devices/e1000e/phy-3.2-orig.c
branchstable-1.5
changeset 2407 35223d2e6e72
equal deleted inserted replaced
2405:214be3e0640e 2407:35223d2e6e72
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2011 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include <linux/delay.h>
       
    30 
       
    31 #include "e1000.h"
       
    32 
       
    33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
       
    34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
       
    35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
       
    36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
       
    37 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
       
    38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
       
    39 					  u16 *data, bool read, bool page_set);
       
    40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
       
    41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
       
    42                                           u16 *data, bool read);
       
    43 
       
    44 /* Cable length tables */
       
    45 static const u16 e1000_m88_cable_length_table[] = {
       
    46 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
       
    47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
       
    48 		ARRAY_SIZE(e1000_m88_cable_length_table)
       
    49 
       
    50 static const u16 e1000_igp_2_cable_length_table[] = {
       
    51 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
       
    52 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
       
    53 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
       
    54 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
       
    55 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
       
    56 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
       
    57 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
       
    58 	124};
       
    59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
       
    60 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
       
    61 
       
    62 #define BM_PHY_REG_PAGE(offset) \
       
    63 	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
       
    64 #define BM_PHY_REG_NUM(offset) \
       
    65 	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
       
    66 	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
       
    67 		~MAX_PHY_REG_ADDRESS)))
       
    68 
       
    69 #define HV_INTC_FC_PAGE_START             768
       
    70 #define I82578_ADDR_REG                   29
       
    71 #define I82577_ADDR_REG                   16
       
    72 #define I82577_CFG_REG                    22
       
    73 #define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
       
    74 #define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
       
    75 #define I82577_CTRL_REG                   23
       
    76 
       
    77 /* 82577 specific PHY registers */
       
    78 #define I82577_PHY_CTRL_2            18
       
    79 #define I82577_PHY_STATUS_2          26
       
    80 #define I82577_PHY_DIAG_STATUS       31
       
    81 
       
    82 /* I82577 PHY Status 2 */
       
    83 #define I82577_PHY_STATUS2_REV_POLARITY   0x0400
       
    84 #define I82577_PHY_STATUS2_MDIX           0x0800
       
    85 #define I82577_PHY_STATUS2_SPEED_MASK     0x0300
       
    86 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
       
    87 
       
    88 /* I82577 PHY Control 2 */
       
    89 #define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
       
    90 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
       
    91 
       
    92 /* I82577 PHY Diagnostics Status */
       
    93 #define I82577_DSTATUS_CABLE_LENGTH       0x03FC
       
    94 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
       
    95 
       
    96 /* BM PHY Copper Specific Control 1 */
       
    97 #define BM_CS_CTRL1                       16
       
    98 
       
    99 #define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
       
   100 #define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
       
   101 #define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
       
   102 
       
   103 /**
       
   104  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
       
   105  *  @hw: pointer to the HW structure
       
   106  *
       
   107  *  Read the PHY management control register and check whether a PHY reset
       
   108  *  is blocked.  If a reset is not blocked return 0, otherwise
       
   109  *  return E1000_BLK_PHY_RESET (12).
       
   110  **/
       
   111 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
       
   112 {
       
   113 	u32 manc;
       
   114 
       
   115 	manc = er32(MANC);
       
   116 
       
   117 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
       
   118 	       E1000_BLK_PHY_RESET : 0;
       
   119 }
       
   120 
       
   121 /**
       
   122  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
       
   123  *  @hw: pointer to the HW structure
       
   124  *
       
   125  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
       
   126  *  revision in the hardware structure.
       
   127  **/
       
   128 s32 e1000e_get_phy_id(struct e1000_hw *hw)
       
   129 {
       
   130 	struct e1000_phy_info *phy = &hw->phy;
       
   131 	s32 ret_val = 0;
       
   132 	u16 phy_id;
       
   133 	u16 retry_count = 0;
       
   134 
       
   135 	if (!(phy->ops.read_reg))
       
   136 		goto out;
       
   137 
       
   138 	while (retry_count < 2) {
       
   139 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
       
   140 		if (ret_val)
       
   141 			goto out;
       
   142 
       
   143 		phy->id = (u32)(phy_id << 16);
       
   144 		udelay(20);
       
   145 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
       
   146 		if (ret_val)
       
   147 			goto out;
       
   148 
       
   149 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
       
   150 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
       
   151 
       
   152 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
       
   153 			goto out;
       
   154 
       
   155 		retry_count++;
       
   156 	}
       
   157 out:
       
   158 	return ret_val;
       
   159 }
       
   160 
       
   161 /**
       
   162  *  e1000e_phy_reset_dsp - Reset PHY DSP
       
   163  *  @hw: pointer to the HW structure
       
   164  *
       
   165  *  Reset the digital signal processor.
       
   166  **/
       
   167 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
       
   168 {
       
   169 	s32 ret_val;
       
   170 
       
   171 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
       
   172 	if (ret_val)
       
   173 		return ret_val;
       
   174 
       
   175 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
       
   176 }
       
   177 
       
   178 /**
       
   179  *  e1000e_read_phy_reg_mdic - Read MDI control register
       
   180  *  @hw: pointer to the HW structure
       
   181  *  @offset: register offset to be read
       
   182  *  @data: pointer to the read data
       
   183  *
       
   184  *  Reads the MDI control register in the PHY at offset and stores the
       
   185  *  information read to data.
       
   186  **/
       
   187 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
       
   188 {
       
   189 	struct e1000_phy_info *phy = &hw->phy;
       
   190 	u32 i, mdic = 0;
       
   191 
       
   192 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   193 		e_dbg("PHY Address %d is out of range\n", offset);
       
   194 		return -E1000_ERR_PARAM;
       
   195 	}
       
   196 
       
   197 	/*
       
   198 	 * Set up Op-code, Phy Address, and register offset in the MDI
       
   199 	 * Control register.  The MAC will take care of interfacing with the
       
   200 	 * PHY to retrieve the desired data.
       
   201 	 */
       
   202 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
       
   203 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   204 		(E1000_MDIC_OP_READ));
       
   205 
       
   206 	ew32(MDIC, mdic);
       
   207 
       
   208 	/*
       
   209 	 * Poll the ready bit to see if the MDI read completed
       
   210 	 * Increasing the time out as testing showed failures with
       
   211 	 * the lower time out
       
   212 	 */
       
   213 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   214 		udelay(50);
       
   215 		mdic = er32(MDIC);
       
   216 		if (mdic & E1000_MDIC_READY)
       
   217 			break;
       
   218 	}
       
   219 	if (!(mdic & E1000_MDIC_READY)) {
       
   220 		e_dbg("MDI Read did not complete\n");
       
   221 		return -E1000_ERR_PHY;
       
   222 	}
       
   223 	if (mdic & E1000_MDIC_ERROR) {
       
   224 		e_dbg("MDI Error\n");
       
   225 		return -E1000_ERR_PHY;
       
   226 	}
       
   227 	*data = (u16) mdic;
       
   228 
       
   229 	/*
       
   230 	 * Allow some time after each MDIC transaction to avoid
       
   231 	 * reading duplicate data in the next MDIC transaction.
       
   232 	 */
       
   233 	if (hw->mac.type == e1000_pch2lan)
       
   234 		udelay(100);
       
   235 
       
   236 	return 0;
       
   237 }
       
   238 
       
   239 /**
       
   240  *  e1000e_write_phy_reg_mdic - Write MDI control register
       
   241  *  @hw: pointer to the HW structure
       
   242  *  @offset: register offset to write to
       
   243  *  @data: data to write to register at offset
       
   244  *
       
   245  *  Writes data to MDI control register in the PHY at offset.
       
   246  **/
       
   247 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
       
   248 {
       
   249 	struct e1000_phy_info *phy = &hw->phy;
       
   250 	u32 i, mdic = 0;
       
   251 
       
   252 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   253 		e_dbg("PHY Address %d is out of range\n", offset);
       
   254 		return -E1000_ERR_PARAM;
       
   255 	}
       
   256 
       
   257 	/*
       
   258 	 * Set up Op-code, Phy Address, and register offset in the MDI
       
   259 	 * Control register.  The MAC will take care of interfacing with the
       
   260 	 * PHY to retrieve the desired data.
       
   261 	 */
       
   262 	mdic = (((u32)data) |
       
   263 		(offset << E1000_MDIC_REG_SHIFT) |
       
   264 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   265 		(E1000_MDIC_OP_WRITE));
       
   266 
       
   267 	ew32(MDIC, mdic);
       
   268 
       
   269 	/*
       
   270 	 * Poll the ready bit to see if the MDI read completed
       
   271 	 * Increasing the time out as testing showed failures with
       
   272 	 * the lower time out
       
   273 	 */
       
   274 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   275 		udelay(50);
       
   276 		mdic = er32(MDIC);
       
   277 		if (mdic & E1000_MDIC_READY)
       
   278 			break;
       
   279 	}
       
   280 	if (!(mdic & E1000_MDIC_READY)) {
       
   281 		e_dbg("MDI Write did not complete\n");
       
   282 		return -E1000_ERR_PHY;
       
   283 	}
       
   284 	if (mdic & E1000_MDIC_ERROR) {
       
   285 		e_dbg("MDI Error\n");
       
   286 		return -E1000_ERR_PHY;
       
   287 	}
       
   288 
       
   289 	/*
       
   290 	 * Allow some time after each MDIC transaction to avoid
       
   291 	 * reading duplicate data in the next MDIC transaction.
       
   292 	 */
       
   293 	if (hw->mac.type == e1000_pch2lan)
       
   294 		udelay(100);
       
   295 
       
   296 	return 0;
       
   297 }
       
   298 
       
   299 /**
       
   300  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
       
   301  *  @hw: pointer to the HW structure
       
   302  *  @offset: register offset to be read
       
   303  *  @data: pointer to the read data
       
   304  *
       
   305  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
   306  *  and storing the retrieved information in data.  Release any acquired
       
   307  *  semaphores before exiting.
       
   308  **/
       
   309 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
       
   310 {
       
   311 	s32 ret_val;
       
   312 
       
   313 	ret_val = hw->phy.ops.acquire(hw);
       
   314 	if (ret_val)
       
   315 		return ret_val;
       
   316 
       
   317 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   318 					   data);
       
   319 
       
   320 	hw->phy.ops.release(hw);
       
   321 
       
   322 	return ret_val;
       
   323 }
       
   324 
       
   325 /**
       
   326  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
       
   327  *  @hw: pointer to the HW structure
       
   328  *  @offset: register offset to write to
       
   329  *  @data: data to write at register offset
       
   330  *
       
   331  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
   332  *  at the offset.  Release any acquired semaphores before exiting.
       
   333  **/
       
   334 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
       
   335 {
       
   336 	s32 ret_val;
       
   337 
       
   338 	ret_val = hw->phy.ops.acquire(hw);
       
   339 	if (ret_val)
       
   340 		return ret_val;
       
   341 
       
   342 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   343 					    data);
       
   344 
       
   345 	hw->phy.ops.release(hw);
       
   346 
       
   347 	return ret_val;
       
   348 }
       
   349 
       
   350 /**
       
   351  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
       
   352  *  @hw: pointer to the HW structure
       
   353  *  @page: page to set (shifted left when necessary)
       
   354  *
       
   355  *  Sets PHY page required for PHY register access.  Assumes semaphore is
       
   356  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
       
   357  *  must set it appropriately (if necessary) after this function returns.
       
   358  **/
       
   359 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
       
   360 {
       
   361 	e_dbg("Setting page 0x%x\n", page);
       
   362 
       
   363 	hw->phy.addr = 1;
       
   364 
       
   365 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
       
   366 }
       
   367 
       
   368 /**
       
   369  *  __e1000e_read_phy_reg_igp - Read igp PHY register
       
   370  *  @hw: pointer to the HW structure
       
   371  *  @offset: register offset to be read
       
   372  *  @data: pointer to the read data
       
   373  *  @locked: semaphore has already been acquired or not
       
   374  *
       
   375  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
   376  *  and stores the retrieved information in data.  Release any acquired
       
   377  *  semaphores before exiting.
       
   378  **/
       
   379 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
       
   380                                     bool locked)
       
   381 {
       
   382 	s32 ret_val = 0;
       
   383 
       
   384 	if (!locked) {
       
   385 		if (!(hw->phy.ops.acquire))
       
   386 			goto out;
       
   387 
       
   388 		ret_val = hw->phy.ops.acquire(hw);
       
   389 		if (ret_val)
       
   390 			goto out;
       
   391 	}
       
   392 
       
   393 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
   394 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   395 						    IGP01E1000_PHY_PAGE_SELECT,
       
   396 						    (u16)offset);
       
   397 		if (ret_val)
       
   398 			goto release;
       
   399 	}
       
   400 
       
   401 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   402 	                                  data);
       
   403 
       
   404 release:
       
   405 	if (!locked)
       
   406 		hw->phy.ops.release(hw);
       
   407 out:
       
   408 	return ret_val;
       
   409 }
       
   410 
       
   411 /**
       
   412  *  e1000e_read_phy_reg_igp - Read igp PHY register
       
   413  *  @hw: pointer to the HW structure
       
   414  *  @offset: register offset to be read
       
   415  *  @data: pointer to the read data
       
   416  *
       
   417  *  Acquires semaphore then reads the PHY register at offset and stores the
       
   418  *  retrieved information in data.
       
   419  *  Release the acquired semaphore before exiting.
       
   420  **/
       
   421 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
       
   422 {
       
   423 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
       
   424 }
       
   425 
       
   426 /**
       
   427  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
       
   428  *  @hw: pointer to the HW structure
       
   429  *  @offset: register offset to be read
       
   430  *  @data: pointer to the read data
       
   431  *
       
   432  *  Reads the PHY register at offset and stores the retrieved information
       
   433  *  in data.  Assumes semaphore already acquired.
       
   434  **/
       
   435 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
   436 {
       
   437 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
       
   438 }
       
   439 
       
   440 /**
       
   441  *  e1000e_write_phy_reg_igp - Write igp PHY register
       
   442  *  @hw: pointer to the HW structure
       
   443  *  @offset: register offset to write to
       
   444  *  @data: data to write at register offset
       
   445  *  @locked: semaphore has already been acquired or not
       
   446  *
       
   447  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
   448  *  at the offset.  Release any acquired semaphores before exiting.
       
