devices/forcedeth-2.6.17-ethercat.c
branchstable-1.3
changeset 1758 2f7f5fa7b870
parent 1757 c5757cebfaea
child 1759 c3b4d3a50ac6
equal deleted inserted replaced
1757:c5757cebfaea 1758:2f7f5fa7b870
     1 /*
       
     2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
       
     3  *
       
     4  * Note: This driver is a cleanroom reimplementation based on reverse
       
     5  *      engineered documentation written by Carl-Daniel Hailfinger
       
     6  *      and Andrew de Quincey. It's neither supported nor endorsed
       
     7  *      by NVIDIA Corp. Use at your own risk.
       
     8  *
       
     9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
       
    10  * trademarks of NVIDIA Corporation in the United States and other
       
    11  * countries.
       
    12  *
       
    13  * Copyright (C) 2003,4,5 Manfred Spraul
       
    14  * Copyright (C) 2004 Andrew de Quincey (wol support)
       
    15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
       
    16  *		IRQ rate fixes, bigendian fixes, cleanups, verification)
       
    17  * Copyright (c) 2004 NVIDIA Corporation
       
    18  *
       
    19  * This program is free software; you can redistribute it and/or modify
       
    20  * it under the terms of the GNU General Public License as published by
       
    21  * the Free Software Foundation; either version 2 of the License, or
       
    22  * (at your option) any later version.
       
    23  *
       
    24  * This program is distributed in the hope that it will be useful,
       
    25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
       
    26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
       
    27  * GNU General Public License for more details.
       
    28  *
       
    29  * You should have received a copy of the GNU General Public License
       
    30  * along with this program; if not, write to the Free Software
       
    31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
       
    32  *
       
    33  * Changelog:
       
    34  * 	0.01: 05 Oct 2003: First release that compiles without warnings.
       
    35  * 	0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
       
    36  * 			   Check all PCI BARs for the register window.
       
    37  * 			   udelay added to mii_rw.
       
    38  * 	0.03: 06 Oct 2003: Initialize dev->irq.
       
    39  * 	0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
       
    40  * 	0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
       
    41  * 	0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
       
    42  * 			   irq mask updated
       
    43  * 	0.07: 14 Oct 2003: Further irq mask updates.
       
    44  * 	0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
       
    45  * 			   added into irq handler, NULL check for drain_ring.
       
    46  * 	0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
       
    47  * 			   requested interrupt sources.
       
    48  * 	0.10: 20 Oct 2003: First cleanup for release.
       
    49  * 	0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
       
    50  * 			   MAC Address init fix, set_multicast cleanup.
       
    51  * 	0.12: 23 Oct 2003: Cleanups for release.
       
    52  * 	0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
       
    53  * 			   Set link speed correctly. start rx before starting
       
    54  * 			   tx (nv_start_rx sets the link speed).
       
    55  * 	0.14: 25 Oct 2003: Nic dependant irq mask.
       
    56  * 	0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
       
    57  * 			   open.
       
    58  * 	0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
       
    59  * 			   increased to 1628 bytes.
       
    60  * 	0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
       
    61  * 			   the tx length.
       
    62  * 	0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
       
    63  * 	0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
       
    64  * 			   addresses, really stop rx if already running
       
    65  * 			   in nv_start_rx, clean up a bit.
       
    66  * 	0.20: 07 Dec 2003: alloc fixes
       
    67  * 	0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
       
    68  *	0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
       
    69  *			   on close.
       
    70  *	0.23: 26 Jan 2004: various small cleanups
       
    71  *	0.24: 27 Feb 2004: make driver even less anonymous in backtraces
       
    72  *	0.25: 09 Mar 2004: wol support
       
    73  *	0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
       
    74  *	0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
       
    75  *			   added CK804/MCP04 device IDs, code fixes
       
    76  *			   for registers, link status and other minor fixes.
       
    77  *	0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
       
    78  *	0.29: 31 Aug 2004: Add backup timer for link change notification.
       
    79  *	0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
       
    80  *			   into nv_close, otherwise reenabling for wol can
       
    81  *			   cause DMA to kfree'd memory.
       
    82  *	0.31: 14 Nov 2004: ethtool support for getting/setting link
       
    83  *			   capabilities.
       
    84  *	0.32: 16 Apr 2005: RX_ERROR4 handling added.
       
    85  *	0.33: 16 May 2005: Support for MCP51 added.
       
    86  *	0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
       
    87  *	0.35: 26 Jun 2005: Support for MCP55 added.
       
    88  *	0.36: 28 Jun 2005: Add jumbo frame support.
       
    89  *	0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
       
    90  *	0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
       
    91  *			   per-packet flags.
       
    92  *	0.39: 18 Jul 2005: Add 64bit descriptor support.
       
    93  *	0.40: 19 Jul 2005: Add support for mac address change.
       
    94  *	0.41: 30 Jul 2005: Write back original MAC in nv_close instead
       
    95  *			   of nv_remove
       
    96  *	0.42: 06 Aug 2005: Fix lack of link speed initialization
       
    97  *			   in the second (and later) nv_open call
       
    98  *	0.43: 10 Aug 2005: Add support for tx checksum.
       
    99  *	0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
       
   100  *	0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
       
   101  *	0.46: 20 Oct 2005: Add irq optimization modes.
       
   102  *	0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
       
   103  *	0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
       
   104  *	0.49: 10 Dec 2005: Fix tso for large buffers.
       
   105  *	0.50: 20 Jan 2006: Add 8021pq tagging support.
       
   106  *	0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
       
   107  *	0.52: 20 Jan 2006: Add MSI/MSIX support.
       
   108  *	0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
       
   109  *	0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
       
   110  *
       
   111  * Known bugs:
       
   112  * We suspect that on some hardware no TX done interrupts are generated.
       
   113  * This means recovery from netif_stop_queue only happens if the hw timer
       
   114  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
       
   115  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
       
   116  * If your hardware reliably generates tx done interrupts, then you can remove
       
   117  * DEV_NEED_TIMERIRQ from the driver_data flags.
       
   118  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
       
   119  * superfluous timer interrupts from the nic.
       
   120  */
       
   121 #define FORCEDETH_VERSION		"0.54"
       
   122 #define DRV_NAME			"forcedeth"
       
   123 
       
   124 #include <linux/module.h>
       
   125 #include <linux/types.h>
       
   126 #include <linux/pci.h>
       
   127 #include <linux/interrupt.h>
       
   128 #include <linux/netdevice.h>
       
   129 #include <linux/etherdevice.h>
       
   130 #include <linux/delay.h>
       
   131 #include <linux/spinlock.h>
       
   132 #include <linux/ethtool.h>
       
   133 #include <linux/timer.h>
       
   134 #include <linux/skbuff.h>
       
   135 #include <linux/mii.h>
       
   136 #include <linux/random.h>
       
   137 #include <linux/init.h>
       
   138 #include <linux/if_vlan.h>
       
   139 #include <linux/dma-mapping.h>
       
   140 
       
   141 #include <asm/irq.h>
       
   142 #include <asm/io.h>
       
   143 #include <asm/uaccess.h>
       
   144 #include <asm/system.h>
       
   145 
       
   146 #include "../globals.h"
       
   147 #include "ecdev.h"
       
   148 
       
   149 #if 0
       
   150 #define dprintk			printk
       
   151 #else
       
   152 #define dprintk(x...)		do { } while (0)
       
   153 #endif
       
   154 
       
   155 
       
   156 /*
       
   157  * Hardware access:
       
   158  */
       
   159 
       
   160 #define DEV_NEED_TIMERIRQ	0x0001  /* set the timer irq flag in the irq mask */
       
   161 #define DEV_NEED_LINKTIMER	0x0002	/* poll link settings. Relies on the timer irq */
       
   162 #define DEV_HAS_LARGEDESC	0x0004	/* device supports jumbo frames and needs packet format 2 */
       
   163 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
       
   164 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
       
   165 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
       
   166 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
       
   167 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
       
   168 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
       
   169 
       
   170 enum {
       
   171 	NvRegIrqStatus = 0x000,
       
   172 #define NVREG_IRQSTAT_MIIEVENT	0x040
       
   173 #define NVREG_IRQSTAT_MASK		0x1ff
       
   174 	NvRegIrqMask = 0x004,
       
   175 #define NVREG_IRQ_RX_ERROR		0x0001
       
   176 #define NVREG_IRQ_RX			0x0002
       
   177 #define NVREG_IRQ_RX_NOBUF		0x0004
       
   178 #define NVREG_IRQ_TX_ERR		0x0008
       
   179 #define NVREG_IRQ_TX_OK			0x0010
       
   180 #define NVREG_IRQ_TIMER			0x0020
       
   181 #define NVREG_IRQ_LINK			0x0040
       
   182 #define NVREG_IRQ_RX_FORCED		0x0080
       
   183 #define NVREG_IRQ_TX_FORCED		0x0100
       
   184 #define NVREG_IRQMASK_THROUGHPUT	0x00df
       
   185 #define NVREG_IRQMASK_CPU		0x0040
       
   186 #define NVREG_IRQ_TX_ALL		(NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
       
   187 #define NVREG_IRQ_RX_ALL		(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
       
   188 #define NVREG_IRQ_OTHER			(NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
       
   189 
       
   190 #define NVREG_IRQ_UNKNOWN	(~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
       
   191 					NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
       
   192 					NVREG_IRQ_TX_FORCED))
       
   193 
       
   194 	NvRegUnknownSetupReg6 = 0x008,
       
   195 #define NVREG_UNKSETUP6_VAL		3
       
   196 
       
   197 /*
       
   198  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
       
   199  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
       
   200  */
       
   201 	NvRegPollingInterval = 0x00c,
       
   202 #define NVREG_POLL_DEFAULT_THROUGHPUT	970
       
   203 #define NVREG_POLL_DEFAULT_CPU	13
       
   204 	NvRegMSIMap0 = 0x020,
       
   205 	NvRegMSIMap1 = 0x024,
       
   206 	NvRegMSIIrqMask = 0x030,
       
   207 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
       
   208 	NvRegMisc1 = 0x080,
       
   209 #define NVREG_MISC1_HD		0x02
       
   210 #define NVREG_MISC1_FORCE	0x3b0f3c
       
   211 
       
   212 	NvRegMacReset = 0x3c,
       
   213 #define NVREG_MAC_RESET_ASSERT	0x0F3
       
   214 	NvRegTransmitterControl = 0x084,
       
   215 #define NVREG_XMITCTL_START	0x01
       
   216 	NvRegTransmitterStatus = 0x088,
       
   217 #define NVREG_XMITSTAT_BUSY	0x01
       
   218 
       
   219 	NvRegPacketFilterFlags = 0x8c,
       
   220 #define NVREG_PFF_ALWAYS	0x7F0008
       
   221 #define NVREG_PFF_PROMISC	0x80
       
   222 #define NVREG_PFF_MYADDR	0x20
       
   223 
       
   224 	NvRegOffloadConfig = 0x90,
       
   225 #define NVREG_OFFLOAD_HOMEPHY	0x601
       
   226 #define NVREG_OFFLOAD_NORMAL	RX_NIC_BUFSIZE
       
   227 	NvRegReceiverControl = 0x094,
       
   228 #define NVREG_RCVCTL_START	0x01
       
   229 	NvRegReceiverStatus = 0x98,
       
   230 #define NVREG_RCVSTAT_BUSY	0x01
       
   231 
       
   232 	NvRegRandomSeed = 0x9c,
       
   233 #define NVREG_RNDSEED_MASK	0x00ff
       
   234 #define NVREG_RNDSEED_FORCE	0x7f00
       
   235 #define NVREG_RNDSEED_FORCE2	0x2d00
       
   236 #define NVREG_RNDSEED_FORCE3	0x7400
       
   237 
       
   238 	NvRegUnknownSetupReg1 = 0xA0,
       
   239 #define NVREG_UNKSETUP1_VAL	0x16070f
       
   240 	NvRegUnknownSetupReg2 = 0xA4,
       
   241 #define NVREG_UNKSETUP2_VAL	0x16
       
   242 	NvRegMacAddrA = 0xA8,
       
   243 	NvRegMacAddrB = 0xAC,
       
   244 	NvRegMulticastAddrA = 0xB0,
       
   245 #define NVREG_MCASTADDRA_FORCE	0x01
       
   246 	NvRegMulticastAddrB = 0xB4,
       
   247 	NvRegMulticastMaskA = 0xB8,
       
   248 	NvRegMulticastMaskB = 0xBC,
       
   249 
       
   250 	NvRegPhyInterface = 0xC0,
       
   251 #define PHY_RGMII		0x10000000
       
   252 
       
   253 	NvRegTxRingPhysAddr = 0x100,
       
   254 	NvRegRxRingPhysAddr = 0x104,
       
   255 	NvRegRingSizes = 0x108,
       
   256 #define NVREG_RINGSZ_TXSHIFT 0
       
   257 #define NVREG_RINGSZ_RXSHIFT 16
       
   258 	NvRegUnknownTransmitterReg = 0x10c,
       
   259 	NvRegLinkSpeed = 0x110,
       
   260 #define NVREG_LINKSPEED_FORCE 0x10000
       
   261 #define NVREG_LINKSPEED_10	1000
       
   262 #define NVREG_LINKSPEED_100	100
       
   263 #define NVREG_LINKSPEED_1000	50
       
   264 #define NVREG_LINKSPEED_MASK	(0xFFF)
       
   265 	NvRegUnknownSetupReg5 = 0x130,
       
   266 #define NVREG_UNKSETUP5_BIT31	(1<<31)
       
   267 	NvRegUnknownSetupReg3 = 0x13c,
       
   268 #define NVREG_UNKSETUP3_VAL1	0x200010
       
   269 	NvRegTxRxControl = 0x144,
       
   270 #define NVREG_TXRXCTL_KICK	0x0001
       
   271 #define NVREG_TXRXCTL_BIT1	0x0002
       
   272 #define NVREG_TXRXCTL_BIT2	0x0004
       
   273 #define NVREG_TXRXCTL_IDLE	0x0008
       
   274 #define NVREG_TXRXCTL_RESET	0x0010
       
   275 #define NVREG_TXRXCTL_RXCHECK	0x0400
       
   276 #define NVREG_TXRXCTL_DESC_1	0
       
   277 #define NVREG_TXRXCTL_DESC_2	0x02100
       
   278 #define NVREG_TXRXCTL_DESC_3	0x02200
       
   279 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
       
   280 #define NVREG_TXRXCTL_VLANINS	0x00080
       
   281 	NvRegTxRingPhysAddrHigh = 0x148,
       
   282 	NvRegRxRingPhysAddrHigh = 0x14C,
       
   283 	NvRegMIIStatus = 0x180,
       
   284 #define NVREG_MIISTAT_ERROR		0x0001
       
   285 #define NVREG_MIISTAT_LINKCHANGE	0x0008
       
   286 #define NVREG_MIISTAT_MASK		0x000f
       
   287 #define NVREG_MIISTAT_MASK2		0x000f
       
   288 	NvRegUnknownSetupReg4 = 0x184,
       
   289 #define NVREG_UNKSETUP4_VAL	8
       
   290 
       
   291 	NvRegAdapterControl = 0x188,
       
   292 #define NVREG_ADAPTCTL_START	0x02
       
   293 #define NVREG_ADAPTCTL_LINKUP	0x04
       
   294 #define NVREG_ADAPTCTL_PHYVALID	0x40000
       
   295 #define NVREG_ADAPTCTL_RUNNING	0x100000
       
   296 #define NVREG_ADAPTCTL_PHYSHIFT	24
       
   297 	NvRegMIISpeed = 0x18c,
       
   298 #define NVREG_MIISPEED_BIT8	(1<<8)
       
   299 #define NVREG_MIIDELAY	5
       
   300 	NvRegMIIControl = 0x190,
       
   301 #define NVREG_MIICTL_INUSE	0x08000
       
   302 #define NVREG_MIICTL_WRITE	0x00400
       
   303 #define NVREG_MIICTL_ADDRSHIFT	5
       
   304 	NvRegMIIData = 0x194,
       
   305 	NvRegWakeUpFlags = 0x200,
       
   306 #define NVREG_WAKEUPFLAGS_VAL		0x7770
       
   307 #define NVREG_WAKEUPFLAGS_BUSYSHIFT	24
       
   308 #define NVREG_WAKEUPFLAGS_ENABLESHIFT	16
       
   309 #define NVREG_WAKEUPFLAGS_D3SHIFT	12
       
   310 #define NVREG_WAKEUPFLAGS_D2SHIFT	8
       
   311 #define NVREG_WAKEUPFLAGS_D1SHIFT	4
       
   312 #define NVREG_WAKEUPFLAGS_D0SHIFT	0
       
   313 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT		0x01
       
   314 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT	0x02
       
   315 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE	0x04
       
   316 #define NVREG_WAKEUPFLAGS_ENABLE	0x1111
       
   317 
       
   318 	NvRegPatternCRC = 0x204,
       
   319 	NvRegPatternMask = 0x208,
       
   320 	NvRegPowerCap = 0x268,
       
   321 #define NVREG_POWERCAP_D3SUPP	(1<<30)
       
   322 #define NVREG_POWERCAP_D2SUPP	(1<<26)
       
   323 #define NVREG_POWERCAP_D1SUPP	(1<<25)
       
   324 	NvRegPowerState = 0x26c,
       
   325 #define NVREG_POWERSTATE_POWEREDUP	0x8000
       
   326 #define NVREG_POWERSTATE_VALID		0x0100
       
   327 #define NVREG_POWERSTATE_MASK		0x0003
       
   328 #define NVREG_POWERSTATE_D0		0x0000
       
   329 #define NVREG_POWERSTATE_D1		0x0001
       
   330 #define NVREG_POWERSTATE_D2		0x0002
       
   331 #define NVREG_POWERSTATE_D3		0x0003
       
   332 	NvRegVlanControl = 0x300,
       
   333 #define NVREG_VLANCONTROL_ENABLE	0x2000
       
   334 	NvRegMSIXMap0 = 0x3e0,
       
   335 	NvRegMSIXMap1 = 0x3e4,
       
   336 	NvRegMSIXIrqStatus = 0x3f0,
       
   337 
       
   338 	NvRegPowerState2 = 0x600,
       
   339 #define NVREG_POWERSTATE2_POWERUP_MASK		0x0F11
       
   340 #define NVREG_POWERSTATE2_POWERUP_REV_A3	0x0001
       
   341 };
       
