devices/e1000e/82571-3.2-orig.c
branchstable-1.5
changeset 2407 35223d2e6e72
equal deleted inserted replaced
2405:214be3e0640e 2407:35223d2e6e72
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2011 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /*
       
    30  * 82571EB Gigabit Ethernet Controller
       
    31  * 82571EB Gigabit Ethernet Controller (Copper)
       
    32  * 82571EB Gigabit Ethernet Controller (Fiber)
       
    33  * 82571EB Dual Port Gigabit Mezzanine Adapter
       
    34  * 82571EB Quad Port Gigabit Mezzanine Adapter
       
    35  * 82571PT Gigabit PT Quad Port Server ExpressModule
       
    36  * 82572EI Gigabit Ethernet Controller (Copper)
       
    37  * 82572EI Gigabit Ethernet Controller (Fiber)
       
    38  * 82572EI Gigabit Ethernet Controller
       
    39  * 82573V Gigabit Ethernet Controller (Copper)
       
    40  * 82573E Gigabit Ethernet Controller (Copper)
       
    41  * 82573L Gigabit Ethernet Controller
       
    42  * 82574L Gigabit Network Connection
       
    43  * 82583V Gigabit Network Connection
       
    44  */
       
    45 
       
    46 #include "e1000.h"
       
    47 
       
    48 #define ID_LED_RESERVED_F746 0xF746
       
    49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
       
    50 			      (ID_LED_OFF1_ON2  <<  8) | \
       
    51 			      (ID_LED_DEF1_DEF2 <<  4) | \
       
    52 			      (ID_LED_DEF1_DEF2))
       
    53 
       
    54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
       
    55 #define AN_RETRY_COUNT          5 /* Autoneg Retry Count value */
       
    56 #define E1000_BASE1000T_STATUS          10
       
    57 #define E1000_IDLE_ERROR_COUNT_MASK     0xFF
       
    58 #define E1000_RECEIVE_ERROR_COUNTER     21
       
    59 #define E1000_RECEIVE_ERROR_MAX         0xFFFF
       
    60 
       
    61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
       
    62 
       
    63 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
       
    64 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
       
    65 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
       
    66 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
       
    67 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
       
    68 				      u16 words, u16 *data);
       
    69 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
       
    70 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
       
    71 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
       
    72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
       
    73 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
       
    74 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
       
    75 static s32 e1000_led_on_82574(struct e1000_hw *hw);
       
    76 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
       
    77 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
       
    78 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
       
    79 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
       
    80 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
       
    81 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
       
    82 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
       
    83 
       
    84 /**
       
    85  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
       
    86  *  @hw: pointer to the HW structure
       
    87  **/
       
    88 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
       
    89 {
       
    90 	struct e1000_phy_info *phy = &hw->phy;
       
    91 	s32 ret_val;
       
    92 
       
    93 	if (hw->phy.media_type != e1000_media_type_copper) {
       
    94 		phy->type = e1000_phy_none;
       
    95 		return 0;
       
    96 	}
       
    97 
       
    98 	phy->addr			 = 1;
       
    99 	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   100 	phy->reset_delay_us		 = 100;
       
   101 
       
   102 	phy->ops.power_up		 = e1000_power_up_phy_copper;
       
   103 	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;
       
   104 
       
   105 	switch (hw->mac.type) {
       
   106 	case e1000_82571:
       
   107 	case e1000_82572:
       
   108 		phy->type		 = e1000_phy_igp_2;
       
   109 		break;
       
   110 	case e1000_82573:
       
   111 		phy->type		 = e1000_phy_m88;
       
   112 		break;
       
   113 	case e1000_82574:
       
   114 	case e1000_82583:
       
   115 		phy->type		 = e1000_phy_bm;
       
   116 		phy->ops.acquire = e1000_get_hw_semaphore_82574;
       
   117 		phy->ops.release = e1000_put_hw_semaphore_82574;
       
   118 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
       
   119 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
       
   120 		break;
       
   121 	default:
       
   122 		return -E1000_ERR_PHY;
       
   123 		break;
       
   124 	}
       
   125 
       
   126 	/* This can only be done after all function pointers are setup. */
       
   127 	ret_val = e1000_get_phy_id_82571(hw);
       
   128 	if (ret_val) {
       
   129 		e_dbg("Error getting PHY ID\n");
       
   130 		return ret_val;
       
   131 	}
       
   132 
       
   133 	/* Verify phy id */
       
   134 	switch (hw->mac.type) {
       
   135 	case e1000_82571:
       
   136 	case e1000_82572:
       
   137 		if (phy->id != IGP01E1000_I_PHY_ID)
       
   138 			ret_val = -E1000_ERR_PHY;
       
   139 		break;
       
   140 	case e1000_82573:
       
   141 		if (phy->id != M88E1111_I_PHY_ID)
       
   142 			ret_val = -E1000_ERR_PHY;
       
   143 		break;
       
   144 	case e1000_82574:
       
   145 	case e1000_82583:
       
   146 		if (phy->id != BME1000_E_PHY_ID_R2)
       
   147 			ret_val = -E1000_ERR_PHY;
       
   148 		break;
       
   149 	default:
       
   150 		ret_val = -E1000_ERR_PHY;
       
   151 		break;
       
   152 	}
       
   153 
       
   154 	if (ret_val)
       
   155 		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
       
   156 
       
   157 	return ret_val;
       
   158 }
       
   159 
       
   160 /**
       
   161  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
       
   162  *  @hw: pointer to the HW structure
       
   163  **/
       
   164 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
       
   165 {
       
   166 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   167 	u32 eecd = er32(EECD);
       
   168 	u16 size;
       
   169 
       
   170 	nvm->opcode_bits = 8;
       
   171 	nvm->delay_usec = 1;
       
   172 	switch (nvm->override) {
       
   173 	case e1000_nvm_override_spi_large:
       
   174 		nvm->page_size = 32;
       
   175 		nvm->address_bits = 16;
       
   176 		break;
       
   177 	case e1000_nvm_override_spi_small:
       
   178 		nvm->page_size = 8;
       
   179 		nvm->address_bits = 8;
       
   180 		break;
       
   181 	default:
       
   182 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
       
   183 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
       
   184 		break;
       
   185 	}
       
   186 
       
   187 	switch (hw->mac.type) {
       
   188 	case e1000_82573:
       
   189 	case e1000_82574:
       
   190 	case e1000_82583:
       
   191 		if (((eecd >> 15) & 0x3) == 0x3) {
       
   192 			nvm->type = e1000_nvm_flash_hw;
       
   193 			nvm->word_size = 2048;
       
   194 			/*
       
   195 			 * Autonomous Flash update bit must be cleared due
       
   196 			 * to Flash update issue.
       
   197 			 */
       
   198 			eecd &= ~E1000_EECD_AUPDEN;
       
   199 			ew32(EECD, eecd);
       
   200 			break;
       
   201 		}
       
   202 		/* Fall Through */
       
   203 	default:
       
   204 		nvm->type = e1000_nvm_eeprom_spi;
       
   205 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
       
   206 				  E1000_EECD_SIZE_EX_SHIFT);
       
   207 		/*
       
   208 		 * Added to a constant, "size" becomes the left-shift value
       
   209 		 * for setting word_size.
       
   210 		 */
       
   211 		size += NVM_WORD_SIZE_BASE_SHIFT;
       
   212 
       
   213 		/* EEPROM access above 16k is unsupported */
       
   214 		if (size > 14)
       
   215 			size = 14;
       
   216 		nvm->word_size	= 1 << size;
       
   217 		break;
       
   218 	}
       
   219 
       
   220 	/* Function Pointers */
       
   221 	switch (hw->mac.type) {
       
   222 	case e1000_82574:
       
   223 	case e1000_82583:
       
   224 		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
       
   225 		nvm->ops.release = e1000_put_hw_semaphore_82574;
       
   226 		break;
       
   227 	default:
       
   228 		break;
       
   229 	}
       
   230 
       
   231 	return 0;
       
   232 }
       
   233 
       
   234 /**
       
   235  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
       
   236  *  @hw: pointer to the HW structure
       
   237  **/
       
   238 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
       
   239 {
       
   240 	struct e1000_hw *hw = &adapter->hw;
       
   241 	struct e1000_mac_info *mac = &hw->mac;
       
   242 	struct e1000_mac_operations *func = &mac->ops;
       
   243 	u32 swsm = 0;
       
   244 	u32 swsm2 = 0;
       
   245 	bool force_clear_smbi = false;
       
   246 
       
   247 	/* Set media type */
       
   248 	switch (adapter->pdev->device) {
       
   249 	case E1000_DEV_ID_82571EB_FIBER:
       
   250 	case E1000_DEV_ID_82572EI_FIBER:
       
   251 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
   252 		hw->phy.media_type = e1000_media_type_fiber;
       
   253 		break;
       
   254 	case E1000_DEV_ID_82571EB_SERDES:
       
   255 	case E1000_DEV_ID_82572EI_SERDES:
       
   256 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
       
   257 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
       
   258 		hw->phy.media_type = e1000_media_type_internal_serdes;
       
   259 		break;
       
   260 	default:
       
   261 		hw->phy.media_type = e1000_media_type_copper;
       
   262 		break;
       
   263 	}
       
   264 
       
   265 	/* Set mta register count */
       
   266 	mac->mta_reg_count = 128;
       
   267 	/* Set rar entry count */
       
   268 	mac->rar_entry_count = E1000_RAR_ENTRIES;
       
   269 	/* Adaptive IFS supported */
       
   270 	mac->adaptive_ifs = true;
       
   271 
       
   272 	/* check for link */
       
   273 	switch (hw->phy.media_type) {
       
   274 	case e1000_media_type_copper:
       
   275 		func->setup_physical_interface = e1000_setup_copper_link_82571;
       
   276 		func->check_for_link = e1000e_check_for_copper_link;
       
   277 		func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
       
   278 		break;
       
   279 	case e1000_media_type_fiber:
       
   280 		func->setup_physical_interface =
       
   281 			e1000_setup_fiber_serdes_link_82571;
       
   282 		func->check_for_link = e1000e_check_for_fiber_link;
       
   283 		func->get_link_up_info =
       
   284 			e1000e_get_speed_and_duplex_fiber_serdes;
       
   285 		break;
       
   286 	case e1000_media_type_internal_serdes:
       
   287 		func->setup_physical_interface =
       
   288 			e1000_setup_fiber_serdes_link_82571;
       
   289 		func->check_for_link = e1000_check_for_serdes_link_82571;
       
   290 		func->get_link_up_info =
       
   291 			e1000e_get_speed_and_duplex_fiber_serdes;
       
   292 		break;
       
   293 	default:
       
   294 		return -E1000_ERR_CONFIG;
       
   295 		break;
       
   296 	}
       
   297 
       
   298 	switch (hw->mac.type) {
       
   299 	case e1000_82573:
       
   300 		func->set_lan_id = e1000_set_lan_id_single_port;
       
   301 		func->check_mng_mode = e1000e_check_mng_mode_generic;
       
   302 		func->led_on = e1000e_led_on_generic;
       
   303 		func->blink_led = e1000e_blink_led_generic;
       
   304 
       
   305 		/* FWSM register */
       
   306 		mac->has_fwsm = true;
       
   307 		/*
       
   308 		 * ARC supported; valid only if manageability features are
       
   309 		 * enabled.
       
