devices/e1000/e1000_main-2.6.28-ethercat.c
changeset 2051 3a066ec73fb2
child 2421 bc2d4bf9cbe5
child 2589 2b9c78543663
equal deleted inserted replaced
2050:a3e59f2a8589 2051:3a066ec73fb2
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2006 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27   vim: noexpandtab
       
    28 
       
    29 *******************************************************************************/
       
    30 
       
    31 #include "e1000-2.6.27-ethercat.h"
       
    32 #include <net/ip6_checksum.h>
       
    33 
       
    34 char e1000_driver_name[] = "ec_e1000";
       
    35 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
       
    36 #define DRV_VERSION "7.3.21-k3-NAPI"
       
    37 const char e1000_driver_version[] = DRV_VERSION;
       
    38 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
       
    39 
       
    40 /* e1000_pci_tbl - PCI Device ID Table
       
    41  *
       
    42  * Last entry must be all 0s
       
    43  *
       
    44  * Macro expands to...
       
    45  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
       
    46  */
       
    47 static struct pci_device_id e1000_pci_tbl[] = {
       
    48 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
       
    49 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
       
    50 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
       
    51 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
       
    52 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
       
    53 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
       
    54 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
       
    55 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
       
    56 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
       
    57 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
       
    58 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
       
    59 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
       
    60 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
       
    61 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
       
    62 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
       
    63 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
       
    64 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
       
    65 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
       
    66 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
       
    67 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
       
    68 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
       
    69 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
       
    70 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
       
    71 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
       
    72 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
       
    73 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
       
    74 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
       
    75 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
       
    76 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
       
    77 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
       
    78 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
       
    79 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
       
    80 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
       
    81 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
       
    82 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
       
    83 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
       
    84 	/* required last entry */
       
    85 	{0,}
       
    86 };
       
    87 
       
    88 // do not auto-load driver
       
    89 // MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
    90 
       
    91 int e1000_up(struct e1000_adapter *adapter);
       
    92 void e1000_down(struct e1000_adapter *adapter);
       
    93 void e1000_reinit_locked(struct e1000_adapter *adapter);
       
    94 void e1000_reset(struct e1000_adapter *adapter);
       
    95 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
       
    96 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
       
    97 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
       
    98 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
       
    99 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
       
   100 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
   101                              struct e1000_tx_ring *txdr);
       
   102 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
   103                              struct e1000_rx_ring *rxdr);
       
   104 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
   105                              struct e1000_tx_ring *tx_ring);
       
   106 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
   107                              struct e1000_rx_ring *rx_ring);
       
   108 void e1000_update_stats(struct e1000_adapter *adapter);
       
   109 
       
   110 static int e1000_init_module(void);
       
   111 static void e1000_exit_module(void);
       
   112 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
       
   113 static void __devexit e1000_remove(struct pci_dev *pdev);
       
   114 static int e1000_alloc_queues(struct e1000_adapter *adapter);
       
   115 static int e1000_sw_init(struct e1000_adapter *adapter);
       
   116 static int e1000_open(struct net_device *netdev);
       
   117 static int e1000_close(struct net_device *netdev);
       
   118 static void e1000_configure_tx(struct e1000_adapter *adapter);
       
   119 static void e1000_configure_rx(struct e1000_adapter *adapter);
       
   120 static void e1000_setup_rctl(struct e1000_adapter *adapter);
       
   121 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
       
   122 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
       
   123 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
   124                                 struct e1000_tx_ring *tx_ring);
       
   125 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
   126                                 struct e1000_rx_ring *rx_ring);
       
   127 static void e1000_set_rx_mode(struct net_device *netdev);
       
   128 static void e1000_update_phy_info(unsigned long data);
       
   129 static void e1000_watchdog(unsigned long data);
       
   130 static void e1000_82547_tx_fifo_stall(unsigned long data);
       
   131 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
       
   132 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
       
   133 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
       
   134 static int e1000_set_mac(struct net_device *netdev, void *p);
       
   135 void ec_poll(struct net_device *);
       
   136 static irqreturn_t e1000_intr(int irq, void *data);
       
   137 static irqreturn_t e1000_intr_msi(int irq, void *data);
       
   138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
   139 			       struct e1000_tx_ring *tx_ring);
       
   140 static int e1000_clean(struct napi_struct *napi, int budget);
       
   141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
   142 			       struct e1000_rx_ring *rx_ring,
       
   143 			       int *work_done, int work_to_do);
       
   144 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
   145                                    struct e1000_rx_ring *rx_ring,
       
   146 				   int cleaned_count);
       
   147 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
       
   148 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
   149 			   int cmd);
       
   150 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
       
   151 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
       
   152 static void e1000_tx_timeout(struct net_device *dev);
       
   153 static void e1000_reset_task(struct work_struct *work);
       
   154 static void e1000_smartspeed(struct e1000_adapter *adapter);
       
   155 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
   156                                        struct sk_buff *skb);
       
   157 
       
   158 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
       
   159 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
       
   160 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
       
   161 static void e1000_restore_vlan(struct e1000_adapter *adapter);
       
   162 
       
   163 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
       
   164 #ifdef CONFIG_PM
       
   165 static int e1000_resume(struct pci_dev *pdev);
       
   166 #endif
       
   167 static void e1000_shutdown(struct pci_dev *pdev);
       
   168 
       
   169 #ifdef CONFIG_NET_POLL_CONTROLLER
       
   170 /* for netdump / net console */
       
   171 static void e1000_netpoll (struct net_device *netdev);
       
   172 #endif
       
   173 
       
   174 #define COPYBREAK_DEFAULT 256
       
   175 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
       
   176 module_param(copybreak, uint, 0644);
       
   177 MODULE_PARM_DESC(copybreak,
       
   178 	"Maximum size of packet that is copied to a new buffer on receive");
       
   179 
       
   180 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
   181                      pci_channel_state_t state);
       
   182 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
       
   183 static void e1000_io_resume(struct pci_dev *pdev);
       
   184 
       
   185 static struct pci_error_handlers e1000_err_handler = {
       
   186 	.error_detected = e1000_io_error_detected,
       
   187 	.slot_reset = e1000_io_slot_reset,
       
   188 	.resume = e1000_io_resume,
       
   189 };
       
   190 
       
   191 static struct pci_driver e1000_driver = {
       
   192 	.name     = e1000_driver_name,
       
   193 	.id_table = e1000_pci_tbl,
       
   194 	.probe    = e1000_probe,
       
   195 	.remove   = __devexit_p(e1000_remove),
       
   196 #ifdef CONFIG_PM
       
   197 	/* Power Managment Hooks */
       
   198 	.suspend  = e1000_suspend,
       
   199 	.resume   = e1000_resume,
       
   200 #endif
       
   201 	.shutdown = e1000_shutdown,
       
   202 	.err_handler = &e1000_err_handler
       
   203 };
       
   204 
       
   205 MODULE_AUTHOR("Florian Pose <fp@igh-essen.com>");
       
   206 MODULE_DESCRIPTION("EtherCAT-capable Intel(R) PRO/1000 Network Driver");
       
   207 MODULE_LICENSE("GPL");
       
   208 MODULE_VERSION(DRV_VERSION);
       
   209 
       
   210 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
       
   211 module_param(debug, int, 0);
       
   212 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
   213 
       
   214 /**
       
   215  * e1000_init_module - Driver Registration Routine
       
   216  *
       
   217  * e1000_init_module is the first routine called when the driver is
       
   218  * loaded. All it does is register with the PCI subsystem.
       
   219  **/
       
   220 
       
   221 static int __init e1000_init_module(void)
       
   222 {
       
   223 	int ret;
       
   224 	printk(KERN_INFO "%s - version %s\n",
       
   225 	       e1000_driver_string, e1000_driver_version);
       
   226 
       
   227 	printk(KERN_INFO "%s\n", e1000_copyright);
       
   228 
       
   229 	ret = pci_register_driver(&e1000_driver);
       
   230 	if (copybreak != COPYBREAK_DEFAULT) {
       
   231 		if (copybreak == 0)
       
   232 			printk(KERN_INFO "e1000: copybreak disabled\n");
       
   233 		else
       
   234 			printk(KERN_INFO "e1000: copybreak enabled for "
       
   235 			       "packets <= %u bytes\n", copybreak);
       
   236 	}
       
   237 	return ret;
       
   238 }
       
   239 
       
   240 module_init(e1000_init_module);
       
   241 
       
   242 /**
       
   243  * e1000_exit_module - Driver Exit Cleanup Routine
       
   244  *
       
   245  * e1000_exit_module is called just before the driver is removed
       
   246  * from memory.
       
   247  **/
       
   248 
       
   249 static void __exit e1000_exit_module(void)
       
   250 {
       
   251 	pci_unregister_driver(&e1000_driver);
       
   252 }
       
   253 
       
   254 module_exit(e1000_exit_module);
       
   255 
       
   256 static int e1000_request_irq(struct e1000_adapter *adapter)
       
   257 {
       
   258 	struct e1000_hw *hw = &adapter->hw;
       
   259 	struct net_device *netdev = adapter->netdev;
       
   260 	irq_handler_t handler = e1000_intr;
       
   261 	int irq_flags = IRQF_SHARED;
       
   262 	int err;
       
   263 
       
   264  	if (adapter->ecdev)
       
   265  		return 0;
       
   266  
       
   267 	if (hw->mac_type >= e1000_82571) {
       
   268 		adapter->have_msi = !pci_enable_msi(adapter->pdev);
       
   269 		if (adapter->have_msi) {
       
   270 			handler = e1000_intr_msi;
       
   271 			irq_flags = 0;
       
   272 		}
       
   273 	}
       
   274 
       
   275 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
       
   276 	                  netdev);
       
   277 	if (err) {
       
   278 		if (adapter->have_msi)
       
   279 			pci_disable_msi(adapter->pdev);
       
   280 		DPRINTK(PROBE, ERR,
       
   281 		        "Unable to allocate interrupt Error: %d\n", err);
       
   282 	}
       
   283 
       
   284 	return err;
       
   285 }
       
   286 
       
   287 static void e1000_free_irq(struct e1000_adapter *adapter)
       
   288 {
       
   289 	struct net_device *netdev = adapter->netdev;
       
   290 
       
   291 	if (adapter->ecdev)
       
   292 		return;
       
   293 
       
   294 	free_irq(adapter->pdev->irq, netdev);
       
   295 
       
   296 	if (adapter->have_msi)
       
   297 		pci_disable_msi(adapter->pdev);
       
   298 }
       
   299 
       
   300 /**
       
   301  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
   302  * @adapter: board private structure
       
   303  **/
       
   304 
       
   305 static void e1000_irq_disable(struct e1000_adapter *adapter)
       
   306 {
       
   307 	struct e1000_hw *hw = &adapter->hw;
       
   308 
       
   309 	if (adapter->ecdev)
       
   310 		return;
       
   311 
       
   312 	ew32(IMC, ~0);
       
   313 	E1000_WRITE_FLUSH();
       
   314 	synchronize_irq(adapter->pdev->irq);
       
   315 }
       
   316 
       
   317 /**
       
   318  * e1000_irq_enable - Enable default interrupt generation settings
       
   319  * @adapter: board private structure
       
   320  **/
       
   321 
       
   322 static void e1000_irq_enable(struct e1000_adapter *adapter)
       
   323 {
       
   324 	struct e1000_hw *hw = &adapter->hw;
       
   325 
       
   326 	if (adapter->ecdev)
       
   327 		return;
       
   328  
       
   329 	ew32(IMS, IMS_ENABLE_MASK);
       
   330 	E1000_WRITE_FLUSH();
       
   331 }
       
   332 
       
   333 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
   334 {
       
   335 	struct e1000_hw *hw = &adapter->hw;
       
   336 	struct net_device *netdev = adapter->netdev;
       
   337 	u16 vid = hw->mng_cookie.vlan_id;
       
   338 	u16 old_vid = adapter->mng_vlan_id;
       
   339 	if (adapter->vlgrp) {
       
   340 		if (!vlan_group_get_device(adapter->vlgrp, vid)) {
       
   341 			if (hw->mng_cookie.status &
       
   342 				E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
       
   343 				e1000_vlan_rx_add_vid(netdev, vid);
       
   344 				adapter->mng_vlan_id = vid;
       
   345 			} else
       
   346 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
   347 
       
   348 			if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
       
   349 					(vid != old_vid) &&
       
   350 			    !vlan_group_get_device(adapter->vlgrp, old_vid))
       
   351 				e1000_vlan_rx_kill_vid(netdev, old_vid);
       
   352 		} else
       
   353 			adapter->mng_vlan_id = vid;
       
   354 	}
       
   355 }
       
   356 
       
   357 /**
       
   358  * e1000_release_hw_control - release control of the h/w to f/w
       
   359  * @adapter: address of board private structure
       
   360  *
       
   361  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   362  * For ASF and Pass Through versions of f/w this means that the
       
   363  * driver is no longer loaded. For AMT version (only with 82573) i
       
   364  * of the f/w this means that the network i/f is closed.
       
   365  *
       
   366  **/
       
   367 
       
   368 static void e1000_release_hw_control(struct e1000_adapter *adapter)
       
   369 {
       
   370 	u32 ctrl_ext;
       
   371 	u32 swsm;
       
   372 	struct e1000_hw *hw = &adapter->hw;
       
   373 
       
   374 	/* Let firmware taken over control of h/w */
       
   375 	switch (hw->mac_type) {
       
   376 	case e1000_82573:
       
   377 		swsm = er32(SWSM);
       
   378 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
       
   379 		break;
       
   380 	case e1000_82571:
       
   381 	case e1000_82572:
       
   382 	case e1000_80003es2lan:
       
   383 	case e1000_ich8lan:
       
   384 		ctrl_ext = er32(CTRL_EXT);
       
   385 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
       
   386 		break;
       
   387 	default:
       
   388 		break;
       
   389 	}
       
   390 }
       
   391 
       
   392 /**
       
   393  * e1000_get_hw_control - get control of the h/w from f/w
       
   394  * @adapter: address of board private structure
       
   395  *
       
   396  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
       
   397  * For ASF and Pass Through versions of f/w this means that
       
   398  * the driver is loaded. For AMT version (only with 82573)
       
   399  * of the f/w this means that the network i/f is open.
       
   400  *
       
   401  **/
       
   402 
       
   403 static void e1000_get_hw_control(struct e1000_adapter *adapter)
       
   404 {
       
   405 	u32 ctrl_ext;
       
   406 	u32 swsm;
       
   407 	struct e1000_hw *hw = &adapter->hw;
       
   408 
       
   409 	/* Let firmware know the driver has taken over */
       
   410 	switch (hw->mac_type) {
       
   411 	case e1000_82573:
       
   412 		swsm = er32(SWSM);
       
   413 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
       
   414 		break;
       
   415 	case e1000_82571:
       
   416 	case e1000_82572:
       
   417 	case e1000_80003es2lan:
       
   418 	case e1000_ich8lan:
       
   419 		ctrl_ext = er32(CTRL_EXT);
       
   420 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
       
   421 		break;
       
   422 	default:
       
   423 		break;
       
   424 	}
       
   425 }
       
   426 
       
   427 static void e1000_init_manageability(struct e1000_adapter *adapter)
       
   428 {
       
   429 	struct e1000_hw *hw = &adapter->hw;
       
   430 
       
   431 	if (adapter->en_mng_pt) {
       
   432 		u32 manc = er32(MANC);
       
   433 
       
   434 		/* disable hardware interception of ARP */
       
   435 		manc &= ~(E1000_MANC_ARP_EN);
       
   436 
       
   437 		/* enable receiving management packets to the host */
       
   438 		/* this will probably generate destination unreachable messages
       
   439 		 * from the host OS, but the packets will be handled on SMBUS */
       
   440 		if (hw->has_manc2h) {
       
   441 			u32 manc2h = er32(MANC2H);
       
   442 
       
   443 			manc |= E1000_MANC_EN_MNG2HOST;
       
   444 #define E1000_MNG2HOST_PORT_623 (1 << 5)
       
   445 #define E1000_MNG2HOST_PORT_664 (1 << 6)
       
   446 			manc2h |= E1000_MNG2HOST_PORT_623;
       
   447 			manc2h |= E1000_MNG2HOST_PORT_664;
       
   448 			ew32(MANC2H, manc2h);
       
   449 		}
       
   450 
       
   451 		ew32(MANC, manc);
       
   452 	}
       
   453 }
       
   454 
       
   455 static void e1000_release_manageability(struct e1000_adapter *adapter)
       
   456 {
       
   457 	struct e1000_hw *hw = &adapter->hw;
       
   458 
       
   459 	if (adapter->en_mng_pt) {
       
   460 		u32 manc = er32(MANC);
       
   461 
       
   462 		/* re-enable hardware interception of ARP */
       
   463 		manc |= E1000_MANC_ARP_EN;
       
   464 
       
   465 		if (hw->has_manc2h)
       
   466 			manc &= ~E1000_MANC_EN_MNG2HOST;
       
   467 
       
   468 		/* don't explicitly have to mess with MANC2H since
       
   469 		 * MANC has an enable disable that gates MANC2H */
       
   470 
       
   471 		ew32(MANC, manc);
       
   472 	}
       
   473 }
       
   474 
       
   475 /**
       
   476  * e1000_configure - configure the hardware for RX and TX
       
   477  * @adapter = private board structure
       
   478  **/
       
   479 static void e1000_configure(struct e1000_adapter *adapter)
       
   480 {
       
   481 	struct net_device *netdev = adapter->netdev;
       
   482 	int i;
       
   483 
       
   484 	e1000_set_rx_mode(netdev);
       
   485 
       
   486 	e1000_restore_vlan(adapter);
       
   487 	e1000_init_manageability(adapter);
       
   488 
       
   489 	e1000_configure_tx(adapter);
       
   490 	e1000_setup_rctl(adapter);
       
   491 	e1000_configure_rx(adapter);
       
   492 	/* call E1000_DESC_UNUSED which always leaves
       
   493 	 * at least 1 descriptor unused to make sure
       
   494 	 * next_to_use != next_to_clean */
       
   495 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
   496 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
       
   497 		if (adapter->ecdev) {
       
   498 			/* fill rx ring completely! */
       
   499 			adapter->alloc_rx_buf(adapter, ring, ring->count);
       
   500 		} else {
       
   501             /* this one leaves the last ring element unallocated! */
       
   502 			adapter->alloc_rx_buf(adapter, ring,
       
   503 					E1000_DESC_UNUSED(ring));
       
   504 		}
       
   505 	}
       
   506 
       
   507 	adapter->tx_queue_len = netdev->tx_queue_len;
       
   508 }
       
   509 
       
   510 int e1000_up(struct e1000_adapter *adapter)
       
   511 {
       
   512 	struct e1000_hw *hw = &adapter->hw;
       
   513 
       
   514 	/* hardware has been reset, we need to reload some things */
       
   515 	e1000_configure(adapter);
       
   516 
       
   517 	clear_bit(__E1000_DOWN, &adapter->flags);
       
   518 
       
   519 	if (!adapter->ecdev) {
       
   520 		napi_enable(&adapter->napi);
       
   521 
       
   522 		e1000_irq_enable(adapter);
       
   523 
       
   524 		/* fire a link change interrupt to start the watchdog */
       
   525 		ew32(ICS, E1000_ICS_LSC);
       
   526 	}
       
   527 	return 0;
       
   528 }
       
   529 
       
   530 /**
       
   531  * e1000_power_up_phy - restore link in case the phy was powered down
       
   532  * @adapter: address of board private structure
       
   533  *
       
   534  * The phy may be powered down to save power and turn off link when the
       
   535  * driver is unloaded and wake on lan is not enabled (among others)
       
   536  * *** this routine MUST be followed by a call to e1000_reset ***
       
   537  *
       
   538  **/
       
   539 
       
   540 void e1000_power_up_phy(struct e1000_adapter *adapter)
       
   541 {
       
   542 	struct e1000_hw *hw = &adapter->hw;
       
   543 	u16 mii_reg = 0;
       
   544 
       
   545 	/* Just clear the power down bit to wake the phy back up */
       
   546 	if (hw->media_type == e1000_media_type_copper) {
       
   547 		/* according to the manual, the phy will retain its
       
   548 		 * settings across a power-down/up cycle */
       
   549 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
       
   550 		mii_reg &= ~MII_CR_POWER_DOWN;
       
   551 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
       
   552 	}
       
   553 }
       
   554 
       
   555 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
   556 {
       
   557 	struct e1000_hw *hw = &adapter->hw;
       
   558 
       
   559 	/* Power down the PHY so no link is implied when interface is down *
       
   560 	 * The PHY cannot be powered down if any of the following is true *
       
   561 	 * (a) WoL is enabled
       
   562 	 * (b) AMT is active
       
   563 	 * (c) SoL/IDER session is active */
       
   564 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
       
   565 	   hw->media_type == e1000_media_type_copper) {
       
   566 		u16 mii_reg = 0;
       
   567 
       
   568 		switch (hw->mac_type) {
       
   569 		case e1000_82540:
       
   570 		case e1000_82545:
       
   571 		case e1000_82545_rev_3:
       
   572 		case e1000_82546:
       
   573 		case e1000_82546_rev_3:
       
   574 		case e1000_82541:
       
   575 		case e1000_82541_rev_2:
       
   576 		case e1000_82547:
       
   577 		case e1000_82547_rev_2:
       
   578 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
       
   579 				goto out;
       
   580 			break;
       
   581 		case e1000_82571:
       
   582 		case e1000_82572:
       
   583 		case e1000_82573:
       
   584 		case e1000_80003es2lan:
       
   585 		case e1000_ich8lan:
       
   586 			if (e1000_check_mng_mode(hw) ||
       
   587 			    e1000_check_phy_reset_block(hw))
       
   588 				goto out;
       
   589 			break;
       
   590 		default:
       
   591 			goto out;
       
   592 		}
       
   593 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
       
   594 		mii_reg |= MII_CR_POWER_DOWN;
       
   595 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
       
   596 		mdelay(1);
       
   597 	}
       
   598 out:
       
   599 	return;
       
   600 }
       
   601 
       
   602 void e1000_down(struct e1000_adapter *adapter)
       
   603 {
       
   604 	struct net_device *netdev = adapter->netdev;
       
   605 
       
   606 	/* signal that we're down so the interrupt handler does not
       
   607 	 * reschedule our watchdog timer */
       
   608 	set_bit(__E1000_DOWN, &adapter->flags);
       
   609 
       
   610 	if (!adapter->ecdev) {
       
   611 		napi_disable(&adapter->napi);
       
   612 
       
   613 		e1000_irq_disable(adapter);
       
   614 
       
   615 		del_timer_sync(&adapter->tx_fifo_stall_timer);
       
   616 		del_timer_sync(&adapter->watchdog_timer);
       
   617 		del_timer_sync(&adapter->phy_info_timer);
       
   618 	}
       
   619 
       
   620 	netdev->tx_queue_len = adapter->tx_queue_len;
       
   621 	adapter->link_speed = 0;
       
   622 	adapter->link_duplex = 0;
       
   623  	if (!adapter->ecdev) {
       
   624 		netif_carrier_off(netdev);
       
   625 		netif_stop_queue(netdev);
       
   626 	}
       
   627 
       
   628 	e1000_reset(adapter);
       
   629 	e1000_clean_all_tx_rings(adapter);
       
   630 	e1000_clean_all_rx_rings(adapter);
       
   631 }
       
   632 
       
   633 void e1000_reinit_locked(struct e1000_adapter *adapter)
       
   634 {
       
   635 	WARN_ON(in_interrupt());
       
   636 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
       
   637 		msleep(1);
       
   638 	e1000_down(adapter);
       
   639 	e1000_up(adapter);
       
   640 	clear_bit(__E1000_RESETTING, &adapter->flags);
       
   641 }
       
   642 
       
   643 void e1000_reset(struct e1000_adapter *adapter)
       
   644 {
       
   645 	struct e1000_hw *hw = &adapter->hw;
       
   646 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
       
   647 	u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
       
   648 	bool legacy_pba_adjust = false;
       
   649 
       
   650 	/* Repartition Pba for greater than 9k mtu
       
   651 	 * To take effect CTRL.RST is required.
       