   342 
       
   343 /* Big endian: should work, but is untested */
       
   344 struct ring_desc {
       
   345 	u32 PacketBuffer;
       
   346 	u32 FlagLen;
       
   347 };
       
   348 
       
   349 struct ring_desc_ex {
       
   350 	u32 PacketBufferHigh;
       
   351 	u32 PacketBufferLow;
       
   352 	u32 TxVlan;
       
   353 	u32 FlagLen;
       
   354 };
       
   355 
       
   356 typedef union _ring_type {
       
   357 	struct ring_desc* orig;
       
   358 	struct ring_desc_ex* ex;
       
   359 } ring_type;
       
   360 
       
   361 #define FLAG_MASK_V1 0xffff0000
       
   362 #define FLAG_MASK_V2 0xffffc000
       
   363 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
       
   364 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
       
   365 
       
   366 #define NV_TX_LASTPACKET	(1<<16)
       
   367 #define NV_TX_RETRYERROR	(1<<19)
       
   368 #define NV_TX_FORCED_INTERRUPT	(1<<24)
       
   369 #define NV_TX_DEFERRED		(1<<26)
       
   370 #define NV_TX_CARRIERLOST	(1<<27)
       
   371 #define NV_TX_LATECOLLISION	(1<<28)
       
   372 #define NV_TX_UNDERFLOW		(1<<29)
       
   373 #define NV_TX_ERROR		(1<<30)
       
   374 #define NV_TX_VALID		(1<<31)
       
   375 
       
   376 #define NV_TX2_LASTPACKET	(1<<29)
       
   377 #define NV_TX2_RETRYERROR	(1<<18)
       
   378 #define NV_TX2_FORCED_INTERRUPT	(1<<30)
       
   379 #define NV_TX2_DEFERRED		(1<<25)
       
   380 #define NV_TX2_CARRIERLOST	(1<<26)
       
   381 #define NV_TX2_LATECOLLISION	(1<<27)
       
   382 #define NV_TX2_UNDERFLOW	(1<<28)
       
   383 /* error and valid are the same for both */
       
   384 #define NV_TX2_ERROR		(1<<30)
       
   385 #define NV_TX2_VALID		(1<<31)
       
   386 #define NV_TX2_TSO		(1<<28)
       
   387 #define NV_TX2_TSO_SHIFT	14
       
   388 #define NV_TX2_TSO_MAX_SHIFT	14
       
   389 #define NV_TX2_TSO_MAX_SIZE	(1<<NV_TX2_TSO_MAX_SHIFT)
       
   390 #define NV_TX2_CHECKSUM_L3	(1<<27)
       
   391 #define NV_TX2_CHECKSUM_L4	(1<<26)
       
   392 
       
   393 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
       
   394 
       
   395 #define NV_RX_DESCRIPTORVALID	(1<<16)
       
   396 #define NV_RX_MISSEDFRAME	(1<<17)
       
   397 #define NV_RX_SUBSTRACT1	(1<<18)
       
   398 #define NV_RX_ERROR1		(1<<23)
       
   399 #define NV_RX_ERROR2		(1<<24)
       
   400 #define NV_RX_ERROR3		(1<<25)
       
   401 #define NV_RX_ERROR4		(1<<26)
       
   402 #define NV_RX_CRCERR		(1<<27)
       
   403 #define NV_RX_OVERFLOW		(1<<28)
       
   404 #define NV_RX_FRAMINGERR	(1<<29)
       
   405 #define NV_RX_ERROR		(1<<30)
       
   406 #define NV_RX_AVAIL		(1<<31)
       
   407 
       
   408 #define NV_RX2_CHECKSUMMASK	(0x1C000000)
       
   409 #define NV_RX2_CHECKSUMOK1	(0x10000000)
       
   410 #define NV_RX2_CHECKSUMOK2	(0x14000000)
       
   411 #define NV_RX2_CHECKSUMOK3	(0x18000000)
       
   412 #define NV_RX2_DESCRIPTORVALID	(1<<29)
       
   413 #define NV_RX2_SUBSTRACT1	(1<<25)
       
   414 #define NV_RX2_ERROR1		(1<<18)
       
   415 #define NV_RX2_ERROR2		(1<<19)
       
   416 #define NV_RX2_ERROR3		(1<<20)
       
   417 #define NV_RX2_ERROR4		(1<<21)
       
   418 #define NV_RX2_CRCERR		(1<<22)
       
   419 #define NV_RX2_OVERFLOW		(1<<23)
       
   420 #define NV_RX2_FRAMINGERR	(1<<24)
       
   421 /* error and avail are the same for both */
       
   422 #define NV_RX2_ERROR		(1<<30)
       
   423 #define NV_RX2_AVAIL		(1<<31)
       
   424 
       
   425 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
       
   426 #define NV_RX3_VLAN_TAG_MASK	(0x0000FFFF)
       
   427 
       
   428 /* Miscelaneous hardware related defines: */
       
   429 #define NV_PCI_REGSZ_VER1      	0x270
       
   430 #define NV_PCI_REGSZ_VER2      	0x604
       
   431 
       
   432 /* various timeout delays: all in usec */
       
   433 #define NV_TXRX_RESET_DELAY	4
       
   434 #define NV_TXSTOP_DELAY1	10
       
   435 #define NV_TXSTOP_DELAY1MAX	500000
       
   436 #define NV_TXSTOP_DELAY2	100
       
   437 #define NV_RXSTOP_DELAY1	10
       
   438 #define NV_RXSTOP_DELAY1MAX	500000
       
   439 #define NV_RXSTOP_DELAY2	100
       
   440 #define NV_SETUP5_DELAY		5
       
   441 #define NV_SETUP5_DELAYMAX	50000
       
   442 #define NV_POWERUP_DELAY	5
       
   443 #define NV_POWERUP_DELAYMAX	5000
       
   444 #define NV_MIIBUSY_DELAY	50
       
   445 #define NV_MIIPHY_DELAY	10
       
   446 #define NV_MIIPHY_DELAYMAX	10000
       
   447 #define NV_MAC_RESET_DELAY	64
       
   448 
       
   449 #define NV_WAKEUPPATTERNS	5
       
   450 #define NV_WAKEUPMASKENTRIES	4
       
   451 
       
   452 /* General driver defaults */
       
   453 #define NV_WATCHDOG_TIMEO	(5*HZ)
       
   454 
       
   455 #define RX_RING		128
       
   456 #define TX_RING		256
       
   457 /* 
       
   458  * If your nic mysteriously hangs then try to reduce the limits
       
   459  * to 1/0: It might be required to set NV_TX_LASTPACKET in the
       
   460  * last valid ring entry. But this would be impossible to
       
   461  * implement - probably a disassembly error.
       
   462  */
       
   463 #define TX_LIMIT_STOP	255
       
   464 #define TX_LIMIT_START	254
       
   465 
       
   466 /* rx/tx mac addr + type + vlan + align + slack*/
       
   467 #define NV_RX_HEADERS		(64)
       
   468 /* even more slack. */
       
   469 #define NV_RX_ALLOC_PAD		(64)
       
   470 
       
   471 /* maximum mtu size */
       
   472 #define NV_PKTLIMIT_1	ETH_DATA_LEN	/* hard limit not known */
       
   473 #define NV_PKTLIMIT_2	9100	/* Actual limit according to NVidia: 9202 */
       
   474 
       
   475 #define OOM_REFILL	(1+HZ/20)
       
   476 #define POLL_WAIT	(1+HZ/100)
       
   477 #define LINK_TIMEOUT	(3*HZ)
       
   478 
       
   479 /* 
       
   480  * desc_ver values:
       
   481  * The nic supports three different descriptor types:
       
   482  * - DESC_VER_1: Original
       
   483  * - DESC_VER_2: support for jumbo frames.
       
   484  * - DESC_VER_3: 64-bit format.
       
   485  */
       
   486 #define DESC_VER_1	1
       
   487 #define DESC_VER_2	2
       
   488 #define DESC_VER_3	3
       
   489 
       
   490 /* PHY defines */
       
   491 #define PHY_OUI_MARVELL	0x5043
       
   492 #define PHY_OUI_CICADA	0x03f1
       
   493 #define PHYID1_OUI_MASK	0x03ff
       
   494 #define PHYID1_OUI_SHFT	6
       
   495 #define PHYID2_OUI_MASK	0xfc00
       
   496 #define PHYID2_OUI_SHFT	10
       
   497 #define PHY_INIT1	0x0f000
       
   498 #define PHY_INIT2	0x0e00
       
   499 #define PHY_INIT3	0x01000
       
   500 #define PHY_INIT4	0x0200
       
   501 #define PHY_INIT5	0x0004
       
   502 #define PHY_INIT6	0x02000
       
   503 #define PHY_GIGABIT	0x0100
       
   504 
       
   505 #define PHY_TIMEOUT	0x1
       
   506 #define PHY_ERROR	0x2
       
   507 
       
   508 #define PHY_100	0x1
       
   509 #define PHY_1000	0x2
       
   510 #define PHY_HALF	0x100
       
   511 
       
   512 /* FIXME: MII defines that should be added to <linux/mii.h> */
       
   513 #define MII_1000BT_CR	0x09
       
   514 #define MII_1000BT_SR	0x0a
       
   515 #define ADVERTISE_1000FULL	0x0200
       
   516 #define ADVERTISE_1000HALF	0x0100
       
   517 #define LPA_1000FULL	0x0800
       
   518 #define LPA_1000HALF	0x0400
       
   519 
       
   520 /* MSI/MSI-X defines */
       
   521 #define NV_MSI_X_MAX_VECTORS  8
       
   522 #define NV_MSI_X_VECTORS_MASK 0x000f
       
   523 #define NV_MSI_CAPABLE        0x0010
       
   524 #define NV_MSI_X_CAPABLE      0x0020
       
   525 #define NV_MSI_ENABLED        0x0040
       
   526 #define NV_MSI_X_ENABLED      0x0080
       
   527 
       
   528 #define NV_MSI_X_VECTOR_ALL   0x0
       
   529 #define NV_MSI_X_VECTOR_RX    0x0
       
   530 #define NV_MSI_X_VECTOR_TX    0x1
       
   531 #define NV_MSI_X_VECTOR_OTHER 0x2
       
   532 
       
   533 /*
       
   534  * SMP locking:
       
   535  * All hardware access under dev->priv->lock, except the performance
       
   536  * critical parts:
       
   537  * - rx is (pseudo-) lockless: it relies on the single-threading provided
       
   538  *	by the arch code for interrupts.
       
   539  * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
       
   540  *	needs dev->priv->lock :-(
       
   541  * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
       
   542  */
       
   543 
       
   544 /* in dev: base, irq */
       
   545 struct fe_priv {
       
   546 	spinlock_t lock;
       
   547 
       
   548 	/* General data:
       
   549 	 * Locking: spin_lock(&np->lock); */
       
   550 	struct net_device_stats stats;
       
   551 	int in_shutdown;
       
   552 	u32 linkspeed;
       
   553 	int duplex;
       
   554 	int autoneg;
       
   555 	int fixed_mode;
       
   556 	int phyaddr;
       
   557 	int wolenabled;
       
   558 	unsigned int phy_oui;
       
   559 	u16 gigabit;
       
   560 
       
   561 	/* General data: RO fields */
       
   562 	dma_addr_t ring_addr;
       
   563 	struct pci_dev *pci_dev;
       
   564 	u32 orig_mac[2];
       
   565 	u32 irqmask;
       
   566 	u32 desc_ver;
       
   567 	u32 txrxctl_bits;
       
   568 	u32 vlanctl_bits;
       
   569 	u32 driver_data;
       
   570 	u32 register_size;
       
   571 
       
   572 	void __iomem *base;
       
   573 
       
   574 	/* rx specific fields.
       
   575 	 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
       
   576 	 */
       
   577 	ring_type rx_ring;
       
   578 	unsigned int cur_rx, refill_rx;
       
   579 	struct sk_buff *rx_skbuff[RX_RING];
       
   580 	dma_addr_t rx_dma[RX_RING];
       
   581 	unsigned int rx_buf_sz;
       
   582 	unsigned int pkt_limit;
       
   583 	struct timer_list oom_kick;
       
   584 	struct timer_list nic_poll;
       
   585 	u32 nic_poll_irq;
       
   586 
       
   587 	/* media detection workaround.
       
   588 	 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
       
   589 	 */
       
   590 	int need_linktimer;
       
   591 	unsigned long link_timeout;
       
   592 	/*
       
   593 	 * tx specific fields.
       
   594 	 */
       
   595 	ring_type tx_ring;
       
   596 	unsigned int next_tx, nic_tx;
       
   597 	struct sk_buff *tx_skbuff[TX_RING];
       
   598 	dma_addr_t tx_dma[TX_RING];
       
   599 	unsigned int tx_dma_len[TX_RING];
       
   600 	u32 tx_flags;
       
   601 
       
   602 	/* vlan fields */
       
   603 	struct vlan_group *vlangrp;
       
   604 
       
   605 	/* msi/msi-x fields */
       
   606 	u32 msi_flags;
       
   607 	struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
       
   608 
       
   609     ec_device_t *ecdev;
       
   610 };
       
   611 
       
   612 /*
       
   613  * Maximum number of loops until we assume that a bit in the irq mask
       
   614  * is stuck. Overridable with module param.
       
   615  */
       
   616 static int max_interrupt_work = 5;
       
   617 
       
   618 /*
       
   619  * Optimization can be either throuput mode or cpu mode
       
   620  * 
       
   621  * Throughput Mode: Every tx and rx packet will generate an interrupt.
       
   622  * CPU Mode: Interrupts are controlled by a timer.
       
   623  */
       
   624 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
       
   625 #define NV_OPTIMIZATION_MODE_CPU        1
       
   626 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
       
   627 
       
   628 /*
       
   629  * Poll interval for timer irq
       
   630  *
       
   631  * This interval determines how frequent an interrupt is generated.
       
   632  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
       
   633  * Min = 0, and Max = 65535
       
   634  */
       
   635 static int poll_interval = -1;
       
   636 
       
   637 /*
       
   638  * Disable MSI interrupts
       
   639  */
       
   640 static int disable_msi = 0;
       
   641 
       
   642 /*
       
   643  * Disable MSIX interrupts
       
   644  */
       
   645 static int disable_msix = 0;
       
   646 
       
   647 static int board_idx = -1;
       
   648 
       
   649 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
       
   650 {
       
   651 	return netdev_priv(dev);
       
   652 }
       
   653 
       
   654 static inline u8 __iomem *get_hwbase(struct net_device *dev)
       
   655 {
       
   656 	return ((struct fe_priv *)netdev_priv(dev))->base;
       
   657 }
       
   658 
       
   659 static inline void pci_push(u8 __iomem *base)
       
   660 {
       
   661 	/* force out pending posted writes */
       
   662 	readl(base);
       
   663 }
       
   664 
       
   665 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
       
   666 {
       
   667 	return le32_to_cpu(prd->FlagLen)
       
   668 		& ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
       
   669 }
       
   670 
       
   671 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
       
   672 {
       
   673 	return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
       
   674 }
       
   675 
       
   676 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
       
   677 				int delay, int delaymax, const char *msg)
       
   678 {
       
   679 	u8 __iomem *base = get_hwbase(dev);
       
   680 
       
   681 	pci_push(base);
       
   682 	do {
       
   683 		udelay(delay);
       
   684 		delaymax -= delay;
       
   685 		if (delaymax < 0) {
       
   686 			if (msg)
       
   687 				printk(msg);
       
   688 			return 1;
       
   689 		}
       
   690 	} while ((readl(base + offset) & mask) != target);
       
   691 	return 0;
       
   692 }
       
   693 
       
   694 #define NV_SETUP_RX_RING 0x01
       
   695 #define NV_SETUP_TX_RING 0x02
       
   696 
       
   697 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
       
   698 {
       
   699 	struct fe_priv *np = get_nvpriv(dev);
       
   700 	u8 __iomem *base = get_hwbase(dev);
       
   701 
       
   702 	if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
       
   703 		if (rxtx_flags & NV_SETUP_RX_RING) {
       
   704 			writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
       
   705 		}
       
   706 		if (rxtx_flags & NV_SETUP_TX_RING) {
       
   707 			writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
       
   708 		}
       
   709 	} else {
       
   710 		if (rxtx_flags & NV_SETUP_RX_RING) {
       
   711 			writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
       
   712 			writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
       
   713 		}
       
   714 		if (rxtx_flags & NV_SETUP_TX_RING) {
       
   715 			writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
       
   716 			writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
       
   717 		}
       
   718 	}
       
   719 }
       
   720 
       
   721 static int using_multi_irqs(struct net_device *dev)
       
   722 {
       
   723 	struct fe_priv *np = get_nvpriv(dev);
       
   724 
       
   725 	if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
       
   726 	    ((np->msi_flags & NV_MSI_X_ENABLED) &&
       
   727 	     ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
       
   728 		return 0;
       
   729 	else
       
   730 		return 1;
       
   731 }
       
   732 
       
   733 static void nv_enable_irq(struct net_device *dev)
       
   734 {
       
   735 	struct fe_priv *np = get_nvpriv(dev);
       
   736 
       
   737 	if (!using_multi_irqs(dev)) {
       
   738 		if (np->msi_flags & NV_MSI_X_ENABLED)
       
   739 			enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
       
   740 		else
       
   741 			enable_irq(dev->irq);
       
   742 	} else {
       
   743 		enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
       
   744 		enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
       
   745 		enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
       
   746 	}
       
   747 }
       
   748 
       
   749 static void nv_disable_irq(struct net_device *dev)
       
   750 {
       
   751 	struct fe_priv *np = get_nvpriv(dev);
       
   752 
       
   753 	if (!using_multi_irqs(dev)) {
       
   754 		if (np->msi_flags & NV_MSI_X_ENABLED)
       
   755 			disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
       
   756 		else
       
   757 			disable_irq(dev->irq);
       
   758 	} else {
       
   759 		disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
       
   760 		disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
       
   761 		disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
       
   762 	}
       
   763 }
       
   764 
       
   765 /* In MSIX mode, a write to irqmask behaves as XOR */
       
   766 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
       
   767 {
       
   768 	u8 __iomem *base = get_hwbase(dev);
       
   769 
       
   770 	writel(mask, base + NvRegIrqMask);
       
   771 }
       
   772 
       
   773 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
       
   774 {
       
   775 	struct fe_priv *np = get_nvpriv(dev);
       
   776 	u8 __iomem *base = get_hwbase(dev);
       
   777 
       
   778 	if (np->msi_flags & NV_MSI_X_ENABLED) {
       
   779 		writel(mask, base + NvRegIrqMask);
       
   780 	} else {
       
   781 		if (np->msi_flags & NV_MSI_ENABLED)
       
   782 			writel(0, base + NvRegMSIIrqMask);
       
   783 		writel(0, base + NvRegIrqMask);
       
   784 	}
       
   785 }
       
   786 
       
   787 #define MII_READ	(-1)
       
   788 /* mii_rw: read/write a register on the PHY.
       
