|
2126 if(unlikely(e100_rx_alloc_skb(nic, rx))) |
|
2127 break; /* Better luck next time (see watchdog) */ |
|
2128 } |
|
2129 } |
|
2130 |
|
2131 new_before_last_rx = nic->rx_to_use->prev->prev; |
|
2132 if (new_before_last_rx != old_before_last_rx) { |
|
2133 /* Set the el-bit on the buffer that is before the last buffer. |
|
2134 * This lets us update the next pointer on the last buffer |
|
2135 * without worrying about hardware touching it. |
|
2136 * We set the size to 0 to prevent hardware from touching this |
|
2137 * buffer. |
|
2138 * When the hardware hits the before last buffer with el-bit |
|
2139 * and size of 0, it will RNR interrupt, the RUS will go into |
|
2140 * the No Resources state. It will not complete nor write to |
|
2141 * this buffer. */ |
|
2142 new_before_last_rfd = |
|
2143 (struct rfd *)new_before_last_rx->skb->data; |
|
2144 new_before_last_rfd->size = 0; |
|
2145 new_before_last_rfd->command |= cpu_to_le16(cb_el); |
|
2146 pci_dma_sync_single_for_device(nic->pdev, |
|
2147 new_before_last_rx->dma_addr, sizeof(struct rfd), |
|
2148 PCI_DMA_BIDIRECTIONAL); |
|
2149 |
|
2150 /* Now that we have a new stopping point, we can clear the old |
|
2151 * stopping point. We must sync twice to get the proper |
|
2152 * ordering on the hardware side of things. */ |
|
2153 old_before_last_rfd->command &= ~cpu_to_le16(cb_el); |
|
2154 pci_dma_sync_single_for_device(nic->pdev, |
|
2155 old_before_last_rx->dma_addr, sizeof(struct rfd), |
|
2156 PCI_DMA_BIDIRECTIONAL); |
|
2157 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN); |
|
2158 pci_dma_sync_single_for_device(nic->pdev, |
|
2159 old_before_last_rx->dma_addr, sizeof(struct rfd), |
|
2160 PCI_DMA_BIDIRECTIONAL); |
|
2161 } |
|
2162 |
|
2163 if (restart_required) { |
|
2164 // ack the rnr? |
|
2165 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); |
|
2166 e100_start_receiver(nic, nic->rx_to_clean); |
|
2167 if (work_done) |
|
2168 (*work_done)++; |
|
2169 } |
|
2170 } |
|
2171 |
|
2172 static void e100_rx_clean_list(struct nic *nic) |
|
2173 { |
|
2174 struct rx *rx; |
|
2175 unsigned int i, count = nic->params.rfds.count; |
|
2176 |
|
2177 nic->ru_running = RU_UNINITIALIZED; |
|
2178 |
|
2179 if (nic->rxs) { |
|
2180 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { |
|
2181 if (rx->skb) { |
|
2182 pci_unmap_single(nic->pdev, rx->dma_addr, |
|
2183 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
2184 dev_kfree_skb(rx->skb); |
|
2185 } |
|
2186 } |
|
2187 kfree(nic->rxs); |
|
2188 nic->rxs = NULL; |
|
2189 } |
|
2190 |
|
2191 nic->rx_to_use = nic->rx_to_clean = NULL; |
|
2192 } |
|
2193 |
|
2194 static int e100_rx_alloc_list(struct nic *nic) |
|
2195 { |
|
2196 struct rx *rx; |
|
2197 unsigned int i, count = nic->params.rfds.count; |
|
2198 struct rfd *before_last; |
|
2199 |
|
2200 nic->rx_to_use = nic->rx_to_clean = NULL; |
|
2201 nic->ru_running = RU_UNINITIALIZED; |
|
2202 |
|
2203 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) |
|
2204 return -ENOMEM; |
|
2205 |
|
2206 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { |
|
2207 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; |
|
2208 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; |
|
2209 if (e100_rx_alloc_skb(nic, rx)) { |
|
2210 e100_rx_clean_list(nic); |
|
2211 return -ENOMEM; |
|
2212 } |
|
2213 } |
|
2214 |
|
2215 if (!nic->ecdev) { |
|
2216 /* Set the el-bit on the buffer that is before the last buffer. |
|
2217 * This lets us update the next pointer on the last buffer without |
|
2218 * worrying about hardware touching it. |
|
2219 * We set the size to 0 to prevent hardware from touching this buffer. |
|
2220 * When the hardware hits the before last buffer with el-bit and size |
|
2221 * of 0, it will RNR interrupt, the RU will go into the No Resources |
|
2222 * state. It will not complete nor write to this buffer. */ |
|
2223 rx = nic->rxs->prev->prev; |
|
2224 before_last = (struct rfd *)rx->skb->data; |
|
2225 before_last->command |= cpu_to_le16(cb_el); |
|
2226 before_last->size = 0; |
|
2227 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, |
|
2228 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
|
2229 } |
|
2230 |
|
2231 nic->rx_to_use = nic->rx_to_clean = nic->rxs; |
|
2232 nic->ru_running = RU_SUSPENDED; |
|
2233 |
|
2234 return 0; |
|
2235 } |
|
2236 |
|
2237 static irqreturn_t e100_intr(int irq, void *dev_id) |
|
2238 { |
|
2239 struct net_device *netdev = dev_id; |
|
2240 struct nic *nic = netdev_priv(netdev); |
|
2241 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); |
|
2242 |
|
2243 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); |
|
2244 |
|
2245 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ |
|
2246 stat_ack == stat_ack_not_present) /* Hardware is ejected */ |
|
2247 return IRQ_NONE; |
|
2248 |