   310 		 */
       
   311 		mac->arc_subsystem_valid =
       
   312 			(er32(FWSM) & E1000_FWSM_MODE_MASK)
       
   313 			? true : false;
       
   314 		break;
       
   315 	case e1000_82574:
       
   316 	case e1000_82583:
       
   317 		func->set_lan_id = e1000_set_lan_id_single_port;
       
   318 		func->check_mng_mode = e1000_check_mng_mode_82574;
       
   319 		func->led_on = e1000_led_on_82574;
       
   320 		break;
       
   321 	default:
       
   322 		func->check_mng_mode = e1000e_check_mng_mode_generic;
       
   323 		func->led_on = e1000e_led_on_generic;
       
   324 		func->blink_led = e1000e_blink_led_generic;
       
   325 
       
   326 		/* FWSM register */
       
   327 		mac->has_fwsm = true;
       
   328 		break;
       
   329 	}
       
   330 
       
   331 	/*
       
   332 	 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
       
   333 	 * first NVM or PHY access. This should be done for single-port
       
   334 	 * devices, and for one port only on dual-port devices so that
       
   335 	 * for those devices we can still use the SMBI lock to synchronize
       
   336 	 * inter-port accesses to the PHY & NVM.
       
   337 	 */
       
   338 	switch (hw->mac.type) {
       
   339 	case e1000_82571:
       
   340 	case e1000_82572:
       
   341 		swsm2 = er32(SWSM2);
       
   342 
       
   343 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
       
   344 			/* Only do this for the first interface on this card */
       
   345 			ew32(SWSM2,
       
   346 			    swsm2 | E1000_SWSM2_LOCK);
       
   347 			force_clear_smbi = true;
       
   348 		} else
       
   349 			force_clear_smbi = false;
       
   350 		break;
       
   351 	default:
       
   352 		force_clear_smbi = true;
       
   353 		break;
       
   354 	}
       
   355 
       
   356 	if (force_clear_smbi) {
       
   357 		/* Make sure SWSM.SMBI is clear */
       
   358 		swsm = er32(SWSM);
       
   359 		if (swsm & E1000_SWSM_SMBI) {
       
   360 			/* This bit should not be set on a first interface, and
       
   361 			 * indicates that the bootagent or EFI code has
       
   362 			 * improperly left this bit enabled
       
   363 			 */
       
   364 			e_dbg("Please update your 82571 Bootagent\n");
       
   365 		}
       
   366 		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
       
   367 	}
       
   368 
       
   369 	/*
       
   370 	 * Initialize device specific counter of SMBI acquisition
       
   371 	 * timeouts.
       
   372 	 */
       
   373 	 hw->dev_spec.e82571.smb_counter = 0;
       
   374 
       
   375 	return 0;
       
   376 }
       
   377 
       
   378 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
       
   379 {
       
   380 	struct e1000_hw *hw = &adapter->hw;
       
   381 	static int global_quad_port_a; /* global port a indication */
       
   382 	struct pci_dev *pdev = adapter->pdev;
       
   383 	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
       
   384 	s32 rc;
       
   385 
       
   386 	rc = e1000_init_mac_params_82571(adapter);
       
   387 	if (rc)
       
   388 		return rc;
       
   389 
       
   390 	rc = e1000_init_nvm_params_82571(hw);
       
   391 	if (rc)
       
   392 		return rc;
       
   393 
       
   394 	rc = e1000_init_phy_params_82571(hw);
       
   395 	if (rc)
       
   396 		return rc;
       
   397 
       
   398 	/* tag quad port adapters first, it's used below */
       
   399 	switch (pdev->device) {
       
   400 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
       
   401 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
   402 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
       
   403 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
       
   404 		adapter->flags |= FLAG_IS_QUAD_PORT;
       
   405 		/* mark the first port */
       
   406 		if (global_quad_port_a == 0)
       
   407 			adapter->flags |= FLAG_IS_QUAD_PORT_A;
       
   408 		/* Reset for multiple quad port adapters */
       
   409 		global_quad_port_a++;
       
   410 		if (global_quad_port_a == 4)
       
   411 			global_quad_port_a = 0;
       
   412 		break;
       
   413 	default:
       
   414 		break;
       
   415 	}
       
   416 
       
   417 	switch (adapter->hw.mac.type) {
       
   418 	case e1000_82571:
       
   419 		/* these dual ports don't have WoL on port B at all */
       
   420 		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
       
   421 		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
       
   422 		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
       
   423 		    (is_port_b))
       
   424 			adapter->flags &= ~FLAG_HAS_WOL;
       
   425 		/* quad ports only support WoL on port A */
       
   426 		if (adapter->flags & FLAG_IS_QUAD_PORT &&
       
   427 		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
       
   428 			adapter->flags &= ~FLAG_HAS_WOL;
       
   429 		/* Does not support WoL on any port */
       
   430 		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
       
   431 			adapter->flags &= ~FLAG_HAS_WOL;
       
   432 		break;
       
   433 	case e1000_82573:
       
   434 		if (pdev->device == E1000_DEV_ID_82573L) {
       
   435 			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
       
   436 			adapter->max_hw_frame_size = DEFAULT_JUMBO;
       
   437 		}
       
   438 		break;
       
   439 	default:
       
   440 		break;
       
   441 	}
       
   442 
       
   443 	return 0;
       
   444 }
       
   445 
       
   446 /**
       
   447  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
       
   448  *  @hw: pointer to the HW structure
       
   449  *
       
   450  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
       
   451  *  revision in the hardware structure.
       
   452  **/
       
   453 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
       
   454 {
       
   455 	struct e1000_phy_info *phy = &hw->phy;
       
   456 	s32 ret_val;
       
   457 	u16 phy_id = 0;
       
   458 
       
   459 	switch (hw->mac.type) {
       
   460 	case e1000_82571:
       
   461 	case e1000_82572:
       
   462 		/*
       
   463 		 * The 82571 firmware may still be configuring the PHY.
       
   464 		 * In this case, we cannot access the PHY until the
       
   465 		 * configuration is done.  So we explicitly set the
       
   466 		 * PHY ID.
       
   467 		 */
       
   468 		phy->id = IGP01E1000_I_PHY_ID;
       
   469 		break;
       
   470 	case e1000_82573:
       
   471 		return e1000e_get_phy_id(hw);
       
   472 		break;
       
   473 	case e1000_82574:
       
   474 	case e1000_82583:
       
   475 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
       
   476 		if (ret_val)
       
   477 			return ret_val;
       
   478 
       
   479 		phy->id = (u32)(phy_id << 16);
       
   480 		udelay(20);
       
   481 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
       
   482 		if (ret_val)
       
   483 			return ret_val;
       
   484 
       
   485 		phy->id |= (u32)(phy_id);
       
   486 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
       
   487 		break;
       
   488 	default:
       
   489 		return -E1000_ERR_PHY;
       
   490 		break;
       
   491 	}
       
   492 
       
   493 	return 0;
       
   494 }
       
   495 
       
   496 /**
       
   497  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
       
   498  *  @hw: pointer to the HW structure
       
   499  *
       
   500  *  Acquire the HW semaphore to access the PHY or NVM
       
   501  **/
       
   502 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
       
   503 {
       
   504 	u32 swsm;
       
   505 	s32 sw_timeout = hw->nvm.word_size + 1;
       
   506 	s32 fw_timeout = hw->nvm.word_size + 1;
       
   507 	s32 i = 0;
       
   508 
       
   509 	/*
       
   510 	 * If we have timedout 3 times on trying to acquire
       
   511 	 * the inter-port SMBI semaphore, there is old code
       
   512 	 * operating on the other port, and it is not
       
   513 	 * releasing SMBI. Modify the number of times that
       
   514 	 * we try for the semaphore to interwork with this
       
   515 	 * older code.
       
   516 	 */
       
   517 	if (hw->dev_spec.e82571.smb_counter > 2)
       
   518 		sw_timeout = 1;
       
   519 
       
   520 	/* Get the SW semaphore */
       
   521 	while (i < sw_timeout) {
       
   522 		swsm = er32(SWSM);
       
   523 		if (!(swsm & E1000_SWSM_SMBI))
       
   524 			break;
       
   525 
       
   526 		udelay(50);
       
   527 		i++;
       
   528 	}
       
   529 
       
   530 	if (i == sw_timeout) {
       
   531 		e_dbg("Driver can't access device - SMBI bit is set.\n");
       
   532 		hw->dev_spec.e82571.smb_counter++;
       
   533 	}
       
   534 	/* Get the FW semaphore. */
       
   535 	for (i = 0; i < fw_timeout; i++) {
       
   536 		swsm = er32(SWSM);
       
   537 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
       
   538 
       
   539 		/* Semaphore acquired if bit latched */
       
   540 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
       
   541 			break;
       
   542 
       
   543 		udelay(50);
       
   544 	}
       
   545 
       
   546 	if (i == fw_timeout) {
       
   547 		/* Release semaphores */
       
   548 		e1000_put_hw_semaphore_82571(hw);
       
   549 		e_dbg("Driver can't access the NVM\n");
       
   550 		return -E1000_ERR_NVM;
       
   551 	}
       
   552 
       
   553 	return 0;
       
   554 }
       
   555 
       
   556 /**
       
   557  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
       
   558  *  @hw: pointer to the HW structure
       
   559  *
       
   560  *  Release hardware semaphore used to access the PHY or NVM
       
   561  **/
       
   562 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
       
   563 {
       
   564 	u32 swsm;
       
   565 
       
   566 	swsm = er32(SWSM);
       
   567 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
   568 	ew32(SWSM, swsm);
       
   569 }
       
   570 /**
       
   571  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
       
   572  *  @hw: pointer to the HW structure
       
   573  *
       
   574  *  Acquire the HW semaphore during reset.
       