   789  *
       
   790  * Caller must guarantee serialization
       
   791  */
       
   792 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
       
   793 {
       
   794 	u8 __iomem *base = get_hwbase(dev);
       
   795 	u32 reg;
       
   796 	int retval;
       
   797 
       
   798 	writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
       
   799 
       
   800 	reg = readl(base + NvRegMIIControl);
       
   801 	if (reg & NVREG_MIICTL_INUSE) {
       
   802 		writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
       
   803 		udelay(NV_MIIBUSY_DELAY);
       
   804 	}
       
   805 
       
   806 	reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
       
   807 	if (value != MII_READ) {
       
   808 		writel(value, base + NvRegMIIData);
       
   809 		reg |= NVREG_MIICTL_WRITE;
       
   810 	}
       
   811 	writel(reg, base + NvRegMIIControl);
       
   812 
       
   813 	if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
       
   814 			NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
       
   815 		dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
       
   816 				dev->name, miireg, addr);
       
   817 		retval = -1;
       
   818 	} else if (value != MII_READ) {
       
   819 		/* it was a write operation - fewer failures are detectable */
       
   820 		dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
       
   821 				dev->name, value, miireg, addr);
       
   822 		retval = 0;
       
   823 	} else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
       
   824 		dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
       
   825 				dev->name, miireg, addr);
       
   826 		retval = -1;
       
   827 	} else {
       
   828 		retval = readl(base + NvRegMIIData);
       
   829 		dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
       
   830 				dev->name, miireg, addr, retval);
       
   831 	}
       
   832 
       
   833 	return retval;
       
   834 }
       
   835 
       
   836 static int phy_reset(struct net_device *dev)
       
   837 {
       
   838 	struct fe_priv *np = netdev_priv(dev);
       
   839 	u32 miicontrol;
       
   840 	unsigned int tries = 0;
       
   841 
       
   842 	miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
       
   843 	miicontrol |= BMCR_RESET;
       
   844 	if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
       
   845 		return -1;
       
   846 	}
       
   847 
       
   848 	/* wait for 500ms */
       
   849 	msleep(500);
       
   850 
       
   851 	/* must wait till reset is deasserted */
       
   852 	while (miicontrol & BMCR_RESET) {
       
   853 		msleep(10);
       
   854 		miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
       
   855 		/* FIXME: 100 tries seem excessive */
       
   856 		if (tries++ > 100)
       
   857 			return -1;
       
   858 	}
       
   859 	return 0;
       
   860 }
       
   861 
       
   862 static int phy_init(struct net_device *dev)
       
   863 {
       
   864 	struct fe_priv *np = get_nvpriv(dev);
       
   865 	u8 __iomem *base = get_hwbase(dev);
       
   866 	u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
       
   867 
       
   868 	/* set advertise register */
       
   869 	reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
       
   870 	reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
       
   871 	if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
       
   872 		printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
       
   873 		return PHY_ERROR;
       
   874 	}
       
   875 
       
   876 	/* get phy interface type */
       
   877 	phyinterface = readl(base + NvRegPhyInterface);
       
   878 
       
   879 	/* see if gigabit phy */
       
   880 	mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
       
   881 	if (mii_status & PHY_GIGABIT) {
       
   882 		np->gigabit = PHY_GIGABIT;
       
   883 		mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
       
   884 		mii_control_1000 &= ~ADVERTISE_1000HALF;
       
   885 		if (phyinterface & PHY_RGMII)
       
   886 			mii_control_1000 |= ADVERTISE_1000FULL;
       
   887 		else
       
   888 			mii_control_1000 &= ~ADVERTISE_1000FULL;
       
   889 
       
   890 		if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
       
   891 			printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
       
   892 			return PHY_ERROR;
       
   893 		}
       
   894 	}
       
   895 	else
       
   896 		np->gigabit = 0;
       
   897 
       
   898 	/* reset the phy */
       
   899 	if (phy_reset(dev)) {
       
   900 		printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
       
   901 		return PHY_ERROR;
       
   902 	}
       
   903 
       
   904 	/* phy vendor specific configuration */
       
   905 	if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
       
   906 		phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
       
   907 		phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
       
   908 		phy_reserved |= (PHY_INIT3 | PHY_INIT4);
       
   909 		if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
       
   910 			printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
       
   911 			return PHY_ERROR;
       
   912 		}
       
   913 		phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
       
   914 		phy_reserved |= PHY_INIT5;
       
   915 		if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
       
   916 			printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
       
   917 			return PHY_ERROR;
       
   918 		}
       
   919 	}
       
   920 	if (np->phy_oui == PHY_OUI_CICADA) {
       
   921 		phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
       
   922 		phy_reserved |= PHY_INIT6;
       
   923 		if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
       
   924 			printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
       
   925 			return PHY_ERROR;
       
   926 		}
       
   927 	}
       
   928 
       
   929 	/* restart auto negotiation */
       
   930 	mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
       
   931 	mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
       
   932 	if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
       
   933 		return PHY_ERROR;
       
   934 	}
       
   935 
       
   936 	return 0;
       
   937 }
       
   938 
       
   939 static void nv_start_rx(struct net_device *dev)
       
   940 {
       
   941 	struct fe_priv *np = netdev_priv(dev);
       
   942 	u8 __iomem *base = get_hwbase(dev);
       
   943 
       
   944 	dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
       
   945 	/* Already running? Stop it. */
       
   946 	if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
       
   947 		writel(0, base + NvRegReceiverControl);
       
   948 		pci_push(base);
       
   949 	}
       
   950 	writel(np->linkspeed, base + NvRegLinkSpeed);
       
   951 	pci_push(base);
       
   952 	writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
       
   953 	dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
       
   954 				dev->name, np->duplex, np->linkspeed);
       
   955 	pci_push(base);
       
   956 }
       
   957 
       
   958 static void nv_stop_rx(struct net_device *dev)
       
   959 {
       
   960 	u8 __iomem *base = get_hwbase(dev);
       
   961 
       
   962 	dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
       
   963 	writel(0, base + NvRegReceiverControl);
       
   964 	reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
       
   965 			NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
       
   966 			KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
       
   967 
       
   968 	udelay(NV_RXSTOP_DELAY2);
       
   969 	writel(0, base + NvRegLinkSpeed);
       
   970 }
       
   971 
       
   972 static void nv_start_tx(struct net_device *dev)
       
   973 {
       
   974 	u8 __iomem *base = get_hwbase(dev);
       
   975 
       
   976 	dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
       
   977 	writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
       
   978 	pci_push(base);
       
   979 }
       
   980 
       
   981 static void nv_stop_tx(struct net_device *dev)
       
   982 {
       
   983 	u8 __iomem *base = get_hwbase(dev);
       
   984 
       
   985 	dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
       
   986 	writel(0, base + NvRegTransmitterControl);
       
   987 	reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
       
   988 			NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
       
   989 			KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
       
   990 
       
   991 	udelay(NV_TXSTOP_DELAY2);
       
   992 	writel(0, base + NvRegUnknownTransmitterReg);
       
   993 }
       
   994 
       
   995 static void nv_txrx_reset(struct net_device *dev)
       
   996 {
       
   997 	struct fe_priv *np = netdev_priv(dev);
       
   998 	u8 __iomem *base = get_hwbase(dev);
       
   999 
       
  1000 	dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
       
  1001 	writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
       
  1002 	pci_push(base);
       
  1003 	udelay(NV_TXRX_RESET_DELAY);
       
  1004 	writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
       
  1005 	pci_push(base);
       
  1006 }
       
  1007 
       
  1008 static void nv_mac_reset(struct net_device *dev)
       
  1009 {
       
  1010 	struct fe_priv *np = netdev_priv(dev);
       
  1011 	u8 __iomem *base = get_hwbase(dev);
       
  1012 
       
  1013 	dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
       
  1014 	writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
       
  1015 	pci_push(base);
       
  1016 	writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
       
  1017 	pci_push(base);
       
  1018 	udelay(NV_MAC_RESET_DELAY);
       
  1019 	writel(0, base + NvRegMacReset);
       
  1020 	pci_push(base);
       
  1021 	udelay(NV_MAC_RESET_DELAY);
       
  1022 	writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
       
  1023 	pci_push(base);
       
  1024 }
       
  1025 
       
  1026 /*
       
  1027  * nv_get_stats: dev->get_stats function
       
  1028  * Get latest stats value from the nic.
       
  1029  * Called with read_lock(&dev_base_lock) held for read -
       
  1030  * only synchronized against unregister_netdevice.
       
  1031  */
       
  1032 static struct net_device_stats *nv_get_stats(struct net_device *dev)
       
  1033 {
       
  1034 	struct fe_priv *np = netdev_priv(dev);
       
  1035 
       
  1036 	/* It seems that the nic always generates interrupts and doesn't
       
  1037 	 * accumulate errors internally. Thus the current values in np->stats
       
  1038 	 * are already up to date.
       
  1039 	 */
       
  1040 	return &np->stats;
       
  1041 }
       
  1042 
       
  1043 /*
       
  1044  * nv_alloc_rx: fill rx ring entries.
       
  1045  * Return 1 if the allocations for the skbs failed and the
       
  1046  * rx engine is without Available descriptors
       
  1047  */
       
  1048 static int nv_alloc_rx(struct net_device *dev)
       
  1049 {
       
  1050 	struct fe_priv *np = netdev_priv(dev);
       
  1051 	unsigned int refill_rx = np->refill_rx;
       
  1052 	int nr;
       
  1053 
       
  1054 	while (np->cur_rx != refill_rx) {
       
  1055 		struct sk_buff *skb;
       
  1056 
       
  1057 		nr = refill_rx % RX_RING;
       
  1058 		if (np->rx_skbuff[nr] == NULL) {
       
  1059 
       
  1060 			skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
       
  1061 			if (!skb)
       
  1062 				break;
       
  1063 
       
  1064 			skb->dev = dev;
       
  1065 			np->rx_skbuff[nr] = skb;
       
  1066 		} else {
       
  1067 			skb = np->rx_skbuff[nr];
       
  1068 		}
       
  1069 		np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
       
  1070 					skb->end-skb->data, PCI_DMA_FROMDEVICE);
       
  1071 		if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
       
  1072 			np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
       
  1073 			wmb();
       
  1074 			np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
       
  1075 		} else {
       
  1076 			np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
       
  1077 			np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
       
  1078 			wmb();
       
  1079 			np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
       
  1080 		}
       
  1081 		dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
       
  1082 					dev->name, refill_rx);
       
  1083 		refill_rx++;
       
  1084 	}
       
  1085 	np->refill_rx = refill_rx;
       
  1086 	if (np->cur_rx - refill_rx == RX_RING)
       
  1087 		return 1;
       
  1088 	return 0;
       
  1089 }
       
  1090 
       
  1091 static void nv_do_rx_refill(unsigned long data)
       
  1092 {
       
  1093 	struct net_device *dev = (struct net_device *) data;
       
  1094 	struct fe_priv *np = netdev_priv(dev);
       
  1095 
       
  1096 	if (!using_multi_irqs(dev)) {
       
  1097 		if (np->msi_flags & NV_MSI_X_ENABLED)
       
  1098 			disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
       
  1099 		else
       
  1100 			disable_irq(dev->irq);
       
  1101 	} else {
       
  1102 		disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
       
  1103 	}
       
  1104 	if (nv_alloc_rx(dev)) {
       
  1105 		spin_lock_irq(&np->lock);
       
  1106 		if (!np->in_shutdown)
       
  1107 			mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
       
  1108 		spin_unlock_irq(&np->lock);
       
  1109 	}
       
  1110 	if (!using_multi_irqs(dev)) {
       
  1111 		if (np->msi_flags & NV_MSI_X_ENABLED)
       
  1112 			enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
       
  1113 		else
       
  1114 			enable_irq(dev->irq);
       
  1115 	} else {
       
  1116 		enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
       
  1117 	}
       
  1118 }
       
  1119 
       
  1120 static void nv_init_rx(struct net_device *dev) 
       
  1121 {
       
  1122 	struct fe_priv *np = netdev_priv(dev);
       
  1123 	int i;
       
  1124 
       
  1125 	np->cur_rx = RX_RING;
       
  1126 	np->refill_rx = 0;
       
  1127 	for (i = 0; i < RX_RING; i++)
       
  1128 		if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
       
  1129 			np->rx_ring.orig[i].FlagLen = 0;
       
  1130 	        else
       
  1131 			np->rx_ring.ex[i].FlagLen = 0;
       
  1132 }
       
  1133 
       
  1134 static void nv_init_tx(struct net_device *dev)
       
  1135 {
       
  1136 	struct fe_priv *np = netdev_priv(dev);
       
  1137 	int i;
       
  1138 
       
  1139 	np->next_tx = np->nic_tx = 0;
       
  1140 	for (i = 0; i < TX_RING; i++) {
       
  1141 		if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
       
  1142 			np->tx_ring.orig[i].FlagLen = 0;
       
  1143 	        else
       
  1144 			np->tx_ring.ex[i].FlagLen = 0;
       
  1145 		np->tx_skbuff[i] = NULL;
       
  1146 		np->tx_dma[i] = 0;
       
  1147 	}
       
  1148 }
       
  1149 
       
  1150 static int nv_init_ring(struct net_device *dev)
       
  1151 {
       
  1152 	nv_init_tx(dev);
       
  1153 	nv_init_rx(dev);
       
  1154 	return nv_alloc_rx(dev);
       
  1155 }
       
  1156 
       
  1157 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
       
  1158 {
       
  1159 	struct fe_priv *np = netdev_priv(dev);
       
  1160 
       
  1161 	dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
       
  1162 		dev->name, skbnr);
       
  1163 
       
  1164 	if (np->tx_dma[skbnr]) {
       
  1165 		pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
       
  1166 			       np->tx_dma_len[skbnr],
       
  1167 			       PCI_DMA_TODEVICE);
       
  1168 		np->tx_dma[skbnr] = 0;
       
  1169 	}
       
  1170 
       
  1171 	if (np->tx_skbuff[skbnr]) {
       
  1172 		if (!np->ecdev) dev_kfree_skb_any(np->tx_skbuff[skbnr]);
       
  1173 		np->tx_skbuff[skbnr] = NULL;
       
  1174 		return 1;
       
  1175 	} else {
       
  1176 		return 0;
       
  1177 	}
       
  1178 }
       
  1179 
       
  1180 static void nv_drain_tx(struct net_device *dev)
       
  1181 {
       
  1182 	struct fe_priv *np = netdev_priv(dev);
       
  1183 	unsigned int i;
       
  1184 	
       
  1185 	for (i = 0; i < TX_RING; i++) {
       
  1186 		if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
       
  1187 			np->tx_ring.orig[i].FlagLen = 0;
       
  1188 		else
       
  1189 			np->tx_ring.ex[i].FlagLen = 0;
       
  1190 		if (nv_release_txskb(dev, i))
       
  1191 			np->stats.tx_dropped++;
       
  1192 	}
       
  1193 }
       
  1194 
       
  1195 static void nv_drain_rx(struct net_device *dev)
       
  1196 {
       
  1197 	struct fe_priv *np = netdev_priv(dev);
       
  1198 	int i;
       
  1199 	for (i = 0; i < RX_RING; i++) {
       
  1200 		if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
       
  1201 			np->rx_ring.orig[i].FlagLen = 0;
       
  1202 		else
       
  1203 			np->rx_ring.ex[i].FlagLen = 0;
       
  1204 		wmb();
       
  1205 		if (np->rx_skbuff[i]) {
       
  1206 			pci_unmap_single(np->pci_dev, np->rx_dma[i],
       
  1207 						np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
       
  1208 						PCI_DMA_FROMDEVICE);
       
  1209 			if (!np->ecdev) dev_kfree_skb(np->rx_skbuff[i]);
       
  1210 			np->rx_skbuff[i] = NULL;
       
  1211 		}
       
  1212 	}
       
  1213 }
       
  1214 
       
  1215 static void drain_ring(struct net_device *dev)
       
  1216 {
       
  1217 	nv_drain_tx(dev);
       
  1218 	nv_drain_rx(dev);
       
  1219 }
       
  1220 
       
  1221 /*
       
  1222  * nv_start_xmit: dev->hard_start_xmit function
       
  1223  * Called with dev->xmit_lock held.
       
