devices/e1000e/ich8lan-3.6-ethercat.c
branchstable-1.5
changeset 2546 2fa43746d972
equal deleted inserted replaced
2545:80177f7aa836 2546:2fa43746d972
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2012 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /*
       
    30  * 82562G 10/100 Network Connection
       
    31  * 82562G-2 10/100 Network Connection
       
    32  * 82562GT 10/100 Network Connection
       
    33  * 82562GT-2 10/100 Network Connection
       
    34  * 82562V 10/100 Network Connection
       
    35  * 82562V-2 10/100 Network Connection
       
    36  * 82566DC-2 Gigabit Network Connection
       
    37  * 82566DC Gigabit Network Connection
       
    38  * 82566DM-2 Gigabit Network Connection
       
    39  * 82566DM Gigabit Network Connection
       
    40  * 82566MC Gigabit Network Connection
       
    41  * 82566MM Gigabit Network Connection
       
    42  * 82567LM Gigabit Network Connection
       
    43  * 82567LF Gigabit Network Connection
       
    44  * 82567V Gigabit Network Connection
       
    45  * 82567LM-2 Gigabit Network Connection
       
    46  * 82567LF-2 Gigabit Network Connection
       
    47  * 82567V-2 Gigabit Network Connection
       
    48  * 82567LF-3 Gigabit Network Connection
       
    49  * 82567LM-3 Gigabit Network Connection
       
    50  * 82567LM-4 Gigabit Network Connection
       
    51  * 82577LM Gigabit Network Connection
       
    52  * 82577LC Gigabit Network Connection
       
    53  * 82578DM Gigabit Network Connection
       
    54  * 82578DC Gigabit Network Connection
       
    55  * 82579LM Gigabit Network Connection
       
    56  * 82579V Gigabit Network Connection
       
    57  */
       
    58 
       
    59 #include "e1000-3.6-ethercat.h"
       
    60 
       
    61 #define ICH_FLASH_GFPREG		0x0000
       
    62 #define ICH_FLASH_HSFSTS		0x0004
       
    63 #define ICH_FLASH_HSFCTL		0x0006
       
    64 #define ICH_FLASH_FADDR			0x0008
       
    65 #define ICH_FLASH_FDATA0		0x0010
       
    66 #define ICH_FLASH_PR0			0x0074
       
    67 
       
    68 #define ICH_FLASH_READ_COMMAND_TIMEOUT	500
       
    69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
       
    70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
       
    71 #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
       
    72 #define ICH_FLASH_CYCLE_REPEAT_COUNT	10
       
    73 
       
    74 #define ICH_CYCLE_READ			0
       
    75 #define ICH_CYCLE_WRITE			2
       
    76 #define ICH_CYCLE_ERASE			3
       
    77 
       
    78 #define FLASH_GFPREG_BASE_MASK		0x1FFF
       
    79 #define FLASH_SECTOR_ADDR_SHIFT		12
       
    80 
       
    81 #define ICH_FLASH_SEG_SIZE_256		256
       
    82 #define ICH_FLASH_SEG_SIZE_4K		4096
       
    83 #define ICH_FLASH_SEG_SIZE_8K		8192
       
    84 #define ICH_FLASH_SEG_SIZE_64K		65536
       
    85 
       
    86 
       
    87 #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
       
    88 /* FW established a valid mode */
       
    89 #define E1000_ICH_FWSM_FW_VALID		0x00008000
       
    90 
       
    91 #define E1000_ICH_MNG_IAMT_MODE		0x2
       
    92 
       
    93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
       
    94 				 (ID_LED_DEF1_OFF2 <<  8) | \
       
    95 				 (ID_LED_DEF1_ON2  <<  4) | \
       
    96 				 (ID_LED_DEF1_DEF2))
       
    97 
       
    98 #define E1000_ICH_NVM_SIG_WORD		0x13
       
    99 #define E1000_ICH_NVM_SIG_MASK		0xC000
       
   100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
       
   101 #define E1000_ICH_NVM_SIG_VALUE         0x80
       
   102 
       
   103 #define E1000_ICH8_LAN_INIT_TIMEOUT	1500
       
   104 
       
   105 #define E1000_FEXTNVM_SW_CONFIG		1
       
   106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
       
   107 
       
   108 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
       
   109 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000
       
   110 
       
   111 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
       
   112 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
       
   113 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
       
   114 
       
   115 #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
       
   116 
       
   117 #define E1000_ICH_RAR_ENTRIES		7
       
   118 #define E1000_PCH2_RAR_ENTRIES		5 /* RAR[0], SHRA[0-3] */
       
   119 #define E1000_PCH_LPT_RAR_ENTRIES	12 /* RAR[0], SHRA[0-10] */
       
   120 
       
   121 #define PHY_PAGE_SHIFT 5
       
   122 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
       
   123 			   ((reg) & MAX_PHY_REG_ADDRESS))
       
   124 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
       
   125 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
       
   126 
       
   127 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
       
   128 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
       
   129 #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
       
   130 
       
   131 #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
       
   132 
       
   133 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
       
   134 
       
   135 /* SMBus Control Phy Register */
       
   136 #define CV_SMB_CTRL		PHY_REG(769, 23)
       
   137 #define CV_SMB_CTRL_FORCE_SMBUS	0x0001
       
   138 
       
   139 /* SMBus Address Phy Register */
       
   140 #define HV_SMB_ADDR            PHY_REG(768, 26)
       
   141 #define HV_SMB_ADDR_MASK       0x007F
       
   142 #define HV_SMB_ADDR_PEC_EN     0x0200
       
   143 #define HV_SMB_ADDR_VALID      0x0080
       
   144 #define HV_SMB_ADDR_FREQ_MASK           0x1100
       
   145 #define HV_SMB_ADDR_FREQ_LOW_SHIFT      8
       
   146 #define HV_SMB_ADDR_FREQ_HIGH_SHIFT     12
       
   147 
       
   148 /* PHY Power Management Control */
       
   149 #define HV_PM_CTRL		PHY_REG(770, 17)
       
   150 #define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
       
   151 
       
   152 /* PHY Low Power Idle Control */
       
   153 #define I82579_LPI_CTRL				PHY_REG(772, 20)
       
   154 #define I82579_LPI_CTRL_ENABLE_MASK		0x6000
       
   155 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
       
   156 
       
   157 /* EMI Registers */
       
   158 #define I82579_EMI_ADDR         0x10
       
   159 #define I82579_EMI_DATA         0x11
       
   160 #define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
       
   161 #define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
       
   162 #define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
       
   163 #define I217_EEE_ADVERTISEMENT  0x8001	/* IEEE MMD Register 7.60 */
       
   164 #define I217_EEE_LP_ABILITY     0x8002	/* IEEE MMD Register 7.61 */
       
   165 #define I217_EEE_100_SUPPORTED  (1 << 1)	/* 100BaseTx EEE supported */
       
   166 
       
   167 /* Intel Rapid Start Technology Support */
       
   168 #define I217_PROXY_CTRL                 BM_PHY_REG(BM_WUC_PAGE, 70)
       
   169 #define I217_PROXY_CTRL_AUTO_DISABLE    0x0080
       
   170 #define I217_SxCTRL                     PHY_REG(BM_PORT_CTRL_PAGE, 28)
       
   171 #define I217_SxCTRL_ENABLE_LPI_RESET    0x1000
       
   172 #define I217_CGFREG                     PHY_REG(772, 29)
       
   173 #define I217_CGFREG_ENABLE_MTA_RESET    0x0002
       
   174 #define I217_MEMPWR                     PHY_REG(772, 26)
       
   175 #define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
       
   176 
       
   177 /* Strapping Option Register - RO */
       
   178 #define E1000_STRAP                     0x0000C
       
   179 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
       
   180 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
       
   181 #define E1000_STRAP_SMT_FREQ_MASK       0x00003000
       
   182 #define E1000_STRAP_SMT_FREQ_SHIFT      12
       
   183 
       
   184 /* OEM Bits Phy Register */
       
   185 #define HV_OEM_BITS            PHY_REG(768, 25)
       
   186 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
       
   187 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
       
   188 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
       
   189 
       
   190 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
       
   191 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
       
   192 
       
   193 /* KMRN Mode Control */
       
   194 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
       
   195 #define HV_KMRN_MDIO_SLOW      0x0400
       
   196 
       
   197 /* KMRN FIFO Control and Status */
       
   198 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
       
   199 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
       
   200 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
       
   201 
       
   202 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
       
   203 /* Offset 04h HSFSTS */
       
   204 union ich8_hws_flash_status {
       
   205 	struct ich8_hsfsts {
       
   206 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
       
   207 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
       
   208 		u16 dael       :1; /* bit 2 Direct Access error Log */
       
   209 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
       
   210 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
       
   211 		u16 reserved1  :2; /* bit 13:6 Reserved */
       
   212 		u16 reserved2  :6; /* bit 13:6 Reserved */
       
   213 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
       
   214 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
       
   215 	} hsf_status;
       
   216 	u16 regval;
       
   217 };
       
   218 
       
   219 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
       
   220 /* Offset 06h FLCTL */
       
   221 union ich8_hws_flash_ctrl {
       
   222 	struct ich8_hsflctl {
       
   223 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
       
   224 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
       
   225 		u16 reserved   :5;   /* 7:3 Reserved  */
       
   226 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
       
   227 		u16 flockdn    :6;   /* 15:10 Reserved */
       
   228 	} hsf_ctrl;
       
   229 	u16 regval;
       
   230 };
       
   231 
       
   232 /* ICH Flash Region Access Permissions */
       
   233 union ich8_hws_flash_regacc {
       
   234 	struct ich8_flracc {
       
   235 		u32 grra      :8; /* 0:7 GbE region Read Access */
       
   236 		u32 grwa      :8; /* 8:15 GbE region Write Access */
       
   237 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
       
   238 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
       
   239 	} hsf_flregacc;
       
   240 	u16 regval;
       
   241 };
       
   242 
       
   243 /* ICH Flash Protected Region */
       
   244 union ich8_flash_protected_range {
       
   245 	struct ich8_pr {
       
   246 		u32 base:13;     /* 0:12 Protected Range Base */
       
   247 		u32 reserved1:2; /* 13:14 Reserved */
       
   248 		u32 rpe:1;       /* 15 Read Protection Enable */
       
   249 		u32 limit:13;    /* 16:28 Protected Range Limit */
       
   250 		u32 reserved2:2; /* 29:30 Reserved */
       
   251 		u32 wpe:1;       /* 31 Write Protection Enable */
       
   252 	} range;
       
   253 	u32 regval;
       
   254 };
       
   255 
       
   256 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
       
   257 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
       
   258 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
       
   259 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
       
   260 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
       
   261 						u32 offset, u8 byte);
       
   262 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
   263 					 u8 *data);
       
   264 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
       
   265 					 u16 *data);
       
   266 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
   267 					 u8 size, u16 *data);
       
   268 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
       
   269 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
       
   270 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
       
   271 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
       
   272 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
       
   273 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
       
   274 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
       
   275 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
       
   276 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
       
   277 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
       
   278 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
       
   279 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
       
   280 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
       
   281 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
       
   282 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
       
   283 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
       
   284 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
       
   285 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
       
   286 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
       
   287 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
       
   288 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
       
   289 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
       
   290 
       
   291 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
       
   292 {
       
   293 	return readw(hw->flash_address + reg);
       
   294 }
       
   295 
       
   296 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
       
   297 {
       
   298 	return readl(hw->flash_address + reg);
       
   299 }
       
   300 
       
   301 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
       
   302 {
       
   303 	writew(val, hw->flash_address + reg);
       
   304 }
       
   305 
       
   306 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
       
   307 {
       
   308 	writel(val, hw->flash_address + reg);
       
   309 }
       
   310 
       
   311 #define er16flash(reg)		__er16flash(hw, (reg))
       
   312 #define er32flash(reg)		__er32flash(hw, (reg))
       
   313 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
       
   314 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
       
   315 
       
   316 /**
       
   317  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
       
   318  *  @hw: pointer to the HW structure
       
   319  *
       
   320  *  Test access to the PHY registers by reading the PHY ID registers.  If
       
   321  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
       
   322  *  otherwise assume the read PHY ID is correct if it is valid.
       
   323  *
       
   324  *  Assumes the sw/fw/hw semaphore is already acquired.
       
   325  **/
       
   326 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
       
   327 {
       
   328 	u16 phy_reg = 0;
       
   329 	u32 phy_id = 0;
       
   330 	s32 ret_val;
       
   331 	u16 retry_count;
       
   332 
       
   333 	for (retry_count = 0; retry_count < 2; retry_count++) {
       
   334 		ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
       
   335 		if (ret_val || (phy_reg == 0xFFFF))
       
   336 			continue;
       
   337 		phy_id = (u32)(phy_reg << 16);
       
   338 
       
   339 		ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
       
   340 		if (ret_val || (phy_reg == 0xFFFF)) {
       
   341 			phy_id = 0;
       
   342 			continue;
       
   343 		}
       
   344 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
       
   345 		break;
       
   346 	}
       
   347 
       
   348 	if (hw->phy.id) {
       
   349 		if (hw->phy.id == phy_id)
       
   350 			return true;
       
   351 	} else if (phy_id) {
       
   352 		hw->phy.id = phy_id;
       
   353 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
       
   354 		return true;
       
   355 	}
       
   356 
       
   357 	/*
       
   358 	 * In case the PHY needs to be in mdio slow mode,
       
   359 	 * set slow mode and try to get the PHY id again.
       
   360 	 */
       
   361 	hw->phy.ops.release(hw);
       
   362 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
   363 	if (!ret_val)
       
   364 		ret_val = e1000e_get_phy_id(hw);
       
   365 	hw->phy.ops.acquire(hw);
       
   366 
       
   367 	return !ret_val;
       
   368 }
       
   369 
       
   370 /**
       
   371  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
       
   372  *  @hw: pointer to the HW structure
       
   373  *
       
   374  *  Workarounds/flow necessary for PHY initialization during driver load
       
   375  *  and resume paths.
       
   376  **/
       
   377 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
       
   378 {
       
   379 	u32 mac_reg, fwsm = er32(FWSM);
       
   380 	s32 ret_val;
       
   381 	u16 phy_reg;
       
   382 
       
   383 	ret_val = hw->phy.ops.acquire(hw);
       
   384 	if (ret_val) {
       
   385 		e_dbg("Failed to initialize PHY flow\n");
       
   386 		return ret_val;
       
   387 	}
       
   388 
       
   389 	/*
       
   390 	 * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
       
   391 	 * inaccessible and resetting the PHY is not blocked, toggle the
       
   392 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
       
   393 	 */
       
   394 	switch (hw->mac.type) {
       
   395 	case e1000_pch_lpt:
       
   396 		if (e1000_phy_is_accessible_pchlan(hw))
       
   397 			break;
       
   398 
       
   399 		/*
       
   400 		 * Before toggling LANPHYPC, see if PHY is accessible by
       
   401 		 * forcing MAC to SMBus mode first.
       
   402 		 */
       
   403 		mac_reg = er32(CTRL_EXT);
       
   404 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
       
   405 		ew32(CTRL_EXT, mac_reg);
       
   406 
       
   407 		/* fall-through */
       
   408 	case e1000_pch2lan:
       
   409 		/*
       
   410 		 * Gate automatic PHY configuration by hardware on
       
   411 		 * non-managed 82579
       
   412 		 */
       
   413 		if ((hw->mac.type == e1000_pch2lan) &&
       
   414 		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
       
   415 			e1000_gate_hw_phy_config_ich8lan(hw, true);
       
   416 
       
   417 		if (e1000_phy_is_accessible_pchlan(hw)) {
       
   418 			if (hw->mac.type == e1000_pch_lpt) {
       
   419 				/* Unforce SMBus mode in PHY */
       
   420 				e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
       
   421 				phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
       
   422 				e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
       
   423 
       
   424 				/* Unforce SMBus mode in MAC */
       
   425 				mac_reg = er32(CTRL_EXT);
       
   426 				mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
       
   427 				ew32(CTRL_EXT, mac_reg);
       
   428 			}
       
   429 			break;
       
   430 		}
       
   431 
       
   432 		/* fall-through */
       
   433 	case e1000_pchlan:
       
   434 		if ((hw->mac.type == e1000_pchlan) &&
       
   435 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
       
   436 			break;
       
   437 
       
   438 		if (hw->phy.ops.check_reset_block(hw)) {
       
   439 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
       
   440 			break;
       
   441 		}
       
   442 
       
   443 		e_dbg("Toggling LANPHYPC\n");
       
   444 
       
   445 		/* Set Phy Config Counter to 50msec */
       
   446 		mac_reg = er32(FEXTNVM3);
       
   447 		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
       
   448 		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
       
   449 		ew32(FEXTNVM3, mac_reg);
       
   450 
       
   451 		/* Toggle LANPHYPC Value bit */
       
   452 		mac_reg = er32(CTRL);
       
   453 		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
       
   454 		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
       
   455 		ew32(CTRL, mac_reg);
       
   456 		e1e_flush();
       
   457 		udelay(10);
       
   458 		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
       
   459 		ew32(CTRL, mac_reg);
       
   460 		e1e_flush();
       
   461 		if (hw->mac.type < e1000_pch_lpt) {
       
   462 			msleep(50);
       
   463 		} else {
       
   464 			u16 count = 20;
       
   465 			do {
       
   466 				usleep_range(5000, 10000);
       
   467 			} while (!(er32(CTRL_EXT) &
       
   468 				   E1000_CTRL_EXT_LPCD) && count--);
       
   469 		}
       
   470 		break;
       
   471 	default:
       
   472 		break;
       
   473 	}
       
   474 
       
   475 	hw->phy.ops.release(hw);
       
   476 
       
   477 	/*
       
   478 	 * Reset the PHY before any access to it.  Doing so, ensures
       
   479 	 * that the PHY is in a known good state before we read/write
       
   480 	 * PHY registers.  The generic reset is sufficient here,
       
   481 	 * because we haven't determined the PHY type yet.
       
   482 	 */
       
   483 	ret_val = e1000e_phy_hw_reset_generic(hw);
       
   484 
       
   485 	/* Ungate automatic PHY configuration on non-managed 82579 */
       
   486 	if ((hw->mac.type == e1000_pch2lan) &&
       
   487 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
       
   488 		usleep_range(10000, 20000);
       
   489 		e1000_gate_hw_phy_config_ich8lan(hw, false);
       
   490 	}
       
   491 
       
   492 	return ret_val;
       
   493 }
       
   494 
       
   495 /**
       
   496  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
       
   497  *  @hw: pointer to the HW structure
       
   498  *
       
   499  *  Initialize family-specific PHY parameters and function pointers.
       
   500  **/
       
   501 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
       
   502 {
       
   503 	struct e1000_phy_info *phy = &hw->phy;
       
   504 	s32 ret_val = 0;
       
   505 
       
   506 	phy->addr                     = 1;
       
   507 	phy->reset_delay_us           = 100;
       
   508 
       
   509 	phy->ops.set_page             = e1000_set_page_igp;
       
   510 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
       
   511 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
       
   512 	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
       
   513 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
       
   514 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
       
   515 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
       
   516 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
       
   517 	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
       
   518 	phy->ops.power_up             = e1000_power_up_phy_copper;
       
   519 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
       
   520 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   521 
       
   522 	phy->id = e1000_phy_unknown;
       
   523 
       
   524 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
       
   525 	if (ret_val)
       
   526 		return ret_val;
       
   527 
       
   528 	if (phy->id == e1000_phy_unknown)
       
   529 		switch (hw->mac.type) {
       
   530 		default:
       
   531 			ret_val = e1000e_get_phy_id(hw);
       
   532 			if (ret_val)
       
   533 				return ret_val;
       
   534 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
       
   535 				break;
       
   536 			/* fall-through */
       
   537 		case e1000_pch2lan:
       
   538 		case e1000_pch_lpt:
       
   539 			/*
       
   540 			 * In case the PHY needs to be in mdio slow mode,
       
   541 			 * set slow mode and try to get the PHY id again.
       
   542 			 */
       
   543 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
   544 			if (ret_val)
       
   545 				return ret_val;
       
   546 			ret_val = e1000e_get_phy_id(hw);
       
   547 			if (ret_val)
       
   548 				return ret_val;
       
   549 			break;
       
   550 		}
       
   551 	phy->type = e1000e_get_phy_type_from_id(phy->id);
       
   552 
       
   553 	switch (phy->type) {
       
   554 	case e1000_phy_82577:
       
   555 	case e1000_phy_82579:
       
   556 	case e1000_phy_i217:
       
   557 		phy->ops.check_polarity = e1000_check_polarity_82577;
       
   558 		phy->ops.force_speed_duplex =
       
   559 		    e1000_phy_force_speed_duplex_82577;
       
   560 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
       
   561 		phy->ops.get_info = e1000_get_phy_info_82577;
       
   562 		phy->ops.commit = e1000e_phy_sw_reset;
       
   563 		break;
       
   564 	case e1000_phy_82578:
       
   565 		phy->ops.check_polarity = e1000_check_polarity_m88;
       
   566 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
       
   567 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
       
   568 		phy->ops.get_info = e1000e_get_phy_info_m88;
       
   569 		break;
       
   570 	default:
       
   571 		ret_val = -E1000_ERR_PHY;
       
   572 		break;
       
   573 	}
       
   574 
       
   575 	return ret_val;
       
   576 }
       
   577 
       
   578 /**
       
   579  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
       
   580  *  @hw: pointer to the HW structure
       
   581  *
       
   582  *  Initialize family-specific PHY parameters and function pointers.
       