   575  *
       
   576  **/
       
   577 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
       
   578 {
       
   579 	u32 extcnf_ctrl;
       
   580 	s32 ret_val = 0;
       
   581 	s32 i = 0;
       
   582 
       
   583 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
   584 	extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   585 	do {
       
   586 		ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   587 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
   588 
       
   589 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
       
   590 			break;
       
   591 
       
   592 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   593 
       
   594 		usleep_range(2000, 4000);
       
   595 		i++;
       
   596 	} while (i < MDIO_OWNERSHIP_TIMEOUT);
       
   597 
       
   598 	if (i == MDIO_OWNERSHIP_TIMEOUT) {
       
   599 		/* Release semaphores */
       
   600 		e1000_put_hw_semaphore_82573(hw);
       
   601 		e_dbg("Driver can't access the PHY\n");
       
   602 		ret_val = -E1000_ERR_PHY;
       
   603 		goto out;
       
   604 	}
       
   605 
       
   606 out:
       
   607 	return ret_val;
       
   608 }
       
   609 
       
   610 /**
       
   611  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
       
   612  *  @hw: pointer to the HW structure
       
   613  *
       
   614  *  Release hardware semaphore used during reset.
       
   615  *
       
   616  **/
       
   617 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
       
   618 {
       
   619 	u32 extcnf_ctrl;
       
   620 
       
   621 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
   622 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   623 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   624 }
       
   625 
       
   626 static DEFINE_MUTEX(swflag_mutex);
       
   627 
       
   628 /**
       
   629  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
       
   630  *  @hw: pointer to the HW structure
       
   631  *
       
   632  *  Acquire the HW semaphore to access the PHY or NVM.
       
   633  *
       
   634  **/
       
   635 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
       
   636 {
       
   637 	s32 ret_val;
       
   638 
       
   639 	mutex_lock(&swflag_mutex);
       
   640 	ret_val = e1000_get_hw_semaphore_82573(hw);
       
   641 	if (ret_val)
       
   642 		mutex_unlock(&swflag_mutex);
       
   643 	return ret_val;
       
   644 }
       
   645 
       
   646 /**
       
   647  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
       
   648  *  @hw: pointer to the HW structure
       
   649  *
       
   650  *  Release hardware semaphore used to access the PHY or NVM
       
   651  *
       
   652  **/
       
   653 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
       
   654 {
       
   655 	e1000_put_hw_semaphore_82573(hw);
       
   656 	mutex_unlock(&swflag_mutex);
       
   657 }
       
   658 
       
   659 /**
       
   660  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
       
   661  *  @hw: pointer to the HW structure
       
   662  *  @active: true to enable LPLU, false to disable
       
   663  *
       
   664  *  Sets the LPLU D0 state according to the active flag.
       
   665  *  LPLU will not be activated unless the
       
   666  *  device autonegotiation advertisement meets standards of
       
   667  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
   668  *  This is a function pointer entry point only called by
       
   669  *  PHY setup routines.
       
   670  **/
       
   671 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
       
   672 {
       
   673 	u16 data = er32(POEMB);
       
   674 
       
   675 	if (active)
       
   676 		data |= E1000_PHY_CTRL_D0A_LPLU;
       
   677 	else
       
   678 		data &= ~E1000_PHY_CTRL_D0A_LPLU;
       
   679 
       
   680 	ew32(POEMB, data);
       
   681 	return 0;
       
   682 }
       
   683 
       
   684 /**
       
   685  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
       
   686  *  @hw: pointer to the HW structure
       
   687  *  @active: boolean used to enable/disable lplu
       
   688  *
       
   689  *  The low power link up (lplu) state is set to the power management level D3
       
   690  *  when active is true, else clear lplu for D3. LPLU
       
   691  *  is used during Dx states where the power conservation is most important.
       
   692  *  During driver activity, SmartSpeed should be enabled so performance is
       
   693  *  maintained.
       
   694  **/
       
   695 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
       
   696 {
       
   697 	u16 data = er32(POEMB);
       
   698 
       
   699 	if (!active) {
       
   700 		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
       
   701 	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
   702 		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
   703 		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
       
   704 		data |= E1000_PHY_CTRL_NOND0A_LPLU;
       
   705 	}
       
   706 
       
   707 	ew32(POEMB, data);
       
   708 	return 0;
       
   709 }
       
   710 
       
   711 /**
       
   712  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
       
   713  *  @hw: pointer to the HW structure
       
   714  *
       
   715  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
       
   716  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
       
   717  *  for EEPROM access grant bit.  If the access grant bit is not set, release
       
   718  *  hardware semaphore.
       
   719  **/
       
   720 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
       
   721 {
       
   722 	s32 ret_val;
       
   723 
       
   724 	ret_val = e1000_get_hw_semaphore_82571(hw);
       
   725 	if (ret_val)
       
   726 		return ret_val;
       
   727 
       
   728 	switch (hw->mac.type) {
       
   729 	case e1000_82573:
       
   730 		break;
       
   731 	default:
       
   732 		ret_val = e1000e_acquire_nvm(hw);
       
   733 		break;
       
   734 	}
       
   735 
       
   736 	if (ret_val)
       
   737 		e1000_put_hw_semaphore_82571(hw);
       
   738 
       
   739 	return ret_val;
       
   740 }
       
   741 
       
   742 /**
       
   743  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
       
   744  *  @hw: pointer to the HW structure
       
   745  *
       
   746  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
       
   747  **/
       
   748 static void e1000_release_nvm_82571(struct e1000_hw *hw)
       
   749 {
       
   750 	e1000e_release_nvm(hw);
       
   751 	e1000_put_hw_semaphore_82571(hw);
       
   752 }
       
   753 
       
   754 /**
       
   755  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
       
   756  *  @hw: pointer to the HW structure
       
   757  *  @offset: offset within the EEPROM to be written to
       
   758  *  @words: number of words to write
       
   759  *  @data: 16 bit word(s) to be written to the EEPROM
       
   760  *
       
   761  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
       
   762  *
       
   763  *  If e1000e_update_nvm_checksum is not called after this function, the
       
   764  *  EEPROM will most likely contain an invalid checksum.
       
   765  **/
       
   766 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
       
   767 				 u16 *data)
       
   768 {
       
   769 	s32 ret_val;
       
   770 
       
   771 	switch (hw->mac.type) {
       
   772 	case e1000_82573:
       
   773 	case e1000_82574:
       
   774 	case e1000_82583:
       
   775 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
       
   776 		break;
       
   777 	case e1000_82571:
       
   778 	case e1000_82572:
       
   779 		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
       
   780 		break;
       
   781 	default:
       
   782 		ret_val = -E1000_ERR_NVM;
       
   783 		break;
       
   784 	}
       
   785 
       
   786 	return ret_val;
       
   787 }
       
   788 
       
   789 /**
       
   790  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
       
   791  *  @hw: pointer to the HW structure
       
   792  *
       
   793  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
       
   794  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
       
   795  *  value to the EEPROM.
       
   796  **/
       
   797 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
       
   798 {
       
   799 	u32 eecd;
       
   800 	s32 ret_val;
       
   801 	u16 i;
       
   802 
       
   803 	ret_val = e1000e_update_nvm_checksum_generic(hw);
       
   804 	if (ret_val)
       
   805 		return ret_val;
       
   806 
       
   807 	/*
       
   808 	 * If our nvm is an EEPROM, then we're done
       
   809 	 * otherwise, commit the checksum to the flash NVM.
       
   810 	 */
       
   811 	if (hw->nvm.type != e1000_nvm_flash_hw)
       
   812 		return ret_val;
       
   813 
       
   814 	/* Check for pending operations. */
       
   815 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
       
   816 		usleep_range(1000, 2000);
       
   817 		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
       
   818 			break;
       
   819 	}
       
   820 
       
   821 	if (i == E1000_FLASH_UPDATES)
       
   822 		return -E1000_ERR_NVM;
       
   823 
       
   824 	/* Reset the firmware if using STM opcode. */
       
   825 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
       
   826 		/*
       
   827 		 * The enabling of and the actual reset must be done
       
   828 		 * in two write cycles.
       
   829 		 */
       
   830 		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
       
   831 		e1e_flush();
       
   832 		ew32(HICR, E1000_HICR_FW_RESET);
       
   833 	}
       
   834 
       
   835 	/* Commit the write to flash */
       
   836 	eecd = er32(EECD) | E1000_EECD_FLUPD;
       
   837 	ew32(EECD, eecd);
       
   838 
       
   839 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
       
   840 		usleep_range(1000, 2000);
       
   841 		if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
       
   842 			break;
       
   843 	}
       
   844 
       
   845 	if (i == E1000_FLASH_UPDATES)
       
   846 		return -E1000_ERR_NVM;
       
   847 
       
   848 	return 0;
       
   849 }
       
   850 
       
   851 /**
       
   852  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
       
   853  *  @hw: pointer to the HW structure
       
   854  *
       
   855  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
       
   856  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
       
   857  **/
       
   858 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
       
   859 {
       
   860 	if (hw->nvm.type == e1000_nvm_flash_hw)
       
   861 		e1000_fix_nvm_checksum_82571(hw);
       
   862 
       
   863 	return e1000e_validate_nvm_checksum_generic(hw);
       
   864 }
       
   865 
       
   866 /**
       
   867  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
       
   868  *  @hw: pointer to the HW structure
       
   869  *  @offset: offset within the EEPROM to be written to
       
   870  *  @words: number of words to write
       
   871  *  @data: 16 bit word(s) to be written to the EEPROM
       
   872  *
       
   873  *  After checking for invalid values, poll the EEPROM to ensure the previous
       
   874  *  command has completed before trying to write the next word.  After write
       
   875  *  poll for completion.
       