|
2249 /* Ack interrupt(s) */ |
|
2250 iowrite8(stat_ack, &nic->csr->scb.stat_ack); |
|
2251 |
|
2252 /* We hit Receive No Resource (RNR); restart RU after cleaning */ |
|
2253 if (stat_ack & stat_ack_rnr) |
|
2254 nic->ru_running = RU_SUSPENDED; |
|
2255 |
|
2256 if (!nic->ecdev && likely(napi_schedule_prep(&nic->napi))) { |
|
2257 e100_disable_irq(nic); |
|
2258 __napi_schedule(&nic->napi); |
|
2259 } |
|
2260 |
|
2261 return IRQ_HANDLED; |
|
2262 } |
|
2263 |
|
2264 void e100_ec_poll(struct net_device *netdev) |
|
2265 { |
|
2266 struct nic *nic = netdev_priv(netdev); |
|
2267 |
|
2268 e100_rx_clean(nic, NULL, 100); |
|
2269 e100_tx_clean(nic); |
|
2270 |
|
2271 if (jiffies - nic->ec_watchdog_jiffies >= 2 * HZ) { |
|
2272 e100_watchdog((unsigned long) nic); |
|
2273 nic->ec_watchdog_jiffies = jiffies; |
|
2274 } |
|
2275 } |
|
2276 |
|
2277 |
|
2278 static int e100_poll(struct napi_struct *napi, int budget) |
|
2279 { |
|
2280 struct nic *nic = container_of(napi, struct nic, napi); |
|
2281 unsigned int work_done = 0; |
|
2282 |
|
2283 e100_rx_clean(nic, &work_done, budget); |
|
2284 e100_tx_clean(nic); |
|
2285 |
|
2286 /* If budget not fully consumed, exit the polling mode */ |
|
2287 if (work_done < budget) { |
|
2288 napi_complete(napi); |
|
2289 e100_enable_irq(nic); |
|
2290 } |
|
2291 |
|
2292 return work_done; |
|
2293 } |
|
2294 |
|
2295 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
2296 static void e100_netpoll(struct net_device *netdev) |
|
2297 { |
|
2298 struct nic *nic = netdev_priv(netdev); |
|
2299 |
|
2300 e100_disable_irq(nic); |
|
2301 e100_intr(nic->pdev->irq, netdev); |
|
2302 e100_tx_clean(nic); |
|
2303 e100_enable_irq(nic); |
|
2304 } |
|
2305 #endif |
|
2306 |
|
2307 static int e100_set_mac_address(struct net_device *netdev, void *p) |
|
2308 { |
|
2309 struct nic *nic = netdev_priv(netdev); |
|
2310 struct sockaddr *addr = p; |
|
2311 |
|
2312 if (!is_valid_ether_addr(addr->sa_data)) |
|
2313 return -EADDRNOTAVAIL; |
|
2314 |
|
2315 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
2316 e100_exec_cb(nic, NULL, e100_setup_iaaddr); |
|
2317 |
|
2318 return 0; |
|
2319 } |
|
2320 |
|
2321 static int e100_change_mtu(struct net_device *netdev, int new_mtu) |
|
2322 { |
|
2323 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) |
|
2324 return -EINVAL; |
|
2325 netdev->mtu = new_mtu; |
|
2326 return 0; |
|
2327 } |
|
2328 |
|
2329 static int e100_asf(struct nic *nic) |
|
2330 { |
|
2331 /* ASF can be enabled from eeprom */ |
|
2332 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && |
|
2333 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && |
|
2334 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && |
|
2335 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); |
|
2336 } |
|
2337 |
|
2338 static int e100_up(struct nic *nic) |
|
2339 { |
|
2340 int err; |
|
2341 |
|
2342 if ((err = e100_rx_alloc_list(nic))) |
|
2343 return err; |
|
2344 if ((err = e100_alloc_cbs(nic))) |
|
2345 goto err_rx_clean_list; |
|
2346 if ((err = e100_hw_init(nic))) |
|
2347 goto err_clean_cbs; |
|
2348 e100_set_multicast_list(nic->netdev); |
|
2349 e100_start_receiver(nic, NULL); |
|
2350 if (!nic->ecdev) { |
|
2351 mod_timer(&nic->watchdog, jiffies); |
|
2352 } |
|
2353 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, |
|
2354 nic->netdev->name, nic->netdev))) |
|
2355 goto err_no_irq; |
|
2356 if (!nic->ecdev) { |
|
2357 netif_wake_queue(nic->netdev); |
|
2358 napi_enable(&nic->napi); |
|
2359 /* enable ints _after_ enabling poll, preventing a race between |
|
2360 * disable ints+schedule */ |
|
2361 e100_enable_irq(nic); |
|
2362 } |
|
2363 return 0; |
|
2364 |
|
2365 err_no_irq: |
|
2366 if (!nic->ecdev) |
|
2367 del_timer_sync(&nic->watchdog); |
|
2368 err_clean_cbs: |
|
2369 e100_clean_cbs(nic); |
|
2370 err_rx_clean_list: |
|
2371 e100_rx_clean_list(nic); |
|
2372 return err; |
|
2373 } |
|
2374 |
|
2375 static void e100_down(struct nic *nic) |
|
2376 { |
|
2377 if (!nic->ecdev) { |
|
2378 /* wait here for poll to complete */ |
|
2379 napi_disable(&nic->napi); |
|
2380 netif_stop_queue(nic->netdev); |
|
2381 } |
|
2382 e100_hw_reset(nic); |
|
2383 free_irq(nic->pdev->irq, nic->netdev); |
|
2384 if (!nic->ecdev) { |
|
2385 del_timer_sync(&nic->watchdog); |
|
2386 netif_carrier_off(nic->netdev); |
|
2387 } |
|
2388 e100_clean_cbs(nic); |
|
2389 e100_rx_clean_list(nic); |
|
2390 } |
|
2391 |
|
2392 static void e100_tx_timeout(struct net_device *netdev) |
|
2393 { |
|
2394 struct nic *nic = netdev_priv(netdev); |
|
2395 |
|
2396 /* Reset outside of interrupt context, to avoid request_irq |
|
2397 * in interrupt context */ |
|
2398 schedule_work(&nic->tx_timeout_task); |
|
2399 } |
|
2400 |
|
2401 static void e100_tx_timeout_task(struct work_struct *work) |
|
2402 { |
|