   583  **/
       
   584 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
       
   585 {
       
   586 	struct e1000_phy_info *phy = &hw->phy;
       
   587 	s32 ret_val;
       
   588 	u16 i = 0;
       
   589 
       
   590 	phy->addr			= 1;
       
   591 	phy->reset_delay_us		= 100;
       
   592 
       
   593 	phy->ops.power_up               = e1000_power_up_phy_copper;
       
   594 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
       
   595 
       
   596 	/*
       
   597 	 * We may need to do this twice - once for IGP and if that fails,
       
   598 	 * we'll set BM func pointers and try again
       
   599 	 */
       
   600 	ret_val = e1000e_determine_phy_address(hw);
       
   601 	if (ret_val) {
       
   602 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
       
   603 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
       
   604 		ret_val = e1000e_determine_phy_address(hw);
       
   605 		if (ret_val) {
       
   606 			e_dbg("Cannot determine PHY addr. Erroring out\n");
       
   607 			return ret_val;
       
   608 		}
       
   609 	}
       
   610 
       
   611 	phy->id = 0;
       
   612 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
       
   613 	       (i++ < 100)) {
       
   614 		usleep_range(1000, 2000);
       
   615 		ret_val = e1000e_get_phy_id(hw);
       
   616 		if (ret_val)
       
   617 			return ret_val;
       
   618 	}
       
   619 
       
   620 	/* Verify phy id */
       
   621 	switch (phy->id) {
       
   622 	case IGP03E1000_E_PHY_ID:
       
   623 		phy->type = e1000_phy_igp_3;
       
   624 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   625 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
       
   626 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
       
   627 		phy->ops.get_info = e1000e_get_phy_info_igp;
       
   628 		phy->ops.check_polarity = e1000_check_polarity_igp;
       
   629 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
       
   630 		break;
       
   631 	case IFE_E_PHY_ID:
       
   632 	case IFE_PLUS_E_PHY_ID:
       
   633 	case IFE_C_E_PHY_ID:
       
   634 		phy->type = e1000_phy_ife;
       
   635 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
       
   636 		phy->ops.get_info = e1000_get_phy_info_ife;
       
   637 		phy->ops.check_polarity = e1000_check_polarity_ife;
       
   638 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
       
   639 		break;
       
   640 	case BME1000_E_PHY_ID:
       
   641 		phy->type = e1000_phy_bm;
       
   642 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
   643 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
       
   644 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
       
   645 		phy->ops.commit = e1000e_phy_sw_reset;
       
   646 		phy->ops.get_info = e1000e_get_phy_info_m88;
       
   647 		phy->ops.check_polarity = e1000_check_polarity_m88;
       
   648 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
       
   649 		break;
       
   650 	default:
       
   651 		return -E1000_ERR_PHY;
       
   652 		break;
       
   653 	}
       
   654 
       
   655 	return 0;
       
   656 }
       
   657 
       
   658 /**
       
   659  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
       
   660  *  @hw: pointer to the HW structure
       
   661  *
       
   662  *  Initialize family-specific NVM parameters and function
       
   663  *  pointers.
       
   664  **/
       
   665 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
       
   666 {
       
   667 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   668 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
   669 	u32 gfpreg, sector_base_addr, sector_end_addr;
       
   670 	u16 i;
       
   671 
       
   672 	/* Can't read flash registers if the register set isn't mapped. */
       
   673 	if (!hw->flash_address) {
       
   674 		e_dbg("ERROR: Flash registers not mapped\n");
       
   675 		return -E1000_ERR_CONFIG;
       
   676 	}
       
   677 
       
   678 	nvm->type = e1000_nvm_flash_sw;
       
   679 
       
   680 	gfpreg = er32flash(ICH_FLASH_GFPREG);
       
   681 
       
   682 	/*
       
   683 	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
       
   684 	 * Add 1 to sector_end_addr since this sector is included in
       
   685 	 * the overall size.
       
   686 	 */
       
   687 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
       
   688 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
       
   689 
       
   690 	/* flash_base_addr is byte-aligned */
       
   691 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
       
   692 
       
   693 	/*
       
   694 	 * find total size of the NVM, then cut in half since the total
       
   695 	 * size represents two separate NVM banks.
       
   696 	 */
       
   697 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
       
   698 				<< FLASH_SECTOR_ADDR_SHIFT;
       
   699 	nvm->flash_bank_size /= 2;
       
   700 	/* Adjust to word count */
       
   701 	nvm->flash_bank_size /= sizeof(u16);
       
   702 
       
   703 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
       
   704 
       
   705 	/* Clear shadow ram */
       
   706 	for (i = 0; i < nvm->word_size; i++) {
       
   707 		dev_spec->shadow_ram[i].modified = false;
       
   708 		dev_spec->shadow_ram[i].value    = 0xFFFF;
       
   709 	}
       
   710 
       
   711 	return 0;
       
   712 }
       
   713 
       
   714 /**
       
   715  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
       
   716  *  @hw: pointer to the HW structure
       
   717  *
       
   718  *  Initialize family-specific MAC parameters and function
       
   719  *  pointers.
       
   720  **/
       
   721 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
       
   722 {
       
   723 	struct e1000_mac_info *mac = &hw->mac;
       
   724 
       
   725 	/* Set media type function pointer */
       
   726 	hw->phy.media_type = e1000_media_type_copper;
       
   727 
       
   728 	/* Set mta register count */
       
   729 	mac->mta_reg_count = 32;
       
   730 	/* Set rar entry count */
       
   731 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
       
   732 	if (mac->type == e1000_ich8lan)
       
   733 		mac->rar_entry_count--;
       
   734 	/* FWSM register */
       
   735 	mac->has_fwsm = true;
       
   736 	/* ARC subsystem not supported */
       
   737 	mac->arc_subsystem_valid = false;
       
   738 	/* Adaptive IFS supported */
       
   739 	mac->adaptive_ifs = true;
       
   740 
       
   741 	/* LED and other operations */
       
   742 	switch (mac->type) {
       
   743 	case e1000_ich8lan:
       
   744 	case e1000_ich9lan:
       
   745 	case e1000_ich10lan:
       
   746 		/* check management mode */
       
   747 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
       
   748 		/* ID LED init */
       
   749 		mac->ops.id_led_init = e1000e_id_led_init_generic;
       
   750 		/* blink LED */
       
   751 		mac->ops.blink_led = e1000e_blink_led_generic;
       
   752 		/* setup LED */
       
   753 		mac->ops.setup_led = e1000e_setup_led_generic;
       
   754 		/* cleanup LED */
       
   755 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
       
   756 		/* turn on/off LED */
       
   757 		mac->ops.led_on = e1000_led_on_ich8lan;
       
   758 		mac->ops.led_off = e1000_led_off_ich8lan;
       
   759 		break;
       
   760 	case e1000_pch2lan:
       
   761 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
       
   762 		mac->ops.rar_set = e1000_rar_set_pch2lan;
       
   763 		/* fall-through */
       
   764 	case e1000_pch_lpt:
       
   765 	case e1000_pchlan:
       
   766 		/* check management mode */
       
   767 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
       
   768 		/* ID LED init */
       
   769 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
       
   770 		/* setup LED */
       
   771 		mac->ops.setup_led = e1000_setup_led_pchlan;
       
   772 		/* cleanup LED */
       
   773 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
       
   774 		/* turn on/off LED */
       
   775 		mac->ops.led_on = e1000_led_on_pchlan;
       
   776 		mac->ops.led_off = e1000_led_off_pchlan;
       
   777 		break;
       
   778 	default:
       
   779 		break;
       
   780 	}
       
   781 
       
   782 	if (mac->type == e1000_pch_lpt) {
       
   783 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
       
   784 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
       
   785 	}
       
   786 
       
   787 	/* Enable PCS Lock-loss workaround for ICH8 */
       
   788 	if (mac->type == e1000_ich8lan)
       
   789 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
       
   790 
       
   791 	/*
       
   792 	 * Gate automatic PHY configuration by hardware on managed
       
   793 	 * 82579 and i217
       
   794 	 */
       
   795 	if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
       
   796 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
       
   797 		e1000_gate_hw_phy_config_ich8lan(hw, true);
       
   798 
       
   799 	return 0;
       
   800 }
       
   801 
       
   802 /**
       
   803  *  e1000_set_eee_pchlan - Enable/disable EEE support
       
   804  *  @hw: pointer to the HW structure
       
   805  *
       
   806  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
       
   807  *  the LPI Control register will remain set only if/when link is up.
       
   808  **/
       
   809 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
       
   810 {
       
   811 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
   812 	s32 ret_val = 0;
       
   813 	u16 phy_reg;
       
   814 
       
   815 	if ((hw->phy.type != e1000_phy_82579) &&
       
   816 	    (hw->phy.type != e1000_phy_i217))
       
   817 		return 0;
       
   818 
       
   819 	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
       
   820 	if (ret_val)
       
   821 		return ret_val;
       
   822 
       
   823 	if (dev_spec->eee_disable)
       
   824 		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
       
   825 	else
       
   826 		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
       
   827 
       
   828 	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
       
   829 	if (ret_val)
       
   830 		return ret_val;
       
   831 
       
   832 	if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
       
   833 		/* Save off link partner's EEE ability */
       
   834 		ret_val = hw->phy.ops.acquire(hw);
       
   835 		if (ret_val)
       
   836 			return ret_val;
       
   837 		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
       
   838 					  I217_EEE_LP_ABILITY);
       
   839 		if (ret_val)
       
   840 			goto release;
       
   841 		e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
       
   842 
       
   843 		/*
       
   844 		 * EEE is not supported in 100Half, so ignore partner's EEE
       
   845 		 * in 100 ability if full-duplex is not advertised.
       
   846 		 */
       
   847 		e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
       
   848 		if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
       
   849 			dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
       
   850 release:
       
   851 		hw->phy.ops.release(hw);
       
   852 	}
       
   853 
       
   854 	return 0;
       
   855 }
       
   856 
       
   857 /**
       
   858  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
       
   859  *  @hw: pointer to the HW structure
       
   860  *
       
   861  *  Checks to see of the link status of the hardware has changed.  If a
       
   862  *  change in link status has been detected, then we read the PHY registers
       
   863  *  to get the current speed/duplex if link exists.
       
   864  **/
       
   865 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
       
   866 {
       
   867 	struct e1000_mac_info *mac = &hw->mac;
       
   868 	s32 ret_val;
       
   869 	bool link;
       
   870 	u16 phy_reg;
       
   871 
       
   872 	/*
       
   873 	 * We only want to go out to the PHY registers to see if Auto-Neg
       
   874 	 * has completed and/or if our link status has changed.  The
       
   875 	 * get_link_status flag is set upon receiving a Link Status
       
   876 	 * Change or Rx Sequence Error interrupt.
       
   877 	 */
       
   878 	if (!mac->get_link_status)
       
   879 		return 0;
       
   880 
       
   881 	/*
       
   882 	 * First we want to see if the MII Status Register reports
       
   883 	 * link.  If so, then we want to get the current speed/duplex
       
   884 	 * of the PHY.
       
   885 	 */
       
   886 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
   887 	if (ret_val)
       
   888 		return ret_val;
       
   889 
       
   890 	if (hw->mac.type == e1000_pchlan) {
       
   891 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
       
   892 		if (ret_val)
       
   893 			return ret_val;
       
   894 	}
       
   895 
       
   896 	/* Clear link partner's EEE ability */
       
   897 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
       
   898 
       
   899 	if (!link)
       
   900 		return 0; /* No link detected */
       
   901 
       
   902 	mac->get_link_status = false;
       
   903 
       
   904 	switch (hw->mac.type) {
       
   905 	case e1000_pch2lan:
       
   906 		ret_val = e1000_k1_workaround_lv(hw);
       
   907 		if (ret_val)
       
   908 			return ret_val;
       
   909 		/* fall-thru */
       
   910 	case e1000_pchlan:
       
   911 		if (hw->phy.type == e1000_phy_82578) {
       
   912 			ret_val = e1000_link_stall_workaround_hv(hw);
       
   913 			if (ret_val)
       
   914 				return ret_val;
       
   915 		}
       
   916 
       
   917 		/*
       
   918 		 * Workaround for PCHx parts in half-duplex:
       
   919 		 * Set the number of preambles removed from the packet
       
   920 		 * when it is passed from the PHY to the MAC to prevent
       
   921 		 * the MAC from misinterpreting the packet type.
       
   922 		 */
       
   923 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
       
   924 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
       
   925 
       
   926 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
       
   927 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
       
   928 
       
   929 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
       
   930 		break;
       
   931 	default:
       
   932 		break;
       
   933 	}
       
   934 
       
   935 	/*
       
   936 	 * Check if there was DownShift, must be checked
       
   937 	 * immediately after link-up
       
   938 	 */
       
   939 	e1000e_check_downshift(hw);
       
   940 
       
   941 	/* Enable/Disable EEE after link up */
       
   942 	ret_val = e1000_set_eee_pchlan(hw);
       
   943 	if (ret_val)
       
   944 		return ret_val;
       
   945 
       
   946 	/*
       
   947 	 * If we are forcing speed/duplex, then we simply return since
       
   948 	 * we have already determined whether we have link or not.
       
   949 	 */
       
   950 	if (!mac->autoneg)
       
   951 		return -E1000_ERR_CONFIG;
       
   952 
       
   953 	/*
       
   954 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
       
   955 	 * of MAC speed/duplex configuration.  So we only need to
       
   956 	 * configure Collision Distance in the MAC.
       
   957 	 */
       
   958 	mac->ops.config_collision_dist(hw);
       
   959 
       
   960 	/*
       
   961 	 * Configure Flow Control now that Auto-Neg has completed.
       
   962 	 * First, we need to restore the desired flow control
       
   963 	 * settings because we may have had to re-autoneg with a
       
   964 	 * different link partner.
       
   965 	 */
       
   966 	ret_val = e1000e_config_fc_after_link_up(hw);
       
   967 	if (ret_val)
       
   968 		e_dbg("Error configuring flow control\n");
       
   969 
       
   970 	return ret_val;
       
   971 }
       
   972 
       
   973 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
       
   974 {
       
   975 	struct e1000_hw *hw = &adapter->hw;
       
   976 	s32 rc;
       
   977 
       
   978 	rc = e1000_init_mac_params_ich8lan(hw);
       
   979 	if (rc)
       
   980 		return rc;
       
   981 
       
   982 	rc = e1000_init_nvm_params_ich8lan(hw);
       
   983 	if (rc)
       
   984 		return rc;
       
   985 
       
   986 	switch (hw->mac.type) {
       
   987 	case e1000_ich8lan:
       
   988 	case e1000_ich9lan:
       
   989 	case e1000_ich10lan:
       
   990 		rc = e1000_init_phy_params_ich8lan(hw);
       
   991 		break;
       
   992 	case e1000_pchlan:
       
   993 	case e1000_pch2lan:
       
   994 	case e1000_pch_lpt:
       
   995 		rc = e1000_init_phy_params_pchlan(hw);
       
   996 		break;
       
   997 	default:
       
   998 		break;
       
   999 	}
       
  1000 	if (rc)
       
  1001 		return rc;
       
  1002 
       
  1003 	/*
       
  1004 	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
       
  1005 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
       
  1006 	 */
       
  1007 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
       
  1008 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
       
  1009 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
       
  1010 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
       
  1011 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
       
  1012 
       
  1013 		hw->mac.ops.blink_led = NULL;
       
  1014 	}
       
  1015 
       
  1016 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
       
  1017 	    (adapter->hw.phy.type != e1000_phy_ife))
       
  1018 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
       
  1019 
       
  1020 	/* Enable workaround for 82579 w/ ME enabled */
       
  1021 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
       
  1022 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
       
  1023 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
       
  1024 
       
  1025 	/* Disable EEE by default until IEEE802.3az spec is finalized */
       
  1026 	if (adapter->flags2 & FLAG2_HAS_EEE)
       
  1027 		adapter->hw.dev_spec.ich8lan.eee_disable = true;
       
  1028 
       
  1029 	return 0;
       
  1030 }
       
  1031 
       
  1032 static DEFINE_MUTEX(nvm_mutex);
       
  1033 
       
  1034 /**
       
  1035  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
       
  1036  *  @hw: pointer to the HW structure
       
  1037  *
       
  1038  *  Acquires the mutex for performing NVM operations.
       
  1039  **/
       
  1040 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
       
  1041 {
       
  1042 	mutex_lock(&nvm_mutex);
       
  1043 
       
  1044 	return 0;
       
  1045 }
       
  1046 
       
  1047 /**
       
  1048  *  e1000_release_nvm_ich8lan - Release NVM mutex
       
  1049  *  @hw: pointer to the HW structure
       
  1050  *
       
  1051  *  Releases the mutex used while performing NVM operations.
       
  1052  **/
       
  1053 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
       
  1054 {
       
  1055 	mutex_unlock(&nvm_mutex);
       
  1056 }
       
  1057 
       
  1058 /**
       
  1059  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
       
  1060  *  @hw: pointer to the HW structure
       
  1061  *
       
  1062  *  Acquires the software control flag for performing PHY and select
       
  1063  *  MAC CSR accesses.
       
  1064  **/
       
  1065 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
       
  1066 {
       
  1067 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
       
  1068 	s32 ret_val = 0;
       
  1069 
       
  1070 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
       
  1071 			     &hw->adapter->state)) {
       
  1072 		e_dbg("contention for Phy access\n");
       
  1073 		return -E1000_ERR_PHY;
       
  1074 	}
       
  1075 
       
  1076 	while (timeout) {
       
  1077 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
  1078 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
       
  1079 			break;
       
  1080 
       
  1081 		mdelay(1);
       
  1082 		timeout--;
       
  1083 	}
       
  1084 
       
  1085 	if (!timeout) {
       
  1086 		e_dbg("SW has already locked the resource.\n");
       
  1087 		ret_val = -E1000_ERR_CONFIG;
       
  1088 		goto out;
       
  1089 	}
       
  1090 
       
  1091 	timeout = SW_FLAG_TIMEOUT;
       
  1092 
       
  1093 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
       
  1094 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
  1095 
       
  1096 	while (timeout) {
       
  1097 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
  1098 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
       
  1099 			break;
       
  1100 
       
  1101 		mdelay(1);
       
  1102 		timeout--;
       
  1103 	}
       
  1104 
       
  1105 	if (!timeout) {
       
  1106 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
       
  1107 		      er32(FWSM), extcnf_ctrl);
       
  1108 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
       
  1109 		ew32(EXTCNF_CTRL, extcnf_ctrl);
       
  1110 		ret_val = -E1000_ERR_CONFIG;
       
  1111 		goto out;
       
  1112 	}
       
  1113 
       
  1114 out:
       
  1115 	if (ret_val)
       
  1116 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
       
  1117 
       
  1118 	return ret_val;
       
  1119 }
       
  1120 
       
  1121 /**
       
  1122  *  e1000_release_swflag_ich8lan - Release software control flag
       
  1123  *  @hw: pointer to the HW structure
       
  1124  *
       
  1125  *  Releases the software control flag for performing PHY and select
       
  1126  *  MAC CSR accesses.
       
  1127  **/
       
  1128 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
       
  1129 {
       
  1130 	u32 extcnf_ctrl;
       
  1131 
       
  1132 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
  1133 
       
  1134 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
       
  1135 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
       
  1136 		ew32(EXTCNF_CTRL, extcnf_ctrl);
       
  1137 	} else {
       
  1138 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
       
  1139 	}
       
  1140 
       
  1141 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
       
  1142 }
       
  1143 
       
  1144 /**
       
  1145  *  e1000_check_mng_mode_ich8lan - Checks management mode
       
  1146  *  @hw: pointer to the HW structure
       
  1147  *
       
  1148  *  This checks if the adapter has any manageability enabled.
       
  1149  *  This is a function pointer entry point only called by read/write
       
  1150  *  routines for the PHY and NVM parts.
       
  1151  **/
       
  1152 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
       
  1153 {
       
  1154 	u32 fwsm;
       
  1155 
       
  1156 	fwsm = er32(FWSM);
       
  1157 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
       
  1158 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
       
  1159 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
       
  1160 }
       
  1161 
       
  1162 /**
       
  1163  *  e1000_check_mng_mode_pchlan - Checks management mode
       
  1164  *  @hw: pointer to the HW structure
       
  1165  *
       
  1166  *  This checks if the adapter has iAMT enabled.
       
  1167  *  This is a function pointer entry point only called by read/write
       
  1168  *  routines for the PHY and NVM parts.
       
  1169  **/
       
  1170 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
       
  1171 {
       
  1172 	u32 fwsm;
       
  1173 
       
  1174 	fwsm = er32(FWSM);
       
  1175 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
       
  1176 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
       
  1177 }
       
  1178 
       
  1179 /**
       
  1180  *  e1000_rar_set_pch2lan - Set receive address register
       
  1181  *  @hw: pointer to the HW structure
       
  1182  *  @addr: pointer to the receive address
       
  1183  *  @index: receive address array register
       
  1184  *
       
  1185  *  Sets the receive address array register at index to the address passed
       
  1186  *  in by addr.  For 82579, RAR[0] is the base address register that is to
       
  1187  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
       
  1188  *  Use SHRA[0-3] in place of those reserved for ME.
       