   449  **/
       
   450 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
       
   451                                      bool locked)
       
   452 {
       
   453 	s32 ret_val = 0;
       
   454 
       
   455 	if (!locked) {
       
   456 		if (!(hw->phy.ops.acquire))
       
   457 			goto out;
       
   458 
       
   459 		ret_val = hw->phy.ops.acquire(hw);
       
   460 		if (ret_val)
       
   461 			goto out;
       
   462 	}
       
   463 
       
   464 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
   465 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   466 						    IGP01E1000_PHY_PAGE_SELECT,
       
   467 						    (u16)offset);
       
   468 		if (ret_val)
       
   469 			goto release;
       
   470 	}
       
   471 
       
   472 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   473 					    data);
       
   474 
       
   475 release:
       
   476 	if (!locked)
       
   477 		hw->phy.ops.release(hw);
       
   478 
       
   479 out:
       
   480 	return ret_val;
       
   481 }
       
   482 
       
   483 /**
       
   484  *  e1000e_write_phy_reg_igp - Write igp PHY register
       
   485  *  @hw: pointer to the HW structure
       
   486  *  @offset: register offset to write to
       
   487  *  @data: data to write at register offset
       
   488  *
       
   489  *  Acquires semaphore then writes the data to PHY register
       
   490  *  at the offset.  Release any acquired semaphores before exiting.
       
   491  **/
       
   492 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
       
   493 {
       
   494 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
       
   495 }
       
   496 
       
   497 /**
       
   498  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
       
   499  *  @hw: pointer to the HW structure
       
   500  *  @offset: register offset to write to
       
   501  *  @data: data to write at register offset
       
   502  *
       
   503  *  Writes the data to PHY register at the offset.
       
   504  *  Assumes semaphore already acquired.
       
   505  **/
       
   506 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
   507 {
       
   508 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
       
   509 }
       
   510 
       
   511 /**
       
   512  *  __e1000_read_kmrn_reg - Read kumeran register
       
   513  *  @hw: pointer to the HW structure
       
   514  *  @offset: register offset to be read
       
   515  *  @data: pointer to the read data
       
   516  *  @locked: semaphore has already been acquired or not
       
   517  *
       
   518  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
       
   519  *  using the kumeran interface.  The information retrieved is stored in data.
       
   520  *  Release any acquired semaphores before exiting.
       
   521  **/
       
   522 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
       
   523                                  bool locked)
       
   524 {
       
   525 	u32 kmrnctrlsta;
       
   526 	s32 ret_val = 0;
       
   527 
       
   528 	if (!locked) {
       
   529 		if (!(hw->phy.ops.acquire))
       
   530 			goto out;
       
   531 
       
   532 		ret_val = hw->phy.ops.acquire(hw);
       
   533 		if (ret_val)
       
   534 			goto out;
       
   535 	}
       
   536 
       
   537 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
   538 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
       
   539 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
   540 	e1e_flush();
       
   541 
       
   542 	udelay(2);
       
   543 
       
   544 	kmrnctrlsta = er32(KMRNCTRLSTA);
       
   545 	*data = (u16)kmrnctrlsta;
       
   546 
       
   547 	if (!locked)
       
   548 		hw->phy.ops.release(hw);
       
   549 
       
   550 out:
       
   551 	return ret_val;
       
   552 }
       
   553 
       
   554 /**
       
   555  *  e1000e_read_kmrn_reg -  Read kumeran register
       
   556  *  @hw: pointer to the HW structure
       
   557  *  @offset: register offset to be read
       
   558  *  @data: pointer to the read data
       
   559  *
       
   560  *  Acquires semaphore then reads the PHY register at offset using the
       
   561  *  kumeran interface.  The information retrieved is stored in data.
       
   562  *  Release the acquired semaphore before exiting.
       
   563  **/
       
   564 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
       
   565 {
       
   566 	return __e1000_read_kmrn_reg(hw, offset, data, false);
       
   567 }
       
   568 
       
   569 /**
       
   570  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
       
   571  *  @hw: pointer to the HW structure
       
   572  *  @offset: register offset to be read
       
   573  *  @data: pointer to the read data
       
   574  *
       
   575  *  Reads the PHY register at offset using the kumeran interface.  The
       
   576  *  information retrieved is stored in data.
       
   577  *  Assumes semaphore already acquired.
       
   578  **/
       
   579 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
   580 {
       
   581 	return __e1000_read_kmrn_reg(hw, offset, data, true);
       
   582 }
       
   583 
       
   584 /**
       
   585  *  __e1000_write_kmrn_reg - Write kumeran register
       
   586  *  @hw: pointer to the HW structure
       
   587  *  @offset: register offset to write to
       
   588  *  @data: data to write at register offset
       
   589  *  @locked: semaphore has already been acquired or not
       
   590  *
       
   591  *  Acquires semaphore, if necessary.  Then write the data to PHY register
       
   592  *  at the offset using the kumeran interface.  Release any acquired semaphores
       
   593  *  before exiting.
       
   594  **/
       
   595 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
       
   596                                   bool locked)
       
   597 {
       
   598 	u32 kmrnctrlsta;
       
   599 	s32 ret_val = 0;
       
   600 
       
   601 	if (!locked) {
       
   602 		if (!(hw->phy.ops.acquire))
       
   603 			goto out;
       
   604 
       
   605 		ret_val = hw->phy.ops.acquire(hw);
       
   606 		if (ret_val)
       
   607 			goto out;
       
   608 	}
       
   609 
       
   610 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
   611 		       E1000_KMRNCTRLSTA_OFFSET) | data;
       
   612 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
   613 	e1e_flush();
       
   614 
       
   615 	udelay(2);
       
   616 
       
   617 	if (!locked)
       
   618 		hw->phy.ops.release(hw);
       
   619 
       
   620 out:
       
   621 	return ret_val;
       
   622 }
       
   623 
       
   624 /**
       
   625  *  e1000e_write_kmrn_reg -  Write kumeran register
       
   626  *  @hw: pointer to the HW structure
       
   627  *  @offset: register offset to write to
       
   628  *  @data: data to write at register offset
       
   629  *
       
   630  *  Acquires semaphore then writes the data to the PHY register at the offset
       
   631  *  using the kumeran interface.  Release the acquired semaphore before exiting.
       
   632  **/
       
   633 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
       
   634 {
       
   635 	return __e1000_write_kmrn_reg(hw, offset, data, false);
       
   636 }
       
   637 
       
   638 /**
       
   639  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
       
   640  *  @hw: pointer to the HW structure
       
   641  *  @offset: register offset to write to
       
   642  *  @data: data to write at register offset
       
   643  *
       
   644  *  Write the data to PHY register at the offset using the kumeran interface.
       
   645  *  Assumes semaphore already acquired.
       
   646  **/
       
   647 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
   648 {
       
   649 	return __e1000_write_kmrn_reg(hw, offset, data, true);
       
   650 }
       
   651 
       
   652 /**
       
   653  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
       
   654  *  @hw: pointer to the HW structure
       
   655  *
       
   656  *  Sets up Carrier-sense on Transmit and downshift values.
       
   657  **/
       
   658 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
       
   659 {
       
   660 	s32 ret_val;
       
   661 	u16 phy_data;
       
   662 
       
   663 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
       
   664 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
       
   665 	if (ret_val)
       
   666 		goto out;
       
   667 
       
   668 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
       
   669 
       
   670 	/* Enable downshift */
       
   671 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
       
   672 
       
   673 	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
       
   674 
       
   675 out:
       
   676 	return ret_val;
       
   677 }
       
   678 
       
   679 /**
       
   680  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
       
   681  *  @hw: pointer to the HW structure
       
   682  *
       
   683  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
       
   684  *  and downshift values are set also.
       
   685  **/
       
   686 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
       
   687 {
       
   688 	struct e1000_phy_info *phy = &hw->phy;
       
   689 	s32 ret_val;
       
   690 	u16 phy_data;
       
   691 
       
   692 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
       
   693 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   694 	if (ret_val)
       
   695 		return ret_val;
       
   696 
       
   697 	/* For BM PHY this bit is downshift enable */
       
   698 	if (phy->type != e1000_phy_bm)
       
   699 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
   700 
       
   701 	/*
       
   702 	 * Options:
       
   703 	 *   MDI/MDI-X = 0 (default)
       
   704 	 *   0 - Auto for all speeds
       
   705 	 *   1 - MDI mode
       
   706 	 *   2 - MDI-X mode
       
   707 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
   708 	 */
       
   709 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
   710 
       
   711 	switch (phy->mdix) {
       
   712 	case 1:
       
   713 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
       
   714 		break;
       
   715 	case 2:
       
   716 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
       
   717 		break;
       
   718 	case 3:
       
   719 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
       
   720 		break;
       
   721 	case 0:
       
   722 	default:
       
   723 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
       
   724 		break;
       
   725 	}
       
   726 
       
   727 	/*
       
   728 	 * Options:
       
   729 	 *   disable_polarity_correction = 0 (default)
       
   730 	 *       Automatic Correction for Reversed Cable Polarity
       
   731 	 *   0 - Disabled
       
   732 	 *   1 - Enabled
       
   733 	 */
       
   734 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
       
   735 	if (phy->disable_polarity_correction == 1)
       
   736 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
       
   737 
       
   738 	/* Enable downshift on BM (disabled by default) */
       
   739 	if (phy->type == e1000_phy_bm)
       
   740 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
       
   741 
       
   742 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
   743 	if (ret_val)
       
   744 		return ret_val;
       
   745 
       
   746 	if ((phy->type == e1000_phy_m88) &&
       
   747 	    (phy->revision < E1000_REVISION_4) &&
       
   748 	    (phy->id != BME1000_E_PHY_ID_R2)) {
       
   749 		/*
       
   750 		 * Force TX_CLK in the Extended PHY Specific Control Register
       
   751 		 * to 25MHz clock.
       
   752 		 */
       
   753 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
   754 		if (ret_val)
       
   755 			return ret_val;
       
   756 
       
   757 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
   758 
       
   759 		if ((phy->revision == 2) &&
       
   760 		    (phy->id == M88E1111_I_PHY_ID)) {
       
   761 			/* 82573L PHY - set the downshift counter to 5x. */
       
   762 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
       
   763 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
       
   764 		} else {
       
   765 			/* Configure Master and Slave downshift values */
       
   766 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
       
   767 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
       
   768 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
       
   769 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
       
   770 		}
       
   771 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
   772 		if (ret_val)
       
   773 			return ret_val;
       
   774 	}
       
   775 
       
   776 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
       
   777 		/* Set PHY page 0, register 29 to 0x0003 */
       
   778 		ret_val = e1e_wphy(hw, 29, 0x0003);
       
   779 		if (ret_val)
       
   780 			return ret_val;
       
   781 
       
   782 		/* Set PHY page 0, register 30 to 0x0000 */
       
   783 		ret_val = e1e_wphy(hw, 30, 0x0000);
       
   784 		if (ret_val)
       
   785 			return ret_val;
       
   786 	}
       
   787 
       
   788 	/* Commit the changes. */
       
   789 	ret_val = e1000e_commit_phy(hw);
       
   790 	if (ret_val) {
       
   791 		e_dbg("Error committing the PHY changes\n");
       
   792 		return ret_val;
       
   793 	}
       
   794 
       
   795 	if (phy->type == e1000_phy_82578) {
       
   796 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
   797 		if (ret_val)
       
   798 			return ret_val;
       
   799 
       
   800 		/* 82578 PHY - set the downshift count to 1x. */
       
   801 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
       
   802 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
       
   803 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
   804 		if (ret_val)
       
   805 			return ret_val;
       
   806 	}
       
   807 
       
   808 	return 0;
       
   809 }
       
   810 
       
   811 /**
       
   812  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
       
   813  *  @hw: pointer to the HW structure
       
   814  *
       
   815  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
       
   816  *  igp PHY's.
       
   817  **/
       
   818 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
       
   819 {
       
   820 	struct e1000_phy_info *phy = &hw->phy;
       
   821 	s32 ret_val;
       
   822 	u16 data;
       
   823 
       
   824 	ret_val = e1000_phy_hw_reset(hw);
       
   825 	if (ret_val) {
       
   826 		e_dbg("Error resetting the PHY.\n");
       
   827 		return ret_val;
       
   828 	}
       
   829 
       
   830 	/*
       
   831 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
       
   832 	 * timeout issues when LFS is enabled.
       
   833 	 */
       
   834 	msleep(100);
       
   835 
       
   836 	/* disable lplu d0 during driver init */
       
   837 	ret_val = e1000_set_d0_lplu_state(hw, false);
       
   838 	if (ret_val) {
       
   839 		e_dbg("Error Disabling LPLU D0\n");
       
   840 		return ret_val;
       
   841 	}
       
   842 	/* Configure mdi-mdix settings */
       
   843 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
       
   844 	if (ret_val)
       
   845 		return ret_val;
       
   846 
       
   847 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
   848 
       
   849 	switch (phy->mdix) {
       
   850 	case 1:
       
   851 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   852 		break;
       
   853 	case 2:
       
   854 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   855 		break;
       
   856 	case 0:
       
   857 	default:
       
   858 		data |= IGP01E1000_PSCR_AUTO_MDIX;
       
   859 		break;
       
   860 	}
       
   861 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
       
   862 	if (ret_val)
       
   863 		return ret_val;
       
   864 
       
   865 	/* set auto-master slave resolution settings */
       
   866 	if (hw->mac.autoneg) {
       
   867 		/*
       
   868 		 * when autonegotiation advertisement is only 1000Mbps then we
       
   869 		 * should disable SmartSpeed and enable Auto MasterSlave
       
   870 		 * resolution as hardware default.
       
   871 		 */
       
   872 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
       
   873 			/* Disable SmartSpeed */
       
   874 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   875 					   &data);
       
   876 			if (ret_val)
       
   877 				return ret_val;
       
   878 
       
   879 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   880 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   881 					   data);
       
   882 			if (ret_val)
       
   883 				return ret_val;
       
   884 
       
   885 			/* Set auto Master/Slave resolution process */
       
   886 			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
       
   887 			if (ret_val)
       
   888 				return ret_val;
       
   889 
       
   890 			data &= ~CR_1000T_MS_ENABLE;
       
   891 			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
       
   892 			if (ret_val)
       
   893 				return ret_val;
       
   894 		}
       
   895 
       
   896 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
       
   897 		if (ret_val)
       
   898 			return ret_val;
       
   899 
       
   900 		/* load defaults for future use */
       
   901 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
       
   902 			((data & CR_1000T_MS_VALUE) ?
       
   903 			e1000_ms_force_master :
       
   904 			e1000_ms_force_slave) :
       
   905 			e1000_ms_auto;
       
   906 
       
   907 		switch (phy->ms_type) {
       
   908 		case e1000_ms_force_master:
       
   909 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
       
   910 			break;
       
   911 		case e1000_ms_force_slave:
       
   912 			data |= CR_1000T_MS_ENABLE;
       
   913 			data &= ~(CR_1000T_MS_VALUE);
       
   914 			break;
       
   915 		case e1000_ms_auto:
       
   916 			data &= ~CR_1000T_MS_ENABLE;
       
   917 		default:
       
   918 			break;
       
   919 		}
       
   920 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
       
   921 	}
       
   922 
       
   923 	return ret_val;
       
   924 }
       
   925 
       
   926 /**
       
   927  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
       
   928  *  @hw: pointer to the HW structure
       
   929  *
       
   930  *  Reads the MII auto-neg advertisement register and/or the 1000T control
       
   931  *  register and if the PHY is already setup for auto-negotiation, then
       
   932  *  return successful.  Otherwise, setup advertisement and flow control to
       
   933  *  the appropriate values for the wanted auto-negotiation.
       