   652 	 */
       
   653 
       
   654 	switch (hw->mac_type) {
       
   655 	case e1000_82542_rev2_0:
       
   656 	case e1000_82542_rev2_1:
       
   657 	case e1000_82543:
       
   658 	case e1000_82544:
       
   659 	case e1000_82540:
       
   660 	case e1000_82541:
       
   661 	case e1000_82541_rev_2:
       
   662 		legacy_pba_adjust = true;
       
   663 		pba = E1000_PBA_48K;
       
   664 		break;
       
   665 	case e1000_82545:
       
   666 	case e1000_82545_rev_3:
       
   667 	case e1000_82546:
       
   668 	case e1000_82546_rev_3:
       
   669 		pba = E1000_PBA_48K;
       
   670 		break;
       
   671 	case e1000_82547:
       
   672 	case e1000_82547_rev_2:
       
   673 		legacy_pba_adjust = true;
       
   674 		pba = E1000_PBA_30K;
       
   675 		break;
       
   676 	case e1000_82571:
       
   677 	case e1000_82572:
       
   678 	case e1000_80003es2lan:
       
   679 		pba = E1000_PBA_38K;
       
   680 		break;
       
   681 	case e1000_82573:
       
   682 		pba = E1000_PBA_20K;
       
   683 		break;
       
   684 	case e1000_ich8lan:
       
   685 		pba = E1000_PBA_8K;
       
   686 	case e1000_undefined:
       
   687 	case e1000_num_macs:
       
   688 		break;
       
   689 	}
       
   690 
       
   691 	if (legacy_pba_adjust) {
       
   692 		if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
       
   693 			pba -= 8; /* allocate more FIFO for Tx */
       
   694 
       
   695 		if (hw->mac_type == e1000_82547) {
       
   696 			adapter->tx_fifo_head = 0;
       
   697 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
       
   698 			adapter->tx_fifo_size =
       
   699 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
       
   700 			atomic_set(&adapter->tx_fifo_stall, 0);
       
   701 		}
       
   702 	} else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
   703 		/* adjust PBA for jumbo frames */
       
   704 		ew32(PBA, pba);
       
   705 
       
   706 		/* To maintain wire speed transmits, the Tx FIFO should be
       
   707 		 * large enough to accomodate two full transmit packets,
       
   708 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
       
   709 		 * the Rx FIFO should be large enough to accomodate at least
       
   710 		 * one full receive packet and is similarly rounded up and
       
   711 		 * expressed in KB. */
       
   712 		pba = er32(PBA);
       
   713 		/* upper 16 bits has Tx packet buffer allocation size in KB */
       
   714 		tx_space = pba >> 16;
       
   715 		/* lower 16 bits has Rx packet buffer allocation size in KB */
       
   716 		pba &= 0xffff;
       
   717 		/* don't include ethernet FCS because hardware appends/strips */
       
   718 		min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
       
   719 		               VLAN_TAG_SIZE;
       
   720 		min_tx_space = min_rx_space;
       
   721 		min_tx_space *= 2;
       
   722 		min_tx_space = ALIGN(min_tx_space, 1024);
       
   723 		min_tx_space >>= 10;
       
   724 		min_rx_space = ALIGN(min_rx_space, 1024);
       
   725 		min_rx_space >>= 10;
       
   726 
       
   727 		/* If current Tx allocation is less than the min Tx FIFO size,
       
   728 		 * and the min Tx FIFO size is less than the current Rx FIFO
       
   729 		 * allocation, take space away from current Rx allocation */
       
   730 		if (tx_space < min_tx_space &&
       
   731 		    ((min_tx_space - tx_space) < pba)) {
       
   732 			pba = pba - (min_tx_space - tx_space);
       
   733 
       
   734 			/* PCI/PCIx hardware has PBA alignment constraints */
       
   735 			switch (hw->mac_type) {
       
   736 			case e1000_82545 ... e1000_82546_rev_3:
       
   737 				pba &= ~(E1000_PBA_8K - 1);
       
   738 				break;
       
   739 			default:
       
   740 				break;
       
   741 			}
       
   742 
       
   743 			/* if short on rx space, rx wins and must trump tx
       
   744 			 * adjustment or use Early Receive if available */
       
   745 			if (pba < min_rx_space) {
       
   746 				switch (hw->mac_type) {
       
   747 				case e1000_82573:
       
   748 					/* ERT enabled in e1000_configure_rx */
       
   749 					break;
       
   750 				default:
       
   751 					pba = min_rx_space;
       
   752 					break;
       
   753 				}
       
   754 			}
       
   755 		}
       
   756 	}
       
   757 
       
   758 	ew32(PBA, pba);
       
   759 
       
   760 	/* flow control settings */
       
   761 	/* Set the FC high water mark to 90% of the FIFO size.
       
   762 	 * Required to clear last 3 LSB */
       
   763 	fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
       
   764 	/* We can't use 90% on small FIFOs because the remainder
       
   765 	 * would be less than 1 full frame.  In this case, we size
       
   766 	 * it to allow at least a full frame above the high water
       
   767 	 *  mark. */
       
   768 	if (pba < E1000_PBA_16K)
       
   769 		fc_high_water_mark = (pba * 1024) - 1600;
       
   770 
       
   771 	hw->fc_high_water = fc_high_water_mark;
       
   772 	hw->fc_low_water = fc_high_water_mark - 8;
       
   773 	if (hw->mac_type == e1000_80003es2lan)
       
   774 		hw->fc_pause_time = 0xFFFF;
       
   775 	else
       
   776 		hw->fc_pause_time = E1000_FC_PAUSE_TIME;
       
   777 	hw->fc_send_xon = 1;
       
   778 	hw->fc = hw->original_fc;
       
   779 
       
   780 	/* Allow time for pending master requests to run */
       
   781 	e1000_reset_hw(hw);
       
   782 	if (hw->mac_type >= e1000_82544)
       
   783 		ew32(WUC, 0);
       
   784 
       
   785 	if (e1000_init_hw(hw))
       
   786 		DPRINTK(PROBE, ERR, "Hardware Error\n");
       
   787 	e1000_update_mng_vlan(adapter);
       
   788 
       
   789 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
       
   790 	if (hw->mac_type >= e1000_82544 &&
       
   791 	    hw->mac_type <= e1000_82547_rev_2 &&
       
   792 	    hw->autoneg == 1 &&
       
   793 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
       
   794 		u32 ctrl = er32(CTRL);
       
   795 		/* clear phy power management bit if we are in gig only mode,
       
   796 		 * which if enabled will attempt negotiation to 100Mb, which
       
   797 		 * can cause a loss of link at power off or driver unload */
       
   798 		ctrl &= ~E1000_CTRL_SWDPIN3;
       
   799 		ew32(CTRL, ctrl);
       
   800 	}
       
   801 
       
   802 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
   803 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
       
   804 
       
   805 	e1000_reset_adaptive(hw);
       
   806 	e1000_phy_get_info(hw, &adapter->phy_info);
       
   807 
       
   808 	if (!adapter->smart_power_down &&
       
   809 	    (hw->mac_type == e1000_82571 ||
       
   810 	     hw->mac_type == e1000_82572)) {
       
   811 		u16 phy_data = 0;
       
   812 		/* speed up time to link by disabling smart power down, ignore
       
   813 		 * the return value of this function because there is nothing
       
   814 		 * different we would do if it failed */
       
   815 		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
       
   816 		                   &phy_data);
       
   817 		phy_data &= ~IGP02E1000_PM_SPD;
       
   818 		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
       
   819 		                    phy_data);
       
   820 	}
       
   821 
       
   822 	e1000_release_manageability(adapter);
       
   823 }
       
   824 
       
   825 /**
       
   826  *  Dump the eeprom for users having checksum issues
       
   827  **/
       
   828 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
       
   829 {
       
   830 	struct net_device *netdev = adapter->netdev;
       
   831 	struct ethtool_eeprom eeprom;
       
   832 	const struct ethtool_ops *ops = netdev->ethtool_ops;
       
   833 	u8 *data;
       
   834 	int i;
       
   835 	u16 csum_old, csum_new = 0;
       
   836 
       
   837 	eeprom.len = ops->get_eeprom_len(netdev);
       
   838 	eeprom.offset = 0;
       
   839 
       
   840 	data = kmalloc(eeprom.len, GFP_KERNEL);
       
   841 	if (!data) {
       
   842 		printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
       
   843 		       " data\n");
       
   844 		return;
       
   845 	}
       
   846 
       
   847 	ops->get_eeprom(netdev, &eeprom, data);
       
   848 
       
   849 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
       
   850 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
       
   851 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
       
   852 		csum_new += data[i] + (data[i + 1] << 8);
       
   853 	csum_new = EEPROM_SUM - csum_new;
       
   854 
       
   855 	printk(KERN_ERR "/*********************/\n");
       
   856 	printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
       
   857 	printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
       
   858 
       
   859 	printk(KERN_ERR "Offset    Values\n");
       
   860 	printk(KERN_ERR "========  ======\n");
       
   861 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
       
   862 
       
   863 	printk(KERN_ERR "Include this output when contacting your support "
       
   864 	       "provider.\n");
       
   865 	printk(KERN_ERR "This is not a software error! Something bad "
       
   866 	       "happened to your hardware or\n");
       
   867 	printk(KERN_ERR "EEPROM image. Ignoring this "
       
   868 	       "problem could result in further problems,\n");
       
   869 	printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
       
   870 	printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
       
   871 	       "which is invalid\n");
       
   872 	printk(KERN_ERR "and requires you to set the proper MAC "
       
   873 	       "address manually before continuing\n");
       
   874 	printk(KERN_ERR "to enable this network device.\n");
       
   875 	printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
       
   876 	       "to your hardware vendor\n");
       
   877 	printk(KERN_ERR "or Intel Customer Support.\n");
       
   878 	printk(KERN_ERR "/*********************/\n");
       
   879 
       
   880 	kfree(data);
       
   881 }
       
   882 
       
   883 /**
       
   884  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
       
   885  * @pdev: PCI device information struct
       
   886  *
       
   887  * Return true if an adapter needs ioport resources
       
   888  **/
       
   889 static int e1000_is_need_ioport(struct pci_dev *pdev)
       
   890 {
       
   891 	switch (pdev->device) {
       
   892 	case E1000_DEV_ID_82540EM:
       
   893 	case E1000_DEV_ID_82540EM_LOM:
       
   894 	case E1000_DEV_ID_82540EP:
       
   895 	case E1000_DEV_ID_82540EP_LOM:
       
   896 	case E1000_DEV_ID_82540EP_LP:
       
   897 	case E1000_DEV_ID_82541EI:
       
   898 	case E1000_DEV_ID_82541EI_MOBILE:
       
   899 	case E1000_DEV_ID_82541ER:
       
   900 	case E1000_DEV_ID_82541ER_LOM:
       
   901 	case E1000_DEV_ID_82541GI:
       
   902 	case E1000_DEV_ID_82541GI_LF:
       
   903 	case E1000_DEV_ID_82541GI_MOBILE:
       
   904 	case E1000_DEV_ID_82544EI_COPPER:
       
   905 	case E1000_DEV_ID_82544EI_FIBER:
       
   906 	case E1000_DEV_ID_82544GC_COPPER:
       
   907 	case E1000_DEV_ID_82544GC_LOM:
       
   908 	case E1000_DEV_ID_82545EM_COPPER:
       
   909 	case E1000_DEV_ID_82545EM_FIBER:
       
   910 	case E1000_DEV_ID_82546EB_COPPER:
       
   911 	case E1000_DEV_ID_82546EB_FIBER:
       
   912 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
       
   913 		return true;
       
   914 	default:
       
   915 		return false;
       
   916 	}
       
   917 }
       
   918 
       
   919 /**
       
   920  * e1000_probe - Device Initialization Routine
       
   921  * @pdev: PCI device information struct
       
   922  * @ent: entry in e1000_pci_tbl
       
   923  *
       
   924  * Returns 0 on success, negative on failure
       
   925  *
       
   926  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
   927  * The OS initialization, configuring of the adapter private structure,
       
   928  * and a hardware reset occur.
       
   929  **/
       
   930 static int __devinit e1000_probe(struct pci_dev *pdev,
       
   931 				 const struct pci_device_id *ent)
       
   932 {
       
   933 	struct net_device *netdev;
       
   934 	struct e1000_adapter *adapter;
       
   935 	struct e1000_hw *hw;
       
   936 
       
   937 	static int cards_found = 0;
       
   938 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
       
   939 	int i, err, pci_using_dac;
       
   940 	u16 eeprom_data = 0;
       
   941 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
       
   942 	int bars, need_ioport;
       
   943 	DECLARE_MAC_BUF(mac);
       
   944 
       
   945 	/* do not allocate ioport bars when not needed */
       
   946 	need_ioport = e1000_is_need_ioport(pdev);
       
   947 	if (need_ioport) {
       
   948 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
       
   949 		err = pci_enable_device(pdev);
       
   950 	} else {
       
   951 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
       
   952 		err = pci_enable_device_mem(pdev);
       
   953 	}
       
   954 	if (err)
       
   955 		return err;
       
   956 
       
   957 	if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
       
   958 	    !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
       
   959 		pci_using_dac = 1;
       
   960 	} else {
       
   961 		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
       
   962 		if (err) {
       
   963 			err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
       
   964 			if (err) {
       
   965 				E1000_ERR("No usable DMA configuration, "
       
   966 					  "aborting\n");
       
   967 				goto err_dma;
       
   968 			}
       
   969 		}
       
   970 		pci_using_dac = 0;
       
   971 	}
       
   972 
       
   973 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
       
   974 	if (err)
       
   975 		goto err_pci_reg;
       
   976 
       
   977 	pci_set_master(pdev);
       
   978 
       
   979 	err = -ENOMEM;
       
   980 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
   981 	if (!netdev)
       
   982 		goto err_alloc_etherdev;
       
   983 
       
   984 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
   985 
       
   986 	pci_set_drvdata(pdev, netdev);
       
   987 	adapter = netdev_priv(netdev);
       
   988 	adapter->netdev = netdev;
       
   989 	adapter->pdev = pdev;
       
   990 	adapter->msg_enable = (1 << debug) - 1;
       
   991 	adapter->bars = bars;
       
   992 	adapter->need_ioport = need_ioport;
       
   993 
       
   994 	hw = &adapter->hw;
       
   995 	hw->back = adapter;
       
   996 
       
   997 	err = -EIO;
       
   998 	hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
       
   999 			      pci_resource_len(pdev, BAR_0));
       
  1000 	if (!hw->hw_addr)
       
  1001 		goto err_ioremap;
       
  1002 
       
  1003 	if (adapter->need_ioport) {
       
  1004 		for (i = BAR_1; i <= BAR_5; i++) {
       
  1005 			if (pci_resource_len(pdev, i) == 0)
       
  1006 				continue;
       
  1007 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
       
  1008 				hw->io_base = pci_resource_start(pdev, i);
       
  1009 				break;
       
  1010 			}
       
  1011 		}
       
  1012 	}
       
  1013 
       
  1014 	netdev->open = &e1000_open;
       
  1015 	netdev->stop = &e1000_close;
       
  1016 	netdev->hard_start_xmit = &e1000_xmit_frame;
       
  1017 	netdev->get_stats = &e1000_get_stats;
       
  1018 	netdev->set_rx_mode = &e1000_set_rx_mode;
       
  1019 	netdev->set_mac_address = &e1000_set_mac;
       
  1020 	netdev->change_mtu = &e1000_change_mtu;
       
  1021 	netdev->do_ioctl = &e1000_ioctl;
       
  1022 	e1000_set_ethtool_ops(netdev);
       
  1023 	netdev->tx_timeout = &e1000_tx_timeout;
       
  1024 	netdev->watchdog_timeo = 5 * HZ;
       
  1025 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
       
  1026 	netdev->vlan_rx_register = e1000_vlan_rx_register;
       
  1027 	netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
       
  1028 	netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
       
  1029 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  1030 	netdev->poll_controller = e1000_netpoll;
       
  1031 #endif
       
  1032 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
       
  1033 
       
  1034 	adapter->bd_number = cards_found;
       
  1035 
       
  1036 	/* setup the private structure */
       
  1037 
       
  1038 	err = e1000_sw_init(adapter);
       
  1039 	if (err)
       
  1040 		goto err_sw_init;
       
  1041 
       
  1042 	err = -EIO;
       
  1043 	/* Flash BAR mapping must happen after e1000_sw_init
       
  1044 	 * because it depends on mac_type */
       
  1045 	if ((hw->mac_type == e1000_ich8lan) &&
       
  1046 	   (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
       
  1047 		hw->flash_address =
       
  1048 			ioremap(pci_resource_start(pdev, 1),
       
  1049 				pci_resource_len(pdev, 1));
       
  1050 		if (!hw->flash_address)
       
  1051 			goto err_flashmap;
       
  1052 	}
       
  1053 
       
  1054 	if (e1000_check_phy_reset_block(hw))
       
  1055 		DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
       
  1056 
       
  1057 	if (hw->mac_type >= e1000_82543) {
       
  1058 		netdev->features = NETIF_F_SG |
       
  1059 				   NETIF_F_HW_CSUM |
       
  1060 				   NETIF_F_HW_VLAN_TX |
       
  1061 				   NETIF_F_HW_VLAN_RX |
       
  1062 				   NETIF_F_HW_VLAN_FILTER;
       
  1063 		if (hw->mac_type == e1000_ich8lan)
       
  1064 			netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
       
  1065 	}
       
  1066 
       
  1067 	if ((hw->mac_type >= e1000_82544) &&
       
  1068 	   (hw->mac_type != e1000_82547))
       
  1069 		netdev->features |= NETIF_F_TSO;
       
  1070 
       
  1071 	if (hw->mac_type > e1000_82547_rev_2)
       
  1072 		netdev->features |= NETIF_F_TSO6;
       
  1073 	if (pci_using_dac)
       
  1074 		netdev->features |= NETIF_F_HIGHDMA;
       
  1075 
       
  1076 	netdev->features |= NETIF_F_LLTX;
       
  1077 
       
  1078 	netdev->vlan_features |= NETIF_F_TSO;
       
  1079 	netdev->vlan_features |= NETIF_F_TSO6;
       
  1080 	netdev->vlan_features |= NETIF_F_HW_CSUM;
       
  1081 	netdev->vlan_features |= NETIF_F_SG;
       
  1082 
       
  1083 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
       
  1084 
       
  1085 	/* initialize eeprom parameters */
       
  1086 	if (e1000_init_eeprom_params(hw)) {
       
  1087 		E1000_ERR("EEPROM initialization failed\n");
       
  1088 		goto err_eeprom;
       
  1089 	}
       
  1090 
       
  1091 	/* before reading the EEPROM, reset the controller to
       
  1092 	 * put the device in a known good starting state */
       
  1093 
       
  1094 	e1000_reset_hw(hw);
       
  1095 
       
  1096 	/* make sure the EEPROM is good */
       
  1097 	if (e1000_validate_eeprom_checksum(hw) < 0) {
       
  1098 		DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
       
  1099 		e1000_dump_eeprom(adapter);
       
  1100 		/*
       
  1101 		 * set MAC address to all zeroes to invalidate and temporary
       
  1102 		 * disable this device for the user. This blocks regular
       
  1103 		 * traffic while still permitting ethtool ioctls from reaching
       
  1104 		 * the hardware as well as allowing the user to run the
       
  1105 		 * interface after manually setting a hw addr using
       
  1106 		 * `ip set address`
       
  1107 		 */
       
  1108 		memset(hw->mac_addr, 0, netdev->addr_len);
       
  1109 	} else {
       
  1110 		/* copy the MAC address out of the EEPROM */
       
  1111 		if (e1000_read_mac_addr(hw))
       
  1112 			DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
       
  1113 	}
       
  1114 	/* don't block initalization here due to bad MAC address */
       
  1115 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
       
  1116 	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
       
  1117 
       
  1118 	if (!is_valid_ether_addr(netdev->perm_addr))
       
  1119 		DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
       
  1120 
       
  1121 	e1000_get_bus_info(hw);
       
  1122 
       
  1123 	init_timer(&adapter->tx_fifo_stall_timer);
       
  1124 	adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
       
  1125 	adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
       
  1126 
       
  1127 	init_timer(&adapter->watchdog_timer);
       
  1128 	adapter->watchdog_timer.function = &e1000_watchdog;
       
  1129 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
  1130 
       
  1131 	init_timer(&adapter->phy_info_timer);
       
  1132 	adapter->phy_info_timer.function = &e1000_update_phy_info;
       
  1133 	adapter->phy_info_timer.data = (unsigned long)adapter;
       
  1134 
       
  1135 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
       
  1136 
       
  1137 	e1000_check_options(adapter);
       
  1138 
       
  1139 	/* Initial Wake on LAN setting
       
  1140 	 * If APM wake is enabled in the EEPROM,
       
  1141 	 * enable the ACPI Magic Packet filter
       
  1142 	 */
       
  1143 
       
  1144 	switch (hw->mac_type) {
       
  1145 	case e1000_82542_rev2_0:
       
  1146 	case e1000_82542_rev2_1:
       
  1147 	case e1000_82543:
       
  1148 		break;
       
  1149 	case e1000_82544:
       
  1150 		e1000_read_eeprom(hw,
       
  1151 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
       
  1152 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
       
  1153 		break;
       
  1154 	case e1000_ich8lan:
       
  1155 		e1000_read_eeprom(hw,
       
  1156 			EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
       
  1157 		eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
       
  1158 		break;
       
  1159 	case e1000_82546:
       
  1160 	case e1000_82546_rev_3:
       
  1161 	case e1000_82571:
       
  1162 	case e1000_80003es2lan:
       
  1163 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
       
  1164 			e1000_read_eeprom(hw,
       
  1165 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
       
  1166 			break;
       
  1167 		}
       
  1168 		/* Fall Through */
       
  1169 	default:
       
  1170 		e1000_read_eeprom(hw,
       
  1171 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
       
  1172 		break;
       
  1173 	}
       
  1174 	if (eeprom_data & eeprom_apme_mask)
       
  1175 		adapter->eeprom_wol |= E1000_WUFC_MAG;
       
  1176 
       
  1177 	/* now that we have the eeprom settings, apply the special cases
       
  1178 	 * where the eeprom may be wrong or the board simply won't support
       
  1179 	 * wake on lan on a particular port */
       
  1180 	switch (pdev->device) {
       
  1181 	case E1000_DEV_ID_82546GB_PCIE:
       
  1182 		adapter->eeprom_wol = 0;
       
  1183 		break;
       
  1184 	case E1000_DEV_ID_82546EB_FIBER:
       
  1185 	case E1000_DEV_ID_82546GB_FIBER:
       
  1186 	case E1000_DEV_ID_82571EB_FIBER:
       
  1187 		/* Wake events only supported on port A for dual fiber
       
  1188 		 * regardless of eeprom setting */
       
  1189 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
       
  1190 			adapter->eeprom_wol = 0;
       
  1191 		break;
       
  1192 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
       
  1193 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
       
  1194 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
  1195 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
       
  1196 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
       
  1197 		/* if quad port adapter, disable WoL on all but port A */
       
  1198 		if (global_quad_port_a != 0)
       
  1199 			adapter->eeprom_wol = 0;
       
  1200 		else
       
  1201 			adapter->quad_port_a = 1;
       
  1202 		/* Reset for multiple quad port adapters */
       
  1203 		if (++global_quad_port_a == 4)
       
  1204 			global_quad_port_a = 0;
       
  1205 		break;
       
  1206 	}
       
  1207 
       
  1208 	/* initialize the wol settings based on the eeprom settings */
       
  1209 	adapter->wol = adapter->eeprom_wol;
       
  1210 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  1211 
       
  1212 	/* print bus type/speed/width info */
       
  1213 	DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
       
  1214 		((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
       
  1215 		 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
       
  1216 		((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
       
  1217 		 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
       
  1218 		 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
       
  1219 		 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
       
  1220 		 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
       
  1221 		((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
       
  1222 		 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
       
  1223 		 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
       
  1224 		 "32-bit"));
       
  1225 
       
  1226 	printk("%s\n", print_mac(mac, netdev->dev_addr));
       
  1227 
       
  1228 	if (hw->bus_type == e1000_bus_type_pci_express) {
       
  1229 		DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
       
  1230 			"longer be supported by this driver in the future.\n",
       
  1231 			pdev->vendor, pdev->device);
       
  1232 		DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
       
  1233 			"driver instead.\n");
       
  1234 	}
       
  1235 
       
  1236 	/* reset the hardware with the new settings */
       
  1237 	e1000_reset(adapter);
       
  1238 
       
  1239 	/* If the controller is 82573 and f/w is AMT, do not set
       
  1240 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  1241 	 * let the f/w know that the h/w is now under the control
       
  1242 	 * of the driver. */
       
  1243 	if (hw->mac_type != e1000_82573 ||
       
  1244 	    !e1000_check_mng_mode(hw))
       
  1245 		e1000_get_hw_control(adapter);
       
  1246 
       
  1247  	// offer device to EtherCAT master module
       
  1248  	adapter->ecdev = ecdev_offer(netdev, ec_poll, THIS_MODULE);
       
  1249  	if (adapter->ecdev) {
       
  1250  		if (ecdev_open(adapter->ecdev)) {
       
  1251  			ecdev_withdraw(adapter->ecdev);
       
  1252  			goto err_register;
       
  1253  		}
       
  1254  	} else {
       
  1255 		/* tell the stack to leave us alone until e1000_open() is called */
       
  1256 		netif_carrier_off(netdev);
       
  1257 		netif_stop_queue(netdev);
       
  1258 
       
  1259 		strcpy(netdev->name, "eth%d");
       
  1260 		err = register_netdev(netdev);
       
  1261 		if (err)
       
  1262 			goto err_register;
       
  1263  	}
       
  1264 
       
  1265 	DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
       
  1266 
       
  1267 	cards_found++;
       
  1268 	return 0;
       
  1269 
       
  1270 err_register:
       
  1271 	e1000_release_hw_control(adapter);
       
  1272 err_eeprom:
       
  1273 	if (!e1000_check_phy_reset_block(hw))
       
  1274 		e1000_phy_hw_reset(hw);
       
  1275 
       
  1276 	if (hw->flash_address)
       
  1277 		iounmap(hw->flash_address);
       
  1278 err_flashmap:
       
  1279 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  1280 		dev_put(&adapter->polling_netdev[i]);
       
  1281 
       
  1282 	kfree(adapter->tx_ring);
       
  1283 	kfree(adapter->rx_ring);
       
  1284 	kfree(adapter->polling_netdev);
       
  1285 err_sw_init:
       
  1286 	iounmap(hw->hw_addr);
       
  1287 err_ioremap:
       
  1288 	free_netdev(netdev);
       
  1289 err_alloc_etherdev:
       
  1290 	pci_release_selected_regions(pdev, bars);
       
  1291 err_pci_reg:
       
  1292 err_dma:
       
  1293 	pci_disable_device(pdev);
       
  1294 	return err;
       
  1295 }
       
  1296 
       
  1297 /**
       
  1298  * e1000_remove - Device Removal Routine
       
  1299  * @pdev: PCI device information struct
       
  1300  *
       
  1301  * e1000_remove is called by the PCI subsystem to alert the driver
       
  1302  * that it should release a PCI device.  The could be caused by a
       
  1303  * Hot-Plug event, or because the driver is going to be removed from
       
  1304  * memory.
       