  1189  **/
       
  1190 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
       
  1191 {
       
  1192 	u32 rar_low, rar_high;
       
  1193 
       
  1194 	/*
       
  1195 	 * HW expects these in little endian so we reverse the byte order
       
  1196 	 * from network order (big endian) to little endian
       
  1197 	 */
       
  1198 	rar_low = ((u32)addr[0] |
       
  1199 		   ((u32)addr[1] << 8) |
       
  1200 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
       
  1201 
       
  1202 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
       
  1203 
       
  1204 	/* If MAC address zero, no need to set the AV bit */
       
  1205 	if (rar_low || rar_high)
       
  1206 		rar_high |= E1000_RAH_AV;
       
  1207 
       
  1208 	if (index == 0) {
       
  1209 		ew32(RAL(index), rar_low);
       
  1210 		e1e_flush();
       
  1211 		ew32(RAH(index), rar_high);
       
  1212 		e1e_flush();
       
  1213 		return;
       
  1214 	}
       
  1215 
       
  1216 	if (index < hw->mac.rar_entry_count) {
       
  1217 		s32 ret_val;
       
  1218 
       
  1219 		ret_val = e1000_acquire_swflag_ich8lan(hw);
       
  1220 		if (ret_val)
       
  1221 			goto out;
       
  1222 
       
  1223 		ew32(SHRAL(index - 1), rar_low);
       
  1224 		e1e_flush();
       
  1225 		ew32(SHRAH(index - 1), rar_high);
       
  1226 		e1e_flush();
       
  1227 
       
  1228 		e1000_release_swflag_ich8lan(hw);
       
  1229 
       
  1230 		/* verify the register updates */
       
  1231 		if ((er32(SHRAL(index - 1)) == rar_low) &&
       
  1232 		    (er32(SHRAH(index - 1)) == rar_high))
       
  1233 			return;
       
  1234 
       
  1235 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
       
  1236 		      (index - 1), er32(FWSM));
       
  1237 	}
       
  1238 
       
  1239 out:
       
  1240 	e_dbg("Failed to write receive address at index %d\n", index);
       
  1241 }
       
  1242 
       
  1243 /**
       
  1244  *  e1000_rar_set_pch_lpt - Set receive address registers
       
  1245  *  @hw: pointer to the HW structure
       
  1246  *  @addr: pointer to the receive address
       
  1247  *  @index: receive address array register
       
  1248  *
       
  1249  *  Sets the receive address register array at index to the address passed
       
  1250  *  in by addr. For LPT, RAR[0] is the base address register that is to
       
  1251  *  contain the MAC address. SHRA[0-10] are the shared receive address
       
  1252  *  registers that are shared between the Host and manageability engine (ME).
       
  1253  **/
       
  1254 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
       
  1255 {
       
  1256 	u32 rar_low, rar_high;
       
  1257 	u32 wlock_mac;
       
  1258 
       
  1259 	/*
       
  1260 	 * HW expects these in little endian so we reverse the byte order
       
  1261 	 * from network order (big endian) to little endian
       
  1262 	 */
       
  1263 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
       
  1264 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
       
  1265 
       
  1266 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
       
  1267 
       
  1268 	/* If MAC address zero, no need to set the AV bit */
       
  1269 	if (rar_low || rar_high)
       
  1270 		rar_high |= E1000_RAH_AV;
       
  1271 
       
  1272 	if (index == 0) {
       
  1273 		ew32(RAL(index), rar_low);
       
  1274 		e1e_flush();
       
  1275 		ew32(RAH(index), rar_high);
       
  1276 		e1e_flush();
       
  1277 		return;
       
  1278 	}
       
  1279 
       
  1280 	/*
       
  1281 	 * The manageability engine (ME) can lock certain SHRAR registers that
       
  1282 	 * it is using - those registers are unavailable for use.
       
  1283 	 */
       
  1284 	if (index < hw->mac.rar_entry_count) {
       
  1285 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
       
  1286 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
       
  1287 
       
  1288 		/* Check if all SHRAR registers are locked */
       
  1289 		if (wlock_mac == 1)
       
  1290 			goto out;
       
  1291 
       
  1292 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
       
  1293 			s32 ret_val;
       
  1294 
       
  1295 			ret_val = e1000_acquire_swflag_ich8lan(hw);
       
  1296 
       
  1297 			if (ret_val)
       
  1298 				goto out;
       
  1299 
       
  1300 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
       
  1301 			e1e_flush();
       
  1302 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
       
  1303 			e1e_flush();
       
  1304 
       
  1305 			e1000_release_swflag_ich8lan(hw);
       
  1306 
       
  1307 			/* verify the register updates */
       
  1308 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
       
  1309 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
       
  1310 				return;
       
  1311 		}
       
  1312 	}
       
  1313 
       
  1314 out:
       
  1315 	e_dbg("Failed to write receive address at index %d\n", index);
       
  1316 }
       
  1317 
       
  1318 /**
       
  1319  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
       
  1320  *  @hw: pointer to the HW structure
       
  1321  *
       
  1322  *  Checks if firmware is blocking the reset of the PHY.
       
  1323  *  This is a function pointer entry point only called by
       
  1324  *  reset routines.
       
  1325  **/
       
  1326 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
       
  1327 {
       
  1328 	u32 fwsm;
       
  1329 
       
  1330 	fwsm = er32(FWSM);
       
  1331 
       
  1332 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
       
  1333 }
       
  1334 
       
  1335 /**
       
  1336  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
       
  1337  *  @hw: pointer to the HW structure
       
  1338  *
       
  1339  *  Assumes semaphore already acquired.
       
  1340  *
       
  1341  **/
       
  1342 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
       
  1343 {
       
  1344 	u16 phy_data;
       
  1345 	u32 strap = er32(STRAP);
       
  1346 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
       
  1347 	    E1000_STRAP_SMT_FREQ_SHIFT;
       
  1348 	s32 ret_val = 0;
       
  1349 
       
  1350 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
       
  1351 
       
  1352 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
       
  1353 	if (ret_val)
       
  1354 		return ret_val;
       
  1355 
       
  1356 	phy_data &= ~HV_SMB_ADDR_MASK;
       
  1357 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
       
  1358 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
       
  1359 
       
  1360 	if (hw->phy.type == e1000_phy_i217) {
       
  1361 		/* Restore SMBus frequency */
       
  1362 		if (freq--) {
       
  1363 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
       
  1364 			phy_data |= (freq & (1 << 0)) <<
       
  1365 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
       
  1366 			phy_data |= (freq & (1 << 1)) <<
       
  1367 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
       
  1368 		} else {
       
  1369 			e_dbg("Unsupported SMB frequency in PHY\n");
       
  1370 		}
       
  1371 	}
       
  1372 
       
  1373 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
       
  1374 }
       
  1375 
       
  1376 /**
       
  1377  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
       
  1378  *  @hw:   pointer to the HW structure
       
  1379  *
       
  1380  *  SW should configure the LCD from the NVM extended configuration region
       
  1381  *  as a workaround for certain parts.
       
  1382  **/
       
  1383 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
       
  1384 {
       
  1385 	struct e1000_phy_info *phy = &hw->phy;
       
  1386 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
       
  1387 	s32 ret_val = 0;
       
  1388 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
       
  1389 
       
  1390 	/*
       
  1391 	 * Initialize the PHY from the NVM on ICH platforms.  This
       
  1392 	 * is needed due to an issue where the NVM configuration is
       
  1393 	 * not properly autoloaded after power transitions.
       
  1394 	 * Therefore, after each PHY reset, we will load the
       
  1395 	 * configuration data out of the NVM manually.
       
  1396 	 */
       
  1397 	switch (hw->mac.type) {
       
  1398 	case e1000_ich8lan:
       
  1399 		if (phy->type != e1000_phy_igp_3)
       
  1400 			return ret_val;
       
  1401 
       
  1402 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
       
  1403 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
       
  1404 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
       
  1405 			break;
       
  1406 		}
       
  1407 		/* Fall-thru */
       
  1408 	case e1000_pchlan:
       
  1409 	case e1000_pch2lan:
       
  1410 	case e1000_pch_lpt:
       
  1411 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
       
  1412 		break;
       
  1413 	default:
       
  1414 		return ret_val;
       
  1415 	}
       
  1416 
       
  1417 	ret_val = hw->phy.ops.acquire(hw);
       
  1418 	if (ret_val)
       
  1419 		return ret_val;
       
  1420 
       
  1421 	data = er32(FEXTNVM);
       
  1422 	if (!(data & sw_cfg_mask))
       
  1423 		goto release;
       
  1424 
       
  1425 	/*
       
  1426 	 * Make sure HW does not configure LCD from PHY
       
  1427 	 * extended configuration before SW configuration
       
  1428 	 */
       
  1429 	data = er32(EXTCNF_CTRL);
       
  1430 	if ((hw->mac.type < e1000_pch2lan) &&
       
  1431 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
       
  1432 		goto release;
       
  1433 
       
  1434 	cnf_size = er32(EXTCNF_SIZE);
       
  1435 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
       
  1436 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
       
  1437 	if (!cnf_size)
       
  1438 		goto release;
       
  1439 
       
  1440 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
       
  1441 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
       
  1442 
       
  1443 	if (((hw->mac.type == e1000_pchlan) &&
       
  1444 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
       
  1445 	    (hw->mac.type > e1000_pchlan)) {
       
  1446 		/*
       
  1447 		 * HW configures the SMBus address and LEDs when the
       
  1448 		 * OEM and LCD Write Enable bits are set in the NVM.
       
  1449 		 * When both NVM bits are cleared, SW will configure
       
  1450 		 * them instead.
       
  1451 		 */
       
  1452 		ret_val = e1000_write_smbus_addr(hw);
       
  1453 		if (ret_val)
       
  1454 			goto release;
       
  1455 
       
  1456 		data = er32(LEDCTL);
       
  1457 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
       
  1458 							(u16)data);
       
  1459 		if (ret_val)
       
  1460 			goto release;
       
  1461 	}
       
  1462 
       
  1463 	/* Configure LCD from extended configuration region. */
       
  1464 
       
  1465 	/* cnf_base_addr is in DWORD */
       
  1466 	word_addr = (u16)(cnf_base_addr << 1);
       
  1467 
       
  1468 	for (i = 0; i < cnf_size; i++) {
       
  1469 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
       
  1470 					 &reg_data);
       
  1471 		if (ret_val)
       
  1472 			goto release;
       
  1473 
       
  1474 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
       
  1475 					 1, &reg_addr);
       
  1476 		if (ret_val)
       
  1477 			goto release;
       
  1478 
       
  1479 		/* Save off the PHY page for future writes. */
       
  1480 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
       
  1481 			phy_page = reg_data;
       
  1482 			continue;
       
  1483 		}
       
  1484 
       
  1485 		reg_addr &= PHY_REG_MASK;
       
  1486 		reg_addr |= phy_page;
       
  1487 
       
  1488 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
       
  1489 		if (ret_val)
       
  1490 			goto release;
       
  1491 	}
       
  1492 
       
  1493 release:
       
  1494 	hw->phy.ops.release(hw);
       
  1495 	return ret_val;
       
  1496 }
       
  1497 
       
  1498 /**
       
  1499  *  e1000_k1_gig_workaround_hv - K1 Si workaround
       
  1500  *  @hw:   pointer to the HW structure
       
  1501  *  @link: link up bool flag
       
  1502  *
       
  1503  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
       
  1504  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
       
  1505  *  If link is down, the function will restore the default K1 setting located
       
  1506  *  in the NVM.
       
  1507  **/
       
  1508 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
       
  1509 {
       
  1510 	s32 ret_val = 0;
       
  1511 	u16 status_reg = 0;
       
  1512 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
       
  1513 
       
  1514 	if (hw->mac.type != e1000_pchlan)
       
  1515 		return 0;
       
  1516 
       
  1517 	/* Wrap the whole flow with the sw flag */
       
  1518 	ret_val = hw->phy.ops.acquire(hw);
       
  1519 	if (ret_val)
       
  1520 		return ret_val;
       
  1521 
       
  1522 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
       
  1523 	if (link) {
       
  1524 		if (hw->phy.type == e1000_phy_82578) {
       
  1525 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
       
  1526 						  &status_reg);
       
  1527 			if (ret_val)
       
  1528 				goto release;
       
  1529 
       
  1530 			status_reg &= BM_CS_STATUS_LINK_UP |
       
  1531 			              BM_CS_STATUS_RESOLVED |
       
  1532 			              BM_CS_STATUS_SPEED_MASK;
       
  1533 
       
  1534 			if (status_reg == (BM_CS_STATUS_LINK_UP |
       
  1535 			                   BM_CS_STATUS_RESOLVED |
       
  1536 			                   BM_CS_STATUS_SPEED_1000))
       
  1537 				k1_enable = false;
       
  1538 		}
       
  1539 
       
  1540 		if (hw->phy.type == e1000_phy_82577) {
       
  1541 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
       
  1542 			if (ret_val)
       
  1543 				goto release;
       
  1544 
       
  1545 			status_reg &= HV_M_STATUS_LINK_UP |
       
  1546 			              HV_M_STATUS_AUTONEG_COMPLETE |
       
  1547 			              HV_M_STATUS_SPEED_MASK;
       
  1548 
       
  1549 			if (status_reg == (HV_M_STATUS_LINK_UP |
       
  1550 			                   HV_M_STATUS_AUTONEG_COMPLETE |
       
  1551 			                   HV_M_STATUS_SPEED_1000))
       
  1552 				k1_enable = false;
       
  1553 		}
       
  1554 
       
  1555 		/* Link stall fix for link up */
       
  1556 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
       
  1557 		if (ret_val)
       
  1558 			goto release;
       
  1559 
       
  1560 	} else {
       
  1561 		/* Link stall fix for link down */
       
  1562 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
       
  1563 		if (ret_val)
       
  1564 			goto release;
       
  1565 	}
       
  1566 
       
  1567 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
       
  1568 
       
  1569 release:
       
  1570 	hw->phy.ops.release(hw);
       
  1571 
       
  1572 	return ret_val;
       
  1573 }
       
  1574 
       
  1575 /**
       
  1576  *  e1000_configure_k1_ich8lan - Configure K1 power state
       
  1577  *  @hw: pointer to the HW structure
       
  1578  *  @enable: K1 state to configure
       
  1579  *
       
  1580  *  Configure the K1 power state based on the provided parameter.
       
  1581  *  Assumes semaphore already acquired.
       
  1582  *
       
  1583  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1584  **/
       
  1585 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
       
  1586 {
       
  1587 	s32 ret_val = 0;
       
  1588 	u32 ctrl_reg = 0;
       
  1589 	u32 ctrl_ext = 0;
       
  1590 	u32 reg = 0;
       
  1591 	u16 kmrn_reg = 0;
       
  1592 
       
  1593 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
       
  1594 					      &kmrn_reg);
       
  1595 	if (ret_val)
       
  1596 		return ret_val;
       
  1597 
       
  1598 	if (k1_enable)
       
  1599 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
       
  1600 	else
       
  1601 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
       
  1602 
       
  1603 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
       
  1604 					       kmrn_reg);
       
  1605 	if (ret_val)
       
  1606 		return ret_val;
       
  1607 
       
  1608 	udelay(20);
       
  1609 	ctrl_ext = er32(CTRL_EXT);
       
  1610 	ctrl_reg = er32(CTRL);
       
  1611 
       
  1612 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1613 	reg |= E1000_CTRL_FRCSPD;
       
  1614 	ew32(CTRL, reg);
       
  1615 
       
  1616 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
       
  1617 	e1e_flush();
       
  1618 	udelay(20);
       
  1619 	ew32(CTRL, ctrl_reg);
       
  1620 	ew32(CTRL_EXT, ctrl_ext);
       
  1621 	e1e_flush();
       
  1622 	udelay(20);
       
  1623 
       
  1624 	return 0;
       
  1625 }
       
  1626 
       
  1627 /**
       
  1628  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
       
  1629  *  @hw:       pointer to the HW structure
       
  1630  *  @d0_state: boolean if entering d0 or d3 device state
       
  1631  *
       
  1632  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
       
  1633  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
       
  1634  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
       
  1635  **/
       
  1636 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
       
  1637 {
       
  1638 	s32 ret_val = 0;
       
  1639 	u32 mac_reg;
       
  1640 	u16 oem_reg;
       
  1641 
       
  1642 	if (hw->mac.type < e1000_pchlan)
       
  1643 		return ret_val;
       
  1644 
       
  1645 	ret_val = hw->phy.ops.acquire(hw);
       
  1646 	if (ret_val)
       
  1647 		return ret_val;
       
  1648 
       
  1649 	if (hw->mac.type == e1000_pchlan) {
       
  1650 		mac_reg = er32(EXTCNF_CTRL);
       
  1651 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
       
  1652 			goto release;
       
  1653 	}
       
  1654 
       
  1655 	mac_reg = er32(FEXTNVM);
       
  1656 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
       
  1657 		goto release;
       
  1658 
       
  1659 	mac_reg = er32(PHY_CTRL);
       
  1660 
       
  1661 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
       
  1662 	if (ret_val)
       
  1663 		goto release;
       
  1664 
       
  1665 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
       
  1666 
       
  1667 	if (d0_state) {
       
  1668 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
       
  1669 			oem_reg |= HV_OEM_BITS_GBE_DIS;
       
  1670 
       
  1671 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
       
  1672 			oem_reg |= HV_OEM_BITS_LPLU;
       
  1673 	} else {
       
  1674 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
       
  1675 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
       
  1676 			oem_reg |= HV_OEM_BITS_GBE_DIS;
       
  1677 
       
  1678 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
       
  1679 			       E1000_PHY_CTRL_NOND0A_LPLU))
       
  1680 			oem_reg |= HV_OEM_BITS_LPLU;
       
  1681 	}
       
  1682 
       
  1683 	/* Set Restart auto-neg to activate the bits */
       
  1684 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
       
  1685 	    !hw->phy.ops.check_reset_block(hw))
       
  1686 		oem_reg |= HV_OEM_BITS_RESTART_AN;
       
  1687 
       
  1688 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
       
  1689 
       
  1690 release:
       
  1691 	hw->phy.ops.release(hw);
       
  1692 
       
  1693 	return ret_val;
       
  1694 }
       
  1695 
       
  1696 
       
  1697 /**
       
  1698  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
       
  1699  *  @hw:   pointer to the HW structure
       
  1700  **/
       
  1701 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
       
  1702 {
       
  1703 	s32 ret_val;
       
  1704 	u16 data;
       
  1705 
       
  1706 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
       
  1707 	if (ret_val)
       
  1708 		return ret_val;
       
  1709 
       
  1710 	data |= HV_KMRN_MDIO_SLOW;
       
  1711 
       
  1712 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
       
  1713 
       
  1714 	return ret_val;
       
  1715 }
       
  1716 
       
  1717 /**
       
  1718  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
       
  1719  *  done after every PHY reset.
       
  1720  **/
       
  1721 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
       
  1722 {
       
  1723 	s32 ret_val = 0;
       
  1724 	u16 phy_data;
       
  1725 
       
  1726 	if (hw->mac.type != e1000_pchlan)
       
  1727 		return 0;
       
  1728 
       
  1729 	/* Set MDIO slow mode before any other MDIO access */
       
  1730 	if (hw->phy.type == e1000_phy_82577) {
       
  1731 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
  1732 		if (ret_val)
       
  1733 			return ret_val;
       
  1734 	}
       
  1735 
       
  1736 	if (((hw->phy.type == e1000_phy_82577) &&
       
  1737 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
       
  1738 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
       
  1739 		/* Disable generation of early preamble */
       
  1740 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
       
  1741 		if (ret_val)
       
  1742 			return ret_val;
       
  1743 
       
  1744 		/* Preamble tuning for SSC */
       
  1745 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
       
  1746 		if (ret_val)
       
  1747 			return ret_val;
       
  1748 	}
       
  1749 
       
  1750 	if (hw->phy.type == e1000_phy_82578) {
       
  1751 		/*
       
  1752 		 * Return registers to default by doing a soft reset then
       
  1753 		 * writing 0x3140 to the control register.
       
  1754 		 */
       
  1755 		if (hw->phy.revision < 2) {
       
  1756 			e1000e_phy_sw_reset(hw);
       
  1757 			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
       
  1758 		}
       
  1759 	}
       
  1760 
       
  1761 	/* Select page 0 */
       
  1762 	ret_val = hw->phy.ops.acquire(hw);
       
  1763 	if (ret_val)
       
  1764 		return ret_val;
       
  1765 
       
  1766 	hw->phy.addr = 1;
       
  1767 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
       
  1768 	hw->phy.ops.release(hw);
       
  1769 	if (ret_val)
       
  1770 		return ret_val;
       
  1771 
       
  1772 	/*
       
  1773 	 * Configure the K1 Si workaround during phy reset assuming there is
       
  1774 	 * link so that it disables K1 if link is in 1Gbps.
       