2403 struct nic *nic = container_of(work, struct nic, tx_timeout_task); |
|
2404 struct net_device *netdev = nic->netdev; |
|
2405 |
|
2406 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", |
|
2407 ioread8(&nic->csr->scb.status)); |
|
2408 e100_down(netdev_priv(netdev)); |
|
2409 e100_up(netdev_priv(netdev)); |
|
2410 } |
|
2411 |
|
2412 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) |
|
2413 { |
|
2414 int err; |
|
2415 struct sk_buff *skb; |
|
2416 |
|
2417 /* Use driver resources to perform internal MAC or PHY |
|
2418 * loopback test. A single packet is prepared and transmitted |
|
2419 * in loopback mode, and the test passes if the received |
|
2420 * packet compares byte-for-byte to the transmitted packet. */ |
|
2421 |
|
2422 if ((err = e100_rx_alloc_list(nic))) |
|
2423 return err; |
|
2424 if ((err = e100_alloc_cbs(nic))) |
|
2425 goto err_clean_rx; |
|
2426 |
|
2427 /* ICH PHY loopback is broken so do MAC loopback instead */ |
|
2428 if (nic->flags & ich && loopback_mode == lb_phy) |
|
2429 loopback_mode = lb_mac; |
|
2430 |
|
2431 nic->loopback = loopback_mode; |
|
2432 if ((err = e100_hw_init(nic))) |
|
2433 goto err_loopback_none; |
|
2434 |
|
2435 if (loopback_mode == lb_phy) |
|
2436 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, |
|
2437 BMCR_LOOPBACK); |
|
2438 |
|
2439 e100_start_receiver(nic, NULL); |
|
2440 |
|
2441 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { |
|
2442 err = -ENOMEM; |
|
2443 goto err_loopback_none; |
|
2444 } |
|
2445 skb_put(skb, ETH_DATA_LEN); |
|
2446 memset(skb->data, 0xFF, ETH_DATA_LEN); |
|
2447 e100_xmit_frame(skb, nic->netdev); |
|
2448 |
|
2449 msleep(10); |
|
2450 |
|
2451 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, |
|
2452 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
2453 |
|
2454 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), |
|
2455 skb->data, ETH_DATA_LEN)) |
|
2456 err = -EAGAIN; |
|
2457 |
|
2458 err_loopback_none: |
|
2459 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); |
|
2460 nic->loopback = lb_none; |
|
2461 e100_clean_cbs(nic); |
|
2462 e100_hw_reset(nic); |
|
2463 err_clean_rx: |
|
2464 e100_rx_clean_list(nic); |
|
2465 return err; |
|
2466 } |
|
2467 |
|
2468 #define MII_LED_CONTROL 0x1B |
|
2469 #define E100_82552_LED_OVERRIDE 0x19 |
|
2470 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ |
|
2471 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ |
|
2472 static void e100_blink_led(unsigned long data) |
|
2473 { |
|
2474 struct nic *nic = (struct nic *)data; |
|
2475 enum led_state { |
|
2476 led_on = 0x01, |
|
2477 led_off = 0x04, |
|
2478 led_on_559 = 0x05, |
|
2479 led_on_557 = 0x07, |
|
2480 }; |
|
2481 u16 led_reg = MII_LED_CONTROL; |
|
2482 |
|
2483 if (nic->phy == phy_82552_v) { |
|
2484 led_reg = E100_82552_LED_OVERRIDE; |
|
2485 |
|
2486 nic->leds = (nic->leds == E100_82552_LED_ON) ? |
|
2487 E100_82552_LED_OFF : E100_82552_LED_ON; |
|
2488 } else { |
|
2489 nic->leds = (nic->leds & led_on) ? led_off : |
|
2490 (nic->mac < mac_82559_D101M) ? led_on_557 : |
|
2491 led_on_559; |
|
2492 } |
|
2493 mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds); |
|
2494 mod_timer(&nic->blink_timer, jiffies + HZ / 4); |
|
2495 } |
|
2496 |
|
2497 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) |
|
2498 { |
|
2499 struct nic *nic = netdev_priv(netdev); |
|
2500 return mii_ethtool_gset(&nic->mii, cmd); |
|
2501 } |
|
2502 |
|
2503 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) |
|
2504 { |
|
2505 struct nic *nic = netdev_priv(netdev); |
|
2506 int err; |
|
2507 |
|
2508 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); |
|
2509 err = mii_ethtool_sset(&nic->mii, cmd); |
|
2510 e100_exec_cb(nic, NULL, e100_configure); |
|
2511 |
|
2512 return err; |
|
2513 } |
|
2514 |
|
2515 static void e100_get_drvinfo(struct net_device *netdev, |
|
2516 struct ethtool_drvinfo *info) |
|
2517 { |
|
2518 struct nic *nic = netdev_priv(netdev); |
|
2519 strcpy(info->driver, DRV_NAME); |
|
2520 strcpy(info->version, DRV_VERSION); |
|
2521 strcpy(info->fw_version, "N/A"); |
|
2522 strcpy(info->bus_info, pci_name(nic->pdev)); |
|
2523 } |
|
2524 |
|
2525 #define E100_PHY_REGS 0x1C |
|
2526 static int e100_get_regs_len(struct net_device *netdev) |
|
2527 { |
|
2528 struct nic *nic = netdev_priv(netdev); |
|
2529 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); |
|
2530 } |
|
2531 |
|
2532 static void e100_get_regs(struct net_device *netdev, |
|
2533 struct ethtool_regs *regs, void *p) |
|
2534 { |
|
2535 struct nic *nic = netdev_priv(netdev); |
|
2536 u32 *buff = p; |
|
2537 int i; |
|
2538 |
|
2539 regs->version = (1 << 24) | nic->pdev->revision; |
|
2540 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | |
|
2541 ioread8(&nic->csr->scb.cmd_lo) << 16 | |
|
2542 ioread16(&nic->csr->scb.status); |