  1224  */
       
  1225 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
       
  1226 {
       
  1227 	struct fe_priv *np = netdev_priv(dev);
       
  1228 	u32 tx_flags = 0;
       
  1229 	u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
       
  1230 	unsigned int fragments = skb_shinfo(skb)->nr_frags;
       
  1231 	unsigned int nr = (np->next_tx - 1) % TX_RING;
       
  1232 	unsigned int start_nr = np->next_tx % TX_RING;
       
  1233 	unsigned int i;
       
  1234 	u32 offset = 0;
       
  1235 	u32 bcnt;
       
  1236 	u32 size = skb->len-skb->data_len;
       
  1237 	u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
       
  1238 	u32 tx_flags_vlan = 0;
       
  1239 
       
  1240 	/* add fragments to entries count */
       
  1241 	for (i = 0; i < fragments; i++) {
       
  1242 		entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
       
  1243 			   ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
       
  1244 	}
       
  1245 
       
  1246 	if (!np->ecdev) {
       
  1247 		spin_lock_irq(&np->lock);
       
  1248 
       
  1249 		if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
       
  1250 			spin_unlock_irq(&np->lock);
       
  1251 			netif_stop_queue(dev);
       
  1252 			return NETDEV_TX_BUSY;
       
  1253         }
       
  1254 	}
       
  1255 
       
  1256 	/* setup the header buffer */
       
  1257 	do {
       
  1258 		bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
       
  1259 		nr = (nr + 1) % TX_RING;
       
  1260 
       
  1261 		np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
       
  1262 						PCI_DMA_TODEVICE);
       
  1263 		np->tx_dma_len[nr] = bcnt;
       
  1264 
       
  1265 		if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
       
  1266 			np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
       
  1267 			np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
       
  1268 		} else {
       
  1269 			np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
       
  1270 			np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
       
  1271 			np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
       
  1272 		}
       
  1273 		tx_flags = np->tx_flags;
       
  1274 		offset += bcnt;
       
  1275 		size -= bcnt;
       
  1276 	} while(size);
       
  1277 
       
  1278 	/* setup the fragments */
       
  1279 	for (i = 0; i < fragments; i++) {
       
  1280 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
       
  1281 		u32 size = frag->size;
       
  1282 		offset = 0;
       
  1283 
       
  1284 		do {
       
  1285 			bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
       
  1286 			nr = (nr + 1) % TX_RING;
       
  1287 
       
  1288 			np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
       
  1289 						      PCI_DMA_TODEVICE);
       
  1290 			np->tx_dma_len[nr] = bcnt;
       
  1291 
       
  1292 			if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
       
  1293 				np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
       
  1294 				np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
       
  1295 			} else {
       
  1296 				np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
       
  1297 				np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
       
  1298 				np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
       
  1299 			}
       
  1300 			offset += bcnt;
       
  1301 			size -= bcnt;
       
  1302 		} while (size);
       
  1303 	}
       
  1304 
       
  1305 	/* set last fragment flag  */
       
  1306 	if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
       
  1307 		np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
       
  1308 	} else {
       
  1309 		np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
       
  1310 	}
       
  1311 
       
  1312 	np->tx_skbuff[nr] = skb;
       
  1313 
       
  1314 #ifdef NETIF_F_TSO
       
  1315 	if (skb_shinfo(skb)->tso_size)
       
  1316 		tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
       
  1317 	else
       
  1318 #endif
       
  1319 	tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
       
  1320 
       
  1321 	/* vlan tag */
       
  1322 	if (np->vlangrp && vlan_tx_tag_present(skb)) {
       
  1323 		tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
       
  1324 	}
       
  1325 
       
  1326 	/* set tx flags */
       
  1327 	if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
       
  1328 		np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
       
  1329 	} else {
       
  1330 		np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
       
  1331 		np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
       
  1332 	}	
       
  1333 
       
  1334 	dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
       
  1335 		dev->name, np->next_tx, entries, tx_flags_extra);
       
  1336 	{
       
  1337 		int j;
       
  1338 		for (j=0; j<64; j++) {
       
  1339 			if ((j%16) == 0)
       
  1340 				dprintk("\n%03x:", j);
       
  1341 			dprintk(" %02x", ((unsigned char*)skb->data)[j]);
       
  1342 		}
       
  1343 		dprintk("\n");
       
  1344 	}
       
  1345 
       
  1346 	np->next_tx += entries;
       
  1347 
       
  1348 	dev->trans_start = jiffies;
       
  1349 	if (!np->ecdev) spin_unlock_irq(&np->lock);
       
  1350 	writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
       
  1351 	pci_push(get_hwbase(dev));
       
  1352 	return NETDEV_TX_OK;
       
  1353 }
       
  1354 
       
  1355 /*
       
  1356  * nv_tx_done: check for completed packets, release the skbs.
       
  1357  *
       
  1358  * Caller must own np->lock.
       
  1359  */
       
  1360 static void nv_tx_done(struct net_device *dev)
       
  1361 {
       
  1362 	struct fe_priv *np = netdev_priv(dev);
       
  1363 	u32 Flags;
       
  1364 	unsigned int i;
       
  1365 	struct sk_buff *skb;
       
  1366 
       
  1367 	while (np->nic_tx != np->next_tx) {
       
  1368 		i = np->nic_tx % TX_RING;
       
  1369 
       
  1370 		if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
       
  1371 			Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
       
  1372 		else
       
  1373 			Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
       
  1374 
       
  1375 		dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
       
  1376 					dev->name, np->nic_tx, Flags);
       
  1377 		if (Flags & NV_TX_VALID)
       
  1378 			break;
       
  1379 		if (np->desc_ver == DESC_VER_1) {
       
  1380 			if (Flags & NV_TX_LASTPACKET) {
       
  1381 				skb = np->tx_skbuff[i];
       
  1382 				if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
       
  1383 					     NV_TX_UNDERFLOW|NV_TX_ERROR)) {
       
  1384 					if (Flags & NV_TX_UNDERFLOW)
       
  1385 						np->stats.tx_fifo_errors++;
       
  1386 					if (Flags & NV_TX_CARRIERLOST)
       
  1387 						np->stats.tx_carrier_errors++;
       
  1388 					np->stats.tx_errors++;
       
  1389 				} else {
       
  1390 					np->stats.tx_packets++;
       
  1391 					np->stats.tx_bytes += skb->len;
       
  1392 				}
       
  1393 			}
       
  1394 		} else {
       
  1395 			if (Flags & NV_TX2_LASTPACKET) {
       
  1396 				skb = np->tx_skbuff[i];
       
  1397 				if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
       
  1398 					     NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
       
  1399 					if (Flags & NV_TX2_UNDERFLOW)
       
  1400 						np->stats.tx_fifo_errors++;
       
  1401 					if (Flags & NV_TX2_CARRIERLOST)
       
  1402 						np->stats.tx_carrier_errors++;
       
  1403 					np->stats.tx_errors++;
       
  1404 				} else {
       
  1405 					np->stats.tx_packets++;
       
  1406 					np->stats.tx_bytes += skb->len;
       
  1407 				}				
       
  1408 			}
       
  1409 		}
       
  1410 		nv_release_txskb(dev, i);
       
  1411 		np->nic_tx++;
       
  1412 	}
       
  1413 	if (!np->ecdev && np->next_tx - np->nic_tx < TX_LIMIT_START)
       
  1414 		netif_wake_queue(dev);
       
  1415 }
       
  1416 
       
  1417 /*
       
  1418  * nv_tx_timeout: dev->tx_timeout function
       
  1419  * Called with dev->xmit_lock held.
       
  1420  */
       
  1421 static void nv_tx_timeout(struct net_device *dev)
       
  1422 {
       
  1423 	struct fe_priv *np = netdev_priv(dev);
       
  1424 	u8 __iomem *base = get_hwbase(dev);
       
  1425 	u32 status;
       
  1426 
       
  1427 	if (np->msi_flags & NV_MSI_X_ENABLED)
       
  1428 		status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
       
  1429 	else
       
  1430 		status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
       
  1431 
       
  1432 	printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
       
  1433 
       
  1434 	{
       
  1435 		int i;
       
  1436 
       
  1437 		printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
       
  1438 				dev->name, (unsigned long)np->ring_addr,
       
  1439 				np->next_tx, np->nic_tx);
       
  1440 		printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
       
  1441 		for (i=0;i<=np->register_size;i+= 32) {
       
  1442 			printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
       
  1443 					i,
       
  1444 					readl(base + i + 0), readl(base + i + 4),
       
  1445 					readl(base + i + 8), readl(base + i + 12),
       
  1446 					readl(base + i + 16), readl(base + i + 20),
       
  1447 					readl(base + i + 24), readl(base + i + 28));
       
  1448 		}
       
  1449 		printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
       
  1450 		for (i=0;i<TX_RING;i+= 4) {
       
  1451 			if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
       
  1452 				printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
       
  1453 				       i, 
       
  1454 				       le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
       
  1455 				       le32_to_cpu(np->tx_ring.orig[i].FlagLen),
       
  1456 				       le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
       
  1457 				       le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
       
  1458 				       le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
       
  1459 				       le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
       
  1460 				       le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
       
  1461 				       le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
       
  1462 			} else {
       
  1463 				printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
       
  1464 				       i, 
       
  1465 				       le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
       
  1466 				       le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
       
  1467 				       le32_to_cpu(np->tx_ring.ex[i].FlagLen),
       
  1468 				       le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
       
  1469 				       le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
       
  1470 				       le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
       
  1471 				       le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
       
  1472 				       le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
       
  1473 				       le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
       
  1474 				       le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
       
  1475 				       le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
       
  1476 				       le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
       
  1477 			}
       
  1478 		}
       
  1479 	}
       
  1480 
       
  1481 	if (!np->ecdev) spin_lock_irq(&np->lock);
       
  1482 
       
  1483 	/* 1) stop tx engine */
       
  1484 	nv_stop_tx(dev);
       
  1485 
       
  1486 	/* 2) check that the packets were not sent already: */
       
  1487 	nv_tx_done(dev);
       
  1488 
       
  1489 	/* 3) if there are dead entries: clear everything */
       
  1490 	if (np->next_tx != np->nic_tx) {
       
  1491 		printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
       
  1492 		nv_drain_tx(dev);
       
  1493 		np->next_tx = np->nic_tx = 0;
       
  1494 		setup_hw_rings(dev, NV_SETUP_TX_RING);
       
  1495 		if (!np->ecdev) netif_wake_queue(dev);
       
  1496 	}
       
  1497 
       
  1498 	/* 4) restart tx engine */
       
  1499 	nv_start_tx(dev);
       
  1500 	if (!np->ecdev) spin_unlock_irq(&np->lock);
       
  1501 }
       
  1502 
       
  1503 /*
       
  1504  * Called when the nic notices a mismatch between the actual data len on the
       
  1505  * wire and the len indicated in the 802 header
       
  1506  */
       
  1507 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
       
  1508 {
       
  1509 	int hdrlen;	/* length of the 802 header */
       
  1510 	int protolen;	/* length as stored in the proto field */
       
  1511 
       
  1512 	/* 1) calculate len according to header */
       
  1513 	if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
       
  1514 		protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
       
  1515 		hdrlen = VLAN_HLEN;
       
  1516 	} else {
       
  1517 		protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
       
  1518 		hdrlen = ETH_HLEN;
       
  1519 	}
       
  1520 	dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
       
  1521 				dev->name, datalen, protolen, hdrlen);
       
  1522 	if (protolen > ETH_DATA_LEN)
       
  1523 		return datalen; /* Value in proto field not a len, no checks possible */
       
  1524 
       
  1525 	protolen += hdrlen;
       
  1526 	/* consistency checks: */
       
  1527 	if (datalen > ETH_ZLEN) {
       
  1528 		if (datalen >= protolen) {
       
  1529 			/* more data on wire than in 802 header, trim of
       
  1530 			 * additional data.
       
  1531 			 */
       
  1532 			dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
       
  1533 					dev->name, protolen);
       
  1534 			return protolen;
       
  1535 		} else {
       
  1536 			/* less data on wire than mentioned in header.
       
  1537 			 * Discard the packet.
       
  1538 			 */
       
  1539 			dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
       
  1540 					dev->name);
       
  1541 			return -1;
       
  1542 		}
       
  1543 	} else {
       
  1544 		/* short packet. Accept only if 802 values are also short */
       
  1545 		if (protolen > ETH_ZLEN) {
       
  1546 			dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
       
  1547 					dev->name);
       
  1548 			return -1;
       
  1549 		}
       
  1550 		dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
       
  1551 				dev->name, datalen);
       
  1552 		return datalen;
       
  1553 	}
       
  1554 }
       
  1555 
       
  1556 static void nv_rx_process(struct net_device *dev)
       
  1557 {
       
  1558 	struct fe_priv *np = netdev_priv(dev);
       
  1559 	u32 Flags;
       
  1560 	u32 vlanflags = 0;
       
  1561 
       
  1562 
       
  1563 	for (;;) {
       
  1564 		struct sk_buff *skb;
       
  1565 		int len;
       
  1566 		int i;
       
  1567 		if (np->cur_rx - np->refill_rx >= RX_RING)
       
  1568 			break;	/* we scanned the whole ring - do not continue */
       
  1569 
       
  1570 		i = np->cur_rx % RX_RING;
       
  1571 		if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
       
  1572 			Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
       
  1573 			len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
       
  1574 		} else {
       
  1575 			Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
       
  1576 			len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
       
  1577 			vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
       
  1578 		}
       
  1579 
       
  1580 		dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
       
  1581 					dev->name, np->cur_rx, Flags);
       
  1582 
       
  1583 		if (Flags & NV_RX_AVAIL)
       
  1584 			break;	/* still owned by hardware, */
       
  1585 
       
  1586 		/*
       
  1587 		 * the packet is for us - immediately tear down the pci mapping.
       
  1588 		 * TODO: check if a prefetch of the first cacheline improves
       
  1589 		 * the performance.
       
  1590 		 */
       
  1591 		pci_unmap_single(np->pci_dev, np->rx_dma[i],
       
  1592 				np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
       
  1593 				PCI_DMA_FROMDEVICE);
       
  1594 
       
  1595 		{
       
  1596 			int j;
       
  1597 			dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
       
  1598 			for (j=0; j<64; j++) {
       
  1599 				if ((j%16) == 0)
       
  1600 					dprintk("\n%03x:", j);
       
  1601 				dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
       
  1602 			}
       
  1603 			dprintk("\n");
       
  1604 		}
       
  1605 		/* look at what we actually got: */
       
  1606 		if (np->desc_ver == DESC_VER_1) {
       
  1607 			if (!(Flags & NV_RX_DESCRIPTORVALID))
       
  1608 				goto next_pkt;
       
  1609 
       
  1610 			if (Flags & NV_RX_ERROR) {
       
  1611 				if (Flags & NV_RX_MISSEDFRAME) {
       
  1612 					np->stats.rx_missed_errors++;
       
  1613 					np->stats.rx_errors++;
       
  1614 					goto next_pkt;
       
  1615 				}
       
  1616 				if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
       
  1617 					np->stats.rx_errors++;
       
  1618 					goto next_pkt;
       
  1619 				}
       
  1620 				if (Flags & NV_RX_CRCERR) {
       
  1621 					np->stats.rx_crc_errors++;
       
  1622 					np->stats.rx_errors++;
       
  1623 					goto next_pkt;
       
  1624 				}
       
  1625 				if (Flags & NV_RX_OVERFLOW) {
       
  1626 					np->stats.rx_over_errors++;
       
  1627 					np->stats.rx_errors++;
       
  1628 					goto next_pkt;
       
  1629 				}
       
  1630 				if (Flags & NV_RX_ERROR4) {
       
  1631 					len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
       
  1632 					if (len < 0) {
       
  1633 						np->stats.rx_errors++;
       
  1634 						goto next_pkt;
       
  1635 					}
       
  1636 				}
       
  1637 				/* framing errors are soft errors. */
       
  1638 				if (Flags & NV_RX_FRAMINGERR) {
       
  1639 					if (Flags & NV_RX_SUBSTRACT1) {
       
  1640 						len--;
       
  1641 					}
       
  1642 				}
       
  1643 			}
       
  1644 		} else {
       
  1645 			if (!(Flags & NV_RX2_DESCRIPTORVALID))
       
  1646 				goto next_pkt;
       
  1647 
       
  1648 			if (Flags & NV_RX2_ERROR) {
       
  1649 				if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
       
  1650 					np->stats.rx_errors++;
       
  1651 					goto next_pkt;
       
  1652 				}
       
  1653 				if (Flags & NV_RX2_CRCERR) {
       
  1654 					np->stats.rx_crc_errors++;
       
  1655 					np->stats.rx_errors++;
       
  1656 					goto next_pkt;
       
  1657 				}
       
  1658 				if (Flags & NV_RX2_OVERFLOW) {
       
  1659 					np->stats.rx_over_errors++;
       
  1660 					np->stats.rx_errors++;
       
  1661 					goto next_pkt;
       
  1662 				}
       
  1663 				if (Flags & NV_RX2_ERROR4) {
       
  1664 					len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
       
  1665 					if (len < 0) {
       
  1666 						np->stats.rx_errors++;
       
  1667 						goto next_pkt;
       
  1668 					}
       
  1669 				}
       
  1670 				/* framing errors are soft errors */
       
  1671 				if (Flags & NV_RX2_FRAMINGERR) {
       
  1672 					if (Flags & NV_RX2_SUBSTRACT1) {
       
  1673 						len--;
       
  1674 					}
       
  1675 				}
       
  1676 			}
       
  1677 			Flags &= NV_RX2_CHECKSUMMASK;
       
  1678 			if (Flags == NV_RX2_CHECKSUMOK1 ||
       
  1679 					Flags == NV_RX2_CHECKSUMOK2 ||
       
  1680 					Flags == NV_RX2_CHECKSUMOK3) {
       
  1681 				dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
       
  1682 				np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
       
  1683 			} else {
       
  1684 				dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
       
  1685 			}
       
  1686 		}
       
  1687 		if (np->ecdev) {
       
  1688 			ecdev_receive(np->ecdev, np->rx_skbuff[i]->data, len);
       
  1689 		}
       
  1690 		else {
       
  1691 			/* got a valid packet - forward it to the network core */
       
  1692 			skb = np->rx_skbuff[i];
       
  1693 			np->rx_skbuff[i] = NULL;
       
  1694 
       
  1695 			skb_put(skb, len);
       
  1696 			skb->protocol = eth_type_trans(skb, dev);
       
  1697 			dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
       
  1698 					dev->name, np->cur_rx, len, skb->protocol);
       
  1699 			if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
       
  1700 				vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
       
  1701 			} else {
       
  1702 				netif_rx(skb);
       
  1703 			}
       
  1704 		}
       
  1705 		dev->last_rx = jiffies;
       
  1706 		np->stats.rx_packets++;
       
  1707 		np->stats.rx_bytes += len;
       
  1708 next_pkt:
       
  1709 		np->cur_rx++;
       
  1710 	}
       
  1711 }
       
  1712 
       
  1713 static void set_bufsize(struct net_device *dev)
       
  1714 {
       
  1715 	struct fe_priv *np = netdev_priv(dev);
       
  1716 
       
  1717 	if (dev->mtu <= ETH_DATA_LEN)
       
  1718 		np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
       
  1719 	else
       
  1720 		np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
       
  1721 }
       
  1722 
       
  1723 /*
       
  1724  * nv_change_mtu: dev->change_mtu function
       
  1725  * Called with dev_base_lock held for read.
       