  1775 	 */
       
  1776 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
       
  1777 	if (ret_val)
       
  1778 		return ret_val;
       
  1779 
       
  1780 	/* Workaround for link disconnects on a busy hub in half duplex */
       
  1781 	ret_val = hw->phy.ops.acquire(hw);
       
  1782 	if (ret_val)
       
  1783 		return ret_val;
       
  1784 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
       
  1785 	if (ret_val)
       
  1786 		goto release;
       
  1787 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
       
  1788 release:
       
  1789 	hw->phy.ops.release(hw);
       
  1790 
       
  1791 	return ret_val;
       
  1792 }
       
  1793 
       
  1794 /**
       
  1795  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
       
  1796  *  @hw:   pointer to the HW structure
       
  1797  **/
       
  1798 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
       
  1799 {
       
  1800 	u32 mac_reg;
       
  1801 	u16 i, phy_reg = 0;
       
  1802 	s32 ret_val;
       
  1803 
       
  1804 	ret_val = hw->phy.ops.acquire(hw);
       
  1805 	if (ret_val)
       
  1806 		return;
       
  1807 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  1808 	if (ret_val)
       
  1809 		goto release;
       
  1810 
       
  1811 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
       
  1812 	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
       
  1813 		mac_reg = er32(RAL(i));
       
  1814 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
       
  1815 					   (u16)(mac_reg & 0xFFFF));
       
  1816 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
       
  1817 					   (u16)((mac_reg >> 16) & 0xFFFF));
       
  1818 
       
  1819 		mac_reg = er32(RAH(i));
       
  1820 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
       
  1821 					   (u16)(mac_reg & 0xFFFF));
       
  1822 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
       
  1823 					   (u16)((mac_reg & E1000_RAH_AV)
       
  1824 						 >> 16));
       
  1825 	}
       
  1826 
       
  1827 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  1828 
       
  1829 release:
       
  1830 	hw->phy.ops.release(hw);
       
  1831 }
       
  1832 
       
  1833 /**
       
  1834  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
       
  1835  *  with 82579 PHY
       
  1836  *  @hw: pointer to the HW structure
       
  1837  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
       
  1838  **/
       
  1839 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
       
  1840 {
       
  1841 	s32 ret_val = 0;
       
  1842 	u16 phy_reg, data;
       
  1843 	u32 mac_reg;
       
  1844 	u16 i;
       
  1845 
       
  1846 	if (hw->mac.type < e1000_pch2lan)
       
  1847 		return 0;
       
  1848 
       
  1849 	/* disable Rx path while enabling/disabling workaround */
       
  1850 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
       
  1851 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
       
  1852 	if (ret_val)
       
  1853 		return ret_val;
       
  1854 
       
  1855 	if (enable) {
       
  1856 		/*
       
  1857 		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
       
  1858 		 * SHRAL/H) and initial CRC values to the MAC
       
  1859 		 */
       
  1860 		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
       
  1861 			u8 mac_addr[ETH_ALEN] = {0};
       
  1862 			u32 addr_high, addr_low;
       
  1863 
       
  1864 			addr_high = er32(RAH(i));
       
  1865 			if (!(addr_high & E1000_RAH_AV))
       
  1866 				continue;
       
  1867 			addr_low = er32(RAL(i));
       
  1868 			mac_addr[0] = (addr_low & 0xFF);
       
  1869 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
       
  1870 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
       
  1871 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
       
  1872 			mac_addr[4] = (addr_high & 0xFF);
       
  1873 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
       
  1874 
       
  1875 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
       
  1876 		}
       
  1877 
       
  1878 		/* Write Rx addresses to the PHY */
       
  1879 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
       
  1880 
       
  1881 		/* Enable jumbo frame workaround in the MAC */
       
  1882 		mac_reg = er32(FFLT_DBG);
       
  1883 		mac_reg &= ~(1 << 14);
       
  1884 		mac_reg |= (7 << 15);
       
  1885 		ew32(FFLT_DBG, mac_reg);
       
  1886 
       
  1887 		mac_reg = er32(RCTL);
       
  1888 		mac_reg |= E1000_RCTL_SECRC;
       
  1889 		ew32(RCTL, mac_reg);
       
  1890 
       
  1891 		ret_val = e1000e_read_kmrn_reg(hw,
       
  1892 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  1893 						&data);
       
  1894 		if (ret_val)
       
  1895 			return ret_val;
       
  1896 		ret_val = e1000e_write_kmrn_reg(hw,
       
  1897 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  1898 						data | (1 << 0));
       
  1899 		if (ret_val)
       
  1900 			return ret_val;
       
  1901 		ret_val = e1000e_read_kmrn_reg(hw,
       
  1902 						E1000_KMRNCTRLSTA_HD_CTRL,
       
  1903 						&data);
       
  1904 		if (ret_val)
       
  1905 			return ret_val;
       
  1906 		data &= ~(0xF << 8);
       
  1907 		data |= (0xB << 8);
       
  1908 		ret_val = e1000e_write_kmrn_reg(hw,
       
  1909 						E1000_KMRNCTRLSTA_HD_CTRL,
       
  1910 						data);
       
  1911 		if (ret_val)
       
  1912 			return ret_val;
       
  1913 
       
  1914 		/* Enable jumbo frame workaround in the PHY */
       
  1915 		e1e_rphy(hw, PHY_REG(769, 23), &data);
       
  1916 		data &= ~(0x7F << 5);
       
  1917 		data |= (0x37 << 5);
       
  1918 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
       
  1919 		if (ret_val)
       
  1920 			return ret_val;
       
  1921 		e1e_rphy(hw, PHY_REG(769, 16), &data);
       
  1922 		data &= ~(1 << 13);
       
  1923 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
       
  1924 		if (ret_val)
       
  1925 			return ret_val;
       
  1926 		e1e_rphy(hw, PHY_REG(776, 20), &data);
       
  1927 		data &= ~(0x3FF << 2);
       
  1928 		data |= (0x1A << 2);
       
  1929 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
       
  1930 		if (ret_val)
       
  1931 			return ret_val;
       
  1932 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
       
  1933 		if (ret_val)
       
  1934 			return ret_val;
       
  1935 		e1e_rphy(hw, HV_PM_CTRL, &data);
       
  1936 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
       
  1937 		if (ret_val)
       
  1938 			return ret_val;
       
  1939 	} else {
       
  1940 		/* Write MAC register values back to h/w defaults */
       
  1941 		mac_reg = er32(FFLT_DBG);
       
  1942 		mac_reg &= ~(0xF << 14);
       
  1943 		ew32(FFLT_DBG, mac_reg);
       
  1944 
       
  1945 		mac_reg = er32(RCTL);
       
  1946 		mac_reg &= ~E1000_RCTL_SECRC;
       
  1947 		ew32(RCTL, mac_reg);
       
  1948 
       
  1949 		ret_val = e1000e_read_kmrn_reg(hw,
       
  1950 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  1951 						&data);
       
  1952 		if (ret_val)
       
  1953 			return ret_val;
       
  1954 		ret_val = e1000e_write_kmrn_reg(hw,
       
  1955 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
       
  1956 						data & ~(1 << 0));
       
  1957 		if (ret_val)
       
  1958 			return ret_val;
       
  1959 		ret_val = e1000e_read_kmrn_reg(hw,
       
  1960 						E1000_KMRNCTRLSTA_HD_CTRL,
       
  1961 						&data);
       
  1962 		if (ret_val)
       
  1963 			return ret_val;
       
  1964 		data &= ~(0xF << 8);
       
  1965 		data |= (0xB << 8);
       
  1966 		ret_val = e1000e_write_kmrn_reg(hw,
       
  1967 						E1000_KMRNCTRLSTA_HD_CTRL,
       
  1968 						data);
       
  1969 		if (ret_val)
       
  1970 			return ret_val;
       
  1971 
       
  1972 		/* Write PHY register values back to h/w defaults */
       
  1973 		e1e_rphy(hw, PHY_REG(769, 23), &data);
       
  1974 		data &= ~(0x7F << 5);
       
  1975 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
       
  1976 		if (ret_val)
       
  1977 			return ret_val;
       
  1978 		e1e_rphy(hw, PHY_REG(769, 16), &data);
       
  1979 		data |= (1 << 13);
       
  1980 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
       
  1981 		if (ret_val)
       
  1982 			return ret_val;
       
  1983 		e1e_rphy(hw, PHY_REG(776, 20), &data);
       
  1984 		data &= ~(0x3FF << 2);
       
  1985 		data |= (0x8 << 2);
       
  1986 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
       
  1987 		if (ret_val)
       
  1988 			return ret_val;
       
  1989 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
       
  1990 		if (ret_val)
       
  1991 			return ret_val;
       
  1992 		e1e_rphy(hw, HV_PM_CTRL, &data);
       
  1993 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
       
  1994 		if (ret_val)
       
  1995 			return ret_val;
       
  1996 	}
       
  1997 
       
  1998 	/* re-enable Rx path after enabling/disabling workaround */
       
  1999 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
       
  2000 }
       
  2001 
       
  2002 /**
       
  2003  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
       
  2004  *  done after every PHY reset.
       
  2005  **/
       
  2006 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
       
  2007 {
       
  2008 	s32 ret_val = 0;
       
  2009 
       
  2010 	if (hw->mac.type != e1000_pch2lan)
       
  2011 		return 0;
       
  2012 
       
  2013 	/* Set MDIO slow mode before any other MDIO access */
       
  2014 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
       
  2015 
       
  2016 	ret_val = hw->phy.ops.acquire(hw);
       
  2017 	if (ret_val)
       
  2018 		return ret_val;
       
  2019 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
       
  2020 	if (ret_val)
       
  2021 		goto release;
       
  2022 	/* set MSE higher to enable link to stay up when noise is high */
       
  2023 	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
       
  2024 	if (ret_val)
       
  2025 		goto release;
       
  2026 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
       
  2027 	if (ret_val)
       
  2028 		goto release;
       
  2029 	/* drop link after 5 times MSE threshold was reached */
       
  2030 	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
       
  2031 release:
       
  2032 	hw->phy.ops.release(hw);
       
  2033 
       
  2034 	return ret_val;
       
  2035 }
       
  2036 
       
  2037 /**
       
  2038  *  e1000_k1_gig_workaround_lv - K1 Si workaround
       
  2039  *  @hw:   pointer to the HW structure
       
  2040  *
       
  2041  *  Workaround to set the K1 beacon duration for 82579 parts
       
  2042  **/
       
  2043 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
       
  2044 {
       
  2045 	s32 ret_val = 0;
       
  2046 	u16 status_reg = 0;
       
  2047 	u32 mac_reg;
       
  2048 	u16 phy_reg;
       
  2049 
       
  2050 	if (hw->mac.type != e1000_pch2lan)
       
  2051 		return 0;
       
  2052 
       
  2053 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
       
  2054 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
       
  2055 	if (ret_val)
       
  2056 		return ret_val;
       
  2057 
       
  2058 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
       
  2059 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
       
  2060 		mac_reg = er32(FEXTNVM4);
       
  2061 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
       
  2062 
       
  2063 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
       
  2064 		if (ret_val)
       
  2065 			return ret_val;
       
  2066 
       
  2067 		if (status_reg & HV_M_STATUS_SPEED_1000) {
       
  2068 			u16 pm_phy_reg;
       
  2069 
       
  2070 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
       
  2071 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
       
  2072 			/* LV 1G Packet drop issue wa  */
       
  2073 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
       
  2074 			if (ret_val)
       
  2075 				return ret_val;
       
  2076 			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
       
  2077 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
       
  2078 			if (ret_val)
       
  2079 				return ret_val;
       
  2080 		} else {
       
  2081 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
       
  2082 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
       
  2083 		}
       
  2084 		ew32(FEXTNVM4, mac_reg);
       
  2085 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
       
  2086 	}
       
  2087 
       
  2088 	return ret_val;
       
  2089 }
       
  2090 
       
  2091 /**
       
  2092  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
       
  2093  *  @hw:   pointer to the HW structure
       
  2094  *  @gate: boolean set to true to gate, false to ungate
       
  2095  *
       
  2096  *  Gate/ungate the automatic PHY configuration via hardware; perform
       
  2097  *  the configuration via software instead.
       
  2098  **/
       
  2099 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
       
  2100 {
       
  2101 	u32 extcnf_ctrl;
       
  2102 
       
  2103 	if (hw->mac.type < e1000_pch2lan)
       
  2104 		return;
       
  2105 
       
  2106 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
  2107 
       
  2108 	if (gate)
       
  2109 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
       
  2110 	else
       
  2111 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
       
  2112 
       
  2113 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
  2114 }
       
  2115 
       
  2116 /**
       
  2117  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
       
  2118  *  @hw: pointer to the HW structure
       
  2119  *
       
  2120  *  Check the appropriate indication the MAC has finished configuring the
       
  2121  *  PHY after a software reset.
       
  2122  **/
       
  2123 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
       
  2124 {
       
  2125 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
       
  2126 
       
  2127 	/* Wait for basic configuration completes before proceeding */
       
  2128 	do {
       
  2129 		data = er32(STATUS);
       
  2130 		data &= E1000_STATUS_LAN_INIT_DONE;
       
  2131 		udelay(100);
       
  2132 	} while ((!data) && --loop);
       
  2133 
       
  2134 	/*
       
  2135 	 * If basic configuration is incomplete before the above loop
       
  2136 	 * count reaches 0, loading the configuration from NVM will
       
  2137 	 * leave the PHY in a bad state possibly resulting in no link.
       
  2138 	 */
       
  2139 	if (loop == 0)
       
  2140 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
       
  2141 
       
  2142 	/* Clear the Init Done bit for the next init event */
       
  2143 	data = er32(STATUS);
       
  2144 	data &= ~E1000_STATUS_LAN_INIT_DONE;
       
  2145 	ew32(STATUS, data);
       
  2146 }
       
  2147 
       
  2148 /**
       
  2149  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
       
  2150  *  @hw: pointer to the HW structure
       
  2151  **/
       
  2152 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
       
  2153 {
       
  2154 	s32 ret_val = 0;
       
  2155 	u16 reg;
       
  2156 
       
  2157 	if (hw->phy.ops.check_reset_block(hw))
       
  2158 		return 0;
       
  2159 
       
  2160 	/* Allow time for h/w to get to quiescent state after reset */
       
  2161 	usleep_range(10000, 20000);
       
  2162 
       
  2163 	/* Perform any necessary post-reset workarounds */
       
  2164 	switch (hw->mac.type) {
       
  2165 	case e1000_pchlan:
       
  2166 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
       
  2167 		if (ret_val)
       
  2168 			return ret_val;
       
  2169 		break;
       
  2170 	case e1000_pch2lan:
       
  2171 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
       
  2172 		if (ret_val)
       
  2173 			return ret_val;
       
  2174 		break;
       
  2175 	default:
       
  2176 		break;
       
  2177 	}
       
  2178 
       
  2179 	/* Clear the host wakeup bit after lcd reset */
       
  2180 	if (hw->mac.type >= e1000_pchlan) {
       
  2181 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
       
  2182 		reg &= ~BM_WUC_HOST_WU_BIT;
       
  2183 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
       
  2184 	}
       
  2185 
       
  2186 	/* Configure the LCD with the extended configuration region in NVM */
       
  2187 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
       
  2188 	if (ret_val)
       
  2189 		return ret_val;
       
  2190 
       
  2191 	/* Configure the LCD with the OEM bits in NVM */
       
  2192 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
       
  2193 
       
  2194 	if (hw->mac.type == e1000_pch2lan) {
       
  2195 		/* Ungate automatic PHY configuration on non-managed 82579 */
       
  2196 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
       
  2197 			usleep_range(10000, 20000);
       
  2198 			e1000_gate_hw_phy_config_ich8lan(hw, false);
       
  2199 		}
       
  2200 
       
  2201 		/* Set EEE LPI Update Timer to 200usec */
       
  2202 		ret_val = hw->phy.ops.acquire(hw);
       
  2203 		if (ret_val)
       
  2204 			return ret_val;
       
  2205 		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
       
  2206 					  I82579_LPI_UPDATE_TIMER);
       
  2207 		if (!ret_val)
       
  2208 			ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
       
  2209 		hw->phy.ops.release(hw);
       
  2210 	}
       
  2211 
       
  2212 	return ret_val;
       
  2213 }
       
  2214 
       
  2215 /**
       
  2216  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
       
  2217  *  @hw: pointer to the HW structure
       
  2218  *
       
  2219  *  Resets the PHY
       
  2220  *  This is a function pointer entry point called by drivers
       
  2221  *  or other shared routines.
       
  2222  **/
       
  2223 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
       
  2224 {
       
  2225 	s32 ret_val = 0;
       
  2226 
       
  2227 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
       
  2228 	if ((hw->mac.type == e1000_pch2lan) &&
       
  2229 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
       
  2230 		e1000_gate_hw_phy_config_ich8lan(hw, true);
       
  2231 
       
  2232 	ret_val = e1000e_phy_hw_reset_generic(hw);
       
  2233 	if (ret_val)
       
  2234 		return ret_val;
       
  2235 
       
  2236 	return e1000_post_phy_reset_ich8lan(hw);
       
  2237 }
       
  2238 
       
  2239 /**
       
  2240  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
       
  2241  *  @hw: pointer to the HW structure
       
  2242  *  @active: true to enable LPLU, false to disable
       
  2243  *
       
  2244  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
       
  2245  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
       
  2246  *  the phy speed. This function will manually set the LPLU bit and restart
       
  2247  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
       
  2248  *  since it configures the same bit.
       
  2249  **/
       
  2250 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
       
  2251 {
       
  2252 	s32 ret_val = 0;
       
  2253 	u16 oem_reg;
       
  2254 
       
  2255 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
       
  2256 	if (ret_val)
       
  2257 		return ret_val;
       
  2258 
       
  2259 	if (active)
       
  2260 		oem_reg |= HV_OEM_BITS_LPLU;
       
  2261 	else
       
  2262 		oem_reg &= ~HV_OEM_BITS_LPLU;
       
  2263 
       
  2264 	if (!hw->phy.ops.check_reset_block(hw))
       
  2265 		oem_reg |= HV_OEM_BITS_RESTART_AN;
       
  2266 
       
  2267 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
       
  2268 }
       
  2269 
       
  2270 /**
       
  2271  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
       
  2272  *  @hw: pointer to the HW structure
       
  2273  *  @active: true to enable LPLU, false to disable
       
  2274  *
       
  2275  *  Sets the LPLU D0 state according to the active flag.  When
       
  2276  *  activating LPLU this function also disables smart speed
       
  2277  *  and vice versa.  LPLU will not be activated unless the
       
  2278  *  device autonegotiation advertisement meets standards of
       
  2279  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  2280  *  This is a function pointer entry point only called by
       
  2281  *  PHY setup routines.
       
  2282  **/
       
  2283 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
       
  2284 {
       
  2285 	struct e1000_phy_info *phy = &hw->phy;
       
  2286 	u32 phy_ctrl;
       
  2287 	s32 ret_val = 0;
       
  2288 	u16 data;
       
  2289 
       
  2290 	if (phy->type == e1000_phy_ife)
       
  2291 		return 0;
       
  2292 
       
  2293 	phy_ctrl = er32(PHY_CTRL);
       
  2294 
       
  2295 	if (active) {
       
  2296 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
       
  2297 		ew32(PHY_CTRL, phy_ctrl);
       
  2298 
       
  2299 		if (phy->type != e1000_phy_igp_3)
       
  2300 			return 0;
       
  2301 
       
  2302 		/*
       
  2303 		 * Call gig speed drop workaround on LPLU before accessing
       
  2304 		 * any PHY registers
       
  2305 		 */
       
  2306 		if (hw->mac.type == e1000_ich8lan)
       
  2307 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  2308 
       
  2309 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  2310 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  2311 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  2312 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  2313 		if (ret_val)
       
  2314 			return ret_val;
       
  2315 	} else {
       
  2316 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
       
  2317 		ew32(PHY_CTRL, phy_ctrl);
       
  2318 
       
  2319 		if (phy->type != e1000_phy_igp_3)
       
  2320 			return 0;
       
  2321 
       
  2322 		/*
       
  2323 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  2324 		 * during Dx states where the power conservation is most
       
  2325 		 * important.  During driver activity we should enable
       
  2326 		 * SmartSpeed, so performance is maintained.
       
  2327 		 */
       
  2328 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  2329 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2330 					   &data);
       
  2331 			if (ret_val)
       
  2332 				return ret_val;
       
  2333 
       
  2334 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  2335 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2336 					   data);
       
  2337 			if (ret_val)
       
  2338 				return ret_val;
       
  2339 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  2340 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2341 					   &data);
       
  2342 			if (ret_val)
       
  2343 				return ret_val;
       
  2344 
       
  2345 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  2346 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2347 					   data);
       
  2348 			if (ret_val)
       
  2349 				return ret_val;
       
  2350 		}
       
  2351 	}
       
  2352 
       
  2353 	return 0;
       
  2354 }
       
  2355 
       
  2356 /**
       
  2357  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
       
  2358  *  @hw: pointer to the HW structure
       
  2359  *  @active: true to enable LPLU, false to disable
       
  2360  *
       
  2361  *  Sets the LPLU D3 state according to the active flag.  When
       
  2362  *  activating LPLU this function also disables smart speed
       
  2363  *  and vice versa.  LPLU will not be activated unless the
       
  2364  *  device autonegotiation advertisement meets standards of
       
  2365  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
  2366  *  This is a function pointer entry point only called by
       
  2367  *  PHY setup routines.
       
  2368  **/
       
  2369 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
       
  2370 {
       
  2371 	struct e1000_phy_info *phy = &hw->phy;
       
  2372 	u32 phy_ctrl;
       
  2373 	s32 ret_val = 0;
       
  2374 	u16 data;
       
  2375 
       
  2376 	phy_ctrl = er32(PHY_CTRL);
       
  2377 
       
  2378 	if (!active) {
       
  2379 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
       
  2380 		ew32(PHY_CTRL, phy_ctrl);
       
  2381 
       
  2382 		if (phy->type != e1000_phy_igp_3)
       
  2383 			return 0;
       
  2384 
       
  2385 		/*
       
  2386 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  2387 		 * during Dx states where the power conservation is most
       
  2388 		 * important.  During driver activity we should enable
       
  2389 		 * SmartSpeed, so performance is maintained.
       