|
2543 for (i = E100_PHY_REGS; i >= 0; i--) |
|
2544 buff[1 + E100_PHY_REGS - i] = |
|
2545 mdio_read(netdev, nic->mii.phy_id, i); |
|
2546 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); |
|
2547 e100_exec_cb(nic, NULL, e100_dump); |
|
2548 msleep(10); |
|
2549 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, |
|
2550 sizeof(nic->mem->dump_buf)); |
|
2551 } |
|
2552 |
|
2553 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
|
2554 { |
|
2555 struct nic *nic = netdev_priv(netdev); |
|
2556 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; |
|
2557 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; |
|
2558 } |
|
2559 |
|
2560 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
|
2561 { |
|
2562 struct nic *nic = netdev_priv(netdev); |
|
2563 |
|
2564 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || |
|
2565 !device_can_wakeup(&nic->pdev->dev)) |
|
2566 return -EOPNOTSUPP; |
|
2567 |
|
2568 if (wol->wolopts) |
|
2569 nic->flags |= wol_magic; |
|
2570 else |
|
2571 nic->flags &= ~wol_magic; |
|
2572 |
|
2573 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); |
|
2574 |
|
2575 e100_exec_cb(nic, NULL, e100_configure); |
|
2576 |
|
2577 return 0; |
|
2578 } |
|
2579 |
|
2580 static u32 e100_get_msglevel(struct net_device *netdev) |
|
2581 { |
|
2582 struct nic *nic = netdev_priv(netdev); |
|
2583 return nic->msg_enable; |
|
2584 } |
|
2585 |
|
2586 static void e100_set_msglevel(struct net_device *netdev, u32 value) |
|
2587 { |
|
2588 struct nic *nic = netdev_priv(netdev); |
|
2589 nic->msg_enable = value; |
|
2590 } |
|
2591 |
|
2592 static int e100_nway_reset(struct net_device *netdev) |
|
2593 { |
|
2594 struct nic *nic = netdev_priv(netdev); |
|
2595 return mii_nway_restart(&nic->mii); |
|
2596 } |
|
2597 |
|
2598 static u32 e100_get_link(struct net_device *netdev) |
|
2599 { |
|
2600 struct nic *nic = netdev_priv(netdev); |
|
2601 return mii_link_ok(&nic->mii); |
|
2602 } |
|
2603 |
|
2604 static int e100_get_eeprom_len(struct net_device *netdev) |
|
2605 { |
|
2606 struct nic *nic = netdev_priv(netdev); |
|
2607 return nic->eeprom_wc << 1; |
|
2608 } |
|
2609 |
|
2610 #define E100_EEPROM_MAGIC 0x1234 |
|
2611 static int e100_get_eeprom(struct net_device *netdev, |
|
2612 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
2613 { |
|
2614 struct nic *nic = netdev_priv(netdev); |
|
2615 |
|
2616 eeprom->magic = E100_EEPROM_MAGIC; |
|
2617 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); |
|
2618 |
|
2619 return 0; |
|
2620 } |
|
2621 |
|
2622 static int e100_set_eeprom(struct net_device *netdev, |
|
2623 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
2624 { |
|
2625 struct nic *nic = netdev_priv(netdev); |
|
2626 |
|
2627 if (eeprom->magic != E100_EEPROM_MAGIC) |
|
2628 return -EINVAL; |
|
2629 |
|
2630 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); |
|
2631 |
|
2632 return e100_eeprom_save(nic, eeprom->offset >> 1, |
|
2633 (eeprom->len >> 1) + 1); |
|
2634 } |
|
2635 |
|
2636 static void e100_get_ringparam(struct net_device *netdev, |
|
2637 struct ethtool_ringparam *ring) |
|
2638 { |
|
2639 struct nic *nic = netdev_priv(netdev); |
|
2640 struct param_range *rfds = &nic->params.rfds; |
|
2641 struct param_range *cbs = &nic->params.cbs; |
|
2642 |
|
2643 ring->rx_max_pending = rfds->max; |
|
2644 ring->tx_max_pending = cbs->max; |
|
2645 ring->rx_mini_max_pending = 0; |
|
2646 ring->rx_jumbo_max_pending = 0; |
|
2647 ring->rx_pending = rfds->count; |
|
2648 ring->tx_pending = cbs->count; |
|
2649 ring->rx_mini_pending = 0; |
|
2650 ring->rx_jumbo_pending = 0; |
|
2651 } |
|
2652 |
|
2653 static int e100_set_ringparam(struct net_device *netdev, |
|
2654 struct ethtool_ringparam *ring) |
|
2655 { |
|
2656 struct nic *nic = netdev_priv(netdev); |
|
2657 struct param_range *rfds = &nic->params.rfds; |
|
2658 struct param_range *cbs = &nic->params.cbs; |
|
2659 |
|
2660 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
|
2661 return -EINVAL; |
|
2662 |
|
2663 if (netif_running(netdev)) |
|
2664 e100_down(nic); |
|
2665 rfds->count = max(ring->rx_pending, rfds->min); |
|
2666 rfds->count = min(rfds->count, rfds->max); |
|
2667 cbs->count = max(ring->tx_pending, cbs->min); |
|
2668 cbs->count = min(cbs->count, cbs->max); |
|
2669 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", |
|
2670 rfds->count, cbs->count); |
|
2671 if (netif_running(netdev)) |
|
2672 e100_up(nic); |
|
2673 |
|
2674 return 0; |
|
2675 } |
|
2676 |
|
2677 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { |
|
2678 "Link test (on/offline)", |
|
2679 "Eeprom test (on/offline)", |
|
2680 "Self test (offline)", |
|
2681 "Mac loopback (offline)", |
|
2682 "Phy loopback (offline)", |
|
2683 }; |
|
2684 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) |
|
2685 |
|