  1305  **/
       
  1306 
       
  1307 static void __devexit e1000_remove(struct pci_dev *pdev)
       
  1308 {
       
  1309 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  1310 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1311 	struct e1000_hw *hw = &adapter->hw;
       
  1312 	int i;
       
  1313 
       
  1314 	cancel_work_sync(&adapter->reset_task);
       
  1315 
       
  1316 	e1000_release_manageability(adapter);
       
  1317 
       
  1318 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  1319 	 * would have already happened in close and is redundant. */
       
  1320 	e1000_release_hw_control(adapter);
       
  1321 
       
  1322 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  1323 		dev_put(&adapter->polling_netdev[i]);
       
  1324 
       
  1325 	if (adapter->ecdev) {
       
  1326 		ecdev_close(adapter->ecdev);
       
  1327 		ecdev_withdraw(adapter->ecdev);
       
  1328 	} else {
       
  1329 		unregister_netdev(netdev);
       
  1330 	}
       
  1331 
       
  1332 	if (!e1000_check_phy_reset_block(hw))
       
  1333 		e1000_phy_hw_reset(hw);
       
  1334 
       
  1335 	kfree(adapter->tx_ring);
       
  1336 	kfree(adapter->rx_ring);
       
  1337 	kfree(adapter->polling_netdev);
       
  1338 
       
  1339 	iounmap(hw->hw_addr);
       
  1340 	if (hw->flash_address)
       
  1341 		iounmap(hw->flash_address);
       
  1342 	pci_release_selected_regions(pdev, adapter->bars);
       
  1343 
       
  1344 	free_netdev(netdev);
       
  1345 
       
  1346 	pci_disable_device(pdev);
       
  1347 }
       
  1348 
       
  1349 /**
       
  1350  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  1351  * @adapter: board private structure to initialize
       
  1352  *
       
  1353  * e1000_sw_init initializes the Adapter private data structure.
       
  1354  * Fields are initialized based on PCI device information and
       
  1355  * OS network device settings (MTU size).
       
  1356  **/
       
  1357 
       
  1358 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
       
  1359 {
       
  1360 	struct e1000_hw *hw = &adapter->hw;
       
  1361 	struct net_device *netdev = adapter->netdev;
       
  1362 	struct pci_dev *pdev = adapter->pdev;
       
  1363 	int i;
       
  1364 
       
  1365 	/* PCI config space info */
       
  1366 
       
  1367 	hw->vendor_id = pdev->vendor;
       
  1368 	hw->device_id = pdev->device;
       
  1369 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
       
  1370 	hw->subsystem_id = pdev->subsystem_device;
       
  1371 	hw->revision_id = pdev->revision;
       
  1372 
       
  1373 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
       
  1374 
       
  1375 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  1376 	hw->max_frame_size = netdev->mtu +
       
  1377 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  1378 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
       
  1379 
       
  1380 	/* identify the MAC */
       
  1381 
       
  1382 	if (e1000_set_mac_type(hw)) {
       
  1383 		DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
       
  1384 		return -EIO;
       
  1385 	}
       
  1386 
       
  1387 	switch (hw->mac_type) {
       
  1388 	default:
       
  1389 		break;
       
  1390 	case e1000_82541:
       
  1391 	case e1000_82547:
       
  1392 	case e1000_82541_rev_2:
       
  1393 	case e1000_82547_rev_2:
       
  1394 		hw->phy_init_script = 1;
       
  1395 		break;
       
  1396 	}
       
  1397 
       
  1398 	e1000_set_media_type(hw);
       
  1399 
       
  1400 	hw->wait_autoneg_complete = false;
       
  1401 	hw->tbi_compatibility_en = true;
       
  1402 	hw->adaptive_ifs = true;
       
  1403 
       
  1404 	/* Copper options */
       
  1405 
       
  1406 	if (hw->media_type == e1000_media_type_copper) {
       
  1407 		hw->mdix = AUTO_ALL_MODES;
       
  1408 		hw->disable_polarity_correction = false;
       
  1409 		hw->master_slave = E1000_MASTER_SLAVE;
       
  1410 	}
       
  1411 
       
  1412 	adapter->num_tx_queues = 1;
       
  1413 	adapter->num_rx_queues = 1;
       
  1414 
       
  1415 	if (e1000_alloc_queues(adapter)) {
       
  1416 		DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
       
  1417 		return -ENOMEM;
       
  1418 	}
       
  1419 
       
  1420 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1421 		adapter->polling_netdev[i].priv = adapter;
       
  1422 		dev_hold(&adapter->polling_netdev[i]);
       
  1423 		set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
       
  1424 	}
       
  1425 	spin_lock_init(&adapter->tx_queue_lock);
       
  1426 
       
  1427 	/* Explicitly disable IRQ since the NIC can be in any state. */
       
  1428 	e1000_irq_disable(adapter);
       
  1429 
       
  1430 	spin_lock_init(&adapter->stats_lock);
       
  1431 
       
  1432 	set_bit(__E1000_DOWN, &adapter->flags);
       
  1433 
       
  1434 	return 0;
       
  1435 }
       
  1436 
       
  1437 /**
       
  1438  * e1000_alloc_queues - Allocate memory for all rings
       
  1439  * @adapter: board private structure to initialize
       
  1440  *
       
  1441  * We allocate one ring per queue at run-time since we don't know the
       
  1442  * number of queues at compile-time.  The polling_netdev array is
       
  1443  * intended for Multiqueue, but should work fine with a single queue.
       
  1444  **/
       
  1445 
       
  1446 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
       
  1447 {
       
  1448 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
       
  1449 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
       
  1450 	if (!adapter->tx_ring)
       
  1451 		return -ENOMEM;
       
  1452 
       
  1453 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
       
  1454 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
       
  1455 	if (!adapter->rx_ring) {
       
  1456 		kfree(adapter->tx_ring);
       
  1457 		return -ENOMEM;
       
  1458 	}
       
  1459 
       
  1460 	adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
       
  1461 	                                  sizeof(struct net_device),
       
  1462 	                                  GFP_KERNEL);
       
  1463 	if (!adapter->polling_netdev) {
       
  1464 		kfree(adapter->tx_ring);
       
  1465 		kfree(adapter->rx_ring);
       
  1466 		return -ENOMEM;
       
  1467 	}
       
  1468 
       
  1469 	return E1000_SUCCESS;
       
  1470 }
       
  1471 
       
  1472 /**
       
  1473  * e1000_open - Called when a network interface is made active
       
  1474  * @netdev: network interface device structure
       
  1475  *
       
  1476  * Returns 0 on success, negative value on failure
       
  1477  *
       
  1478  * The open entry point is called when a network interface is made
       
  1479  * active by the system (IFF_UP).  At this point all resources needed
       
  1480  * for transmit and receive operations are allocated, the interrupt
       
  1481  * handler is registered with the OS, the watchdog timer is started,
       
  1482  * and the stack is notified that the interface is ready.
       
  1483  **/
       
  1484 
       
  1485 static int e1000_open(struct net_device *netdev)
       
  1486 {
       
  1487 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1488 	struct e1000_hw *hw = &adapter->hw;
       
  1489 	int err;
       
  1490 
       
  1491 	/* disallow open during test */
       
  1492 	if (test_bit(__E1000_TESTING, &adapter->flags))
       
  1493 		return -EBUSY;
       
  1494 
       
  1495 	/* allocate transmit descriptors */
       
  1496 	err = e1000_setup_all_tx_resources(adapter);
       
  1497 	if (err)
       
  1498 		goto err_setup_tx;
       
  1499 
       
  1500 	/* allocate receive descriptors */
       
  1501 	err = e1000_setup_all_rx_resources(adapter);
       
  1502 	if (err)
       
  1503 		goto err_setup_rx;
       
  1504 
       
  1505 	e1000_power_up_phy(adapter);
       
  1506 
       
  1507 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  1508 	if ((hw->mng_cookie.status &
       
  1509 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
       
  1510 		e1000_update_mng_vlan(adapter);
       
  1511 	}
       
  1512 
       
  1513 	/* If AMT is enabled, let the firmware know that the network
       
  1514 	 * interface is now open */
       
  1515 	if (hw->mac_type == e1000_82573 &&
       
  1516 	    e1000_check_mng_mode(hw))
       
  1517 		e1000_get_hw_control(adapter);
       
  1518 
       
  1519 	/* before we allocate an interrupt, we must be ready to handle it.
       
  1520 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
       
  1521 	 * as soon as we call pci_request_irq, so we have to setup our
       
  1522 	 * clean_rx handler before we do so.  */
       
  1523 	e1000_configure(adapter);
       
  1524 
       
  1525 	err = e1000_request_irq(adapter);
       
  1526 	if (err)
       
  1527 		goto err_req_irq;
       
  1528 
       
  1529 	/* From here on the code is the same as e1000_up() */
       
  1530 	clear_bit(__E1000_DOWN, &adapter->flags);
       
  1531 
       
  1532 	napi_enable(&adapter->napi);
       
  1533 
       
  1534 	e1000_irq_enable(adapter);
       
  1535 
       
  1536 	netif_start_queue(netdev);
       
  1537 
       
  1538 	/* fire a link status change interrupt to start the watchdog */
       
  1539 	ew32(ICS, E1000_ICS_LSC);
       
  1540 
       
  1541 	return E1000_SUCCESS;
       
  1542 
       
  1543 err_req_irq:
       
  1544 	e1000_release_hw_control(adapter);
       
  1545 	e1000_power_down_phy(adapter);
       
  1546 	e1000_free_all_rx_resources(adapter);
       
  1547 err_setup_rx:
       
  1548 	e1000_free_all_tx_resources(adapter);
       
  1549 err_setup_tx:
       
  1550 	e1000_reset(adapter);
       
  1551 
       
  1552 	return err;
       
  1553 }
       
  1554 
       
  1555 /**
       
  1556  * e1000_close - Disables a network interface
       
  1557  * @netdev: network interface device structure
       
  1558  *
       
  1559  * Returns 0, this is not allowed to fail
       
  1560  *
       
  1561  * The close entry point is called when an interface is de-activated
       
  1562  * by the OS.  The hardware is still under the drivers control, but
       
  1563  * needs to be disabled.  A global MAC reset is issued to stop the
       
  1564  * hardware, and all transmit and receive resources are freed.
       
  1565  **/
       
  1566 
       
  1567 static int e1000_close(struct net_device *netdev)
       
  1568 {
       
  1569 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1570 	struct e1000_hw *hw = &adapter->hw;
       
  1571 
       
  1572 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  1573 	e1000_down(adapter);
       
  1574 	e1000_power_down_phy(adapter);
       
  1575 	e1000_free_irq(adapter);
       
  1576 
       
  1577 	e1000_free_all_tx_resources(adapter);
       
  1578 	e1000_free_all_rx_resources(adapter);
       
  1579 
       
  1580 	/* kill manageability vlan ID if supported, but not if a vlan with
       
  1581 	 * the same ID is registered on the host OS (let 8021q kill it) */
       
  1582 	if ((hw->mng_cookie.status &
       
  1583 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  1584 	     !(adapter->vlgrp &&
       
  1585 	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
       
  1586 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  1587 	}
       
  1588 
       
  1589 	/* If AMT is enabled, let the firmware know that the network
       
  1590 	 * interface is now closed */
       
  1591 	if (hw->mac_type == e1000_82573 &&
       
  1592 	    e1000_check_mng_mode(hw))
       
  1593 		e1000_release_hw_control(adapter);
       
  1594 
       
  1595 	return 0;
       
  1596 }
       
  1597 
       
  1598 /**
       
  1599  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
       
  1600  * @adapter: address of board private structure
       
  1601  * @start: address of beginning of memory
       
  1602  * @len: length of memory
       
  1603  **/
       
  1604 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
       
  1605 				  unsigned long len)
       
  1606 {
       
  1607 	struct e1000_hw *hw = &adapter->hw;
       
  1608 	unsigned long begin = (unsigned long)start;
       
  1609 	unsigned long end = begin + len;
       
  1610 
       
  1611 	/* First rev 82545 and 82546 need to not allow any memory
       
  1612 	 * write location to cross 64k boundary due to errata 23 */
       
  1613 	if (hw->mac_type == e1000_82545 ||
       
  1614 	    hw->mac_type == e1000_82546) {
       
  1615 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
       
  1616 	}
       
  1617 
       
  1618 	return true;
       
  1619 }
       
  1620 
       
  1621 /**
       
  1622  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
       
  1623  * @adapter: board private structure
       
  1624  * @txdr:    tx descriptor ring (for a specific queue) to setup
       
  1625  *
       
  1626  * Return 0 on success, negative on failure
       
  1627  **/
       
  1628 
       
  1629 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
       
  1630 				    struct e1000_tx_ring *txdr)
       
  1631 {
       
  1632 	struct pci_dev *pdev = adapter->pdev;
       
  1633 	int size;
       
  1634 
       
  1635 	size = sizeof(struct e1000_buffer) * txdr->count;
       
  1636 	txdr->buffer_info = vmalloc(size);
       
  1637 	if (!txdr->buffer_info) {
       
  1638 		DPRINTK(PROBE, ERR,
       
  1639 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1640 		return -ENOMEM;
       
  1641 	}
       
  1642 	memset(txdr->buffer_info, 0, size);
       
  1643 
       
  1644 	/* round up to nearest 4K */
       
  1645 
       
  1646 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
  1647 	txdr->size = ALIGN(txdr->size, 4096);
       
  1648 
       
  1649 	txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1650 	if (!txdr->desc) {
       
  1651 setup_tx_desc_die:
       
  1652 		vfree(txdr->buffer_info);
       
  1653 		DPRINTK(PROBE, ERR,
       
  1654 		"Unable to allocate memory for the transmit descriptor ring\n");
       
  1655 		return -ENOMEM;
       
  1656 	}
       
  1657 
       
  1658 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1659 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1660 		void *olddesc = txdr->desc;
       
  1661 		dma_addr_t olddma = txdr->dma;
       
  1662 		DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
       
  1663 				     "at %p\n", txdr->size, txdr->desc);
       
  1664 		/* Try again, without freeing the previous */
       
  1665 		txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
       
  1666 		/* Failed allocation, critical failure */
       
  1667 		if (!txdr->desc) {
       
  1668 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1669 			goto setup_tx_desc_die;
       
  1670 		}
       
  1671 
       
  1672 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
       
  1673 			/* give up */
       
  1674 			pci_free_consistent(pdev, txdr->size, txdr->desc,
       
  1675 					    txdr->dma);
       
  1676 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1677 			DPRINTK(PROBE, ERR,
       
  1678 				"Unable to allocate aligned memory "
       
  1679 				"for the transmit descriptor ring\n");
       
  1680 			vfree(txdr->buffer_info);
       
  1681 			return -ENOMEM;
       
  1682 		} else {
       
  1683 			/* Free old allocation, new allocation was successful */
       
  1684 			pci_free_consistent(pdev, txdr->size, olddesc, olddma);
       
  1685 		}
       
  1686 	}
       
  1687 	memset(txdr->desc, 0, txdr->size);
       
  1688 
       
  1689 	txdr->next_to_use = 0;
       
  1690 	txdr->next_to_clean = 0;
       
  1691 	spin_lock_init(&txdr->tx_lock);
       
  1692 
       
  1693 	return 0;
       
  1694 }
       
  1695 
       
  1696 /**
       
  1697  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
       
  1698  * 				  (Descriptors) for all queues
       
  1699  * @adapter: board private structure
       
  1700  *
       
  1701  * Return 0 on success, negative on failure
       
  1702  **/
       
  1703 
       
  1704 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
       
  1705 {
       
  1706 	int i, err = 0;
       
  1707 
       
  1708 	for (i = 0; i < adapter->num_tx_queues; i++) {
       
  1709 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
       
  1710 		if (err) {
       
  1711 			DPRINTK(PROBE, ERR,
       
  1712 				"Allocation for Tx Queue %u failed\n", i);
       
  1713 			for (i-- ; i >= 0; i--)
       
  1714 				e1000_free_tx_resources(adapter,
       
  1715 							&adapter->tx_ring[i]);
       
  1716 			break;
       
  1717 		}
       
  1718 	}
       
  1719 
       
  1720 	return err;
       
  1721 }
       
  1722 
       
  1723 /**
       
  1724  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
       
  1725  * @adapter: board private structure
       
  1726  *
       
  1727  * Configure the Tx unit of the MAC after a reset.
       
  1728  **/
       
  1729 
       
  1730 static void e1000_configure_tx(struct e1000_adapter *adapter)
       
  1731 {
       
  1732 	u64 tdba;
       
  1733 	struct e1000_hw *hw = &adapter->hw;
       
  1734 	u32 tdlen, tctl, tipg, tarc;
       
  1735 	u32 ipgr1, ipgr2;
       
  1736 
       
  1737 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  1738 
       
  1739 	switch (adapter->num_tx_queues) {
       
  1740 	case 1:
       
  1741 	default:
       
  1742 		tdba = adapter->tx_ring[0].dma;
       
  1743 		tdlen = adapter->tx_ring[0].count *
       
  1744 			sizeof(struct e1000_tx_desc);
       
  1745 		ew32(TDLEN, tdlen);
       
  1746 		ew32(TDBAH, (tdba >> 32));
       
  1747 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
       
  1748 		ew32(TDT, 0);
       
  1749 		ew32(TDH, 0);
       
  1750 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
       
  1751 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
       
  1752 		break;
       
  1753 	}
       
  1754 
       
  1755 	/* Set the default values for the Tx Inter Packet Gap timer */
       
  1756 	if (hw->mac_type <= e1000_82547_rev_2 &&
       
  1757 	    (hw->media_type == e1000_media_type_fiber ||
       
  1758 	     hw->media_type == e1000_media_type_internal_serdes))
       
  1759 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
       
  1760 	else
       
  1761 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
       
  1762 
       
  1763 	switch (hw->mac_type) {
       
  1764 	case e1000_82542_rev2_0:
       
  1765 	case e1000_82542_rev2_1:
       
  1766 		tipg = DEFAULT_82542_TIPG_IPGT;
       
  1767 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
       
  1768 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
       
  1769 		break;
       
  1770 	case e1000_80003es2lan:
       
  1771 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1772 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
       
  1773 		break;
       
  1774 	default:
       
  1775 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
       
  1776 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
       
  1777 		break;
       
  1778 	}
       
  1779 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
       
  1780 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
       
  1781 	ew32(TIPG, tipg);
       
  1782 
       
  1783 	/* Set the Tx Interrupt Delay register */
       
  1784 
       
  1785 	ew32(TIDV, adapter->tx_int_delay);
       
  1786 	if (hw->mac_type >= e1000_82540)
       
  1787 		ew32(TADV, adapter->tx_abs_int_delay);
       
  1788 
       
  1789 	/* Program the Transmit Control Register */
       
  1790 
       
  1791 	tctl = er32(TCTL);
       
  1792 	tctl &= ~E1000_TCTL_CT;
       
  1793 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
       
  1794 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
       
  1795 
       
  1796 	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
       
  1797 		tarc = er32(TARC0);
       
  1798 		/* set the speed mode bit, we'll clear it if we're not at
       
  1799 		 * gigabit link later */
       
  1800 		tarc |= (1 << 21);
       
  1801 		ew32(TARC0, tarc);
       
  1802 	} else if (hw->mac_type == e1000_80003es2lan) {
       
  1803 		tarc = er32(TARC0);
       
  1804 		tarc |= 1;
       
  1805 		ew32(TARC0, tarc);
       
  1806 		tarc = er32(TARC1);
       
  1807 		tarc |= 1;
       
  1808 		ew32(TARC1, tarc);
       
  1809 	}
       
  1810 
       
  1811 	e1000_config_collision_dist(hw);
       
  1812 
       
  1813 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  1814 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
       
  1815 
       
  1816 	/* only set IDE if we are delaying interrupts using the timers */
       
  1817 	if (adapter->tx_int_delay)
       
  1818 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
       
  1819 
       
  1820 	if (hw->mac_type < e1000_82543)
       
  1821 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
       
  1822 	else
       
  1823 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  1824 
       
  1825 	/* Cache if we're 82544 running in PCI-X because we'll
       
  1826 	 * need this to apply a workaround later in the send path. */
       
  1827 	if (hw->mac_type == e1000_82544 &&
       
  1828 	    hw->bus_type == e1000_bus_type_pcix)
       
  1829 		adapter->pcix_82544 = 1;
       
  1830 
       
  1831 	ew32(TCTL, tctl);
       
  1832 
       
  1833 }
       
  1834 
       
  1835 /**
       
  1836  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
       
  1837  * @adapter: board private structure
       
  1838  * @rxdr:    rx descriptor ring (for a specific queue) to setup
       
  1839  *
       
  1840  * Returns 0 on success, negative on failure
       
  1841  **/
       
  1842 
       
  1843 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
       
  1844 				    struct e1000_rx_ring *rxdr)
       
  1845 {
       
  1846 	struct e1000_hw *hw = &adapter->hw;
       
  1847 	struct pci_dev *pdev = adapter->pdev;
       
  1848 	int size, desc_len;
       
  1849 
       
  1850 	size = sizeof(struct e1000_buffer) * rxdr->count;
       
  1851 	rxdr->buffer_info = vmalloc(size);
       
  1852 	if (!rxdr->buffer_info) {
       
  1853 		DPRINTK(PROBE, ERR,
       
  1854 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1855 		return -ENOMEM;
       
  1856 	}
       
  1857 	memset(rxdr->buffer_info, 0, size);
       
  1858 
       
  1859 	if (hw->mac_type <= e1000_82547_rev_2)
       
  1860 		desc_len = sizeof(struct e1000_rx_desc);
       
  1861 	else
       
  1862 		desc_len = sizeof(union e1000_rx_desc_packet_split);
       
  1863 
       
  1864 	/* Round up to nearest 4K */
       
  1865 
       
  1866 	rxdr->size = rxdr->count * desc_len;
       
  1867 	rxdr->size = ALIGN(rxdr->size, 4096);
       
  1868 
       
  1869 	rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1870 
       
  1871 	if (!rxdr->desc) {
       
  1872 		DPRINTK(PROBE, ERR,
       
  1873 		"Unable to allocate memory for the receive descriptor ring\n");
       
  1874 setup_rx_desc_die:
       
  1875 		vfree(rxdr->buffer_info);
       
  1876 		return -ENOMEM;
       
  1877 	}
       
  1878 
       
  1879 	/* Fix for errata 23, can't cross 64kB boundary */
       
  1880 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1881 		void *olddesc = rxdr->desc;
       
  1882 		dma_addr_t olddma = rxdr->dma;
       
  1883 		DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
       
  1884 				     "at %p\n", rxdr->size, rxdr->desc);
       
  1885 		/* Try again, without freeing the previous */
       
  1886 		rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
       
  1887 		/* Failed allocation, critical failure */
       
  1888 		if (!rxdr->desc) {
       
  1889 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1890 			DPRINTK(PROBE, ERR,
       
  1891 				"Unable to allocate memory "
       
  1892 				"for the receive descriptor ring\n");
       
  1893 			goto setup_rx_desc_die;
       
  1894 		}
       
  1895 
       
  1896 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
       
  1897 			/* give up */
       
  1898 			pci_free_consistent(pdev, rxdr->size, rxdr->desc,
       
  1899 					    rxdr->dma);
       
  1900 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1901 			DPRINTK(PROBE, ERR,
       
  1902 				"Unable to allocate aligned memory "
       
  1903 				"for the receive descriptor ring\n");
       
  1904 			goto setup_rx_desc_die;
       
  1905 		} else {
       
  1906 			/* Free old allocation, new allocation was successful */
       
  1907 			pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
       
  1908 		}
       
  1909 	}
       
  1910 	memset(rxdr->desc, 0, rxdr->size);
       
  1911 
       
  1912 	rxdr->next_to_clean = 0;
       
  1913 	rxdr->next_to_use = 0;
       
  1914 
       
  1915 	return 0;
       
  1916 }
       
  1917 
       
  1918 /**
       
  1919  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
       
  1920  * 				  (Descriptors) for all queues
       
  1921  * @adapter: board private structure
       
  1922  *
       
  1923  * Return 0 on success, negative on failure
       
  1924  **/
       
  1925 
       
  1926 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
       
  1927 {
       
  1928 	int i, err = 0;
       
  1929 
       
  1930 	for (i = 0; i < adapter->num_rx_queues; i++) {
       
  1931 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
       
  1932 		if (err) {
       
  1933 			DPRINTK(PROBE, ERR,
       
  1934 				"Allocation for Rx Queue %u failed\n", i);
       
  1935 			for (i-- ; i >= 0; i--)
       
  1936 				e1000_free_rx_resources(adapter,
       
  1937 							&adapter->rx_ring[i]);
       
  1938 			break;
       
  1939 		}
       
  1940 	}
       
  1941 
       
  1942 	return err;
       
  1943 }
       
  1944 
       
  1945 /**
       
  1946  * e1000_setup_rctl - configure the receive control registers
       
  1947  * @adapter: Board private structure
       
  1948  **/
       
  1949 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
       
  1950 			(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
       
  1951 static void e1000_setup_rctl(struct e1000_adapter *adapter)
       
  1952 {
       
  1953 	struct e1000_hw *hw = &adapter->hw;
       
  1954 	u32 rctl;
       
  1955 
       
  1956 	rctl = er32(RCTL);
       
  1957 
       
  1958 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  1959 
       
  1960 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  1961 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1962 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1963 
       
  1964 	if (hw->tbi_compatibility_on == 1)
       
  1965 		rctl |= E1000_RCTL_SBP;
       
  1966 	else
       
  1967 		rctl &= ~E1000_RCTL_SBP;
       
  1968 
       
  1969 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  1970 		rctl &= ~E1000_RCTL_LPE;
       
  1971 	else
       
  1972 		rctl |= E1000_RCTL_LPE;
       
  1973 
       
  1974 	/* Setup buffer sizes */
       
  1975 	rctl &= ~E1000_RCTL_SZ_4096;
       
  1976 	rctl |= E1000_RCTL_BSEX;
       
  1977 	switch (adapter->rx_buffer_len) {
       
  1978 		case E1000_RXBUFFER_256:
       
  1979 			rctl |= E1000_RCTL_SZ_256;
       
  1980 			rctl &= ~E1000_RCTL_BSEX;
       
  1981 			break;
       
  1982 		case E1000_RXBUFFER_512:
       
  1983 			rctl |= E1000_RCTL_SZ_512;
       
  1984 			rctl &= ~E1000_RCTL_BSEX;
       
  1985 			break;
       
  1986 		case E1000_RXBUFFER_1024:
       
  1987 			rctl |= E1000_RCTL_SZ_1024;
       
  1988 			rctl &= ~E1000_RCTL_BSEX;
       
  1989 			break;
       
  1990 		case E1000_RXBUFFER_2048:
       
  1991 		default:
       
  1992 			rctl |= E1000_RCTL_SZ_2048;
       
  1993 			rctl &= ~E1000_RCTL_BSEX;
       
  1994 			break;
       
  1995 		case E1000_RXBUFFER_4096:
       
  1996 			rctl |= E1000_RCTL_SZ_4096;
       
  1997 			break;
       
  1998 		case E1000_RXBUFFER_8192:
       
  1999 			rctl |= E1000_RCTL_SZ_8192;
       
  2000 			break;
       
  2001 		case E1000_RXBUFFER_16384:
       
  2002 			rctl |= E1000_RCTL_SZ_16384;
       
  2003 			break;
       
  2004 	}
       
  2005 
       
  2006 	ew32(RCTL, rctl);
       
  2007 }
       
  2008 
       
  2009 /**
       
  2010  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
       
  2011  * @adapter: board private structure
       
  2012  *
       
  2013  * Configure the Rx unit of the MAC after a reset.
       