  2390 		 */
       
  2391 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  2392 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2393 					   &data);
       
  2394 			if (ret_val)
       
  2395 				return ret_val;
       
  2396 
       
  2397 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  2398 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2399 					   data);
       
  2400 			if (ret_val)
       
  2401 				return ret_val;
       
  2402 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  2403 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2404 					   &data);
       
  2405 			if (ret_val)
       
  2406 				return ret_val;
       
  2407 
       
  2408 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  2409 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  2410 					   data);
       
  2411 			if (ret_val)
       
  2412 				return ret_val;
       
  2413 		}
       
  2414 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
  2415 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
  2416 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
       
  2417 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
       
  2418 		ew32(PHY_CTRL, phy_ctrl);
       
  2419 
       
  2420 		if (phy->type != e1000_phy_igp_3)
       
  2421 			return 0;
       
  2422 
       
  2423 		/*
       
  2424 		 * Call gig speed drop workaround on LPLU before accessing
       
  2425 		 * any PHY registers
       
  2426 		 */
       
  2427 		if (hw->mac.type == e1000_ich8lan)
       
  2428 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  2429 
       
  2430 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  2431 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  2432 		if (ret_val)
       
  2433 			return ret_val;
       
  2434 
       
  2435 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  2436 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  2437 	}
       
  2438 
       
  2439 	return ret_val;
       
  2440 }
       
  2441 
       
  2442 /**
       
  2443  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
       
  2444  *  @hw: pointer to the HW structure
       
  2445  *  @bank:  pointer to the variable that returns the active bank
       
  2446  *
       
  2447  *  Reads signature byte from the NVM using the flash access registers.
       
  2448  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
       
  2449  **/
       
  2450 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
       
  2451 {
       
  2452 	u32 eecd;
       
  2453 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2454 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
       
  2455 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
       
  2456 	u8 sig_byte = 0;
       
  2457 	s32 ret_val;
       
  2458 
       
  2459 	switch (hw->mac.type) {
       
  2460 	case e1000_ich8lan:
       
  2461 	case e1000_ich9lan:
       
  2462 		eecd = er32(EECD);
       
  2463 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
       
  2464 		    E1000_EECD_SEC1VAL_VALID_MASK) {
       
  2465 			if (eecd & E1000_EECD_SEC1VAL)
       
  2466 				*bank = 1;
       
  2467 			else
       
  2468 				*bank = 0;
       
  2469 
       
  2470 			return 0;
       
  2471 		}
       
  2472 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
       
  2473 		/* fall-thru */
       
  2474 	default:
       
  2475 		/* set bank to 0 in case flash read fails */
       
  2476 		*bank = 0;
       
  2477 
       
  2478 		/* Check bank 0 */
       
  2479 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
       
  2480 		                                        &sig_byte);
       
  2481 		if (ret_val)
       
  2482 			return ret_val;
       
  2483 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
       
  2484 		    E1000_ICH_NVM_SIG_VALUE) {
       
  2485 			*bank = 0;
       
  2486 			return 0;
       
  2487 		}
       
  2488 
       
  2489 		/* Check bank 1 */
       
  2490 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
       
  2491 		                                        bank1_offset,
       
  2492 		                                        &sig_byte);
       
  2493 		if (ret_val)
       
  2494 			return ret_val;
       
  2495 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
       
  2496 		    E1000_ICH_NVM_SIG_VALUE) {
       
  2497 			*bank = 1;
       
  2498 			return 0;
       
  2499 		}
       
  2500 
       
  2501 		e_dbg("ERROR: No valid NVM bank present\n");
       
  2502 		return -E1000_ERR_NVM;
       
  2503 	}
       
  2504 }
       
  2505 
       
  2506 /**
       
  2507  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
       
  2508  *  @hw: pointer to the HW structure
       
  2509  *  @offset: The offset (in bytes) of the word(s) to read.
       
  2510  *  @words: Size of data to read in words
       
  2511  *  @data: Pointer to the word(s) to read at offset.
       
  2512  *
       
  2513  *  Reads a word(s) from the NVM using the flash access registers.
       
  2514  **/
       
  2515 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
       
  2516 				  u16 *data)
       
  2517 {
       
  2518 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2519 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2520 	u32 act_offset;
       
  2521 	s32 ret_val = 0;
       
  2522 	u32 bank = 0;
       
  2523 	u16 i, word;
       
  2524 
       
  2525 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
       
  2526 	    (words == 0)) {
       
  2527 		e_dbg("nvm parameter(s) out of bounds\n");
       
  2528 		ret_val = -E1000_ERR_NVM;
       
  2529 		goto out;
       
  2530 	}
       
  2531 
       
  2532 	nvm->ops.acquire(hw);
       
  2533 
       
  2534 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
       
  2535 	if (ret_val) {
       
  2536 		e_dbg("Could not detect valid bank, assuming bank 0\n");
       
  2537 		bank = 0;
       
  2538 	}
       
  2539 
       
  2540 	act_offset = (bank) ? nvm->flash_bank_size : 0;
       
  2541 	act_offset += offset;
       
  2542 
       
  2543 	ret_val = 0;
       
  2544 	for (i = 0; i < words; i++) {
       
  2545 		if (dev_spec->shadow_ram[offset+i].modified) {
       
  2546 			data[i] = dev_spec->shadow_ram[offset+i].value;
       
  2547 		} else {
       
  2548 			ret_val = e1000_read_flash_word_ich8lan(hw,
       
  2549 								act_offset + i,
       
  2550 								&word);
       
  2551 			if (ret_val)
       
  2552 				break;
       
  2553 			data[i] = word;
       
  2554 		}
       
  2555 	}
       
  2556 
       
  2557 	nvm->ops.release(hw);
       
  2558 
       
  2559 out:
       
  2560 	if (ret_val)
       
  2561 		e_dbg("NVM read error: %d\n", ret_val);
       
  2562 
       
  2563 	return ret_val;
       
  2564 }
       
  2565 
       
  2566 /**
       
  2567  *  e1000_flash_cycle_init_ich8lan - Initialize flash
       
  2568  *  @hw: pointer to the HW structure
       
  2569  *
       
  2570  *  This function does initial flash setup so that a new read/write/erase cycle
       
  2571  *  can be started.
       
  2572  **/
       
  2573 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
       
  2574 {
       
  2575 	union ich8_hws_flash_status hsfsts;
       
  2576 	s32 ret_val = -E1000_ERR_NVM;
       
  2577 
       
  2578 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2579 
       
  2580 	/* Check if the flash descriptor is valid */
       
  2581 	if (!hsfsts.hsf_status.fldesvalid) {
       
  2582 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
       
  2583 		return -E1000_ERR_NVM;
       
  2584 	}
       
  2585 
       
  2586 	/* Clear FCERR and DAEL in hw status by writing 1 */
       
  2587 	hsfsts.hsf_status.flcerr = 1;
       
  2588 	hsfsts.hsf_status.dael = 1;
       
  2589 
       
  2590 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2591 
       
  2592 	/*
       
  2593 	 * Either we should have a hardware SPI cycle in progress
       
  2594 	 * bit to check against, in order to start a new cycle or
       
  2595 	 * FDONE bit should be changed in the hardware so that it
       
  2596 	 * is 1 after hardware reset, which can then be used as an
       
  2597 	 * indication whether a cycle is in progress or has been
       
  2598 	 * completed.
       
  2599 	 */
       
  2600 
       
  2601 	if (!hsfsts.hsf_status.flcinprog) {
       
  2602 		/*
       
  2603 		 * There is no cycle running at present,
       
  2604 		 * so we can start a cycle.
       
  2605 		 * Begin by setting Flash Cycle Done.
       
  2606 		 */
       
  2607 		hsfsts.hsf_status.flcdone = 1;
       
  2608 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2609 		ret_val = 0;
       
  2610 	} else {
       
  2611 		s32 i;
       
  2612 
       
  2613 		/*
       
  2614 		 * Otherwise poll for sometime so the current
       
  2615 		 * cycle has a chance to end before giving up.
       
  2616 		 */
       
  2617 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
       
  2618 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2619 			if (!hsfsts.hsf_status.flcinprog) {
       
  2620 				ret_val = 0;
       
  2621 				break;
       
  2622 			}
       
  2623 			udelay(1);
       
  2624 		}
       
  2625 		if (!ret_val) {
       
  2626 			/*
       
  2627 			 * Successful in waiting for previous cycle to timeout,
       
  2628 			 * now set the Flash Cycle Done.
       
  2629 			 */
       
  2630 			hsfsts.hsf_status.flcdone = 1;
       
  2631 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  2632 		} else {
       
  2633 			e_dbg("Flash controller busy, cannot get access\n");
       
  2634 		}
       
  2635 	}
       
  2636 
       
  2637 	return ret_val;
       
  2638 }
       
  2639 
       
  2640 /**
       
  2641  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
       
  2642  *  @hw: pointer to the HW structure
       
  2643  *  @timeout: maximum time to wait for completion
       
  2644  *
       
  2645  *  This function starts a flash cycle and waits for its completion.
       
  2646  **/
       
  2647 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
       
  2648 {
       
  2649 	union ich8_hws_flash_ctrl hsflctl;
       
  2650 	union ich8_hws_flash_status hsfsts;
       
  2651 	u32 i = 0;
       
  2652 
       
  2653 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
       
  2654 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2655 	hsflctl.hsf_ctrl.flcgo = 1;
       
  2656 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2657 
       
  2658 	/* wait till FDONE bit is set to 1 */
       
  2659 	do {
       
  2660 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2661 		if (hsfsts.hsf_status.flcdone)
       
  2662 			break;
       
  2663 		udelay(1);
       
  2664 	} while (i++ < timeout);
       
  2665 
       
  2666 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
       
  2667 		return 0;
       
  2668 
       
  2669 	return -E1000_ERR_NVM;
       
  2670 }
       
  2671 
       
  2672 /**
       
  2673  *  e1000_read_flash_word_ich8lan - Read word from flash
       
  2674  *  @hw: pointer to the HW structure
       
  2675  *  @offset: offset to data location
       
  2676  *  @data: pointer to the location for storing the data
       
  2677  *
       
  2678  *  Reads the flash word at offset into data.  Offset is converted
       
  2679  *  to bytes before read.
       
  2680  **/
       
  2681 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2682 					 u16 *data)
       
  2683 {
       
  2684 	/* Must convert offset into bytes. */
       
  2685 	offset <<= 1;
       
  2686 
       
  2687 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
       
  2688 }
       
  2689 
       
  2690 /**
       
  2691  *  e1000_read_flash_byte_ich8lan - Read byte from flash
       
  2692  *  @hw: pointer to the HW structure
       
  2693  *  @offset: The offset of the byte to read.
       
  2694  *  @data: Pointer to a byte to store the value read.
       
  2695  *
       
  2696  *  Reads a single byte from the NVM using the flash access registers.
       
  2697  **/
       
  2698 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2699 					 u8 *data)
       
  2700 {
       
  2701 	s32 ret_val;
       
  2702 	u16 word = 0;
       
  2703 
       
  2704 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
       
  2705 	if (ret_val)
       
  2706 		return ret_val;
       
  2707 
       
  2708 	*data = (u8)word;
       
  2709 
       
  2710 	return 0;
       
  2711 }
       
  2712 
       
  2713 /**
       
  2714  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
       
  2715  *  @hw: pointer to the HW structure
       
  2716  *  @offset: The offset (in bytes) of the byte or word to read.
       
  2717  *  @size: Size of data to read, 1=byte 2=word
       
  2718  *  @data: Pointer to the word to store the value read.
       
  2719  *
       
  2720  *  Reads a byte or word from the NVM using the flash access registers.
       
  2721  **/
       
  2722 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
  2723 					 u8 size, u16 *data)
       
  2724 {
       
  2725 	union ich8_hws_flash_status hsfsts;
       
  2726 	union ich8_hws_flash_ctrl hsflctl;
       
  2727 	u32 flash_linear_addr;
       
  2728 	u32 flash_data = 0;
       
  2729 	s32 ret_val = -E1000_ERR_NVM;
       
  2730 	u8 count = 0;
       
  2731 
       
  2732 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
       
  2733 		return -E1000_ERR_NVM;
       
  2734 
       
  2735 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
       
  2736 			    hw->nvm.flash_base_addr;
       
  2737 
       
  2738 	do {
       
  2739 		udelay(1);
       
  2740 		/* Steps */
       
  2741 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  2742 		if (ret_val)
       
  2743 			break;
       
  2744 
       
  2745 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  2746 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  2747 		hsflctl.hsf_ctrl.fldbcount = size - 1;
       
  2748 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
       
  2749 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  2750 
       
  2751 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  2752 
       
  2753 		ret_val = e1000_flash_cycle_ich8lan(hw,
       
  2754 						ICH_FLASH_READ_COMMAND_TIMEOUT);
       
  2755 
       
  2756 		/*
       
  2757 		 * Check if FCERR is set to 1, if set to 1, clear it
       
  2758 		 * and try the whole sequence a few more times, else
       
  2759 		 * read in (shift in) the Flash Data0, the order is
       
  2760 		 * least significant byte first msb to lsb
       
  2761 		 */
       
  2762 		if (!ret_val) {
       
  2763 			flash_data = er32flash(ICH_FLASH_FDATA0);
       
  2764 			if (size == 1)
       
  2765 				*data = (u8)(flash_data & 0x000000FF);
       
  2766 			else if (size == 2)
       
  2767 				*data = (u16)(flash_data & 0x0000FFFF);
       
  2768 			break;
       
  2769 		} else {
       
  2770 			/*
       
  2771 			 * If we've gotten here, then things are probably
       
  2772 			 * completely hosed, but if the error condition is
       
  2773 			 * detected, it won't hurt to give it another try...
       
  2774 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  2775 			 */
       
  2776 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  2777 			if (hsfsts.hsf_status.flcerr) {
       
  2778 				/* Repeat for some time before giving up. */
       
  2779 				continue;
       
  2780 			} else if (!hsfsts.hsf_status.flcdone) {
       
  2781 				e_dbg("Timeout error - flash cycle did not complete.\n");
       
  2782 				break;
       
  2783 			}
       
  2784 		}
       
  2785 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  2786 
       
  2787 	return ret_val;
       
  2788 }
       
  2789 
       
  2790 /**
       
  2791  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
       
  2792  *  @hw: pointer to the HW structure
       
  2793  *  @offset: The offset (in bytes) of the word(s) to write.
       
  2794  *  @words: Size of data to write in words
       
  2795  *  @data: Pointer to the word(s) to write at offset.
       
  2796  *
       
  2797  *  Writes a byte or word to the NVM using the flash access registers.
       
  2798  **/
       
  2799 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
       
  2800 				   u16 *data)
       
  2801 {
       
  2802 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2803 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2804 	u16 i;
       
  2805 
       
  2806 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
       
  2807 	    (words == 0)) {
       
  2808 		e_dbg("nvm parameter(s) out of bounds\n");
       
  2809 		return -E1000_ERR_NVM;
       
  2810 	}
       
  2811 
       
  2812 	nvm->ops.acquire(hw);
       
  2813 
       
  2814 	for (i = 0; i < words; i++) {
       
  2815 		dev_spec->shadow_ram[offset+i].modified = true;
       
  2816 		dev_spec->shadow_ram[offset+i].value = data[i];
       
  2817 	}
       
  2818 
       
  2819 	nvm->ops.release(hw);
       
  2820 
       
  2821 	return 0;
       
  2822 }
       
  2823 
       
  2824 /**
       
  2825  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
       
  2826  *  @hw: pointer to the HW structure
       
  2827  *
       
  2828  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
       
  2829  *  which writes the checksum to the shadow ram.  The changes in the shadow
       
  2830  *  ram are then committed to the EEPROM by processing each bank at a time
       
  2831  *  checking for the modified bit and writing only the pending changes.
       
  2832  *  After a successful commit, the shadow ram is cleared and is ready for
       
  2833  *  future writes.
       
  2834  **/
       
  2835 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
       
  2836 {
       
  2837 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  2838 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  2839 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
       
  2840 	s32 ret_val;
       
  2841 	u16 data;
       
  2842 
       
  2843 	ret_val = e1000e_update_nvm_checksum_generic(hw);
       
  2844 	if (ret_val)
       
  2845 		goto out;
       
  2846 
       
  2847 	if (nvm->type != e1000_nvm_flash_sw)
       
  2848 		goto out;
       
  2849 
       
  2850 	nvm->ops.acquire(hw);
       
  2851 
       
  2852 	/*
       
  2853 	 * We're writing to the opposite bank so if we're on bank 1,
       
  2854 	 * write to bank 0 etc.  We also need to erase the segment that
       
  2855 	 * is going to be written
       
  2856 	 */
       
  2857 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
       
  2858 	if (ret_val) {
       
  2859 		e_dbg("Could not detect valid bank, assuming bank 0\n");
       
  2860 		bank = 0;
       
  2861 	}
       
  2862 
       
  2863 	if (bank == 0) {
       
  2864 		new_bank_offset = nvm->flash_bank_size;
       
  2865 		old_bank_offset = 0;
       
  2866 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
       
  2867 		if (ret_val)
       
  2868 			goto release;
       
  2869 	} else {
       
  2870 		old_bank_offset = nvm->flash_bank_size;
       
  2871 		new_bank_offset = 0;
       
  2872 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
       
  2873 		if (ret_val)
       
  2874 			goto release;
       
  2875 	}
       
  2876 
       
  2877 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
       
  2878 		/*
       
  2879 		 * Determine whether to write the value stored
       
  2880 		 * in the other NVM bank or a modified value stored
       
  2881 		 * in the shadow RAM
       
  2882 		 */
       
  2883 		if (dev_spec->shadow_ram[i].modified) {
       
  2884 			data = dev_spec->shadow_ram[i].value;
       
  2885 		} else {
       
  2886 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
       
  2887 			                                        old_bank_offset,
       
  2888 			                                        &data);
       
  2889 			if (ret_val)
       
  2890 				break;
       
  2891 		}
       
  2892 
       
  2893 		/*
       
  2894 		 * If the word is 0x13, then make sure the signature bits
       
  2895 		 * (15:14) are 11b until the commit has completed.
       
  2896 		 * This will allow us to write 10b which indicates the
       
  2897 		 * signature is valid.  We want to do this after the write
       
  2898 		 * has completed so that we don't mark the segment valid
       
  2899 		 * while the write is still in progress
       
  2900 		 */
       
  2901 		if (i == E1000_ICH_NVM_SIG_WORD)
       
  2902 			data |= E1000_ICH_NVM_SIG_MASK;
       
  2903 
       
  2904 		/* Convert offset to bytes. */
       
  2905 		act_offset = (i + new_bank_offset) << 1;
       
  2906 
       
  2907 		udelay(100);
       
  2908 		/* Write the bytes to the new bank. */
       
  2909 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  2910 							       act_offset,
       
  2911 							       (u8)data);
       
  2912 		if (ret_val)
       
  2913 			break;
       
  2914 
       
  2915 		udelay(100);
       
  2916 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  2917 							  act_offset + 1,
       
  2918 							  (u8)(data >> 8));
       
  2919 		if (ret_val)
       
  2920 			break;
       
  2921 	}
       
  2922 
       
  2923 	/*
       
  2924 	 * Don't bother writing the segment valid bits if sector
       
  2925 	 * programming failed.
       
  2926 	 */
       
  2927 	if (ret_val) {
       
  2928 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
       
  2929 		e_dbg("Flash commit failed.\n");
       
  2930 		goto release;
       
  2931 	}
       
  2932 
       
  2933 	/*
       
  2934 	 * Finally validate the new segment by setting bit 15:14
       
  2935 	 * to 10b in word 0x13 , this can be done without an
       
  2936 	 * erase as well since these bits are 11 to start with
       
  2937 	 * and we need to change bit 14 to 0b
       
  2938 	 */
       
  2939 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
       
  2940 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
       
  2941 	if (ret_val)
       
  2942 		goto release;
       
  2943 
       
  2944 	data &= 0xBFFF;
       
  2945 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
       
  2946 						       act_offset * 2 + 1,
       
  2947 						       (u8)(data >> 8));
       
  2948 	if (ret_val)
       
  2949 		goto release;
       
  2950 
       
  2951 	/*
       
  2952 	 * And invalidate the previously valid segment by setting
       
  2953 	 * its signature word (0x13) high_byte to 0b. This can be
       
  2954 	 * done without an erase because flash erase sets all bits
       
  2955 	 * to 1's. We can write 1's to 0's without an erase
       
  2956 	 */
       
  2957 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
       
  2958 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
       
  2959 	if (ret_val)
       
  2960 		goto release;
       
  2961 
       
  2962 	/* Great!  Everything worked, we can now clear the cached entries. */
       
  2963 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
       
  2964 		dev_spec->shadow_ram[i].modified = false;
       
  2965 		dev_spec->shadow_ram[i].value = 0xFFFF;
       
  2966 	}
       
  2967 
       
  2968 release:
       
  2969 	nvm->ops.release(hw);
       
  2970 
       
  2971 	/*
       
  2972 	 * Reload the EEPROM, or else modifications will not appear
       
  2973 	 * until after the next adapter reset.
       
  2974 	 */
       
  2975 	if (!ret_val) {
       
  2976 		nvm->ops.reload(hw);
       
  2977 		usleep_range(10000, 20000);
       
  2978 	}
       
  2979 
       
  2980 out:
       
  2981 	if (ret_val)
       
  2982 		e_dbg("NVM update error: %d\n", ret_val);
       
  2983 
       
  2984 	return ret_val;
       
  2985 }
       
  2986 
       
  2987 /**
       
  2988  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
       
  2989  *  @hw: pointer to the HW structure
       
  2990  *
       
  2991  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
       
  2992  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
       
  2993  *  calculated, in which case we need to calculate the checksum and set bit 6.
       
  2994  **/
       
  2995 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
       
  2996 {
       
  2997 	s32 ret_val;
       
  2998 	u16 data;
       
  2999 
       
  3000 	/*
       
  3001 	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
       
  3002 	 * needs to be fixed.  This bit is an indication that the NVM
       
  3003 	 * was prepared by OEM software and did not calculate the
       
  3004 	 * checksum...a likely scenario.
       