2686 static void e100_diag_test(struct net_device *netdev, |
|
2687 struct ethtool_test *test, u64 *data) |
|
2688 { |
|
2689 struct ethtool_cmd cmd; |
|
2690 struct nic *nic = netdev_priv(netdev); |
|
2691 int i, err; |
|
2692 |
|
2693 memset(data, 0, E100_TEST_LEN * sizeof(u64)); |
|
2694 data[0] = !mii_link_ok(&nic->mii); |
|
2695 data[1] = e100_eeprom_load(nic); |
|
2696 if (test->flags & ETH_TEST_FL_OFFLINE) { |
|
2697 |
|
2698 /* save speed, duplex & autoneg settings */ |
|
2699 err = mii_ethtool_gset(&nic->mii, &cmd); |
|
2700 |
|
2701 if (netif_running(netdev)) |
|
2702 e100_down(nic); |
|
2703 data[2] = e100_self_test(nic); |
|
2704 data[3] = e100_loopback_test(nic, lb_mac); |
|
2705 data[4] = e100_loopback_test(nic, lb_phy); |
|
2706 |
|
2707 /* restore speed, duplex & autoneg settings */ |
|
2708 err = mii_ethtool_sset(&nic->mii, &cmd); |
|
2709 |
|
2710 if (netif_running(netdev)) |
|
2711 e100_up(nic); |
|
2712 } |
|
2713 for (i = 0; i < E100_TEST_LEN; i++) |
|
2714 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; |
|
2715 |
|
2716 msleep_interruptible(4 * 1000); |
|
2717 } |
|
2718 |
|
2719 static int e100_phys_id(struct net_device *netdev, u32 data) |
|
2720 { |
|
2721 struct nic *nic = netdev_priv(netdev); |
|
2722 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : |
|
2723 MII_LED_CONTROL; |
|
2724 |
|
2725 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) |
|
2726 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); |
|
2727 mod_timer(&nic->blink_timer, jiffies); |
|
2728 msleep_interruptible(data * 1000); |
|
2729 del_timer_sync(&nic->blink_timer); |
|
2730 mdio_write(netdev, nic->mii.phy_id, led_reg, 0); |
|
2731 |
|
2732 return 0; |
|
2733 } |
|
2734 |
|
2735 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { |
|
2736 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", |
|
2737 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", |
|
2738 "rx_length_errors", "rx_over_errors", "rx_crc_errors", |
|
2739 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", |
|
2740 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", |
|
2741 "tx_heartbeat_errors", "tx_window_errors", |
|
2742 /* device-specific stats */ |
|
2743 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", |
|
2744 "tx_flow_control_pause", "rx_flow_control_pause", |
|
2745 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", |
|
2746 }; |
|
2747 #define E100_NET_STATS_LEN 21 |
|
2748 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) |
|
2749 |
|
2750 static int e100_get_sset_count(struct net_device *netdev, int sset) |
|
2751 { |
|
2752 switch (sset) { |
|
2753 case ETH_SS_TEST: |
|
2754 return E100_TEST_LEN; |
|
2755 case ETH_SS_STATS: |
|
2756 return E100_STATS_LEN; |
|
2757 default: |
|
2758 return -EOPNOTSUPP; |
|
2759 } |
|
2760 } |
|
2761 |
|
2762 static void e100_get_ethtool_stats(struct net_device *netdev, |
|
2763 struct ethtool_stats *stats, u64 *data) |
|
2764 { |
|
2765 struct nic *nic = netdev_priv(netdev); |
|
2766 int i; |
|
2767 |
|
2768 for (i = 0; i < E100_NET_STATS_LEN; i++) |
|
2769 data[i] = ((unsigned long *)&netdev->stats)[i]; |
|
2770 |
|
2771 data[i++] = nic->tx_deferred; |
|
2772 data[i++] = nic->tx_single_collisions; |
|
2773 data[i++] = nic->tx_multiple_collisions; |
|
2774 data[i++] = nic->tx_fc_pause; |
|
2775 data[i++] = nic->rx_fc_pause; |
|
2776 data[i++] = nic->rx_fc_unsupported; |
|
2777 data[i++] = nic->tx_tco_frames; |
|
2778 data[i++] = nic->rx_tco_frames; |
|
2779 } |
|
2780 |
|
2781 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) |
|
2782 { |
|
2783 switch (stringset) { |
|
2784 case ETH_SS_TEST: |
|
2785 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); |
|
2786 break; |
|
2787 case ETH_SS_STATS: |
|
2788 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); |
|
2789 break; |
|
2790 } |
|
2791 } |
|
2792 |
|
2793 static const struct ethtool_ops e100_ethtool_ops = { |
|
2794 .get_settings = e100_get_settings, |
|
2795 .set_settings = e100_set_settings, |
|
2796 .get_drvinfo = e100_get_drvinfo, |
|
2797 .get_regs_len = e100_get_regs_len, |
|
2798 .get_regs = e100_get_regs, |
|
2799 .get_wol = e100_get_wol, |
|
2800 .set_wol = e100_set_wol, |
|
2801 .get_msglevel = e100_get_msglevel, |
|
2802 .set_msglevel = e100_set_msglevel, |
|
2803 .nway_reset = e100_nway_reset, |
|
2804 .get_link = e100_get_link, |
|
2805 .get_eeprom_len = e100_get_eeprom_len, |
|
2806 .get_eeprom = e100_get_eeprom, |
|
2807 .set_eeprom = e100_set_eeprom, |
|
2808 .get_ringparam = e100_get_ringparam, |
|
2809 .set_ringparam = e100_set_ringparam, |
|
2810 .self_test = e100_diag_test, |
|
2811 .get_strings = e100_get_strings, |
|
2812 .phys_id = e100_phys_id, |
|
2813 .get_ethtool_stats = e100_get_ethtool_stats, |
|
2814 .get_sset_count = e100_get_sset_count, |
|
2815 }; |
|
2816 |
|