  1726  */
       
  1727 static int nv_change_mtu(struct net_device *dev, int new_mtu)
       
  1728 {
       
  1729 	struct fe_priv *np = netdev_priv(dev);
       
  1730 	int old_mtu;
       
  1731 
       
  1732 	if (new_mtu < 64 || new_mtu > np->pkt_limit)
       
  1733 		return -EINVAL;
       
  1734 
       
  1735 	old_mtu = dev->mtu;
       
  1736 	dev->mtu = new_mtu;
       
  1737 
       
  1738 	/* return early if the buffer sizes will not change */
       
  1739 	if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
       
  1740 		return 0;
       
  1741 	if (old_mtu == new_mtu)
       
  1742 		return 0;
       
  1743 
       
  1744 	/* synchronized against open : rtnl_lock() held by caller */
       
  1745 	if (netif_running(dev)) {
       
  1746 		u8 __iomem *base = get_hwbase(dev);
       
  1747 		/*
       
  1748 		 * It seems that the nic preloads valid ring entries into an
       
  1749 		 * internal buffer. The procedure for flushing everything is
       
  1750 		 * guessed, there is probably a simpler approach.
       
  1751 		 * Changing the MTU is a rare event, it shouldn't matter.
       
  1752 		 */
       
  1753 		nv_disable_irq(dev);
       
  1754 		spin_lock_bh(&dev->xmit_lock);
       
  1755 		spin_lock(&np->lock);
       
  1756 		/* stop engines */
       
  1757 		nv_stop_rx(dev);
       
  1758 		nv_stop_tx(dev);
       
  1759 		nv_txrx_reset(dev);
       
  1760 		/* drain rx queue */
       
  1761 		nv_drain_rx(dev);
       
  1762 		nv_drain_tx(dev);
       
  1763 		/* reinit driver view of the rx queue */
       
  1764 		nv_init_rx(dev);
       
  1765 		nv_init_tx(dev);
       
  1766 		/* alloc new rx buffers */
       
  1767 		set_bufsize(dev);
       
  1768 		if (nv_alloc_rx(dev)) {
       
  1769 			if (!np->in_shutdown)
       
  1770 				mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
       
  1771 		}
       
  1772 		/* reinit nic view of the rx queue */
       
  1773 		writel(np->rx_buf_sz, base + NvRegOffloadConfig);
       
  1774 		setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
       
  1775 		writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
       
  1776 			base + NvRegRingSizes);
       
  1777 		pci_push(base);
       
  1778 		writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
       
  1779 		pci_push(base);
       
  1780 
       
  1781 		/* restart rx engine */
       
  1782 		nv_start_rx(dev);
       
  1783 		nv_start_tx(dev);
       
  1784 		spin_unlock(&np->lock);
       
  1785 		spin_unlock_bh(&dev->xmit_lock);
       
  1786 		nv_enable_irq(dev);
       
  1787 	}
       
  1788 	return 0;
       
  1789 }
       
  1790 
       
  1791 static void nv_copy_mac_to_hw(struct net_device *dev)
       
  1792 {
       
  1793 	u8 __iomem *base = get_hwbase(dev);
       
  1794 	u32 mac[2];
       
  1795 
       
  1796 	mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
       
  1797 			(dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
       
  1798 	mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
       
  1799 
       
  1800 	writel(mac[0], base + NvRegMacAddrA);
       
  1801 	writel(mac[1], base + NvRegMacAddrB);
       
  1802 }
       
  1803 
       
  1804 /*
       
  1805  * nv_set_mac_address: dev->set_mac_address function
       
  1806  * Called with rtnl_lock() held.
       
  1807  */
       
  1808 static int nv_set_mac_address(struct net_device *dev, void *addr)
       
  1809 {
       
  1810 	struct fe_priv *np = netdev_priv(dev);
       
  1811 	struct sockaddr *macaddr = (struct sockaddr*)addr;
       
  1812 
       
  1813 	if(!is_valid_ether_addr(macaddr->sa_data))
       
  1814 		return -EADDRNOTAVAIL;
       
  1815 
       
  1816 	/* synchronized against open : rtnl_lock() held by caller */
       
  1817 	memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
       
  1818 
       
  1819 	if (netif_running(dev)) {
       
  1820 		spin_lock_bh(&dev->xmit_lock);
       
  1821 		spin_lock_irq(&np->lock);
       
  1822 
       
  1823 		/* stop rx engine */
       
  1824 		nv_stop_rx(dev);
       
  1825 
       
  1826 		/* set mac address */
       
  1827 		nv_copy_mac_to_hw(dev);
       
  1828 
       
  1829 		/* restart rx engine */
       
  1830 		nv_start_rx(dev);
       
  1831 		spin_unlock_irq(&np->lock);
       
  1832 		spin_unlock_bh(&dev->xmit_lock);
       
  1833 	} else {
       
  1834 		nv_copy_mac_to_hw(dev);
       
  1835 	}
       
  1836 	return 0;
       
  1837 }
       
  1838 
       
  1839 /*
       
  1840  * nv_set_multicast: dev->set_multicast function
       
  1841  * Called with dev->xmit_lock held.
       
  1842  */
       
  1843 static void nv_set_multicast(struct net_device *dev)
       
  1844 {
       
  1845 	struct fe_priv *np = netdev_priv(dev);
       
  1846 	u8 __iomem *base = get_hwbase(dev);
       
  1847 	u32 addr[2];
       
  1848 	u32 mask[2];
       
  1849 	u32 pff;
       
  1850 
       
  1851 	memset(addr, 0, sizeof(addr));
       
  1852 	memset(mask, 0, sizeof(mask));
       
  1853 
       
  1854 	if (dev->flags & IFF_PROMISC) {
       
  1855 		printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
       
  1856 		pff = NVREG_PFF_PROMISC;
       
  1857 	} else {
       
  1858 		pff = NVREG_PFF_MYADDR;
       
  1859 
       
  1860 		if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
       
  1861 			u32 alwaysOff[2];
       
  1862 			u32 alwaysOn[2];
       
  1863 
       
  1864 			alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
       
  1865 			if (dev->flags & IFF_ALLMULTI) {
       
  1866 				alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
       
  1867 			} else {
       
  1868 				struct dev_mc_list *walk;
       
  1869 
       
  1870 				walk = dev->mc_list;
       
  1871 				while (walk != NULL) {
       
  1872 					u32 a, b;
       
  1873 					a = le32_to_cpu(*(u32 *) walk->dmi_addr);
       
  1874 					b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
       
  1875 					alwaysOn[0] &= a;
       
  1876 					alwaysOff[0] &= ~a;
       
  1877 					alwaysOn[1] &= b;
       
  1878 					alwaysOff[1] &= ~b;
       
  1879 					walk = walk->next;
       
  1880 				}
       
  1881 			}
       
  1882 			addr[0] = alwaysOn[0];
       
  1883 			addr[1] = alwaysOn[1];
       
  1884 			mask[0] = alwaysOn[0] | alwaysOff[0];
       
  1885 			mask[1] = alwaysOn[1] | alwaysOff[1];
       
  1886 		}
       
  1887 	}
       
  1888 	addr[0] |= NVREG_MCASTADDRA_FORCE;
       
  1889 	pff |= NVREG_PFF_ALWAYS;
       
  1890 	spin_lock_irq(&np->lock);
       
  1891 	nv_stop_rx(dev);
       
  1892 	writel(addr[0], base + NvRegMulticastAddrA);
       
  1893 	writel(addr[1], base + NvRegMulticastAddrB);
       
  1894 	writel(mask[0], base + NvRegMulticastMaskA);
       
  1895 	writel(mask[1], base + NvRegMulticastMaskB);
       
  1896 	writel(pff, base + NvRegPacketFilterFlags);
       
  1897 	dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
       
  1898 		dev->name);
       
  1899 	nv_start_rx(dev);
       
  1900 	spin_unlock_irq(&np->lock);
       
  1901 }
       
  1902 
       
  1903 /**
       
  1904  * nv_update_linkspeed: Setup the MAC according to the link partner
       
  1905  * @dev: Network device to be configured
       
  1906  *
       
  1907  * The function queries the PHY and checks if there is a link partner.
       
  1908  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
       
  1909  * set to 10 MBit HD.
       
  1910  *
       
  1911  * The function returns 0 if there is no link partner and 1 if there is
       
  1912  * a good link partner.
       
  1913  */
       
  1914 static int nv_update_linkspeed(struct net_device *dev)
       
  1915 {
       
  1916 	struct fe_priv *np = netdev_priv(dev);
       
  1917 	u8 __iomem *base = get_hwbase(dev);
       
  1918 	int adv, lpa;
       
  1919 	int newls = np->linkspeed;
       
  1920 	int newdup = np->duplex;
       
  1921 	int mii_status;
       
  1922 	int retval = 0;
       
  1923 	u32 control_1000, status_1000, phyreg;
       
  1924 
       
  1925 	/* BMSR_LSTATUS is latched, read it twice:
       
  1926 	 * we want the current value.
       
  1927 	 */
       
  1928 	mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
       
  1929 	mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
       
  1930 
       
  1931 	if (!(mii_status & BMSR_LSTATUS)) {
       
  1932 		dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
       
  1933 				dev->name);
       
  1934 		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
       
  1935 		newdup = 0;
       
  1936 		retval = 0;
       
  1937 		goto set_speed;
       
  1938 	}
       
  1939 
       
  1940 	if (np->autoneg == 0) {
       
  1941 		dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
       
  1942 				dev->name, np->fixed_mode);
       
  1943 		if (np->fixed_mode & LPA_100FULL) {
       
  1944 			newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
       
  1945 			newdup = 1;
       
  1946 		} else if (np->fixed_mode & LPA_100HALF) {
       
  1947 			newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
       
  1948 			newdup = 0;
       
  1949 		} else if (np->fixed_mode & LPA_10FULL) {
       
  1950 			newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
       
  1951 			newdup = 1;
       
  1952 		} else {
       
  1953 			newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
       
  1954 			newdup = 0;
       
  1955 		}
       
  1956 		retval = 1;
       
  1957 		goto set_speed;
       
  1958 	}
       
  1959 	/* check auto negotiation is complete */
       
  1960 	if (!(mii_status & BMSR_ANEGCOMPLETE)) {
       
  1961 		/* still in autonegotiation - configure nic for 10 MBit HD and wait. */
       
  1962 		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
       
  1963 		newdup = 0;
       
  1964 		retval = 0;
       
  1965 		dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
       
  1966 		goto set_speed;
       
  1967 	}
       
  1968 
       
  1969 	retval = 1;
       
  1970 	if (np->gigabit == PHY_GIGABIT) {
       
  1971 		control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
       
  1972 		status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
       
  1973 
       
  1974 		if ((control_1000 & ADVERTISE_1000FULL) &&
       
  1975 			(status_1000 & LPA_1000FULL)) {
       
  1976 			dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
       
  1977 				dev->name);
       
  1978 			newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
       
  1979 			newdup = 1;
       
  1980 			goto set_speed;
       
  1981 		}
       
  1982 	}
       
  1983 
       
  1984 	adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
       
  1985 	lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
       
  1986 	dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
       
  1987 				dev->name, adv, lpa);
       
  1988 
       
  1989 	/* FIXME: handle parallel detection properly */
       
  1990 	lpa = lpa & adv;
       
  1991 	if (lpa & LPA_100FULL) {
       
  1992 		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
       
  1993 		newdup = 1;
       
  1994 	} else if (lpa & LPA_100HALF) {
       
  1995 		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
       
  1996 		newdup = 0;
       
  1997 	} else if (lpa & LPA_10FULL) {
       
  1998 		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
       
  1999 		newdup = 1;
       
  2000 	} else if (lpa & LPA_10HALF) {
       
  2001 		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
       
  2002 		newdup = 0;
       
  2003 	} else {
       
  2004 		dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
       
  2005 		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
       
  2006 		newdup = 0;
       
  2007 	}
       
  2008 
       
  2009 set_speed:
       
  2010 	if (np->duplex == newdup && np->linkspeed == newls)
       
  2011 		return retval;
       
  2012 
       
  2013 	dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
       
  2014 			dev->name, np->linkspeed, np->duplex, newls, newdup);
       
  2015 
       
  2016 	np->duplex = newdup;
       
  2017 	np->linkspeed = newls;
       
  2018 
       
  2019 	if (np->gigabit == PHY_GIGABIT) {
       
  2020 		phyreg = readl(base + NvRegRandomSeed);
       
  2021 		phyreg &= ~(0x3FF00);
       
  2022 		if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
       
  2023 			phyreg |= NVREG_RNDSEED_FORCE3;
       
  2024 		else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
       
  2025 			phyreg |= NVREG_RNDSEED_FORCE2;
       
  2026 		else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
       
  2027 			phyreg |= NVREG_RNDSEED_FORCE;
       
  2028 		writel(phyreg, base + NvRegRandomSeed);
       
  2029 	}
       
  2030 
       
  2031 	phyreg = readl(base + NvRegPhyInterface);
       
  2032 	phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
       
  2033 	if (np->duplex == 0)
       
  2034 		phyreg |= PHY_HALF;
       
  2035 	if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
       
  2036 		phyreg |= PHY_100;
       
  2037 	else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
       
  2038 		phyreg |= PHY_1000;
       
  2039 	writel(phyreg, base + NvRegPhyInterface);
       
  2040 
       
  2041 	writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
       
  2042 		base + NvRegMisc1);
       
  2043 	pci_push(base);
       
  2044 	writel(np->linkspeed, base + NvRegLinkSpeed);
       
  2045 	pci_push(base);
       
  2046 
       
  2047 	return retval;
       
  2048 }
       
  2049 
       
  2050 static void nv_linkchange(struct net_device *dev)
       
  2051 {
       
  2052 	struct fe_priv *np = netdev_priv(dev);
       
  2053 
       
  2054     if (np->ecdev) {
       
  2055         int link = nv_update_linkspeed(dev);
       
  2056         ecdev_set_link(np->ecdev, link);
       
  2057         return;
       
  2058     }
       
  2059 
       
  2060 	if (nv_update_linkspeed(dev)) {
       
  2061 		if (!netif_carrier_ok(dev)) {
       
  2062 			netif_carrier_on(dev);
       
  2063 			printk(KERN_INFO "%s: link up.\n", dev->name);
       
  2064 			nv_start_rx(dev);
       
  2065 		}
       
  2066 	} else {
       
  2067 		if (netif_carrier_ok(dev)) {
       
  2068 			netif_carrier_off(dev);
       
  2069 			printk(KERN_INFO "%s: link down.\n", dev->name);
       
  2070 			nv_stop_rx(dev);
       
  2071 		}
       
  2072 	}
       
  2073 }
       
  2074 
       
  2075 static void nv_link_irq(struct net_device *dev)
       
  2076 {
       
  2077 	u8 __iomem *base = get_hwbase(dev);
       
  2078 	u32 miistat;
       
  2079 
       
  2080 	miistat = readl(base + NvRegMIIStatus);
       
  2081 	writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
       
  2082 	dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
       
  2083 
       
  2084 	if (miistat & (NVREG_MIISTAT_LINKCHANGE))
       
  2085 		nv_linkchange(dev);
       
  2086 	dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
       
  2087 }
       
  2088 
       
  2089 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
       
  2090 {
       
  2091 	struct net_device *dev = (struct net_device *) data;
       
  2092 	struct fe_priv *np = netdev_priv(dev);
       
  2093 	u8 __iomem *base = get_hwbase(dev);
       
  2094 	u32 events;
       
  2095 	int i;
       
  2096 
       
  2097 	dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
       
  2098 
       
  2099 	for (i=0; ; i++) {
       
  2100 		if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
       
  2101 			events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
       
  2102 			writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
       
  2103 		} else {
       
  2104 			events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
       
  2105 			writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
       
  2106 		}
       
  2107 		pci_push(base);
       
  2108 		dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
       
  2109 		if (!(events & np->irqmask))
       
  2110 			break;
       
  2111 
       
  2112 		if (!np->ecdev) spin_lock(&np->lock);
       
  2113 		nv_tx_done(dev);
       
  2114 		if (!np->ecdev) spin_unlock(&np->lock);
       
  2115 		
       
  2116 		nv_rx_process(dev);
       
  2117 		if (nv_alloc_rx(dev)) {
       
  2118 			spin_lock(&np->lock);
       
  2119 			if (!np->in_shutdown)
       
  2120 				mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
       
  2121 			spin_unlock(&np->lock);
       
  2122 		}
       
  2123 		
       
  2124 		if (events & NVREG_IRQ_LINK) {
       
  2125 			if (!np->ecdev) spin_lock(&np->lock);
       
  2126 			nv_link_irq(dev);
       
  2127 			if (!np->ecdev) spin_unlock(&np->lock);
       
  2128 		}
       
  2129 		if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
       
  2130 			if (!np->ecdev) spin_lock(&np->lock);
       
  2131 			nv_linkchange(dev);
       
  2132 			if (!np->ecdev) spin_unlock(&np->lock);
       
  2133 			np->link_timeout = jiffies + LINK_TIMEOUT;
       
  2134 		}
       
  2135 		if (events & (NVREG_IRQ_TX_ERR)) {
       
  2136 			dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
       
  2137 						dev->name, events);
       
  2138 		}
       
  2139 		if (events & (NVREG_IRQ_UNKNOWN)) {
       
  2140 			printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
       
  2141 						dev->name, events);
       
  2142 		}
       
  2143 		if (i > max_interrupt_work) {
       
  2144 			if (!np->ecdev) {
       
  2145 				spin_lock(&np->lock);
       