  2014  **/
       
  2015 
       
  2016 static void e1000_configure_rx(struct e1000_adapter *adapter)
       
  2017 {
       
  2018 	u64 rdba;
       
  2019 	struct e1000_hw *hw = &adapter->hw;
       
  2020 	u32 rdlen, rctl, rxcsum, ctrl_ext;
       
  2021 
       
  2022 	rdlen = adapter->rx_ring[0].count *
       
  2023 		sizeof(struct e1000_rx_desc);
       
  2024 	adapter->clean_rx = e1000_clean_rx_irq;
       
  2025 	adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  2026 
       
  2027 	/* disable receives while setting up the descriptors */
       
  2028 	rctl = er32(RCTL);
       
  2029 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  2030 
       
  2031 	/* set the Receive Delay Timer Register */
       
  2032 	ew32(RDTR, adapter->rx_int_delay);
       
  2033 
       
  2034 	if (hw->mac_type >= e1000_82540) {
       
  2035 		ew32(RADV, adapter->rx_abs_int_delay);
       
  2036 		if (adapter->itr_setting != 0)
       
  2037 			ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  2038 	}
       
  2039 
       
  2040 	if (hw->mac_type >= e1000_82571) {
       
  2041 		ctrl_ext = er32(CTRL_EXT);
       
  2042 		/* Reset delay timers after every interrupt */
       
  2043 		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
       
  2044 		/* Auto-Mask interrupts upon ICR access */
       
  2045 		ctrl_ext |= E1000_CTRL_EXT_IAME;
       
  2046 		ew32(IAM, 0xffffffff);
       
  2047 		ew32(CTRL_EXT, ctrl_ext);
       
  2048 		E1000_WRITE_FLUSH();
       
  2049 	}
       
  2050 
       
  2051 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
       
  2052 	 * the Base and Length of the Rx Descriptor Ring */
       
  2053 	switch (adapter->num_rx_queues) {
       
  2054 	case 1:
       
  2055 	default:
       
  2056 		rdba = adapter->rx_ring[0].dma;
       
  2057 		ew32(RDLEN, rdlen);
       
  2058 		ew32(RDBAH, (rdba >> 32));
       
  2059 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
       
  2060 		ew32(RDT, 0);
       
  2061 		ew32(RDH, 0);
       
  2062 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
       
  2063 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
       
  2064 		break;
       
  2065 	}
       
  2066 
       
  2067 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
       
  2068 	if (hw->mac_type >= e1000_82543) {
       
  2069 		rxcsum = er32(RXCSUM);
       
  2070 		if (adapter->rx_csum)
       
  2071 			rxcsum |= E1000_RXCSUM_TUOFL;
       
  2072 		else
       
  2073 			/* don't need to clear IPPCSE as it defaults to 0 */
       
  2074 			rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  2075 		ew32(RXCSUM, rxcsum);
       
  2076 	}
       
  2077 
       
  2078 	/* Enable Receives */
       
  2079 	ew32(RCTL, rctl);
       
  2080 }
       
  2081 
       
  2082 /**
       
  2083  * e1000_free_tx_resources - Free Tx Resources per Queue
       
  2084  * @adapter: board private structure
       
  2085  * @tx_ring: Tx descriptor ring for a specific queue
       
  2086  *
       
  2087  * Free all transmit software resources
       
  2088  **/
       
  2089 
       
  2090 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
       
  2091 				    struct e1000_tx_ring *tx_ring)
       
  2092 {
       
  2093 	struct pci_dev *pdev = adapter->pdev;
       
  2094 
       
  2095 	e1000_clean_tx_ring(adapter, tx_ring);
       
  2096 
       
  2097 	vfree(tx_ring->buffer_info);
       
  2098 	tx_ring->buffer_info = NULL;
       
  2099 
       
  2100 	pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
       
  2101 
       
  2102 	tx_ring->desc = NULL;
       
  2103 }
       
  2104 
       
  2105 /**
       
  2106  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
       
  2107  * @adapter: board private structure
       
  2108  *
       
  2109  * Free all transmit software resources
       
  2110  **/
       
  2111 
       
  2112 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
       
  2113 {
       
  2114 	int i;
       
  2115 
       
  2116 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  2117 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
       
  2118 }
       
  2119 
       
  2120 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
       
  2121 					     struct e1000_buffer *buffer_info)
       
  2122 {
       
  2123 	if (buffer_info->dma) {
       
  2124 		pci_unmap_page(adapter->pdev,
       
  2125 				buffer_info->dma,
       
  2126 				buffer_info->length,
       
  2127 				PCI_DMA_TODEVICE);
       
  2128 		buffer_info->dma = 0;
       
  2129 	}
       
  2130 	if (buffer_info->skb) {
       
  2131 		dev_kfree_skb_any(buffer_info->skb);
       
  2132 		buffer_info->skb = NULL;
       
  2133 	}
       
  2134 	/* buffer_info must be completely set up in the transmit path */
       
  2135 }
       
  2136 
       
  2137 /**
       
  2138  * e1000_clean_tx_ring - Free Tx Buffers
       
  2139  * @adapter: board private structure
       
  2140  * @tx_ring: ring to be cleaned
       
  2141  **/
       
  2142 
       
  2143 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
       
  2144 				struct e1000_tx_ring *tx_ring)
       
  2145 {
       
  2146 	struct e1000_hw *hw = &adapter->hw;
       
  2147 	struct e1000_buffer *buffer_info;
       
  2148 	unsigned long size;
       
  2149 	unsigned int i;
       
  2150 
       
  2151 	/* Free all the Tx ring sk_buffs */
       
  2152 
       
  2153 	for (i = 0; i < tx_ring->count; i++) {
       
  2154 		buffer_info = &tx_ring->buffer_info[i];
       
  2155 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  2156 	}
       
  2157 
       
  2158 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  2159 	memset(tx_ring->buffer_info, 0, size);
       
  2160 
       
  2161 	/* Zero out the descriptor ring */
       
  2162 
       
  2163 	memset(tx_ring->desc, 0, tx_ring->size);
       
  2164 
       
  2165 	tx_ring->next_to_use = 0;
       
  2166 	tx_ring->next_to_clean = 0;
       
  2167 	tx_ring->last_tx_tso = 0;
       
  2168 
       
  2169 	writel(0, hw->hw_addr + tx_ring->tdh);
       
  2170 	writel(0, hw->hw_addr + tx_ring->tdt);
       
  2171 }
       
  2172 
       
  2173 /**
       
  2174  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
       
  2175  * @adapter: board private structure
       
  2176  **/
       
  2177 
       
  2178 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
       
  2179 {
       
  2180 	int i;
       
  2181 
       
  2182 	for (i = 0; i < adapter->num_tx_queues; i++)
       
  2183 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
       
  2184 }
       
  2185 
       
  2186 /**
       
  2187  * e1000_free_rx_resources - Free Rx Resources
       
  2188  * @adapter: board private structure
       
  2189  * @rx_ring: ring to clean the resources from
       
  2190  *
       
  2191  * Free all receive software resources
       
  2192  **/
       
  2193 
       
  2194 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
       
  2195 				    struct e1000_rx_ring *rx_ring)
       
  2196 {
       
  2197 	struct pci_dev *pdev = adapter->pdev;
       
  2198 
       
  2199 	e1000_clean_rx_ring(adapter, rx_ring);
       
  2200 
       
  2201 	vfree(rx_ring->buffer_info);
       
  2202 	rx_ring->buffer_info = NULL;
       
  2203 
       
  2204 	pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
       
  2205 
       
  2206 	rx_ring->desc = NULL;
       
  2207 }
       
  2208 
       
  2209 /**
       
  2210  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
       
  2211  * @adapter: board private structure
       
  2212  *
       
  2213  * Free all receive software resources
       
  2214  **/
       
  2215 
       
  2216 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
       
  2217 {
       
  2218 	int i;
       
  2219 
       
  2220 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2221 	if (adapter->ecdev)
       
  2222 		return;
       
  2223 
       
  2224 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
       
  2225 }
       
  2226 
       
  2227 /**
       
  2228  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  2229  * @adapter: board private structure
       
  2230  * @rx_ring: ring to free buffers from
       
  2231  **/
       
  2232 
       
  2233 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
       
  2234 				struct e1000_rx_ring *rx_ring)
       
  2235 {
       
  2236 	struct e1000_hw *hw = &adapter->hw;
       
  2237 	struct e1000_buffer *buffer_info;
       
  2238 	struct pci_dev *pdev = adapter->pdev;
       
  2239 	unsigned long size;
       
  2240 	unsigned int i;
       
  2241 
       
  2242 	/* Free all the Rx ring sk_buffs */
       
  2243 	for (i = 0; i < rx_ring->count; i++) {
       
  2244 		buffer_info = &rx_ring->buffer_info[i];
       
  2245 		if (buffer_info->skb) {
       
  2246 			pci_unmap_single(pdev,
       
  2247 					 buffer_info->dma,
       
  2248 					 buffer_info->length,
       
  2249 					 PCI_DMA_FROMDEVICE);
       
  2250 
       
  2251 			dev_kfree_skb(buffer_info->skb);
       
  2252 			buffer_info->skb = NULL;
       
  2253 		}
       
  2254 	}
       
  2255 
       
  2256 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  2257 	memset(rx_ring->buffer_info, 0, size);
       
  2258 
       
  2259 	/* Zero out the descriptor ring */
       
  2260 
       
  2261 	memset(rx_ring->desc, 0, rx_ring->size);
       
  2262 
       
  2263 	rx_ring->next_to_clean = 0;
       
  2264 	rx_ring->next_to_use = 0;
       
  2265 
       
  2266 	writel(0, hw->hw_addr + rx_ring->rdh);
       
  2267 	writel(0, hw->hw_addr + rx_ring->rdt);
       
  2268 }
       
  2269 
       
  2270 /**
       
  2271  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
       
  2272  * @adapter: board private structure
       
  2273  **/
       
  2274 
       
  2275 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
       
  2276 {
       
  2277 	int i;
       
  2278 
       
  2279 	for (i = 0; i < adapter->num_rx_queues; i++)
       
  2280 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
       
  2281 }
       
  2282 
       
  2283 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
       
  2284  * and memory write and invalidate disabled for certain operations
       
  2285  */
       
  2286 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
       
  2287 {
       
  2288 	struct e1000_hw *hw = &adapter->hw;
       
  2289 	struct net_device *netdev = adapter->netdev;
       
  2290 	u32 rctl;
       
  2291 
       
  2292 	e1000_pci_clear_mwi(hw);
       
  2293 
       
  2294 	rctl = er32(RCTL);
       
  2295 	rctl |= E1000_RCTL_RST;
       
  2296 	ew32(RCTL, rctl);
       
  2297 	E1000_WRITE_FLUSH();
       
  2298 	mdelay(5);
       
  2299 
       
  2300 	if (!adapter->ecdev && netif_running(netdev))
       
  2301 		e1000_clean_all_rx_rings(adapter);
       
  2302 }
       
  2303 
       
  2304 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
       
  2305 {
       
  2306 	struct e1000_hw *hw = &adapter->hw;
       
  2307 	struct net_device *netdev = adapter->netdev;
       
  2308 	u32 rctl;
       
  2309 
       
  2310 	rctl = er32(RCTL);
       
  2311 	rctl &= ~E1000_RCTL_RST;
       
  2312 	ew32(RCTL, rctl);
       
  2313 	E1000_WRITE_FLUSH();
       
  2314 	mdelay(5);
       
  2315 
       
  2316 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
       
  2317 		e1000_pci_set_mwi(hw);
       
  2318 
       
  2319 	if (!adapter->netdev && netif_running(netdev)) {
       
  2320 		/* No need to loop, because 82542 supports only 1 queue */
       
  2321 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
       
  2322 		e1000_configure_rx(adapter);
       
  2323 		if (adapter->ecdev) { 
       
  2324 			/* fill rx ring completely! */
       
  2325 			adapter->alloc_rx_buf(adapter, ring, ring->count);
       
  2326 		} else {
       
  2327             /* this one leaves the last ring element unallocated! */
       
  2328 			adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
       
  2329 		}
       
  2330 
       
  2331 	}
       
  2332 }
       
  2333 
       
  2334 /**
       
  2335  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  2336  * @netdev: network interface device structure
       
  2337  * @p: pointer to an address structure
       
  2338  *
       
  2339  * Returns 0 on success, negative on failure
       
  2340  **/
       
  2341 
       
  2342 static int e1000_set_mac(struct net_device *netdev, void *p)
       
  2343 {
       
  2344 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2345 	struct e1000_hw *hw = &adapter->hw;
       
  2346 	struct sockaddr *addr = p;
       
  2347 
       
  2348 	if (!is_valid_ether_addr(addr->sa_data))
       
  2349 		return -EADDRNOTAVAIL;
       
  2350 
       
  2351 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2352 
       
  2353 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2354 		e1000_enter_82542_rst(adapter);
       
  2355 
       
  2356 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  2357 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
       
  2358 
       
  2359 	e1000_rar_set(hw, hw->mac_addr, 0);
       
  2360 
       
  2361 	/* With 82571 controllers, LAA may be overwritten (with the default)
       
  2362 	 * due to controller reset from the other port. */
       
  2363 	if (hw->mac_type == e1000_82571) {
       
  2364 		/* activate the work around */
       
  2365 		hw->laa_is_present = 1;
       
  2366 
       
  2367 		/* Hold a copy of the LAA in RAR[14] This is done so that
       
  2368 		 * between the time RAR[0] gets clobbered  and the time it
       
  2369 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
       
  2370 		 * of the RARs and no incoming packets directed to this port
       
  2371 		 * are dropped. Eventaully the LAA will be in RAR[0] and
       
  2372 		 * RAR[14] */
       
  2373 		e1000_rar_set(hw, hw->mac_addr,
       
  2374 					E1000_RAR_ENTRIES - 1);
       
  2375 	}
       
  2376 
       
  2377 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2378 		e1000_leave_82542_rst(adapter);
       
  2379 
       
  2380 	return 0;
       
  2381 }
       
  2382 
       
  2383 /**
       
  2384  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
       
  2385  * @netdev: network interface device structure
       
  2386  *
       
  2387  * The set_rx_mode entry point is called whenever the unicast or multicast
       
  2388  * address lists or the network interface flags are updated. This routine is
       
  2389  * responsible for configuring the hardware for proper unicast, multicast,
       
  2390  * promiscuous mode, and all-multi behavior.
       
  2391  **/
       
  2392 
       
  2393 static void e1000_set_rx_mode(struct net_device *netdev)
       
  2394 {
       
  2395 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2396 	struct e1000_hw *hw = &adapter->hw;
       
  2397 	struct dev_addr_list *uc_ptr;
       
  2398 	struct dev_addr_list *mc_ptr;
       
  2399 	u32 rctl;
       
  2400 	u32 hash_value;
       
  2401 	int i, rar_entries = E1000_RAR_ENTRIES;
       
  2402 	int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
       
  2403 				E1000_NUM_MTA_REGISTERS_ICH8LAN :
       
  2404 				E1000_NUM_MTA_REGISTERS;
       
  2405 
       
  2406 	if (hw->mac_type == e1000_ich8lan)
       
  2407 		rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
       
  2408 
       
  2409 	/* reserve RAR[14] for LAA over-write work-around */
       
  2410 	if (hw->mac_type == e1000_82571)
       
  2411 		rar_entries--;
       
  2412 
       
  2413 	/* Check for Promiscuous and All Multicast modes */
       
  2414 
       
  2415 	rctl = er32(RCTL);
       
  2416 
       
  2417 	if (netdev->flags & IFF_PROMISC) {
       
  2418 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  2419 		rctl &= ~E1000_RCTL_VFE;
       
  2420 	} else {
       
  2421 		if (netdev->flags & IFF_ALLMULTI) {
       
  2422 			rctl |= E1000_RCTL_MPE;
       
  2423 		} else {
       
  2424 			rctl &= ~E1000_RCTL_MPE;
       
  2425 		}
       
  2426 		if (adapter->hw.mac_type != e1000_ich8lan)
       
  2427 			rctl |= E1000_RCTL_VFE;
       
  2428 	}
       
  2429 
       
  2430 	uc_ptr = NULL;
       
  2431 	if (netdev->uc_count > rar_entries - 1) {
       
  2432 		rctl |= E1000_RCTL_UPE;
       
  2433 	} else if (!(netdev->flags & IFF_PROMISC)) {
       
  2434 		rctl &= ~E1000_RCTL_UPE;
       
  2435 		uc_ptr = netdev->uc_list;
       
  2436 	}
       
  2437 
       
  2438 	ew32(RCTL, rctl);
       
  2439 
       
  2440 	/* 82542 2.0 needs to be in reset to write receive address registers */
       
  2441 
       
  2442 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2443 		e1000_enter_82542_rst(adapter);
       
  2444 
       
  2445 	/* load the first 14 addresses into the exact filters 1-14. Unicast
       
  2446 	 * addresses take precedence to avoid disabling unicast filtering
       
  2447 	 * when possible.
       
  2448 	 *
       
  2449 	 * RAR 0 is used for the station MAC adddress
       
  2450 	 * if there are not 14 addresses, go ahead and clear the filters
       
  2451 	 * -- with 82571 controllers only 0-13 entries are filled here
       
  2452 	 */
       
  2453 	mc_ptr = netdev->mc_list;
       
  2454 
       
  2455 	for (i = 1; i < rar_entries; i++) {
       
  2456 		if (uc_ptr) {
       
  2457 			e1000_rar_set(hw, uc_ptr->da_addr, i);
       
  2458 			uc_ptr = uc_ptr->next;
       
  2459 		} else if (mc_ptr) {
       
  2460 			e1000_rar_set(hw, mc_ptr->da_addr, i);
       
  2461 			mc_ptr = mc_ptr->next;
       
  2462 		} else {
       
  2463 			E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
       
  2464 			E1000_WRITE_FLUSH();
       
  2465 			E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
       
  2466 			E1000_WRITE_FLUSH();
       
  2467 		}
       
  2468 	}
       
  2469 	WARN_ON(uc_ptr != NULL);
       
  2470 
       
  2471 	/* clear the old settings from the multicast hash table */
       
  2472 
       
  2473 	for (i = 0; i < mta_reg_count; i++) {
       
  2474 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
       
  2475 		E1000_WRITE_FLUSH();
       
  2476 	}
       
  2477 
       
  2478 	/* load any remaining addresses into the hash table */
       
  2479 
       
  2480 	for (; mc_ptr; mc_ptr = mc_ptr->next) {
       
  2481 		hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
       
  2482 		e1000_mta_set(hw, hash_value);
       
  2483 	}
       
  2484 
       
  2485 	if (hw->mac_type == e1000_82542_rev2_0)
       
  2486 		e1000_leave_82542_rst(adapter);
       
  2487 }
       
  2488 
       
  2489 /* Need to wait a few seconds after link up to get diagnostic information from
       
  2490  * the phy */
       
  2491 
       
  2492 static void e1000_update_phy_info(unsigned long data)
       
  2493 {
       
  2494 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
       
  2495 	struct e1000_hw *hw = &adapter->hw;
       
  2496 	e1000_phy_get_info(hw, &adapter->phy_info);
       
  2497 }
       
  2498 
       
  2499 /**
       
  2500  * e1000_82547_tx_fifo_stall - Timer Call-back
       
  2501  * @data: pointer to adapter cast into an unsigned long
       
  2502  **/
       
  2503 
       
  2504 static void e1000_82547_tx_fifo_stall(unsigned long data)
       
  2505 {
       
  2506 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
       
  2507 	struct e1000_hw *hw = &adapter->hw;
       
  2508 	struct net_device *netdev = adapter->netdev;
       
  2509 	u32 tctl;
       
  2510 
       
  2511 	if (atomic_read(&adapter->tx_fifo_stall)) {
       
  2512 		if ((er32(TDT) == er32(TDH)) &&
       
  2513 		   (er32(TDFT) == er32(TDFH)) &&
       
  2514 		   (er32(TDFTS) == er32(TDFHS))) {
       
  2515 			tctl = er32(TCTL);
       
  2516 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
       
  2517 			ew32(TDFT, adapter->tx_head_addr);
       
  2518 			ew32(TDFH, adapter->tx_head_addr);
       
  2519 			ew32(TDFTS, adapter->tx_head_addr);
       
  2520 			ew32(TDFHS, adapter->tx_head_addr);
       
  2521 			ew32(TCTL, tctl);
       
  2522 			E1000_WRITE_FLUSH();
       
  2523 
       
  2524 			adapter->tx_fifo_head = 0;
       
  2525 			atomic_set(&adapter->tx_fifo_stall, 0);
       
  2526 			if (!adapter->ecdev) netif_wake_queue(netdev);
       
  2527 		} else {
       
  2528 			if (!adapter->ecdev)
       
  2529 				mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  2530 		}
       
  2531 	}
       
  2532 }
       
  2533 
       
  2534 /**
       
  2535  * e1000_watchdog - Timer Call-back
       
  2536  * @data: pointer to adapter cast into an unsigned long
       
  2537  **/
       
  2538 static void e1000_watchdog(unsigned long data)
       
  2539 {
       
  2540 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
       
  2541 	struct e1000_hw *hw = &adapter->hw;
       
  2542 	struct net_device *netdev = adapter->netdev;
       
  2543 	struct e1000_tx_ring *txdr = adapter->tx_ring;
       
  2544 	u32 link, tctl;
       
  2545 	s32 ret_val;
       
  2546 
       
  2547 	ret_val = e1000_check_for_link(hw);
       
  2548 	if ((ret_val == E1000_ERR_PHY) &&
       
  2549 	    (hw->phy_type == e1000_phy_igp_3) &&
       
  2550 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
       
  2551 		/* See e1000_kumeran_lock_loss_workaround() */
       
  2552 		DPRINTK(LINK, INFO,
       
  2553 			"Gigabit has been disabled, downgrading speed\n");
       
  2554 	}
       
  2555 
       
  2556 	if (hw->mac_type == e1000_82573) {
       
  2557 		e1000_enable_tx_pkt_filtering(hw);
       
  2558 		if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
       
  2559 			e1000_update_mng_vlan(adapter);
       
  2560 	}
       
  2561 
       
  2562 	if ((hw->media_type == e1000_media_type_internal_serdes) &&
       
  2563 	   !(er32(TXCW) & E1000_TXCW_ANE))
       
  2564 		link = !hw->serdes_link_down;
       
  2565 	else
       
  2566 		link = er32(STATUS) & E1000_STATUS_LU;
       
  2567 
       
  2568 	if (link) {
       
  2569 		if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev))
       
  2570 				|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
       
  2571 			u32 ctrl;
       
  2572 			bool txb2b = true;
       
  2573 			e1000_get_speed_and_duplex(hw,
       
  2574 			                           &adapter->link_speed,
       
  2575 			                           &adapter->link_duplex);
       
  2576 
       
  2577 			ctrl = er32(CTRL);
       
  2578 			DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
       
  2579 			        "Flow Control: %s\n",
       
  2580 			        adapter->link_speed,
       
  2581 			        adapter->link_duplex == FULL_DUPLEX ?
       