2817 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
2818 { |
|
2819 struct nic *nic = netdev_priv(netdev); |
|
2820 |
|
2821 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); |
|
2822 } |
|
2823 |
|
2824 static int e100_alloc(struct nic *nic) |
|
2825 { |
|
2826 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), |
|
2827 &nic->dma_addr); |
|
2828 return nic->mem ? 0 : -ENOMEM; |
|
2829 } |
|
2830 |
|
2831 static void e100_free(struct nic *nic) |
|
2832 { |
|
2833 if (nic->mem) { |
|
2834 pci_free_consistent(nic->pdev, sizeof(struct mem), |
|
2835 nic->mem, nic->dma_addr); |
|
2836 nic->mem = NULL; |
|
2837 } |
|
2838 } |
|
2839 |
|
2840 static int e100_open(struct net_device *netdev) |
|
2841 { |
|
2842 struct nic *nic = netdev_priv(netdev); |
|
2843 int err = 0; |
|
2844 |
|
2845 if (!nic->ecdev) |
|
2846 netif_carrier_off(netdev); |
|
2847 if ((err = e100_up(nic))) |
|
2848 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); |
|
2849 return err; |
|
2850 } |
|
2851 |
|
2852 static int e100_close(struct net_device *netdev) |
|
2853 { |
|
2854 e100_down(netdev_priv(netdev)); |
|
2855 return 0; |
|
2856 } |
|
2857 |
|
2858 static const struct net_device_ops e100_netdev_ops = { |
|
2859 .ndo_open = e100_open, |
|
2860 .ndo_stop = e100_close, |
|
2861 .ndo_start_xmit = e100_xmit_frame, |
|
2862 .ndo_validate_addr = eth_validate_addr, |
|
2863 .ndo_set_multicast_list = e100_set_multicast_list, |
|
2864 .ndo_set_mac_address = e100_set_mac_address, |
|
2865 .ndo_change_mtu = e100_change_mtu, |
|
2866 .ndo_do_ioctl = e100_do_ioctl, |
|
2867 .ndo_tx_timeout = e100_tx_timeout, |
|
2868 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
2869 .ndo_poll_controller = e100_netpoll, |
|
2870 #endif |
|
2871 }; |
|
2872 |
|
2873 static int __devinit e100_probe(struct pci_dev *pdev, |
|
2874 const struct pci_device_id *ent) |
|
2875 { |
|
2876 struct net_device *netdev; |
|
2877 struct nic *nic; |
|
2878 int err; |
|
2879 |
|
2880 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) { |
|
2881 if (((1 << debug) - 1) & NETIF_MSG_PROBE) |
|
2882 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); |
|
2883 return -ENOMEM; |
|
2884 } |
|
2885 |
|
2886 netdev->netdev_ops = &e100_netdev_ops; |
|
2887 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); |
|
2888 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; |
|
2889 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
2890 |
|
2891 nic = netdev_priv(netdev); |
|
2892 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); |
|
2893 nic->netdev = netdev; |
|
2894 nic->pdev = pdev; |
|
2895 nic->msg_enable = (1 << debug) - 1; |
|
2896 nic->mdio_ctrl = mdio_ctrl_hw; |
|
2897 pci_set_drvdata(pdev, netdev); |
|
2898 |
|
2899 if ((err = pci_enable_device(pdev))) { |
|
2900 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); |
|
2901 goto err_out_free_dev; |
|
2902 } |
|
2903 |
|
2904 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { |
|
2905 DPRINTK(PROBE, ERR, "Cannot find proper PCI device " |
|
2906 "base address, aborting.\n"); |
|
2907 err = -ENODEV; |
|
2908 goto err_out_disable_pdev; |
|
2909 } |
|
2910 |
|
2911 if ((err = pci_request_regions(pdev, DRV_NAME))) { |
|
2912 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); |
|
2913 goto err_out_disable_pdev; |
|
2914 } |
|
2915 |
|
2916 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { |
|
2917 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); |
|
2918 goto err_out_free_res; |
|
2919 } |
|
2920 |
|
2921 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
2922 |
|
2923 if (use_io) |
|
2924 DPRINTK(PROBE, INFO, "using i/o access mode\n"); |
|
2925 |
|
2926 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); |
|
2927 if (!nic->csr) { |
|
2928 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); |
|
2929 err = -ENOMEM; |
|
2930 goto err_out_free_res; |
|
2931 } |
|
2932 |
|
2933 if (ent->driver_data) |
|
2934 nic->flags |= ich; |
|
2935 else |
|
2936 nic->flags &= ~ich; |
|
2937 |
|
2938 e100_get_defaults(nic); |
|
2939 |
|
2940 /* locks must be initialized before calling hw_reset */ |
|
2941 spin_lock_init(&nic->cb_lock); |
|
2942 spin_lock_init(&nic->cmd_lock); |
|
2943 spin_lock_init(&nic->mdio_lock); |
|
2944 |
|
2945 /* Reset the device before pci_set_master() in case device is in some |
|
2946 * funky state and has an interrupt pending - hint: we don't have the |
|
2947 * interrupt handler registered yet. */ |
|
2948 e100_hw_reset(nic); |
|
2949 |
|
2950 pci_set_master(pdev); |
|
2951 |
|
2952 init_timer(&nic->watchdog); |
|
2953 nic->watchdog.function = e100_watchdog; |
|
2954 nic->watchdog.data = (unsigned long)nic; |
|
2955 init_timer(&nic->blink_timer); |
|
2956 nic->blink_timer.function = e100_blink_led; |
|
2957 nic->blink_timer.data = (unsigned long)nic; |
|
2958 |
|