  2146 				/* disable interrupts on the nic */
       
  2147 				if (!(np->msi_flags & NV_MSI_X_ENABLED))
       
  2148 					writel(0, base + NvRegIrqMask);
       
  2149 				else
       
  2150 					writel(np->irqmask, base + NvRegIrqMask);
       
  2151 				pci_push(base);
       
  2152 
       
  2153 				if (!np->in_shutdown) {
       
  2154 					np->nic_poll_irq = np->irqmask;
       
  2155 					mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
       
  2156 				}
       
  2157 				spin_unlock(&np->lock);
       
  2158 			}
       
  2159 			printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
       
  2160 			break;
       
  2161 		}
       
  2162 
       
  2163 	}
       
  2164 	dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
       
  2165 
       
  2166 	return IRQ_RETVAL(i);
       
  2167 }
       
  2168 
       
  2169 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
       
  2170 {
       
  2171 	struct net_device *dev = (struct net_device *) data;
       
  2172 	struct fe_priv *np = netdev_priv(dev);
       
  2173 	u8 __iomem *base = get_hwbase(dev);
       
  2174 	u32 events;
       
  2175 	int i;
       
  2176 
       
  2177 	dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
       
  2178 
       
  2179 	for (i=0; ; i++) {
       
  2180 		events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
       
  2181 		writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
       
  2182 		pci_push(base);
       
  2183 		dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
       
  2184 		if (!(events & np->irqmask))
       
  2185 			break;
       
  2186 
       
  2187 		if (!np->ecdev) spin_lock_irq(&np->lock);
       
  2188 		nv_tx_done(dev);
       
  2189 		if (!np->ecdev) spin_unlock_irq(&np->lock);
       
  2190 		
       
  2191 		if (events & (NVREG_IRQ_TX_ERR)) {
       
  2192 			dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
       
  2193 						dev->name, events);
       
  2194 		}
       
  2195 		if (i > max_interrupt_work) {
       
  2196 			if (!np->ecdev) { 
       
  2197 				spin_lock_irq(&np->lock);
       
  2198 				/* disable interrupts on the nic */
       
  2199 				writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
       
  2200 				pci_push(base);
       
  2201 
       
  2202 				if (!np->in_shutdown) {
       
  2203 					np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
       
  2204 					mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
       
  2205 				}
       
  2206 				spin_unlock_irq(&np->lock);
       
  2207 			}
       
  2208 			printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
       
  2209 			break;
       
  2210 		}
       
  2211 
       
  2212 	}
       
  2213 	dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
       
  2214 
       
  2215 	return IRQ_RETVAL(i);
       
  2216 }
       
  2217 
       
  2218 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
       
  2219 {
       
  2220 	struct net_device *dev = (struct net_device *) data;
       
  2221 	struct fe_priv *np = netdev_priv(dev);
       
  2222 	u8 __iomem *base = get_hwbase(dev);
       
  2223 	u32 events;
       
  2224 	int i;
       
  2225 
       
  2226 	dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
       
  2227 
       
  2228 	for (i=0; ; i++) {
       
  2229 		events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
       
  2230 		writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
       
  2231 		pci_push(base);
       
  2232 		dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
       
  2233 		if (!(events & np->irqmask))
       
  2234 			break;
       
  2235 		
       
  2236 		nv_rx_process(dev);
       
  2237 		if (nv_alloc_rx(dev) && !np->ecdev) {
       
  2238 			spin_lock_irq(&np->lock);
       
  2239 			if (!np->in_shutdown)
       
  2240 				mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
       
  2241 			spin_unlock_irq(&np->lock);
       
  2242 		}
       
  2243 		
       
  2244 		if (i > max_interrupt_work) {
       
  2245 			if (!np->ecdev) {
       
  2246 				spin_lock_irq(&np->lock);
       
  2247 				/* disable interrupts on the nic */
       
  2248 				writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
       
  2249 				pci_push(base);
       
  2250 
       
  2251 				if (!np->in_shutdown) {
       
  2252 					np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
       
  2253 					mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
       
  2254 				}
       
  2255 				spin_unlock_irq(&np->lock);
       
  2256 			}
       
  2257 			printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
       
  2258 			break;
       
  2259 		}
       
  2260 
       
  2261 	}
       
  2262 	dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
       
  2263 
       
  2264 	return IRQ_RETVAL(i);
       
  2265 }
       
  2266 
       
  2267 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
       
  2268 {
       
  2269 	struct net_device *dev = (struct net_device *) data;
       
  2270 	struct fe_priv *np = netdev_priv(dev);
       
  2271 	u8 __iomem *base = get_hwbase(dev);
       
  2272 	u32 events;
       
  2273 	int i;
       
  2274 
       
  2275 	dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
       
  2276 
       
  2277 	for (i=0; ; i++) {
       
  2278 		events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
       
  2279 		writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
       
  2280 		pci_push(base);
       
  2281 		dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
       
  2282 		if (!(events & np->irqmask))
       
  2283 			break;
       
  2284 		
       
  2285 		if (events & NVREG_IRQ_LINK) {
       
  2286 			if (!np->ecdev) spin_lock_irq(&np->lock);
       
  2287 			nv_link_irq(dev);
       
  2288 			if (!np->ecdev) spin_unlock_irq(&np->lock);
       
  2289 		}
       
  2290 		if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
       
  2291 			if (!np->ecdev) spin_lock_irq(&np->lock);
       
  2292 			nv_linkchange(dev);
       
  2293 			if (!np->ecdev) spin_unlock_irq(&np->lock);
       
  2294 			np->link_timeout = jiffies + LINK_TIMEOUT;
       
  2295 		}
       
  2296 		if (events & (NVREG_IRQ_UNKNOWN)) {
       
  2297 			printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
       
  2298 						dev->name, events);
       
  2299 		}
       
  2300 		if (i > max_interrupt_work) {
       
  2301 			if (!np->ecdev) { 
       
  2302 				spin_lock_irq(&np->lock);
       
  2303 				/* disable interrupts on the nic */
       
  2304 				writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
       
  2305 				pci_push(base);
       
  2306 
       
  2307 				if (!np->in_shutdown) {
       
  2308 					np->nic_poll_irq |= NVREG_IRQ_OTHER;
       
  2309 					mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
       
  2310 				}
       
  2311 				spin_unlock_irq(&np->lock);
       
  2312 			}
       
  2313 			printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
       
  2314 			break;
       
  2315 		}
       
  2316 
       
  2317 	}
       
  2318 	dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
       
  2319 
       
  2320 	return IRQ_RETVAL(i);
       
  2321 }
       
  2322 
       
  2323 void ec_poll(struct net_device *dev)
       
  2324 {
       
  2325 	struct fe_priv *np = netdev_priv(dev);
       
  2326 
       
  2327 	if (!using_multi_irqs(dev)) {
       
  2328 		nv_nic_irq((int) 0, dev, (struct pt_regs *) NULL);
       
  2329 	} else {
       
  2330 		if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
       
  2331 			nv_nic_irq_rx((int) 0, dev, (struct pt_regs *) NULL);
       
  2332 		}
       
  2333 		if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
       
  2334 			nv_nic_irq_tx((int) 0, dev, (struct pt_regs *) NULL);
       
  2335 		}
       
  2336 		if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
       
  2337 			nv_nic_irq_other((int) 0, dev, (struct pt_regs *) NULL);
       
  2338 		}
       
  2339 	}
       
  2340 }
       
  2341 
       
  2342 static void nv_do_nic_poll(unsigned long data)
       
  2343 {
       
  2344 	struct net_device *dev = (struct net_device *) data;
       
  2345 	struct fe_priv *np = netdev_priv(dev);
       
  2346 	u8 __iomem *base = get_hwbase(dev);
       
  2347 	u32 mask = 0;
       
  2348 
       
  2349 	/*
       
  2350 	 * First disable irq(s) and then
       
  2351 	 * reenable interrupts on the nic, we have to do this before calling
       
  2352 	 * nv_nic_irq because that may decide to do otherwise
       
  2353 	 */
       
  2354 
       
  2355 	if (!using_multi_irqs(dev)) {
       
  2356 		if (np->msi_flags & NV_MSI_X_ENABLED)
       
  2357 			disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
       
  2358 		else
       
  2359 			disable_irq(dev->irq);
       
  2360 		mask = np->irqmask;
       
  2361 	} else {
       
  2362 		if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
       
  2363 			disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
       
  2364 			mask |= NVREG_IRQ_RX_ALL;
       
  2365 		}
       
  2366 		if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
       
  2367 			disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
       
  2368 			mask |= NVREG_IRQ_TX_ALL;
       
  2369 		}
       
  2370 		if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
       
  2371 			disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
       
  2372 			mask |= NVREG_IRQ_OTHER;
       
  2373 		}
       
  2374 	}
       
  2375 	np->nic_poll_irq = 0;
       
  2376 
       
  2377 	/* FIXME: Do we need synchronize_irq(dev->irq) here? */
       
  2378 	
       
  2379 	writel(mask, base + NvRegIrqMask);
       
  2380 	pci_push(base);
       
  2381 
       
  2382 	if (!using_multi_irqs(dev)) {
       
  2383 		nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
       
  2384 		if (np->msi_flags & NV_MSI_X_ENABLED)
       
  2385 			enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
       
  2386 		else
       
  2387 			enable_irq(dev->irq);
       
  2388 	} else {
       
  2389 		if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
       
  2390 			nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
       
  2391 			enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
       
  2392 		}
       
  2393 		if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
       
  2394 			nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
       
  2395 			enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
       
  2396 		}
       
  2397 		if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
       
  2398 			nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
       
  2399 			enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
       
  2400 		}
       
  2401 	}
       
  2402 }
       
  2403 
       
  2404 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  2405 static void nv_poll_controller(struct net_device *dev)
       
  2406 {
       
  2407 	nv_do_nic_poll((unsigned long) dev);
       
  2408 }
       
  2409 #endif
       
  2410 
       
  2411 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
       
  2412 {
       
  2413 	struct fe_priv *np = netdev_priv(dev);
       
  2414 	strcpy(info->driver, "forcedeth");
       
  2415 	strcpy(info->version, FORCEDETH_VERSION);
       
  2416 	strcpy(info->bus_info, pci_name(np->pci_dev));
       
  2417 }
       
  2418 
       
  2419 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
       
  2420 {
       
  2421 	struct fe_priv *np = netdev_priv(dev);
       
  2422 	wolinfo->supported = WAKE_MAGIC;
       
  2423 
       
  2424 	spin_lock_irq(&np->lock);
       
  2425 	if (np->wolenabled)
       
  2426 		wolinfo->wolopts = WAKE_MAGIC;
       
  2427 	spin_unlock_irq(&np->lock);
       
  2428 }
       
  2429 
       
  2430 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
       
  2431 {
       
  2432 	struct fe_priv *np = netdev_priv(dev);
       
  2433 	u8 __iomem *base = get_hwbase(dev);
       
  2434 
       
  2435 	spin_lock_irq(&np->lock);
       
  2436 	if (wolinfo->wolopts == 0) {
       
  2437 		writel(0, base + NvRegWakeUpFlags);
       
  2438 		np->wolenabled = 0;
       
  2439 	}
       
  2440 	if (wolinfo->wolopts & WAKE_MAGIC) {
       
  2441 		writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
       
  2442 		np->wolenabled = 1;
       
  2443 	}
       
  2444 	spin_unlock_irq(&np->lock);
       
  2445 	return 0;
       
  2446 }
       
  2447 
       
  2448 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
       
  2449 {
       
  2450 	struct fe_priv *np = netdev_priv(dev);
       
  2451 	int adv;
       
  2452 
       
  2453 	spin_lock_irq(&np->lock);
       
  2454 	ecmd->port = PORT_MII;
       
  2455 	if (!netif_running(dev)) {
       
  2456 		/* We do not track link speed / duplex setting if the
       
  2457 		 * interface is disabled. Force a link check */
       
  2458 		nv_update_linkspeed(dev);
       
  2459 	}
       
  2460 	switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
       
  2461 		case NVREG_LINKSPEED_10:
       
  2462 			ecmd->speed = SPEED_10;
       
  2463 			break;
       
  2464 		case NVREG_LINKSPEED_100:
       
  2465 			ecmd->speed = SPEED_100;
       
  2466 			break;
       
  2467 		case NVREG_LINKSPEED_1000:
       
  2468 			ecmd->speed = SPEED_1000;
       
  2469 			break;
       
  2470 	}
       
  2471 	ecmd->duplex = DUPLEX_HALF;
       
  2472 	if (np->duplex)
       
  2473 		ecmd->duplex = DUPLEX_FULL;
       
  2474 
       
  2475 	ecmd->autoneg = np->autoneg;
       
  2476 
       
  2477 	ecmd->advertising = ADVERTISED_MII;
       
  2478 	if (np->autoneg) {
       
  2479 		ecmd->advertising |= ADVERTISED_Autoneg;
       
  2480 		adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
       
  2481 	} else {
       
  2482 		adv = np->fixed_mode;
       
  2483 	}
       
  2484 	if (adv & ADVERTISE_10HALF)
       
  2485 		ecmd->advertising |= ADVERTISED_10baseT_Half;
       
  2486 	if (adv & ADVERTISE_10FULL)
       
  2487 		ecmd->advertising |= ADVERTISED_10baseT_Full;
       
  2488 	if (adv & ADVERTISE_100HALF)
       
  2489 		ecmd->advertising |= ADVERTISED_100baseT_Half;
       
  2490 	if (adv & ADVERTISE_100FULL)
       
  2491 		ecmd->advertising |= ADVERTISED_100baseT_Full;
       
  2492 	if (np->autoneg && np->gigabit == PHY_GIGABIT) {
       
  2493 		adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
       
  2494 		if (adv & ADVERTISE_1000FULL)
       
  2495 			ecmd->advertising |= ADVERTISED_1000baseT_Full;
       
  2496 	}
       
  2497 
       
  2498 	ecmd->supported = (SUPPORTED_Autoneg |
       
  2499 		SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
       
  2500 		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
       
  2501 		SUPPORTED_MII);
       
  2502 	if (np->gigabit == PHY_GIGABIT)
       
  2503 		ecmd->supported |= SUPPORTED_1000baseT_Full;
       
  2504 
       
  2505 	ecmd->phy_address = np->phyaddr;
       
  2506 	ecmd->transceiver = XCVR_EXTERNAL;
       
  2507 
       
  2508 	/* ignore maxtxpkt, maxrxpkt for now */
       
  2509 	spin_unlock_irq(&np->lock);
       
  2510 	return 0;
       
  2511 }
       
  2512 
       
  2513 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
       
  2514 {
       
  2515 	struct fe_priv *np = netdev_priv(dev);
       
  2516 
       
  2517 	if (ecmd->port != PORT_MII)
       
  2518 		return -EINVAL;
       
  2519 	if (ecmd->transceiver != XCVR_EXTERNAL)
       
  2520 		return -EINVAL;
       
  2521 	if (ecmd->phy_address != np->phyaddr) {
       
  2522 		/* TODO: support switching between multiple phys. Should be
       
  2523 		 * trivial, but not enabled due to lack of test hardware. */
       
  2524 		return -EINVAL;
       
  2525 	}
       
  2526 	if (ecmd->autoneg == AUTONEG_ENABLE) {
       
  2527 		u32 mask;
       
  2528 
       
  2529 		mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
       
  2530 			  ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
       
  2531 		if (np->gigabit == PHY_GIGABIT)
       
  2532 			mask |= ADVERTISED_1000baseT_Full;
       
  2533 
       
  2534 		if ((ecmd->advertising & mask) == 0)
       
  2535 			return -EINVAL;
       
  2536 
       
  2537 	} else if (ecmd->autoneg == AUTONEG_DISABLE) {
       
  2538 		/* Note: autonegotiation disable, speed 1000 intentionally
       
  2539 		 * forbidden - noone should need that. */
       
  2540 
       
  2541 		if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
       
  2542 			return -EINVAL;
       
  2543 		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
       
  2544 			return -EINVAL;
       
  2545 	} else {
       
  2546 		return -EINVAL;
       
  2547 	}
       
  2548 
       
  2549 	spin_lock_irq(&np->lock);
       
  2550 	if (ecmd->autoneg == AUTONEG_ENABLE) {
       
  2551 		int adv, bmcr;
       
  2552 
       
  2553 		np->autoneg = 1;
       
  2554 
       
  2555 		/* advertise only what has been requested */
       
  2556 		adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
       
  2557 		adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
       
  2558 		if (ecmd->advertising & ADVERTISED_10baseT_Half)
       
  2559 			adv |= ADVERTISE_10HALF;
       
  2560 		if (ecmd->advertising & ADVERTISED_10baseT_Full)
       
  2561 			adv |= ADVERTISE_10FULL;
       
  2562 		if (ecmd->advertising & ADVERTISED_100baseT_Half)
       
  2563 			adv |= ADVERTISE_100HALF;
       
  2564 		if (ecmd->advertising & ADVERTISED_100baseT_Full)
       
  2565 			adv |= ADVERTISE_100FULL;
       
  2566 		mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
       
  2567 
       
  2568 		if (np->gigabit == PHY_GIGABIT) {
       
  2569 			adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
       
  2570 			adv &= ~ADVERTISE_1000FULL;
       
  2571 			if (ecmd->advertising & ADVERTISED_1000baseT_Full)
       
  2572 				adv |= ADVERTISE_1000FULL;
       
  2573 			mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
       
  2574 		}
       
  2575 
       
  2576 		bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
       
  2577 		bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
       
  2578 		mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
       
  2579 
       
  2580 	} else {
       
  2581 		int adv, bmcr;
       
  2582 
       
  2583 		np->autoneg = 0;
       
  2584 
       
  2585 		adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
       
  2586 		adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
       
  2587 		if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
       
  2588 			adv |= ADVERTISE_10HALF;
       
  2589 		if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
       
  2590 			adv |= ADVERTISE_10FULL;
       
  2591 		if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
       
  2592 			adv |= ADVERTISE_100HALF;
       
  2593 		if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
       
  2594 			adv |= ADVERTISE_100FULL;
       
  2595 		mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
       
  2596 		np->fixed_mode = adv;
       