   934  **/
       
   935 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
       
   936 {
       
   937 	struct e1000_phy_info *phy = &hw->phy;
       
   938 	s32 ret_val;
       
   939 	u16 mii_autoneg_adv_reg;
       
   940 	u16 mii_1000t_ctrl_reg = 0;
       
   941 
       
   942 	phy->autoneg_advertised &= phy->autoneg_mask;
       
   943 
       
   944 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
       
   945 	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
       
   946 	if (ret_val)
       
   947 		return ret_val;
       
   948 
       
   949 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
       
   950 		/* Read the MII 1000Base-T Control Register (Address 9). */
       
   951 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
       
   952 		if (ret_val)
       
   953 			return ret_val;
       
   954 	}
       
   955 
       
   956 	/*
       
   957 	 * Need to parse both autoneg_advertised and fc and set up
       
   958 	 * the appropriate PHY registers.  First we will parse for
       
   959 	 * autoneg_advertised software override.  Since we can advertise
       
   960 	 * a plethora of combinations, we need to check each bit
       
   961 	 * individually.
       
   962 	 */
       
   963 
       
   964 	/*
       
   965 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
       
   966 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
       
   967 	 * the  1000Base-T Control Register (Address 9).
       
   968 	 */
       
   969 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
       
   970 				 NWAY_AR_100TX_HD_CAPS |
       
   971 				 NWAY_AR_10T_FD_CAPS   |
       
   972 				 NWAY_AR_10T_HD_CAPS);
       
   973 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
       
   974 
       
   975 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
       
   976 
       
   977 	/* Do we want to advertise 10 Mb Half Duplex? */
       
   978 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
       
   979 		e_dbg("Advertise 10mb Half duplex\n");
       
   980 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
       
   981 	}
       
   982 
       
   983 	/* Do we want to advertise 10 Mb Full Duplex? */
       
   984 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
       
   985 		e_dbg("Advertise 10mb Full duplex\n");
       
   986 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
       
   987 	}
       
   988 
       
   989 	/* Do we want to advertise 100 Mb Half Duplex? */
       
   990 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
       
   991 		e_dbg("Advertise 100mb Half duplex\n");
       
   992 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
       
   993 	}
       
   994 
       
   995 	/* Do we want to advertise 100 Mb Full Duplex? */
       
   996 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
       
   997 		e_dbg("Advertise 100mb Full duplex\n");
       
   998 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
       
   999 	}
       
  1000 
       
  1001 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
       
  1002 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
       
  1003 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
       
  1004 
       
  1005 	/* Do we want to advertise 1000 Mb Full Duplex? */
       
  1006 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
       
  1007 		e_dbg("Advertise 1000mb Full duplex\n");
       
  1008 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
       
  1009 	}
       
  1010 
       
  1011 	/*
       
  1012 	 * Check for a software override of the flow control settings, and
       
  1013 	 * setup the PHY advertisement registers accordingly.  If
       
  1014 	 * auto-negotiation is enabled, then software will have to set the
       
  1015 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
       
  1016 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
       
  1017 	 * negotiation.
       
  1018 	 *
       
  1019 	 * The possible values of the "fc" parameter are:
       
  1020 	 *      0:  Flow control is completely disabled
       
  1021 	 *      1:  Rx flow control is enabled (we can receive pause frames
       
  1022 	 *	  but not send pause frames).
       
  1023 	 *      2:  Tx flow control is enabled (we can send pause frames
       
  1024 	 *	  but we do not support receiving pause frames).
       
  1025 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
       
  1026 	 *  other:  No software override.  The flow control configuration
       
  1027 	 *	  in the EEPROM is used.
       
  1028 	 */
       
  1029 	switch (hw->fc.current_mode) {
       
  1030 	case e1000_fc_none:
       
  1031 		/*
       
  1032 		 * Flow control (Rx & Tx) is completely disabled by a
       
  1033 		 * software over-ride.
       
  1034 		 */
       
  1035 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1036 		break;
       
  1037 	case e1000_fc_rx_pause:
       
  1038 		/*
       
  1039 		 * Rx Flow control is enabled, and Tx Flow control is
       
  1040 		 * disabled, by a software over-ride.
       
  1041 		 *
       
  1042 		 * Since there really isn't a way to advertise that we are
       
  1043 		 * capable of Rx Pause ONLY, we will advertise that we
       
  1044 		 * support both symmetric and asymmetric Rx PAUSE.  Later
       
  1045 		 * (in e1000e_config_fc_after_link_up) we will disable the
       
  1046 		 * hw's ability to send PAUSE frames.
       
  1047 		 */
       
  1048 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1049 		break;
       
  1050 	case e1000_fc_tx_pause:
       
  1051 		/*
       
  1052 		 * Tx Flow control is enabled, and Rx Flow control is
       
  1053 		 * disabled, by a software over-ride.
       
  1054 		 */
       
  1055 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
       
  1056 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
       
  1057 		break;
       
  1058 	case e1000_fc_full:
       
  1059 		/*
       
  1060 		 * Flow control (both Rx and Tx) is enabled by a software
       
  1061 		 * over-ride.
       
  1062 		 */
       
  1063 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1064 		break;
       
  1065 	default:
       
  1066 		e_dbg("Flow control param set incorrectly\n");
       
  1067 		ret_val = -E1000_ERR_CONFIG;
       
  1068 		return ret_val;
       
  1069 	}
       
  1070 
       
  1071 	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
       
  1072 	if (ret_val)
       
  1073 		return ret_val;
       
  1074 
       
  1075 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
       
  1076 
       
  1077 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
       
  1078 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
       
  1079 
       
  1080 	return ret_val;
       
  1081 }
       
  1082 
       
  1083 /**
       
  1084  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
       
  1085  *  @hw: pointer to the HW structure
       
  1086  *
       
  1087  *  Performs initial bounds checking on autoneg advertisement parameter, then
       
  1088  *  configure to advertise the full capability.  Setup the PHY to autoneg
       
  1089  *  and restart the negotiation process between the link partner.  If
       
  1090  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
       
  1091  **/
       
  1092 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
       
  1093 {
       
  1094 	struct e1000_phy_info *phy = &hw->phy;
       
  1095 	s32 ret_val;
       
  1096 	u16 phy_ctrl;
       
  1097 
       
  1098 	/*
       
  1099 	 * Perform some bounds checking on the autoneg advertisement
       
  1100 	 * parameter.
       
  1101 	 */
       
  1102 	phy->autoneg_advertised &= phy->autoneg_mask;
       
  1103 
       
  1104 	/*
       
  1105 	 * If autoneg_advertised is zero, we assume it was not defaulted
       
  1106 	 * by the calling code so we set to advertise full capability.
       
  1107 	 */
       
  1108 	if (phy->autoneg_advertised == 0)
       
  1109 		phy->autoneg_advertised = phy->autoneg_mask;
       
  1110 
       
  1111 	e_dbg("Reconfiguring auto-neg advertisement params\n");
       
  1112 	ret_val = e1000_phy_setup_autoneg(hw);
       
  1113 	if (ret_val) {
       
  1114 		e_dbg("Error Setting up Auto-Negotiation\n");
       
  1115 		return ret_val;
       
  1116 	}
       
  1117 	e_dbg("Restarting Auto-Neg\n");
       
  1118 
       
  1119 	/*
       
  1120 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
       
  1121 	 * the Auto Neg Restart bit in the PHY control register.
       
  1122 	 */
       
  1123 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
       
  1124 	if (ret_val)
       
  1125 		return ret_val;
       
  1126 
       
  1127 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
       
  1128 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
       
  1129 	if (ret_val)
       
  1130 		return ret_val;
       
  1131 
       
  1132 	/*
       
  1133 	 * Does the user want to wait for Auto-Neg to complete here, or
       
  1134 	 * check at a later time (for example, callback routine).
       
  1135 	 */
       
  1136 	if (phy->autoneg_wait_to_complete) {
       
  1137 		ret_val = e1000_wait_autoneg(hw);
       
  1138 		if (ret_val) {
       
  1139 			e_dbg("Error while waiting for "
       
  1140 				 "autoneg to complete\n");
       
  1141 			return ret_val;
       
  1142 		}
       
  1143 	}
       
  1144 
       
  1145 	hw->mac.get_link_status = 1;
       
  1146 
       
  1147 	return ret_val;
       
  1148 }
       
  1149 
       
  1150 /**
       
  1151  *  e1000e_setup_copper_link - Configure copper link settings
       
  1152  *  @hw: pointer to the HW structure
       
  1153  *
       
  1154  *  Calls the appropriate function to configure the link for auto-neg or forced
       
  1155  *  speed and duplex.  Then we check for link, once link is established calls
       
  1156  *  to configure collision distance and flow control are called.  If link is
       
  1157  *  not established, we return -E1000_ERR_PHY (-2).
       
  1158  **/
       
  1159 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
       
  1160 {
       
  1161 	s32 ret_val;
       
  1162 	bool link;
       
  1163 
       
  1164 	if (hw->mac.autoneg) {
       
  1165 		/*
       
  1166 		 * Setup autoneg and flow control advertisement and perform
       
  1167 		 * autonegotiation.
       
  1168 		 */
       
  1169 		ret_val = e1000_copper_link_autoneg(hw);
       
  1170 		if (ret_val)
       
  1171 			return ret_val;
       
  1172 	} else {
       
  1173 		/*
       
  1174 		 * PHY will be set to 10H, 10F, 100H or 100F
       
  1175 		 * depending on user settings.
       
  1176 		 */
       
  1177 		e_dbg("Forcing Speed and Duplex\n");
       
  1178 		ret_val = e1000_phy_force_speed_duplex(hw);
       
  1179 		if (ret_val) {
       
  1180 			e_dbg("Error Forcing Speed and Duplex\n");
       
  1181 			return ret_val;
       
  1182 		}
       
  1183 	}
       
  1184 
       
  1185 	/*
       
  1186 	 * Check link status. Wait up to 100 microseconds for link to become
       
  1187 	 * valid.
       
  1188 	 */
       
  1189 	ret_val = e1000e_phy_has_link_generic(hw,
       
  1190 					     COPPER_LINK_UP_LIMIT,
       
  1191 					     10,
       
  1192 					     &link);
       
  1193 	if (ret_val)
       
  1194 		return ret_val;
       
  1195 
       
  1196 	if (link) {
       
  1197 		e_dbg("Valid link established!!!\n");
       
  1198 		e1000e_config_collision_dist(hw);
       
  1199 		ret_val = e1000e_config_fc_after_link_up(hw);
       
  1200 	} else {
       
  1201 		e_dbg("Unable to establish link!!!\n");
       
  1202 	}
       
  1203 
       
  1204 	return ret_val;
       
  1205 }
       
  1206 
       
  1207 /**
       
  1208  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
       
  1209  *  @hw: pointer to the HW structure
       
  1210  *
       
  1211  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1212  *  auto-crossover to force MDI manually.  Waits for link and returns
       
  1213  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
       
  1214  **/
       
  1215 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
       
  1216 {
       
  1217 	struct e1000_phy_info *phy = &hw->phy;
       
  1218 	s32 ret_val;
       
  1219 	u16 phy_data;
       
  1220 	bool link;
       
  1221 
       
  1222 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
       
  1223 	if (ret_val)
       
  1224 		return ret_val;
       
  1225 
       
  1226 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1227 
       
  1228 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
       
  1229 	if (ret_val)
       
  1230 		return ret_val;
       
  1231 
       
  1232 	/*
       
  1233 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
       
  1234 	 * forced whenever speed and duplex are forced.
       
  1235 	 */
       
  1236 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
       
  1237 	if (ret_val)
       
  1238 		return ret_val;
       
  1239 
       
  1240 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
  1241 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  1242 
       
  1243 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
       
  1244 	if (ret_val)
       
  1245 		return ret_val;
       
  1246 
       
  1247 	e_dbg("IGP PSCR: %X\n", phy_data);
       
  1248 
       
  1249 	udelay(1);
       
  1250 
       
  1251 	if (phy->autoneg_wait_to_complete) {
       
  1252 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
       
  1253 
       
  1254 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1255 						     PHY_FORCE_LIMIT,
       
  1256 						     100000,
       
  1257 						     &link);
       
  1258 		if (ret_val)
       
  1259 			return ret_val;
       
  1260 
       
  1261 		if (!link)
       
  1262 			e_dbg("Link taking longer than expected.\n");
       
  1263 
       
  1264 		/* Try once more */
       
  1265 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1266 						     PHY_FORCE_LIMIT,
       
  1267 						     100000,
       
  1268 						     &link);
       
  1269 		if (ret_val)
       
  1270 			return ret_val;
       
  1271 	}
       
  1272 
       
  1273 	return ret_val;
       
  1274 }
       
  1275 
       
  1276 /**
       
  1277  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
       
  1278  *  @hw: pointer to the HW structure
       
  1279  *
       
  1280  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1281  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
       
  1282  *  changes.  If time expires while waiting for link up, we reset the DSP.
       
  1283  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
       
  1284  *  successful completion, else return corresponding error code.
       
  1285  **/
       
  1286 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
       
  1287 {
       
  1288 	struct e1000_phy_info *phy = &hw->phy;
       
  1289 	s32 ret_val;
       
  1290 	u16 phy_data;
       
  1291 	bool link;
       
  1292 
       
  1293 	/*
       
  1294 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
       
  1295 	 * forced whenever speed and duplex are forced.
       
  1296 	 */
       
  1297 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1298 	if (ret_val)
       
  1299 		return ret_val;
       
  1300 
       
  1301 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1302 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1303 	if (ret_val)
       
  1304 		return ret_val;
       
  1305 
       
  1306 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
       
  1307 
       
  1308 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
       
  1309 	if (ret_val)
       
  1310 		return ret_val;
       
  1311 
       
  1312 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1313 
       
  1314 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
       
  1315 	if (ret_val)
       
  1316 		return ret_val;
       
  1317 
       
  1318 	/* Reset the phy to commit changes. */
       
  1319 	ret_val = e1000e_commit_phy(hw);
       
  1320 	if (ret_val)
       
  1321 		return ret_val;
       
  1322 
       
  1323 	if (phy->autoneg_wait_to_complete) {
       
  1324 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
       
  1325 
       
  1326 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1327 						     100000, &link);
       
  1328 		if (ret_val)
       
  1329 			return ret_val;
       
  1330 
       
  1331 		if (!link) {
       
  1332 			if (hw->phy.type != e1000_phy_m88) {
       
  1333 				e_dbg("Link taking longer than expected.\n");
       
  1334 			} else {
       
  1335 				/*
       
  1336 				 * We didn't get link.
       
  1337 				 * Reset the DSP and cross our fingers.
       