   876  *
       
   877  *  If e1000e_update_nvm_checksum is not called after this function, the
       
   878  *  EEPROM will most likely contain an invalid checksum.
       
   879  **/
       
   880 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
       
   881 				      u16 words, u16 *data)
       
   882 {
       
   883 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   884 	u32 i, eewr = 0;
       
   885 	s32 ret_val = 0;
       
   886 
       
   887 	/*
       
   888 	 * A check for invalid values:  offset too large, too many words,
       
   889 	 * and not enough words.
       
   890 	 */
       
   891 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
   892 	    (words == 0)) {
       
   893 		e_dbg("nvm parameter(s) out of bounds\n");
       
   894 		return -E1000_ERR_NVM;
       
   895 	}
       
   896 
       
   897 	for (i = 0; i < words; i++) {
       
   898 		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
       
   899 		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
       
   900 		       E1000_NVM_RW_REG_START;
       
   901 
       
   902 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
       
   903 		if (ret_val)
       
   904 			break;
       
   905 
       
   906 		ew32(EEWR, eewr);
       
   907 
       
   908 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
       
   909 		if (ret_val)
       
   910 			break;
       
   911 	}
       
   912 
       
   913 	return ret_val;
       
   914 }
       
   915 
       
   916 /**
       
   917  *  e1000_get_cfg_done_82571 - Poll for configuration done
       
   918  *  @hw: pointer to the HW structure
       
   919  *
       
   920  *  Reads the management control register for the config done bit to be set.
       
   921  **/
       
   922 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
       
   923 {
       
   924 	s32 timeout = PHY_CFG_TIMEOUT;
       
   925 
       
   926 	while (timeout) {
       
   927 		if (er32(EEMNGCTL) &
       
   928 		    E1000_NVM_CFG_DONE_PORT_0)
       
   929 			break;
       
   930 		usleep_range(1000, 2000);
       
   931 		timeout--;
       
   932 	}
       
   933 	if (!timeout) {
       
   934 		e_dbg("MNG configuration cycle has not completed.\n");
       
   935 		return -E1000_ERR_RESET;
       
   936 	}
       
   937 
       
   938 	return 0;
       
   939 }
       
   940 
       
   941 /**
       
   942  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
       
   943  *  @hw: pointer to the HW structure
       
   944  *  @active: true to enable LPLU, false to disable
       
   945  *
       
   946  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
       
   947  *  this function also disables smart speed and vice versa.  LPLU will not be
       
   948  *  activated unless the device autonegotiation advertisement meets standards
       
   949  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
       
   950  *  pointer entry point only called by PHY setup routines.
       
   951  **/
       
   952 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
       
   953 {
       
   954 	struct e1000_phy_info *phy = &hw->phy;
       
   955 	s32 ret_val;
       
   956 	u16 data;
       
   957 
       
   958 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
       
   959 	if (ret_val)
       
   960 		return ret_val;
       
   961 
       
   962 	if (active) {
       
   963 		data |= IGP02E1000_PM_D0_LPLU;
       
   964 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
   965 		if (ret_val)
       
   966 			return ret_val;
       
   967 
       
   968 		/* When LPLU is enabled, we should disable SmartSpeed */
       
   969 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
   970 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   971 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
   972 		if (ret_val)
       
   973 			return ret_val;
       
   974 	} else {
       
   975 		data &= ~IGP02E1000_PM_D0_LPLU;
       
   976 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
   977 		/*
       
   978 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
   979 		 * during Dx states where the power conservation is most
       
   980 		 * important.  During driver activity we should enable
       
   981 		 * SmartSpeed, so performance is maintained.
       
   982 		 */
       
   983 		if (phy->smart_speed == e1000_smart_speed_on) {
       
   984 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   985 					   &data);
       
   986 			if (ret_val)
       
   987 				return ret_val;
       
   988 
       
   989 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
   990 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   991 					   data);
       
   992 			if (ret_val)
       
   993 				return ret_val;
       
   994 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
   995 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   996 					   &data);
       
   997 			if (ret_val)
       
   998 				return ret_val;
       
   999 
       
  1000 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1001 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1002 					   data);
       
  1003 			if (ret_val)
       
  1004 				return ret_val;
       
  1005 		}
       
  1006 	}
       
  1007 
       
  1008 	return 0;
       
  1009 }
       
  1010 
       
  1011 /**
       
  1012  *  e1000_reset_hw_82571 - Reset hardware
       
  1013  *  @hw: pointer to the HW structure
       
  1014  *
       
  1015  *  This resets the hardware into a known state.
       
  1016  **/
       
  1017 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
       
  1018 {
       
  1019 	u32 ctrl, ctrl_ext;
       
  1020 	s32 ret_val;
       
  1021 
       
  1022 	/*
       
  1023 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
       
  1024 	 * on the last TLP read/write transaction when MAC is reset.
       
  1025 	 */
       
  1026 	ret_val = e1000e_disable_pcie_master(hw);
       
  1027 	if (ret_val)
       
  1028 		e_dbg("PCI-E Master disable polling has failed.\n");
       
  1029 
       
  1030 	e_dbg("Masking off all interrupts\n");
       
  1031 	ew32(IMC, 0xffffffff);
       
  1032 
       
  1033 	ew32(RCTL, 0);
       
  1034 	ew32(TCTL, E1000_TCTL_PSP);
       
  1035 	e1e_flush();
       
  1036 
       
  1037 	usleep_range(10000, 20000);
       
  1038 
       
  1039 	/*
       
  1040 	 * Must acquire the MDIO ownership before MAC reset.
       
  1041 	 * Ownership defaults to firmware after a reset.
       
  1042 	 */
       
  1043 	switch (hw->mac.type) {
       
  1044 	case e1000_82573:
       
  1045 		ret_val = e1000_get_hw_semaphore_82573(hw);
       
  1046 		break;
       
  1047 	case e1000_82574:
       
  1048 	case e1000_82583:
       
  1049 		ret_val = e1000_get_hw_semaphore_82574(hw);
       
  1050 		break;
       
  1051 	default:
       
  1052 		break;
       
  1053 	}
       
  1054 	if (ret_val)
       
  1055 		e_dbg("Cannot acquire MDIO ownership\n");
       
  1056 
       
  1057 	ctrl = er32(CTRL);
       
  1058 
       
  1059 	e_dbg("Issuing a global reset to MAC\n");
       
  1060 	ew32(CTRL, ctrl | E1000_CTRL_RST);
       
  1061 
       
  1062 	/* Must release MDIO ownership and mutex after MAC reset. */
       
  1063 	switch (hw->mac.type) {
       
  1064 	case e1000_82574:
       
  1065 	case e1000_82583:
       
  1066 		e1000_put_hw_semaphore_82574(hw);
       
  1067 		break;
       
  1068 	default:
       
  1069 		break;
       
  1070 	}
       
  1071 
       
  1072 	if (hw->nvm.type == e1000_nvm_flash_hw) {
       
  1073 		udelay(10);
       
  1074 		ctrl_ext = er32(CTRL_EXT);
       
  1075 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
  1076 		ew32(CTRL_EXT, ctrl_ext);
       
  1077 		e1e_flush();
       
  1078 	}
       
  1079 
       
  1080 	ret_val = e1000e_get_auto_rd_done(hw);
       
  1081 	if (ret_val)
       
  1082 		/* We don't want to continue accessing MAC registers. */
       
  1083 		return ret_val;
       
  1084 
       
  1085 	/*
       
  1086 	 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
       
  1087 	 * Need to wait for Phy configuration completion before accessing
       
  1088 	 * NVM and Phy.
       
  1089 	 */
       
  1090 
       
  1091 	switch (hw->mac.type) {
       
  1092 	case e1000_82573:
       
  1093 	case e1000_82574:
       
  1094 	case e1000_82583:
       
  1095 		msleep(25);
       
  1096 		break;
       
  1097 	default:
       
  1098 		break;
       
  1099 	}
       
  1100 
       
  1101 	/* Clear any pending interrupt events. */
       
  1102 	ew32(IMC, 0xffffffff);
       
  1103 	er32(ICR);
       
  1104 
       
  1105 	if (hw->mac.type == e1000_82571) {
       
  1106 		/* Install any alternate MAC address into RAR0 */
       
  1107 		ret_val = e1000_check_alt_mac_addr_generic(hw);
       
  1108 		if (ret_val)
       
  1109 			return ret_val;
       
  1110 
       
  1111 		e1000e_set_laa_state_82571(hw, true);
       
  1112 	}
       
  1113 
       
  1114 	/* Reinitialize the 82571 serdes link state machine */
       
  1115 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
       
  1116 		hw->mac.serdes_link_state = e1000_serdes_link_down;
       
  1117 
       
  1118 	return 0;
       
  1119 }
       
  1120 
       
  1121 /**
       
  1122  *  e1000_init_hw_82571 - Initialize hardware
       
  1123  *  @hw: pointer to the HW structure
       
  1124  *
       
  1125  *  This inits the hardware readying it for operation.
       
  1126  **/
       
  1127 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
       
  1128 {
       
  1129 	struct e1000_mac_info *mac = &hw->mac;
       
  1130 	u32 reg_data;
       
  1131 	s32 ret_val;
       
  1132 	u16 i, rar_count = mac->rar_entry_count;
       
  1133 
       
  1134 	e1000_initialize_hw_bits_82571(hw);
       
  1135 
       
  1136 	/* Initialize identification LED */
       
  1137 	ret_val = e1000e_id_led_init(hw);
       
  1138 	if (ret_val)
       
  1139 		e_dbg("Error initializing identification LED\n");
       
  1140 		/* This is not fatal and we should not stop init due to this */
       
  1141 
       
  1142 	/* Disabling VLAN filtering */
       
  1143 	e_dbg("Initializing the IEEE VLAN\n");
       
  1144 	mac->ops.clear_vfta(hw);
       
  1145 
       
  1146 	/* Setup the receive address. */
       
  1147 	/*
       
  1148 	 * If, however, a locally administered address was assigned to the
       
  1149 	 * 82571, we must reserve a RAR for it to work around an issue where
       
  1150 	 * resetting one port will reload the MAC on the other port.
       