  2597 
       
  2598 		if (np->gigabit == PHY_GIGABIT) {
       
  2599 			adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
       
  2600 			adv &= ~ADVERTISE_1000FULL;
       
  2601 			mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
       
  2602 		}
       
  2603 
       
  2604 		bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
       
  2605 		bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
       
  2606 		if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
       
  2607 			bmcr |= BMCR_FULLDPLX;
       
  2608 		if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
       
  2609 			bmcr |= BMCR_SPEED100;
       
  2610 		mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
       
  2611 
       
  2612 		if (netif_running(dev)) {
       
  2613 			/* Wait a bit and then reconfigure the nic. */
       
  2614 			udelay(10);
       
  2615 			nv_linkchange(dev);
       
  2616 		}
       
  2617 	}
       
  2618 	spin_unlock_irq(&np->lock);
       
  2619 
       
  2620 	return 0;
       
  2621 }
       
  2622 
       
  2623 #define FORCEDETH_REGS_VER	1
       
  2624 
       
  2625 static int nv_get_regs_len(struct net_device *dev)
       
  2626 {
       
  2627 	struct fe_priv *np = netdev_priv(dev);
       
  2628 	return np->register_size;
       
  2629 }
       
  2630 
       
  2631 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
       
  2632 {
       
  2633 	struct fe_priv *np = netdev_priv(dev);
       
  2634 	u8 __iomem *base = get_hwbase(dev);
       
  2635 	u32 *rbuf = buf;
       
  2636 	int i;
       
  2637 
       
  2638 	regs->version = FORCEDETH_REGS_VER;
       
  2639 	spin_lock_irq(&np->lock);
       
  2640 	for (i = 0;i <= np->register_size/sizeof(u32); i++)
       
  2641 		rbuf[i] = readl(base + i*sizeof(u32));
       
  2642 	spin_unlock_irq(&np->lock);
       
  2643 }
       
  2644 
       
  2645 static int nv_nway_reset(struct net_device *dev)
       
  2646 {
       
  2647 	struct fe_priv *np = netdev_priv(dev);
       
  2648 	int ret;
       
  2649 
       
  2650 	spin_lock_irq(&np->lock);
       
  2651 	if (np->autoneg) {
       
  2652 		int bmcr;
       
  2653 
       
  2654 		bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
       
  2655 		bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
       
  2656 		mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
       
  2657 
       
  2658 		ret = 0;
       
  2659 	} else {
       
  2660 		ret = -EINVAL;
       
  2661 	}
       
  2662 	spin_unlock_irq(&np->lock);
       
  2663 
       
  2664 	return ret;
       
  2665 }
       
  2666 
       
  2667 #ifdef NETIF_F_TSO
       
  2668 static int nv_set_tso(struct net_device *dev, u32 value)
       
  2669 {
       
  2670 	struct fe_priv *np = netdev_priv(dev);
       
  2671 
       
  2672 	if ((np->driver_data & DEV_HAS_CHECKSUM))
       
  2673 		return ethtool_op_set_tso(dev, value);
       
  2674 	else
       
  2675 		return value ? -EOPNOTSUPP : 0;
       
  2676 }
       
  2677 #endif
       
  2678 
       
  2679 static struct ethtool_ops ops = {
       
  2680 	.get_drvinfo = nv_get_drvinfo,
       
  2681 	.get_link = ethtool_op_get_link,
       
  2682 	.get_wol = nv_get_wol,
       
  2683 	.set_wol = nv_set_wol,
       
  2684 	.get_settings = nv_get_settings,
       
  2685 	.set_settings = nv_set_settings,
       
  2686 	.get_regs_len = nv_get_regs_len,
       
  2687 	.get_regs = nv_get_regs,
       
  2688 	.nway_reset = nv_nway_reset,
       
  2689 	.get_perm_addr = ethtool_op_get_perm_addr,
       
  2690 #ifdef NETIF_F_TSO
       
  2691 	.get_tso = ethtool_op_get_tso,
       
  2692 	.set_tso = nv_set_tso
       
  2693 #endif
       
  2694 };
       
  2695 
       
  2696 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
       
  2697 {
       
  2698 	struct fe_priv *np = get_nvpriv(dev);
       
  2699 
       
  2700 	spin_lock_irq(&np->lock);
       
  2701 
       
  2702 	/* save vlan group */
       
  2703 	np->vlangrp = grp;
       
  2704 
       
  2705 	if (grp) {
       
  2706 		/* enable vlan on MAC */
       
  2707 		np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
       
  2708 	} else {
       
  2709 		/* disable vlan on MAC */
       
  2710 		np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
       
  2711 		np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
       
  2712 	}
       
  2713 
       
  2714 	writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
       
  2715 
       
  2716 	spin_unlock_irq(&np->lock);
       
  2717 };
       
  2718 
       
  2719 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
       
  2720 {
       
  2721 	/* nothing to do */
       
  2722 };
       
  2723 
       
  2724 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
       
  2725 {
       
  2726 	u8 __iomem *base = get_hwbase(dev);
       
  2727 	int i;
       
  2728 	u32 msixmap = 0;
       
  2729 
       
  2730 	/* Each interrupt bit can be mapped to a MSIX vector (4 bits).
       
  2731 	 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
       
  2732 	 * the remaining 8 interrupts.
       
  2733 	 */
       
  2734 	for (i = 0; i < 8; i++) {
       
  2735 		if ((irqmask >> i) & 0x1) {
       
  2736 			msixmap |= vector << (i << 2);
       
  2737 		}
       
  2738 	}
       
  2739 	writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
       
  2740 
       
  2741 	msixmap = 0;
       
  2742 	for (i = 0; i < 8; i++) {
       
  2743 		if ((irqmask >> (i + 8)) & 0x1) {
       
  2744 			msixmap |= vector << (i << 2);
       
  2745 		}
       
  2746 	}
       
  2747 	writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
       
  2748 }
       
  2749 
       
  2750 static int nv_request_irq(struct net_device *dev)
       
  2751 {
       
  2752 	struct fe_priv *np = get_nvpriv(dev);
       
  2753 	u8 __iomem *base = get_hwbase(dev);
       
  2754 	int ret = 1;
       
  2755 	int i;
       
  2756 
       
  2757 	if (np->msi_flags & NV_MSI_X_CAPABLE) {
       
  2758 		for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
       
  2759 			np->msi_x_entry[i].entry = i;
       
  2760 		}
       
  2761 		if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
       
  2762 			np->msi_flags |= NV_MSI_X_ENABLED;
       
  2763 			if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
       
  2764 				/* Request irq for rx handling */
       
  2765 				if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
       
  2766 					printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
       
  2767 					pci_disable_msix(np->pci_dev);
       
  2768 					np->msi_flags &= ~NV_MSI_X_ENABLED;
       
  2769 					goto out_err;
       
  2770 				}
       
  2771 				/* Request irq for tx handling */
       
  2772 				if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
       
  2773 					printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
       
  2774 					pci_disable_msix(np->pci_dev);
       
  2775 					np->msi_flags &= ~NV_MSI_X_ENABLED;
       
  2776 					goto out_free_rx;
       
  2777 				}
       
  2778 				/* Request irq for link and timer handling */
       
  2779 				if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
       
  2780 					printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
       
  2781 					pci_disable_msix(np->pci_dev);
       
  2782 					np->msi_flags &= ~NV_MSI_X_ENABLED;
       
  2783 					goto out_free_tx;
       
  2784 				}
       
  2785 				/* map interrupts to their respective vector */
       
  2786 				writel(0, base + NvRegMSIXMap0);
       
  2787 				writel(0, base + NvRegMSIXMap1);
       
  2788 				set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
       
  2789 				set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
       
  2790 				set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
       
  2791 			} else {
       
  2792 				/* Request irq for all interrupts */
       
  2793 				if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
       
  2794 					printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
       
  2795 					pci_disable_msix(np->pci_dev);
       
  2796 					np->msi_flags &= ~NV_MSI_X_ENABLED;
       
  2797 					goto out_err;
       
  2798 				}
       
  2799 
       
  2800 				/* map interrupts to vector 0 */
       
  2801 				writel(0, base + NvRegMSIXMap0);
       
  2802 				writel(0, base + NvRegMSIXMap1);
       
  2803 			}
       
  2804 		}
       
  2805 	}
       
  2806 	if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
       
  2807 		if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
       
  2808 			np->msi_flags |= NV_MSI_ENABLED;
       
  2809 			if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
       
  2810 				printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
       
  2811 				pci_disable_msi(np->pci_dev);
       
  2812 				np->msi_flags &= ~NV_MSI_ENABLED;
       
  2813 				goto out_err;
       
  2814 			}
       
  2815 
       
  2816 			/* map interrupts to vector 0 */
       
  2817 			writel(0, base + NvRegMSIMap0);
       
  2818 			writel(0, base + NvRegMSIMap1);
       
  2819 			/* enable msi vector 0 */
       
  2820 			writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
       
  2821 		}
       
  2822 	}
       
  2823 	if (ret != 0) {
       
  2824 		if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
       
  2825 			goto out_err;
       
  2826 	}
       
  2827 
       
  2828 	return 0;
       
  2829 out_free_tx:
       
  2830 	free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
       
  2831 out_free_rx:
       
  2832 	free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
       
  2833 out_err:
       
  2834 	return 1;
       
  2835 }
       
  2836 
       
  2837 static void nv_free_irq(struct net_device *dev)
       
  2838 {
       
  2839 	struct fe_priv *np = get_nvpriv(dev);
       
  2840 	int i;
       
  2841 
       
  2842 	if (np->msi_flags & NV_MSI_X_ENABLED) {
       
  2843 		for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
       
  2844 			free_irq(np->msi_x_entry[i].vector, dev);
       
  2845 		}
       
  2846 		pci_disable_msix(np->pci_dev);
       
  2847 		np->msi_flags &= ~NV_MSI_X_ENABLED;
       
  2848 	} else {
       
  2849 		free_irq(np->pci_dev->irq, dev);
       
  2850 		if (np->msi_flags & NV_MSI_ENABLED) {
       
  2851 			pci_disable_msi(np->pci_dev);
       
  2852 			np->msi_flags &= ~NV_MSI_ENABLED;
       
  2853 		}
       
  2854 	}
       
  2855 }
       
  2856 
       
  2857 static int nv_open(struct net_device *dev)
       
  2858 {
       
  2859 	struct fe_priv *np = netdev_priv(dev);
       
  2860 	u8 __iomem *base = get_hwbase(dev);
       
  2861 	int ret = 1;
       
  2862 	int oom, i;
       
  2863 
       
  2864 	dprintk(KERN_DEBUG "nv_open: begin\n");
       
  2865 
       
  2866 	/* 1) erase previous misconfiguration */
       
  2867 	if (np->driver_data & DEV_HAS_POWER_CNTRL)
       
  2868 		nv_mac_reset(dev);
       
  2869 	/* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
       
  2870 	writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
       
  2871 	writel(0, base + NvRegMulticastAddrB);
       
  2872 	writel(0, base + NvRegMulticastMaskA);
       
  2873 	writel(0, base + NvRegMulticastMaskB);
       
  2874 	writel(0, base + NvRegPacketFilterFlags);
       
  2875 
       
  2876 	writel(0, base + NvRegTransmitterControl);
       
  2877 	writel(0, base + NvRegReceiverControl);
       
  2878 
       
  2879 	writel(0, base + NvRegAdapterControl);
       
  2880 
       
  2881 	/* 2) initialize descriptor rings */
       
  2882 	set_bufsize(dev);
       
  2883 	oom = nv_init_ring(dev);
       
  2884 
       
  2885 	writel(0, base + NvRegLinkSpeed);
       
  2886 	writel(0, base + NvRegUnknownTransmitterReg);
       
  2887 	nv_txrx_reset(dev);
       
  2888 	writel(0, base + NvRegUnknownSetupReg6);
       
  2889 
       
  2890 	np->in_shutdown = 0;
       
  2891 
       
  2892 	/* 3) set mac address */
       
  2893 	nv_copy_mac_to_hw(dev);
       
  2894 
       
  2895 	/* 4) give hw rings */
       
  2896 	setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
       
  2897 	writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
       
  2898 		base + NvRegRingSizes);
       
  2899 
       
  2900 	/* 5) continue setup */
       
  2901 	writel(np->linkspeed, base + NvRegLinkSpeed);
       
  2902 	writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
       
  2903 	writel(np->txrxctl_bits, base + NvRegTxRxControl);
       
  2904 	writel(np->vlanctl_bits, base + NvRegVlanControl);
       
  2905 	pci_push(base);
       
  2906 	writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
       
  2907 	reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
       
  2908 			NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
       
  2909 			KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
       
  2910 
       
  2911 	writel(0, base + NvRegUnknownSetupReg4);
       
  2912 	writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
       
  2913 	writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
       
  2914 
       
  2915 	/* 6) continue setup */
       
  2916 	writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
       
  2917 	writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
       
  2918 	writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
       
  2919 	writel(np->rx_buf_sz, base + NvRegOffloadConfig);
       
  2920 
       
  2921 	writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
       
  2922 	get_random_bytes(&i, sizeof(i));
       
  2923 	writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
       
  2924 	writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
       
  2925 	writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
       
  2926 	if (poll_interval == -1) {
       
  2927 		if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
       
  2928 			writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
       
  2929 		else
       
  2930 			writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
       
  2931 	}
       
  2932 	else
       
  2933 		writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
       
  2934 	writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
       
  2935 	writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
       
  2936 			base + NvRegAdapterControl);
       
  2937 	writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
       
  2938 	writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
       
  2939 	writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
       
  2940 
       
  2941 	i = readl(base + NvRegPowerState);
       
  2942 	if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
       
  2943 		writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
       
  2944 
       
  2945 	pci_push(base);
       
  2946 	udelay(10);
       
  2947 	writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
       
  2948 
       
  2949 	nv_disable_hw_interrupts(dev, np->irqmask);
       
  2950 	pci_push(base);
       
  2951 	writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
       
  2952 	writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
       
  2953 	pci_push(base);
       
  2954 
       
  2955 	if (!np->ecdev) {
       
  2956 		if (nv_request_irq(dev)) {
       
  2957 			goto out_drain;
       
  2958         }
       
  2959 
       
  2960 		/* ask for interrupts */
       
  2961 		nv_enable_hw_interrupts(dev, np->irqmask);
       
  2962 
       
  2963 		spin_lock_irq(&np->lock);
       
  2964 	}
       
  2965 
       
  2966 	writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
       
  2967 	writel(0, base + NvRegMulticastAddrB);
       
  2968 	writel(0, base + NvRegMulticastMaskA);
       
  2969 	writel(0, base + NvRegMulticastMaskB);
       
  2970 	writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
       
  2971 	/* One manual link speed update: Interrupts are enabled, future link
       
  2972 	 * speed changes cause interrupts and are handled by nv_link_irq().
       
  2973 	 */
       
  2974 	{
       
  2975 		u32 miistat;
       
  2976 		miistat = readl(base + NvRegMIIStatus);
       
  2977 		writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
       
  2978 		dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
       
  2979 	}
       
  2980 	/* set linkspeed to invalid value, thus force nv_update_linkspeed
       
  2981 	 * to init hw */
       
  2982 	np->linkspeed = 0;
       
  2983 	ret = nv_update_linkspeed(dev);
       
  2984 	nv_start_rx(dev);
       
  2985 	nv_start_tx(dev);
       
  2986 
       
  2987 	if (np->ecdev) {
       
  2988 		ecdev_set_link(np->ecdev, ret);
       
  2989 	}
       
  2990 	else {
       
  2991 		netif_start_queue(dev);
       
  2992 		if (ret) {
       
  2993 			netif_carrier_on(dev);
       
  2994 		} else {
       
  2995 			printk("%s: no link during initialization.\n", dev->name);
       
  2996 			netif_carrier_off(dev);
       
  2997 		}
       
  2998 		if (oom)
       
  2999 			mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
       
  3000         spin_unlock_irq(&np->lock);
       
  3001 	}
       
  3002 
       
  3003 	return 0;
       
  3004 out_drain:
       
  3005 	drain_ring(dev);
       
  3006 	return ret;
       
  3007 }
       
  3008 
       
  3009 static int nv_close(struct net_device *dev)
       
  3010 {
       
  3011 	struct fe_priv *np = netdev_priv(dev);
       
  3012 	u8 __iomem *base;
       
  3013 
       
  3014 	if (!np->ecdev) {
       
  3015 		spin_lock_irq(&np->lock);
       
  3016 		np->in_shutdown = 1;
       
  3017 		spin_unlock_irq(&np->lock);
       
  3018 		synchronize_irq(dev->irq);
       
  3019 
       
  3020 		del_timer_sync(&np->oom_kick);
       
  3021 		del_timer_sync(&np->nic_poll);
       
  3022 
       
  3023 		netif_stop_queue(dev);
       
  3024 		spin_lock_irq(&np->lock);
       
  3025 	}
       
  3026 
       
  3027 	nv_stop_tx(dev);
       
  3028 	nv_stop_rx(dev);
       
  3029 	nv_txrx_reset(dev);
       
  3030 
       
  3031     base = get_hwbase(dev);
       
  3032 
       
  3033 	if (!np->ecdev) {
       
  3034 		/* disable interrupts on the nic or we will lock up */
       
  3035 		nv_disable_hw_interrupts(dev, np->irqmask);
       
  3036 		pci_push(base);
       
  3037 		dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
       
  3038 
       
  3039 		spin_unlock_irq(&np->lock);
       
  3040 
       
  3041 		nv_free_irq(dev);
       
  3042 	}
       
  3043 
       
  3044 	drain_ring(dev);
       
  3045 
       
  3046 	if (np->wolenabled)
       
  3047 		nv_start_rx(dev);
       
  3048 
       
  3049 	/* special op: write back the misordered MAC address - otherwise
       
  3050 	 * the next nv_probe would see a wrong address.
       