  1338 				 */
       
  1339 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
       
  1340 						   0x001d);
       
  1341 				if (ret_val)
       
  1342 					return ret_val;
       
  1343 				ret_val = e1000e_phy_reset_dsp(hw);
       
  1344 				if (ret_val)
       
  1345 					return ret_val;
       
  1346 			}
       
  1347 		}
       
  1348 
       
  1349 		/* Try once more */
       
  1350 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1351 						     100000, &link);
       
  1352 		if (ret_val)
       
  1353 			return ret_val;
       
  1354 	}
       
  1355 
       
  1356 	if (hw->phy.type != e1000_phy_m88)
       
  1357 		return 0;
       
  1358 
       
  1359 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
  1360 	if (ret_val)
       
  1361 		return ret_val;
       
  1362 
       
  1363 	/*
       
  1364 	 * Resetting the phy means we need to re-force TX_CLK in the
       
  1365 	 * Extended PHY Specific Control Register to 25MHz clock from
       
  1366 	 * the reset value of 2.5MHz.
       
  1367 	 */
       
  1368 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
  1369 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
  1370 	if (ret_val)
       
  1371 		return ret_val;
       
  1372 
       
  1373 	/*
       
  1374 	 * In addition, we must re-enable CRS on Tx for both half and full
       
  1375 	 * duplex.
       
  1376 	 */
       
  1377 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1378 	if (ret_val)
       
  1379 		return ret_val;
       
  1380 
       
  1381 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1382 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1383 
       
  1384 	return ret_val;
       
  1385 }
       
  1386 
       
  1387 /**
       
  1388  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
       
  1389  *  @hw: pointer to the HW structure
       
  1390  *
       
  1391  *  Forces the speed and duplex settings of the PHY.
       
  1392  *  This is a function pointer entry point only called by
       
  1393  *  PHY setup routines.
       
  1394  **/
       
  1395 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
       
  1396 {
       
  1397 	struct e1000_phy_info *phy = &hw->phy;
       
  1398 	s32 ret_val;
       
  1399 	u16 data;
       
  1400 	bool link;
       
  1401 
       
  1402 	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
       
  1403 	if (ret_val)
       
  1404 		goto out;
       
  1405 
       
  1406 	e1000e_phy_force_speed_duplex_setup(hw, &data);
       
  1407 
       
  1408 	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
       
  1409 	if (ret_val)
       
  1410 		goto out;
       
  1411 
       
  1412 	/* Disable MDI-X support for 10/100 */
       
  1413 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
       
  1414 	if (ret_val)
       
  1415 		goto out;
       
  1416 
       
  1417 	data &= ~IFE_PMC_AUTO_MDIX;
       
  1418 	data &= ~IFE_PMC_FORCE_MDIX;
       
  1419 
       
  1420 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
       
  1421 	if (ret_val)
       
  1422 		goto out;
       
  1423 
       
  1424 	e_dbg("IFE PMC: %X\n", data);
       
  1425 
       
  1426 	udelay(1);
       
  1427 
       
  1428 	if (phy->autoneg_wait_to_complete) {
       
  1429 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
       
  1430 
       
  1431 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1432 		                                     PHY_FORCE_LIMIT,
       
  1433 		                                     100000,
       
  1434 		                                     &link);
       
  1435 		if (ret_val)
       
  1436 			goto out;
       
  1437 
       
  1438 		if (!link)
       
  1439 			e_dbg("Link taking longer than expected.\n");
       
  1440 
       
  1441 		/* Try once more */
       
  1442 		ret_val = e1000e_phy_has_link_generic(hw,
       
  1443 		                                     PHY_FORCE_LIMIT,
       
  1444 		                                     100000,
       
  1445 		                                     &link);
       
  1446 		if (ret_val)
       
  1447 			goto out;
       
  1448 	}
       
  1449 
       
  1450 out:
       
  1451 	return ret_val;
       
  1452 }
       
  1453 
       
  1454 /**
       
  1455  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
       
  1456  *  @hw: pointer to the HW structure
       
  1457  *  @phy_ctrl: pointer to current value of PHY_CONTROL
       
  1458  *
       
  1459  *  Forces speed and duplex on the PHY by doing the following: disable flow
       
  1460  *  control, force speed/duplex on the MAC, disable auto speed detection,
       
  1461  *  disable auto-negotiation, configure duplex, configure speed, configure
       
  1462  *  the collision distance, write configuration to CTRL register.  The
       
  1463  *  caller must write to the PHY_CONTROL register for these settings to
       
  1464  *  take affect.
       
  1465  **/
       
  1466 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
       
  1467 {
       
  1468 	struct e1000_mac_info *mac = &hw->mac;
       
  1469 	u32 ctrl;
       
  1470 
       
  1471 	/* Turn off flow control when forcing speed/duplex */
       
  1472 	hw->fc.current_mode = e1000_fc_none;
       
  1473 
       
  1474 	/* Force speed/duplex on the mac */
       
  1475 	ctrl = er32(CTRL);
       
  1476 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1477 	ctrl &= ~E1000_CTRL_SPD_SEL;
       
  1478 
       
  1479 	/* Disable Auto Speed Detection */
       
  1480 	ctrl &= ~E1000_CTRL_ASDE;
       
  1481 
       
  1482 	/* Disable autoneg on the phy */
       
  1483 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
       
  1484 
       
  1485 	/* Forcing Full or Half Duplex? */
       
  1486 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
       
  1487 		ctrl &= ~E1000_CTRL_FD;
       
  1488 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
       
  1489 		e_dbg("Half Duplex\n");
       
  1490 	} else {
       
  1491 		ctrl |= E1000_CTRL_FD;
       
  1492 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
       
  1493 		e_dbg("Full Duplex\n");
       
  1494 	}
       
  1495 
       
  1496 	/* Forcing 10mb or 100mb? */
       
  1497 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
       
  1498 		ctrl |= E1000_CTRL_SPD_100;
       
  1499 		*phy_ctrl |= MII_CR_SPEED_100;
       
  1500 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
       
  1501 		e_dbg("Forcing 100mb\n");
       
  1502 	} else {
       
  1503 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1504 		*phy_ctrl |= MII_CR_SPEED_10;
       
  1505 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
       
  1506 		e_dbg("Forcing 10mb\n");
       
  1507 	}
       
  1508 
       
  1509 	e1000e_config_collision_dist(hw);
       
  1510 
       
  1511 	ew32(CTRL, ctrl);
       
  1512 }
       
  1513 
       
  1514 /**
       
  1515  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
       
  1516  *  @hw: pointer to the HW structure
       
  1517  *  @active: boolean used to enable/disable lplu
       
  1518  *
       
  1519  *  Success returns 0, Failure returns 1
       
  1520  *
       
  1521  *  The low power link up (lplu) state is set to the power management level D3
       
  1522  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
       
  1523  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
       
  1524  *  is used during Dx states where the power conservation is most important.
       
  1525  *  During driver activity, SmartSpeed should be enabled so performance is
       
  1526  *  maintained.
       
  1527  **/
       
  1528 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
       
  1529 {
       
  1530 	struct e1000_phy_info *phy = &hw->phy;
       
  1531 	s32 ret_val;
       
  1532 	u16 data;
       
  1533 
       
  1534 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
       
  1535 	if (ret_val)
       
  1536 		return ret_val;
       
  1537 
       
  1538 	if (!active) {
       
  1539 		data &= ~IGP02E1000_PM_D3_LPLU;
       
  1540 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
  1541 		if (ret_val)
       
  1542 			return ret_val;
       
  1543 		/*
       
  1544 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  1545 		 * during Dx states where the power conservation is most
       
  1546 		 * important.  During driver activity we should enable
       
  1547 		 * SmartSpeed, so performance is maintained.
       
  1548 		 */
       
  1549 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  1550 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1551 					   &data);
       
  1552 			if (ret_val)
       
  1553 				return ret_val;
       
  1554 
       
  1555 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  1556 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1557 					   data);
       
  1558 			if (ret_val)
       
  1559 				return ret_val;
       
  1560 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  1561 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1562 					   &data);
       
  1563 			if (ret_val)
       
  1564 				return ret_val;
       
  1565 
       
  1566 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1567 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1568 					   data);
       
  1569 			if (ret_val)
       
  1570 				return ret_val;
       
  1571 		}
       
  1572 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
  1573 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
  1574 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
       
  1575 		data |= IGP02E1000_PM_D3_LPLU;
       
  1576 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
  1577 		if (ret_val)
       
  1578 			return ret_val;
       
  1579 
       
  1580 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  1581 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  1582 		if (ret_val)
       
  1583 			return ret_val;
       
  1584 
       
  1585 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1586 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  1587 	}
       
  1588 
       
  1589 	return ret_val;
       
  1590 }
       
  1591 
       
  1592 /**
       
  1593  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
       
  1594  *  @hw: pointer to the HW structure
       
  1595  *
       
  1596  *  Success returns 0, Failure returns 1
       
  1597  *
       
  1598  *  A downshift is detected by querying the PHY link health.
       
  1599  **/
       
  1600 s32 e1000e_check_downshift(struct e1000_hw *hw)
       
  1601 {
       
  1602 	struct e1000_phy_info *phy = &hw->phy;
       
  1603 	s32 ret_val;
       
  1604 	u16 phy_data, offset, mask;
       
  1605 
       
  1606 	switch (phy->type) {
       
  1607 	case e1000_phy_m88:
       
  1608 	case e1000_phy_gg82563:
       
  1609 	case e1000_phy_bm:
       
  1610 	case e1000_phy_82578:
       
  1611 		offset	= M88E1000_PHY_SPEC_STATUS;
       
  1612 		mask	= M88E1000_PSSR_DOWNSHIFT;
       
  1613 		break;
       
  1614 	case e1000_phy_igp_2:
       
  1615 	case e1000_phy_igp_3:
       
  1616 		offset	= IGP01E1000_PHY_LINK_HEALTH;
       
  1617 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
       
  1618 		break;
       
  1619 	default:
       
  1620 		/* speed downshift not supported */
       
  1621 		phy->speed_downgraded = false;
       
  1622 		return 0;
       
  1623 	}
       
  1624 
       
  1625 	ret_val = e1e_rphy(hw, offset, &phy_data);
       
  1626 
       
  1627 	if (!ret_val)
       
  1628 		phy->speed_downgraded = (phy_data & mask);
       
  1629 
       
  1630 	return ret_val;
       
  1631 }
       
  1632 
       
  1633 /**
       
  1634  *  e1000_check_polarity_m88 - Checks the polarity.
       
  1635  *  @hw: pointer to the HW structure
       
  1636  *
       
  1637  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1638  *
       
  1639  *  Polarity is determined based on the PHY specific status register.
       
  1640  **/
       
  1641 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
       
  1642 {
       
  1643 	struct e1000_phy_info *phy = &hw->phy;
       
  1644 	s32 ret_val;
       
  1645 	u16 data;
       
  1646 
       
  1647 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
       
  1648 
       
  1649 	if (!ret_val)
       
  1650 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
       
  1651 				      ? e1000_rev_polarity_reversed
       
  1652 				      : e1000_rev_polarity_normal;
       
  1653 
       
  1654 	return ret_val;
       
  1655 }
       
  1656 
       
  1657 /**
       
  1658  *  e1000_check_polarity_igp - Checks the polarity.
       
  1659  *  @hw: pointer to the HW structure
       
  1660  *
       
  1661  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1662  *
       
  1663  *  Polarity is determined based on the PHY port status register, and the
       
  1664  *  current speed (since there is no polarity at 100Mbps).
       
  1665  **/
       
  1666 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
       
  1667 {
       
  1668 	struct e1000_phy_info *phy = &hw->phy;
       
  1669 	s32 ret_val;
       
  1670 	u16 data, offset, mask;
       
  1671 
       
  1672 	/*
       
  1673 	 * Polarity is determined based on the speed of
       
  1674 	 * our connection.
       
  1675 	 */
       
  1676 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  1677 	if (ret_val)
       
  1678 		return ret_val;
       
  1679 
       
  1680 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  1681 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  1682 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
       
  1683 		mask	= IGP01E1000_PHY_POLARITY_MASK;
       
  1684 	} else {
       
  1685 		/*
       
  1686 		 * This really only applies to 10Mbps since
       
  1687 		 * there is no polarity for 100Mbps (always 0).
       
  1688 		 */
       
  1689 		offset	= IGP01E1000_PHY_PORT_STATUS;
       
  1690 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
       
  1691 	}
       
  1692 
       
  1693 	ret_val = e1e_rphy(hw, offset, &data);
       
  1694 
       
  1695 	if (!ret_val)
       
  1696 		phy->cable_polarity = (data & mask)
       
  1697 				      ? e1000_rev_polarity_reversed
       
  1698 				      : e1000_rev_polarity_normal;
       
  1699 
       
  1700 	return ret_val;
       
  1701 }
       
  1702 
       
  1703 /**
       
  1704  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
       
  1705  *  @hw: pointer to the HW structure
       
  1706  *
       
  1707  *  Polarity is determined on the polarity reversal feature being enabled.
       
  1708  **/
       
  1709 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
       
  1710 {
       
  1711 	struct e1000_phy_info *phy = &hw->phy;
       
  1712 	s32 ret_val;
       
  1713 	u16 phy_data, offset, mask;
       
  1714 
       
  1715 	/*
       
  1716 	 * Polarity is determined based on the reversal feature being enabled.
       
  1717 	 */
       
  1718 	if (phy->polarity_correction) {
       
  1719 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
       
  1720 		mask = IFE_PESC_POLARITY_REVERSED;
       
  1721 	} else {
       
  1722 		offset = IFE_PHY_SPECIAL_CONTROL;
       
  1723 		mask = IFE_PSC_FORCE_POLARITY;
       
  1724 	}
       
  1725 
       
  1726 	ret_val = e1e_rphy(hw, offset, &phy_data);
       
  1727 
       
  1728 	if (!ret_val)
       
  1729 		phy->cable_polarity = (phy_data & mask)
       
  1730 		                       ? e1000_rev_polarity_reversed
       
  1731 		                       : e1000_rev_polarity_normal;
       
  1732 
       
  1733 	return ret_val;
       
  1734 }
       
  1735 
       
  1736 /**
       
  1737  *  e1000_wait_autoneg - Wait for auto-neg completion
       
  1738  *  @hw: pointer to the HW structure
       
  1739  *
       
  1740  *  Waits for auto-negotiation to complete or for the auto-negotiation time
       
  1741  *  limit to expire, which ever happens first.
       
  1742  **/
       
  1743 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
       
  1744 {
       
  1745 	s32 ret_val = 0;
       
  1746 	u16 i, phy_status;
       
  1747 
       
  1748 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
       
  1749 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
       
  1750 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1751 		if (ret_val)
       
  1752 			break;
       
  1753 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1754 		if (ret_val)
       
  1755 			break;
       
  1756 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
       
  1757 			break;
       
  1758 		msleep(100);
       
  1759 	}
       
  1760 
       
  1761 	/*
       
  1762 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
       
  1763 	 * has completed.
       