  2582 			        "Full Duplex" : "Half Duplex",
       
  2583 			        ((ctrl & E1000_CTRL_TFCE) && (ctrl &
       
  2584 			        E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
       
  2585 			        E1000_CTRL_RFCE) ? "RX" : ((ctrl &
       
  2586 			        E1000_CTRL_TFCE) ? "TX" : "None" )));
       
  2587 
       
  2588 			/* tweak tx_queue_len according to speed/duplex
       
  2589 			 * and adjust the timeout factor */
       
  2590 			netdev->tx_queue_len = adapter->tx_queue_len;
       
  2591 			adapter->tx_timeout_factor = 1;
       
  2592 			switch (adapter->link_speed) {
       
  2593 			case SPEED_10:
       
  2594 				txb2b = false;
       
  2595 				netdev->tx_queue_len = 10;
       
  2596 				adapter->tx_timeout_factor = 8;
       
  2597 				break;
       
  2598 			case SPEED_100:
       
  2599 				txb2b = false;
       
  2600 				netdev->tx_queue_len = 100;
       
  2601 				/* maybe add some timeout factor ? */
       
  2602 				break;
       
  2603 			}
       
  2604 
       
  2605 			if ((hw->mac_type == e1000_82571 ||
       
  2606 			     hw->mac_type == e1000_82572) &&
       
  2607 			    !txb2b) {
       
  2608 				u32 tarc0;
       
  2609 				tarc0 = er32(TARC0);
       
  2610 				tarc0 &= ~(1 << 21);
       
  2611 				ew32(TARC0, tarc0);
       
  2612 			}
       
  2613 
       
  2614 			/* disable TSO for pcie and 10/100 speeds, to avoid
       
  2615 			 * some hardware issues */
       
  2616 			if (!adapter->tso_force &&
       
  2617 			    hw->bus_type == e1000_bus_type_pci_express){
       
  2618 				switch (adapter->link_speed) {
       
  2619 				case SPEED_10:
       
  2620 				case SPEED_100:
       
  2621 					DPRINTK(PROBE,INFO,
       
  2622 				        "10/100 speed: disabling TSO\n");
       
  2623 					netdev->features &= ~NETIF_F_TSO;
       
  2624 					netdev->features &= ~NETIF_F_TSO6;
       
  2625 					break;
       
  2626 				case SPEED_1000:
       
  2627 					netdev->features |= NETIF_F_TSO;
       
  2628 					netdev->features |= NETIF_F_TSO6;
       
  2629 					break;
       
  2630 				default:
       
  2631 					/* oops */
       
  2632 					break;
       
  2633 				}
       
  2634 			}
       
  2635 
       
  2636 			/* enable transmits in the hardware, need to do this
       
  2637 			 * after setting TARC0 */
       
  2638 			tctl = er32(TCTL);
       
  2639 			tctl |= E1000_TCTL_EN;
       
  2640 			ew32(TCTL, tctl);
       
  2641 
       
  2642 			if (adapter->ecdev) {
       
  2643 				ecdev_set_link(adapter->ecdev, 1);
       
  2644 			} else {
       
  2645 				netif_carrier_on(netdev);
       
  2646 				netif_wake_queue(netdev);
       
  2647 				mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
       
  2648 			}
       
  2649 			adapter->smartspeed = 0;
       
  2650 		} else {
       
  2651 			/* make sure the receive unit is started */
       
  2652 			if (hw->rx_needs_kicking) {
       
  2653 				u32 rctl = er32(RCTL);
       
  2654 				ew32(RCTL, rctl | E1000_RCTL_EN);
       
  2655 			}
       
  2656 		}
       
  2657 	} else {
       
  2658 		if ((adapter->ecdev && ecdev_get_link(adapter->ecdev))
       
  2659 				|| (!adapter->ecdev && netif_carrier_ok(netdev))) {
       
  2660 			adapter->link_speed = 0;
       
  2661 			adapter->link_duplex = 0;
       
  2662 			DPRINTK(LINK, INFO, "NIC Link is Down\n");
       
  2663 			if (adapter->ecdev) {
       
  2664 				ecdev_set_link(adapter->ecdev, 0);
       
  2665 			} else {
       
  2666 				netif_carrier_off(netdev);
       
  2667 				netif_stop_queue(netdev);
       
  2668 				mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
       
  2669 			}
       
  2670 
       
  2671 			/* 80003ES2LAN workaround--
       
  2672 			 * For packet buffer work-around on link down event;
       
  2673 			 * disable receives in the ISR and
       
  2674 			 * reset device here in the watchdog
       
  2675 			 */
       
  2676 			if (hw->mac_type == e1000_80003es2lan)
       
  2677 				/* reset device */
       
  2678 				schedule_work(&adapter->reset_task);
       
  2679 		}
       
  2680 
       
  2681 		e1000_smartspeed(adapter);
       
  2682 	}
       
  2683 
       
  2684 	e1000_update_stats(adapter);
       
  2685 
       
  2686 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  2687 	adapter->tpt_old = adapter->stats.tpt;
       
  2688 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
       
  2689 	adapter->colc_old = adapter->stats.colc;
       
  2690 
       
  2691 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
       
  2692 	adapter->gorcl_old = adapter->stats.gorcl;
       
  2693 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
       
  2694 	adapter->gotcl_old = adapter->stats.gotcl;
       
  2695 
       
  2696 	e1000_update_adaptive(hw);
       
  2697 
       
  2698 	if (!adapter->ecdev && !netif_carrier_ok(netdev)) {
       
  2699 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
       
  2700 			/* We've lost link, so the controller stops DMA,
       
  2701 			 * but we've got queued Tx work that's never going
       
  2702 			 * to get done, so reset controller to flush Tx.
       
  2703 			 * (Do the reset outside of interrupt context). */
       
  2704 			adapter->tx_timeout_count++;
       
  2705 			schedule_work(&adapter->reset_task);
       
  2706 		}
       
  2707 	}
       
  2708 
       
  2709 	/* Cause software interrupt to ensure rx ring is cleaned */
       
  2710 	ew32(ICS, E1000_ICS_RXDMT0);
       
  2711 
       
  2712 	/* Force detection of hung controller every watchdog period */
       
  2713 	if (!adapter->ecdev) adapter->detect_tx_hung = true;
       
  2714 
       
  2715 	/* With 82571 controllers, LAA may be overwritten due to controller
       
  2716 	 * reset from the other port. Set the appropriate LAA in RAR[0] */
       
  2717 	if (hw->mac_type == e1000_82571 && hw->laa_is_present)
       
  2718 		e1000_rar_set(hw, hw->mac_addr, 0);
       
  2719 
       
  2720 	/* Reset the timer */
       
  2721 	if (!adapter->ecdev)
       
  2722 		mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
       
  2723 }
       
  2724 
       
  2725 enum latency_range {
       
  2726 	lowest_latency = 0,
       
  2727 	low_latency = 1,
       
  2728 	bulk_latency = 2,
       
  2729 	latency_invalid = 255
       
  2730 };
       
  2731 
       
  2732 /**
       
  2733  * e1000_update_itr - update the dynamic ITR value based on statistics
       
  2734  *      Stores a new ITR value based on packets and byte
       
  2735  *      counts during the last interrupt.  The advantage of per interrupt
       
  2736  *      computation is faster updates and more accurate ITR for the current
       
  2737  *      traffic pattern.  Constants in this function were computed
       
  2738  *      based on theoretical maximum wire speed and thresholds were set based
       
  2739  *      on testing data as well as attempting to minimize response time
       
  2740  *      while increasing bulk throughput.
       
  2741  *      this functionality is controlled by the InterruptThrottleRate module
       
  2742  *      parameter (see e1000_param.c)
       
  2743  * @adapter: pointer to adapter
       
  2744  * @itr_setting: current adapter->itr
       
  2745  * @packets: the number of packets during this measurement interval
       
  2746  * @bytes: the number of bytes during this measurement interval
       
  2747  **/
       
  2748 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
       
  2749 				     u16 itr_setting, int packets, int bytes)
       
  2750 {
       
  2751 	unsigned int retval = itr_setting;
       
  2752 	struct e1000_hw *hw = &adapter->hw;
       
  2753 
       
  2754 	if (unlikely(hw->mac_type < e1000_82540))
       
  2755 		goto update_itr_done;
       
  2756 
       
  2757 	if (packets == 0)
       
  2758 		goto update_itr_done;
       
  2759 
       
  2760 	switch (itr_setting) {
       
  2761 	case lowest_latency:
       
  2762 		/* jumbo frames get bulk treatment*/
       
  2763 		if (bytes/packets > 8000)
       
  2764 			retval = bulk_latency;
       
  2765 		else if ((packets < 5) && (bytes > 512))
       
  2766 			retval = low_latency;
       
  2767 		break;
       
  2768 	case low_latency:  /* 50 usec aka 20000 ints/s */
       
  2769 		if (bytes > 10000) {
       
  2770 			/* jumbo frames need bulk latency setting */
       
  2771 			if (bytes/packets > 8000)
       
  2772 				retval = bulk_latency;
       
  2773 			else if ((packets < 10) || ((bytes/packets) > 1200))
       
  2774 				retval = bulk_latency;
       
  2775 			else if ((packets > 35))
       
  2776 				retval = lowest_latency;
       
  2777 		} else if (bytes/packets > 2000)
       
  2778 			retval = bulk_latency;
       
  2779 		else if (packets <= 2 && bytes < 512)
       
  2780 			retval = lowest_latency;
       
  2781 		break;
       
  2782 	case bulk_latency: /* 250 usec aka 4000 ints/s */
       
  2783 		if (bytes > 25000) {
       
  2784 			if (packets > 35)
       
  2785 				retval = low_latency;
       
  2786 		} else if (bytes < 6000) {
       
  2787 			retval = low_latency;
       
  2788 		}
       
  2789 		break;
       
  2790 	}
       
  2791 
       
  2792 update_itr_done:
       
  2793 	return retval;
       
  2794 }
       
  2795 
       
  2796 static void e1000_set_itr(struct e1000_adapter *adapter)
       
  2797 {
       
  2798 	struct e1000_hw *hw = &adapter->hw;
       
  2799 	u16 current_itr;
       
  2800 	u32 new_itr = adapter->itr;
       
  2801 
       
  2802 	if (unlikely(hw->mac_type < e1000_82540))
       
  2803 		return;
       
  2804 
       
  2805 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
       
  2806 	if (unlikely(adapter->link_speed != SPEED_1000)) {
       
  2807 		current_itr = 0;
       
  2808 		new_itr = 4000;
       
  2809 		goto set_itr_now;
       
  2810 	}
       
  2811 
       
  2812 	adapter->tx_itr = e1000_update_itr(adapter,
       
  2813 	                            adapter->tx_itr,
       
  2814 	                            adapter->total_tx_packets,
       
  2815 	                            adapter->total_tx_bytes);
       
  2816 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2817 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
       
  2818 		adapter->tx_itr = low_latency;
       
  2819 
       
  2820 	adapter->rx_itr = e1000_update_itr(adapter,
       
  2821 	                            adapter->rx_itr,
       
  2822 	                            adapter->total_rx_packets,
       
  2823 	                            adapter->total_rx_bytes);
       
  2824 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2825 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
       
  2826 		adapter->rx_itr = low_latency;
       
  2827 
       
  2828 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
       
  2829 
       
  2830 	switch (current_itr) {
       
  2831 	/* counts and packets in update_itr are dependent on these numbers */
       
  2832 	case lowest_latency:
       
  2833 		new_itr = 70000;
       
  2834 		break;
       
  2835 	case low_latency:
       
  2836 		new_itr = 20000; /* aka hwitr = ~200 */
       
  2837 		break;
       
  2838 	case bulk_latency:
       
  2839 		new_itr = 4000;
       
  2840 		break;
       
  2841 	default:
       
  2842 		break;
       
  2843 	}
       
  2844 
       
  2845 set_itr_now:
       
  2846 	if (new_itr != adapter->itr) {
       
  2847 		/* this attempts to bias the interrupt rate towards Bulk
       
  2848 		 * by adding intermediate steps when interrupt rate is
       
  2849 		 * increasing */
       
  2850 		new_itr = new_itr > adapter->itr ?
       
  2851 		             min(adapter->itr + (new_itr >> 2), new_itr) :
       
  2852 		             new_itr;
       
  2853 		adapter->itr = new_itr;
       
  2854 		ew32(ITR, 1000000000 / (new_itr * 256));
       
  2855 	}
       
  2856 
       
  2857 	return;
       
  2858 }
       
  2859 
       
  2860 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  2861 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  2862 #define E1000_TX_FLAGS_TSO		0x00000004
       
  2863 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  2864 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  2865 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  2866 
       
  2867 static int e1000_tso(struct e1000_adapter *adapter,
       
  2868 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
       
  2869 {
       
  2870 	struct e1000_context_desc *context_desc;
       
  2871 	struct e1000_buffer *buffer_info;
       
  2872 	unsigned int i;
       
  2873 	u32 cmd_length = 0;
       
  2874 	u16 ipcse = 0, tucse, mss;
       
  2875 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
       
  2876 	int err;
       
  2877 
       
  2878 	if (skb_is_gso(skb)) {
       
  2879 		if (skb_header_cloned(skb)) {
       
  2880 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  2881 			if (err)
       
  2882 				return err;
       
  2883 		}
       
  2884 
       
  2885 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  2886 		mss = skb_shinfo(skb)->gso_size;
       
  2887 		if (skb->protocol == htons(ETH_P_IP)) {
       
  2888 			struct iphdr *iph = ip_hdr(skb);
       
  2889 			iph->tot_len = 0;
       
  2890 			iph->check = 0;
       
  2891 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
       
  2892 								 iph->daddr, 0,
       
  2893 								 IPPROTO_TCP,
       
  2894 								 0);
       
  2895 			cmd_length = E1000_TXD_CMD_IP;
       
  2896 			ipcse = skb_transport_offset(skb) - 1;
       
  2897 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
       
  2898 			ipv6_hdr(skb)->payload_len = 0;
       
  2899 			tcp_hdr(skb)->check =
       
  2900 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
       
  2901 						 &ipv6_hdr(skb)->daddr,
       
  2902 						 0, IPPROTO_TCP, 0);
       
  2903 			ipcse = 0;
       
  2904 		}
       
  2905 		ipcss = skb_network_offset(skb);
       
  2906 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
       
  2907 		tucss = skb_transport_offset(skb);
       
  2908 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
       
  2909 		tucse = 0;
       
  2910 
       
  2911 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  2912 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  2913 
       
  2914 		i = tx_ring->next_to_use;
       
  2915 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2916 		buffer_info = &tx_ring->buffer_info[i];
       
  2917 
       
  2918 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  2919 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  2920 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  2921 		context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  2922 		context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  2923 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  2924 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  2925 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  2926 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  2927 
       
  2928 		buffer_info->time_stamp = jiffies;
       
  2929 		buffer_info->next_to_watch = i;
       
  2930 
       
  2931 		if (++i == tx_ring->count) i = 0;
       
  2932 		tx_ring->next_to_use = i;
       
  2933 
       
  2934 		return true;
       
  2935 	}
       
  2936 	return false;
       
  2937 }
       
  2938 
       
  2939 static bool e1000_tx_csum(struct e1000_adapter *adapter,
       
  2940 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
       
  2941 {
       
  2942 	struct e1000_context_desc *context_desc;
       
  2943 	struct e1000_buffer *buffer_info;
       
  2944 	unsigned int i;
       
  2945 	u8 css;
       
  2946 	u32 cmd_len = E1000_TXD_CMD_DEXT;
       
  2947 
       
  2948 	if (skb->ip_summed != CHECKSUM_PARTIAL)
       
  2949 		return false;
       
  2950 
       
  2951 	switch (skb->protocol) {
       
  2952 	case __constant_htons(ETH_P_IP):
       
  2953 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
       
  2954 			cmd_len |= E1000_TXD_CMD_TCP;
       
  2955 		break;
       
  2956 	case __constant_htons(ETH_P_IPV6):
       
  2957 		/* XXX not handling all IPV6 headers */
       
  2958 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
       
  2959 			cmd_len |= E1000_TXD_CMD_TCP;
       
  2960 		break;
       
  2961 	default:
       
  2962 		if (unlikely(net_ratelimit()))
       
  2963 			DPRINTK(DRV, WARNING,
       
  2964 			        "checksum_partial proto=%x!\n", skb->protocol);
       
  2965 		break;
       
  2966 	}
       
  2967 
       
  2968 	css = skb_transport_offset(skb);
       
  2969 
       
  2970 	i = tx_ring->next_to_use;
       
  2971 	buffer_info = &tx_ring->buffer_info[i];
       
  2972 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  2973 
       
  2974 	context_desc->lower_setup.ip_config = 0;
       
  2975 	context_desc->upper_setup.tcp_fields.tucss = css;
       
  2976 	context_desc->upper_setup.tcp_fields.tucso =
       
  2977 		css + skb->csum_offset;
       
  2978 	context_desc->upper_setup.tcp_fields.tucse = 0;
       
  2979 	context_desc->tcp_seg_setup.data = 0;
       
  2980 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
       
  2981 
       
  2982 	buffer_info->time_stamp = jiffies;
       
  2983 	buffer_info->next_to_watch = i;
       
  2984 
       
  2985 	if (unlikely(++i == tx_ring->count)) i = 0;
       
  2986 	tx_ring->next_to_use = i;
       
  2987 
       
  2988 	return true;
       
  2989 }
       
  2990 
       
  2991 #define E1000_MAX_TXD_PWR	12
       
  2992 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
       
  2993 
       
  2994 static int e1000_tx_map(struct e1000_adapter *adapter,
       
  2995 			struct e1000_tx_ring *tx_ring,
       
  2996 			struct sk_buff *skb, unsigned int first,
       
  2997 			unsigned int max_per_txd, unsigned int nr_frags,
       
  2998 			unsigned int mss)
       
  2999 {
       
  3000 	struct e1000_hw *hw = &adapter->hw;
       
  3001 	struct e1000_buffer *buffer_info;
       
  3002 	unsigned int len = skb->len;
       
  3003 	unsigned int offset = 0, size, count = 0, i;
       
  3004 	unsigned int f;
       
  3005 	len -= skb->data_len;
       
  3006 
       
  3007 	i = tx_ring->next_to_use;
       
  3008 
       
  3009 	while (len) {
       
  3010 		buffer_info = &tx_ring->buffer_info[i];
       
  3011 		size = min(len, max_per_txd);
       
  3012 		/* Workaround for Controller erratum --
       
  3013 		 * descriptor for non-tso packet in a linear SKB that follows a
       
  3014 		 * tso gets written back prematurely before the data is fully
       
  3015 		 * DMA'd to the controller */
       
  3016 		if (!skb->data_len && tx_ring->last_tx_tso &&
       
  3017 		    !skb_is_gso(skb)) {
       
  3018 			tx_ring->last_tx_tso = 0;
       
  3019 			size -= 4;
       
  3020 		}
       
  3021 
       
  3022 		/* Workaround for premature desc write-backs
       
  3023 		 * in TSO mode.  Append 4-byte sentinel desc */
       
  3024 		if (unlikely(mss && !nr_frags && size == len && size > 8))
       
  3025 			size -= 4;
       
  3026 		/* work-around for errata 10 and it applies
       
  3027 		 * to all controllers in PCI-X mode
       
  3028 		 * The fix is to make sure that the first descriptor of a
       
  3029 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
       
  3030 		 */
       
  3031 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
       
  3032 		                (size > 2015) && count == 0))
       
  3033 		        size = 2015;
       
  3034 
       
  3035 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
       
  3036 		 * terminating buffers within evenly-aligned dwords. */
       
  3037 		if (unlikely(adapter->pcix_82544 &&
       
  3038 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
       
  3039 		   size > 4))
       
  3040 			size -= 4;
       
  3041 
       
  3042 		buffer_info->length = size;
       
  3043 		buffer_info->dma =
       
  3044 			pci_map_single(adapter->pdev,
       
  3045 				skb->data + offset,
       
  3046 				size,
       
  3047 				PCI_DMA_TODEVICE);
       
  3048 		buffer_info->time_stamp = jiffies;
       
  3049 		buffer_info->next_to_watch = i;
       
  3050 
       
  3051 		len -= size;
       
  3052 		offset += size;
       
  3053 		count++;
       
  3054 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  3055 	}
       
  3056 
       
  3057 	for (f = 0; f < nr_frags; f++) {
       
  3058 		struct skb_frag_struct *frag;
       
  3059 
       
  3060 		frag = &skb_shinfo(skb)->frags[f];
       
  3061 		len = frag->size;
       
  3062 		offset = frag->page_offset;
       
  3063 
       
  3064 		while (len) {
       
  3065 			buffer_info = &tx_ring->buffer_info[i];
       
  3066 			size = min(len, max_per_txd);
       
  3067 			/* Workaround for premature desc write-backs
       
  3068 			 * in TSO mode.  Append 4-byte sentinel desc */
       
  3069 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
       
  3070 				size -= 4;
       
  3071 			/* Workaround for potential 82544 hang in PCI-X.
       
  3072 			 * Avoid terminating buffers within evenly-aligned
       
  3073 			 * dwords. */
       
  3074 			if (unlikely(adapter->pcix_82544 &&
       
  3075 			   !((unsigned long)(frag->page+offset+size-1) & 4) &&
       
  3076 			   size > 4))
       
  3077 				size -= 4;
       
  3078 
       
  3079 			buffer_info->length = size;
       
  3080 			buffer_info->dma =
       
  3081 				pci_map_page(adapter->pdev,
       
  3082 					frag->page,
       
  3083 					offset,
       
  3084 					size,
       
  3085 					PCI_DMA_TODEVICE);
       
  3086 			buffer_info->time_stamp = jiffies;
       
  3087 			buffer_info->next_to_watch = i;
       
  3088 
       
  3089 			len -= size;
       
  3090 			offset += size;
       
  3091 			count++;
       
  3092 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  3093 		}
       
  3094 	}
       
  3095 
       
  3096 	i = (i == 0) ? tx_ring->count - 1 : i - 1;
       
  3097 	tx_ring->buffer_info[i].skb = skb;
       
  3098 	tx_ring->buffer_info[first].next_to_watch = i;
       
  3099 
       
  3100 	return count;
       
  3101 }
       
  3102 
       
  3103 static void e1000_tx_queue(struct e1000_adapter *adapter,
       
  3104 			   struct e1000_tx_ring *tx_ring, int tx_flags,
       
  3105 			   int count)
       
  3106 {
       
  3107 	struct e1000_hw *hw = &adapter->hw;
       
  3108 	struct e1000_tx_desc *tx_desc = NULL;
       
  3109 	struct e1000_buffer *buffer_info;
       
  3110 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  3111 	unsigned int i;
       
  3112 
       
  3113 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
       
  3114 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  3115 		             E1000_TXD_CMD_TSE;
       
  3116 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  3117 
       
  3118 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
       
  3119 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  3120 	}
       
  3121 
       
  3122 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
       
  3123 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  3124 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  3125 	}
       
  3126 
       
  3127 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
       
  3128 		txd_lower |= E1000_TXD_CMD_VLE;
       
  3129 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  3130 	}
       
  3131 
       
  3132 	i = tx_ring->next_to_use;
       
  3133 
       
  3134 	while (count--) {
       
  3135 		buffer_info = &tx_ring->buffer_info[i];
       
  3136 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3137 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  3138 		tx_desc->lower.data =
       
  3139 			cpu_to_le32(txd_lower | buffer_info->length);
       
  3140 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  3141 		if (unlikely(++i == tx_ring->count)) i = 0;
       
  3142 	}
       
  3143 
       
  3144 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  3145 
       
  3146 	/* Force memory writes to complete before letting h/w
       
  3147 	 * know there are new descriptors to fetch.  (Only
       
  3148 	 * applicable for weak-ordered memory model archs,
       
  3149 	 * such as IA-64). */
       
  3150 	wmb();
       
  3151 
       
  3152 	tx_ring->next_to_use = i;
       
  3153 	writel(i, hw->hw_addr + tx_ring->tdt);
       
  3154 	/* we need this if more than one processor can write to our tail
       
  3155 	 * at a time, it syncronizes IO on IA64/Altix systems */
       
  3156 	mmiowb();
       
  3157 }
       
  3158 
       
  3159 /**
       
  3160  * 82547 workaround to avoid controller hang in half-duplex environment.
       
  3161  * The workaround is to avoid queuing a large packet that would span
       
  3162  * the internal Tx FIFO ring boundary by notifying the stack to resend
       
  3163  * the packet at a later time.  This gives the Tx FIFO an opportunity to
       
  3164  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
       
  3165  * to the beginning of the Tx FIFO.
       