  3005 	 */
       
  3006 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
       
  3007 	if (ret_val)
       
  3008 		return ret_val;
       
  3009 
       
  3010 	if (!(data & 0x40)) {
       
  3011 		data |= 0x40;
       
  3012 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
       
  3013 		if (ret_val)
       
  3014 			return ret_val;
       
  3015 		ret_val = e1000e_update_nvm_checksum(hw);
       
  3016 		if (ret_val)
       
  3017 			return ret_val;
       
  3018 	}
       
  3019 
       
  3020 	return e1000e_validate_nvm_checksum_generic(hw);
       
  3021 }
       
  3022 
       
  3023 /**
       
  3024  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
       
  3025  *  @hw: pointer to the HW structure
       
  3026  *
       
  3027  *  To prevent malicious write/erase of the NVM, set it to be read-only
       
  3028  *  so that the hardware ignores all write/erase cycles of the NVM via
       
  3029  *  the flash control registers.  The shadow-ram copy of the NVM will
       
  3030  *  still be updated, however any updates to this copy will not stick
       
  3031  *  across driver reloads.
       
  3032  **/
       
  3033 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
       
  3034 {
       
  3035 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  3036 	union ich8_flash_protected_range pr0;
       
  3037 	union ich8_hws_flash_status hsfsts;
       
  3038 	u32 gfpreg;
       
  3039 
       
  3040 	nvm->ops.acquire(hw);
       
  3041 
       
  3042 	gfpreg = er32flash(ICH_FLASH_GFPREG);
       
  3043 
       
  3044 	/* Write-protect GbE Sector of NVM */
       
  3045 	pr0.regval = er32flash(ICH_FLASH_PR0);
       
  3046 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
       
  3047 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
       
  3048 	pr0.range.wpe = true;
       
  3049 	ew32flash(ICH_FLASH_PR0, pr0.regval);
       
  3050 
       
  3051 	/*
       
  3052 	 * Lock down a subset of GbE Flash Control Registers, e.g.
       
  3053 	 * PR0 to prevent the write-protection from being lifted.
       
  3054 	 * Once FLOCKDN is set, the registers protected by it cannot
       
  3055 	 * be written until FLOCKDN is cleared by a hardware reset.
       
  3056 	 */
       
  3057 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  3058 	hsfsts.hsf_status.flockdn = true;
       
  3059 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
       
  3060 
       
  3061 	nvm->ops.release(hw);
       
  3062 }
       
  3063 
       
  3064 /**
       
  3065  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
       
  3066  *  @hw: pointer to the HW structure
       
  3067  *  @offset: The offset (in bytes) of the byte/word to read.
       
  3068  *  @size: Size of data to read, 1=byte 2=word
       
  3069  *  @data: The byte(s) to write to the NVM.
       
  3070  *
       
  3071  *  Writes one/two bytes to the NVM using the flash access registers.
       
  3072  **/
       
  3073 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
       
  3074 					  u8 size, u16 data)
       
  3075 {
       
  3076 	union ich8_hws_flash_status hsfsts;
       
  3077 	union ich8_hws_flash_ctrl hsflctl;
       
  3078 	u32 flash_linear_addr;
       
  3079 	u32 flash_data = 0;
       
  3080 	s32 ret_val;
       
  3081 	u8 count = 0;
       
  3082 
       
  3083 	if (size < 1 || size > 2 || data > size * 0xff ||
       
  3084 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
       
  3085 		return -E1000_ERR_NVM;
       
  3086 
       
  3087 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
       
  3088 			    hw->nvm.flash_base_addr;
       
  3089 
       
  3090 	do {
       
  3091 		udelay(1);
       
  3092 		/* Steps */
       
  3093 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  3094 		if (ret_val)
       
  3095 			break;
       
  3096 
       
  3097 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  3098 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
       
  3099 		hsflctl.hsf_ctrl.fldbcount = size -1;
       
  3100 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
       
  3101 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  3102 
       
  3103 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  3104 
       
  3105 		if (size == 1)
       
  3106 			flash_data = (u32)data & 0x00FF;
       
  3107 		else
       
  3108 			flash_data = (u32)data;
       
  3109 
       
  3110 		ew32flash(ICH_FLASH_FDATA0, flash_data);
       
  3111 
       
  3112 		/*
       
  3113 		 * check if FCERR is set to 1 , if set to 1, clear it
       
  3114 		 * and try the whole sequence a few more times else done
       
  3115 		 */
       
  3116 		ret_val = e1000_flash_cycle_ich8lan(hw,
       
  3117 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
       
  3118 		if (!ret_val)
       
  3119 			break;
       
  3120 
       
  3121 		/*
       
  3122 		 * If we're here, then things are most likely
       
  3123 		 * completely hosed, but if the error condition
       
  3124 		 * is detected, it won't hurt to give it another
       
  3125 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
       
  3126 		 */
       
  3127 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  3128 		if (hsfsts.hsf_status.flcerr)
       
  3129 			/* Repeat for some time before giving up. */
       
  3130 			continue;
       
  3131 		if (!hsfsts.hsf_status.flcdone) {
       
  3132 			e_dbg("Timeout error - flash cycle did not complete.\n");
       
  3133 			break;
       
  3134 		}
       
  3135 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  3136 
       
  3137 	return ret_val;
       
  3138 }
       
  3139 
       
  3140 /**
       
  3141  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
       
  3142  *  @hw: pointer to the HW structure
       
  3143  *  @offset: The index of the byte to read.
       
  3144  *  @data: The byte to write to the NVM.
       
  3145  *
       
  3146  *  Writes a single byte to the NVM using the flash access registers.
       
  3147  **/
       
  3148 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
       
  3149 					  u8 data)
       
  3150 {
       
  3151 	u16 word = (u16)data;
       
  3152 
       
  3153 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
       
  3154 }
       
  3155 
       
  3156 /**
       
  3157  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
       
  3158  *  @hw: pointer to the HW structure
       
  3159  *  @offset: The offset of the byte to write.
       
  3160  *  @byte: The byte to write to the NVM.
       
  3161  *
       
  3162  *  Writes a single byte to the NVM using the flash access registers.
       
  3163  *  Goes through a retry algorithm before giving up.
       
  3164  **/
       
  3165 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
       
  3166 						u32 offset, u8 byte)
       
  3167 {
       
  3168 	s32 ret_val;
       
  3169 	u16 program_retries;
       
  3170 
       
  3171 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
       
  3172 	if (!ret_val)
       
  3173 		return ret_val;
       
  3174 
       
  3175 	for (program_retries = 0; program_retries < 100; program_retries++) {
       
  3176 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
       
  3177 		udelay(100);
       
  3178 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
       
  3179 		if (!ret_val)
       
  3180 			break;
       
  3181 	}
       
  3182 	if (program_retries == 100)
       
  3183 		return -E1000_ERR_NVM;
       
  3184 
       
  3185 	return 0;
       
  3186 }
       
  3187 
       
  3188 /**
       
  3189  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
       
  3190  *  @hw: pointer to the HW structure
       
  3191  *  @bank: 0 for first bank, 1 for second bank, etc.
       
  3192  *
       
  3193  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
       
  3194  *  bank N is 4096 * N + flash_reg_addr.
       
  3195  **/
       
  3196 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
       
  3197 {
       
  3198 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  3199 	union ich8_hws_flash_status hsfsts;
       
  3200 	union ich8_hws_flash_ctrl hsflctl;
       
  3201 	u32 flash_linear_addr;
       
  3202 	/* bank size is in 16bit words - adjust to bytes */
       
  3203 	u32 flash_bank_size = nvm->flash_bank_size * 2;
       
  3204 	s32 ret_val;
       
  3205 	s32 count = 0;
       
  3206 	s32 j, iteration, sector_size;
       
  3207 
       
  3208 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  3209 
       
  3210 	/*
       
  3211 	 * Determine HW Sector size: Read BERASE bits of hw flash status
       
  3212 	 * register
       
  3213 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
       
  3214 	 *     consecutive sectors.  The start index for the nth Hw sector
       
  3215 	 *     can be calculated as = bank * 4096 + n * 256
       
  3216 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
       
  3217 	 *     The start index for the nth Hw sector can be calculated
       
  3218 	 *     as = bank * 4096
       
  3219 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
       
  3220 	 *     (ich9 only, otherwise error condition)
       
  3221 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
       
  3222 	 */
       
  3223 	switch (hsfsts.hsf_status.berasesz) {
       
  3224 	case 0:
       
  3225 		/* Hw sector size 256 */
       
  3226 		sector_size = ICH_FLASH_SEG_SIZE_256;
       
  3227 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
       
  3228 		break;
       
  3229 	case 1:
       
  3230 		sector_size = ICH_FLASH_SEG_SIZE_4K;
       
  3231 		iteration = 1;
       
  3232 		break;
       
  3233 	case 2:
       
  3234 		sector_size = ICH_FLASH_SEG_SIZE_8K;
       
  3235 		iteration = 1;
       
  3236 		break;
       
  3237 	case 3:
       
  3238 		sector_size = ICH_FLASH_SEG_SIZE_64K;
       
  3239 		iteration = 1;
       
  3240 		break;
       
  3241 	default:
       
  3242 		return -E1000_ERR_NVM;
       
  3243 	}
       
  3244 
       
  3245 	/* Start with the base address, then add the sector offset. */
       
  3246 	flash_linear_addr = hw->nvm.flash_base_addr;
       
  3247 	flash_linear_addr += (bank) ? flash_bank_size : 0;
       
  3248 
       
  3249 	for (j = 0; j < iteration ; j++) {
       
  3250 		do {
       
  3251 			/* Steps */
       
  3252 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
       
  3253 			if (ret_val)
       
  3254 				return ret_val;
       
  3255 
       
  3256 			/*
       
  3257 			 * Write a value 11 (block Erase) in Flash
       
  3258 			 * Cycle field in hw flash control
       
  3259 			 */
       
  3260 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
       
  3261 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
       
  3262 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
       
  3263 
       
  3264 			/*
       
  3265 			 * Write the last 24 bits of an index within the
       
  3266 			 * block into Flash Linear address field in Flash
       
  3267 			 * Address.
       
  3268 			 */
       
  3269 			flash_linear_addr += (j * sector_size);
       
  3270 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
       
  3271 
       
  3272 			ret_val = e1000_flash_cycle_ich8lan(hw,
       
  3273 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
       
  3274 			if (!ret_val)
       
  3275 				break;
       
  3276 
       
  3277 			/*
       
  3278 			 * Check if FCERR is set to 1.  If 1,
       
  3279 			 * clear it and try the whole sequence
       
  3280 			 * a few more times else Done
       
  3281 			 */
       
  3282 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
       
  3283 			if (hsfsts.hsf_status.flcerr)
       
  3284 				/* repeat for some time before giving up */
       
  3285 				continue;
       
  3286 			else if (!hsfsts.hsf_status.flcdone)
       
  3287 				return ret_val;
       
  3288 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
       
  3289 	}
       
  3290 
       
  3291 	return 0;
       
  3292 }
       
  3293 
       
  3294 /**
       
  3295  *  e1000_valid_led_default_ich8lan - Set the default LED settings
       
  3296  *  @hw: pointer to the HW structure
       
  3297  *  @data: Pointer to the LED settings
       
  3298  *
       
  3299  *  Reads the LED default settings from the NVM to data.  If the NVM LED
       
  3300  *  settings is all 0's or F's, set the LED default to a valid LED default
       
  3301  *  setting.
       
  3302  **/
       
  3303 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
       
  3304 {
       
  3305 	s32 ret_val;
       
  3306 
       
  3307 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  3308 	if (ret_val) {
       
  3309 		e_dbg("NVM Read Error\n");
       
  3310 		return ret_val;
       
  3311 	}
       
  3312 
       
  3313 	if (*data == ID_LED_RESERVED_0000 ||
       
  3314 	    *data == ID_LED_RESERVED_FFFF)
       
  3315 		*data = ID_LED_DEFAULT_ICH8LAN;
       
  3316 
       
  3317 	return 0;
       
  3318 }
       
  3319 
       
  3320 /**
       
  3321  *  e1000_id_led_init_pchlan - store LED configurations
       
  3322  *  @hw: pointer to the HW structure
       
  3323  *
       
  3324  *  PCH does not control LEDs via the LEDCTL register, rather it uses
       
  3325  *  the PHY LED configuration register.
       
  3326  *
       
  3327  *  PCH also does not have an "always on" or "always off" mode which
       
  3328  *  complicates the ID feature.  Instead of using the "on" mode to indicate
       
  3329  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
       
  3330  *  use "link_up" mode.  The LEDs will still ID on request if there is no
       
  3331  *  link based on logic in e1000_led_[on|off]_pchlan().
       
  3332  **/
       
  3333 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
       
  3334 {
       
  3335 	struct e1000_mac_info *mac = &hw->mac;
       
  3336 	s32 ret_val;
       
  3337 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
       
  3338 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
       
  3339 	u16 data, i, temp, shift;
       
  3340 
       
  3341 	/* Get default ID LED modes */
       
  3342 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
       
  3343 	if (ret_val)
       
  3344 		return ret_val;
       
  3345 
       
  3346 	mac->ledctl_default = er32(LEDCTL);
       
  3347 	mac->ledctl_mode1 = mac->ledctl_default;
       
  3348 	mac->ledctl_mode2 = mac->ledctl_default;
       
  3349 
       
  3350 	for (i = 0; i < 4; i++) {
       
  3351 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
       
  3352 		shift = (i * 5);
       
  3353 		switch (temp) {
       
  3354 		case ID_LED_ON1_DEF2:
       
  3355 		case ID_LED_ON1_ON2:
       
  3356 		case ID_LED_ON1_OFF2:
       
  3357 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
       
  3358 			mac->ledctl_mode1 |= (ledctl_on << shift);
       
  3359 			break;
       
  3360 		case ID_LED_OFF1_DEF2:
       
  3361 		case ID_LED_OFF1_ON2:
       
  3362 		case ID_LED_OFF1_OFF2:
       
  3363 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
       
  3364 			mac->ledctl_mode1 |= (ledctl_off << shift);
       
  3365 			break;
       
  3366 		default:
       
  3367 			/* Do nothing */
       
  3368 			break;
       
  3369 		}
       
  3370 		switch (temp) {
       
  3371 		case ID_LED_DEF1_ON2:
       
  3372 		case ID_LED_ON1_ON2:
       
  3373 		case ID_LED_OFF1_ON2:
       
  3374 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
       
  3375 			mac->ledctl_mode2 |= (ledctl_on << shift);
       
  3376 			break;
       
  3377 		case ID_LED_DEF1_OFF2:
       
  3378 		case ID_LED_ON1_OFF2:
       
  3379 		case ID_LED_OFF1_OFF2:
       
  3380 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
       
  3381 			mac->ledctl_mode2 |= (ledctl_off << shift);
       
  3382 			break;
       
  3383 		default:
       
  3384 			/* Do nothing */
       
  3385 			break;
       
  3386 		}
       
  3387 	}
       
  3388 
       
  3389 	return 0;
       
  3390 }
       
  3391 
       
  3392 /**
       
  3393  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
       
  3394  *  @hw: pointer to the HW structure
       
  3395  *
       
  3396  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
       
  3397  *  register, so the the bus width is hard coded.
       
  3398  **/
       
  3399 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
       
  3400 {
       
  3401 	struct e1000_bus_info *bus = &hw->bus;
       
  3402 	s32 ret_val;
       
  3403 
       
  3404 	ret_val = e1000e_get_bus_info_pcie(hw);
       
  3405 
       
  3406 	/*
       
  3407 	 * ICH devices are "PCI Express"-ish.  They have
       
  3408 	 * a configuration space, but do not contain
       
  3409 	 * PCI Express Capability registers, so bus width
       
  3410 	 * must be hardcoded.
       
  3411 	 */
       
  3412 	if (bus->width == e1000_bus_width_unknown)
       
  3413 		bus->width = e1000_bus_width_pcie_x1;
       
  3414 
       
  3415 	return ret_val;
       
  3416 }
       
  3417 
       
  3418 /**
       
  3419  *  e1000_reset_hw_ich8lan - Reset the hardware
       
  3420  *  @hw: pointer to the HW structure
       
  3421  *
       
  3422  *  Does a full reset of the hardware which includes a reset of the PHY and
       
  3423  *  MAC.
       
  3424  **/
       
  3425 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
       
  3426 {
       
  3427 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  3428 	u16 kum_cfg;
       
  3429 	u32 ctrl, reg;
       
  3430 	s32 ret_val;
       
  3431 
       
  3432 	/*
       
  3433 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
       
  3434 	 * on the last TLP read/write transaction when MAC is reset.
       
  3435 	 */
       
  3436 	ret_val = e1000e_disable_pcie_master(hw);
       
  3437 	if (ret_val)
       
  3438 		e_dbg("PCI-E Master disable polling has failed.\n");
       
  3439 
       
  3440 	e_dbg("Masking off all interrupts\n");
       
  3441 	ew32(IMC, 0xffffffff);
       
  3442 
       
  3443 	/*
       
  3444 	 * Disable the Transmit and Receive units.  Then delay to allow
       
  3445 	 * any pending transactions to complete before we hit the MAC
       
  3446 	 * with the global reset.
       
  3447 	 */
       
  3448 	ew32(RCTL, 0);
       
  3449 	ew32(TCTL, E1000_TCTL_PSP);
       
  3450 	e1e_flush();
       
  3451 
       
  3452 	usleep_range(10000, 20000);
       
  3453 
       
  3454 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
       
  3455 	if (hw->mac.type == e1000_ich8lan) {
       
  3456 		/* Set Tx and Rx buffer allocation to 8k apiece. */
       
  3457 		ew32(PBA, E1000_PBA_8K);
       
  3458 		/* Set Packet Buffer Size to 16k. */
       
  3459 		ew32(PBS, E1000_PBS_16K);
       
  3460 	}
       
  3461 
       
  3462 	if (hw->mac.type == e1000_pchlan) {
       
  3463 		/* Save the NVM K1 bit setting */
       
  3464 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
       
  3465 		if (ret_val)
       
  3466 			return ret_val;
       
  3467 
       
  3468 		if (kum_cfg & E1000_NVM_K1_ENABLE)
       
  3469 			dev_spec->nvm_k1_enabled = true;
       
  3470 		else
       
  3471 			dev_spec->nvm_k1_enabled = false;
       
  3472 	}
       
  3473 
       
  3474 	ctrl = er32(CTRL);
       
  3475 
       
  3476 	if (!hw->phy.ops.check_reset_block(hw)) {
       
  3477 		/*
       
  3478 		 * Full-chip reset requires MAC and PHY reset at the same
       
  3479 		 * time to make sure the interface between MAC and the
       
  3480 		 * external PHY is reset.
       
  3481 		 */
       
  3482 		ctrl |= E1000_CTRL_PHY_RST;
       
  3483 
       
  3484 		/*
       
  3485 		 * Gate automatic PHY configuration by hardware on
       
  3486 		 * non-managed 82579
       
  3487 		 */
       
  3488 		if ((hw->mac.type == e1000_pch2lan) &&
       
  3489 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
       
  3490 			e1000_gate_hw_phy_config_ich8lan(hw, true);
       
  3491 	}
       
  3492 	ret_val = e1000_acquire_swflag_ich8lan(hw);
       
  3493 	e_dbg("Issuing a global reset to ich8lan\n");
       
  3494 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
       
  3495 	/* cannot issue a flush here because it hangs the hardware */
       
  3496 	msleep(20);
       
  3497 
       
  3498 	/* Set Phy Config Counter to 50msec */
       
  3499 	if (hw->mac.type == e1000_pch2lan) {
       
  3500 		reg = er32(FEXTNVM3);
       
  3501 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
       
  3502 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
       
  3503 		ew32(FEXTNVM3, reg);
       
  3504 	}
       
  3505 
       
  3506 	if (!ret_val)
       
  3507 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
       
  3508 
       
  3509 	if (ctrl & E1000_CTRL_PHY_RST) {
       
  3510 		ret_val = hw->phy.ops.get_cfg_done(hw);
       
  3511 		if (ret_val)
       
  3512 			return ret_val;
       
  3513 
       
  3514 		ret_val = e1000_post_phy_reset_ich8lan(hw);
       
  3515 		if (ret_val)
       
  3516 			return ret_val;
       
  3517 	}
       
  3518 
       
  3519 	/*
       
  3520 	 * For PCH, this write will make sure that any noise
       
  3521 	 * will be detected as a CRC error and be dropped rather than show up
       
  3522 	 * as a bad packet to the DMA engine.
       