  1764 	 */
       
  1765 	return ret_val;
       
  1766 }
       
  1767 
       
  1768 /**
       
  1769  *  e1000e_phy_has_link_generic - Polls PHY for link
       
  1770  *  @hw: pointer to the HW structure
       
  1771  *  @iterations: number of times to poll for link
       
  1772  *  @usec_interval: delay between polling attempts
       
  1773  *  @success: pointer to whether polling was successful or not
       
  1774  *
       
  1775  *  Polls the PHY status register for link, 'iterations' number of times.
       
  1776  **/
       
  1777 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
       
  1778 			       u32 usec_interval, bool *success)
       
  1779 {
       
  1780 	s32 ret_val = 0;
       
  1781 	u16 i, phy_status;
       
  1782 
       
  1783 	for (i = 0; i < iterations; i++) {
       
  1784 		/*
       
  1785 		 * Some PHYs require the PHY_STATUS register to be read
       
  1786 		 * twice due to the link bit being sticky.  No harm doing
       
  1787 		 * it across the board.
       
  1788 		 */
       
  1789 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1790 		if (ret_val)
       
  1791 			/*
       
  1792 			 * If the first read fails, another entity may have
       
  1793 			 * ownership of the resources, wait and try again to
       
  1794 			 * see if they have relinquished the resources yet.
       
  1795 			 */
       
  1796 			udelay(usec_interval);
       
  1797 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1798 		if (ret_val)
       
  1799 			break;
       
  1800 		if (phy_status & MII_SR_LINK_STATUS)
       
  1801 			break;
       
  1802 		if (usec_interval >= 1000)
       
  1803 			mdelay(usec_interval/1000);
       
  1804 		else
       
  1805 			udelay(usec_interval);
       
  1806 	}
       
  1807 
       
  1808 	*success = (i < iterations);
       
  1809 
       
  1810 	return ret_val;
       
  1811 }
       
  1812 
       
  1813 /**
       
  1814  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
       
  1815  *  @hw: pointer to the HW structure
       
  1816  *
       
  1817  *  Reads the PHY specific status register to retrieve the cable length
       
  1818  *  information.  The cable length is determined by averaging the minimum and
       
  1819  *  maximum values to get the "average" cable length.  The m88 PHY has four
       
  1820  *  possible cable length values, which are:
       
  1821  *	Register Value		Cable Length
       
  1822  *	0			< 50 meters
       
  1823  *	1			50 - 80 meters
       
  1824  *	2			80 - 110 meters
       
  1825  *	3			110 - 140 meters
       
  1826  *	4			> 140 meters
       
  1827  **/
       
  1828 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
       
  1829 {
       
  1830 	struct e1000_phy_info *phy = &hw->phy;
       
  1831 	s32 ret_val;
       
  1832 	u16 phy_data, index;
       
  1833 
       
  1834 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1835 	if (ret_val)
       
  1836 		goto out;
       
  1837 
       
  1838 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
       
  1839 	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
       
  1840 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
       
  1841 		ret_val = -E1000_ERR_PHY;
       
  1842 		goto out;
       
  1843 	}
       
  1844 
       
  1845 	phy->min_cable_length = e1000_m88_cable_length_table[index];
       
  1846 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
       
  1847 
       
  1848 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1849 
       
  1850 out:
       
  1851 	return ret_val;
       
  1852 }
       
  1853 
       
  1854 /**
       
  1855  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
       
  1856  *  @hw: pointer to the HW structure
       
  1857  *
       
  1858  *  The automatic gain control (agc) normalizes the amplitude of the
       
  1859  *  received signal, adjusting for the attenuation produced by the
       
  1860  *  cable.  By reading the AGC registers, which represent the
       
  1861  *  combination of coarse and fine gain value, the value can be put
       
  1862  *  into a lookup table to obtain the approximate cable length
       
  1863  *  for each channel.
       
  1864  **/
       
  1865 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
       
  1866 {
       
  1867 	struct e1000_phy_info *phy = &hw->phy;
       
  1868 	s32 ret_val;
       
  1869 	u16 phy_data, i, agc_value = 0;
       
  1870 	u16 cur_agc_index, max_agc_index = 0;
       
  1871 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
       
  1872 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
       
  1873 	       IGP02E1000_PHY_AGC_A,
       
  1874 	       IGP02E1000_PHY_AGC_B,
       
  1875 	       IGP02E1000_PHY_AGC_C,
       
  1876 	       IGP02E1000_PHY_AGC_D
       
  1877 	};
       
  1878 
       
  1879 	/* Read the AGC registers for all channels */
       
  1880 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
       
  1881 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
       
  1882 		if (ret_val)
       
  1883 			return ret_val;
       
  1884 
       
  1885 		/*
       
  1886 		 * Getting bits 15:9, which represent the combination of
       
  1887 		 * coarse and fine gain values.  The result is a number
       
  1888 		 * that can be put into the lookup table to obtain the
       
  1889 		 * approximate cable length.
       
  1890 		 */
       
  1891 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
       
  1892 				IGP02E1000_AGC_LENGTH_MASK;
       
  1893 
       
  1894 		/* Array index bound check. */
       
  1895 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
       
  1896 		    (cur_agc_index == 0))
       
  1897 			return -E1000_ERR_PHY;
       
  1898 
       
  1899 		/* Remove min & max AGC values from calculation. */
       
  1900 		if (e1000_igp_2_cable_length_table[min_agc_index] >
       
  1901 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1902 			min_agc_index = cur_agc_index;
       
  1903 		if (e1000_igp_2_cable_length_table[max_agc_index] <
       
  1904 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1905 			max_agc_index = cur_agc_index;
       
  1906 
       
  1907 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
       
  1908 	}
       
  1909 
       
  1910 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
       
  1911 		      e1000_igp_2_cable_length_table[max_agc_index]);
       
  1912 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
       
  1913 
       
  1914 	/* Calculate cable length with the error range of +/- 10 meters. */
       
  1915 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
       
  1916 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
       
  1917 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
       
  1918 
       
  1919 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1920 
       
  1921 	return ret_val;
       
  1922 }
       
  1923 
       
  1924 /**
       
  1925  *  e1000e_get_phy_info_m88 - Retrieve PHY information
       
  1926  *  @hw: pointer to the HW structure
       
  1927  *
       
  1928  *  Valid for only copper links.  Read the PHY status register (sticky read)
       
  1929  *  to verify that link is up.  Read the PHY special control register to
       
  1930  *  determine the polarity and 10base-T extended distance.  Read the PHY
       
  1931  *  special status register to determine MDI/MDIx and current speed.  If
       
  1932  *  speed is 1000, then determine cable length, local and remote receiver.
       
  1933  **/
       
  1934 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
       
  1935 {
       
  1936 	struct e1000_phy_info *phy = &hw->phy;
       
  1937 	s32  ret_val;
       
  1938 	u16 phy_data;
       
  1939 	bool link;
       
  1940 
       
  1941 	if (phy->media_type != e1000_media_type_copper) {
       
  1942 		e_dbg("Phy info is only valid for copper media\n");
       
  1943 		return -E1000_ERR_CONFIG;
       
  1944 	}
       
  1945 
       
  1946 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  1947 	if (ret_val)
       
  1948 		return ret_val;
       
  1949 
       
  1950 	if (!link) {
       
  1951 		e_dbg("Phy info is only valid if link is up\n");
       
  1952 		return -E1000_ERR_CONFIG;
       
  1953 	}
       
  1954 
       
  1955 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1956 	if (ret_val)
       
  1957 		return ret_val;
       
  1958 
       
  1959 	phy->polarity_correction = (phy_data &
       
  1960 				    M88E1000_PSCR_POLARITY_REVERSAL);
       
  1961 
       
  1962 	ret_val = e1000_check_polarity_m88(hw);
       
  1963 	if (ret_val)
       
  1964 		return ret_val;
       
  1965 
       
  1966 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1967 	if (ret_val)
       
  1968 		return ret_val;
       
  1969 
       
  1970 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
       
  1971 
       
  1972 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
       
  1973 		ret_val = e1000_get_cable_length(hw);
       
  1974 		if (ret_val)
       
  1975 			return ret_val;
       
  1976 
       
  1977 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
       
  1978 		if (ret_val)
       
  1979 			return ret_val;
       
  1980 
       
  1981 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
       
  1982 				? e1000_1000t_rx_status_ok
       
  1983 				: e1000_1000t_rx_status_not_ok;
       
  1984 
       
  1985 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
       
  1986 				 ? e1000_1000t_rx_status_ok
       
  1987 				 : e1000_1000t_rx_status_not_ok;
       
  1988 	} else {
       
  1989 		/* Set values to "undefined" */
       
  1990 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  1991 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  1992 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  1993 	}
       
  1994 
       
  1995 	return ret_val;
       
  1996 }
       
  1997 
       
  1998 /**
       
  1999  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
       
  2000  *  @hw: pointer to the HW structure
       
  2001  *
       
  2002  *  Read PHY status to determine if link is up.  If link is up, then
       
  2003  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  2004  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  2005  *  determine on the cable length, local and remote receiver.
       
  2006  **/
       
  2007 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
       
  2008 {
       
  2009 	struct e1000_phy_info *phy = &hw->phy;
       
  2010 	s32 ret_val;
       
  2011 	u16 data;
       
  2012 	bool link;
       
  2013 
       
  2014 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  2015 	if (ret_val)
       
  2016 		return ret_val;
       
  2017 
       
  2018 	if (!link) {
       
  2019 		e_dbg("Phy info is only valid if link is up\n");
       
  2020 		return -E1000_ERR_CONFIG;
       
  2021 	}
       
  2022 
       
  2023 	phy->polarity_correction = true;
       
  2024 
       
  2025 	ret_val = e1000_check_polarity_igp(hw);
       
  2026 	if (ret_val)
       
  2027 		return ret_val;
       
  2028 
       
  2029 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  2030 	if (ret_val)
       
  2031 		return ret_val;
       
  2032 
       
  2033 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
       
  2034 
       
  2035 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  2036 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  2037 		ret_val = e1000_get_cable_length(hw);
       
  2038 		if (ret_val)
       
  2039 			return ret_val;
       
  2040 
       
  2041 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
       
  2042 		if (ret_val)
       
  2043 			return ret_val;
       
  2044 
       
  2045 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
       
  2046 				? e1000_1000t_rx_status_ok
       
  2047 				: e1000_1000t_rx_status_not_ok;
       
  2048 
       
  2049 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
       
  2050 				 ? e1000_1000t_rx_status_ok
       
  2051 				 : e1000_1000t_rx_status_not_ok;
       
  2052 	} else {
       
  2053 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2054 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2055 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2056 	}
       
  2057 
       
  2058 	return ret_val;
       
  2059 }
       
  2060 
       
  2061 /**
       
  2062  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
       
  2063  *  @hw: pointer to the HW structure
       
  2064  *
       
  2065  *  Populates "phy" structure with various feature states.
       
  2066  **/
       
  2067 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
       
  2068 {
       
  2069 	struct e1000_phy_info *phy = &hw->phy;
       
  2070 	s32 ret_val;
       
  2071 	u16 data;
       
  2072 	bool link;
       
  2073 
       
  2074 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  2075 	if (ret_val)
       
  2076 		goto out;
       
  2077 
       
  2078 	if (!link) {
       
  2079 		e_dbg("Phy info is only valid if link is up\n");
       
  2080 		ret_val = -E1000_ERR_CONFIG;
       
  2081 		goto out;
       
  2082 	}
       
  2083 
       
  2084 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
       
  2085 	if (ret_val)
       
  2086 		goto out;
       
  2087 	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
       
  2088 	                           ? false : true;
       
  2089 
       
  2090 	if (phy->polarity_correction) {
       
  2091 		ret_val = e1000_check_polarity_ife(hw);
       
  2092 		if (ret_val)
       
  2093 			goto out;
       
  2094 	} else {
       
  2095 		/* Polarity is forced */
       
  2096 		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
       
  2097 		                      ? e1000_rev_polarity_reversed
       
  2098 		                      : e1000_rev_polarity_normal;
       
  2099 	}
       
  2100 
       
  2101 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
       
  2102 	if (ret_val)
       
  2103 		goto out;
       
  2104 
       
  2105 	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
       
  2106 
       
  2107 	/* The following parameters are undefined for 10/100 operation. */
       
  2108 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2109 	phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2110 	phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2111 
       
  2112 out:
       
  2113 	return ret_val;
       
  2114 }
       
  2115 
       
  2116 /**
       
  2117  *  e1000e_phy_sw_reset - PHY software reset
       
  2118  *  @hw: pointer to the HW structure
       
  2119  *
       
  2120  *  Does a software reset of the PHY by reading the PHY control register and
       
  2121  *  setting/write the control register reset bit to the PHY.
       
  2122  **/
       
  2123 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
       
  2124 {
       
  2125 	s32 ret_val;
       
  2126 	u16 phy_ctrl;
       
  2127 
       
  2128 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
       
  2129 	if (ret_val)
       
  2130 		return ret_val;
       
  2131 
       
  2132 	phy_ctrl |= MII_CR_RESET;
       
  2133 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
       
  2134 	if (ret_val)
       
  2135 		return ret_val;
       
  2136 
       
  2137 	udelay(1);
       
  2138 
       
  2139 	return ret_val;
       
  2140 }
       
  2141 
       
  2142 /**
       
  2143  *  e1000e_phy_hw_reset_generic - PHY hardware reset
       
  2144  *  @hw: pointer to the HW structure
       
  2145  *
       
  2146  *  Verify the reset block is not blocking us from resetting.  Acquire
       
  2147  *  semaphore (if necessary) and read/set/write the device control reset
       
  2148  *  bit in the PHY.  Wait the appropriate delay time for the device to
       
  2149  *  reset and release the semaphore (if necessary).
       
  2150  **/
       
  2151 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
       
  2152 {
       
  2153 	struct e1000_phy_info *phy = &hw->phy;
       
  2154 	s32 ret_val;
       
  2155 	u32 ctrl;
       
  2156 
       
  2157 	ret_val = e1000_check_reset_block(hw);
       
  2158 	if (ret_val)
       
  2159 		return 0;
       
  2160 
       
  2161 	ret_val = phy->ops.acquire(hw);
       
  2162 	if (ret_val)
       
  2163 		return ret_val;
       
  2164 
       
  2165 	ctrl = er32(CTRL);
       
  2166 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
       
  2167 	e1e_flush();
       
  2168 
       
  2169 	udelay(phy->reset_delay_us);
       
  2170 
       
  2171 	ew32(CTRL, ctrl);
       
  2172 	e1e_flush();
       
  2173 
       
  2174 	udelay(150);
       
  2175 
       
  2176 	phy->ops.release(hw);
       
  2177 
       
  2178 	return e1000_get_phy_cfg_done(hw);
       
  2179 }
       
  2180 
       
  2181 /**
       
  2182  *  e1000e_get_cfg_done - Generic configuration done
       
  2183  *  @hw: pointer to the HW structure
       
  2184  *
       
  2185  *  Generic function to wait 10 milli-seconds for configuration to complete
       
  2186  *  and return success.
       