  3166  **/
       
  3167 
       
  3168 #define E1000_FIFO_HDR			0x10
       
  3169 #define E1000_82547_PAD_LEN		0x3E0
       
  3170 
       
  3171 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
       
  3172 				       struct sk_buff *skb)
       
  3173 {
       
  3174 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
       
  3175 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
       
  3176 
       
  3177 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
       
  3178 
       
  3179 	if (adapter->link_duplex != HALF_DUPLEX)
       
  3180 		goto no_fifo_stall_required;
       
  3181 
       
  3182 	if (atomic_read(&adapter->tx_fifo_stall))
       
  3183 		return 1;
       
  3184 
       
  3185 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
       
  3186 		atomic_set(&adapter->tx_fifo_stall, 1);
       
  3187 		return 1;
       
  3188 	}
       
  3189 
       
  3190 no_fifo_stall_required:
       
  3191 	adapter->tx_fifo_head += skb_fifo_len;
       
  3192 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
       
  3193 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
       
  3194 	return 0;
       
  3195 }
       
  3196 
       
  3197 #define MINIMUM_DHCP_PACKET_SIZE 282
       
  3198 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
       
  3199 				    struct sk_buff *skb)
       
  3200 {
       
  3201 	struct e1000_hw *hw =  &adapter->hw;
       
  3202 	u16 length, offset;
       
  3203 	if (vlan_tx_tag_present(skb)) {
       
  3204 		if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
       
  3205 			( hw->mng_cookie.status &
       
  3206 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
       
  3207 			return 0;
       
  3208 	}
       
  3209 	if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
       
  3210 		struct ethhdr *eth = (struct ethhdr *)skb->data;
       
  3211 		if ((htons(ETH_P_IP) == eth->h_proto)) {
       
  3212 			const struct iphdr *ip =
       
  3213 				(struct iphdr *)((u8 *)skb->data+14);
       
  3214 			if (IPPROTO_UDP == ip->protocol) {
       
  3215 				struct udphdr *udp =
       
  3216 					(struct udphdr *)((u8 *)ip +
       
  3217 						(ip->ihl << 2));
       
  3218 				if (ntohs(udp->dest) == 67) {
       
  3219 					offset = (u8 *)udp + 8 - skb->data;
       
  3220 					length = skb->len - offset;
       
  3221 
       
  3222 					return e1000_mng_write_dhcp_info(hw,
       
  3223 							(u8 *)udp + 8,
       
  3224 							length);
       
  3225 				}
       
  3226 			}
       
  3227 		}
       
  3228 	}
       
  3229 	return 0;
       
  3230 }
       
  3231 
       
  3232 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
       
  3233 {
       
  3234 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3235 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
       
  3236 
       
  3237 	netif_stop_queue(netdev);
       
  3238 	/* Herbert's original patch had:
       
  3239 	 *  smp_mb__after_netif_stop_queue();
       
  3240 	 * but since that doesn't exist yet, just open code it. */
       
  3241 	smp_mb();
       
  3242 
       
  3243 	/* We need to check again in a case another CPU has just
       
  3244 	 * made room available. */
       
  3245 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
       
  3246 		return -EBUSY;
       
  3247 
       
  3248 	/* A reprieve! */
       
  3249 	netif_start_queue(netdev);
       
  3250 	++adapter->restart_queue;
       
  3251 	return 0;
       
  3252 }
       
  3253 
       
  3254 static int e1000_maybe_stop_tx(struct net_device *netdev,
       
  3255                                struct e1000_tx_ring *tx_ring, int size)
       
  3256 {
       
  3257 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
       
  3258 		return 0;
       
  3259 	return __e1000_maybe_stop_tx(netdev, size);
       
  3260 }
       
  3261 
       
  3262 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
       
  3263 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
       
  3264 {
       
  3265 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3266 	struct e1000_hw *hw = &adapter->hw;
       
  3267 	struct e1000_tx_ring *tx_ring;
       
  3268 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
       
  3269 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  3270 	unsigned int tx_flags = 0;
       
  3271 	unsigned int len = skb->len - skb->data_len;
       
  3272 	unsigned long flags = 0;
       
  3273 	unsigned int nr_frags = 0;
       
  3274 	unsigned int mss = 0;
       
  3275 	int count = 0;
       
  3276 	int tso;
       
  3277 	unsigned int f;
       
  3278 
       
  3279 	/* This goes back to the question of how to logically map a tx queue
       
  3280 	 * to a flow.  Right now, performance is impacted slightly negatively
       
  3281 	 * if using multiple tx queues.  If the stack breaks away from a
       
  3282 	 * single qdisc implementation, we can look at this again. */
       
  3283 	tx_ring = adapter->tx_ring;
       
  3284 
       
  3285 	if (unlikely(skb->len <= 0)) {
       
  3286 		if (!adapter->ecdev)
       
  3287 			dev_kfree_skb_any(skb);
       
  3288 		return NETDEV_TX_OK;
       
  3289 	}
       
  3290 
       
  3291 	/* 82571 and newer doesn't need the workaround that limited descriptor
       
  3292 	 * length to 4kB */
       
  3293 	if (hw->mac_type >= e1000_82571)
       
  3294 		max_per_txd = 8192;
       
  3295 
       
  3296 	mss = skb_shinfo(skb)->gso_size;
       
  3297 	/* The controller does a simple calculation to
       
  3298 	 * make sure there is enough room in the FIFO before
       
  3299 	 * initiating the DMA for each buffer.  The calc is:
       
  3300 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  3301 	 * overrun the FIFO, adjust the max buffer len if mss
       
  3302 	 * drops. */
       
  3303 	if (mss) {
       
  3304 		u8 hdr_len;
       
  3305 		max_per_txd = min(mss << 2, max_per_txd);
       
  3306 		max_txd_pwr = fls(max_per_txd) - 1;
       
  3307 
       
  3308 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
       
  3309 		* points to just header, pull a few bytes of payload from
       
  3310 		* frags into skb->data */
       
  3311 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  3312 		if (skb->data_len && hdr_len == len) {
       
  3313 			switch (hw->mac_type) {
       
  3314 				unsigned int pull_size;
       
  3315 			case e1000_82544:
       
  3316 				/* Make sure we have room to chop off 4 bytes,
       
  3317 				 * and that the end alignment will work out to
       
  3318 				 * this hardware's requirements
       
  3319 				 * NOTE: this is a TSO only workaround
       
  3320 				 * if end byte alignment not correct move us
       
  3321 				 * into the next dword */
       
  3322 				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
       
  3323 					break;
       
  3324 				/* fall through */
       
  3325 			case e1000_82571:
       
  3326 			case e1000_82572:
       
  3327 			case e1000_82573:
       
  3328 			case e1000_ich8lan:
       
  3329 				pull_size = min((unsigned int)4, skb->data_len);
       
  3330 				if (!__pskb_pull_tail(skb, pull_size)) {
       
  3331 					DPRINTK(DRV, ERR,
       
  3332 						"__pskb_pull_tail failed.\n");
       
  3333 					dev_kfree_skb_any(skb);
       
  3334 					return NETDEV_TX_OK;
       
  3335 				}
       
  3336 				len = skb->len - skb->data_len;
       
  3337 				break;
       
  3338 			default:
       
  3339 				/* do nothing */
       
  3340 				break;
       
  3341 			}
       
  3342 		}
       
  3343 	}
       
  3344 
       
  3345 	/* reserve a descriptor for the offload context */
       
  3346 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
       
  3347 		count++;
       
  3348 	count++;
       
  3349 
       
  3350 	/* Controller Erratum workaround */
       
  3351 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
       
  3352 		count++;
       
  3353 
       
  3354 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  3355 
       
  3356 	if (adapter->pcix_82544)
       
  3357 		count++;
       
  3358 
       
  3359 	/* work-around for errata 10 and it applies to all controllers
       
  3360 	 * in PCI-X mode, so add one more descriptor to the count
       
  3361 	 */
       
  3362 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
       
  3363 			(len > 2015)))
       
  3364 		count++;
       
  3365 
       
  3366 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  3367 	for (f = 0; f < nr_frags; f++)
       
  3368 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
       
  3369 				       max_txd_pwr);
       
  3370 	if (adapter->pcix_82544)
       
  3371 		count += nr_frags;
       
  3372 
       
  3373 
       
  3374 	if (hw->tx_pkt_filtering &&
       
  3375 	    (hw->mac_type == e1000_82573))
       
  3376 		e1000_transfer_dhcp_info(adapter, skb);
       
  3377 
       
  3378  	if (!adapter->ecdev &&
       
  3379  			!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
       
  3380 		/* Collision - tell upper layer to requeue */
       
  3381 		return NETDEV_TX_LOCKED;
       
  3382 
       
  3383 	/* need: count + 2 desc gap to keep tail from touching
       
  3384 	 * head, otherwise try next time */
       
  3385 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
       
  3386 		if (!adapter->ecdev) {
       
  3387 			spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3388 		}
       
  3389 		return NETDEV_TX_BUSY;
       
  3390 	}
       
  3391 
       
  3392 	if (unlikely(hw->mac_type == e1000_82547)) {
       
  3393 		if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
       
  3394 			if (!adapter->ecdev) {
       
  3395 				netif_stop_queue(netdev);
       
  3396 				mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
       
  3397 				spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3398 			}
       
  3399 			return NETDEV_TX_BUSY;
       
  3400 		}
       
  3401 	}
       
  3402 
       
  3403 	if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
       
  3404 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  3405 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  3406 	}
       
  3407 
       
  3408 	first = tx_ring->next_to_use;
       
  3409 
       
  3410 	tso = e1000_tso(adapter, tx_ring, skb);
       
  3411 	if (tso < 0) {
       
  3412 		if (!adapter->ecdev) {
       
  3413 			dev_kfree_skb_any(skb);
       
  3414 			spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3415 		}
       
  3416 		return NETDEV_TX_OK;
       
  3417 	}
       
  3418 
       
  3419 	if (likely(tso)) {
       
  3420 		tx_ring->last_tx_tso = 1;
       
  3421 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  3422 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
       
  3423 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  3424 
       
  3425 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
       
  3426 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
       
  3427 	 * no longer assume, we must. */
       
  3428 	if (likely(skb->protocol == htons(ETH_P_IP)))
       
  3429 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  3430 
       
  3431 	e1000_tx_queue(adapter, tx_ring, tx_flags,
       
  3432 	               e1000_tx_map(adapter, tx_ring, skb, first,
       
  3433 	                            max_per_txd, nr_frags, mss));
       
  3434 
       
  3435 	netdev->trans_start = jiffies;
       
  3436 
       
  3437 	if (!adapter->ecdev) {
       
  3438 		/* Make sure there is space in the ring for the next send. */
       
  3439 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
       
  3440 
       
  3441 		spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
       
  3442 	}
       
  3443 	return NETDEV_TX_OK;
       
  3444 }
       
  3445 
       
  3446 /**
       
  3447  * e1000_tx_timeout - Respond to a Tx Hang
       
  3448  * @netdev: network interface device structure
       
  3449  **/
       
  3450 
       
  3451 static void e1000_tx_timeout(struct net_device *netdev)
       
  3452 {
       
  3453 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3454 
       
  3455 	/* Do the reset outside of interrupt context */
       
  3456 	adapter->tx_timeout_count++;
       
  3457 	schedule_work(&adapter->reset_task);
       
  3458 }
       
  3459 
       
  3460 static void e1000_reset_task(struct work_struct *work)
       
  3461 {
       
  3462 	struct e1000_adapter *adapter =
       
  3463 		container_of(work, struct e1000_adapter, reset_task);
       
  3464 
       
  3465 	e1000_reinit_locked(adapter);
       
  3466 }
       
  3467 
       
  3468 /**
       
  3469  * e1000_get_stats - Get System Network Statistics
       
  3470  * @netdev: network interface device structure
       
  3471  *
       
  3472  * Returns the address of the device statistics structure.
       
  3473  * The statistics are actually updated from the timer callback.
       
  3474  **/
       
  3475 
       
  3476 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
       
  3477 {
       
  3478 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3479 
       
  3480 	/* only return the current stats */
       
  3481 	return &adapter->net_stats;
       
  3482 }
       
  3483 
       
  3484 /**
       
  3485  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  3486  * @netdev: network interface device structure
       
  3487  * @new_mtu: new value for maximum frame size
       
  3488  *
       
  3489  * Returns 0 on success, negative on failure
       
  3490  **/
       
  3491 
       
  3492 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  3493 {
       
  3494 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3495 	struct e1000_hw *hw = &adapter->hw;
       
  3496 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
       
  3497 	u16 eeprom_data = 0;
       
  3498 
       
  3499 	if (adapter->ecdev)
       
  3500 		return -EBUSY;
       
  3501 
       
  3502 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
       
  3503 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
       
  3504 		DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
       
  3505 		return -EINVAL;
       
  3506 	}
       
  3507 
       
  3508 	/* Adapter-specific max frame size limits. */
       
  3509 	switch (hw->mac_type) {
       
  3510 	case e1000_undefined ... e1000_82542_rev2_1:
       
  3511 	case e1000_ich8lan:
       
  3512 		if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3513 			DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
       
  3514 			return -EINVAL;
       
  3515 		}
       
  3516 		break;
       
  3517 	case e1000_82573:
       
  3518 		/* Jumbo Frames not supported if:
       
  3519 		 * - this is not an 82573L device
       
  3520 		 * - ASPM is enabled in any way (0x1A bits 3:2) */
       
  3521 		e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
       
  3522 		                  &eeprom_data);
       
  3523 		if ((hw->device_id != E1000_DEV_ID_82573L) ||
       
  3524 		    (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
       
  3525 			if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
       
  3526 				DPRINTK(PROBE, ERR,
       
  3527 			            	"Jumbo Frames not supported.\n");
       
  3528 				return -EINVAL;
       
  3529 			}
       
  3530 			break;
       
  3531 		}
       
  3532 		/* ERT will be enabled later to enable wire speed receives */
       
  3533 
       
  3534 		/* fall through to get support */
       
  3535 	case e1000_82571:
       
  3536 	case e1000_82572:
       
  3537 	case e1000_80003es2lan:
       
  3538 #define MAX_STD_JUMBO_FRAME_SIZE 9234
       
  3539 		if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
       
  3540 			DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
       
  3541 			return -EINVAL;
       
  3542 		}
       
  3543 		break;
       
  3544 	default:
       
  3545 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
       
  3546 		break;
       
  3547 	}
       
  3548 
       
  3549 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  3550 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  3551 	 * larger slab size
       
  3552 	 * i.e. RXBUFFER_2048 --> size-4096 slab */
       
  3553 
       
  3554 	if (max_frame <= E1000_RXBUFFER_256)
       
  3555 		adapter->rx_buffer_len = E1000_RXBUFFER_256;
       
  3556 	else if (max_frame <= E1000_RXBUFFER_512)
       
  3557 		adapter->rx_buffer_len = E1000_RXBUFFER_512;
       
  3558 	else if (max_frame <= E1000_RXBUFFER_1024)
       
  3559 		adapter->rx_buffer_len = E1000_RXBUFFER_1024;
       
  3560 	else if (max_frame <= E1000_RXBUFFER_2048)
       
  3561 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
       
  3562 	else if (max_frame <= E1000_RXBUFFER_4096)
       
  3563 		adapter->rx_buffer_len = E1000_RXBUFFER_4096;
       
  3564 	else if (max_frame <= E1000_RXBUFFER_8192)
       
  3565 		adapter->rx_buffer_len = E1000_RXBUFFER_8192;
       
  3566 	else if (max_frame <= E1000_RXBUFFER_16384)
       
  3567 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
       
  3568 
       
  3569 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  3570 	if (!hw->tbi_compatibility_on &&
       
  3571 	    ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
       
  3572 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
       
  3573 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
       
  3574 
       
  3575 	netdev->mtu = new_mtu;
       
  3576 	hw->max_frame_size = max_frame;
       
  3577 
       
  3578 	if (netif_running(netdev))
       
  3579 		e1000_reinit_locked(adapter);
       
  3580 
       
  3581 	return 0;
       
  3582 }
       
  3583 
       
  3584 /**
       
  3585  * e1000_update_stats - Update the board statistics counters
       
  3586  * @adapter: board private structure
       
  3587  **/
       
  3588 
       
  3589 void e1000_update_stats(struct e1000_adapter *adapter)
       
  3590 {
       
  3591 	struct e1000_hw *hw = &adapter->hw;
       
  3592 	struct pci_dev *pdev = adapter->pdev;
       
  3593 	unsigned long flags = 0;
       
  3594 	u16 phy_tmp;
       
  3595 
       
  3596 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
       
  3597 
       
  3598 	/*
       
  3599 	 * Prevent stats update while adapter is being reset, or if the pci
       
  3600 	 * connection is down.
       
  3601 	 */
       
  3602 	if (adapter->link_speed == 0)
       
  3603 		return;
       
  3604 	if (pci_channel_offline(pdev))
       
  3605 		return;
       
  3606 
       
  3607 	if (!adapter->ecdev)
       
  3608 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  3609 
       
  3610 	/* these counters are modified from e1000_tbi_adjust_stats,
       
  3611 	 * called from the interrupt context, so they must only
       
  3612 	 * be written while holding adapter->stats_lock
       
  3613 	 */
       
  3614 
       
  3615 	adapter->stats.crcerrs += er32(CRCERRS);
       
  3616 	adapter->stats.gprc += er32(GPRC);
       
  3617 	adapter->stats.gorcl += er32(GORCL);
       
  3618 	adapter->stats.gorch += er32(GORCH);
       
  3619 	adapter->stats.bprc += er32(BPRC);
       
  3620 	adapter->stats.mprc += er32(MPRC);
       
  3621 	adapter->stats.roc += er32(ROC);
       
  3622 
       
  3623 	if (hw->mac_type != e1000_ich8lan) {
       
  3624 		adapter->stats.prc64 += er32(PRC64);
       
  3625 		adapter->stats.prc127 += er32(PRC127);
       
  3626 		adapter->stats.prc255 += er32(PRC255);
       
  3627 		adapter->stats.prc511 += er32(PRC511);
       
  3628 		adapter->stats.prc1023 += er32(PRC1023);
       
  3629 		adapter->stats.prc1522 += er32(PRC1522);
       
  3630 	}
       
  3631 
       
  3632 	adapter->stats.symerrs += er32(SYMERRS);
       
  3633 	adapter->stats.mpc += er32(MPC);
       
  3634 	adapter->stats.scc += er32(SCC);
       
  3635 	adapter->stats.ecol += er32(ECOL);
       
  3636 	adapter->stats.mcc += er32(MCC);
       
  3637 	adapter->stats.latecol += er32(LATECOL);
       
  3638 	adapter->stats.dc += er32(DC);
       
  3639 	adapter->stats.sec += er32(SEC);
       
  3640 	adapter->stats.rlec += er32(RLEC);
       
  3641 	adapter->stats.xonrxc += er32(XONRXC);
       
  3642 	adapter->stats.xontxc += er32(XONTXC);
       
  3643 	adapter->stats.xoffrxc += er32(XOFFRXC);
       
  3644 	adapter->stats.xofftxc += er32(XOFFTXC);
       
  3645 	adapter->stats.fcruc += er32(FCRUC);
       
  3646 	adapter->stats.gptc += er32(GPTC);
       
  3647 	adapter->stats.gotcl += er32(GOTCL);
       
  3648 	adapter->stats.gotch += er32(GOTCH);
       
  3649 	adapter->stats.rnbc += er32(RNBC);
       
  3650 	adapter->stats.ruc += er32(RUC);
       
  3651 	adapter->stats.rfc += er32(RFC);
       
  3652 	adapter->stats.rjc += er32(RJC);
       
  3653 	adapter->stats.torl += er32(TORL);
       
  3654 	adapter->stats.torh += er32(TORH);
       
  3655 	adapter->stats.totl += er32(TOTL);
       
  3656 	adapter->stats.toth += er32(TOTH);
       
  3657 	adapter->stats.tpr += er32(TPR);
       
  3658 
       
  3659 	if (hw->mac_type != e1000_ich8lan) {
       
  3660 		adapter->stats.ptc64 += er32(PTC64);
       
  3661 		adapter->stats.ptc127 += er32(PTC127);
       
  3662 		adapter->stats.ptc255 += er32(PTC255);
       
  3663 		adapter->stats.ptc511 += er32(PTC511);
       
  3664 		adapter->stats.ptc1023 += er32(PTC1023);
       
  3665 		adapter->stats.ptc1522 += er32(PTC1522);
       
  3666 	}
       
  3667 
       
  3668 	adapter->stats.mptc += er32(MPTC);
       
  3669 	adapter->stats.bptc += er32(BPTC);
       
  3670 
       
  3671 	/* used for adaptive IFS */
       
  3672 
       
  3673 	hw->tx_packet_delta = er32(TPT);
       
  3674 	adapter->stats.tpt += hw->tx_packet_delta;
       
  3675 	hw->collision_delta = er32(COLC);
       
  3676 	adapter->stats.colc += hw->collision_delta;
       
  3677 
       
  3678 	if (hw->mac_type >= e1000_82543) {
       
  3679 		adapter->stats.algnerrc += er32(ALGNERRC);
       
  3680 		adapter->stats.rxerrc += er32(RXERRC);
       
  3681 		adapter->stats.tncrs += er32(TNCRS);
       
  3682 		adapter->stats.cexterr += er32(CEXTERR);
       
  3683 		adapter->stats.tsctc += er32(TSCTC);
       
  3684 		adapter->stats.tsctfc += er32(TSCTFC);
       
  3685 	}
       
  3686 	if (hw->mac_type > e1000_82547_rev_2) {
       
  3687 		adapter->stats.iac += er32(IAC);
       
  3688 		adapter->stats.icrxoc += er32(ICRXOC);
       
  3689 
       
  3690 		if (hw->mac_type != e1000_ich8lan) {
       
  3691 			adapter->stats.icrxptc += er32(ICRXPTC);
       
  3692 			adapter->stats.icrxatc += er32(ICRXATC);
       
  3693 			adapter->stats.ictxptc += er32(ICTXPTC);
       
  3694 			adapter->stats.ictxatc += er32(ICTXATC);
       
  3695 			adapter->stats.ictxqec += er32(ICTXQEC);
       
  3696 			adapter->stats.ictxqmtc += er32(ICTXQMTC);
       
  3697 			adapter->stats.icrxdmtc += er32(ICRXDMTC);
       
  3698 		}
       
  3699 	}
       
  3700 
       
  3701 	/* Fill out the OS statistics structure */
       
  3702 	adapter->net_stats.multicast = adapter->stats.mprc;
       
  3703 	adapter->net_stats.collisions = adapter->stats.colc;
       
  3704 
       
  3705 	/* Rx Errors */
       
  3706 
       
  3707 	/* RLEC on some newer hardware can be incorrect so build
       
  3708 	* our own version based on RUC and ROC */
       
  3709 	adapter->net_stats.rx_errors = adapter->stats.rxerrc +
       
  3710 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  3711 		adapter->stats.ruc + adapter->stats.roc +
       
  3712 		adapter->stats.cexterr;
       
  3713 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
       
  3714 	adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
       
  3715 	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
       
  3716 	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
       
  3717 	adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
       
  3718 
       
  3719 	/* Tx Errors */
       
  3720 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
       
  3721 	adapter->net_stats.tx_errors = adapter->stats.txerrc;
       
  3722 	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
       
  3723 	adapter->net_stats.tx_window_errors = adapter->stats.latecol;
       
  3724 	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
       
  3725 	if (hw->bad_tx_carr_stats_fd &&
       
  3726 	    adapter->link_duplex == FULL_DUPLEX) {
       
  3727 		adapter->net_stats.tx_carrier_errors = 0;
       
  3728 		adapter->stats.tncrs = 0;
       
  3729 	}
       
  3730 
       
  3731 	/* Tx Dropped needs to be maintained elsewhere */
       
  3732 
       
  3733 	/* Phy Stats */
       
  3734 	if (hw->media_type == e1000_media_type_copper) {
       
  3735 		if ((adapter->link_speed == SPEED_1000) &&
       
  3736 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
       
  3737 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
       
  3738 			adapter->phy_stats.idle_errors += phy_tmp;
       
  3739 		}
       
  3740 
       
  3741 		if ((hw->mac_type <= e1000_82546) &&
       
  3742 		   (hw->phy_type == e1000_phy_m88) &&
       
  3743 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
       
  3744 			adapter->phy_stats.receive_errors += phy_tmp;
       
  3745 	}
       
  3746 
       
  3747 	/* Management Stats */
       
  3748 	if (hw->has_smbus) {
       
  3749 		adapter->stats.mgptc += er32(MGTPTC);
       
  3750 		adapter->stats.mgprc += er32(MGTPRC);
       
  3751 		adapter->stats.mgpdc += er32(MGTPDC);
       
  3752 	}
       
  3753 
       
  3754 	if (!adapter->ecdev)
       
  3755 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  3756 }
       
  3757 
       
  3758 void ec_poll(struct net_device *netdev)
       
  3759 {
       
  3760     struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3761 
       
  3762     if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) {
       
  3763         e1000_watchdog((unsigned long) adapter);
       
  3764         adapter->ec_watchdog_jiffies = jiffies;
       