  3523 	 */
       
  3524 	if (hw->mac.type == e1000_pchlan)
       
  3525 		ew32(CRC_OFFSET, 0x65656565);
       
  3526 
       
  3527 	ew32(IMC, 0xffffffff);
       
  3528 	er32(ICR);
       
  3529 
       
  3530 	reg = er32(KABGTXD);
       
  3531 	reg |= E1000_KABGTXD_BGSQLBIAS;
       
  3532 	ew32(KABGTXD, reg);
       
  3533 
       
  3534 	return 0;
       
  3535 }
       
  3536 
       
  3537 /**
       
  3538  *  e1000_init_hw_ich8lan - Initialize the hardware
       
  3539  *  @hw: pointer to the HW structure
       
  3540  *
       
  3541  *  Prepares the hardware for transmit and receive by doing the following:
       
  3542  *   - initialize hardware bits
       
  3543  *   - initialize LED identification
       
  3544  *   - setup receive address registers
       
  3545  *   - setup flow control
       
  3546  *   - setup transmit descriptors
       
  3547  *   - clear statistics
       
  3548  **/
       
  3549 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
       
  3550 {
       
  3551 	struct e1000_mac_info *mac = &hw->mac;
       
  3552 	u32 ctrl_ext, txdctl, snoop;
       
  3553 	s32 ret_val;
       
  3554 	u16 i;
       
  3555 
       
  3556 	e1000_initialize_hw_bits_ich8lan(hw);
       
  3557 
       
  3558 	/* Initialize identification LED */
       
  3559 	ret_val = mac->ops.id_led_init(hw);
       
  3560 	if (ret_val)
       
  3561 		e_dbg("Error initializing identification LED\n");
       
  3562 		/* This is not fatal and we should not stop init due to this */
       
  3563 
       
  3564 	/* Setup the receive address. */
       
  3565 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
       
  3566 
       
  3567 	/* Zero out the Multicast HASH table */
       
  3568 	e_dbg("Zeroing the MTA\n");
       
  3569 	for (i = 0; i < mac->mta_reg_count; i++)
       
  3570 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
       
  3571 
       
  3572 	/*
       
  3573 	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
       
  3574 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
       
  3575 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
       
  3576 	 */
       
  3577 	if (hw->phy.type == e1000_phy_82578) {
       
  3578 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
       
  3579 		i &= ~BM_WUC_HOST_WU_BIT;
       
  3580 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
       
  3581 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
       
  3582 		if (ret_val)
       
  3583 			return ret_val;
       
  3584 	}
       
  3585 
       
  3586 	/* Setup link and flow control */
       
  3587 	ret_val = mac->ops.setup_link(hw);
       
  3588 
       
  3589 	/* Set the transmit descriptor write-back policy for both queues */
       
  3590 	txdctl = er32(TXDCTL(0));
       
  3591 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
       
  3592 		 E1000_TXDCTL_FULL_TX_DESC_WB;
       
  3593 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
       
  3594 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
       
  3595 	ew32(TXDCTL(0), txdctl);
       
  3596 	txdctl = er32(TXDCTL(1));
       
  3597 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
       
  3598 		 E1000_TXDCTL_FULL_TX_DESC_WB;
       
  3599 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
       
  3600 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
       
  3601 	ew32(TXDCTL(1), txdctl);
       
  3602 
       
  3603 	/*
       
  3604 	 * ICH8 has opposite polarity of no_snoop bits.
       
  3605 	 * By default, we should use snoop behavior.
       
  3606 	 */
       
  3607 	if (mac->type == e1000_ich8lan)
       
  3608 		snoop = PCIE_ICH8_SNOOP_ALL;
       
  3609 	else
       
  3610 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
       
  3611 	e1000e_set_pcie_no_snoop(hw, snoop);
       
  3612 
       
  3613 	ctrl_ext = er32(CTRL_EXT);
       
  3614 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
       
  3615 	ew32(CTRL_EXT, ctrl_ext);
       
  3616 
       
  3617 	/*
       
  3618 	 * Clear all of the statistics registers (clear on read).  It is
       
  3619 	 * important that we do this after we have tried to establish link
       
  3620 	 * because the symbol error count will increment wildly if there
       
  3621 	 * is no link.
       
  3622 	 */
       
  3623 	e1000_clear_hw_cntrs_ich8lan(hw);
       
  3624 
       
  3625 	return ret_val;
       
  3626 }
       
  3627 /**
       
  3628  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
       
  3629  *  @hw: pointer to the HW structure
       
  3630  *
       
  3631  *  Sets/Clears required hardware bits necessary for correctly setting up the
       
  3632  *  hardware for transmit and receive.
       
  3633  **/
       
  3634 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
       
  3635 {
       
  3636 	u32 reg;
       
  3637 
       
  3638 	/* Extended Device Control */
       
  3639 	reg = er32(CTRL_EXT);
       
  3640 	reg |= (1 << 22);
       
  3641 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
       
  3642 	if (hw->mac.type >= e1000_pchlan)
       
  3643 		reg |= E1000_CTRL_EXT_PHYPDEN;
       
  3644 	ew32(CTRL_EXT, reg);
       
  3645 
       
  3646 	/* Transmit Descriptor Control 0 */
       
  3647 	reg = er32(TXDCTL(0));
       
  3648 	reg |= (1 << 22);
       
  3649 	ew32(TXDCTL(0), reg);
       
  3650 
       
  3651 	/* Transmit Descriptor Control 1 */
       
  3652 	reg = er32(TXDCTL(1));
       
  3653 	reg |= (1 << 22);
       
  3654 	ew32(TXDCTL(1), reg);
       
  3655 
       
  3656 	/* Transmit Arbitration Control 0 */
       
  3657 	reg = er32(TARC(0));
       
  3658 	if (hw->mac.type == e1000_ich8lan)
       
  3659 		reg |= (1 << 28) | (1 << 29);
       
  3660 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
       
  3661 	ew32(TARC(0), reg);
       
  3662 
       
  3663 	/* Transmit Arbitration Control 1 */
       
  3664 	reg = er32(TARC(1));
       
  3665 	if (er32(TCTL) & E1000_TCTL_MULR)
       
  3666 		reg &= ~(1 << 28);
       
  3667 	else
       
  3668 		reg |= (1 << 28);
       
  3669 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
       
  3670 	ew32(TARC(1), reg);
       
  3671 
       
  3672 	/* Device Status */
       
  3673 	if (hw->mac.type == e1000_ich8lan) {
       
  3674 		reg = er32(STATUS);
       
  3675 		reg &= ~(1 << 31);
       
  3676 		ew32(STATUS, reg);
       
  3677 	}
       
  3678 
       
  3679 	/*
       
  3680 	 * work-around descriptor data corruption issue during nfs v2 udp
       
  3681 	 * traffic, just disable the nfs filtering capability
       
  3682 	 */
       
  3683 	reg = er32(RFCTL);
       
  3684 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
       
  3685 
       
  3686 	/*
       
  3687 	 * Disable IPv6 extension header parsing because some malformed
       
  3688 	 * IPv6 headers can hang the Rx.
       
  3689 	 */
       
  3690 	if (hw->mac.type == e1000_ich8lan)
       
  3691 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
       
  3692 	ew32(RFCTL, reg);
       
  3693 }
       
  3694 
       
  3695 /**
       
  3696  *  e1000_setup_link_ich8lan - Setup flow control and link settings
       
  3697  *  @hw: pointer to the HW structure
       
  3698  *
       
  3699  *  Determines which flow control settings to use, then configures flow
       
  3700  *  control.  Calls the appropriate media-specific link configuration
       
  3701  *  function.  Assuming the adapter has a valid link partner, a valid link
       
  3702  *  should be established.  Assumes the hardware has previously been reset
       
  3703  *  and the transmitter and receiver are not enabled.
       
  3704  **/
       
  3705 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
       
  3706 {
       
  3707 	s32 ret_val;
       
  3708 
       
  3709 	if (hw->phy.ops.check_reset_block(hw))
       
  3710 		return 0;
       
  3711 
       
  3712 	/*
       
  3713 	 * ICH parts do not have a word in the NVM to determine
       
  3714 	 * the default flow control setting, so we explicitly
       
  3715 	 * set it to full.
       
  3716 	 */
       
  3717 	if (hw->fc.requested_mode == e1000_fc_default) {
       
  3718 		/* Workaround h/w hang when Tx flow control enabled */
       
  3719 		if (hw->mac.type == e1000_pchlan)
       
  3720 			hw->fc.requested_mode = e1000_fc_rx_pause;
       
  3721 		else
       
  3722 			hw->fc.requested_mode = e1000_fc_full;
       
  3723 	}
       
  3724 
       
  3725 	/*
       
  3726 	 * Save off the requested flow control mode for use later.  Depending
       
  3727 	 * on the link partner's capabilities, we may or may not use this mode.
       
  3728 	 */
       
  3729 	hw->fc.current_mode = hw->fc.requested_mode;
       
  3730 
       
  3731 	e_dbg("After fix-ups FlowControl is now = %x\n",
       
  3732 		hw->fc.current_mode);
       
  3733 
       
  3734 	/* Continue to configure the copper link. */
       
  3735 	ret_val = hw->mac.ops.setup_physical_interface(hw);
       
  3736 	if (ret_val)
       
  3737 		return ret_val;
       
  3738 
       
  3739 	ew32(FCTTV, hw->fc.pause_time);
       
  3740 	if ((hw->phy.type == e1000_phy_82578) ||
       
  3741 	    (hw->phy.type == e1000_phy_82579) ||
       
  3742 	    (hw->phy.type == e1000_phy_i217) ||
       
  3743 	    (hw->phy.type == e1000_phy_82577)) {
       
  3744 		ew32(FCRTV_PCH, hw->fc.refresh_time);
       
  3745 
       
  3746 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
       
  3747 				   hw->fc.pause_time);
       
  3748 		if (ret_val)
       
  3749 			return ret_val;
       
  3750 	}
       
  3751 
       
  3752 	return e1000e_set_fc_watermarks(hw);
       
  3753 }
       
  3754 
       
  3755 /**
       
  3756  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
       
  3757  *  @hw: pointer to the HW structure
       
  3758  *
       
  3759  *  Configures the kumeran interface to the PHY to wait the appropriate time
       
  3760  *  when polling the PHY, then call the generic setup_copper_link to finish
       
  3761  *  configuring the copper link.
       
  3762  **/
       
  3763 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
       
  3764 {
       
  3765 	u32 ctrl;
       
  3766 	s32 ret_val;
       
  3767 	u16 reg_data;
       
  3768 
       
  3769 	ctrl = er32(CTRL);
       
  3770 	ctrl |= E1000_CTRL_SLU;
       
  3771 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  3772 	ew32(CTRL, ctrl);
       
  3773 
       
  3774 	/*
       
  3775 	 * Set the mac to wait the maximum time between each iteration
       
  3776 	 * and increase the max iterations when polling the phy;
       
  3777 	 * this fixes erroneous timeouts at 10Mbps.
       
  3778 	 */
       
  3779 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
       
  3780 	if (ret_val)
       
  3781 		return ret_val;
       
  3782 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
  3783 	                               &reg_data);
       
  3784 	if (ret_val)
       
  3785 		return ret_val;
       
  3786 	reg_data |= 0x3F;
       
  3787 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
       
  3788 	                                reg_data);
       
  3789 	if (ret_val)
       
  3790 		return ret_val;
       
  3791 
       
  3792 	switch (hw->phy.type) {
       
  3793 	case e1000_phy_igp_3:
       
  3794 		ret_val = e1000e_copper_link_setup_igp(hw);
       
  3795 		if (ret_val)
       
  3796 			return ret_val;
       
  3797 		break;
       
  3798 	case e1000_phy_bm:
       
  3799 	case e1000_phy_82578:
       
  3800 		ret_val = e1000e_copper_link_setup_m88(hw);
       
  3801 		if (ret_val)
       
  3802 			return ret_val;
       
  3803 		break;
       
  3804 	case e1000_phy_82577:
       
  3805 	case e1000_phy_82579:
       
  3806 	case e1000_phy_i217:
       
  3807 		ret_val = e1000_copper_link_setup_82577(hw);
       
  3808 		if (ret_val)
       
  3809 			return ret_val;
       
  3810 		break;
       
  3811 	case e1000_phy_ife:
       
  3812 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
       
  3813 		if (ret_val)
       
  3814 			return ret_val;
       
  3815 
       
  3816 		reg_data &= ~IFE_PMC_AUTO_MDIX;
       
  3817 
       
  3818 		switch (hw->phy.mdix) {
       
  3819 		case 1:
       
  3820 			reg_data &= ~IFE_PMC_FORCE_MDIX;
       
  3821 			break;
       
  3822 		case 2:
       
  3823 			reg_data |= IFE_PMC_FORCE_MDIX;
       
  3824 			break;
       
  3825 		case 0:
       
  3826 		default:
       
  3827 			reg_data |= IFE_PMC_AUTO_MDIX;
       
  3828 			break;
       
  3829 		}
       
  3830 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
       
  3831 		if (ret_val)
       
  3832 			return ret_val;
       
  3833 		break;
       
  3834 	default:
       
  3835 		break;
       
  3836 	}
       
  3837 
       
  3838 	return e1000e_setup_copper_link(hw);
       
  3839 }
       
  3840 
       
  3841 /**
       
  3842  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
       
  3843  *  @hw: pointer to the HW structure
       
  3844  *  @speed: pointer to store current link speed
       
  3845  *  @duplex: pointer to store the current link duplex
       
  3846  *
       
  3847  *  Calls the generic get_speed_and_duplex to retrieve the current link
       
  3848  *  information and then calls the Kumeran lock loss workaround for links at
       
  3849  *  gigabit speeds.
       
  3850  **/
       
  3851 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
       
  3852 					  u16 *duplex)
       
  3853 {
       
  3854 	s32 ret_val;
       
  3855 
       
  3856 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
       
  3857 	if (ret_val)
       
  3858 		return ret_val;
       
  3859 
       
  3860 	if ((hw->mac.type == e1000_ich8lan) &&
       
  3861 	    (hw->phy.type == e1000_phy_igp_3) &&
       
  3862 	    (*speed == SPEED_1000)) {
       
  3863 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
       
  3864 	}
       
  3865 
       
  3866 	return ret_val;
       
  3867 }
       
  3868 
       
  3869 /**
       
  3870  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
       
  3871  *  @hw: pointer to the HW structure
       
  3872  *
       
  3873  *  Work-around for 82566 Kumeran PCS lock loss:
       
  3874  *  On link status change (i.e. PCI reset, speed change) and link is up and
       
  3875  *  speed is gigabit-
       
  3876  *    0) if workaround is optionally disabled do nothing
       
  3877  *    1) wait 1ms for Kumeran link to come up
       
  3878  *    2) check Kumeran Diagnostic register PCS lock loss bit
       
  3879  *    3) if not set the link is locked (all is good), otherwise...
       
  3880  *    4) reset the PHY
       
  3881  *    5) repeat up to 10 times
       
  3882  *  Note: this is only called for IGP3 copper when speed is 1gb.
       
  3883  **/
       
  3884 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
       
  3885 {
       
  3886 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  3887 	u32 phy_ctrl;
       
  3888 	s32 ret_val;
       
  3889 	u16 i, data;
       
  3890 	bool link;
       
  3891 
       
  3892 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
       
  3893 		return 0;
       
  3894 
       
  3895 	/*
       
  3896 	 * Make sure link is up before proceeding.  If not just return.
       
  3897 	 * Attempting this while link is negotiating fouled up link
       
  3898 	 * stability
       
  3899 	 */
       
  3900 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  3901 	if (!link)
       
  3902 		return 0;
       
  3903 
       
  3904 	for (i = 0; i < 10; i++) {
       
  3905 		/* read once to clear */
       
  3906 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
       
  3907 		if (ret_val)
       
  3908 			return ret_val;
       
  3909 		/* and again to get new status */
       
  3910 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
       
  3911 		if (ret_val)
       
  3912 			return ret_val;
       
  3913 
       
  3914 		/* check for PCS lock */
       
  3915 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
       
  3916 			return 0;
       
  3917 
       
  3918 		/* Issue PHY reset */
       
  3919 		e1000_phy_hw_reset(hw);
       
  3920 		mdelay(5);
       
  3921 	}
       
  3922 	/* Disable GigE link negotiation */
       
  3923 	phy_ctrl = er32(PHY_CTRL);
       
  3924 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
       
  3925 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  3926 	ew32(PHY_CTRL, phy_ctrl);
       
  3927 
       
  3928 	/*
       
  3929 	 * Call gig speed drop workaround on Gig disable before accessing
       
  3930 	 * any PHY registers
       
  3931 	 */
       
  3932 	e1000e_gig_downshift_workaround_ich8lan(hw);
       
  3933 
       
  3934 	/* unable to acquire PCS lock */
       
  3935 	return -E1000_ERR_PHY;
       
  3936 }
       
  3937 
       
  3938 /**
       
  3939  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
       
  3940  *  @hw: pointer to the HW structure
       
  3941  *  @state: boolean value used to set the current Kumeran workaround state
       
  3942  *
       
  3943  *  If ICH8, set the current Kumeran workaround state (enabled - true
       
  3944  *  /disabled - false).
       
  3945  **/
       
  3946 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
       
  3947 						 bool state)
       
  3948 {
       
  3949 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  3950 
       
  3951 	if (hw->mac.type != e1000_ich8lan) {
       
  3952 		e_dbg("Workaround applies to ICH8 only.\n");
       
  3953 		return;
       
  3954 	}
       
  3955 
       
  3956 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
       
  3957 }
       
  3958 
       
  3959 /**
       
  3960  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
       
  3961  *  @hw: pointer to the HW structure
       
  3962  *
       
  3963  *  Workaround for 82566 power-down on D3 entry:
       
  3964  *    1) disable gigabit link
       
  3965  *    2) write VR power-down enable
       
  3966  *    3) read it back
       
  3967  *  Continue if successful, else issue LCD reset and repeat
       
  3968  **/
       
  3969 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
       
  3970 {
       
  3971 	u32 reg;
       
  3972 	u16 data;
       
  3973 	u8  retry = 0;
       
  3974 
       
  3975 	if (hw->phy.type != e1000_phy_igp_3)
       
  3976 		return;
       
  3977 
       
  3978 	/* Try the workaround twice (if needed) */
       
  3979 	do {
       
  3980 		/* Disable link */
       
  3981 		reg = er32(PHY_CTRL);
       
  3982 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
       
  3983 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
       
  3984 		ew32(PHY_CTRL, reg);
       
  3985 
       
  3986 		/*
       
  3987 		 * Call gig speed drop workaround on Gig disable before
       
  3988 		 * accessing any PHY registers
       
  3989 		 */
       
  3990 		if (hw->mac.type == e1000_ich8lan)
       
  3991 			e1000e_gig_downshift_workaround_ich8lan(hw);
       
  3992 
       
  3993 		/* Write VR power-down enable */
       
  3994 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
       
  3995 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
       
  3996 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
       
  3997 
       
  3998 		/* Read it back and test */
       
  3999 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
       
  4000 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
       
  4001 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
       
  4002 			break;
       
  4003 
       
  4004 		/* Issue PHY reset and repeat at most one more time */
       
  4005 		reg = er32(CTRL);
       
  4006 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
       
  4007 		retry++;
       
  4008 	} while (retry);
       
  4009 }
       
  4010 
       
  4011 /**
       
  4012  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
       
  4013  *  @hw: pointer to the HW structure
       
  4014  *
       
  4015  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
       
  4016  *  LPLU, Gig disable, MDIC PHY reset):
       
  4017  *    1) Set Kumeran Near-end loopback
       
  4018  *    2) Clear Kumeran Near-end loopback
       
  4019  *  Should only be called for ICH8[m] devices with any 1G Phy.
       
  4020  **/
       
  4021 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
       
  4022 {
       
  4023 	s32 ret_val;
       
  4024 	u16 reg_data;
       
  4025 
       
  4026 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
       
  4027 		return;
       
  4028 
       
  4029 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  4030 				      &reg_data);
       
  4031 	if (ret_val)
       
  4032 		return;
       
  4033 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
       
  4034 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  4035 				       reg_data);
       
  4036 	if (ret_val)
       
  4037 		return;
       
  4038 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
       
  4039 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
       
  4040 				       reg_data);
       
  4041 }
       
  4042 
       
  4043 /**
       
  4044  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
       
  4045  *  @hw: pointer to the HW structure
       
  4046  *
       
  4047  *  During S0 to Sx transition, it is possible the link remains at gig
       
  4048  *  instead of negotiating to a lower speed.  Before going to Sx, set
       
  4049  *  'Gig Disable' to force link speed negotiation to a lower speed based on
       
  4050  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
       
  4051  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
       
  4052  *  needs to be written.
       
  4053  *  Parts that support (and are linked to a partner which support) EEE in
       
  4054  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
       
  4055  *  than 10Mbps w/o EEE.
       
  4056  **/
       
  4057 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
       
  4058 {
       
  4059 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
       
  4060 	u32 phy_ctrl;
       
  4061 	s32 ret_val;
       
  4062 
       
  4063 	phy_ctrl = er32(PHY_CTRL);
       
  4064 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
       
  4065 	if (hw->phy.type == e1000_phy_i217) {
       
  4066 		u16 phy_reg;
       
  4067 
       
  4068 		ret_val = hw->phy.ops.acquire(hw);
       
  4069 		if (ret_val)
       
  4070 			goto out;
       
  4071 
       
  4072 		if (!dev_spec->eee_disable) {
       
  4073 			u16 eee_advert;
       
  4074 
       
  4075 			ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
       
  4076 						  I217_EEE_ADVERTISEMENT);
       
  4077 			if (ret_val)
       
  4078 				goto release;
       
  4079 			e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
       
  4080 
       
  4081 			/*
       
  4082 			 * Disable LPLU if both link partners support 100BaseT
       
  4083 			 * EEE and 100Full is advertised on both ends of the
       
  4084 			 * link.
       
  4085 			 */
       
  4086 			if ((eee_advert & I217_EEE_100_SUPPORTED) &&
       
  4087 			    (dev_spec->eee_lp_ability &
       
  4088 			     I217_EEE_100_SUPPORTED) &&
       
  4089 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
       
  4090 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
       
  4091 					      E1000_PHY_CTRL_NOND0A_LPLU);
       
  4092 		}
       
  4093 
       
  4094 		/*
       
  4095 		 * For i217 Intel Rapid Start Technology support,
       
  4096 		 * when the system is going into Sx and no manageability engine
       
  4097 		 * is present, the driver must configure proxy to reset only on
       
  4098 		 * power good.  LPI (Low Power Idle) state must also reset only
       
  4099 		 * on power good, as well as the MTA (Multicast table array).
       
  4100 		 * The SMBus release must also be disabled on LCD reset.
       
  4101 		 */
       
  4102 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
       
  4103 
       
  4104 			/* Enable proxy to reset only on power good. */
       
  4105 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
       
  4106 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
       
  4107 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
       
  4108 
       
  4109 			/*
       
  4110 			 * Set bit enable LPI (EEE) to reset only on
       
  4111 			 * power good.
       