2959 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); |
|
2960 |
|
2961 if ((err = e100_alloc(nic))) { |
|
2962 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); |
|
2963 goto err_out_iounmap; |
|
2964 } |
|
2965 |
|
2966 if ((err = e100_eeprom_load(nic))) |
|
2967 goto err_out_free; |
|
2968 |
|
2969 e100_phy_init(nic); |
|
2970 |
|
2971 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); |
|
2972 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); |
|
2973 if (!is_valid_ether_addr(netdev->perm_addr)) { |
|
2974 if (!eeprom_bad_csum_allow) { |
|
2975 DPRINTK(PROBE, ERR, "Invalid MAC address from " |
|
2976 "EEPROM, aborting.\n"); |
|
2977 err = -EAGAIN; |
|
2978 goto err_out_free; |
|
2979 } else { |
|
2980 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, " |
|
2981 "you MUST configure one.\n"); |
|
2982 } |
|
2983 } |
|
2984 |
|
2985 /* Wol magic packet can be enabled from eeprom */ |
|
2986 if ((nic->mac >= mac_82558_D101_A4) && |
|
2987 (nic->eeprom[eeprom_id] & eeprom_id_wol)) { |
|
2988 nic->flags |= wol_magic; |
|
2989 device_set_wakeup_enable(&pdev->dev, true); |
|
2990 } |
|
2991 |
|
2992 /* ack any pending wake events, disable PME */ |
|
2993 pci_pme_active(pdev, false); |
|
2994 |
|
2995 // offer device to EtherCAT master module |
|
2996 nic->ecdev = ecdev_offer(netdev, e100_ec_poll, THIS_MODULE); |
|
2997 if (nic->ecdev) { |
|
2998 if (ecdev_open(nic->ecdev)) { |
|
2999 ecdev_withdraw(nic->ecdev); |
|
3000 goto err_out_free; |
|
3001 } |
|
3002 } else { |
|
3003 strcpy(netdev->name, "eth%d"); |
|
3004 if((err = register_netdev(netdev))) { |
|
3005 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); |
|
3006 goto err_out_free; |
|
3007 } |
|
3008 nic->cbs_pool = pci_pool_create(netdev->name, |
|
3009 nic->pdev, |
|
3010 nic->params.cbs.max * sizeof(struct cb), |
|
3011 sizeof(u32), |
|
3012 0); |
|
3013 } |
|
3014 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %pM\n", |
|
3015 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), |
|
3016 pdev->irq, netdev->dev_addr); |
|
3017 |
|
3018 return 0; |
|
3019 |
|
3020 err_out_free: |
|
3021 e100_free(nic); |
|
3022 err_out_iounmap: |
|
3023 pci_iounmap(pdev, nic->csr); |
|
3024 err_out_free_res: |
|
3025 pci_release_regions(pdev); |
|
3026 err_out_disable_pdev: |
|
3027 pci_disable_device(pdev); |
|
3028 err_out_free_dev: |
|
3029 pci_set_drvdata(pdev, NULL); |
|
3030 free_netdev(netdev); |
|
3031 return err; |
|
3032 } |
|
3033 |
|
3034 static void __devexit e100_remove(struct pci_dev *pdev) |
|
3035 { |
|
3036 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3037 |
|
3038 if (netdev) { |
|
3039 struct nic *nic = netdev_priv(netdev); |
|
3040 if (nic->ecdev) { |
|
3041 ecdev_close(nic->ecdev); |
|
3042 ecdev_withdraw(nic->ecdev); |
|
3043 } else { |
|
3044 unregister_netdev(netdev); |
|
3045 } |
|
3046 |
|
3047 e100_free(nic); |
|
3048 pci_iounmap(pdev, nic->csr); |
|
3049 pci_pool_destroy(nic->cbs_pool); |
|
3050 free_netdev(netdev); |
|
3051 pci_release_regions(pdev); |
|
3052 pci_disable_device(pdev); |
|
3053 pci_set_drvdata(pdev, NULL); |
|
3054 } |
|
3055 } |
|
3056 |
|
3057 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ |
|
3058 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ |
|
3059 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ |
|
3060 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) |
|
3061 { |
|
3062 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3063 struct nic *nic = netdev_priv(netdev); |
|
3064 |
|
3065 if (netif_running(netdev)) |
|
3066 e100_down(nic); |
|
3067 netif_device_detach(netdev); |
|
3068 |
|
3069 pci_save_state(pdev); |
|
3070 |
|
3071 if ((nic->flags & wol_magic) | e100_asf(nic)) { |
|
3072 /* enable reverse auto-negotiation */ |
|
3073 if (nic->phy == phy_82552_v) { |
|
3074 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, |
|
3075 E100_82552_SMARTSPEED); |
|
3076 |
|
3077 mdio_write(netdev, nic->mii.phy_id, |
|
3078 E100_82552_SMARTSPEED, smartspeed | |
|
3079 E100_82552_REV_ANEG | E100_82552_ANEG_NOW); |
|
3080 } |
|
3081 *enable_wake = true; |
|
3082 } else { |
|
3083 *enable_wake = false; |
|
3084 } |
|
3085 |
|
3086 pci_disable_device(pdev); |
|
3087 } |
|
3088 |
|
3089 static int __e100_power_off(struct pci_dev *pdev, bool wake) |
|
3090 { |
|
3091 if (wake) |
|
3092 return pci_prepare_to_sleep(pdev); |
|
3093 |
|
3094 pci_wake_from_d3(pdev, false); |
|
3095 pci_set_power_state(pdev, PCI_D3hot); |
|
3096 |
|
3097 return 0; |
|
3098 } |
|
3099 |
|
3100 #ifdef CONFIG_PM |
|
3101 static int e100_suspend(struct pci_dev *pdev, pm_message_t state) |
|
3102 { |
|
3103 bool wake; |
|
3104 __e100_shutdown(pdev, &wake); |
|
3105 return __e100_power_off(pdev, wake); |
|
3106 } |
|
3107 |
|
3108 static int e100_resume(struct pci_dev *pdev) |
|
3109 { |
|