  2187  **/
       
  2188 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
       
  2189 {
       
  2190 	mdelay(10);
       
  2191 	return 0;
       
  2192 }
       
  2193 
       
  2194 /**
       
  2195  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
       
  2196  *  @hw: pointer to the HW structure
       
  2197  *
       
  2198  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
       
  2199  **/
       
  2200 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
       
  2201 {
       
  2202 	e_dbg("Running IGP 3 PHY init script\n");
       
  2203 
       
  2204 	/* PHY init IGP 3 */
       
  2205 	/* Enable rise/fall, 10-mode work in class-A */
       
  2206 	e1e_wphy(hw, 0x2F5B, 0x9018);
       
  2207 	/* Remove all caps from Replica path filter */
       
  2208 	e1e_wphy(hw, 0x2F52, 0x0000);
       
  2209 	/* Bias trimming for ADC, AFE and Driver (Default) */
       
  2210 	e1e_wphy(hw, 0x2FB1, 0x8B24);
       
  2211 	/* Increase Hybrid poly bias */
       
  2212 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
       
  2213 	/* Add 4% to Tx amplitude in Gig mode */
       
  2214 	e1e_wphy(hw, 0x2010, 0x10B0);
       
  2215 	/* Disable trimming (TTT) */
       
  2216 	e1e_wphy(hw, 0x2011, 0x0000);
       
  2217 	/* Poly DC correction to 94.6% + 2% for all channels */
       
  2218 	e1e_wphy(hw, 0x20DD, 0x249A);
       
  2219 	/* ABS DC correction to 95.9% */
       
  2220 	e1e_wphy(hw, 0x20DE, 0x00D3);
       
  2221 	/* BG temp curve trim */
       
  2222 	e1e_wphy(hw, 0x28B4, 0x04CE);
       
  2223 	/* Increasing ADC OPAMP stage 1 currents to max */
       
  2224 	e1e_wphy(hw, 0x2F70, 0x29E4);
       
  2225 	/* Force 1000 ( required for enabling PHY regs configuration) */
       
  2226 	e1e_wphy(hw, 0x0000, 0x0140);
       
  2227 	/* Set upd_freq to 6 */
       
  2228 	e1e_wphy(hw, 0x1F30, 0x1606);
       
  2229 	/* Disable NPDFE */
       
  2230 	e1e_wphy(hw, 0x1F31, 0xB814);
       
  2231 	/* Disable adaptive fixed FFE (Default) */
       
  2232 	e1e_wphy(hw, 0x1F35, 0x002A);
       
  2233 	/* Enable FFE hysteresis */
       
  2234 	e1e_wphy(hw, 0x1F3E, 0x0067);
       
  2235 	/* Fixed FFE for short cable lengths */
       
  2236 	e1e_wphy(hw, 0x1F54, 0x0065);
       
  2237 	/* Fixed FFE for medium cable lengths */
       
  2238 	e1e_wphy(hw, 0x1F55, 0x002A);
       
  2239 	/* Fixed FFE for long cable lengths */
       
  2240 	e1e_wphy(hw, 0x1F56, 0x002A);
       
  2241 	/* Enable Adaptive Clip Threshold */
       
  2242 	e1e_wphy(hw, 0x1F72, 0x3FB0);
       
  2243 	/* AHT reset limit to 1 */
       
  2244 	e1e_wphy(hw, 0x1F76, 0xC0FF);
       
  2245 	/* Set AHT master delay to 127 msec */
       
  2246 	e1e_wphy(hw, 0x1F77, 0x1DEC);
       
  2247 	/* Set scan bits for AHT */
       
  2248 	e1e_wphy(hw, 0x1F78, 0xF9EF);
       
  2249 	/* Set AHT Preset bits */
       
  2250 	e1e_wphy(hw, 0x1F79, 0x0210);
       
  2251 	/* Change integ_factor of channel A to 3 */
       
  2252 	e1e_wphy(hw, 0x1895, 0x0003);
       
  2253 	/* Change prop_factor of channels BCD to 8 */
       
  2254 	e1e_wphy(hw, 0x1796, 0x0008);
       
  2255 	/* Change cg_icount + enable integbp for channels BCD */
       
  2256 	e1e_wphy(hw, 0x1798, 0xD008);
       
  2257 	/*
       
  2258 	 * Change cg_icount + enable integbp + change prop_factor_master
       
  2259 	 * to 8 for channel A
       
  2260 	 */
       
  2261 	e1e_wphy(hw, 0x1898, 0xD918);
       
  2262 	/* Disable AHT in Slave mode on channel A */
       
  2263 	e1e_wphy(hw, 0x187A, 0x0800);
       
  2264 	/*
       
  2265 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
       
  2266 	 * Enable SPD+B2B
       
  2267 	 */
       
  2268 	e1e_wphy(hw, 0x0019, 0x008D);
       
  2269 	/* Enable restart AN on an1000_dis change */
       
  2270 	e1e_wphy(hw, 0x001B, 0x2080);
       
  2271 	/* Enable wh_fifo read clock in 10/100 modes */
       
  2272 	e1e_wphy(hw, 0x0014, 0x0045);
       
  2273 	/* Restart AN, Speed selection is 1000 */
       
  2274 	e1e_wphy(hw, 0x0000, 0x1340);
       
  2275 
       
  2276 	return 0;
       
  2277 }
       
  2278 
       
  2279 /* Internal function pointers */
       
  2280 
       
  2281 /**
       
  2282  *  e1000_get_phy_cfg_done - Generic PHY configuration done
       
  2283  *  @hw: pointer to the HW structure
       
  2284  *
       
  2285  *  Return success if silicon family did not implement a family specific
       
  2286  *  get_cfg_done function.
       
  2287  **/
       
  2288 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
       
  2289 {
       
  2290 	if (hw->phy.ops.get_cfg_done)
       
  2291 		return hw->phy.ops.get_cfg_done(hw);
       
  2292 
       
  2293 	return 0;
       
  2294 }
       
  2295 
       
  2296 /**
       
  2297  *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
       
  2298  *  @hw: pointer to the HW structure
       
  2299  *
       
  2300  *  When the silicon family has not implemented a forced speed/duplex
       
  2301  *  function for the PHY, simply return 0.
       
  2302  **/
       
  2303 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
       
  2304 {
       
  2305 	if (hw->phy.ops.force_speed_duplex)
       
  2306 		return hw->phy.ops.force_speed_duplex(hw);
       
  2307 
       
  2308 	return 0;
       
  2309 }
       
  2310 
       
  2311 /**
       
  2312  *  e1000e_get_phy_type_from_id - Get PHY type from id
       
  2313  *  @phy_id: phy_id read from the phy
       
  2314  *
       
  2315  *  Returns the phy type from the id.
       
  2316  **/
       
  2317 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
       
  2318 {
       
  2319 	enum e1000_phy_type phy_type = e1000_phy_unknown;
       
  2320 
       
  2321 	switch (phy_id) {
       
  2322 	case M88E1000_I_PHY_ID:
       
  2323 	case M88E1000_E_PHY_ID:
       
  2324 	case M88E1111_I_PHY_ID:
       
  2325 	case M88E1011_I_PHY_ID:
       
  2326 		phy_type = e1000_phy_m88;
       
  2327 		break;
       
  2328 	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
       
  2329 		phy_type = e1000_phy_igp_2;
       
  2330 		break;
       
  2331 	case GG82563_E_PHY_ID:
       
  2332 		phy_type = e1000_phy_gg82563;
       
  2333 		break;
       
  2334 	case IGP03E1000_E_PHY_ID:
       
  2335 		phy_type = e1000_phy_igp_3;
       
  2336 		break;
       
  2337 	case IFE_E_PHY_ID:
       
  2338 	case IFE_PLUS_E_PHY_ID:
       
  2339 	case IFE_C_E_PHY_ID:
       
  2340 		phy_type = e1000_phy_ife;
       
  2341 		break;
       
  2342 	case BME1000_E_PHY_ID:
       
  2343 	case BME1000_E_PHY_ID_R2:
       
  2344 		phy_type = e1000_phy_bm;
       
  2345 		break;
       
  2346 	case I82578_E_PHY_ID:
       
  2347 		phy_type = e1000_phy_82578;
       
  2348 		break;
       
  2349 	case I82577_E_PHY_ID:
       
  2350 		phy_type = e1000_phy_82577;
       
  2351 		break;
       
  2352 	case I82579_E_PHY_ID:
       
  2353 		phy_type = e1000_phy_82579;
       
  2354 		break;
       
  2355 	default:
       
  2356 		phy_type = e1000_phy_unknown;
       
  2357 		break;
       
  2358 	}
       
  2359 	return phy_type;
       
  2360 }
       
  2361 
       
  2362 /**
       
  2363  *  e1000e_determine_phy_address - Determines PHY address.
       
  2364  *  @hw: pointer to the HW structure
       
  2365  *
       
  2366  *  This uses a trial and error method to loop through possible PHY
       
  2367  *  addresses. It tests each by reading the PHY ID registers and
       
  2368  *  checking for a match.
       
  2369  **/
       
  2370 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
       
  2371 {
       
  2372 	s32 ret_val = -E1000_ERR_PHY_TYPE;
       
  2373 	u32 phy_addr = 0;
       
  2374 	u32 i;
       
  2375 	enum e1000_phy_type phy_type = e1000_phy_unknown;
       
  2376 
       
  2377 	hw->phy.id = phy_type;
       
  2378 
       
  2379 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
       
  2380 		hw->phy.addr = phy_addr;
       
  2381 		i = 0;
       
  2382 
       
  2383 		do {
       
  2384 			e1000e_get_phy_id(hw);
       
  2385 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
       
  2386 
       
  2387 			/*
       
  2388 			 * If phy_type is valid, break - we found our
       
  2389 			 * PHY address
       
  2390 			 */
       
  2391 			if (phy_type  != e1000_phy_unknown) {
       
  2392 				ret_val = 0;
       
  2393 				goto out;
       
  2394 			}
       
  2395 			usleep_range(1000, 2000);
       
  2396 			i++;
       
  2397 		} while (i < 10);
       
  2398 	}
       
  2399 
       
  2400 out:
       
  2401 	return ret_val;
       
  2402 }
       
  2403 
       
  2404 /**
       
  2405  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
       
  2406  *  @page: page to access
       
  2407  *
       
  2408  *  Returns the phy address for the page requested.
       
  2409  **/
       
  2410 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
       
  2411 {
       
  2412 	u32 phy_addr = 2;
       
  2413 
       
  2414 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
       
  2415 		phy_addr = 1;
       
  2416 
       
  2417 	return phy_addr;
       
  2418 }
       
  2419 
       
  2420 /**
       
  2421  *  e1000e_write_phy_reg_bm - Write BM PHY register
       
  2422  *  @hw: pointer to the HW structure
       
  2423  *  @offset: register offset to write to
       
  2424  *  @data: data to write at register offset
       
  2425  *
       
  2426  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2427  *  at the offset.  Release any acquired semaphores before exiting.
       
  2428  **/
       
  2429 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
       
  2430 {
       
  2431 	s32 ret_val;
       
  2432 	u32 page = offset >> IGP_PAGE_SHIFT;
       
  2433 
       
  2434 	ret_val = hw->phy.ops.acquire(hw);
       
  2435 	if (ret_val)
       
  2436 		return ret_val;
       
  2437 
       
  2438 	/* Page 800 works differently than the rest so it has its own func */
       
  2439 	if (page == BM_WUC_PAGE) {
       
  2440 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2441 							 false, false);
       
  2442 		goto out;
       
  2443 	}
       
  2444 
       
  2445 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
       
  2446 
       
  2447 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2448 		u32 page_shift, page_select;
       
  2449 
       
  2450 		/*
       
  2451 		 * Page select is register 31 for phy address 1 and 22 for
       
  2452 		 * phy address 2 and 3. Page select is shifted only for
       
  2453 		 * phy address 1.
       
  2454 		 */
       
  2455 		if (hw->phy.addr == 1) {
       
  2456 			page_shift = IGP_PAGE_SHIFT;
       
  2457 			page_select = IGP01E1000_PHY_PAGE_SELECT;
       
  2458 		} else {
       
  2459 			page_shift = 0;
       
  2460 			page_select = BM_PHY_PAGE_SELECT;
       
  2461 		}
       
  2462 
       
  2463 		/* Page is shifted left, PHY expects (page x 32) */
       
  2464 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
       
  2465 		                                    (page << page_shift));
       
  2466 		if (ret_val)
       
  2467 			goto out;
       
  2468 	}
       
  2469 
       
  2470 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2471 	                                    data);
       
  2472 
       
  2473 out:
       
  2474 	hw->phy.ops.release(hw);
       
  2475 	return ret_val;
       
  2476 }
       
  2477 
       
  2478 /**
       
  2479  *  e1000e_read_phy_reg_bm - Read BM PHY register
       
  2480  *  @hw: pointer to the HW structure
       
  2481  *  @offset: register offset to be read
       
  2482  *  @data: pointer to the read data
       
  2483  *
       
  2484  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2485  *  and storing the retrieved information in data.  Release any acquired
       
  2486  *  semaphores before exiting.
       
  2487  **/
       
  2488 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2489 {
       
  2490 	s32 ret_val;
       
  2491 	u32 page = offset >> IGP_PAGE_SHIFT;
       
  2492 
       
  2493 	ret_val = hw->phy.ops.acquire(hw);
       
  2494 	if (ret_val)
       
  2495 		return ret_val;
       
  2496 
       
  2497 	/* Page 800 works differently than the rest so it has its own func */
       
  2498 	if (page == BM_WUC_PAGE) {
       
  2499 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2500 							 true, false);
       
  2501 		goto out;
       
  2502 	}
       
  2503 
       
  2504 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
       
  2505 
       
  2506 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2507 		u32 page_shift, page_select;
       
  2508 
       
  2509 		/*
       
  2510 		 * Page select is register 31 for phy address 1 and 22 for
       
  2511 		 * phy address 2 and 3. Page select is shifted only for
       
  2512 		 * phy address 1.
       
  2513 		 */
       
  2514 		if (hw->phy.addr == 1) {
       
  2515 			page_shift = IGP_PAGE_SHIFT;
       
  2516 			page_select = IGP01E1000_PHY_PAGE_SELECT;
       
  2517 		} else {
       
  2518 			page_shift = 0;
       
  2519 			page_select = BM_PHY_PAGE_SELECT;
       
  2520 		}
       
  2521 
       
  2522 		/* Page is shifted left, PHY expects (page x 32) */
       
  2523 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
       
  2524 		                                    (page << page_shift));
       
  2525 		if (ret_val)
       
  2526 			goto out;
       
  2527 	}
       
  2528 
       
  2529 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2530 	                                   data);
       
  2531 out:
       
  2532 	hw->phy.ops.release(hw);
       
  2533 	return ret_val;
       
  2534 }
       
  2535 
       
  2536 /**
       
  2537  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
       
  2538  *  @hw: pointer to the HW structure
       
  2539  *  @offset: register offset to be read
       
  2540  *  @data: pointer to the read data
       
  2541  *
       
  2542  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2543  *  and storing the retrieved information in data.  Release any acquired
       
  2544  *  semaphores before exiting.
       