  1151 	 */
       
  1152 	if (e1000e_get_laa_state_82571(hw))
       
  1153 		rar_count--;
       
  1154 	e1000e_init_rx_addrs(hw, rar_count);
       
  1155 
       
  1156 	/* Zero out the Multicast HASH table */
       
  1157 	e_dbg("Zeroing the MTA\n");
       
  1158 	for (i = 0; i < mac->mta_reg_count; i++)
       
  1159 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
       
  1160 
       
  1161 	/* Setup link and flow control */
       
  1162 	ret_val = e1000_setup_link_82571(hw);
       
  1163 
       
  1164 	/* Set the transmit descriptor write-back policy */
       
  1165 	reg_data = er32(TXDCTL(0));
       
  1166 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
       
  1167 		   E1000_TXDCTL_FULL_TX_DESC_WB |
       
  1168 		   E1000_TXDCTL_COUNT_DESC;
       
  1169 	ew32(TXDCTL(0), reg_data);
       
  1170 
       
  1171 	/* ...for both queues. */
       
  1172 	switch (mac->type) {
       
  1173 	case e1000_82573:
       
  1174 		e1000e_enable_tx_pkt_filtering(hw);
       
  1175 		/* fall through */
       
  1176 	case e1000_82574:
       
  1177 	case e1000_82583:
       
  1178 		reg_data = er32(GCR);
       
  1179 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
       
  1180 		ew32(GCR, reg_data);
       
  1181 		break;
       
  1182 	default:
       
  1183 		reg_data = er32(TXDCTL(1));
       
  1184 		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
       
  1185 			   E1000_TXDCTL_FULL_TX_DESC_WB |
       
  1186 			   E1000_TXDCTL_COUNT_DESC;
       
  1187 		ew32(TXDCTL(1), reg_data);
       
  1188 		break;
       
  1189 	}
       
  1190 
       
  1191 	/*
       
  1192 	 * Clear all of the statistics registers (clear on read).  It is
       
  1193 	 * important that we do this after we have tried to establish link
       
  1194 	 * because the symbol error count will increment wildly if there
       
  1195 	 * is no link.
       
  1196 	 */
       
  1197 	e1000_clear_hw_cntrs_82571(hw);
       
  1198 
       
  1199 	return ret_val;
       
  1200 }
       
  1201 
       
  1202 /**
       
  1203  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
       
  1204  *  @hw: pointer to the HW structure
       
  1205  *
       
  1206  *  Initializes required hardware-dependent bits needed for normal operation.
       
  1207  **/
       
  1208 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
       
  1209 {
       
  1210 	u32 reg;
       
  1211 
       
  1212 	/* Transmit Descriptor Control 0 */
       
  1213 	reg = er32(TXDCTL(0));
       
  1214 	reg |= (1 << 22);
       
  1215 	ew32(TXDCTL(0), reg);
       
  1216 
       
  1217 	/* Transmit Descriptor Control 1 */
       
  1218 	reg = er32(TXDCTL(1));
       
  1219 	reg |= (1 << 22);
       
  1220 	ew32(TXDCTL(1), reg);
       
  1221 
       
  1222 	/* Transmit Arbitration Control 0 */
       
  1223 	reg = er32(TARC(0));
       
  1224 	reg &= ~(0xF << 27); /* 30:27 */
       
  1225 	switch (hw->mac.type) {
       
  1226 	case e1000_82571:
       
  1227 	case e1000_82572:
       
  1228 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
       
  1229 		break;
       
  1230 	default:
       
  1231 		break;
       
  1232 	}
       
  1233 	ew32(TARC(0), reg);
       
  1234 
       
  1235 	/* Transmit Arbitration Control 1 */
       
  1236 	reg = er32(TARC(1));
       
  1237 	switch (hw->mac.type) {
       
  1238 	case e1000_82571:
       
  1239 	case e1000_82572:
       
  1240 		reg &= ~((1 << 29) | (1 << 30));
       
  1241 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
       
  1242 		if (er32(TCTL) & E1000_TCTL_MULR)
       
  1243 			reg &= ~(1 << 28);
       
  1244 		else
       
  1245 			reg |= (1 << 28);
       
  1246 		ew32(TARC(1), reg);
       
  1247 		break;
       
  1248 	default:
       
  1249 		break;
       
  1250 	}
       
  1251 
       
  1252 	/* Device Control */
       
  1253 	switch (hw->mac.type) {
       
  1254 	case e1000_82573:
       
  1255 	case e1000_82574:
       
  1256 	case e1000_82583:
       
  1257 		reg = er32(CTRL);
       
  1258 		reg &= ~(1 << 29);
       
  1259 		ew32(CTRL, reg);
       
  1260 		break;
       
  1261 	default:
       
  1262 		break;
       
  1263 	}
       
  1264 
       
  1265 	/* Extended Device Control */
       
  1266 	switch (hw->mac.type) {
       
  1267 	case e1000_82573:
       
  1268 	case e1000_82574:
       
  1269 	case e1000_82583:
       
  1270 		reg = er32(CTRL_EXT);
       
  1271 		reg &= ~(1 << 23);
       
  1272 		reg |= (1 << 22);
       
  1273 		ew32(CTRL_EXT, reg);
       
  1274 		break;
       
  1275 	default:
       
  1276 		break;
       
  1277 	}
       
  1278 
       
  1279 	if (hw->mac.type == e1000_82571) {
       
  1280 		reg = er32(PBA_ECC);
       
  1281 		reg |= E1000_PBA_ECC_CORR_EN;
       
  1282 		ew32(PBA_ECC, reg);
       
  1283 	}
       
  1284 	/*
       
  1285 	 * Workaround for hardware errata.
       
  1286 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
       
  1287 	 */
       
  1288 
       
  1289         if ((hw->mac.type == e1000_82571) ||
       
  1290            (hw->mac.type == e1000_82572)) {
       
  1291                 reg = er32(CTRL_EXT);
       
  1292                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
       
  1293                 ew32(CTRL_EXT, reg);
       
  1294         }
       
  1295 
       
  1296 
       
  1297 	/* PCI-Ex Control Registers */
       
  1298 	switch (hw->mac.type) {
       
  1299 	case e1000_82574:
       
  1300 	case e1000_82583:
       
  1301 		reg = er32(GCR);
       
  1302 		reg |= (1 << 22);
       
  1303 		ew32(GCR, reg);
       
  1304 
       
  1305 		/*
       
  1306 		 * Workaround for hardware errata.
       
  1307 		 * apply workaround for hardware errata documented in errata
       
  1308 		 * docs Fixes issue where some error prone or unreliable PCIe
       
  1309 		 * completions are occurring, particularly with ASPM enabled.
       
  1310 		 * Without fix, issue can cause Tx timeouts.
       
  1311 		 */
       
  1312 		reg = er32(GCR2);
       
  1313 		reg |= 1;
       
  1314 		ew32(GCR2, reg);
       
  1315 		break;
       
  1316 	default:
       
  1317 		break;
       
  1318 	}
       
  1319 }
       
  1320 
       
  1321 /**
       
  1322  *  e1000_clear_vfta_82571 - Clear VLAN filter table
       
  1323  *  @hw: pointer to the HW structure
       
  1324  *
       
  1325  *  Clears the register array which contains the VLAN filter table by
       
  1326  *  setting all the values to 0.
       
  1327  **/
       
  1328 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
       
  1329 {
       
  1330 	u32 offset;
       
  1331 	u32 vfta_value = 0;
       
  1332 	u32 vfta_offset = 0;
       
  1333 	u32 vfta_bit_in_reg = 0;
       
  1334 
       
  1335 	switch (hw->mac.type) {
       
  1336 	case e1000_82573:
       
  1337 	case e1000_82574:
       
  1338 	case e1000_82583:
       
  1339 		if (hw->mng_cookie.vlan_id != 0) {
       
  1340 			/*
       
  1341 			 * The VFTA is a 4096b bit-field, each identifying
       
  1342 			 * a single VLAN ID.  The following operations
       
  1343 			 * determine which 32b entry (i.e. offset) into the
       
  1344 			 * array we want to set the VLAN ID (i.e. bit) of
       
  1345 			 * the manageability unit.
       
  1346 			 */
       
  1347 			vfta_offset = (hw->mng_cookie.vlan_id >>
       
  1348 				       E1000_VFTA_ENTRY_SHIFT) &
       
  1349 				      E1000_VFTA_ENTRY_MASK;
       
  1350 			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
       
  1351 					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
       
  1352 		}
       
  1353 		break;
       
  1354 	default:
       
  1355 		break;
       
  1356 	}
       
  1357 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
  1358 		/*
       
  1359 		 * If the offset we want to clear is the same offset of the
       
  1360 		 * manageability VLAN ID, then clear all bits except that of
       
  1361 		 * the manageability unit.
       
  1362 		 */
       
  1363 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
       
  1364 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
       
  1365 		e1e_flush();
       
  1366 	}
       
  1367 }
       
  1368 
       
  1369 /**
       
  1370  *  e1000_check_mng_mode_82574 - Check manageability is enabled
       
  1371  *  @hw: pointer to the HW structure
       
  1372  *
       
  1373  *  Reads the NVM Initialization Control Word 2 and returns true
       
  1374  *  (>0) if any manageability is enabled, else false (0).
       
  1375  **/
       
  1376 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
       
  1377 {
       
  1378 	u16 data;
       
  1379 
       
  1380 	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
       
  1381 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
       
  1382 }
       
  1383 
       
  1384 /**
       
  1385  *  e1000_led_on_82574 - Turn LED on
       
  1386  *  @hw: pointer to the HW structure
       
  1387  *
       
  1388  *  Turn LED on.
       