  3765     }
       
  3766 
       
  3767 #ifdef CONFIG_PCI_MSI
       
  3768 	e1000_intr_msi(0, netdev);
       
  3769 #else
       
  3770     e1000_intr(0, netdev);
       
  3771 #endif
       
  3772 }
       
  3773 
       
  3774 /**
       
  3775  * e1000_intr_msi - Interrupt Handler
       
  3776  * @irq: interrupt number
       
  3777  * @data: pointer to a network interface device structure
       
  3778  **/
       
  3779 
       
  3780 static irqreturn_t e1000_intr_msi(int irq, void *data)
       
  3781 {
       
  3782 	struct net_device *netdev = data;
       
  3783 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3784 	struct e1000_hw *hw = &adapter->hw;
       
  3785 	u32 icr = er32(ICR);
       
  3786 
       
  3787  	if (adapter->ecdev) {
       
  3788  		int i, ec_work_done = 0;
       
  3789  		for (i = 0; i < E1000_MAX_INTR; i++) {
       
  3790  			if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring,
       
  3791                              &ec_work_done, 100) &&
       
  3792  						!e1000_clean_tx_irq(adapter, adapter->tx_ring))) {
       
  3793  				break;
       
  3794  			}
       
  3795  		}
       
  3796  	} else {
       
  3797 		/* in NAPI mode read ICR disables interrupts using IAM */
       
  3798 
       
  3799 		if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
       
  3800 			hw->get_link_status = 1;
       
  3801 			/* 80003ES2LAN workaround-- For packet buffer work-around on
       
  3802 			 * link down event; disable receives here in the ISR and reset
       
  3803 			 * adapter in watchdog */
       
  3804 			if (netif_carrier_ok(netdev) &&
       
  3805 				(hw->mac_type == e1000_80003es2lan)) {
       
  3806 				/* disable receives */
       
  3807 				u32 rctl = er32(RCTL);
       
  3808 				ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  3809 			}
       
  3810 			/* guard against interrupt when we're going down */
       
  3811 			if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3812 				mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  3813 		}
       
  3814 
       
  3815 		if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
       
  3816 			adapter->total_tx_bytes = 0;
       
  3817 			adapter->total_tx_packets = 0;
       
  3818 			adapter->total_rx_bytes = 0;
       
  3819 			adapter->total_rx_packets = 0;
       
  3820 			__netif_rx_schedule(netdev, &adapter->napi);
       
  3821 		} else
       
  3822 			e1000_irq_enable(adapter);
       
  3823 	}
       
  3824 
       
  3825 	return IRQ_HANDLED;
       
  3826 }
       
  3827 
       
  3828 /**
       
  3829  * e1000_intr - Interrupt Handler
       
  3830  * @irq: interrupt number
       
  3831  * @data: pointer to a network interface device structure
       
  3832  **/
       
  3833 
       
  3834 static irqreturn_t e1000_intr(int irq, void *data)
       
  3835 {
       
  3836 	struct net_device *netdev = data;
       
  3837 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3838 	struct e1000_hw *hw = &adapter->hw;
       
  3839 	u32 rctl, icr = er32(ICR);
       
  3840 
       
  3841 	if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
       
  3842 		return IRQ_NONE;  /* Not our interrupt */
       
  3843 
       
  3844 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
       
  3845 	 * not set, then the adapter didn't send an interrupt */
       
  3846 	if (unlikely(hw->mac_type >= e1000_82571 &&
       
  3847 	             !(icr & E1000_ICR_INT_ASSERTED)))
       
  3848 		return IRQ_NONE;
       
  3849 
       
  3850 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
       
  3851 	 * need for the IMC write */
       
  3852 
       
  3853 	if (!adapter->ecdev && unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
       
  3854 		hw->get_link_status = 1;
       
  3855 		/* 80003ES2LAN workaround--
       
  3856 		 * For packet buffer work-around on link down event;
       
  3857 		 * disable receives here in the ISR and
       
  3858 		 * reset adapter in watchdog
       
  3859 		 */
       
  3860 		if (netif_carrier_ok(netdev) &&
       
  3861 		    (hw->mac_type == e1000_80003es2lan)) {
       
  3862 			/* disable receives */
       
  3863 			rctl = er32(RCTL);
       
  3864 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  3865 		}
       
  3866 		/* guard against interrupt when we're going down */
       
  3867 		if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  3868 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  3869 	}
       
  3870 
       
  3871 	if (adapter->ecdev) {
       
  3872 		int i, ec_work_done = 0;
       
  3873 		for (i = 0; i < E1000_MAX_INTR; i++) {
       
  3874 			if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring,
       
  3875 							 &ec_work_done, 100) &&
       
  3876 						!e1000_clean_tx_irq(adapter, adapter->tx_ring))) {
       
  3877 				break;
       
  3878 			}
       
  3879 		}
       
  3880 	} else {
       
  3881 		if (unlikely(hw->mac_type < e1000_82571)) {
       
  3882 			/* disable interrupts, without the synchronize_irq bit */
       
  3883 			ew32(IMC, ~0);
       
  3884 			E1000_WRITE_FLUSH();
       
  3885 		}
       
  3886 		if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
       
  3887 			adapter->total_tx_bytes = 0;
       
  3888 			adapter->total_tx_packets = 0;
       
  3889 			adapter->total_rx_bytes = 0;
       
  3890 			adapter->total_rx_packets = 0;
       
  3891 			__netif_rx_schedule(netdev, &adapter->napi);
       
  3892 		} else
       
  3893 			/* this really should not happen! if it does it is basically a
       
  3894 			 * bug, but not a hard error, so enable ints and continue */
       
  3895 			e1000_irq_enable(adapter);
       
  3896 	}
       
  3897 
       
  3898 	return IRQ_HANDLED;
       
  3899 }
       
  3900 
       
  3901 /**
       
  3902  * e1000_clean - NAPI Rx polling callback
       
  3903  * @adapter: board private structure
       
  3904  * EtherCAT: never called
       
  3905  **/
       
  3906 static int e1000_clean(struct napi_struct *napi, int budget)
       
  3907 {
       
  3908 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
       
  3909 	struct net_device *poll_dev = adapter->netdev;
       
  3910 	int tx_cleaned = 0, work_done = 0;
       
  3911 
       
  3912 	/* Must NOT use netdev_priv macro here. */
       
  3913 	adapter = poll_dev->priv;
       
  3914 
       
  3915 	/* e1000_clean is called per-cpu.  This lock protects
       
  3916 	 * tx_ring[0] from being cleaned by multiple cpus
       
  3917 	 * simultaneously.  A failure obtaining the lock means
       
  3918 	 * tx_ring[0] is currently being cleaned anyway. */
       
  3919 	if (spin_trylock(&adapter->tx_queue_lock)) {
       
  3920 		tx_cleaned = e1000_clean_tx_irq(adapter,
       
  3921 						&adapter->tx_ring[0]);
       
  3922 		spin_unlock(&adapter->tx_queue_lock);
       
  3923 	}
       
  3924 
       
  3925 	adapter->clean_rx(adapter, &adapter->rx_ring[0],
       
  3926 	                  &work_done, budget);
       
  3927 
       
  3928 	if (tx_cleaned)
       
  3929 		work_done = budget;
       
  3930 
       
  3931 	/* If budget not fully consumed, exit the polling mode */
       
  3932 	if (work_done < budget) {
       
  3933 		if (likely(adapter->itr_setting & 3))
       
  3934 			e1000_set_itr(adapter);
       
  3935 		netif_rx_complete(poll_dev, napi);
       
  3936 		e1000_irq_enable(adapter);
       
  3937 	}
       
  3938 
       
  3939 	return work_done;
       
  3940 }
       
  3941 
       
  3942 /**
       
  3943  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
  3944  * @adapter: board private structure
       
  3945  **/
       
  3946 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
       
  3947 			       struct e1000_tx_ring *tx_ring)
       
  3948 {
       
  3949 	struct e1000_hw *hw = &adapter->hw;
       
  3950 	struct net_device *netdev = adapter->netdev;
       
  3951 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
  3952 	struct e1000_buffer *buffer_info;
       
  3953 	unsigned int i, eop;
       
  3954 	unsigned int count = 0;
       
  3955 	bool cleaned = false;
       
  3956 	unsigned int total_tx_bytes=0, total_tx_packets=0;
       
  3957 
       
  3958 	i = tx_ring->next_to_clean;
       
  3959 	eop = tx_ring->buffer_info[i].next_to_watch;
       
  3960 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3961 
       
  3962 	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
       
  3963 		for (cleaned = false; !cleaned; ) {
       
  3964 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  3965 			buffer_info = &tx_ring->buffer_info[i];
       
  3966 			cleaned = (i == eop);
       
  3967 
       
  3968 			if (cleaned) {
       
  3969 				struct sk_buff *skb = buffer_info->skb;
       
  3970 				unsigned int segs, bytecount;
       
  3971 				segs = skb_shinfo(skb)->gso_segs ?: 1;
       
  3972 				/* multiply data chunks by size of headers */
       
  3973 				bytecount = ((segs - 1) * skb_headlen(skb)) +
       
  3974 				            skb->len;
       
  3975 				total_tx_packets += segs;
       
  3976 				total_tx_bytes += bytecount;
       
  3977 			}
       
  3978 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
       
  3979 			tx_desc->upper.data = 0;
       
  3980 
       
  3981 			if (unlikely(++i == tx_ring->count)) i = 0;
       
  3982 		}
       
  3983 
       
  3984 		eop = tx_ring->buffer_info[i].next_to_watch;
       
  3985 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  3986 #define E1000_TX_WEIGHT 64
       
  3987 		/* weight of a sort for tx, to avoid endless transmit cleanup */
       
  3988 		if (count++ == E1000_TX_WEIGHT)
       
  3989 			break;
       
  3990 	}
       
  3991 
       
  3992 	tx_ring->next_to_clean = i;
       
  3993 
       
  3994 #define TX_WAKE_THRESHOLD 32
       
  3995 	if (!adapter->ecdev && unlikely(cleaned && netif_carrier_ok(netdev) &&
       
  3996 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
       
  3997 		/* Make sure that anybody stopping the queue after this
       
  3998 		 * sees the new next_to_clean.
       
  3999 		 */
       
  4000 		smp_mb();
       
  4001 		if (netif_queue_stopped(netdev)) {
       
  4002 			netif_wake_queue(netdev);
       
  4003 			++adapter->restart_queue;
       
  4004 		}
       
  4005 	}
       
  4006 
       
  4007 	if (!adapter->ecdev && adapter->detect_tx_hung) {
       
  4008 		/* Detect a transmit hang in hardware, this serializes the
       
  4009 		 * check with the clearing of time_stamp and movement of i */
       
  4010 		adapter->detect_tx_hung = false;
       
  4011 		if (tx_ring->buffer_info[eop].dma &&
       
  4012 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
       
  4013 		               (adapter->tx_timeout_factor * HZ))
       
  4014 		    && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
       
  4015 
       
  4016 			/* detected Tx unit hang */
       
  4017 			DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
       
  4018 					"  Tx Queue             <%lu>\n"
       
  4019 					"  TDH                  <%x>\n"
       
  4020 					"  TDT                  <%x>\n"
       
  4021 					"  next_to_use          <%x>\n"
       
  4022 					"  next_to_clean        <%x>\n"
       
  4023 					"buffer_info[next_to_clean]\n"
       
  4024 					"  time_stamp           <%lx>\n"
       
  4025 					"  next_to_watch        <%x>\n"
       
  4026 					"  jiffies              <%lx>\n"
       
  4027 					"  next_to_watch.status <%x>\n",
       
  4028 				(unsigned long)((tx_ring - adapter->tx_ring) /
       
  4029 					sizeof(struct e1000_tx_ring)),
       
  4030 				readl(hw->hw_addr + tx_ring->tdh),
       
  4031 				readl(hw->hw_addr + tx_ring->tdt),
       
  4032 				tx_ring->next_to_use,
       
  4033 				tx_ring->next_to_clean,
       
  4034 				tx_ring->buffer_info[eop].time_stamp,
       
  4035 				eop,
       
  4036 				jiffies,
       
  4037 				eop_desc->upper.fields.status);
       
  4038 			netif_stop_queue(netdev);
       
  4039 		}
       
  4040 	}
       
  4041 	adapter->total_tx_bytes += total_tx_bytes;
       
  4042 	adapter->total_tx_packets += total_tx_packets;
       
  4043 	adapter->net_stats.tx_bytes += total_tx_bytes;
       
  4044 	adapter->net_stats.tx_packets += total_tx_packets;
       
  4045 	return cleaned;
       
  4046 }
       
  4047 
       
  4048 /**
       
  4049  * e1000_rx_checksum - Receive Checksum Offload for 82543
       
  4050  * @adapter:     board private structure
       
  4051  * @status_err:  receive descriptor status and error fields
       
  4052  * @csum:        receive descriptor csum field
       
  4053  * @sk_buff:     socket buffer with received data
       
  4054  **/
       
  4055 
       
  4056 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
       
  4057 			      u32 csum, struct sk_buff *skb)
       
  4058 {
       
  4059 	struct e1000_hw *hw = &adapter->hw;
       
  4060 	u16 status = (u16)status_err;
       
  4061 	u8 errors = (u8)(status_err >> 24);
       
  4062 	skb->ip_summed = CHECKSUM_NONE;
       
  4063 
       
  4064 	/* 82543 or newer only */
       
  4065 	if (unlikely(hw->mac_type < e1000_82543)) return;
       
  4066 	/* Ignore Checksum bit is set */
       
  4067 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
       
  4068 	/* TCP/UDP checksum error bit is set */
       
  4069 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
       
  4070 		/* let the stack verify checksum errors */
       
  4071 		adapter->hw_csum_err++;
       
  4072 		return;
       
  4073 	}
       
  4074 	/* TCP/UDP Checksum has not been calculated */
       
  4075 	if (hw->mac_type <= e1000_82547_rev_2) {
       
  4076 		if (!(status & E1000_RXD_STAT_TCPCS))
       
  4077 			return;
       
  4078 	} else {
       
  4079 		if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
       
  4080 			return;
       
  4081 	}
       
  4082 	/* It must be a TCP or UDP packet with a valid checksum */
       
  4083 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
       
  4084 		/* TCP checksum is good */
       
  4085 		skb->ip_summed = CHECKSUM_UNNECESSARY;
       
  4086 	} else if (hw->mac_type > e1000_82547_rev_2) {
       
  4087 		/* IP fragment with UDP payload */
       
  4088 		/* Hardware complements the payload checksum, so we undo it
       
  4089 		 * and then put the value in host order for further stack use.
       
  4090 		 */
       
  4091 		__sum16 sum = (__force __sum16)htons(csum);
       
  4092 		skb->csum = csum_unfold(~sum);
       
  4093 		skb->ip_summed = CHECKSUM_COMPLETE;
       
  4094 	}
       
  4095 	adapter->hw_csum_good++;
       
  4096 }
       
  4097 
       
  4098 /**
       
  4099  * e1000_clean_rx_irq - Send received data up the network stack; legacy
       
  4100  * @adapter: board private structure
       
  4101  **/
       
  4102 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
       
  4103 			       struct e1000_rx_ring *rx_ring,
       
  4104 			       int *work_done, int work_to_do)
       
  4105 {
       
  4106 	struct e1000_hw *hw = &adapter->hw;
       
  4107 	struct net_device *netdev = adapter->netdev;
       
  4108 	struct pci_dev *pdev = adapter->pdev;
       
  4109 	struct e1000_rx_desc *rx_desc, *next_rxd;
       
  4110 	struct e1000_buffer *buffer_info, *next_buffer;
       
  4111 	unsigned long flags;
       
  4112 	u32 length;
       
  4113 	u8 last_byte;
       
  4114 	unsigned int i;
       
  4115 	int cleaned_count = 0;
       
  4116 	bool cleaned = false;
       
  4117 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  4118 
       
  4119 	i = rx_ring->next_to_clean;
       
  4120 	rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4121 	buffer_info = &rx_ring->buffer_info[i];
       
  4122 
       
  4123 	while (rx_desc->status & E1000_RXD_STAT_DD) {
       
  4124 		struct sk_buff *skb;
       
  4125 		u8 status;
       
  4126 
       
  4127 		if (*work_done >= work_to_do)
       
  4128 			break;
       
  4129 		(*work_done)++;
       
  4130 
       
  4131 		status = rx_desc->status;
       
  4132 		skb = buffer_info->skb;
       
  4133 		if (!adapter->ecdev) buffer_info->skb = NULL;
       
  4134 
       
  4135 		prefetch(skb->data - NET_IP_ALIGN);
       
  4136 
       
  4137 		if (++i == rx_ring->count) i = 0;
       
  4138 		next_rxd = E1000_RX_DESC(*rx_ring, i);
       
  4139 		prefetch(next_rxd);
       
  4140 
       
  4141 		next_buffer = &rx_ring->buffer_info[i];
       
  4142 
       
  4143 		cleaned = true;
       
  4144 		cleaned_count++;
       
  4145 		pci_unmap_single(pdev,
       
  4146 		                 buffer_info->dma,
       
  4147 		                 buffer_info->length,
       
  4148 		                 PCI_DMA_FROMDEVICE);
       
  4149 
       
  4150 		length = le16_to_cpu(rx_desc->length);
       
  4151 
       
  4152 		if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
       
  4153 			/* All receives must fit into a single buffer */
       
  4154 			E1000_DBG("%s: Receive packet consumed multiple"
       
  4155 				  " buffers\n", netdev->name);
       
  4156 			/* recycle */
       
  4157 			buffer_info->skb = skb;
       
  4158 			goto next_desc;
       
  4159 		}
       
  4160 
       
  4161 		if (!adapter->ecdev &&
       
  4162                 unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
       
  4163 			last_byte = *(skb->data + length - 1);
       
  4164 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
       
  4165 				       last_byte)) {
       
  4166 				spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4167 				e1000_tbi_adjust_stats(hw, &adapter->stats,
       
  4168 				                       length, skb->data);
       
  4169 				spin_unlock_irqrestore(&adapter->stats_lock,
       
  4170 				                       flags);
       
  4171 				length--;
       
  4172 			} else {
       
  4173 				/* recycle */
       
  4174 				buffer_info->skb = skb;
       
  4175 				goto next_desc;
       
  4176 			}
       
  4177 		}
       
  4178 
       
  4179 		/* adjust length to remove Ethernet CRC, this must be
       
  4180 		 * done after the TBI_ACCEPT workaround above */
       
  4181 		length -= 4;
       
  4182 
       
  4183 		/* probably a little skewed due to removing CRC */
       
  4184 		total_rx_bytes += length;
       
  4185 		total_rx_packets++;
       
  4186 
       
  4187 		/* code added for copybreak, this should improve
       
  4188 		 * performance for small packets with large amounts
       
  4189 		 * of reassembly being done in the stack */
       
  4190 		if (!adapter->ecdev && length < copybreak) {
       
  4191 			struct sk_buff *new_skb =
       
  4192 			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
       
  4193 			if (new_skb) {
       
  4194 				skb_reserve(new_skb, NET_IP_ALIGN);
       
  4195 				skb_copy_to_linear_data_offset(new_skb,
       
  4196 							       -NET_IP_ALIGN,
       
  4197 							       (skb->data -
       
  4198 							        NET_IP_ALIGN),
       
  4199 							       (length +
       
  4200 							        NET_IP_ALIGN));
       
  4201 				/* save the skb in buffer_info as good */
       
  4202 				buffer_info->skb = skb;
       
  4203 				skb = new_skb;
       
  4204 			}
       
  4205 			/* else just continue with the old one */
       
  4206 		}
       
  4207 		/* end copybreak code */
       
  4208 		skb_put(skb, length);
       
  4209 
       
  4210 		/* Receive Checksum Offload */
       
  4211 		e1000_rx_checksum(adapter,
       
  4212 				  (u32)(status) |
       
  4213 				  ((u32)(rx_desc->errors) << 24),
       
  4214 				  le16_to_cpu(rx_desc->csum), skb);
       
  4215 
       
  4216 		if (adapter->ecdev) {
       
  4217 			ecdev_receive(adapter->ecdev, skb->data, length);
       
  4218 
       
  4219 			// No need to detect link status as
       
  4220 			// long as frames are received: Reset watchdog.
       
  4221 			adapter->ec_watchdog_jiffies = jiffies;
       
  4222 		} else {
       
  4223 			skb->protocol = eth_type_trans(skb, netdev);
       
  4224 
       
  4225 			if (unlikely(adapter->vlgrp &&
       
  4226 						(status & E1000_RXD_STAT_VP))) {
       
  4227 				vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
       
  4228 						le16_to_cpu(rx_desc->special));
       
  4229 			} else {
       
  4230 				netif_receive_skb(skb);
       
  4231 			}
       
  4232 		}
       
  4233 
       
  4234 		netdev->last_rx = jiffies;
       
  4235 
       
  4236 next_desc:
       
  4237 		rx_desc->status = 0;
       
  4238 
       
  4239 		/* return some buffers to hardware, one at a time is too slow */
       
  4240 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  4241 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4242 			cleaned_count = 0;
       
  4243 		}
       
  4244 
       
  4245 		/* use prefetched values */
       
  4246 		rx_desc = next_rxd;
       
  4247 		buffer_info = next_buffer;
       
  4248 	}
       
  4249 	rx_ring->next_to_clean = i;
       
  4250 
       
  4251 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
       
  4252 	if (cleaned_count)
       
  4253 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
       
  4254 
       
  4255 	adapter->total_rx_packets += total_rx_packets;
       
  4256 	adapter->total_rx_bytes += total_rx_bytes;
       
  4257 	adapter->net_stats.rx_bytes += total_rx_bytes;
       
  4258 	adapter->net_stats.rx_packets += total_rx_packets;
       
  4259 	return cleaned;
       
  4260 }
       
  4261 
       
  4262 /**
       
  4263  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
       
  4264  * @adapter: address of board private structure
       
  4265  **/
       
  4266 
       
  4267 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
       
  4268 				   struct e1000_rx_ring *rx_ring,
       
  4269 				   int cleaned_count)
       
  4270 {
       
  4271 	struct e1000_hw *hw = &adapter->hw;
       
  4272 	struct net_device *netdev = adapter->netdev;
       
  4273 	struct pci_dev *pdev = adapter->pdev;
       
  4274 	struct e1000_rx_desc *rx_desc;
       
  4275 	struct e1000_buffer *buffer_info;
       
  4276 	struct sk_buff *skb;
       
  4277 	unsigned int i;
       
  4278 	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
       
  4279 
       
  4280 	i = rx_ring->next_to_use;
       
  4281 	buffer_info = &rx_ring->buffer_info[i];
       
  4282 
       
  4283 	while (cleaned_count--) {
       
  4284 		skb = buffer_info->skb;
       
  4285 		if (skb) {
       
  4286 			skb_trim(skb, 0);
       
  4287 			goto map_skb;
       
  4288 		}
       
  4289 
       
  4290 		skb = netdev_alloc_skb(netdev, bufsz);
       
  4291 		if (unlikely(!skb)) {
       
  4292 			/* Better luck next round */
       
  4293 			adapter->alloc_rx_buff_failed++;
       
  4294 			break;
       
  4295 		}
       
  4296 
       
  4297 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4298 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4299 			struct sk_buff *oldskb = skb;
       
  4300 			DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
       
  4301 					     "at %p\n", bufsz, skb->data);
       
  4302 			/* Try again, without freeing the previous */
       
  4303 			skb = netdev_alloc_skb(netdev, bufsz);
       
  4304 			/* Failed allocation, critical failure */
       
  4305 			if (!skb) {
       
  4306 				dev_kfree_skb(oldskb);
       
  4307 				break;
       
  4308 			}
       
  4309 
       
  4310 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
       
  4311 				/* give up */
       
  4312 				dev_kfree_skb(skb);
       
  4313 				dev_kfree_skb(oldskb);
       
  4314 				break; /* while !buffer_info->skb */
       
  4315 			}
       
  4316 
       
  4317 			/* Use new allocation */
       
  4318 			dev_kfree_skb(oldskb);
       
  4319 		}
       
  4320 		/* Make buffer alignment 2 beyond a 16 byte boundary
       
  4321 		 * this will result in a 16 byte aligned IP header after
       
  4322 		 * the 14 byte MAC header is removed
       
  4323 		 */
       
  4324 		skb_reserve(skb, NET_IP_ALIGN);
       
  4325 
       
  4326 		buffer_info->skb = skb;
       
  4327 		buffer_info->length = adapter->rx_buffer_len;
       
  4328 map_skb:
       
  4329 		buffer_info->dma = pci_map_single(pdev,
       
  4330 						  skb->data,
       
  4331 						  adapter->rx_buffer_len,
       
  4332 						  PCI_DMA_FROMDEVICE);
       
  4333 
       
  4334 		/* Fix for errata 23, can't cross 64kB boundary */
       
  4335 		if (!e1000_check_64k_bound(adapter,
       
  4336 					(void *)(unsigned long)buffer_info->dma,
       
  4337 					adapter->rx_buffer_len)) {
       
  4338 			DPRINTK(RX_ERR, ERR,
       
  4339 				"dma align check failed: %u bytes at %p\n",
       
  4340 				adapter->rx_buffer_len,
       
  4341 				(void *)(unsigned long)buffer_info->dma);
       
  4342 			if (!adapter->ecdev) {
       
  4343 				dev_kfree_skb(skb);
       