3110 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3111 struct nic *nic = netdev_priv(netdev); |
|
3112 |
|
3113 pci_set_power_state(pdev, PCI_D0); |
|
3114 pci_restore_state(pdev); |
|
3115 /* ack any pending wake events, disable PME */ |
|
3116 pci_enable_wake(pdev, 0, 0); |
|
3117 |
|
3118 /* disable reverse auto-negotiation */ |
|
3119 if (nic->phy == phy_82552_v) { |
|
3120 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, |
|
3121 E100_82552_SMARTSPEED); |
|
3122 |
|
3123 mdio_write(netdev, nic->mii.phy_id, |
|
3124 E100_82552_SMARTSPEED, |
|
3125 smartspeed & ~(E100_82552_REV_ANEG)); |
|
3126 } |
|
3127 |
|
3128 netif_device_attach(netdev); |
|
3129 if (netif_running(netdev)) |
|
3130 e100_up(nic); |
|
3131 |
|
3132 return 0; |
|
3133 } |
|
3134 #endif /* CONFIG_PM */ |
|
3135 |
|
3136 static void e100_shutdown(struct pci_dev *pdev) |
|
3137 { |
|
3138 bool wake; |
|
3139 __e100_shutdown(pdev, &wake); |
|
3140 if (system_state == SYSTEM_POWER_OFF) |
|
3141 __e100_power_off(pdev, wake); |
|
3142 } |
|
3143 |
|
3144 /* ------------------ PCI Error Recovery infrastructure -------------- */ |
|
3145 /** |
|
3146 * e100_io_error_detected - called when PCI error is detected. |
|
3147 * @pdev: Pointer to PCI device |
|
3148 * @state: The current pci connection state |
|
3149 */ |
|
3150 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) |
|
3151 { |
|
3152 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3153 struct nic *nic = netdev_priv(netdev); |
|
3154 |
|
3155 if (nic->ecdev) |
|
3156 return -EBUSY; |
|
3157 |
|
3158 netif_device_detach(netdev); |
|
3159 |
|
3160 if (state == pci_channel_io_perm_failure) |
|
3161 return PCI_ERS_RESULT_DISCONNECT; |
|
3162 |
|
3163 if (netif_running(netdev)) |
|
3164 e100_down(nic); |
|
3165 pci_disable_device(pdev); |
|
3166 |
|
3167 /* Request a slot reset. */ |
|
3168 return PCI_ERS_RESULT_NEED_RESET; |
|
3169 } |
|
3170 |
|
3171 /** |
|
3172 * e100_io_slot_reset - called after the pci bus has been reset. |
|
3173 * @pdev: Pointer to PCI device |
|
3174 * |
|
3175 * Restart the card from scratch. |
|
3176 */ |
|
3177 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) |
|
3178 { |
|
3179 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3180 struct nic *nic = netdev_priv(netdev); |
|
3181 |
|
3182 if (nic->ecdev) |
|
3183 return -EBUSY; |
|
3184 |
|
3185 if (pci_enable_device(pdev)) { |
|
3186 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n"); |
|
3187 return PCI_ERS_RESULT_DISCONNECT; |
|
3188 } |
|
3189 pci_set_master(pdev); |
|
3190 |
|
3191 /* Only one device per card can do a reset */ |
|
3192 if (0 != PCI_FUNC(pdev->devfn)) |
|
3193 return PCI_ERS_RESULT_RECOVERED; |
|
3194 e100_hw_reset(nic); |
|
3195 e100_phy_init(nic); |
|
3196 |
|
3197 return PCI_ERS_RESULT_RECOVERED; |
|
3198 } |
|
3199 |
|
3200 /** |
|
3201 * e100_io_resume - resume normal operations |
|
3202 * @pdev: Pointer to PCI device |
|
3203 * |
|
3204 * Resume normal operations after an error recovery |
|
3205 * sequence has been completed. |
|
3206 */ |
|
3207 static void e100_io_resume(struct pci_dev *pdev) |
|
3208 { |
|
3209 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3210 struct nic *nic = netdev_priv(netdev); |
|
3211 |
|
3212 /* ack any pending wake events, disable PME */ |
|
3213 pci_enable_wake(pdev, 0, 0); |
|
3214 |
|
3215 if (!nic->ecdev) |
|
3216 netif_device_attach(netdev); |
|
3217 if (nic->ecdev || netif_running(netdev)) { |
|
3218 e100_open(netdev); |
|
3219 if (!nic->ecdev) |
|
3220 mod_timer(&nic->watchdog, jiffies); |
|
3221 } |
|
3222 } |
|
3223 |
|
3224 static struct pci_error_handlers e100_err_handler = { |
|
3225 .error_detected = e100_io_error_detected, |
|
3226 .slot_reset = e100_io_slot_reset, |
|
3227 .resume = e100_io_resume, |
|
3228 }; |
|
3229 |
|
3230 static struct pci_driver e100_driver = { |
|
3231 .name = DRV_NAME, |
|
3232 .id_table = e100_id_table, |
|
3233 .probe = e100_probe, |
|
3234 .remove = __devexit_p(e100_remove), |
|
3235 #ifdef CONFIG_PM |
|
3236 /* Power Management hooks */ |
|
3237 .suspend = e100_suspend, |
|
3238 .resume = e100_resume, |
|
3239 #endif |
|
3240 .shutdown = e100_shutdown, |
|
3241 .err_handler = &e100_err_handler, |
|
3242 }; |
|
3243 |
|
3244 static int __init e100_init_module(void) |
|
3245 { |
|
3246 printk(KERN_INFO DRV_NAME " " DRV_DESCRIPTION " " DRV_VERSION |
|
3247 ", master " EC_MASTER_VERSION "\n"); |
|
3248 |
|
3249 return pci_register_driver(&e100_driver); |
|
3250 } |
|
3251 |
|
3252 static void __exit e100_cleanup_module(void) |
|
3253 { |
|
3254 printk(KERN_INFO DRV_NAME " cleaning up module...\n"); |
|
3255 pci_unregister_driver(&e100_driver); |
|
3256 printk(KERN_INFO DRV_NAME " module cleaned up.\n"); |
|
3257 } |
|
3258 |
|
3259 module_init(e100_init_module); |
|
3260 module_exit(e100_cleanup_module); |