  3051 	 */
       
  3052 	writel(np->orig_mac[0], base + NvRegMacAddrA);
       
  3053 	writel(np->orig_mac[1], base + NvRegMacAddrB);
       
  3054 
       
  3055 	/* FIXME: power down nic */
       
  3056 
       
  3057 	return 0;
       
  3058 }
       
  3059 
       
  3060 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
       
  3061 {
       
  3062 	struct net_device *dev;
       
  3063 	struct fe_priv *np;
       
  3064 	unsigned long addr;
       
  3065 	u8 __iomem *base;
       
  3066 	int err, i;
       
  3067 	u32 powerstate;
       
  3068 
       
  3069     board_idx++;
       
  3070 
       
  3071 	dev = alloc_etherdev(sizeof(struct fe_priv));
       
  3072 	err = -ENOMEM;
       
  3073 	if (!dev)
       
  3074 		goto out;
       
  3075 
       
  3076 	np = netdev_priv(dev);
       
  3077 	np->pci_dev = pci_dev;
       
  3078 	spin_lock_init(&np->lock);
       
  3079 	SET_MODULE_OWNER(dev);
       
  3080 	SET_NETDEV_DEV(dev, &pci_dev->dev);
       
  3081 
       
  3082 	init_timer(&np->oom_kick);
       
  3083 	np->oom_kick.data = (unsigned long) dev;
       
  3084 	np->oom_kick.function = &nv_do_rx_refill;	/* timer handler */
       
  3085 	init_timer(&np->nic_poll);
       
  3086 	np->nic_poll.data = (unsigned long) dev;
       
  3087 	np->nic_poll.function = &nv_do_nic_poll;	/* timer handler */
       
  3088 
       
  3089 	err = pci_enable_device(pci_dev);
       
  3090 	if (err) {
       
  3091 		printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
       
  3092 				err, pci_name(pci_dev));
       
  3093 		goto out_free;
       
  3094 	}
       
  3095 
       
  3096 	pci_set_master(pci_dev);
       
  3097 
       
  3098 	err = pci_request_regions(pci_dev, DRV_NAME);
       
  3099 	if (err < 0)
       
  3100 		goto out_disable;
       
  3101 
       
  3102 	if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL))
       
  3103 		np->register_size = NV_PCI_REGSZ_VER2;
       
  3104 	else
       
  3105 		np->register_size = NV_PCI_REGSZ_VER1;
       
  3106 
       
  3107 	err = -EINVAL;
       
  3108 	addr = 0;
       
  3109 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
       
  3110 		dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
       
  3111 				pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
       
  3112 				pci_resource_len(pci_dev, i),
       
  3113 				pci_resource_flags(pci_dev, i));
       
  3114 		if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
       
  3115 				pci_resource_len(pci_dev, i) >= np->register_size) {
       
  3116 			addr = pci_resource_start(pci_dev, i);
       
  3117 			break;
       
  3118 		}
       
  3119 	}
       
  3120 	if (i == DEVICE_COUNT_RESOURCE) {
       
  3121 		printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
       
  3122 					pci_name(pci_dev));
       
  3123 		goto out_relreg;
       
  3124 	}
       
  3125 
       
  3126 	/* copy of driver data */
       
  3127 	np->driver_data = id->driver_data;
       
  3128 
       
  3129 	/* handle different descriptor versions */
       
  3130 	if (id->driver_data & DEV_HAS_HIGH_DMA) {
       
  3131 		/* packet format 3: supports 40-bit addressing */
       
  3132 		np->desc_ver = DESC_VER_3;
       
  3133 		np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
       
  3134 		if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
       
  3135 			printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
       
  3136 					pci_name(pci_dev));
       
  3137 		} else {
       
  3138 			dev->features |= NETIF_F_HIGHDMA;
       
  3139 			printk(KERN_INFO "forcedeth: using HIGHDMA\n");
       
  3140 		}
       
  3141 		if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
       
  3142 			printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
       
  3143 			       pci_name(pci_dev));
       
  3144 		}
       
  3145 	} else if (id->driver_data & DEV_HAS_LARGEDESC) {
       
  3146 		/* packet format 2: supports jumbo frames */
       
  3147 		np->desc_ver = DESC_VER_2;
       
  3148 		np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
       
  3149 	} else {
       
  3150 		/* original packet format */
       
  3151 		np->desc_ver = DESC_VER_1;
       
  3152 		np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
       
  3153 	}
       
  3154 
       
  3155 	np->pkt_limit = NV_PKTLIMIT_1;
       
  3156 	if (id->driver_data & DEV_HAS_LARGEDESC)
       
  3157 		np->pkt_limit = NV_PKTLIMIT_2;
       
  3158 
       
  3159 	if (id->driver_data & DEV_HAS_CHECKSUM) {
       
  3160 		np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
       
  3161 		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
       
  3162 #ifdef NETIF_F_TSO
       
  3163 		dev->features |= NETIF_F_TSO;
       
  3164 #endif
       
  3165  	}
       
  3166 
       
  3167 	np->vlanctl_bits = 0;
       
  3168 	if (id->driver_data & DEV_HAS_VLAN) {
       
  3169 		np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
       
  3170 		dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
       
  3171 		dev->vlan_rx_register = nv_vlan_rx_register;
       
  3172 		dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
       
  3173 	}
       
  3174 
       
  3175 	np->msi_flags = 0;
       
  3176 	if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
       
  3177 		np->msi_flags |= NV_MSI_CAPABLE;
       
  3178 	}
       
  3179 	if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
       
  3180 		np->msi_flags |= NV_MSI_X_CAPABLE;
       
  3181 	}
       
  3182 
       
  3183 	err = -ENOMEM;
       
  3184 	np->base = ioremap(addr, np->register_size);
       
  3185 	if (!np->base)
       
  3186 		goto out_relreg;
       
  3187 	dev->base_addr = (unsigned long)np->base;
       
  3188 
       
  3189 	dev->irq = pci_dev->irq;
       
  3190 
       
  3191 	if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
       
  3192 		np->rx_ring.orig = pci_alloc_consistent(pci_dev,
       
  3193 					sizeof(struct ring_desc) * (RX_RING + TX_RING),
       
  3194 					&np->ring_addr);
       
  3195 		if (!np->rx_ring.orig)
       
  3196 			goto out_unmap;
       
  3197 		np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
       
  3198 	} else {
       
  3199 		np->rx_ring.ex = pci_alloc_consistent(pci_dev,
       
  3200 					sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
       
  3201 					&np->ring_addr);
       
  3202 		if (!np->rx_ring.ex)
       
  3203 			goto out_unmap;
       
  3204 		np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
       
  3205 	}
       
  3206 
       
  3207 	dev->open = nv_open;
       
  3208 	dev->stop = nv_close;
       
  3209 	dev->hard_start_xmit = nv_start_xmit;
       
  3210 	dev->get_stats = nv_get_stats;
       
  3211 	dev->change_mtu = nv_change_mtu;
       
  3212 	dev->set_mac_address = nv_set_mac_address;
       
  3213 	dev->set_multicast_list = nv_set_multicast;
       
  3214 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  3215 	dev->poll_controller = nv_poll_controller;
       
  3216 #endif
       
  3217 	SET_ETHTOOL_OPS(dev, &ops);
       
  3218 	dev->tx_timeout = nv_tx_timeout;
       
  3219 	dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
       
  3220 
       
  3221 	pci_set_drvdata(pci_dev, dev);
       
  3222 
       
  3223 	/* read the mac address */
       
  3224 	base = get_hwbase(dev);
       
  3225 	np->orig_mac[0] = readl(base + NvRegMacAddrA);
       
  3226 	np->orig_mac[1] = readl(base + NvRegMacAddrB);
       
  3227 
       
  3228 	dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
       
  3229 	dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
       
  3230 	dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
       
  3231 	dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
       
  3232 	dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
       
  3233 	dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
       
  3234 	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
       
  3235 
       
  3236 	if (!is_valid_ether_addr(dev->perm_addr)) {
       
  3237 		/*
       
  3238 		 * Bad mac address. At least one bios sets the mac address
       
  3239 		 * to 01:23:45:67:89:ab
       
  3240 		 */
       
  3241 		printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
       
  3242 			pci_name(pci_dev),
       
  3243 			dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
       
  3244 			dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
       
  3245 		printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
       
  3246 		dev->dev_addr[0] = 0x00;
       
  3247 		dev->dev_addr[1] = 0x00;
       
  3248 		dev->dev_addr[2] = 0x6c;
       
  3249 		get_random_bytes(&dev->dev_addr[3], 3);
       
  3250 	}
       
  3251 
       
  3252 	dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
       
  3253 			dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
       
  3254 			dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
       
  3255 
       
  3256 	/* disable WOL */
       
  3257 	writel(0, base + NvRegWakeUpFlags);
       
  3258 	np->wolenabled = 0;
       
  3259 
       
  3260 	if (id->driver_data & DEV_HAS_POWER_CNTRL) {
       
  3261 		u8 revision_id;
       
  3262 		pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
       
  3263 
       
  3264 		/* take phy and nic out of low power mode */
       
  3265 		powerstate = readl(base + NvRegPowerState2);
       
  3266 		powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
       
  3267 		if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
       
  3268 		     id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
       
  3269 		    revision_id >= 0xA3)
       
  3270 			powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
       
  3271 		writel(powerstate, base + NvRegPowerState2);
       
  3272 	}
       
  3273 
       
  3274 	if (np->desc_ver == DESC_VER_1) {
       
  3275 		np->tx_flags = NV_TX_VALID;
       
  3276 	} else {
       
  3277 		np->tx_flags = NV_TX2_VALID;
       
  3278 	}
       
  3279 	if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
       
  3280 		np->irqmask = NVREG_IRQMASK_THROUGHPUT;
       
  3281 		if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
       
  3282 			np->msi_flags |= 0x0003;
       
  3283 	} else {
       
  3284 		np->irqmask = NVREG_IRQMASK_CPU;
       
  3285 		if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
       
  3286 			np->msi_flags |= 0x0001;
       
  3287 	}
       
  3288 
       
  3289 	if (id->driver_data & DEV_NEED_TIMERIRQ)
       
  3290 		np->irqmask |= NVREG_IRQ_TIMER;
       
  3291 	if (id->driver_data & DEV_NEED_LINKTIMER) {
       
  3292 		dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
       
  3293 		np->need_linktimer = 1;
       
  3294 		np->link_timeout = jiffies + LINK_TIMEOUT;
       
  3295 	} else {
       
  3296 		dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
       
  3297 		np->need_linktimer = 0;
       
  3298 	}
       
  3299 
       
  3300 	/* find a suitable phy */
       
  3301 	for (i = 1; i <= 32; i++) {
       
  3302 		int id1, id2;
       
  3303 		int phyaddr = i & 0x1F;
       
  3304 
       
  3305 		spin_lock_irq(&np->lock);
       
  3306 		id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
       
  3307 		spin_unlock_irq(&np->lock);
       
  3308 		if (id1 < 0 || id1 == 0xffff)
       
  3309 			continue;
       
  3310 		spin_lock_irq(&np->lock);
       
  3311 		id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
       
  3312 		spin_unlock_irq(&np->lock);
       
  3313 		if (id2 < 0 || id2 == 0xffff)
       
  3314 			continue;
       
  3315 
       
  3316 		id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
       
  3317 		id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
       
  3318 		dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
       
  3319 			pci_name(pci_dev), id1, id2, phyaddr);
       
  3320 		np->phyaddr = phyaddr;
       
  3321 		np->phy_oui = id1 | id2;
       
  3322 		break;
       
  3323 	}
       
  3324 	if (i == 33) {
       
  3325 		printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
       
  3326 		       pci_name(pci_dev));
       
  3327 		goto out_freering;
       
  3328 	}
       
  3329 	
       
  3330 	/* reset it */
       
  3331 	phy_init(dev);
       
  3332 
       
  3333 	/* set default link speed settings */
       
  3334 	np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
       
  3335 	np->duplex = 0;
       
  3336 	np->autoneg = 1;
       
  3337 
       
  3338 	// offer device to EtherCAT master module
       
  3339 	if (ecdev_offer(dev, ec_poll, THIS_MODULE, &np->ecdev)) {
       
  3340 		printk(KERN_ERR "forcedeth: Failed to offer device.\n");
       
  3341 		goto out_freering;
       
  3342 	}
       
  3343 
       
  3344 	if (np->ecdev) {
       
  3345 		if (ecdev_open(np->ecdev)) {
       
  3346 			ecdev_withdraw(np->ecdev);
       
  3347 			goto out_freering;
       
  3348 		}
       
  3349 	}
       
  3350 	else {
       
  3351 		err = register_netdev(dev);
       
  3352 		if (err) {
       
  3353 			printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
       
  3354 			goto out_freering;
       
  3355 		}
       
  3356 	}
       
  3357 	printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
       
  3358 			dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
       
  3359 			pci_name(pci_dev));
       
  3360 
       
  3361 	return 0;
       
  3362 
       
  3363 out_freering:
       
  3364 	if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
       
  3365 		pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
       
  3366 				    np->rx_ring.orig, np->ring_addr);
       
  3367 	else
       
  3368 		pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
       
  3369 				    np->rx_ring.ex, np->ring_addr);
       
  3370 	pci_set_drvdata(pci_dev, NULL);
       
  3371 out_unmap:
       
  3372 	iounmap(get_hwbase(dev));
       
  3373 out_relreg:
       
  3374 	pci_release_regions(pci_dev);
       
  3375 out_disable:
       
  3376 	pci_disable_device(pci_dev);
       
  3377 out_free:
       
  3378 	free_netdev(dev);
       
  3379 out:
       
  3380 	return err;
       
  3381 }
       
  3382 
       
  3383 static void __devexit nv_remove(struct pci_dev *pci_dev)
       
  3384 {
       
  3385 	struct net_device *dev = pci_get_drvdata(pci_dev);
       
  3386 	struct fe_priv *np = netdev_priv(dev);
       
  3387 
       
  3388 	if (np->ecdev) {
       
  3389 		ecdev_close(np->ecdev);
       
  3390 		ecdev_withdraw(np->ecdev);
       
  3391 	}
       
  3392 	else {
       
  3393 		unregister_netdev(dev);
       
  3394 	}
       
  3395 
       
  3396 	/* free all structures */
       
  3397 	if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
       
  3398 		pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
       
  3399 	else
       
  3400 		pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
       
  3401 	iounmap(get_hwbase(dev));
       
  3402 	pci_release_regions(pci_dev);
       
  3403 	pci_disable_device(pci_dev);
       
  3404 	free_netdev(dev);
       
  3405 	pci_set_drvdata(pci_dev, NULL);
       
  3406 }
       
  3407 
       
  3408 static struct pci_device_id pci_tbl[] = {
       
  3409 	{	/* nForce Ethernet Controller */
       
  3410 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
       
  3411 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
       
  3412 	},
       
  3413 	{	/* nForce2 Ethernet Controller */
       
  3414 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
       
  3415 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
       
  3416 	},
       
  3417 	{	/* nForce3 Ethernet Controller */
       
  3418 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
       
  3419 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
       
  3420 	},
       
  3421 	{	/* nForce3 Ethernet Controller */
       
  3422 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
       
  3423 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
       
  3424 	},
       
  3425 	{	/* nForce3 Ethernet Controller */
       
  3426 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
       
  3427 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
       
  3428 	},
       
  3429 	{	/* nForce3 Ethernet Controller */
       
  3430 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
       
  3431 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
       
  3432 	},
       
  3433 	{	/* nForce3 Ethernet Controller */
       
  3434 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
       
  3435 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
       
  3436 	},
       
  3437 	{	/* CK804 Ethernet Controller */
       
  3438 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
       
  3439 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
       
  3440 	},
       
  3441 	{	/* CK804 Ethernet Controller */
       
  3442 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
       
  3443 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
       
  3444 	},
       
  3445 	{	/* MCP04 Ethernet Controller */
       
  3446 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
       
  3447 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
       
  3448 	},
       
  3449 	{	/* MCP04 Ethernet Controller */
       
  3450 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
       
  3451 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
       
  3452 	},
       
  3453 	{	/* MCP51 Ethernet Controller */
       
  3454 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
       
  3455 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
       
  3456 	},
       
  3457 	{	/* MCP51 Ethernet Controller */
       
  3458 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
       
  3459 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
       
  3460 	},
       
  3461 	{	/* MCP55 Ethernet Controller */
       
  3462 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
       
  3463 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
       
  3464 	},
       
  3465 	{	/* MCP55 Ethernet Controller */
       
  3466 		PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
       
  3467 		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
       
  3468 	},
       
  3469 	{0,},
       
  3470 };
       
  3471 
       
  3472 static struct pci_driver driver = {
       
  3473 	.name = "forcedeth",
       
  3474 	.id_table = pci_tbl,
       
  3475 	.probe = nv_probe,
       
  3476 	.remove = __devexit_p(nv_remove),
       
  3477 };
       
  3478 
       
  3479 
       
  3480 static int __init init_nic(void)
       
  3481 {
       
  3482 	printk(KERN_INFO "forcedeth: EtherCAT-capable nForce ethernet driver."
       
  3483 			" Version %s, master %s.\n",
       
  3484             FORCEDETH_VERSION, EC_MASTER_VERSION);
       
  3485 	return pci_module_init(&driver);
       
  3486 }
       
  3487 
       
  3488 static void __exit exit_nic(void)
       
  3489 {
       
  3490 	pci_unregister_driver(&driver);
       
  3491 }
       
  3492 
       
  3493 module_param(max_interrupt_work, int, 0);
       
  3494 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
       
  3495 module_param(optimization_mode, int, 0);
       
  3496 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
       
  3497 module_param(poll_interval, int, 0);
       
  3498 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
       
  3499 module_param(disable_msi, int, 0);
       
  3500 MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
       
  3501 module_param(disable_msix, int, 0);
       
  3502 MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
       
  3503 
       
  3504 MODULE_AUTHOR("Dipl.-Ing. (FH) Florian Pose <fp@igh-essen.com>");
       
  3505 MODULE_DESCRIPTION("EtherCAT-capable nForce ethernet driver");
       
  3506 MODULE_LICENSE("GPL");
       
  3507 
       
  3508 //MODULE_DEVICE_TABLE(pci, pci_tbl); // prevent auto-loading
       
  3509 
       
  3510 module_init(init_nic);
       
  3511 module_exit(exit_nic);