  2545  **/
       
  2546 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2547 {
       
  2548 	s32 ret_val;
       
  2549 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
       
  2550 
       
  2551 	ret_val = hw->phy.ops.acquire(hw);
       
  2552 	if (ret_val)
       
  2553 		return ret_val;
       
  2554 
       
  2555 	/* Page 800 works differently than the rest so it has its own func */
       
  2556 	if (page == BM_WUC_PAGE) {
       
  2557 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2558 							 true, false);
       
  2559 		goto out;
       
  2560 	}
       
  2561 
       
  2562 	hw->phy.addr = 1;
       
  2563 
       
  2564 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2565 
       
  2566 		/* Page is shifted left, PHY expects (page x 32) */
       
  2567 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
       
  2568 						    page);
       
  2569 
       
  2570 		if (ret_val)
       
  2571 			goto out;
       
  2572 	}
       
  2573 
       
  2574 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2575 					   data);
       
  2576 out:
       
  2577 	hw->phy.ops.release(hw);
       
  2578 	return ret_val;
       
  2579 }
       
  2580 
       
  2581 /**
       
  2582  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
       
  2583  *  @hw: pointer to the HW structure
       
  2584  *  @offset: register offset to write to
       
  2585  *  @data: data to write at register offset
       
  2586  *
       
  2587  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2588  *  at the offset.  Release any acquired semaphores before exiting.
       
  2589  **/
       
  2590 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
       
  2591 {
       
  2592 	s32 ret_val;
       
  2593 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
       
  2594 
       
  2595 	ret_val = hw->phy.ops.acquire(hw);
       
  2596 	if (ret_val)
       
  2597 		return ret_val;
       
  2598 
       
  2599 	/* Page 800 works differently than the rest so it has its own func */
       
  2600 	if (page == BM_WUC_PAGE) {
       
  2601 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2602 							 false, false);
       
  2603 		goto out;
       
  2604 	}
       
  2605 
       
  2606 	hw->phy.addr = 1;
       
  2607 
       
  2608 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2609 		/* Page is shifted left, PHY expects (page x 32) */
       
  2610 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
       
  2611 						    page);
       
  2612 
       
  2613 		if (ret_val)
       
  2614 			goto out;
       
  2615 	}
       
  2616 
       
  2617 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2618 					    data);
       
  2619 
       
  2620 out:
       
  2621 	hw->phy.ops.release(hw);
       
  2622 	return ret_val;
       
  2623 }
       
  2624 
       
  2625 /**
       
  2626  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
       
  2627  *  @hw: pointer to the HW structure
       
  2628  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
       
  2629  *
       
  2630  *  Assumes semaphore already acquired and phy_reg points to a valid memory
       
  2631  *  address to store contents of the BM_WUC_ENABLE_REG register.
       
  2632  **/
       
  2633 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
       
  2634 {
       
  2635 	s32 ret_val;
       
  2636 	u16 temp;
       
  2637 
       
  2638 	/* All page select, port ctrl and wakeup registers use phy address 1 */
       
  2639 	hw->phy.addr = 1;
       
  2640 
       
  2641 	/* Select Port Control Registers page */
       
  2642 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
       
  2643 	if (ret_val) {
       
  2644 		e_dbg("Could not set Port Control page\n");
       
  2645 		goto out;
       
  2646 	}
       
  2647 
       
  2648 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
       
  2649 	if (ret_val) {
       
  2650 		e_dbg("Could not read PHY register %d.%d\n",
       
  2651 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
       
  2652 		goto out;
       
  2653 	}
       
  2654 
       
  2655 	/*
       
  2656 	 * Enable both PHY wakeup mode and Wakeup register page writes.
       
  2657 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
       
  2658 	 */
       
  2659 	temp = *phy_reg;
       
  2660 	temp |= BM_WUC_ENABLE_BIT;
       
  2661 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
       
  2662 
       
  2663 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
       
  2664 	if (ret_val) {
       
  2665 		e_dbg("Could not write PHY register %d.%d\n",
       
  2666 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
       
  2667 		goto out;
       
  2668 	}
       
  2669 
       
  2670 	/* Select Host Wakeup Registers page */
       
  2671 	ret_val = e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
       
  2672 
       
  2673 	/* caller now able to write registers on the Wakeup registers page */
       
  2674 out:
       
  2675 	return ret_val;
       
  2676 }
       
  2677 
       
  2678 /**
       
  2679  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
       
  2680  *  @hw: pointer to the HW structure
       
  2681  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
       
  2682  *
       
  2683  *  Restore BM_WUC_ENABLE_REG to its original value.
       
  2684  *
       
  2685  *  Assumes semaphore already acquired and *phy_reg is the contents of the
       
  2686  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
       
  2687  *  caller.
       
  2688  **/
       
  2689 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
       
  2690 {
       
  2691 	s32 ret_val = 0;
       
  2692 
       
  2693 	/* Select Port Control Registers page */
       
  2694 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
       
  2695 	if (ret_val) {
       
  2696 		e_dbg("Could not set Port Control page\n");
       
  2697 		goto out;
       
  2698 	}
       
  2699 
       
  2700 	/* Restore 769.17 to its original value */
       
  2701 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
       
  2702 	if (ret_val)
       
  2703 		e_dbg("Could not restore PHY register %d.%d\n",
       
  2704 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
       
  2705 out:
       
  2706 	return ret_val;
       
  2707 }
       
  2708 
       
  2709 /**
       
  2710  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
       
  2711  *  @hw: pointer to the HW structure
       
  2712  *  @offset: register offset to be read or written
       
  2713  *  @data: pointer to the data to read or write
       
  2714  *  @read: determines if operation is read or write
       
  2715  *  @page_set: BM_WUC_PAGE already set and access enabled
       
  2716  *
       
  2717  *  Read the PHY register at offset and store the retrieved information in
       
  2718  *  data, or write data to PHY register at offset.  Note the procedure to
       
  2719  *  access the PHY wakeup registers is different than reading the other PHY
       
  2720  *  registers. It works as such:
       
  2721  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
       
  2722  *  2) Set page to 800 for host (801 if we were manageability)
       
  2723  *  3) Write the address using the address opcode (0x11)
       
  2724  *  4) Read or write the data using the data opcode (0x12)
       
  2725  *  5) Restore 769.17.2 to its original value
       
  2726  *
       
  2727  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
       
  2728  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
       
  2729  *
       
  2730  *  Assumes semaphore is already acquired.  When page_set==true, assumes
       
  2731  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
       
  2732  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
       
  2733  **/
       
  2734 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
       
  2735 					  u16 *data, bool read, bool page_set)
       
  2736 {
       
  2737 	s32 ret_val;
       
  2738 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2739 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2740 	u16 phy_reg = 0;
       
  2741 
       
  2742 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
       
  2743 	if ((hw->mac.type == e1000_pchlan) &&
       
  2744 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
       
  2745 		e_dbg("Attempting to access page %d while gig enabled.\n",
       
  2746 		      page);
       
  2747 
       
  2748 	if (!page_set) {
       
  2749 		/* Enable access to PHY wakeup registers */
       
  2750 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  2751 		if (ret_val) {
       
  2752 			e_dbg("Could not enable PHY wakeup reg access\n");
       
  2753 			goto out;
       
  2754 		}
       
  2755 	}
       
  2756 
       
  2757 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
       
  2758 
       
  2759 	/* Write the Wakeup register page offset value using opcode 0x11 */
       
  2760 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
       
  2761 	if (ret_val) {
       
  2762 		e_dbg("Could not write address opcode to page %d\n", page);
       
  2763 		goto out;
       
  2764 	}
       
  2765 
       
  2766 	if (read) {
       
  2767 		/* Read the Wakeup register page value using opcode 0x12 */
       
  2768 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
       
  2769 		                                   data);
       
  2770 	} else {
       
  2771 		/* Write the Wakeup register page value using opcode 0x12 */
       
  2772 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
       
  2773 						    *data);
       
  2774 	}
       
  2775 
       
  2776 	if (ret_val) {
       
  2777 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
       
  2778 		goto out;
       
  2779 	}
       
  2780 
       
  2781 	if (!page_set)
       
  2782 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  2783 
       
  2784 out:
       
  2785 	return ret_val;
       
  2786 }
       
  2787 
       
  2788 /**
       
  2789  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
       
  2790  * @hw: pointer to the HW structure
       
  2791  *
       
  2792  * In the case of a PHY power down to save power, or to turn off link during a
       
  2793  * driver unload, or wake on lan is not enabled, restore the link to previous
       
  2794  * settings.
       
  2795  **/
       
  2796 void e1000_power_up_phy_copper(struct e1000_hw *hw)
       
  2797 {
       
  2798 	u16 mii_reg = 0;
       
  2799 
       
  2800 	/* The PHY will retain its settings across a power down/up cycle */
       
  2801 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
       
  2802 	mii_reg &= ~MII_CR_POWER_DOWN;
       
  2803 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
       
  2804 }
       
  2805 
       
  2806 /**
       
  2807  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
       
  2808  * @hw: pointer to the HW structure
       
  2809  *
       
  2810  * In the case of a PHY power down to save power, or to turn off link during a
       
  2811  * driver unload, or wake on lan is not enabled, restore the link to previous
       
  2812  * settings.
       
  2813  **/
       
  2814 void e1000_power_down_phy_copper(struct e1000_hw *hw)
       
  2815 {
       
  2816 	u16 mii_reg = 0;
       
  2817 
       
  2818 	/* The PHY will retain its settings across a power down/up cycle */
       
  2819 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
       
  2820 	mii_reg |= MII_CR_POWER_DOWN;
       
  2821 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
       
  2822 	usleep_range(1000, 2000);
       
  2823 }
       
  2824 
       
  2825 /**
       
  2826  *  e1000e_commit_phy - Soft PHY reset
       
  2827  *  @hw: pointer to the HW structure
       
  2828  *
       
  2829  *  Performs a soft PHY reset on those that apply. This is a function pointer
       
  2830  *  entry point called by drivers.
       
  2831  **/
       
  2832 s32 e1000e_commit_phy(struct e1000_hw *hw)
       
  2833 {
       
  2834 	if (hw->phy.ops.commit)
       
  2835 		return hw->phy.ops.commit(hw);
       
  2836 
       
  2837 	return 0;
       
  2838 }
       
  2839 
       
  2840 /**
       
  2841  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
       
  2842  *  @hw: pointer to the HW structure
       
  2843  *  @active: boolean used to enable/disable lplu
       
  2844  *
       
  2845  *  Success returns 0, Failure returns 1
       
  2846  *
       
  2847  *  The low power link up (lplu) state is set to the power management level D0
       
  2848  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
       
  2849  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
       
  2850  *  is used during Dx states where the power conservation is most important.
       
  2851  *  During driver activity, SmartSpeed should be enabled so performance is
       
  2852  *  maintained.  This is a function pointer entry point called by drivers.
       
  2853  **/
       
  2854 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
       
  2855 {
       
  2856 	if (hw->phy.ops.set_d0_lplu_state)
       
  2857 		return hw->phy.ops.set_d0_lplu_state(hw, active);
       
  2858 
       
  2859 	return 0;
       
  2860 }
       
  2861 
       
  2862 /**
       
  2863  *  __e1000_read_phy_reg_hv -  Read HV PHY register
       
  2864  *  @hw: pointer to the HW structure
       
  2865  *  @offset: register offset to be read
       
  2866  *  @data: pointer to the read data
       
  2867  *  @locked: semaphore has already been acquired or not
       
  2868  *
       
  2869  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2870  *  and stores the retrieved information in data.  Release any acquired
       
  2871  *  semaphore before exiting.
       
  2872  **/
       
  2873 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
       
  2874 				   bool locked, bool page_set)
       
  2875 {
       
  2876 	s32 ret_val;
       
  2877 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2878 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2879 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
       
  2880 
       
  2881 	if (!locked) {
       
  2882 		ret_val = hw->phy.ops.acquire(hw);
       
  2883 		if (ret_val)
       
  2884 			return ret_val;
       
  2885 	}
       
  2886 
       
  2887 	/* Page 800 works differently than the rest so it has its own func */
       
  2888 	if (page == BM_WUC_PAGE) {
       
  2889 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2890 							 true, page_set);
       
  2891 		goto out;
       
  2892 	}
       
  2893 
       
  2894 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
       
  2895 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
       
  2896 		                                         data, true);
       
  2897 		goto out;
       
  2898 	}
       
  2899 
       
  2900 	if (!page_set) {
       
  2901 		if (page == HV_INTC_FC_PAGE_START)
       
  2902 			page = 0;
       
  2903 
       
  2904 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
       
  2905 			/* Page is shifted left, PHY expects (page x 32) */
       
  2906 			ret_val = e1000_set_page_igp(hw,
       
  2907 						     (page << IGP_PAGE_SHIFT));
       
  2908 
       
  2909 			hw->phy.addr = phy_addr;
       
  2910 
       
  2911 			if (ret_val)
       
  2912 				goto out;
       
  2913 		}
       
  2914 	}
       
  2915 
       
  2916 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
       
  2917 	      page << IGP_PAGE_SHIFT, reg);
       
  2918 
       
  2919 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
       
  2920 	                                  data);
       
  2921 out:
       
  2922 	if (!locked)
       
  2923 		hw->phy.ops.release(hw);
       
  2924 
       
  2925 	return ret_val;
       
  2926 }
       
  2927 
       
  2928 /**
       
  2929  *  e1000_read_phy_reg_hv -  Read HV PHY register
       
  2930  *  @hw: pointer to the HW structure
       
  2931  *  @offset: register offset to be read
       
  2932  *  @data: pointer to the read data
       
  2933  *
       
  2934  *  Acquires semaphore then reads the PHY register at offset and stores
       
  2935  *  the retrieved information in data.  Release the acquired semaphore
       
  2936  *  before exiting.
       
  2937  **/
       
  2938 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2939 {
       
  2940 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
       
  2941 }
       
  2942 
       
  2943 /**
       
  2944  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
       
  2945  *  @hw: pointer to the HW structure
       
  2946  *  @offset: register offset to be read
       
  2947  *  @data: pointer to the read data
       
  2948  *
       
  2949  *  Reads the PHY register at offset and stores the retrieved information
       
  2950  *  in data.  Assumes semaphore already acquired.
       