  1389  **/
       
  1390 static s32 e1000_led_on_82574(struct e1000_hw *hw)
       
  1391 {
       
  1392 	u32 ctrl;
       
  1393 	u32 i;
       
  1394 
       
  1395 	ctrl = hw->mac.ledctl_mode2;
       
  1396 	if (!(E1000_STATUS_LU & er32(STATUS))) {
       
  1397 		/*
       
  1398 		 * If no link, then turn LED on by setting the invert bit
       
  1399 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
       
  1400 		 */
       
  1401 		for (i = 0; i < 4; i++)
       
  1402 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
       
  1403 			    E1000_LEDCTL_MODE_LED_ON)
       
  1404 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
       
  1405 	}
       
  1406 	ew32(LEDCTL, ctrl);
       
  1407 
       
  1408 	return 0;
       
  1409 }
       
  1410 
       
  1411 /**
       
  1412  *  e1000_check_phy_82574 - check 82574 phy hung state
       
  1413  *  @hw: pointer to the HW structure
       
  1414  *
       
  1415  *  Returns whether phy is hung or not
       
  1416  **/
       
  1417 bool e1000_check_phy_82574(struct e1000_hw *hw)
       
  1418 {
       
  1419 	u16 status_1kbt = 0;
       
  1420 	u16 receive_errors = 0;
       
  1421 	bool phy_hung = false;
       
  1422 	s32 ret_val = 0;
       
  1423 
       
  1424 	/*
       
  1425 	 * Read PHY Receive Error counter first, if its is max - all F's then
       
  1426 	 * read the Base1000T status register If both are max then PHY is hung.
       
  1427 	 */
       
  1428 	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
       
  1429 
       
  1430 	if (ret_val)
       
  1431 		goto out;
       
  1432 	if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
       
  1433 		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
       
  1434 		if (ret_val)
       
  1435 			goto out;
       
  1436 		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
       
  1437 		    E1000_IDLE_ERROR_COUNT_MASK)
       
  1438 			phy_hung = true;
       
  1439 	}
       
  1440 out:
       
  1441 	return phy_hung;
       
  1442 }
       
  1443 
       
  1444 /**
       
  1445  *  e1000_setup_link_82571 - Setup flow control and link settings
       
  1446  *  @hw: pointer to the HW structure
       
  1447  *
       
  1448  *  Determines which flow control settings to use, then configures flow
       
  1449  *  control.  Calls the appropriate media-specific link configuration
       
  1450  *  function.  Assuming the adapter has a valid link partner, a valid link
       
  1451  *  should be established.  Assumes the hardware has previously been reset
       
  1452  *  and the transmitter and receiver are not enabled.
       
  1453  **/
       
  1454 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
       
  1455 {
       
  1456 	/*
       
  1457 	 * 82573 does not have a word in the NVM to determine
       
  1458 	 * the default flow control setting, so we explicitly
       
  1459 	 * set it to full.
       
  1460 	 */
       
  1461 	switch (hw->mac.type) {
       
  1462 	case e1000_82573:
       
  1463 	case e1000_82574:
       
  1464 	case e1000_82583:
       
  1465 		if (hw->fc.requested_mode == e1000_fc_default)
       
  1466 			hw->fc.requested_mode = e1000_fc_full;
       
  1467 		break;
       
  1468 	default:
       
  1469 		break;
       
  1470 	}
       
  1471 
       
  1472 	return e1000e_setup_link(hw);
       
  1473 }
       
  1474 
       
  1475 /**
       
  1476  *  e1000_setup_copper_link_82571 - Configure copper link settings
       
  1477  *  @hw: pointer to the HW structure
       
  1478  *
       
  1479  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
       
  1480  *  for link, once link is established calls to configure collision distance
       
  1481  *  and flow control are called.
       
  1482  **/
       
  1483 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
       
  1484 {
       
  1485 	u32 ctrl;
       
  1486 	s32 ret_val;
       
  1487 
       
  1488 	ctrl = er32(CTRL);
       
  1489 	ctrl |= E1000_CTRL_SLU;
       
  1490 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1491 	ew32(CTRL, ctrl);
       
  1492 
       
  1493 	switch (hw->phy.type) {
       
  1494 	case e1000_phy_m88:
       
  1495 	case e1000_phy_bm:
       
  1496 		ret_val = e1000e_copper_link_setup_m88(hw);
       
  1497 		break;
       
  1498 	case e1000_phy_igp_2:
       
  1499 		ret_val = e1000e_copper_link_setup_igp(hw);
       
  1500 		break;
       
  1501 	default:
       
  1502 		return -E1000_ERR_PHY;
       
  1503 		break;
       
  1504 	}
       
  1505 
       
  1506 	if (ret_val)
       
  1507 		return ret_val;
       
  1508 
       
  1509 	ret_val = e1000e_setup_copper_link(hw);
       
  1510 
       
  1511 	return ret_val;
       
  1512 }
       
  1513 
       
  1514 /**
       
  1515  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
       
  1516  *  @hw: pointer to the HW structure
       
  1517  *
       
  1518  *  Configures collision distance and flow control for fiber and serdes links.
       
  1519  *  Upon successful setup, poll for link.
       
  1520  **/
       
  1521 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
       
  1522 {
       
  1523 	switch (hw->mac.type) {
       
  1524 	case e1000_82571:
       
  1525 	case e1000_82572:
       
  1526 		/*
       
  1527 		 * If SerDes loopback mode is entered, there is no form
       
  1528 		 * of reset to take the adapter out of that mode.  So we
       
  1529 		 * have to explicitly take the adapter out of loopback
       
  1530 		 * mode.  This prevents drivers from twiddling their thumbs
       
  1531 		 * if another tool failed to take it out of loopback mode.
       
  1532 		 */
       
  1533 		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
       
  1534 		break;
       
  1535 	default:
       
  1536 		break;
       
  1537 	}
       
  1538 
       
  1539 	return e1000e_setup_fiber_serdes_link(hw);
       
  1540 }
       
  1541 
       
  1542 /**
       
  1543  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
       
  1544  *  @hw: pointer to the HW structure
       
  1545  *
       
  1546  *  Reports the link state as up or down.
       
  1547  *
       
  1548  *  If autonegotiation is supported by the link partner, the link state is
       
  1549  *  determined by the result of autonegotiation. This is the most likely case.
       
  1550  *  If autonegotiation is not supported by the link partner, and the link
       
  1551  *  has a valid signal, force the link up.
       
  1552  *
       
  1553  *  The link state is represented internally here by 4 states:
       
  1554  *
       
  1555  *  1) down
       
  1556  *  2) autoneg_progress
       
  1557  *  3) autoneg_complete (the link successfully autonegotiated)
       
  1558  *  4) forced_up (the link has been forced up, it did not autonegotiate)
       
  1559  *
       
  1560  **/
       
  1561 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
       
  1562 {
       
  1563 	struct e1000_mac_info *mac = &hw->mac;
       
  1564 	u32 rxcw;
       
  1565 	u32 ctrl;
       
  1566 	u32 status;
       
  1567 	u32 txcw;
       
  1568 	u32 i;
       
  1569 	s32 ret_val = 0;
       
  1570 
       
  1571 	ctrl = er32(CTRL);
       
  1572 	status = er32(STATUS);
       
  1573 	rxcw = er32(RXCW);
       
  1574 
       
  1575 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
       
  1576 
       
  1577 		/* Receiver is synchronized with no invalid bits.  */
       
  1578 		switch (mac->serdes_link_state) {
       
  1579 		case e1000_serdes_link_autoneg_complete:
       
  1580 			if (!(status & E1000_STATUS_LU)) {
       
  1581 				/*
       
  1582 				 * We have lost link, retry autoneg before
       
  1583 				 * reporting link failure
       
  1584 				 */
       
  1585 				mac->serdes_link_state =
       
  1586 				    e1000_serdes_link_autoneg_progress;
       
  1587 				mac->serdes_has_link = false;
       
  1588 				e_dbg("AN_UP     -> AN_PROG\n");
       
  1589 			} else {
       
  1590 				mac->serdes_has_link = true;
       
  1591 			}
       
  1592 			break;
       
  1593 
       
  1594 		case e1000_serdes_link_forced_up:
       
  1595 			/*
       
  1596 			 * If we are receiving /C/ ordered sets, re-enable
       
  1597 			 * auto-negotiation in the TXCW register and disable
       
  1598 			 * forced link in the Device Control register in an
       
  1599 			 * attempt to auto-negotiate with our link partner.
       
  1600 			 * If the partner code word is null, stop forcing
       
  1601 			 * and restart auto negotiation.
       
  1602 			 */
       
  1603 			if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW))  {
       
  1604 				/* Enable autoneg, and unforce link up */
       
  1605 				ew32(TXCW, mac->txcw);
       
  1606 				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
  1607 				mac->serdes_link_state =
       
  1608 				    e1000_serdes_link_autoneg_progress;
       
  1609 				mac->serdes_has_link = false;
       
  1610 				e_dbg("FORCED_UP -> AN_PROG\n");
       
  1611 			} else {
       
  1612 				mac->serdes_has_link = true;
       
  1613 			}
       
  1614 			break;
       
  1615 
       
  1616 		case e1000_serdes_link_autoneg_progress:
       
  1617 			if (rxcw & E1000_RXCW_C) {
       
  1618 				/*
       
  1619 				 * We received /C/ ordered sets, meaning the
       
  1620 				 * link partner has autonegotiated, and we can
       
  1621 				 * trust the Link Up (LU) status bit.
       
  1622 				 */
       
  1623 				if (status & E1000_STATUS_LU) {
       
  1624 					mac->serdes_link_state =
       
  1625 					    e1000_serdes_link_autoneg_complete;
       
  1626 					e_dbg("AN_PROG   -> AN_UP\n");
       
  1627 					mac->serdes_has_link = true;
       
  1628 				} else {
       
  1629 					/* Autoneg completed, but failed. */
       
  1630 					mac->serdes_link_state =
       
  1631 					    e1000_serdes_link_down;
       
  1632 					e_dbg("AN_PROG   -> DOWN\n");
       
  1633 				}
       
  1634 			} else {
       
  1635 				/*
       
  1636 				 * The link partner did not autoneg.
       
  1637 				 * Force link up and full duplex, and change
       
  1638 				 * state to forced.
       
  1639 				 */
       
  1640 				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
  1641 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
  1642 				ew32(CTRL, ctrl);
       
  1643 
       
  1644 				/* Configure Flow Control after link up. */
       
  1645 				ret_val = e1000e_config_fc_after_link_up(hw);
       
  1646 				if (ret_val) {
       
  1647 					e_dbg("Error config flow control\n");
       
  1648 					break;
       
  1649 				}
       
  1650 				mac->serdes_link_state =
       
  1651 				    e1000_serdes_link_forced_up;
       
  1652 				mac->serdes_has_link = true;
       
  1653 				e_dbg("AN_PROG   -> FORCED_UP\n");
       
  1654 			}
       
  1655 			break;
       
  1656 
       
  1657 		case e1000_serdes_link_down:
       
  1658 		default:
       
  1659 			/*
       
  1660 			 * The link was down but the receiver has now gained
       
  1661 			 * valid sync, so lets see if we can bring the link
       
  1662 			 * up.
       