  4344 				buffer_info->skb = NULL;
       
  4345 			}
       
  4346 
       
  4347 			pci_unmap_single(pdev, buffer_info->dma,
       
  4348 					 adapter->rx_buffer_len,
       
  4349 					 PCI_DMA_FROMDEVICE);
       
  4350 
       
  4351 			break; /* while !buffer_info->skb */
       
  4352 		}
       
  4353 		rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  4354 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  4355 
       
  4356 		if (unlikely(++i == rx_ring->count))
       
  4357 			i = 0;
       
  4358 		buffer_info = &rx_ring->buffer_info[i];
       
  4359 	}
       
  4360 
       
  4361 	if (likely(rx_ring->next_to_use != i)) {
       
  4362 		rx_ring->next_to_use = i;
       
  4363 		if (unlikely(i-- == 0))
       
  4364 			i = (rx_ring->count - 1);
       
  4365 
       
  4366 		/* Force memory writes to complete before letting h/w
       
  4367 		 * know there are new descriptors to fetch.  (Only
       
  4368 		 * applicable for weak-ordered memory model archs,
       
  4369 		 * such as IA-64). */
       
  4370 		wmb();
       
  4371 		writel(i, hw->hw_addr + rx_ring->rdt);
       
  4372 	}
       
  4373 }
       
  4374 
       
  4375 /**
       
  4376  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
       
  4377  * @adapter:
       
  4378  **/
       
  4379 
       
  4380 static void e1000_smartspeed(struct e1000_adapter *adapter)
       
  4381 {
       
  4382 	struct e1000_hw *hw = &adapter->hw;
       
  4383 	u16 phy_status;
       
  4384 	u16 phy_ctrl;
       
  4385 
       
  4386 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
       
  4387 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
       
  4388 		return;
       
  4389 
       
  4390 	if (adapter->smartspeed == 0) {
       
  4391 		/* If Master/Slave config fault is asserted twice,
       
  4392 		 * we assume back-to-back */
       
  4393 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
       
  4394 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4395 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
       
  4396 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
       
  4397 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4398 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
       
  4399 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
       
  4400 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
       
  4401 					    phy_ctrl);
       
  4402 			adapter->smartspeed++;
       
  4403 			if (!e1000_phy_setup_autoneg(hw) &&
       
  4404 			   !e1000_read_phy_reg(hw, PHY_CTRL,
       
  4405 				   	       &phy_ctrl)) {
       
  4406 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4407 					     MII_CR_RESTART_AUTO_NEG);
       
  4408 				e1000_write_phy_reg(hw, PHY_CTRL,
       
  4409 						    phy_ctrl);
       
  4410 			}
       
  4411 		}
       
  4412 		return;
       
  4413 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
       
  4414 		/* If still no link, perhaps using 2/3 pair cable */
       
  4415 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
       
  4416 		phy_ctrl |= CR_1000T_MS_ENABLE;
       
  4417 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
       
  4418 		if (!e1000_phy_setup_autoneg(hw) &&
       
  4419 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
       
  4420 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
       
  4421 				     MII_CR_RESTART_AUTO_NEG);
       
  4422 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
       
  4423 		}
       
  4424 	}
       
  4425 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
       
  4426 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
       
  4427 		adapter->smartspeed = 0;
       
  4428 }
       
  4429 
       
  4430 /**
       
  4431  * e1000_ioctl -
       
  4432  * @netdev:
       
  4433  * @ifreq:
       
  4434  * @cmd:
       
  4435  **/
       
  4436 
       
  4437 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  4438 {
       
  4439 	switch (cmd) {
       
  4440 	case SIOCGMIIPHY:
       
  4441 	case SIOCGMIIREG:
       
  4442 	case SIOCSMIIREG:
       
  4443 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  4444 	default:
       
  4445 		return -EOPNOTSUPP;
       
  4446 	}
       
  4447 }
       
  4448 
       
  4449 /**
       
  4450  * e1000_mii_ioctl -
       
  4451  * @netdev:
       
  4452  * @ifreq:
       
  4453  * @cmd:
       
  4454  **/
       
  4455 
       
  4456 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
  4457 			   int cmd)
       
  4458 {
       
  4459 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4460 	struct e1000_hw *hw = &adapter->hw;
       
  4461 	struct mii_ioctl_data *data = if_mii(ifr);
       
  4462 	int retval;
       
  4463 	u16 mii_reg;
       
  4464 	u16 spddplx;
       
  4465 	unsigned long flags;
       
  4466 
       
  4467 	if (hw->media_type != e1000_media_type_copper)
       
  4468 		return -EOPNOTSUPP;
       
  4469 
       
  4470 	switch (cmd) {
       
  4471 	case SIOCGMIIPHY:
       
  4472 		data->phy_id = hw->phy_addr;
       
  4473 		break;
       
  4474 	case SIOCGMIIREG:
       
  4475 		if (!capable(CAP_NET_ADMIN))
       
  4476 			return -EPERM;
       
  4477 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4478 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
       
  4479 				   &data->val_out)) {
       
  4480 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4481 			return -EIO;
       
  4482 		}
       
  4483 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4484 		break;
       
  4485 	case SIOCSMIIREG:
       
  4486 		if (adapter->ecdev || !capable(CAP_NET_ADMIN))
       
  4487 			return -EPERM;
       
  4488 		if (data->reg_num & ~(0x1F))
       
  4489 			return -EFAULT;
       
  4490 		mii_reg = data->val_in;
       
  4491 		spin_lock_irqsave(&adapter->stats_lock, flags);
       
  4492 		if (e1000_write_phy_reg(hw, data->reg_num,
       
  4493 					mii_reg)) {
       
  4494 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4495 			return -EIO;
       
  4496 		}
       
  4497 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
       
  4498 		if (hw->media_type == e1000_media_type_copper) {
       
  4499 			switch (data->reg_num) {
       
  4500 			case PHY_CTRL:
       
  4501 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4502 					break;
       
  4503 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
       
  4504 					hw->autoneg = 1;
       
  4505 					hw->autoneg_advertised = 0x2F;
       
  4506 				} else {
       
  4507 					if (mii_reg & 0x40)
       
  4508 						spddplx = SPEED_1000;
       
  4509 					else if (mii_reg & 0x2000)
       
  4510 						spddplx = SPEED_100;
       
  4511 					else
       
  4512 						spddplx = SPEED_10;
       
  4513 					spddplx += (mii_reg & 0x100)
       
  4514 						   ? DUPLEX_FULL :
       
  4515 						   DUPLEX_HALF;
       
  4516 					retval = e1000_set_spd_dplx(adapter,
       
  4517 								    spddplx);
       
  4518 					if (retval)
       
  4519 						return retval;
       
  4520 				}
       
  4521 				if (netif_running(adapter->netdev))
       
  4522 					e1000_reinit_locked(adapter);
       
  4523 				else
       
  4524 					e1000_reset(adapter);
       
  4525 				break;
       
  4526 			case M88E1000_PHY_SPEC_CTRL:
       
  4527 			case M88E1000_EXT_PHY_SPEC_CTRL:
       
  4528 				if (e1000_phy_reset(hw))
       
  4529 					return -EIO;
       
  4530 				break;
       
  4531 			}
       
  4532 		} else {
       
  4533 			switch (data->reg_num) {
       
  4534 			case PHY_CTRL:
       
  4535 				if (mii_reg & MII_CR_POWER_DOWN)
       
  4536 					break;
       
  4537 				if (netif_running(adapter->netdev))
       
  4538 					e1000_reinit_locked(adapter);
       
  4539 				else
       
  4540 					e1000_reset(adapter);
       
  4541 				break;
       
  4542 			}
       
  4543 		}
       
  4544 		break;
       
  4545 	default:
       
  4546 		return -EOPNOTSUPP;
       
  4547 	}
       
  4548 	return E1000_SUCCESS;
       
  4549 }
       
  4550 
       
  4551 void e1000_pci_set_mwi(struct e1000_hw *hw)
       
  4552 {
       
  4553 	struct e1000_adapter *adapter = hw->back;
       
  4554 	int ret_val = pci_set_mwi(adapter->pdev);
       
  4555 
       
  4556 	if (ret_val)
       
  4557 		DPRINTK(PROBE, ERR, "Error in setting MWI\n");
       
  4558 }
       
  4559 
       
  4560 void e1000_pci_clear_mwi(struct e1000_hw *hw)
       
  4561 {
       
  4562 	struct e1000_adapter *adapter = hw->back;
       
  4563 
       
  4564 	pci_clear_mwi(adapter->pdev);
       
  4565 }
       
  4566 
       
  4567 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
       
  4568 {
       
  4569 	struct e1000_adapter *adapter = hw->back;
       
  4570 	return pcix_get_mmrbc(adapter->pdev);
       
  4571 }
       
  4572 
       
  4573 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
       
  4574 {
       
  4575 	struct e1000_adapter *adapter = hw->back;
       
  4576 	pcix_set_mmrbc(adapter->pdev, mmrbc);
       
  4577 }
       
  4578 
       
  4579 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
       
  4580 {
       
  4581     struct e1000_adapter *adapter = hw->back;
       
  4582     u16 cap_offset;
       
  4583 
       
  4584     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
       
  4585     if (!cap_offset)
       
  4586         return -E1000_ERR_CONFIG;
       
  4587 
       
  4588     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
       
  4589 
       
  4590     return E1000_SUCCESS;
       
  4591 }
       
  4592 
       
  4593 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
       
  4594 {
       
  4595 	outl(value, port);
       
  4596 }
       
  4597 
       
  4598 static void e1000_vlan_rx_register(struct net_device *netdev,
       
  4599 				   struct vlan_group *grp)
       
  4600 {
       
  4601 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4602 	struct e1000_hw *hw = &adapter->hw;
       
  4603 	u32 ctrl, rctl;
       
  4604 
       
  4605 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4606 		e1000_irq_disable(adapter);
       
  4607 	adapter->vlgrp = grp;
       
  4608 
       
  4609 	if (grp) {
       
  4610 		/* enable VLAN tag insert/strip */
       
  4611 		ctrl = er32(CTRL);
       
  4612 		ctrl |= E1000_CTRL_VME;
       
  4613 		ew32(CTRL, ctrl);
       
  4614 
       
  4615 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  4616 			/* enable VLAN receive filtering */
       
  4617 			rctl = er32(RCTL);
       
  4618 			rctl &= ~E1000_RCTL_CFIEN;
       
  4619 			ew32(RCTL, rctl);
       
  4620 			e1000_update_mng_vlan(adapter);
       
  4621 		}
       
  4622 	} else {
       
  4623 		/* disable VLAN tag insert/strip */
       
  4624 		ctrl = er32(CTRL);
       
  4625 		ctrl &= ~E1000_CTRL_VME;
       
  4626 		ew32(CTRL, ctrl);
       
  4627 
       
  4628 		if (adapter->hw.mac_type != e1000_ich8lan) {
       
  4629 			if (adapter->mng_vlan_id !=
       
  4630 			    (u16)E1000_MNG_VLAN_NONE) {
       
  4631 				e1000_vlan_rx_kill_vid(netdev,
       
  4632 				                       adapter->mng_vlan_id);
       
  4633 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  4634 			}
       
  4635 		}
       
  4636 	}
       
  4637 
       
  4638 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4639 		e1000_irq_enable(adapter);
       
  4640 }
       
  4641 
       
  4642 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
       
  4643 {
       
  4644 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4645 	struct e1000_hw *hw = &adapter->hw;
       
  4646 	u32 vfta, index;
       
  4647 
       
  4648 	if ((hw->mng_cookie.status &
       
  4649 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  4650 	    (vid == adapter->mng_vlan_id))
       
  4651 		return;
       
  4652 	/* add VID to filter table */
       
  4653 	index = (vid >> 5) & 0x7F;
       
  4654 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
       
  4655 	vfta |= (1 << (vid & 0x1F));
       
  4656 	e1000_write_vfta(hw, index, vfta);
       
  4657 }
       
  4658 
       
  4659 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
       
  4660 {
       
  4661 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4662 	struct e1000_hw *hw = &adapter->hw;
       
  4663 	u32 vfta, index;
       
  4664 
       
  4665 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4666 		e1000_irq_disable(adapter);
       
  4667 	vlan_group_set_device(adapter->vlgrp, vid, NULL);
       
  4668 	if (!test_bit(__E1000_DOWN, &adapter->flags))
       
  4669 		e1000_irq_enable(adapter);
       
  4670 
       
  4671 	if ((hw->mng_cookie.status &
       
  4672 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
       
  4673 	    (vid == adapter->mng_vlan_id)) {
       
  4674 		/* release control to f/w */
       
  4675 		e1000_release_hw_control(adapter);
       
  4676 		return;
       
  4677 	}
       
  4678 
       
  4679 	/* remove VID from filter table */
       
  4680 	index = (vid >> 5) & 0x7F;
       
  4681 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
       
  4682 	vfta &= ~(1 << (vid & 0x1F));
       
  4683 	e1000_write_vfta(hw, index, vfta);
       
  4684 }
       
  4685 
       
  4686 static void e1000_restore_vlan(struct e1000_adapter *adapter)
       
  4687 {
       
  4688 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
       
  4689 
       
  4690 	if (adapter->vlgrp) {
       
  4691 		u16 vid;
       
  4692 		for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
       
  4693 			if (!vlan_group_get_device(adapter->vlgrp, vid))
       
  4694 				continue;
       
  4695 			e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  4696 		}
       
  4697 	}
       
  4698 }
       
  4699 
       
  4700 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
       
  4701 {
       
  4702 	struct e1000_hw *hw = &adapter->hw;
       
  4703 
       
  4704 	hw->autoneg = 0;
       
  4705 
       
  4706 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
  4707 	if ((hw->media_type == e1000_media_type_fiber) &&
       
  4708 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
       
  4709 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  4710 		return -EINVAL;
       
  4711 	}
       
  4712 
       
  4713 	switch (spddplx) {
       
  4714 	case SPEED_10 + DUPLEX_HALF:
       
  4715 		hw->forced_speed_duplex = e1000_10_half;
       
  4716 		break;
       
  4717 	case SPEED_10 + DUPLEX_FULL:
       
  4718 		hw->forced_speed_duplex = e1000_10_full;
       
  4719 		break;
       
  4720 	case SPEED_100 + DUPLEX_HALF:
       
  4721 		hw->forced_speed_duplex = e1000_100_half;
       
  4722 		break;
       
  4723 	case SPEED_100 + DUPLEX_FULL:
       
  4724 		hw->forced_speed_duplex = e1000_100_full;
       
  4725 		break;
       
  4726 	case SPEED_1000 + DUPLEX_FULL:
       
  4727 		hw->autoneg = 1;
       
  4728 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
       
  4729 		break;
       
  4730 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
  4731 	default:
       
  4732 		DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
       
  4733 		return -EINVAL;
       
  4734 	}
       
  4735 	return 0;
       
  4736 }
       
  4737 
       
  4738 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
       
  4739 {
       
  4740 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4741 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4742 	struct e1000_hw *hw = &adapter->hw;
       
  4743 	u32 ctrl, ctrl_ext, rctl, status;
       
  4744 	u32 wufc = adapter->wol;
       
  4745 #ifdef CONFIG_PM
       
  4746 	int retval = 0;
       
  4747 #endif
       
  4748 
       
  4749 	netif_device_detach(netdev);
       
  4750 
       
  4751 	if (netif_running(netdev)) {
       
  4752 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
       
  4753 		e1000_down(adapter);
       
  4754 	}
       
  4755 
       
  4756 #ifdef CONFIG_PM
       
  4757 	retval = pci_save_state(pdev);
       
  4758 	if (retval)
       
  4759 		return retval;
       
  4760 	if (adapter->ecdev)
       
  4761 		return -EBUSY;
       
  4762 
       
  4763 #endif
       
  4764 
       
  4765 	status = er32(STATUS);
       
  4766 	if (status & E1000_STATUS_LU)
       
  4767 		wufc &= ~E1000_WUFC_LNKC;
       
  4768 
       
  4769 	if (wufc) {
       
  4770 		e1000_setup_rctl(adapter);
       
  4771 		e1000_set_rx_mode(netdev);
       
  4772 
       
  4773 		/* turn on all-multi mode if wake on multicast is enabled */
       
  4774 		if (wufc & E1000_WUFC_MC) {
       
  4775 			rctl = er32(RCTL);
       
  4776 			rctl |= E1000_RCTL_MPE;
       
  4777 			ew32(RCTL, rctl);
       
  4778 		}
       
  4779 
       
  4780 		if (hw->mac_type >= e1000_82540) {
       
  4781 			ctrl = er32(CTRL);
       
  4782 			/* advertise wake from D3Cold */
       
  4783 			#define E1000_CTRL_ADVD3WUC 0x00100000
       
  4784 			/* phy power management enable */
       
  4785 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  4786 			ctrl |= E1000_CTRL_ADVD3WUC |
       
  4787 				E1000_CTRL_EN_PHY_PWR_MGMT;
       
  4788 			ew32(CTRL, ctrl);
       
  4789 		}
       
  4790 
       
  4791 		if (hw->media_type == e1000_media_type_fiber ||
       
  4792 		   hw->media_type == e1000_media_type_internal_serdes) {
       
  4793 			/* keep the laser running in D3 */
       
  4794 			ctrl_ext = er32(CTRL_EXT);
       
  4795 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
       
  4796 			ew32(CTRL_EXT, ctrl_ext);
       
  4797 		}
       
  4798 
       
  4799 		/* Allow time for pending master requests to run */
       
  4800 		e1000_disable_pciex_master(hw);
       
  4801 
       
  4802 		ew32(WUC, E1000_WUC_PME_EN);
       
  4803 		ew32(WUFC, wufc);
       
  4804 		pci_enable_wake(pdev, PCI_D3hot, 1);
       
  4805 		pci_enable_wake(pdev, PCI_D3cold, 1);
       
  4806 	} else {
       
  4807 		ew32(WUC, 0);
       
  4808 		ew32(WUFC, 0);
       
  4809 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4810 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4811 	}
       
  4812 
       
  4813 	e1000_release_manageability(adapter);
       
  4814 
       
  4815 	/* make sure adapter isn't asleep if manageability is enabled */
       
  4816 	if (adapter->en_mng_pt) {
       
  4817 		pci_enable_wake(pdev, PCI_D3hot, 1);
       
  4818 		pci_enable_wake(pdev, PCI_D3cold, 1);
       
  4819 	}
       
  4820 
       
  4821 	if (hw->phy_type == e1000_phy_igp_3)
       
  4822 		e1000_phy_powerdown_workaround(hw);
       
  4823 
       
  4824 	if (netif_running(netdev))
       
  4825 		e1000_free_irq(adapter);
       
  4826 
       
  4827 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  4828 	 * would have already happened in close and is redundant. */
       
  4829 	e1000_release_hw_control(adapter);
       
  4830 
       
  4831 	pci_disable_device(pdev);
       
  4832 
       
  4833 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
       
  4834 
       
  4835 	return 0;
       
  4836 }
       
  4837 
       
  4838 #ifdef CONFIG_PM
       
  4839 static int e1000_resume(struct pci_dev *pdev)
       
  4840 {
       
  4841 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4842 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4843 	struct e1000_hw *hw = &adapter->hw;
       
  4844 	u32 err;
       
  4845 
       
  4846 	pci_set_power_state(pdev, PCI_D0);
       
  4847 	pci_restore_state(pdev);
       
  4848 
       
  4849 	if (adapter->need_ioport)
       
  4850 		err = pci_enable_device(pdev);
       
  4851 	else
       
  4852 		err = pci_enable_device_mem(pdev);
       
  4853 	if (err) {
       
  4854 		printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
       
  4855 		return err;
       
  4856 	}
       
  4857 	if (adapter->ecdev)
       
  4858 		return -EBUSY;
       
  4859 
       
  4860 	pci_set_master(pdev);
       
  4861 
       
  4862 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4863 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4864 
       
  4865 	if (netif_running(netdev)) {
       
  4866 		err = e1000_request_irq(adapter);
       
  4867 		if (err)
       
  4868 			return err;
       
  4869 	}
       
  4870 
       
  4871 	e1000_power_up_phy(adapter);
       
  4872 	e1000_reset(adapter);
       
  4873 	ew32(WUS, ~0);
       
  4874 
       
  4875 	e1000_init_manageability(adapter);
       
  4876 
       
  4877 	if (netif_running(netdev))
       
  4878 		e1000_up(adapter);
       
  4879 
       
  4880 	if (!adapter->ecdev) netif_device_attach(netdev);
       
  4881 
       
  4882 	/* If the controller is 82573 and f/w is AMT, do not set
       
  4883 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  4884 	 * let the f/w know that the h/w is now under the control
       
  4885 	 * of the driver. */
       
  4886 	if (hw->mac_type != e1000_82573 ||
       
  4887 	    !e1000_check_mng_mode(hw))
       
  4888 		e1000_get_hw_control(adapter);
       
  4889 
       
  4890 	return 0;
       
  4891 }
       
  4892 #endif
       
  4893 
       
  4894 static void e1000_shutdown(struct pci_dev *pdev)
       
  4895 {
       
  4896 	e1000_suspend(pdev, PMSG_SUSPEND);
       
  4897 }
       
  4898 
       
  4899 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  4900 /*
       
  4901  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  4902  * without having to re-enable interrupts. It's not called while
       
  4903  * the interrupt routine is executing.
       
  4904  */
       
  4905 static void e1000_netpoll(struct net_device *netdev)
       
  4906 {
       
  4907 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4908 
       
  4909 	disable_irq(adapter->pdev->irq);
       
  4910 	e1000_intr(adapter->pdev->irq, netdev);
       
  4911 	enable_irq(adapter->pdev->irq);
       
  4912 }
       
  4913 #endif
       
  4914 
       
  4915 /**
       
  4916  * e1000_io_error_detected - called when PCI error is detected
       
  4917  * @pdev: Pointer to PCI device
       
  4918  * @state: The current pci conneection state
       
  4919  *
       
  4920  * This function is called after a PCI bus error affecting
       
  4921  * this device has been detected.
       
  4922  */
       
  4923 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
  4924 						pci_channel_state_t state)
       
  4925 {
       
  4926 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4927 	struct e1000_adapter *adapter = netdev->priv;
       
  4928 
       
  4929 	netif_device_detach(netdev);
       
  4930 
       
  4931 	if (netif_running(netdev))
       
  4932 		e1000_down(adapter);
       
  4933 	pci_disable_device(pdev);
       
  4934 
       
  4935 	/* Request a slot slot reset. */
       
  4936 	return PCI_ERS_RESULT_NEED_RESET;
       
  4937 }
       
  4938 
       
  4939 /**
       
  4940  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  4941  * @pdev: Pointer to PCI device
       
  4942  *
       
  4943  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  4944  * resembles the first-half of the e1000_resume routine.
       
  4945  */
       
  4946 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  4947 {
       
  4948 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4949 	struct e1000_adapter *adapter = netdev->priv;
       
  4950 	struct e1000_hw *hw = &adapter->hw;
       
  4951 	int err;
       
  4952 
       
  4953 	if (adapter->need_ioport)
       
  4954 		err = pci_enable_device(pdev);
       
  4955 	else
       
  4956 		err = pci_enable_device_mem(pdev);
       
  4957 	if (err) {
       
  4958 		printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
       
  4959 		return PCI_ERS_RESULT_DISCONNECT;
       
  4960 	}
       
  4961 	pci_set_master(pdev);
       
  4962 
       
  4963 	pci_enable_wake(pdev, PCI_D3hot, 0);
       
  4964 	pci_enable_wake(pdev, PCI_D3cold, 0);
       
  4965 
       
  4966 	e1000_reset(adapter);
       
  4967 	ew32(WUS, ~0);
       
  4968 
       
  4969 	return PCI_ERS_RESULT_RECOVERED;
       
  4970 }
       
  4971 
       
  4972 /**
       
  4973  * e1000_io_resume - called when traffic can start flowing again.
       
  4974  * @pdev: Pointer to PCI device
       
  4975  *
       
  4976  * This callback is called when the error recovery driver tells us that
       
  4977  * its OK to resume normal operation. Implementation resembles the
       
  4978  * second-half of the e1000_resume routine.
       
  4979  */
       
  4980 static void e1000_io_resume(struct pci_dev *pdev)
       
  4981 {
       
  4982 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  4983 	struct e1000_adapter *adapter = netdev->priv;
       
  4984 	struct e1000_hw *hw = &adapter->hw;
       
  4985 
       
  4986 	e1000_init_manageability(adapter);
       
  4987 
       
  4988 	if (netif_running(netdev)) {
       
  4989 		if (e1000_up(adapter)) {
       
  4990 			printk("e1000: can't bring device back up after reset\n");
       
  4991 			return;
       
  4992 		}
       
  4993 	}
       
  4994 
       
  4995 	netif_device_attach(netdev);
       
  4996 
       
  4997 	/* If the controller is 82573 and f/w is AMT, do not set
       
  4998 	 * DRV_LOAD until the interface is up.  For all other cases,
       
  4999 	 * let the f/w know that the h/w is now under the control
       
  5000 	 * of the driver. */
       
  5001 	if (hw->mac_type != e1000_82573 ||
       
  5002 	    !e1000_check_mng_mode(hw))
       
  5003 		e1000_get_hw_control(adapter);
       
  5004 
       
  5005 }
       
  5006 
       
  5007 /* e1000_main.c */