  2951  **/
       
  2952 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2953 {
       
  2954 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
       
  2955 }
       
  2956 
       
  2957 /**
       
  2958  *  e1000_read_phy_reg_page_hv - Read HV PHY register
       
  2959  *  @hw: pointer to the HW structure
       
  2960  *  @offset: register offset to write to
       
  2961  *  @data: data to write at register offset
       
  2962  *
       
  2963  *  Reads the PHY register at offset and stores the retrieved information
       
  2964  *  in data.  Assumes semaphore already acquired and page already set.
       
  2965  **/
       
  2966 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2967 {
       
  2968 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
       
  2969 }
       
  2970 
       
  2971 /**
       
  2972  *  __e1000_write_phy_reg_hv - Write HV PHY register
       
  2973  *  @hw: pointer to the HW structure
       
  2974  *  @offset: register offset to write to
       
  2975  *  @data: data to write at register offset
       
  2976  *  @locked: semaphore has already been acquired or not
       
  2977  *
       
  2978  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2979  *  at the offset.  Release any acquired semaphores before exiting.
       
  2980  **/
       
  2981 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
       
  2982 				    bool locked, bool page_set)
       
  2983 {
       
  2984 	s32 ret_val;
       
  2985 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2986 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2987 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
       
  2988 
       
  2989 	if (!locked) {
       
  2990 		ret_val = hw->phy.ops.acquire(hw);
       
  2991 		if (ret_val)
       
  2992 			return ret_val;
       
  2993 	}
       
  2994 
       
  2995 	/* Page 800 works differently than the rest so it has its own func */
       
  2996 	if (page == BM_WUC_PAGE) {
       
  2997 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2998 							 false, page_set);
       
  2999 		goto out;
       
  3000 	}
       
  3001 
       
  3002 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
       
  3003 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
       
  3004 		                                         &data, false);
       
  3005 		goto out;
       
  3006 	}
       
  3007 
       
  3008 	if (!page_set) {
       
  3009 		if (page == HV_INTC_FC_PAGE_START)
       
  3010 			page = 0;
       
  3011 
       
  3012 		/*
       
  3013 		 * Workaround MDIO accesses being disabled after entering IEEE
       
  3014 		 * Power Down (when bit 11 of the PHY Control register is set)
       
  3015 		 */
       
  3016 		if ((hw->phy.type == e1000_phy_82578) &&
       
  3017 		    (hw->phy.revision >= 1) &&
       
  3018 		    (hw->phy.addr == 2) &&
       
  3019 		    ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) {
       
  3020 			u16 data2 = 0x7EFF;
       
  3021 			ret_val = e1000_access_phy_debug_regs_hv(hw,
       
  3022 								 (1 << 6) | 0x3,
       
  3023 								 &data2, false);
       
  3024 			if (ret_val)
       
  3025 				goto out;
       
  3026 		}
       
  3027 
       
  3028 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
       
  3029 			/* Page is shifted left, PHY expects (page x 32) */
       
  3030 			ret_val = e1000_set_page_igp(hw,
       
  3031 						     (page << IGP_PAGE_SHIFT));
       
  3032 
       
  3033 			hw->phy.addr = phy_addr;
       
  3034 
       
  3035 			if (ret_val)
       
  3036 				goto out;
       
  3037 		}
       
  3038 	}
       
  3039 
       
  3040 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
       
  3041 	      page << IGP_PAGE_SHIFT, reg);
       
  3042 
       
  3043 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
       
  3044 	                                  data);
       
  3045 
       
  3046 out:
       
  3047 	if (!locked)
       
  3048 		hw->phy.ops.release(hw);
       
  3049 
       
  3050 	return ret_val;
       
  3051 }
       
  3052 
       
  3053 /**
       
  3054  *  e1000_write_phy_reg_hv - Write HV PHY register
       
  3055  *  @hw: pointer to the HW structure
       
  3056  *  @offset: register offset to write to
       
  3057  *  @data: data to write at register offset
       
  3058  *
       
  3059  *  Acquires semaphore then writes the data to PHY register at the offset.
       
  3060  *  Release the acquired semaphores before exiting.
       
  3061  **/
       
  3062 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
       
  3063 {
       
  3064 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
       
  3065 }
       
  3066 
       
  3067 /**
       
  3068  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
       
  3069  *  @hw: pointer to the HW structure
       
  3070  *  @offset: register offset to write to
       
  3071  *  @data: data to write at register offset
       
  3072  *
       
  3073  *  Writes the data to PHY register at the offset.  Assumes semaphore
       
  3074  *  already acquired.
       
  3075  **/
       
  3076 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
  3077 {
       
  3078 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
       
  3079 }
       
  3080 
       
  3081 /**
       
  3082  *  e1000_write_phy_reg_page_hv - Write HV PHY register
       
  3083  *  @hw: pointer to the HW structure
       
  3084  *  @offset: register offset to write to
       
  3085  *  @data: data to write at register offset
       
  3086  *
       
  3087  *  Writes the data to PHY register at the offset.  Assumes semaphore
       
  3088  *  already acquired and page already set.
       
  3089  **/
       
  3090 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
       
  3091 {
       
  3092 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
       
  3093 }
       
  3094 
       
  3095 /**
       
  3096  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
       
  3097  *  @page: page to be accessed
       
  3098  **/
       
  3099 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
       
  3100 {
       
  3101 	u32 phy_addr = 2;
       
  3102 
       
  3103 	if (page >= HV_INTC_FC_PAGE_START)
       
  3104 		phy_addr = 1;
       
  3105 
       
  3106 	return phy_addr;
       
  3107 }
       
  3108 
       
  3109 /**
       
  3110  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
       
  3111  *  @hw: pointer to the HW structure
       
  3112  *  @offset: register offset to be read or written
       
  3113  *  @data: pointer to the data to be read or written
       
  3114  *  @read: determines if operation is read or write
       
  3115  *
       
  3116  *  Reads the PHY register at offset and stores the retreived information
       
  3117  *  in data.  Assumes semaphore already acquired.  Note that the procedure
       
  3118  *  to access these regs uses the address port and data port to read/write.
       
  3119  *  These accesses done with PHY address 2 and without using pages.
       
  3120  **/
       
  3121 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
       
  3122                                           u16 *data, bool read)
       
  3123 {
       
  3124 	s32 ret_val;
       
  3125 	u32 addr_reg = 0;
       
  3126 	u32 data_reg = 0;
       
  3127 
       
  3128 	/* This takes care of the difference with desktop vs mobile phy */
       
  3129 	addr_reg = (hw->phy.type == e1000_phy_82578) ?
       
  3130 	           I82578_ADDR_REG : I82577_ADDR_REG;
       
  3131 	data_reg = addr_reg + 1;
       
  3132 
       
  3133 	/* All operations in this function are phy address 2 */
       
  3134 	hw->phy.addr = 2;
       
  3135 
       
  3136 	/* masking with 0x3F to remove the page from offset */
       
  3137 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
       
  3138 	if (ret_val) {
       
  3139 		e_dbg("Could not write the Address Offset port register\n");
       
  3140 		goto out;
       
  3141 	}
       
  3142 
       
  3143 	/* Read or write the data value next */
       
  3144 	if (read)
       
  3145 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
       
  3146 	else
       
  3147 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
       
  3148 
       
  3149 	if (ret_val) {
       
  3150 		e_dbg("Could not access the Data port register\n");
       
  3151 		goto out;
       
  3152 	}
       
  3153 
       
  3154 out:
       
  3155 	return ret_val;
       
  3156 }
       
  3157 
       
  3158 /**
       
  3159  *  e1000_link_stall_workaround_hv - Si workaround
       
  3160  *  @hw: pointer to the HW structure
       
  3161  *
       
  3162  *  This function works around a Si bug where the link partner can get
       
  3163  *  a link up indication before the PHY does.  If small packets are sent
       
  3164  *  by the link partner they can be placed in the packet buffer without
       
  3165  *  being properly accounted for by the PHY and will stall preventing
       
  3166  *  further packets from being received.  The workaround is to clear the
       
  3167  *  packet buffer after the PHY detects link up.
       
  3168  **/
       
  3169 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
       
  3170 {
       
  3171 	s32 ret_val = 0;
       
  3172 	u16 data;
       
  3173 
       
  3174 	if (hw->phy.type != e1000_phy_82578)
       
  3175 		goto out;
       
  3176 
       
  3177 	/* Do not apply workaround if in PHY loopback bit 14 set */
       
  3178 	e1e_rphy(hw, PHY_CONTROL, &data);
       
  3179 	if (data & PHY_CONTROL_LB)
       
  3180 		goto out;
       
  3181 
       
  3182 	/* check if link is up and at 1Gbps */
       
  3183 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
       
  3184 	if (ret_val)
       
  3185 		goto out;
       
  3186 
       
  3187 	data &= BM_CS_STATUS_LINK_UP |
       
  3188 	        BM_CS_STATUS_RESOLVED |
       
  3189 	        BM_CS_STATUS_SPEED_MASK;
       
  3190 
       
  3191 	if (data != (BM_CS_STATUS_LINK_UP |
       
  3192 	             BM_CS_STATUS_RESOLVED |
       
  3193 	             BM_CS_STATUS_SPEED_1000))
       
  3194 		goto out;
       
  3195 
       
  3196 	mdelay(200);
       
  3197 
       
  3198 	/* flush the packets in the fifo buffer */
       
  3199 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
       
  3200 			   HV_MUX_DATA_CTRL_FORCE_SPEED);
       
  3201 	if (ret_val)
       
  3202 		goto out;
       
  3203 
       
  3204 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
       
  3205 
       
  3206 out:
       
  3207 	return ret_val;
       
  3208 }
       
  3209 
       
  3210 /**
       
  3211  *  e1000_check_polarity_82577 - Checks the polarity.
       
  3212  *  @hw: pointer to the HW structure
       
  3213  *
       
  3214  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  3215  *
       
  3216  *  Polarity is determined based on the PHY specific status register.
       
  3217  **/
       
  3218 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
       
  3219 {
       
  3220 	struct e1000_phy_info *phy = &hw->phy;
       
  3221 	s32 ret_val;
       
  3222 	u16 data;
       
  3223 
       
  3224 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
       
  3225 
       
  3226 	if (!ret_val)
       
  3227 		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
       
  3228 		                      ? e1000_rev_polarity_reversed
       
  3229 		                      : e1000_rev_polarity_normal;
       
  3230 
       
  3231 	return ret_val;
       
  3232 }
       
  3233 
       
  3234 /**
       
  3235  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
       
  3236  *  @hw: pointer to the HW structure
       
  3237  *
       
  3238  *  Calls the PHY setup function to force speed and duplex.
       
  3239  **/
       
  3240 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
       
  3241 {
       
  3242 	struct e1000_phy_info *phy = &hw->phy;
       
  3243 	s32 ret_val;
       
  3244 	u16 phy_data;
       
  3245 	bool link;
       
  3246 
       
  3247 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
       
  3248 	if (ret_val)
       
  3249 		goto out;
       
  3250 
       
  3251 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  3252 
       
  3253 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
       
  3254 	if (ret_val)
       
  3255 		goto out;
       
  3256 
       
  3257 	udelay(1);
       
  3258 
       
  3259 	if (phy->autoneg_wait_to_complete) {
       
  3260 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
       
  3261 
       
  3262 		ret_val = e1000e_phy_has_link_generic(hw,
       
  3263 		                                     PHY_FORCE_LIMIT,
       
  3264 		                                     100000,
       
  3265 		                                     &link);
       
  3266 		if (ret_val)
       
  3267 			goto out;
       
  3268 
       
  3269 		if (!link)
       
  3270 			e_dbg("Link taking longer than expected.\n");
       
  3271 
       
  3272 		/* Try once more */
       
  3273 		ret_val = e1000e_phy_has_link_generic(hw,
       
  3274 		                                     PHY_FORCE_LIMIT,
       
  3275 		                                     100000,
       
  3276 		                                     &link);
       
  3277 		if (ret_val)
       
  3278 			goto out;
       
  3279 	}
       
  3280 
       
  3281 out:
       
  3282 	return ret_val;
       
  3283 }
       
  3284 
       
  3285 /**
       
  3286  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
       
  3287  *  @hw: pointer to the HW structure
       
  3288  *
       
  3289  *  Read PHY status to determine if link is up.  If link is up, then
       
  3290  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  3291  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  3292  *  determine on the cable length, local and remote receiver.
       
  3293  **/
       
  3294 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
       
  3295 {
       
  3296 	struct e1000_phy_info *phy = &hw->phy;
       
  3297 	s32 ret_val;
       
  3298 	u16 data;
       
  3299 	bool link;
       
  3300 
       
  3301 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  3302 	if (ret_val)
       
  3303 		goto out;
       
  3304 
       
  3305 	if (!link) {
       
  3306 		e_dbg("Phy info is only valid if link is up\n");
       
  3307 		ret_val = -E1000_ERR_CONFIG;
       
  3308 		goto out;
       
  3309 	}
       
  3310 
       
  3311 	phy->polarity_correction = true;
       
  3312 
       
  3313 	ret_val = e1000_check_polarity_82577(hw);
       
  3314 	if (ret_val)
       
  3315 		goto out;
       
  3316 
       
  3317 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
       
  3318 	if (ret_val)
       
  3319 		goto out;
       
  3320 
       
  3321 	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
       
  3322 
       
  3323 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
       
  3324 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
       
  3325 		ret_val = hw->phy.ops.get_cable_length(hw);
       
  3326 		if (ret_val)
       
  3327 			goto out;
       
  3328 
       
  3329 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
       
  3330 		if (ret_val)
       
  3331 			goto out;
       
  3332 
       
  3333 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
       
  3334 		                ? e1000_1000t_rx_status_ok
       
  3335 		                : e1000_1000t_rx_status_not_ok;
       
  3336 
       
  3337 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
       
  3338 		                 ? e1000_1000t_rx_status_ok
       
  3339 		                 : e1000_1000t_rx_status_not_ok;
       
  3340 	} else {
       
  3341 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  3342 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  3343 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  3344 	}
       
  3345 
       
  3346 out:
       
  3347 	return ret_val;
       
  3348 }
       
  3349 
       
  3350 /**
       
  3351  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
       
  3352  *  @hw: pointer to the HW structure
       
  3353  *
       
  3354  * Reads the diagnostic status register and verifies result is valid before
       
  3355  * placing it in the phy_cable_length field.
       
  3356  **/
       
  3357 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
       
  3358 {
       
  3359 	struct e1000_phy_info *phy = &hw->phy;
       
  3360 	s32 ret_val;
       
  3361 	u16 phy_data, length;
       
  3362 
       
  3363 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
       
  3364 	if (ret_val)
       
  3365 		goto out;
       
  3366 
       
  3367 	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
       
  3368 	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
       
  3369 
       
  3370 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
       
  3371 		ret_val = -E1000_ERR_PHY;
       
  3372 
       
  3373 	phy->cable_length = length;
       
  3374 
       
  3375 out:
       
  3376 	return ret_val;
       
  3377 }