  1663 			 */
       
  1664 			ew32(TXCW, mac->txcw);
       
  1665 			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
  1666 			mac->serdes_link_state =
       
  1667 			    e1000_serdes_link_autoneg_progress;
       
  1668 			mac->serdes_has_link = false;
       
  1669 			e_dbg("DOWN      -> AN_PROG\n");
       
  1670 			break;
       
  1671 		}
       
  1672 	} else {
       
  1673 		if (!(rxcw & E1000_RXCW_SYNCH)) {
       
  1674 			mac->serdes_has_link = false;
       
  1675 			mac->serdes_link_state = e1000_serdes_link_down;
       
  1676 			e_dbg("ANYSTATE  -> DOWN\n");
       
  1677 		} else {
       
  1678 			/*
       
  1679 			 * Check several times, if Sync and Config
       
  1680 			 * both are consistently 1 then simply ignore
       
  1681 			 * the Invalid bit and restart Autoneg
       
  1682 			 */
       
  1683 			for (i = 0; i < AN_RETRY_COUNT; i++) {
       
  1684 				udelay(10);
       
  1685 				rxcw = er32(RXCW);
       
  1686 				if ((rxcw & E1000_RXCW_IV) &&
       
  1687 				    !((rxcw & E1000_RXCW_SYNCH) &&
       
  1688 				      (rxcw & E1000_RXCW_C))) {
       
  1689 					mac->serdes_has_link = false;
       
  1690 					mac->serdes_link_state =
       
  1691 					    e1000_serdes_link_down;
       
  1692 					e_dbg("ANYSTATE  -> DOWN\n");
       
  1693 					break;
       
  1694 				}
       
  1695 			}
       
  1696 
       
  1697 			if (i == AN_RETRY_COUNT) {
       
  1698 				txcw = er32(TXCW);
       
  1699 				txcw |= E1000_TXCW_ANE;
       
  1700 				ew32(TXCW, txcw);
       
  1701 				mac->serdes_link_state =
       
  1702 				    e1000_serdes_link_autoneg_progress;
       
  1703 				mac->serdes_has_link = false;
       
  1704 				e_dbg("ANYSTATE  -> AN_PROG\n");
       
  1705 			}
       
  1706 		}
       
  1707 	}
       
  1708 
       
  1709 	return ret_val;
       
  1710 }
       
  1711 
       
  1712 /**
       
  1713  *  e1000_valid_led_default_82571 - Verify a valid default LED config
       
  1714  *  @hw: pointer to the HW structure
       
  1715  *  @data: pointer to the NVM (EEPROM)
       
  1716  *
       
  1717  *  Read the EEPROM for the current default LED configuration.  If the
       
  1718  *  LED configuration is not valid, set to a valid LED configuration.
       
  1719  **/
       
  1720 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
       
  1721 {
       
  1722 	s32 ret_val;
       
  1723 
       
  1724 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  1725 	if (ret_val) {
       
  1726 		e_dbg("NVM Read Error\n");
       
  1727 		return ret_val;
       
  1728 	}
       
  1729 
       
  1730 	switch (hw->mac.type) {
       
  1731 	case e1000_82573:
       
  1732 	case e1000_82574:
       
  1733 	case e1000_82583:
       
  1734 		if (*data == ID_LED_RESERVED_F746)
       
  1735 			*data = ID_LED_DEFAULT_82573;
       
  1736 		break;
       
  1737 	default:
       
  1738 		if (*data == ID_LED_RESERVED_0000 ||
       
  1739 		    *data == ID_LED_RESERVED_FFFF)
       
  1740 			*data = ID_LED_DEFAULT;
       
  1741 		break;
       
  1742 	}
       
  1743 
       
  1744 	return 0;
       
  1745 }
       
  1746 
       
  1747 /**
       
  1748  *  e1000e_get_laa_state_82571 - Get locally administered address state
       
  1749  *  @hw: pointer to the HW structure
       
  1750  *
       
  1751  *  Retrieve and return the current locally administered address state.
       
  1752  **/
       
  1753 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
       
  1754 {
       
  1755 	if (hw->mac.type != e1000_82571)
       
  1756 		return false;
       
  1757 
       
  1758 	return hw->dev_spec.e82571.laa_is_present;
       
  1759 }
       
  1760 
       
  1761 /**
       
  1762  *  e1000e_set_laa_state_82571 - Set locally administered address state
       
  1763  *  @hw: pointer to the HW structure
       
  1764  *  @state: enable/disable locally administered address
       
  1765  *
       
  1766  *  Enable/Disable the current locally administered address state.
       
  1767  **/
       
  1768 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
       
  1769 {
       
  1770 	if (hw->mac.type != e1000_82571)
       
  1771 		return;
       
  1772 
       
  1773 	hw->dev_spec.e82571.laa_is_present = state;
       
  1774 
       
  1775 	/* If workaround is activated... */
       
  1776 	if (state)
       
  1777 		/*
       
  1778 		 * Hold a copy of the LAA in RAR[14] This is done so that
       
  1779 		 * between the time RAR[0] gets clobbered and the time it
       
  1780 		 * gets fixed, the actual LAA is in one of the RARs and no
       
  1781 		 * incoming packets directed to this port are dropped.
       
  1782 		 * Eventually the LAA will be in RAR[0] and RAR[14].
       
  1783 		 */
       
  1784 		e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
       
  1785 }
       
  1786 
       
  1787 /**
       
  1788  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
       
  1789  *  @hw: pointer to the HW structure
       
  1790  *
       
  1791  *  Verifies that the EEPROM has completed the update.  After updating the
       
  1792  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
       
  1793  *  the checksum fix is not implemented, we need to set the bit and update
       
  1794  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
       
  1795  *  we need to return bad checksum.
       
  1796  **/
       
  1797 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
       
  1798 {
       
  1799 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1800 	s32 ret_val;
       
  1801 	u16 data;
       
  1802 
       
  1803 	if (nvm->type != e1000_nvm_flash_hw)
       
  1804 		return 0;
       
  1805 
       
  1806 	/*
       
  1807 	 * Check bit 4 of word 10h.  If it is 0, firmware is done updating
       
  1808 	 * 10h-12h.  Checksum may need to be fixed.
       
  1809 	 */
       
  1810 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
       
  1811 	if (ret_val)
       
  1812 		return ret_val;
       
  1813 
       
  1814 	if (!(data & 0x10)) {
       
  1815 		/*
       
  1816 		 * Read 0x23 and check bit 15.  This bit is a 1
       
  1817 		 * when the checksum has already been fixed.  If
       
  1818 		 * the checksum is still wrong and this bit is a
       
  1819 		 * 1, we need to return bad checksum.  Otherwise,
       
  1820 		 * we need to set this bit to a 1 and update the
       
  1821 		 * checksum.
       
  1822 		 */
       
  1823 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
       
  1824 		if (ret_val)
       
  1825 			return ret_val;
       
  1826 
       
  1827 		if (!(data & 0x8000)) {
       
  1828 			data |= 0x8000;
       
  1829 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
       
  1830 			if (ret_val)
       
  1831 				return ret_val;
       
  1832 			ret_val = e1000e_update_nvm_checksum(hw);
       
  1833 		}
       
  1834 	}
       
  1835 
       
  1836 	return 0;
       
  1837 }
       
  1838 
       
  1839 /**
       
  1840  *  e1000_read_mac_addr_82571 - Read device MAC address
       
  1841  *  @hw: pointer to the HW structure
       
  1842  **/
       
  1843 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
       
  1844 {
       
  1845 	s32 ret_val = 0;
       
  1846 
       
  1847 	if (hw->mac.type == e1000_82571) {
       
  1848 		/*
       
  1849 		 * If there's an alternate MAC address place it in RAR0
       
  1850 		 * so that it will override the Si installed default perm
       
  1851 		 * address.
       
  1852 		 */
       
  1853 		ret_val = e1000_check_alt_mac_addr_generic(hw);
       
  1854 		if (ret_val)
       
  1855 			goto out;
       
  1856 	}
       
  1857 
       
  1858 	ret_val = e1000_read_mac_addr_generic(hw);
       
  1859 
       
  1860 out:
       
  1861 	return ret_val;
       
  1862 }
       
  1863 
       
  1864 /**
       
  1865  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
       
  1866  * @hw: pointer to the HW structure
       
  1867  *
       
  1868  * In the case of a PHY power down to save power, or to turn off link during a
       
  1869  * driver unload, or wake on lan is not enabled, remove the link.
       
  1870  **/
       
  1871 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
       
  1872 {
       
  1873 	struct e1000_phy_info *phy = &hw->phy;
       
  1874 	struct e1000_mac_info *mac = &hw->mac;
       
  1875 
       
  1876 	if (!(phy->ops.check_reset_block))
       
  1877 		return;
       
  1878 
       
  1879 	/* If the management interface is not enabled, then power down */
       
  1880 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
       
  1881 		e1000_power_down_phy_copper(hw);
       
  1882 }
       
  1883 
       
  1884 /**
       
  1885  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
       
  1886  *  @hw: pointer to the HW structure
       
  1887  *
       
  1888  *  Clears the hardware counters by reading the counter registers.
       