  4112 			 */
       
  4113 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
       
  4114 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
       
  4115 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
       
  4116 
       
  4117 			/* Disable the SMB release on LCD reset. */
       
  4118 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
       
  4119 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
       
  4120 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
       
  4121 		}
       
  4122 
       
  4123 		/*
       
  4124 		 * Enable MTA to reset for Intel Rapid Start Technology
       
  4125 		 * Support
       
  4126 		 */
       
  4127 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
       
  4128 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
       
  4129 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
       
  4130 
       
  4131 release:
       
  4132 		hw->phy.ops.release(hw);
       
  4133 	}
       
  4134 out:
       
  4135 	ew32(PHY_CTRL, phy_ctrl);
       
  4136 
       
  4137 	if (hw->mac.type == e1000_ich8lan)
       
  4138 		e1000e_gig_downshift_workaround_ich8lan(hw);
       
  4139 
       
  4140 	if (hw->mac.type >= e1000_pchlan) {
       
  4141 		e1000_oem_bits_config_ich8lan(hw, false);
       
  4142 
       
  4143 		/* Reset PHY to activate OEM bits on 82577/8 */
       
  4144 		if (hw->mac.type == e1000_pchlan)
       
  4145 			e1000e_phy_hw_reset_generic(hw);
       
  4146 
       
  4147 		ret_val = hw->phy.ops.acquire(hw);
       
  4148 		if (ret_val)
       
  4149 			return;
       
  4150 		e1000_write_smbus_addr(hw);
       
  4151 		hw->phy.ops.release(hw);
       
  4152 	}
       
  4153 }
       
  4154 
       
  4155 /**
       
  4156  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
       
  4157  *  @hw: pointer to the HW structure
       
  4158  *
       
  4159  *  During Sx to S0 transitions on non-managed devices or managed devices
       
  4160  *  on which PHY resets are not blocked, if the PHY registers cannot be
       
  4161  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
       
  4162  *  the PHY.
       
  4163  *  On i217, setup Intel Rapid Start Technology.
       
  4164  **/
       
  4165 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
       
  4166 {
       
  4167 	s32 ret_val;
       
  4168 
       
  4169 	if (hw->mac.type < e1000_pch2lan)
       
  4170 		return;
       
  4171 
       
  4172 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
       
  4173 	if (ret_val) {
       
  4174 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
       
  4175 		return;
       
  4176 	}
       
  4177 
       
  4178 	/*
       
  4179 	 * For i217 Intel Rapid Start Technology support when the system
       
  4180 	 * is transitioning from Sx and no manageability engine is present
       
  4181 	 * configure SMBus to restore on reset, disable proxy, and enable
       
  4182 	 * the reset on MTA (Multicast table array).
       
  4183 	 */
       
  4184 	if (hw->phy.type == e1000_phy_i217) {
       
  4185 		u16 phy_reg;
       
  4186 
       
  4187 		ret_val = hw->phy.ops.acquire(hw);
       
  4188 		if (ret_val) {
       
  4189 			e_dbg("Failed to setup iRST\n");
       
  4190 			return;
       
  4191 		}
       
  4192 
       
  4193 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
       
  4194 			/*
       
  4195 			 * Restore clear on SMB if no manageability engine
       
  4196 			 * is present
       
  4197 			 */
       
  4198 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
       
  4199 			if (ret_val)
       
  4200 				goto release;
       
  4201 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
       
  4202 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
       
  4203 
       
  4204 			/* Disable Proxy */
       
  4205 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
       
  4206 		}
       
  4207 		/* Enable reset on MTA */
       
  4208 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
       
  4209 		if (ret_val)
       
  4210 			goto release;
       
  4211 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
       
  4212 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
       
  4213 release:
       
  4214 		if (ret_val)
       
  4215 			e_dbg("Error %d in resume workarounds\n", ret_val);
       
  4216 		hw->phy.ops.release(hw);
       
  4217 	}
       
  4218 }
       
  4219 
       
  4220 /**
       
  4221  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
       
  4222  *  @hw: pointer to the HW structure
       
  4223  *
       
  4224  *  Return the LED back to the default configuration.
       
  4225  **/
       
  4226 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
       
  4227 {
       
  4228 	if (hw->phy.type == e1000_phy_ife)
       
  4229 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  4230 
       
  4231 	ew32(LEDCTL, hw->mac.ledctl_default);
       
  4232 	return 0;
       
  4233 }
       
  4234 
       
  4235 /**
       
  4236  *  e1000_led_on_ich8lan - Turn LEDs on
       
  4237  *  @hw: pointer to the HW structure
       
  4238  *
       
  4239  *  Turn on the LEDs.
       
  4240  **/
       
  4241 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
       
  4242 {
       
  4243 	if (hw->phy.type == e1000_phy_ife)
       
  4244 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  4245 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
       
  4246 
       
  4247 	ew32(LEDCTL, hw->mac.ledctl_mode2);
       
  4248 	return 0;
       
  4249 }
       
  4250 
       
  4251 /**
       
  4252  *  e1000_led_off_ich8lan - Turn LEDs off
       
  4253  *  @hw: pointer to the HW structure
       
  4254  *
       
  4255  *  Turn off the LEDs.
       
  4256  **/
       
  4257 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
       
  4258 {
       
  4259 	if (hw->phy.type == e1000_phy_ife)
       
  4260 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
       
  4261 				(IFE_PSCL_PROBE_MODE |
       
  4262 				 IFE_PSCL_PROBE_LEDS_OFF));
       
  4263 
       
  4264 	ew32(LEDCTL, hw->mac.ledctl_mode1);
       
  4265 	return 0;
       
  4266 }
       
  4267 
       
  4268 /**
       
  4269  *  e1000_setup_led_pchlan - Configures SW controllable LED
       
  4270  *  @hw: pointer to the HW structure
       
  4271  *
       
  4272  *  This prepares the SW controllable LED for use.
       
  4273  **/
       
  4274 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
       
  4275 {
       
  4276 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
       
  4277 }
       
  4278 
       
  4279 /**
       
  4280  *  e1000_cleanup_led_pchlan - Restore the default LED operation
       
  4281  *  @hw: pointer to the HW structure
       
  4282  *
       
  4283  *  Return the LED back to the default configuration.
       
  4284  **/
       
  4285 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
       
  4286 {
       
  4287 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
       
  4288 }
       
  4289 
       
  4290 /**
       
  4291  *  e1000_led_on_pchlan - Turn LEDs on
       
  4292  *  @hw: pointer to the HW structure
       
  4293  *
       
  4294  *  Turn on the LEDs.
       
  4295  **/
       
  4296 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
       
  4297 {
       
  4298 	u16 data = (u16)hw->mac.ledctl_mode2;
       
  4299 	u32 i, led;
       
  4300 
       
  4301 	/*
       
  4302 	 * If no link, then turn LED on by setting the invert bit
       
  4303 	 * for each LED that's mode is "link_up" in ledctl_mode2.
       
  4304 	 */
       
  4305 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
       
  4306 		for (i = 0; i < 3; i++) {
       
  4307 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
       
  4308 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
       
  4309 			    E1000_LEDCTL_MODE_LINK_UP)
       
  4310 				continue;
       
  4311 			if (led & E1000_PHY_LED0_IVRT)
       
  4312 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
       
  4313 			else
       
  4314 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
       
  4315 		}
       
  4316 	}
       
  4317 
       
  4318 	return e1e_wphy(hw, HV_LED_CONFIG, data);
       
  4319 }
       
  4320 
       
  4321 /**
       
  4322  *  e1000_led_off_pchlan - Turn LEDs off
       
  4323  *  @hw: pointer to the HW structure
       
  4324  *
       
  4325  *  Turn off the LEDs.
       
  4326  **/
       
  4327 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
       
  4328 {
       
  4329 	u16 data = (u16)hw->mac.ledctl_mode1;
       
  4330 	u32 i, led;
       
  4331 
       
  4332 	/*
       
  4333 	 * If no link, then turn LED off by clearing the invert bit
       
  4334 	 * for each LED that's mode is "link_up" in ledctl_mode1.
       
  4335 	 */
       
  4336 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
       
  4337 		for (i = 0; i < 3; i++) {
       
  4338 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
       
  4339 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
       
  4340 			    E1000_LEDCTL_MODE_LINK_UP)
       
  4341 				continue;
       
  4342 			if (led & E1000_PHY_LED0_IVRT)
       
  4343 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
       
  4344 			else
       
  4345 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
       
  4346 		}
       
  4347 	}
       
  4348 
       
  4349 	return e1e_wphy(hw, HV_LED_CONFIG, data);
       
  4350 }
       
  4351 
       
  4352 /**
       
  4353  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
       
  4354  *  @hw: pointer to the HW structure
       
  4355  *
       
  4356  *  Read appropriate register for the config done bit for completion status
       
  4357  *  and configure the PHY through s/w for EEPROM-less parts.
       
  4358  *
       
  4359  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
       
  4360  *  config done bit, so only an error is logged and continues.  If we were
       
  4361  *  to return with error, EEPROM-less silicon would not be able to be reset
       
  4362  *  or change link.
       
  4363  **/
       
  4364 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
       
  4365 {
       
  4366 	s32 ret_val = 0;
       
  4367 	u32 bank = 0;
       
  4368 	u32 status;
       
  4369 
       
  4370 	e1000e_get_cfg_done(hw);
       
  4371 
       
  4372 	/* Wait for indication from h/w that it has completed basic config */
       
  4373 	if (hw->mac.type >= e1000_ich10lan) {
       
  4374 		e1000_lan_init_done_ich8lan(hw);
       
  4375 	} else {
       
  4376 		ret_val = e1000e_get_auto_rd_done(hw);
       
  4377 		if (ret_val) {
       
  4378 			/*
       
  4379 			 * When auto config read does not complete, do not
       
  4380 			 * return with an error. This can happen in situations
       
  4381 			 * where there is no eeprom and prevents getting link.
       
  4382 			 */
       
  4383 			e_dbg("Auto Read Done did not complete\n");
       
  4384 			ret_val = 0;
       
  4385 		}
       
  4386 	}
       
  4387 
       
  4388 	/* Clear PHY Reset Asserted bit */
       
  4389 	status = er32(STATUS);
       
  4390 	if (status & E1000_STATUS_PHYRA)
       
  4391 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
       
  4392 	else
       
  4393 		e_dbg("PHY Reset Asserted not set - needs delay\n");
       
  4394 
       
  4395 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
       
  4396 	if (hw->mac.type <= e1000_ich9lan) {
       
  4397 		if (!(er32(EECD) & E1000_EECD_PRES) &&
       
  4398 		    (hw->phy.type == e1000_phy_igp_3)) {
       
  4399 			e1000e_phy_init_script_igp3(hw);
       
  4400 		}
       
  4401 	} else {
       
  4402 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
       
  4403 			/* Maybe we should do a basic PHY config */
       
  4404 			e_dbg("EEPROM not present\n");
       
  4405 			ret_val = -E1000_ERR_CONFIG;
       
  4406 		}
       
  4407 	}
       
  4408 
       
  4409 	return ret_val;
       
  4410 }
       
  4411 
       
  4412 /**
       
  4413  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
       
  4414  * @hw: pointer to the HW structure
       
  4415  *
       
  4416  * In the case of a PHY power down to save power, or to turn off link during a
       
  4417  * driver unload, or wake on lan is not enabled, remove the link.
       
  4418  **/
       
  4419 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
       
  4420 {
       
  4421 	/* If the management interface is not enabled, then power down */
       
  4422 	if (!(hw->mac.ops.check_mng_mode(hw) ||
       
  4423 	      hw->phy.ops.check_reset_block(hw)))
       
  4424 		e1000_power_down_phy_copper(hw);
       
  4425 }
       
  4426 
       
  4427 /**
       
  4428  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
       
  4429  *  @hw: pointer to the HW structure
       
  4430  *
       
  4431  *  Clears hardware counters specific to the silicon family and calls
       
  4432  *  clear_hw_cntrs_generic to clear all general purpose counters.
       
  4433  **/
       
  4434 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
       
  4435 {
       
  4436 	u16 phy_data;
       
  4437 	s32 ret_val;
       
  4438 
       
  4439 	e1000e_clear_hw_cntrs_base(hw);
       
  4440 
       
  4441 	er32(ALGNERRC);
       
  4442 	er32(RXERRC);
       
  4443 	er32(TNCRS);
       
  4444 	er32(CEXTERR);
       
  4445 	er32(TSCTC);
       
  4446 	er32(TSCTFC);
       
  4447 
       
  4448 	er32(MGTPRC);
       
  4449 	er32(MGTPDC);
       
  4450 	er32(MGTPTC);
       
  4451 
       
  4452 	er32(IAC);
       
  4453 	er32(ICRXOC);
       
  4454 
       
  4455 	/* Clear PHY statistics registers */
       
  4456 	if ((hw->phy.type == e1000_phy_82578) ||
       
  4457 	    (hw->phy.type == e1000_phy_82579) ||
       
  4458 	    (hw->phy.type == e1000_phy_i217) ||
       
  4459 	    (hw->phy.type == e1000_phy_82577)) {
       
  4460 		ret_val = hw->phy.ops.acquire(hw);
       
  4461 		if (ret_val)
       
  4462 			return;
       
  4463 		ret_val = hw->phy.ops.set_page(hw,
       
  4464 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
       
  4465 		if (ret_val)
       
  4466 			goto release;
       
  4467 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
       
  4468 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
       
  4469 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
       
  4470 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
       
  4471 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
       
  4472 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
       
  4473 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
       
  4474 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
       
  4475 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
       
  4476 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
       
  4477 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
       
  4478 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
       
  4479 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
       
  4480 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
       
  4481 release:
       
  4482 		hw->phy.ops.release(hw);
       
  4483 	}
       
  4484 }
       
  4485 
       
  4486 static const struct e1000_mac_operations ich8_mac_ops = {
       
  4487 	/* check_mng_mode dependent on mac type */
       
  4488 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
       
  4489 	/* cleanup_led dependent on mac type */
       
  4490 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
       
  4491 	.get_bus_info		= e1000_get_bus_info_ich8lan,
       
  4492 	.set_lan_id		= e1000_set_lan_id_single_port,
       
  4493 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
       
  4494 	/* led_on dependent on mac type */
       
  4495 	/* led_off dependent on mac type */
       
  4496 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
       
  4497 	.reset_hw		= e1000_reset_hw_ich8lan,
       
  4498 	.init_hw		= e1000_init_hw_ich8lan,
       
  4499 	.setup_link		= e1000_setup_link_ich8lan,
       
  4500 	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
       
  4501 	/* id_led_init dependent on mac type */
       
  4502 	.config_collision_dist	= e1000e_config_collision_dist_generic,
       
  4503 	.rar_set		= e1000e_rar_set_generic,
       
  4504 };
       
  4505 
       
  4506 static const struct e1000_phy_operations ich8_phy_ops = {
       
  4507 	.acquire		= e1000_acquire_swflag_ich8lan,
       
  4508 	.check_reset_block	= e1000_check_reset_block_ich8lan,
       
  4509 	.commit			= NULL,
       
  4510 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
       
  4511 	.get_cable_length	= e1000e_get_cable_length_igp_2,
       
  4512 	.read_reg		= e1000e_read_phy_reg_igp,
       
  4513 	.release		= e1000_release_swflag_ich8lan,
       
  4514 	.reset			= e1000_phy_hw_reset_ich8lan,
       
  4515 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
       
  4516 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
       
  4517 	.write_reg		= e1000e_write_phy_reg_igp,
       
  4518 };
       
  4519 
       
  4520 static const struct e1000_nvm_operations ich8_nvm_ops = {
       
  4521 	.acquire		= e1000_acquire_nvm_ich8lan,
       
  4522 	.read		 	= e1000_read_nvm_ich8lan,
       
  4523 	.release		= e1000_release_nvm_ich8lan,
       
  4524 	.reload			= e1000e_reload_nvm_generic,
       
  4525 	.update			= e1000_update_nvm_checksum_ich8lan,
       
  4526 	.valid_led_default	= e1000_valid_led_default_ich8lan,
       
  4527 	.validate		= e1000_validate_nvm_checksum_ich8lan,
       
  4528 	.write			= e1000_write_nvm_ich8lan,
       
  4529 };
       
  4530 
       
  4531 const struct e1000_info e1000_ich8_info = {
       
  4532 	.mac			= e1000_ich8lan,
       
  4533 	.flags			= FLAG_HAS_WOL
       
  4534 				  | FLAG_IS_ICH
       
  4535 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4536 				  | FLAG_HAS_AMT
       
  4537 				  | FLAG_HAS_FLASH
       
  4538 				  | FLAG_APME_IN_WUC,
       
  4539 	.pba			= 8,
       
  4540 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
       
  4541 	.get_variants		= e1000_get_variants_ich8lan,
       
  4542 	.mac_ops		= &ich8_mac_ops,
       
  4543 	.phy_ops		= &ich8_phy_ops,
       
  4544 	.nvm_ops		= &ich8_nvm_ops,
       
  4545 };
       
  4546 
       
  4547 const struct e1000_info e1000_ich9_info = {
       
  4548 	.mac			= e1000_ich9lan,
       
  4549 	.flags			= FLAG_HAS_JUMBO_FRAMES
       
  4550 				  | FLAG_IS_ICH
       
  4551 				  | FLAG_HAS_WOL
       
  4552 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4553 				  | FLAG_HAS_AMT
       
  4554 				  | FLAG_HAS_FLASH
       
  4555 				  | FLAG_APME_IN_WUC,
       
  4556 	.pba			= 18,
       
  4557 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  4558 	.get_variants		= e1000_get_variants_ich8lan,
       
  4559 	.mac_ops		= &ich8_mac_ops,
       
  4560 	.phy_ops		= &ich8_phy_ops,
       
  4561 	.nvm_ops		= &ich8_nvm_ops,
       
  4562 };
       
  4563 
       
  4564 const struct e1000_info e1000_ich10_info = {
       
  4565 	.mac			= e1000_ich10lan,
       
  4566 	.flags			= FLAG_HAS_JUMBO_FRAMES
       
  4567 				  | FLAG_IS_ICH
       
  4568 				  | FLAG_HAS_WOL
       
  4569 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4570 				  | FLAG_HAS_AMT
       
  4571 				  | FLAG_HAS_FLASH
       
  4572 				  | FLAG_APME_IN_WUC,
       
  4573 	.pba			= 18,
       
  4574 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  4575 	.get_variants		= e1000_get_variants_ich8lan,
       
  4576 	.mac_ops		= &ich8_mac_ops,
       
  4577 	.phy_ops		= &ich8_phy_ops,
       
  4578 	.nvm_ops		= &ich8_nvm_ops,
       
  4579 };
       
  4580 
       
  4581 const struct e1000_info e1000_pch_info = {
       
  4582 	.mac			= e1000_pchlan,
       
  4583 	.flags			= FLAG_IS_ICH
       
  4584 				  | FLAG_HAS_WOL
       
  4585 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4586 				  | FLAG_HAS_AMT
       
  4587 				  | FLAG_HAS_FLASH
       
  4588 				  | FLAG_HAS_JUMBO_FRAMES
       
  4589 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
       
  4590 				  | FLAG_APME_IN_WUC,
       
  4591 	.flags2			= FLAG2_HAS_PHY_STATS,
       
  4592 	.pba			= 26,
       
  4593 	.max_hw_frame_size	= 4096,
       
  4594 	.get_variants		= e1000_get_variants_ich8lan,
       
  4595 	.mac_ops		= &ich8_mac_ops,
       
  4596 	.phy_ops		= &ich8_phy_ops,
       
  4597 	.nvm_ops		= &ich8_nvm_ops,
       
  4598 };
       
  4599 
       
  4600 const struct e1000_info e1000_pch2_info = {
       
  4601 	.mac			= e1000_pch2lan,
       
  4602 	.flags			= FLAG_IS_ICH
       
  4603 				  | FLAG_HAS_WOL
       
  4604 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4605 				  | FLAG_HAS_AMT
       
  4606 				  | FLAG_HAS_FLASH
       
  4607 				  | FLAG_HAS_JUMBO_FRAMES
       
  4608 				  | FLAG_APME_IN_WUC,
       
  4609 	.flags2			= FLAG2_HAS_PHY_STATS
       
  4610 				  | FLAG2_HAS_EEE,
       
  4611 	.pba			= 26,
       
  4612 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  4613 	.get_variants		= e1000_get_variants_ich8lan,
       
  4614 	.mac_ops		= &ich8_mac_ops,
       
  4615 	.phy_ops		= &ich8_phy_ops,
       
  4616 	.nvm_ops		= &ich8_nvm_ops,
       
  4617 };
       
  4618 
       
  4619 const struct e1000_info e1000_pch_lpt_info = {
       
  4620 	.mac			= e1000_pch_lpt,
       
  4621 	.flags			= FLAG_IS_ICH
       
  4622 				  | FLAG_HAS_WOL
       
  4623 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  4624 				  | FLAG_HAS_AMT
       
  4625 				  | FLAG_HAS_FLASH
       
  4626 				  | FLAG_HAS_JUMBO_FRAMES
       
  4627 				  | FLAG_APME_IN_WUC,
       
  4628 	.flags2			= FLAG2_HAS_PHY_STATS
       
  4629 				  | FLAG2_HAS_EEE,
       
  4630 	.pba			= 26,
       
  4631 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  4632 	.get_variants		= e1000_get_variants_ich8lan,
       
  4633 	.mac_ops		= &ich8_mac_ops,
       
  4634 	.phy_ops		= &ich8_phy_ops,
       
  4635 	.nvm_ops		= &ich8_nvm_ops,
       
  4636 };