  1889  **/
       
  1890 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
       
  1891 {
       
  1892 	e1000e_clear_hw_cntrs_base(hw);
       
  1893 
       
  1894 	er32(PRC64);
       
  1895 	er32(PRC127);
       
  1896 	er32(PRC255);
       
  1897 	er32(PRC511);
       
  1898 	er32(PRC1023);
       
  1899 	er32(PRC1522);
       
  1900 	er32(PTC64);
       
  1901 	er32(PTC127);
       
  1902 	er32(PTC255);
       
  1903 	er32(PTC511);
       
  1904 	er32(PTC1023);
       
  1905 	er32(PTC1522);
       
  1906 
       
  1907 	er32(ALGNERRC);
       
  1908 	er32(RXERRC);
       
  1909 	er32(TNCRS);
       
  1910 	er32(CEXTERR);
       
  1911 	er32(TSCTC);
       
  1912 	er32(TSCTFC);
       
  1913 
       
  1914 	er32(MGTPRC);
       
  1915 	er32(MGTPDC);
       
  1916 	er32(MGTPTC);
       
  1917 
       
  1918 	er32(IAC);
       
  1919 	er32(ICRXOC);
       
  1920 
       
  1921 	er32(ICRXPTC);
       
  1922 	er32(ICRXATC);
       
  1923 	er32(ICTXPTC);
       
  1924 	er32(ICTXATC);
       
  1925 	er32(ICTXQEC);
       
  1926 	er32(ICTXQMTC);
       
  1927 	er32(ICRXDMTC);
       
  1928 }
       
  1929 
       
  1930 static const struct e1000_mac_operations e82571_mac_ops = {
       
  1931 	/* .check_mng_mode: mac type dependent */
       
  1932 	/* .check_for_link: media type dependent */
       
  1933 	.id_led_init		= e1000e_id_led_init,
       
  1934 	.cleanup_led		= e1000e_cleanup_led_generic,
       
  1935 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
       
  1936 	.get_bus_info		= e1000e_get_bus_info_pcie,
       
  1937 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
       
  1938 	/* .get_link_up_info: media type dependent */
       
  1939 	/* .led_on: mac type dependent */
       
  1940 	.led_off		= e1000e_led_off_generic,
       
  1941 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
       
  1942 	.write_vfta		= e1000_write_vfta_generic,
       
  1943 	.clear_vfta		= e1000_clear_vfta_82571,
       
  1944 	.reset_hw		= e1000_reset_hw_82571,
       
  1945 	.init_hw		= e1000_init_hw_82571,
       
  1946 	.setup_link		= e1000_setup_link_82571,
       
  1947 	/* .setup_physical_interface: media type dependent */
       
  1948 	.setup_led		= e1000e_setup_led_generic,
       
  1949 	.read_mac_addr		= e1000_read_mac_addr_82571,
       
  1950 };
       
  1951 
       
  1952 static const struct e1000_phy_operations e82_phy_ops_igp = {
       
  1953 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1954 	.check_polarity		= e1000_check_polarity_igp,
       
  1955 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1956 	.commit			= NULL,
       
  1957 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
       
  1958 	.get_cfg_done		= e1000_get_cfg_done_82571,
       
  1959 	.get_cable_length	= e1000e_get_cable_length_igp_2,
       
  1960 	.get_info		= e1000e_get_phy_info_igp,
       
  1961 	.read_reg		= e1000e_read_phy_reg_igp,
       
  1962 	.release		= e1000_put_hw_semaphore_82571,
       
  1963 	.reset			= e1000e_phy_hw_reset_generic,
       
  1964 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  1965 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1966 	.write_reg		= e1000e_write_phy_reg_igp,
       
  1967 	.cfg_on_link_up      	= NULL,
       
  1968 };
       
  1969 
       
  1970 static const struct e1000_phy_operations e82_phy_ops_m88 = {
       
  1971 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1972 	.check_polarity		= e1000_check_polarity_m88,
       
  1973 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1974 	.commit			= e1000e_phy_sw_reset,
       
  1975 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
       
  1976 	.get_cfg_done		= e1000e_get_cfg_done,
       
  1977 	.get_cable_length	= e1000e_get_cable_length_m88,
       
  1978 	.get_info		= e1000e_get_phy_info_m88,
       
  1979 	.read_reg		= e1000e_read_phy_reg_m88,
       
  1980 	.release		= e1000_put_hw_semaphore_82571,
       
  1981 	.reset			= e1000e_phy_hw_reset_generic,
       
  1982 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  1983 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1984 	.write_reg		= e1000e_write_phy_reg_m88,
       
  1985 	.cfg_on_link_up      	= NULL,
       
  1986 };
       
  1987 
       
  1988 static const struct e1000_phy_operations e82_phy_ops_bm = {
       
  1989 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1990 	.check_polarity		= e1000_check_polarity_m88,
       
  1991 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1992 	.commit			= e1000e_phy_sw_reset,
       
  1993 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
       
  1994 	.get_cfg_done		= e1000e_get_cfg_done,
       
  1995 	.get_cable_length	= e1000e_get_cable_length_m88,
       
  1996 	.get_info		= e1000e_get_phy_info_m88,
       
  1997 	.read_reg		= e1000e_read_phy_reg_bm2,
       
  1998 	.release		= e1000_put_hw_semaphore_82571,
       
  1999 	.reset			= e1000e_phy_hw_reset_generic,
       
  2000 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  2001 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  2002 	.write_reg		= e1000e_write_phy_reg_bm2,
       
  2003 	.cfg_on_link_up      	= NULL,
       
  2004 };
       
  2005 
       
  2006 static const struct e1000_nvm_operations e82571_nvm_ops = {
       
  2007 	.acquire		= e1000_acquire_nvm_82571,
       
  2008 	.read			= e1000e_read_nvm_eerd,
       
  2009 	.release		= e1000_release_nvm_82571,
       
  2010 	.update			= e1000_update_nvm_checksum_82571,
       
  2011 	.valid_led_default	= e1000_valid_led_default_82571,
       
  2012 	.validate		= e1000_validate_nvm_checksum_82571,
       
  2013 	.write			= e1000_write_nvm_82571,
       
  2014 };
       
  2015 
       
  2016 const struct e1000_info e1000_82571_info = {
       
  2017 	.mac			= e1000_82571,
       
  2018 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  2019 				  | FLAG_HAS_JUMBO_FRAMES
       
  2020 				  | FLAG_HAS_WOL
       
  2021 				  | FLAG_APME_IN_CTRL3
       
  2022 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  2023 				  | FLAG_HAS_SMART_POWER_DOWN
       
  2024 				  | FLAG_RESET_OVERWRITES_LAA /* errata */
       
  2025 				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
       
  2026 				  | FLAG_APME_CHECK_PORT_B,
       
  2027 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
       
  2028 				  | FLAG2_DMA_BURST,
       
  2029 	.pba			= 38,
       
  2030 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  2031 	.get_variants		= e1000_get_variants_82571,
       
  2032 	.mac_ops		= &e82571_mac_ops,
       
  2033 	.phy_ops		= &e82_phy_ops_igp,
       
  2034 	.nvm_ops		= &e82571_nvm_ops,
       
  2035 };
       
  2036 
       
  2037 const struct e1000_info e1000_82572_info = {
       
  2038 	.mac			= e1000_82572,
       
  2039 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  2040 				  | FLAG_HAS_JUMBO_FRAMES
       
  2041 				  | FLAG_HAS_WOL
       
  2042 				  | FLAG_APME_IN_CTRL3
       
  2043 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  2044 				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
       
  2045 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
       
  2046 				  | FLAG2_DMA_BURST,
       
  2047 	.pba			= 38,
       
  2048 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  2049 	.get_variants		= e1000_get_variants_82571,
       
  2050 	.mac_ops		= &e82571_mac_ops,
       
  2051 	.phy_ops		= &e82_phy_ops_igp,
       
  2052 	.nvm_ops		= &e82571_nvm_ops,
       
  2053 };
       
  2054 
       
  2055 const struct e1000_info e1000_82573_info = {
       
  2056 	.mac			= e1000_82573,
       
  2057 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  2058 				  | FLAG_HAS_WOL
       
  2059 				  | FLAG_APME_IN_CTRL3
       
  2060 				  | FLAG_HAS_SMART_POWER_DOWN
       
  2061 				  | FLAG_HAS_AMT
       
  2062 				  | FLAG_HAS_SWSM_ON_LOAD,
       
  2063 	.flags2			= FLAG2_DISABLE_ASPM_L1
       
  2064 				  | FLAG2_DISABLE_ASPM_L0S,
       
  2065 	.pba			= 20,
       
  2066 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
       
  2067 	.get_variants		= e1000_get_variants_82571,
       
  2068 	.mac_ops		= &e82571_mac_ops,
       
  2069 	.phy_ops		= &e82_phy_ops_m88,
       
  2070 	.nvm_ops		= &e82571_nvm_ops,
       
  2071 };
       
  2072 
       
  2073 const struct e1000_info e1000_82574_info = {
       
  2074 	.mac			= e1000_82574,
       
  2075 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  2076 				  | FLAG_HAS_MSIX
       
  2077 				  | FLAG_HAS_JUMBO_FRAMES
       
  2078 				  | FLAG_HAS_WOL
       
  2079 				  | FLAG_APME_IN_CTRL3
       
  2080 				  | FLAG_HAS_SMART_POWER_DOWN
       
  2081 				  | FLAG_HAS_AMT
       
  2082 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
       
  2083 	.flags2			  = FLAG2_CHECK_PHY_HANG
       
  2084 				  | FLAG2_DISABLE_ASPM_L0S
       
  2085 				  | FLAG2_NO_DISABLE_RX,
       
  2086 	.pba			= 32,
       
  2087 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  2088 	.get_variants		= e1000_get_variants_82571,
       
  2089 	.mac_ops		= &e82571_mac_ops,
       
  2090 	.phy_ops		= &e82_phy_ops_bm,
       
  2091 	.nvm_ops		= &e82571_nvm_ops,
       
  2092 };
       
  2093 
       
  2094 const struct e1000_info e1000_82583_info = {
       
  2095 	.mac			= e1000_82583,
       
  2096 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  2097 				  | FLAG_HAS_WOL
       
  2098 				  | FLAG_APME_IN_CTRL3
       
  2099 				  | FLAG_HAS_SMART_POWER_DOWN
       
  2100 				  | FLAG_HAS_AMT
       
  2101 				  | FLAG_HAS_JUMBO_FRAMES
       
  2102 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
       
  2103 	.flags2			= FLAG2_DISABLE_ASPM_L0S
       
  2104 				  | FLAG2_NO_DISABLE_RX,
       
  2105 	.pba			= 32,
       
  2106 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  2107 	.get_variants		= e1000_get_variants_82571,
       
  2108 	.mac_ops		= &e82571_mac_ops,
       
  2109 	.phy_ops		= &e82_phy_ops_bm,
       
  2110 	.nvm_ops		= &e82571_nvm_ops,
       
  2111 };
       
  2112